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Abstract—Future millimeter-wave networks will support very
high densities of devices and access points. This vastly increases
the overhead required for access point selection and beam
training. Fortunately, the quasi-optical properties of millimeter-
wave channels make location-based network optimization a
highly promising technique to reduce control overhead in such
millimeter-wave WLANs. In this paper, we extract channel state
information from off-the-shelf routers, we use it to design a
high accuracy location system, and then show how location
information enables the optimization of network operations. The
resulting scheme, named LEAP, can predict blockage, optimize
access point association, and select the most suitable antenna
beam patterns while significantly reducing the beam training
overhead. We show that compared to standard state-of-the-art
802.11ad systems, LEAP’s location driven management greatly
improves network performance and link stability.

I. INTRODUCTION

Millimeter-wave (mmWave) communications have emerged
as one of the most promising solutions to deliver multi-Gbit/s
data rates to wireless devices. They are being standardized by
3GPP as a component of future mobile networks and have
already become a WLAN standard through the introduction
of IEEE 802.11ad operating in the 60 GHz band [1]. First
commercial off-the-shelf (COTS) mmWave devices started
appearing on the market, such as the Netgear Nighthawk
X10 [2] and the TP-Link Talon AD7200 [3] routers that
implement the 802.11ad standard.

Radio propagation at mmWave frequencies exhibits a quasi-
optical behavior, i.e., the useful energy received by a mmWave
receiver propagates from the transmitter over a limited number
of paths, typically a line-of-sight path and/or several low-
order reflections. It is also characterized by a high path loss,
and devices use beam forming antennas to compensate this
loss with a higher antenna gain. Such antennas require beam
training [4] to choose the beam pattern configuration that
achieves the best signal quality over a point-to-point link.
802.11ad devices can use hierarchical beam training with
different beam widths [5], but faster solutions have been
proposed that take advantage of the sparsity of the mmWave
multi-path channel for compressive beam training [6], [7].

Most construction and furnishing materials are opaque to
mmWaves, which implies that 802.11ad deployments experi-
ence blockage events and link outage may be frequent in the
presence of obstructions [8], especially for mobile devices.
Ubiquitous indoor mmWave coverage thus requires a very
dense deployment of access points (APs) [9], so that ideally
every location of an indoor space is served by more than one

AP. This way, the probability of outage becomes small and
the link quality improves thanks to the lower average distance
between an AP and its associated clients. When the density
of APs and clients increases, beam training can constitute a
significant source of overhead for the network. In principle,
each client would have to perform beam training with each
AP in its vicinity to determine which is the most suitable one.
This makes optimal AP association a combinatorial problem,
and hence scaling up the network density poses a significant
challenge even with very efficient beam training mechanisms.

For such scenarios, location information is extremely bene-
ficial, since it makes it possible to reduce or ideally avoid the
beam training overhead. With a location system that provides
device and AP positions with sufficient accuracy, it is possible
to directly select the most suitable AP together with the beam
pattern providing the highest gain in the known direction to
that AP. By learning the environment, location systems also
make it possible to prevent blockage by triggering handovers
before the link to the associated AP is obstructed.

The idea of exploiting location information in order to
improve network performance is envisioned in several works
on indoor localization [10]–[13]. However, while these works
advocate the advantages offered by location information, they
focus mainly on the location system and its performance per
se, without exploring the resulting network performance of
location-driven beam training and AP association. Other works
in the literature combine location information and network
optimization, but are not targeting mmWave systems. For
example, [14] leverages location data to optimize the load
of indoor femto-cells, whereas [15] considers automatic peer
node discovery as a possible networking-related application.

We address the above issues by implementing a 3D location
system1 that works solely based on the channel state informa-
tion (CSI) extracted from the firmware of COTS mmWave
devices, specifically Talon AD7200 routers. The CSI includes
the amplitude and phase of the most powerful propagation
path that links two mmWave devices. By inferring the specific
layout and configuration of the Talon antenna arrays, and thus
the steering vectors required to point the array towards a given
direction, the CSI thus collected makes it possible to estimate
the directions from which a signal arrives to each AP. From
this angle information, we derive the 3D location both of
the APs and of the mmWave clients, and are thus able to

12D location systems are suboptimal since mmWave APs are typically
deployed below the ceiling to avoid blockage, whereas devices are at table
height.



learn the mapping between the location of a device and the
quality of the links between the client and the surrounding
APs. This makes it possible to develop simple, location-
based algorithms to determine not only the best AP a client
should associate with, given its current location, but also which
beam pattern the client should use to achieve the best link
quality and throughput. The resulting system, named Location
Estimation And Predictive handover (LEAP), enables location-
based, automatic handover and beam training mechanisms that
scale to very high device densities and network dynamics.

