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ABSTRACT Mathematical models of vehicle dynamics will form essential components of future
autonomous vehicles. Theymay be usedwithin inverse or forward control loops, or within predictive learning
systems. Often, nonlinear physical models are used in this context, which, though conceptually simple
(especially for decoupled, longitudinal dynamics), may be computationally costly to parameterise and also
inaccurate if they omit vehicle-specific dynamics. In this study we sought to determine the relative merits
of a commonly used nonlinear physical model of vehicle dynamics versus data-driven models in large-scale
real-world driving conditions. To this end, we compared the performance of a standard nonlinear physical
model with a linear state-space model and a neural network model. The large-scale experimental data was
obtained from two vehicles; a Lancia Delta car and a Jeep Renegade sport utility vehicle. The vehicles
were driven on regular, public roads, during normal human driving, across a range of road gradients. Both
data-driven models outperformed the physical model. The neural network model performed best for both
vehicles; the state-space model performed almost as well as the neural network for the Lancia Delta, but
fell short for the Jeep Renegade whose dynamics were more strongly nonlinear. Our results suggest that the
linear data-driven model gives a good trade-off in accuracy and simplicity, whilst the neural network model
is most accurate and is extensible to more nonlinear operating conditions, and finally that the widely used
physical model may not be the best choice for control design.

INDEX TERMS Data-driven, state estimation, linear, neural network, nonlinear, state-space, vehicle
dynamics.

I. INTRODUCTION
Driver assistance systems such as cruise control, adaptive
cruise control [1], [2], vehicle platooning schemes [3]–[5]
and future driverless cars [6]–[9] all depend on mathemati-
cal models of vehicle dynamics. Physically derived models
are commonly employed for these applications; examples
can be found for lane change manoeuvres [10], [11], lane
keeping [12]–[14] and cruise control [2]–[5]. In addition,
the development of low-level longitudinal and lateral vehi-
cle control algorithms, e.g. using model predictive control
(MPC), has been based on physically derived models, either
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fully nonlinear, e.g., [15], or based on linearised time-varying
models, e.g., [14], [16]. This paper focuses on the develop-
ment of vehicle dynamics models for control design, where
the key objective is model parsimony, i.e. the model should be
no more complicated than needed for the purpose of control
design.

The approach of using physical models is attractive
because they tend to be interpretable and well-understood.
Physical models are also low-cost if data-collection and
parameter estimation can be avoided (i.e. if the parameters
can be defined from prior knowledge). However, the use of
physical models for control design requires significant human
designer intervention at both the modelling and implementa-
tion stages and suffers from:
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• only containing the assumptions of the human-modeller,
not the full range of dynamics expressed through the
data;

• a tendency to be rigidly defined whereas data-driven
models can be adapted over the life of the vehicle,
accounting for e.g. degradation of parts and changing
operational conditions (tyres, road surface and weather);

• being overly-complicated versus typically parsimonious
data-driven model structures;

• parameters typically being difficult and time consuming
to estimate due to lack of knowledge for good initialisa-
tion in nonlinear optimisation algorithms [10].

At the modelling stage, decisions about which phenomena
should be modelled and which can be neglected are taken.
It may be thought that a particular, nonlinear physical phe-
nomenon will have a negligible effect on the vehicle dynam-
ics and so the terms describing that phenomenon are omitted
from the formulation of the model. Without the benefit of
hindsight it is not realistic to expect human designers to
account for every effect. We must assume that on occasion,
the modeller will make the wrong decision about what should
be included in the model. On these occasions, the physical
model is likely to break down.

Even physical models containing few unknown parameters
can be computationally expensive to parameterise. Addi-
tionally, the cost of data collection must be borne for each
model [17]; the parameters for one vehicle will not match
those for another; drag properties, structural stiffness and tyre
properties will all affect the dynamics of the vehicle and may
not be available without a parameter search. It is not unknown
for the parameters from several different vehicles to be com-
bined to approximate the model for another vehicle [10].

Some of these issues can be alleviated by the linearisation
of the physical model, an approach taken by [16], [18]. This
approach is possible because at typical legal highway speeds
and in typical traffic conditions, neither air drag, nor tyre slip
are strongly nonlinear [19].

The alternative approach of data-driven learning of the
vehicle forward dynamics model resolves many of the issues
encountered with physical models. This may be as simple
as learning a suitable linear state-space representation [20],
combining local, linear models [21], [22] or more complex
nonlinear approaches based on neural networks [23]–[26].
An advantage of this data-driven approach is that, if data
collection continues during operation of the vehicle, mul-
tiple models for different operational conditions can be
automatically generated offline (following an approach that
mimics the human wake-sleep stages in the learning of
motor control [27]). Other authors have discussed the online
adaptation of the vehicle model in a less brain-inspired
manner [20], [21].