To the best of our knowledge, this work is the first to
employ 3D location information extracted from mmWave
communications (without interfaces to external systems) to
perform mmWave network optimization for client-AP associ-
ation, handover, and beam selection. It is also the first work to
implement such a system and provide quantitative results for
the performance gains of location-based network optimization.

Our evaluation is based on experimental data collected
through a testbed of seven Talon routers working as mmWave
APs. We deploy our testbed in a large indoor space with
furniture and separating walls, located such that they obstruct
the line-of-sight (LoS) path from one or more APs as the client
moves around the room. Except for the extraction of the CSI
to be processed by our location system, the router operation is
unmodified and remains standard-compliant. We demonstrate
decimeter-level AP localization accuracy and sub-meter client
localization accuracy in more than 80% of the cases. We
further show that the handover optimization and optimal beam
pattern selection process provides a throughput improvement
between 8.5% and 57% with respect to the 802.11ad standard,
and that links experience 2 to 9 dB higher Signal-to-Noise
Ratio (SNR).

Specifically, we provide the following contributions:
• A mmWave location system that autonomously localizes

both mmWave APs and clients in a given environment via
CSI measurements. For this, we efficiently estimate the
physical propagation paths that best explain the measured
CSI, and translate this information into the direction of
departure of the signal from the APs to the client;

• Location-based handover and beam training by exploit-
ing location information, such that a client is more likely
to avoid blockage and connect to the most suitable AP us-
ing the beam pattern providing the best link performance;

• An implementation of our LEAP scheme using COTS
devices, whose operation is unmodified except for the
collection of CSI.

In the following, we present related work (Section II),
the design of LEAP’s location system (Section III), and
of its optimized location-based handover and beam pattern
selection schemes (Section IV). Next, we present our hardware
platform and implementation (Section V), evaluate our scheme
(Section VI), and draw concluding remarks in Section VII.

II. RELATED WORK

Indoor localization is becoming an increasingly important
topic for networks, applications and services. Several schemes

and systems are compared in [16] under practical indoor con-
ditions. Among the tested schemes, [17] uses improved like-
lihood functions that achieve good WiFi fingerprint matching
accuracy, whereas [18] relies on arbitrary array processing to
extract angle of arrival (AoA) information. Source localization
is made possible through the processing of multipath recep-
tions from different AoAs. Among the systems that achieve
accurate localization in a WiFi context, Centaur [19] mixes
radio and acoustic location fixes through Bayesian inference,
in a way that is oblivious to the specific location system
employed in each domain. ArrayTrack [20] exploits antenna
arrays to suppress multipath, synthesize AoAs from different
antenna subsets, and localize a client in a multi-AP scenario.
Up to decimeter-level accuracy is achieved by Chronos [15],
a system which localizes a client by exploring the phase of
the WiFi signal at different frequencies to measure the time
of flight (ToF) between each of its antennas and the client.

Fingerprinting-based methods have also been recently re-
vived by crowdsourcing the collection of measurements for
the fingerprint database. For example, in [21], where a sig-
nificant contribution is the use of received signal strength
indicator (RSSI) differences, which even out the different
devices characteristics while preserving the accuracy of the
radio map. Similarly, ARLS [22] exploits crowdsourced RSSI
maps to achieve room-level client localization. The theoretical
framework in [23] suggests that cooperation represents a
good solution to improve localization accuracy, especially if
AoA, RSSI and ToF information can be successfully merged
with a client’s sensors. Practical implementations of this
concept include enhancing Bluetooth low-energy (BLE) RSSI
measurements with inertial sensor readings [24], or using
pedestrian dead reckoning jointly with WiFi and BLE. All
of the above systems operate at frequencies below mmWave.

mmWave systems show significant potential to achieve very
high positioning accuracy [25], both for the localization of
a client, and for the estimation of the environment around
it using multipath propagation [12]. Notably, this can be
achieved using range-based or AoA-based methods, with no
need to resort to special hardware, measurement-intensive
fingerprinting or ToF methods typical of ultrawideband sys-
tems [26]. Since the small wavelength makes it possible to
integrate a very large number of antenna elements in a compar-
atively small form factor, massive mmWave arrays are feasible,
which in turn enable high localization accuracy even with
random beamforming [27]. With somewhat smaller arrays,
maximum likelihood estimation and the exploiting the sparsity
of the MIMO channel matrix in mmWave scenarios have been
shown to provide low location errors [28]. In general, the
best accuracy and lowest localization errors are enabled by
range-based algorithms [10], [29]; however, ranging requires
accurate path loss models, whose parameters are environment-
specific and may have to be re-trained over time. Multipath
propagation can be exploited along with AoA information in
order to localize a client [30] even with a single AP [31],
although mmWave beamforming upon link establishment may
turn out to sparsify the channel and reduce the number of



useful multipath components [8]. Given sufficiently many
reflected multi-path components, a mmWave location system
can also be used to map the environment [32].

Our work clearly differs from the above literature, as we
do not just design a 3D location system, but also exploit it
to optimize network-related functions such as handover and
initial access by significantly reducing the beam training or
feedback between the AP and the client [33]. Unlike previous
theoretical approaches [34], we implement our solution on
COTS devices, showing that the improvements of our location-
based scheme can be achieved with consumer equipment.

III. LOCATION SYSTEM

A. Main idea

The main idea behind LEAP is as follows. We assume the
presence of multiple APs in an indoor area. This is realistic
given that indoor mmWave deployments are envisioned to
be dense [9]. As a client moves, the APs measure the CSI
of the link that connects them to the user. Multiple CSI
measurements are converted into angle information in order
to estimate the 3D location both of the APs and of the client.
For each AP, we train a regression tree to learn the mapping
between the location of the client and the SNR of its link to
that AP. These regression trees help us decide, for any client
location, which AP the client should connect to and which
beam should be used. No coordination or feedback between
the APs and the client is required, and the visibility of just
a few APs at the same time (typically 2-3) is sufficient to
achieve good results. Additionally, being able to select the
correct beam based only on the locations of the APs’ and the
client significantly reduces the beam training time. The central
result of our work is that a location system based only on
information readily available to the physical layer of a set of
mmWave APs suffices to enable location-aided beam training
and handovers, greatly improving the network performance
compared to the standard IEEE 802.11ad protocol.

B. Client localization algorithm

The CSI provided by the Talon router’s firmware consists
of one complex gain per antenna for the strongest multipath
component of the received signal [35]. As a first step, our 3D
location system converts the CSI into directions of arrival at
each AP. Our formulation works in any number of dimensions,
and is used to localize both the APs and the client in 3D
space. We assume that each AP has a LoS connection to at
least two APs, as needed to estimate the AP orientations. The
quasi-optical behavior of the mmWave channel implies that
the energy collected by a given node has reached that node
through a limited number of propagation paths. Call L the
number of paths. We can define the uplink channel matrix
towards AP a as

H =

L∑
`=1

α` sa(v`) sC(ξ`)
H , (1)

where the superscript H denotes conjugate-transpose, α` is the
complex power gain of path ` (which includes path loss and

phase shift), v` and ξ` are the unitary vectors that define the
direction of arrival at the AP and the direction of departure
at the user of the `th path, whereas sa(v`) and sC(ξ`) are
the steering vectors of the array of AP a and of the client
array that point towards directions v` and ξ`, respectively.
The CSI value measured by the receiver depends on the beam
pattern p employed by the user, as well as on the above
quantities. Specifically, the following vector represents the
receive channel measured by AP a:

ha =

L∑
`=1

α` sa(v`) sC(ξ`)
Hp =

L∑
`=1

β` sa(v`) , (2)

where we define the scalar value β` = α` sC(ξ`)
Hp. The

vector ha is the CSI measured by AP a. Assuming that such
CSI is mostly explained by a single main path [35], we can
now estimate the vector of arrival v̄a (from the user to the
receiving AP) that corresponds to such main path, and thus
best explains the measured CSI. Assuming that the CSI is
affected by circularly complex Gaussian noise, the estimate of
v̄a is obtained as

v̄a = arg min
v

min
β

∥∥ha − βsa(v)
∥∥2
. (3)

where ha is as in (2). In the right-hand side of (3), we have∥∥ha−βsa(v)
∥∥2

= ‖ha‖2+|β|2‖sa(v)‖2−2Re[βhH
asa(v)], (4)

where Re[·] denotes the real part. The last term on the right-
hand-side of (4) is the only one affected by the phase of β,
and its minimum is equal to −2|β||hH

asa(v)|. It thus remains
to minimize the quadratic expression

‖ha‖2 + |β|2‖sa(v)‖2 − 2 |β| |hH
asa(v)| , (5)

whose minimum value is ‖ha‖2 − |hH
asa(v)|2/‖sa(v)‖2.