In this study, we focus on modelling longitudinal vehicle
dynamics in the range of conditions that are realised by
ordinary human drivers, as better delimited in Section II.A;
specifically on the longitudinal vehicle velocity. Longitu-
dinal dynamics are generally assumed to be dominated by

longitudinal forces. This assumption is widely made, often
without being explicitly stated (see, for example [20], a study
of cruise control). We make the same assumption that the
longitudinal and lateral dynamics of the vehicle (in ordinary
human driving) are weakly coupled. Indeed, an analysis of the
data presented in this study for longitudinal-lateral dynamics
indicates that the coupling is very weak, and that the lon-
gitudinal data-driven models are not improved by inclusion
of lateral input. We thus consider physical and data-driven
models whose only inputs are longitudinal and which do
not take account of steering wheel position or vehicle yaw
rate.

The main contribution of this paper is thus to make
a comparative evaluation of longitudinal vehicle dynamics
between physical and data-driven models, using experimen-
tal data collected across large-scale real-world driving (the
‘ordinary domain’) using two different vehicles. This work
extends a recent conference paper by two of the authors
into linear versus nonlinear modelling of longitudinal vehicle
dynamics [28].

For the traditional physical modelling approach we
employed a standard model based on the longitudinal com-
ponent of the well-known bicycle model of vehicle dynam-
ics [29], i.e. based on Newton’s second law of motion with
forces due to engine propulsion, braking, air drag, static
friction and the effect of gravity on inclined roads. For
data-driven approaches a linear state-space model was identi-
fied using a prediction error method (PEM) with initialisation
by subspace identification [30], and a neural network model
was also identified [31], based on capturing the nonlinear
impulse response due to the propulsion, braking and road
gradient inputs [26]. To identify the models, we used experi-
mental data that were collected using a typical medium-sized
car and a sport utility vehicle driven along a varied urban and
extra-urban route.

There are few existing modelling studies that identify car
vehicle dynamics from sampled data but one investigation
that uses step responses found that a linear second order
model was sufficient to accurately describe the car dynamics
during single manoeuvres of about 10 seconds duration [1].
That modelling study therefore agrees with the finding here
that linear models are sufficient to describe vehicle dynamics
for some vehicles.

Our results are comparable with some of those reported by
Hunt et al. [21] in a similar study based on empirical data
for a commercial lorry. In that work an emphasis was placed
on using local linear models, with the gear, throttle position
and speed variously used to schedule the different models.
The model closest to the state-space model reported here was
their M3, in which a linear first order model was determined
for each gear, which was of a comparably high accuracy to
our linear model.

However, the data in that study was collected on a flat road,
the vehicle’s brakes were never applied and it did not include
road gradient, which were key extensions here for studying
real-world driving conditions.

VOLUME 8, 2020 73715



S. S. JAMES et al.: Longitudinal Vehicle Dynamics: Comparison of Physical and Data-Driven Models

FIGURE 1. Training and test routes from the experiments conducted near Turin, Italy on public roads in normal driving conditions, and example data
over 100 seconds. (a) The training loop around which the Lancia Delta vehicle was driven. Elevation is given by the colour and plotted against
longitude in the lower graph. (b) Jeep Renegade training route (c) Jeep Renegade test route. (d-i) Signals provided by the engine control unit. Lancia
examples are in the left column, Jeep examples in the right. (d) Accelerator pedal position, percent of maximum. (e) Engine torque, inclusive of engine
friction. Note that the torque signal provided by the Jeep’s ECU is shown on a different vertical scale than that for the Lancia due to an additional
gearing being incorporated into this signal. (f) Brake master cylinder pressure (bar). (g) Elevation in meters (h) Gradient. Note that the plots of
elevation and road gradient show the raw data and the smoothed data obtained by convolving with a Gaussian function. (i) Longitudinal velocity.

II. METHODS
A. EXPERIMENTAL DATA
Two vehicles were used for experimental data collection on
public roads in normal conditions. A Lancia Delta car (com-
pact 5 door hatchback) was used to collect the first set of
data using a 53 km route. An additional dataset was collected
using a Jeep Renegade sport utility vehicle (SUV) along a
similar route in the same region near Turin, Italy. The routes
incorporated a typical selection of motorways, extra-urban
and urban roads, roundabouts and intersections. The first
route [Lancia Delta car—Fig. 1(a)] began at Centro Ricerche
Fiat in Orbassano, near Turin (Italy), then went to Pinerolo,

then Piossasco before returning to Orbassano, a distance
of 53 km driven in about 42 minutes, and is the same data
as described in [8] and as used in our previous work [28].
The Jeep Renegade was driven along a loop of approximately
25 km similar to the first route [using some of the same
roads—Fig. 1(b)]; and a different test route, of approxi-
mately 15 km, from Centro Ricerche Fiat to Cascine Vica
[Fig. 1(c)]. Both routes provide data within the ‘ordinary driv-
ing domain’, with velocities, speeds and in particular accel-
erations within the ranges discussed in [32]. Accordingly, the
accelerations used fall amply within the limits of tyre
adherence.
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In both vehicles, the following signals were recorded:
longitudinal velocity, accelerator pedal position, brake pedal
position, selected gear, engine torque and GPS co-ordinates.
Signals were sampled at 20 Hz. For the physical and
state-space models, the road gradient (contributing to the lon-
gitudinal acceleration/deceleration) was also obtained from
the GPS signal, which was first smoothed by convolving with
a Gaussian function (a normal distribution with mean 0 and
standard deviation 0.5 s). For the neural network model, the
raw elevation data were used, sampled every 10 m in the
200 m range ahead of and behind the vehicle, thus leaving to
the network the task of finding the best estimate of the gradi-
ent. There was an overall height bias in the GPS height signal
collected for each vehicle. We verified that the smoothed gra-
dient signal was consistent between the vehicles by analysing
the road gradients collected on the same roads. We found that
the mean gradient difference between the road gradients was
-0.0015(0.046) m/m whereas the mean elevation difference
was -2.7(2.2) m (with standard deviations in brackets).

Each route was circumnavigated twice. The first route
provided about 1 hour and 20 minutes of data from which
to parameterise and identify the model for the Lancia Delta.
We divided this into two sections; one of 2500 s duration
for model identification/training [first loop of Fig 1(a)] and
another of 2000 s for validation [second circumnavigation].
We also divided the dataset into four sub-datasets of similar
length to examine the statistics of models trained on each
section. The Jeep Renegade was also driven twice along its
two routes, providing about 3200 s of data from the first route
and 1600 s from the second in four separate datasets. For the
main results, we trained on the first loop of the training route
[Fig. 1(b)] and validated on the first loop of the test route
[Fig. 1(c)]. The Jeep Renegade data naturally formed four
datasets for the statistical analysis. Fig. 1(d)-(i) shows some
example control input and the output for part of the training
data for each vehicle.

B. PHYSICAL MODEL
The decoupling of the dynamics of a four wheeled vehi-
cle into lateral and longitudinal components is widely prac-
ticed [29]. We adopt this simplification and use the resulting
longitudinal model which can be written as the Newtonian
equation,

Mv̇ = Fp(t)− Fb(t)−Mg sin(γ (t))− kD v2−Mg kR (1)

where M is the mass of the vehicle and v is the vehicle’s
longitudinal velocity, which wewill solve for. Fp(t) is the col-
lective propulsive force due to the engine actuating through
all of the drive wheels. Fb(t) is the collective braking force.
g is the acceleration due to gravity and γ (t) is the gradient
of the road. kDv2 is the air drag and kR is the rolling friction
parameter.

It has to be stressed that this equation holds for v > 0.
Pressure on the brake pedal determines a maximum allowed
brake force Fb,max , which is applied whilst the vehicle is
moving. At rest, the actual brake force, Fb(t), is determined

by the equilibrium, balancing any other force less than Fb,max
acting on the vehicle. To avoid the need to model the transi-
tion from static to dynamic conditions, we have removed from
the training and validation data subsets all portions related to
the equilibrium state (that is, any section for which the vehi-
cle’s velocity falls below 0.6 m/s [Lancia] or 0.5 m/s [Jeep]).
Furthermore, we set Fb = 0 and γ = 0 for v < 0.5 m/s to
prevent the simulated velocity from becoming negative.

The engine control unit (ECU) provides an engine torque
signal which can be used to compute the motive force.
The Lancia Delta’s ECU provides a requested, pre-gearbox,
engine torque signal, Ta, in the range 0 to 400 Nm. The
post-gearbox requested torque is obtained by multiplying the
engine torque by the gearbox ratio, R: Tr = Ta.R. The Lancia
ECU also provides a delivered pre-gearbox engine torque
signal, Td , which can be less than the requested torque in
the following cases: a) the requested torque is greater than
the engine is able to deliver at the current engine speed
and, b) the automatic gearbox is controlling a gear shift
and is overriding the engine torque control. Ta and Tr do
not account for engine friction and the power drawn by
engine accessories. The Lancia ECU reports the torque due to
friction/accessories in the engine, Tf (which is engine-speed
dependent). The delivered engine-shaft torque, Te, is given by
subtraction of Tf :