Hence (3) simplifies to

v̄a=arg min
v

(
‖ha‖2−

|hH
asa(v)|2

‖sa(v)‖2

)
=arg max

v

|hH
asa(v)|
‖sa(v)‖

. (6)

Eq. (6) can be solved once we know sa(v) for a sufficiently
large set of directions v. This requires knowledge of the array
topology of all routers, which can be obtained either from
antenna modeling or by measuring a sufficiently large set of
steering vectors in an anechoic chamber. Assume for the mo-
ment that we know the AP locations ya, where 1 ≤ a ≤ NA

is the index of the AP, and NA is the total number of APs
deployed in the indoor space. Given v̄a, we can compute the
location x of the user. Ideally, if we knew the distance da
between x and ya, we could directly compute the location of
the user as x = ya + dava. Since our method is range-free,
we have no means of estimating this distance directly. We
solve this issue by formulating the location estimation step as
a minimum mean-square error (MMSE) problem, where we
obtain the estimated user location x̄ as the one that minimizes
the difference between the actual location and the estimate
ya +dav̄a, for minimum distance da from any AP. Formally:

x̄ = arg min
x

min
da,∀a

NA∑
a=1

∥∥ya + dav̄a − x
∥∥2
. (7)



Minimizing each of the terms minda ‖ya + vada − x‖2, by
definition, means finding the minimum distance between x and
the line passing through ya with direction va. By applying the
equation for the distance between a point and a line, we get

min
da

∥∥ya + vada − x
∥∥2

=
∥∥ya − x

∥∥2−
(
(ya − x)Tva

)2
(8)

= ‖ya − x‖2 − (ya − x)Tvav
T
a(ya − x)

= (ya − x)T(I− vav
T
a)(ya − x)

= xT(I− vav
T
a)x− 2yT

a(I− vav
T
a)x+

+ yT
a(I− vav

T
a)ya . (9)

Call U = NAI−
∑NA

a=1 vav
T
a, r =

∑NA

a=1

(
I− vav

T
a

)
ya and

z =
∑NA

a=1 yT
a

(
I− vav

T
a

)
ya. By substituting (9) into (7), we

can rewrite (7) as

x̄ = arg min
x

xTUx− 2rTx + z . (10)

This MMSE problem has solution x̄ = U−1r, and error

εx̄ = z − rTU−1r . (11)

C. AP localization algorithm

With (11), we can now formulate the AP localization
algorithm. We first observe that (11) is in quadratic form.
Define y as the vector containing the vertical concatenation
of the coordinates of all access points 1 ≤ a ≤ NA. With a
suitable re-arrangement of the terms in (11), we can write

εx̄ = yTQy , (12)

where matrix Q can be measured, and its terms depend on
the CSI collected by each router. Call t the time epoch when
a measurement is collected, and call Qt the corresponding
matrix. We can estimate the vector of the AP locations y
as the one that minimizes (12) by taking into consideration
all measurements carried out over time. This leads to the
following minimization problem:

ȳ = arg min
y

yT
∑
t

Qty (13a)

s.t. ‖y‖ = 1 (13b)∑NA

a=1[y]3a−2 = 0 (13c)∑NA

a=1[y]3a−1 = 0 (13d)∑NA

a=1[y]3a = 0 , (13e)

where the notation [·]k denotes the element in position k of
the vector in the square brackets. Call T any orthonormal
parametrization of the subspace defined by the linear con-
straints (13c)–(13e); then T defines a bijection y = Ty̌
between the restricted space of y and a compressed version in
a lower-dimensional space. In this way, the problem in (13)
can be expressed as

ȳ = T arg min
y̌

(Ty̌)T
∑
t

Qt(Ty̌) (14a)

s.t. ‖Ty̌‖ = 1 . (14b)

Since T is orthonormal, ‖Ty̌‖ = ‖y̌‖ and (14) becomes

ȳ = T arg min
y̌

y̌T
(
TT
∑
t

QtT
)
y̌ (15a)

s.t. ‖y̌‖ = 1 , (15b)

which is a minimum eigenvector determination problem.
Hence the vector that minimizes (15) is Emin[TT

∑
t QtT],

where the Emin[·] operator returns the minimum eigenvector
of its argument, and the solution to (13) is

ȳ = T Emin

[
TT
∑
t

QtT
]
. (16)

D. Data smoothing

In order to remove outliers in the measurements and im-
prove the data and location estimation quality, we implement
three filtering steps. First, we ensure that the CSI fed to the
localization algorithm is being measured from the LoS path.
We thus design a filter to determine which measurements
correspond to LoS paths and which ones should instead
be discarded. A measurement is kept if the measured path
satisfies two conditions: i) that the path power should exceed
a threshold, i.e., ‖ha‖ > θP , and ii) that the proportion of the
measured power explained by the estimated path should also
exceed a threshold, i.e., |hH

asa(v̄a)|/(‖ha‖‖sa(v̄a)‖) > θA,
where, e.g., θA = 0.9.