Te = Td − Tf (2)

For control system design it is most pertinent to use the
requested torque, Ta, and its post-gearbox partner, Tr , as the
control system may not have access to the engine-friction
signal or any ability to predict when the engine may become
unable to deliver the requested torque. However, the most
accurate physical model against which to compare alternative
models will be given by making use of the engine-shaft
torque, Te, along with the gear ratio information. In our
physical modelling, we therefore have Fp given by

Fp(t) =
Te(t)R[G(t)] ηg Rd ηd

rw
(3)

where Te(t) is the delivered engine-shaft torque, R[G(t)] is
the gearbox ratio as a function of the gear, G(t), and Rd is
the driveline gear ratio. ηg and ηd model the frictional loss
in the gearbox and driveline, respectively and rw is the wheel
radius. R[G(t)] is provided by the ECU as a signal, which we
combine with Te to give the pre-loss gear-shaft torque, Tg:

Tg(t) = Te(t)R[G(t)] (4)

The ECU of the Jeep Renegade provides Tg(t) directly; that
is it provides a torque signal which has the gear ratios and
the engine/accessory friction factored in. The (unknown)
driveline ratio Rd also appears to be incorporated into the
signal Tg on the Jeep, because the magnitude of the sig-
nal is roughly a tenth of the Tg signal obtained from the
Lancia Delta [Fig. 1(e)].

We collect the terms Rd (unknown), ηd and ηg (unknown;
approximately 0.93) and rw (known for Lancia; 0.292 m)
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together into a single parameter, kτ , so that Fp is, finally,

Fp(t) = kτ Tg(t) (5)

with the value of kτ to be found by the parameter search.
The collective braking force, Fb(t), in the dynamic condi-

tion (v > 0.5 m/s), is governed by the relationship

Fb(t) =

{
µbMg, kb pb(t) > µbMg
kb pb(t), otherwise

(6)

where kb is a coefficient of braking force in Newtons per bar
of brake pressure (189 N/bar [Lancia], 236 N/bar [Jeep]) and
pb(t) is the master brake cylinder pressure. The upper limit on
the available braking force, µbMg, is the force at which the
tyres lose traction with the road surface. µb has a complex
dependence on the road-surface quality and on tyre condi-
tions (temperature, pressure and wear). However, because our
data were collected under normal driving conditions, with no
sharp or emergency braking taking place, Fb(t) < µbMg at
all times and the first case in Eq.6 was not modelled (meaning
that the model would be expected to fail for data collected in
slippery conditions).

To estimate the parameters we used a nonlinear
interior-point optimisation method [33] applied to the train-
ing data, implemented in the MATLAB function fmincon
(MATLAB version R2017b). A multi-start approach was
used to initialise the parameters. 100 different parameter sets,
randomly sampled in the ranges kD ∈ [0, 20], kR ∈ [0, 0.05]
and kτ ∈ [1, 100] [Lancia] or kD ∈ [0, 40], kR ∈ [0, 0.05]
and kτ ∈ [1, 300] [Jeep] initialised the parameter estimation.
In the work, we found the choice of ODE solver to be of
significance. MATLAB’s ode23 solver [34] operated well for
‘good’ parameters—those which would provide a reasonable
fit to the data. However, ode23 became computationally
inefficient towards the boundaries of the chosen parameter
ranges. To allow the parameter search to complete quickly,
the ode23s solver [34] was employed, which is more effective
at computing stiff differential equation systems. An instabil-
ity in the ode23s solver produced occasional, random, but
quickly corrected deviations from the putative solution of
the system for some parameter sets, introducing noise into
the simulation and affecting the fit metrics. For this reason,
after finding an initial, candidate set of parameter values,
we reduced the parameter ranges and re-ran the parameter
search using ode23 initialised with 100 different parameter
sets. The Lancia Delta reduced ranges were kD ∈ [0.1, 3],
kR ∈ [0.0001, 0.04] and kτ ∈ [5, 15]; The Jeep Renegade
reduced ranges were kD ∈ [1, 4], kR ∈ [0.000001, 0.005] and
kτ ∈ [40, 150]. Note that ode23s was used only during the
initial parameter search; ode23 was used when computing all
of the simulation results shown below and all of the reported
fit metrics were also generated using ode23.