Second, spurious CSI measurements provided by the APs
should be filtered out to avoid that they contaminate the
location estimates. We achieve this by eliminating the mea-
surements that are not in agreement with the AP location
estimates. We identify such spurious estimates as those for
which the vector of departure x̄ − ȳa remains far from the
estimated direction of departure v̄a, i.e., for which the cosine
of the angle between the two vectors is small. We therefore
check if ‖x̄−ȳa‖−1(x̄−ȳa)Hva < cos ε. If this is the case, we
iteratively discard each measurement for which the left-hand-
side of the above inequality is smallest (i.e., those leading to
the largest discrepancies between x̄ − ȳa and v̄a), until all
remaining measurements exceed the threshold.

In the same vein, we filter out client location errors as
follows. We check if removing any of the AP coordinates
included in vector y in (12) and the corresponding lines and
columns of Q reduces the error εx̄ at least by a factor of 2. We
then iteratively eliminate APs until we find no more that can
be removed to improve the error, or until we are left with just
two APs, which is the minimum number required to estimate
the client position.

E. Mobility model and trajectory smoothing

We smooth the trajectory of the client via a rank-deficient
Kalman filter. We consider the following mobility model

xt+1 = xt + ∆twt + xn xn ∼ N (0,∆t σ2
xI) (17)

wt+1 = wt + wn wn ∼ N (0,∆t σ2
vI) , (18)

where xt is the location of the client at time t, wt its
movement speed, ∆t is the time interval between subsequent



measurements, and σ2
x and σ2

v are the variance of each
component of the position and velocity vector, respectively.
The model in (17)–(18) correspond to uniform linear motion
with location error xn and speed error wn. Define the client
state as the concatenation of the position and speed, i.e.,
zt = [xT

t ,w
T
t ]T, and define the matrices

E =

[
I ∆tI
0 I

]
, Σz = ∆t

[
σ2
xI 0
0 σ2

vI

]
, (19)

from which we can compute the state evolution as

zt+1 = Ezt + zn , zn ∼ N (0,Σz) . (20)

If zt ∼ N (µt,Σt), we obtain the evolution formulas

µt+1 = Eµt , Σt+1 = EΣtE
T + Σz , (21)

where µ0 and Σ0 are initialized with the first measurement’s
value and uncertainty, respectively. By modeling the likelihood
of the measurements as a normal distribution with mean x̄t
and inverse covariance U−1

t , the posterior distribution of zt is

µ̄t=Σ̄t

(
Σ−1
t µt+

[
Utx̄t

0

])
, Σ̄t=

(
Σ−1
t +

[
Ut 0
0 0

])−1

, (22)

so that finally µ̄t predicts the client’s position and velocity
at time t. We remark that only a few measurements from
typically 2-3 visible APs are sufficient to achieve a good
position estimate. When location estimation should fail, the
Kalman filter can be used for dead reckoning: namely, when
a location cannot be computed from the CSI measurements,
the filter automatically fills the gap by assuming that the client
maintained the same speed vector.

IV. USING LOCATION INFORMATION FOR HANDOVER
AND BEAM SELECTION

The accurate location system developed in Section III opens
the way to extremely lightweight schemes to select the best
AP. Specifically, we predict how the SNR of the link between
the client and each AP will evolve over time, and use this
information to rank the link quality with each AP and beam
pattern. Considering a specific AP a, we proceed as follows.

For each measurement, after computing the posterior distri-
bution of zt in (22), we predict the location of the client over
time for a given number NT of future epochs spaced by a time
interval τ . Call these locations x̂1, . . . , x̂NT

. For each location
x̂i, we also compute the inverse square of the distance from
AP a, namely d−2

i (a) = ‖x̂i−ŷa‖−2. This serves as a measure
of link quality. We pass the predicted locations of the client
and the inverse squared distance from the AP to a regression
tree trained to map these features and the SNR that would be
experienced at any location. This yields NT predicted SNR
values for AP a, γ1, . . . , γNT

. Finally, we compute the score
assigned to AP a as

κa =
∑NT

n=1 exp(−nτ/λ)γn , (23)

where λ is a custom parameter that regulates the exponential
weighing of future predicted SNR values. After carrying out
the above procedure for all APs, we finally instruct the client
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Fig. 1. Median location estimation error in meters as a function of the number
of measurements collected. About 15 measurements are sufficient to achieve
sub-meter localization accuracy both for the client and for the APs.

to connect to AP â = arg maxa κa. By knowing the location
of the AP and of the client, LEAP can potentially select the
right beam without probing any APs. In practice, up to 4 or 9
beams are tested in order to ensure a correct handover in the
presence of location errors. This is still a substantial reduction
with respect to exhaustive or hierarchical beam training.