C. LINEAR STATE-SPACE SYSTEM IDENTIFICATION
To perform linear state-space system identification, we used
a continuous-time model to represent the longitudinal

component of the vehicle dynamics,

ẋ(t) = Ax(t)+ Bu(t) (7)

y(t) = Cx(t)+ Du(t) (8)

where the output y(t) ∈ R is the velocity of the vehicle at
time t; the input u(t) ∈ Rnu is composed of the delivered
post-gearbox engine torque (Tg) and the brake pressure signal
(pb), and in some versions of the model also the smoothed
road gradient (γ (t)); x(t) ∈ Rnx is the vehicle state vector, and
nx is the model order. The model order is determined as part
of the identification procedure. The matrices A, B, C and D
are assumed fully parameterised and comprise the unknown
model parameters.

The state-space model parameters were estimated
using a prediction error method (PEM) directly in
continuous-time [30]. If we assume all parameters in A, B,
C and D are collected in the parameter vector θ , then the
estimation problem is defined as

θ̂ = argmin
θ

1
N

N∑
k=1

e(tk , θ )2 (9)

where the prediction error is

e(tk , θ ) = y(tk )− ŷ(tk , θ ) (10)

and ŷ(tk , θ ) is the simulated output of the state-space model
at sample-time tk , and N is the number of data samples. The
PEM is typically solved using a numerical search algorithm
[30].

One problem with the PEM algorithm is parameter initial-
isation. Here, we initialise the numerical search algorithm
using a subspace state-space system identification (N4SID)
algorithm [35], [36]. The N4SID algorithm requires a number
of choices (insight into these choices is given in [37]), such as
the forward prediction horizon and the number of past inputs
and outputs that are used for the prediction. In this work,
these were chosen by estimatingmultiple models over a range
of values and using Akaike’s information criterion (AIC)
to select between them. The weighting scheme used in the
N4SID algorithm was canonical variate analysis (CVA) [35].

Parameter estimation was performed in MATLAB using
the System Identification Toolbox, using the function ssest,
which conveniently combines the N4SID initialisation of the
state-space model with the PEM estimation stage in one
function. Key user-choices for the estimation algorithms are
summarised in Table 1. The ssest function, by default, uses
a combination of search methods in the PEM stage includ-
ing Gauss-Newton (GN), adaptive Gauss-Newton (AGN),
Levenberg-Marquardt (LM) and gradient descent (GD). Also,
note for initialisation that the N4SID identification was per-
formed in discrete-time, then the model was mapped to
continuous-time using a zero-order hold.

To select the model order, nx , model orders nx = 1, . . . , 10
were initially tested using an analysis of singular values of the
input-output covariance matrix [30], which suggested only
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FIGURE 2. Model selection for the linear system identification model, where the model index is as follows: t1o - torque only, first order;
tb1o - torque-brake input, first order; tbg1o - torque-brake-gradient input, first order; t2o - torque only, second order; tb2o - torque-brake
input, second order; tbg2o - torque-brake-gradient input, second order; (a)-(b) Model selection plots for the Lancia Delta dataset, which
indicate that the models with torque-brake-gradient inputs should be preferred. Note that FPE can be misleading because it is based on
one-step-ahead prediction errors, unlike the other measures. (c)-(d) Model selection plots for the Jeep Renegade dataset. These suggest
that little additional information is conferred by the gradient signal collected by the Jeep.

TABLE 1. State-Space system identification Algorithm parameters.

models of first or second order should be further investi-
gated. First and second order models were then analysed
and compared with more in-depth methods, including Model
Fit, Variance Accounted For (VAF), and residual analysis
(see section below on model evaluation and validation). The
model was identified using the same training data as for the
physical and neural network models.

D. NEURAL NETWORK MODEL
The neural network model is shown in Fig. 3. The network
adopts a structure that is inspired by the physical model:
there are 4 converging sub-networks (labelled as 1, 2, 3 &
4) that are intended to learn the effects ofFp,Fb,Mg sin(γ (t))
and kD v2 +Mg kR separately. More details on the structured
network approach are given in [26].

The network was trained with the same training data
used for the state-space and physical model estimation.
Over-fitting was monitored by means of the validation sets,
again matching those used for the state-space and physical
models. A combination of dropout layers (D blocks in Fig. 3)

and L2 regularisation was adopted to avoid over-fitting: the
dropout probability (about 0.01-0.015) and the L2 regularisa-
tion weight decay parameter (about 0.1–0.05) were chosen to
obtain very similar losses for the training and the validation
subsets (the latter being never used for training).

The network predicts v̇k defined as v̇k = (vk+1 − vk )/1t
where1t = 50 ms is the sampling rate of the signals. Except
for the scaling factor 1t , and given that the current value
of the velocity vk is among the inputs (input to branch 1),
the network is a predictor of the next value of the forward
velocity vk+1. For training, the raw signal v̇k = (vk+1 −
vk )/1t , computed as the forward differences of vector vk , was
quite noisy. It was therefore smoothed using a Gaussian filter
with radius n = 8.
Learning occurs at the fully-connected layers (see Fig. 3

legend) where the size of the input and hidden (output dimen-
sion) layers is also indicated. Hence, the layer in branch 1 of
the network has two trainable parameters (one weight and one
bias). The remaining layers have no biases and so the number
of trainable parameters are n weights for branch 2, 2 nh + 1
weights for branch 3 and 8 n weights for branch 4 (8 being
the number of forward gears, including the neutral gear), for
a total of 248 trainable parameters (n = 25, nh = 10).