The system is bootstrapped by collecting enough measure-
ments to estimate the location of the APs. LEAP achieves
sub-meter location errors already with very few measurements.
This is demonstrated by Fig. 1, which shows the evolution of
the median localization error as a function of the number of
measurements collected. We observe that even when no initial
information is available to the user about its own location or
the location of the APs, about 15 measurements are sufficient
to achieve sub-meter median accuracy. Further measurements
improve the AP locations even further, achieving an accuracy
below 40 cm for about 50 measurements, and converging to
sub-decimeter accuracy in the long run. In contrast, due to
client mobility, only a limited set of measurements is available
for each new client location and thus the median location error
for the client converges to approximately 40 cm.

As soon as AP locations become available, we train a
regression tree to learn the mapping between the user location
and the SNR provided by each AP. Initially, the data set em-
ployed to train the regression tree is composed of the collected
measurements, enriched with simulated data derived from a
channel model. The simulated data is iteratively expunged
from the training dataset and substituted with measurements as
they become available, until the regression tree can be trained
using only measured data.

V. HARDWARE AND METHODOLOGY

We evaluate LEAP using TP-Link Talon AD7200 APs [3].
The routers integrate the Qualcomm QCA9500 chipset that im-
plements the IEEE 802.11ad standard. A 32-element antenna
array mounted on one of the eight foldable antenna wings
provides beamforming capabilities. We modify the firmware to
provide access to CSI measurements. To achieve the required
level of control, we flash a compact LEDE linux distribution to
the router [36]. LEDE uses the open-source wil6210 driver
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Fig. 2. (Left) Beam pattern from the original Talon router codebook; (Right)
directional beam pattern in our improved codebook. Amplitudes are plotted
relative to the highest lobe of the beam pattern on the right.

to communicate with the firmware of the Qualcomm chipset.
We implement custom vendor commands in the driver to
expose CSI measurements to user-space programs. The router
measures the CSI by sending 64 training subfields during a
beam refinement phase, which make it possible to estimate
both phase and amplitude of all 32 elements of the mmWave
antenna array. With the Qualcomm firmware, only client-side
CSI measurements are enabled. We circumvent this issue by
switching the roles of the APs and of the client, such that the
node to be located is actually the AP, whereas all other devices
work in client mode and can thus measure CSI. Besides CSI,
the driver provides the sector ID used for communications and
the SNR measured for that sector.

We measure MAC-level throughput using the iperf3 tool
available in LEDE. In addition, the firmware makes it possible
to implement custom 3D beam patterns by selecting which
antenna elements to enable and specifying the phase shift
values for each activated antenna with a 2-bit quantization. We
prepare a codebook of 64 beam patterns that have significantly
more directional main lobes than the default ones used by
the router’s firmware. An example is provided in Fig. 2: the
left panel depicts one of the standard beam patterns of the
original Talon router codebook, whereas the right panel shows
our directional beam pattern. With these functionalities, it is
possible to choose at any given time which beam pattern an AP
and a device should use to communicate, thus greatly reducing
the overhead of the beam training process through a location-
aided beam pattern selection.

VI. EXPERIMENTAL RESULTS

A. Experiment setup

Our measurement scenario consists of a laboratory room
of size about 17 m × 6 m. We deploy a total of seven Talon
routers along the perimeter of the room, at different heights. As
the client to be located, we employ an additional Talon router.
Two wood/metal panels of size 2 m × 2 m are located around
the center of the room. These panels induce a complete signal
blockage if they obstruct the LoS path between the client and
its AP, e.g., due to client mobility.

We collect measurements by moving the Talon acting as
the client along a number of trajectories. At subsequent points
spaced between 40 and 60 cm along such trajectories, we
collect CSI, SNR and MAC throughput measurements from
all APs. Fig. 3 gives an overview of the laboratory setup.
Access points are depicted as purple triangles, internal panels
are shown in gray, and we depict three example trajectories
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Fig. 3. Experiment scenario: a lab with two internal panels acting as blocking
walls. Seven APs are deployed along the boundaries of the room (purple
triangles). Three examples of client trajectories are shown. Each marker
represents a measurement point. The axes show lengths in meters.
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Fig. 4. CDF of LEAP’s location error for all measurements. Sub-meter
accuracy is achieved more than 80% of the time.

of our measurement collection process: path 1, that mostly
follows the perimeter of the room and revolves around the two
panels: path 2, that describes a figure-of-8 around the panels;
and path 3, that describes an open loop close to the left side
of the room. We remark that it is not necessary to know the
location of the APs, which will be estimated by our scheme
and fed to the location-based handover algorithm.