The 4 sub-networks may now be explained further. First,
let us note that the input to each of the 4 sub-networks is dif-
ferent: this reflects the fact that each network aims to learn the
causal dependency between its input and the corresponding
part of the acceleration v̇k .
So, branch 1 learnsw1 v2k+b1, i.e. it learns one deceleration

term proportional to the square velocity (weight w1) and one
constant deceleration term (bias b1), which will model the
aerodynamic drag and rolling resistance respectively.
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FIGURE 3. Neural network model. The network is made of 4 converging branches that learn the air drag and rolling resistance (1), the brake effect (2),
the gradient effect (3) and the engine effect. Branches 2 and 4 learn dynamic models via the learning of the impulse response. Branch 3 estimates the
gradient effect from the raw recorded GPS heights. vk : longitudinal velocity at sample time k ; pbk : brake master cylinder pressure at time k ; hk : Road
height at time k ; Tgk : engine torque at time k ; Gk : Gear ratio at time k .

Branch 2 learns a linear combination of the past n brake cir-
cuit pressure values, i.e., the (acceleration) impulse response
of the brake plant (the layer −ReLu, a rectified linear unit,
helps convergence by taking only the negative values of
the sub-network in the training phase; because obviously
brakes can only cause deceleration). Made in this way, branch
2 neglects any non-linearity of the brake plant; however it can
learn the dynamics of the plant, which was instead implic-
itly neglected (modelled as a zero order, or instantaneous,
plant) in (6).

Branch 3 learns the road gradient effect. Unlike the pre-
vious models, the input here is the raw heights recorded
by the GPS at 2nh + 1 = 21 points, spaced by distance
1L = 10 m ahead and behind the current vehicle posi-
tion. This way, the network itself determines the optimal
gradient estimation (the one minimising the output error)
based on the raw heights, wheres for the previous models
the road gradient had to be estimated separately (by linear
regression). If the road gradient had been available from
accurate digital maps (which was not the case), this branch
could be replaced with one directly using the gradient as
input.

Finally branch 4 learns the acceleration caused by the
engine. A fully connected layer with 8 output neurons (one
per gear, including the null gear) first learns the acceleration
that would be produced by each gear individually, given
the last n values of the raw engine torque. So, this layer
learns the impulse responses of the drive-line at the differ-
ent gears. Again, compared to 3 the engine model is still
linear, but dynamic instead of static. The eight sub-model
outputs are then inhibited except the one corresponding to the
current gear (this is obtained by element-wise multiplication
of the 8 outputs with a unit vector with ‘1’ on the active
gear and ‘0’ elsewhere). This way only the current engaged
gear contributes to the vehicle acceleration. It is also worth
noting that by learning the impulse response of each gear,
the engine/drive-line plant also learns the individual gear
ratios (whereas known values are incorporated into the other
models).

The network training was carried out with the Adam algo-
rithm [38], which at every iteration updates only the weights
of the current gear (the stochastic gradient descent solver
would fail, finding infinite gradients for the weights of the
inactive gears).

The training process for the neural network model was
carried out in two phases. The first step took about 8 minutes
on a Intel i7 (single core) CPU. The second took 16 minutes
with reduced learning rate and larger batch size.

E. MODEL EVALUATION AND VALIDATION METHODS
Models were evaluated using a normalised fit metric based
on the Euclidean norm of the fit error, where

Model Fit = 100
(
1−
||y− ŷ||2
||y− ȳ||2

)
(11)

where y is the vector of measured output data, ŷ is the vector
of model simulation outputs, and ȳ is the mean of measured
output data. A value of 100% indicates a perfect model fit,
a value of 0% indicates a fit equivalent to the mean of the
output data, and becomes negative for poor fits.

The model fit was also assessed using the variance
accounted for (VAF) metric, which is equivalent to the r2

metric, defined as

VAF = 100
(
1−

var(y− ŷ)
var(y)

)
(12)

To provide a comparison with [21], where it is called
average prediction error (APE), the root of the mean of the
squared velocity error (RMSE) was also computed, and is
given in Fig. 9(b).