For LEAP, we select the best beam pattern among four
(LEAP-4) or nine (LEAP-9) tested beam patterns covering
the optimum transmit direction predicted through the loca-
tion system. We compare our performance against that of
standard 802.11ad with conventional beam training. For each
measurement point, we let the 802.11ad beam training settle
upon the best beam pattern. If the connection is lost and
throughput drops to zero, we let the device reconnect to a
new AP at the next step and perform a full beam training. The
performance for 802.11ad thus represents an upper bound on
actual 802.11ad protocol performance with the Talon routers,
which is characterized by sub-optimal beam fluctuations in
case of mobility and noticeable reconnection delays when
performing a handover to a different AP.

B. Results

We start by evaluating the accuracy of LEAP’s localization
system. Fig. 4 shows the cumulative distribution function
(CDF) of the localization error, obtained by jointly considering
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Fig. 5. Path reconstruction for paths 2 (left) and 3 (right) in Fig. 3. The location estimates follow the ground truth reasonably well, and the errors are not
critical for the selection of the best AP. The axes show lengths in meters.
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Fig. 6. Measured MAC-level throughput for LEAP against the throughput achieved by IEEE 802.11ad.

all measurement trajectories in the experimental area. Despite
the comparatively stretched room and the presence of internal
blocking panels, the location system achieves sub-meter error
in more than 80% of the cases, with a median location error
of about 52 cm. Given that our method only uses angle
information (unlike, e.g., [10]) and localizes the client in 3D
(unlike, e.g., [12]), these results are very accurate. Moreover,
as we will show below, this level of accuracy is more than
sufficient to achieve good performance and significant gains
in the location-aided handover process.

Fig. 5 provides more details of LEAP’s location errors by
showing the reconstruction of two trajectories among those
depicted in Fig. 4, namely path 2 (left panel) and path 3
(right panel). Path 2 is a figure-of-8 trajectory that moves
around both obstacles and thus experiences several changes
in terms of AP visibility. In several cases, the localization
error remains around a few decimeters. However, in other
cases the collected CSI either leads to some errors (e.g., in
the proximity of AP 4) or is insufficient to localize the node
and has to be compensated for via the Kalman filter’s dead
reckoning capabilities (central section of the trajectory). Path 3
is comparatively simpler and subject to fewer handovers,
except when the client disappears behind the internal panel
and reappears on the other side. In any event, the trajectory
reconstruction is very good, and the closeness of the estimated
and actual locations makes it possible to still associate to
the correct AP. For example, even for comparatively large
errors near the top-right section of path 2, the client correctly
connects to AP 4. Similar considerations apply, e.g., to the
rightmost section of path 3.

We now show results for a client moving along paths 1
to 3, and plot the MAC-level throughput achieved over time
by LEAP against the performance of 802.11ad in Fig 6.
All trajectories are covered with the mmWave antenna array
of the device facing forward, which therefore changes the
orientation of the client at each curve. Note that firmware and
hardware limitations prevent the Talon router from consistently
maintaining transmission rates above 1.25 Gbps, and it does
not use the fastest modulation and coding schemes. In any
event, a conservative rate adaptation strategy makes sense, as
the router only provides external connectivity through a 1-
Gbps Ethernet port. Starting from path 1, we observe that
the movement along its trajectory leads to several blockage
events, which often cause reduced performance or even outage
to 802.11ad. This is due to the obstruction of the LoS path to
AP 1, to which the client connects at the beginning of the path.
In the period from 7 to 22 s, 802.11ad maintains the connection
to the same AP, which becomes progressively farther and gets
blocked by obstacles, which reduces the throughput and causes
even prolonged outages. With reference to the shape of path 2
in Figs. 3 and 5, initially both LEAP and 802.11ad connect to
AP 1. As the client moves upwards in a clockwise direction,
802.11ad maintains the connection to AP 1, and a long outage
occurs when the AP disappears behind the horizontal panel,
at about 9 s. Conversely, LEAP performs a handover first
to AP 4, and then to APs 3, 2 and 5. At the same time,
AP 1 disappears again behind the horizontal panel, causing
the 802.11ad outage at about 22 s. By handing the client
connection over to the correct AP throughout the trajectory,
LEAP successfully avoids most outage events, and in many
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Fig. 7. CDF of the MAC-level throughput for LEAP and 802.11ad. LEAP
achieves better throughput an much lower outage probability than 802.11ad.

cases achieves better throughput than 802.11ad even in the
absence of outages. In Fig. 6b, the instances where LEAP’s
throughput decreases marginally below 802.11ad’s are due to
a location estimate that leads to the choice of a suboptimal
AP and beam pattern.