To evaluate the models in terms of accuracy and complex-
ity, Akaike’s final prediction error (FPE) was used,

FPE =
1
N

N∑
k=1

e1(tk , θ̂ )2 ×
(
1+ np/N
1− np/N

)
(13)

where np is the number of model parameters and e1(.) denotes
the one-step-ahead prediction error.
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FIGURE 4. Simulation results for physical (top two graphs), state-space (middle two graphs) and neural network models trained with the Lancia Delta
data. For each model, the simulation is carried out on the training data and on the validation data and plotted in colour, with the recorded data
plotted in black. The difference between simulation and data is plotted in gray.

III. RESULTS
The physical model estimation process with 100 random
starting points required 14 hours on a modern, multi-core
CPU (Intel i9, 12 cores). This very lengthy compute time was
related to the length of the training data, and the fact that some
regions of the parameter space produced stiff differential
equations. The nonlinear physical model parameters were
estimated as kD = 0.2777, kR = 0.0101 and kτ = 9.469
for the Lancia Delta, and as kD = 2.415, kR = 0.00023 and
kτ = 120.9 for the Jeep Renegade. The full list of parameter
values in the physical model is given in Table 2, along with
their units and whether they were found by the parameter
search or were known a priori. The difference in the drag
parameter, kD may be attributable to the less aerodynamic
design of the Jeep SUV; the difference in the torque param-
eter, kτ , to different gearing in the drive-trains of the two
vehicles. Simulation results for the physical model are plotted

TABLE 2. Physical model parameter results.

against data in Figs. 4 & 5 (top two graphs of each figure,
in orange).

The state-space modelling process began with the selec-
tion of model order. The N4SID algorithm was applied for
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FIGURE 5. Jeep Renegade simulation results for physical (top two graphs), state-space (middle two graphs) and neural network models. As in
Fig. 4, the simulation is carried out on the training data and on the validation data and plotted in colour, with the recorded data plotted in black.
The difference between simulation and data is plotted in gray.

orders nx = 1, . . . , 10, using the singular values of the
input-output covariance matrix. This indicated that a first or
second order model would be likely to provide the best fits
(results not shown). The first and second order models were
then evaluated with three combinations of input: torque-only,
torque-brake and torque-brake-gradient. Several metrics of
the quality of the fit are presented in Fig. 2. Inspection of
the fit metrics indicated that inputs should consist of torque-
brake-gradient for the Lancia Delta [Fig. 2(a,b)] and at least
torque-brake inputs for the Jeep [Fig. 2(c,d)], although for
this dataset, the information in the elevation does not seem to
contribute much improvement to the fit because the training
route was relatively flat and the elevation signal somewhat
noisy.

Selecting between the first or second order models requires
analysis of the model residuals and consideration of the
model complexity. Input cross-correlations (not shown) do

not strongly favour either first or second order models.
On this basis we might choose the first order model as the
optimum representation of the Lancia, and the second order
model for the Jeep even though the first order model would
usually be preferred for its simplicity. Also the FPE for the
first order model is less than for the second order model
for both vehicles, indicating that the first order model is
a better trade-off of accuracy and complexity [Fig. 2(b)].
Overall fit quality for the Jeep Renegade is lower than for the
Lancia Delta dataset and there is a less clear improvement
provided by the road gradient signal. Although second order
models produce similar fit qualities, the cross-correlations for
the second order torque-brake-gradient model are noticeably
worse than for the first order model.

To further investigate the choice of first order vs. second
order, we split each dataset into four sections. The state-space
model was identified for each of the four sections, and
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TABLE 3. Four way state-space model validation (VAF metric).

then the VAF fit metric was computed against the remain-
ing three sections, giving 12 validation fits for each model
order/vehicle (Table 3). The quality of the validation fits were
analysed to find a mean VAF with a standard error (computed
by bootstrap). For the Lancia Delta, the mean validation fit
was 94.5(2.4) for the first order model and 92.4(2.9) for
the second order model. For the Jeep Renegade, the mean
validation fit was 82.5(3.5) [first order] and 26(26.2) [second
order]. This indicates that the first order model generalises
better than the second order model for both vehicles. The sec-
ond order model was particularly poor for the Renegade for
two of the four datasets, hence the very low, and highly
variable validation VAF.