For path 3 (Fig. 6c), LEAP connects to AP 5 at about 4 s
(which is when the first outage occurs for 802.11ad), and then
to AP 6, and suffers from a single outage at about 7.5 s.
Conversely, suboptimal AP selection makes 802.11ad suffer
from repeated outages. As a result, the throughput of LEAP
is much closer to the maximum throughput achievable by the
device throughout the whole trajectory.

The CDF of the MAC-level throughput computed over all
tested trajectories is shown in Fig. 7. LEAP shows a much
smaller outage probability (about 0.05) than 802.11ad (about
0.23). In fact, in about 85% of the cases, LEAP’s throughput
remains above 1 Gbps. For the cases where the 802.11ad is
not in outage, LEAP still provides a throughput improvement
between 8.5% and 57%. We remark that this improvement is
actually limited by the hardware capabilities, not by LEAP’s
performance.

Therefore, to show the actual performance gain enabled
by our algorithm, in Fig. 8 we compare the SNR achieved

by LEAP against that of 802.11ad, and against the optimum
SNR that would be achievable by an oracle-aided selection
of the best AP. The three panels refer to the same paths 1
to 3 as in Fig. 6. As a general observation, throughout each
trajectory, the SNR achieved by both LEAP-4 and LEAP-9
remains much closer to the optimum, and in the majority of
the cases is higher than the SNR achieved by 802.11ad. Also,
the performance of LEAP-9 is only marginally better than that
of LEAP-4. This indicates that the location-aided AP and beam
pattern selection is sufficiently accurate, making it unnecessary
to test many beam patterns. At the start of each path, LEAP
and 802.11ad tend to connect to the same AP, hence their SNR
is similar. However, as time elapses and the client moves, some
APs become closer and thus more convenient to associate
with, whereas others may disappear behind blockage. While
LEAP keeps reacting to mobility and connects to (close to)
optimal APs, 802.11ad re-associates to a different AP only
upon severe blockage. The new AP is usually the first one from
which a beacon is received, rather than the optimal one. As a
consequence, 802.11ad’s SNR is often 5 to 15 dB below the
optimum. Instead, even in the presence of imperfect location
estimates, LEAP still achieves near-optimal SNR, and only in
a few cases do such imperfect estimates cause its SNR to drop
a few dB below that of 802.11ad.

The CDF of the achieved SNR for the whole ensemble of
our measurements is shown in Fig. 9. These results confirm
that both LEAP-4 and LEAP-9 remain within 3 dB from
the optimum 75% of the times, and improve the SNR by
2 to 9 dB compared to 802.11ad. We believe that these
results constitute a very promising demonstration of how
mmWave network performance can be improved with the aid
of a sufficiently precise location system. This is specifically
significant considering that such performance is achieved with
only angle information related to the LoS path as provided
by consumer-grade mmWave devices, and that we compared
against an idealized version of 802.11ad that does not suffer
from issues related to mobility.

VII. CONCLUSIONS

We presented LEAP, a system that leverages location in-
formation to improve handover decisions and beam pattern
selection using CSI and SNR measurements provided by
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Fig. 8. Measured SNR for LEAP-4, LEAP-9 and IEEE 802.11ad compared to an optimum, oracle-aided AP and beam pattern selection scheme.
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Fig. 9. CDF of the SNR of LEAP-4, LEAP-9 and 802.11ad compared to an
oracle-aided AP and beam pattern selection scheme. LEAP’s SNR is higher
than 802.11ad’s by 2 to 9 dB, and is typically within 3 dB of the optimum.

commercial mmWave devices. LEAP localizes a client with
sub-meter accuracy in the great majority of the cases, greatly
reduces the beam training overhead via location-based beam
pattern selection, and avoids blockage-induced outage by using
regression trees to choose the best AP to associate with. We
implement our approach using Talon AD7200 routers in a
way that does not modify 802.11ad’s operation. Compared
to standard 802.11ad, LEAP achieves a throughput gain be-
tween 8.5% and 57% and an SNR typically within 3 dB of
the optimum. Most importantly, the beam training overhead
reduction enables LEAP to scale to very high device densities
and environment dynamics.
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