For the Lancia Delta, the linear first order model with
torque-brake-gradient inputs (u1, u2, u3) was identified as

A =
[
−0.0008098

]
(14)

B =
[
0.00000137 −0.0000294 −0.002256

]
(15)

C =
[
3995

]
(16)

D =
[
0 0 0

]
(17)

For the Jeep Renegade, the linear first order model (incor-
porating torque, brake and gradient in analogy with the
Lancia model) was

A =
[
−0.03062

]
(18)

B =
[
0.0000245 −0.0000198 −0.0004249

]
(19)

C =
[
2047

]
(20)

D =
[
0 0 0

]
(21)

Figs. 4 & 5 show the results of the state-space model
(middle graphs, in blue). It took approximately 8 seconds of
compute time on an Intel i9 CPU (using a single core) to
identify one state-space model and 100 seconds to identify
12 models and select the best one.
The neural network model required a total of 24 min-

utes to train. Results are given in the bottom two graphs
in Figs. 4 & 5 (pink).
The overall Lancia Delta VAF, on a reserved set of inde-

pendent validation data, for the nonlinear physical model was

93.4% (RMSE=2.06 m/s), for the linear first order model it
was 97.9% (RMSE=1.12 m/s), and for the neural network
model was 98.6% (RMSE=1.04 m/s). The reader will notice
that, for the state-space and neural network models (Fig. 4,
blue and pink graphs), the VAF for the validation dataset
is marginally higher than that for the training set, contrary
to the usual expectation that the model should fit best the
data on which it was trained. Inspection of the validation
set shows that it has fewer sharp acceleration and decelera-
tion events, suggesting the reason for the slightly improved
validation fits. For the Jeep Renegade, the overall validation
VAF was 80.1% (RMSE=4.01 m/s) for the physical model,
90.3% (RMSE=2.76 m/s) for the state-space model, and
97.3% (RMSE=1.46 m/s) for the neural network model.
Simulation comparison of the nonlinear physical, linear

first order and neural network models to each other and the
observed data demonstrated that firstly, all models were accu-
rate predictors of car velocity (Figs. 4 & 5), and that secondly
the data driven models (state-space and neural network) were
superior in accuracy to the nonlinear model for both vehicles
(Figs. 6 & 9). Of the two data driven models, the neural net-
work slightly outperformed the first order state-space model,
but at a cost of approximately an order of magnitude more
training time.
Visual inspection of Fig. 6 gives an indication of the vari-

ation of the accuracy of the simulated velocity with respect
to the measured velocity. To further investigate the quality of
the models at different speeds we performed an analysis of
the RMS simulation errors for the Lancia validation dataset.
We used the three models (choosing the first-order torque-
brake-gradient model as the best state-space example) and
computed the root-mean squared velocity errors for each gear.
Fig. 7(a) shows the result of this analysis. The state-space
and neural network models have similar accuracy in 3rd gear
and above (i.e. at higher speeds) and out-perform the physical
model. In 1st and 2nd gear; the neural network model is better
than both other models.
In a similar manner, we computed the RMS velocity error

by grouping the data into 5 m/s wide bins. Fig. 7(b) shows the
result for the Lancia, which has the same form as Fig. 7(a).
Fig. 7(c) gives the error vs. speed result for the Jeep validation
dataset.
To understand what quantity of training data is required to

be able to compute an accuratemodel, we investigatedmodels
trained on subsets of the full Lancia Delta training dataset
of 2500 s. We trained the physical, and the first-order torque-
brake-gradient state-space models on sub-divisions of these
data. We divided the data into 2, 4, 8, 16 or 32 equal length
subsets for training. In order to provide sufficient persistence
of excitation to find a good model, we found it was necessary
to exclude data subsets for which the vehicle velocity varied
by less than 10 m/s, such as those for which the vehicle was
cruising on fast, extra-urban roads. Shorter subsets were more
likely to be excluded according to this criterion. We excluded
0 of the 1/4 length subsets, 2 of the 1/8 subsets, 5 of the
1/16 subsets and 21 out of the 1/32 length subsets. We then
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FIGURE 6. Plotting the simulated velocity versus the actual velocity. The closer the points lie to a straight line, the better the model fit. These graphs
[for physical (a), state-space (b) and neural network (c)] each show data for the Jeep Renegade (left y axis) and Lancia Delta (right axis). The graphs
indicate that for both vehicles the physical model performs poorly compared with the state-space and neural network models. They also suggest that
the data quality was superior for the Lancia Delta, as for each model trained against the data for this vehicle, the simulated vs. actual velocity is
clustered most closely to the straight line. Graph (b) suggests a non-linearity in the data for the Jeep Renegade, due to the apparent dishing of the
data points.

FIGURE 7. Model accuracy vs. vehicle speed. a) RMS velocity error vs. gear for physical (Phys), state-space [tbg1o] (SS) and
neural network (NN) model simulations. b) & c) RMS velocity error vs. measured velocity for Lancia (b) and Jeep (c). The velocity
error is the measured velocity subtracted from the simulated velocity computed from the data shown in Fig. 6. Velocity errors are
then grouped by their corresponding measured velocities, in 5 m/s wide bins. The graphs show the RMS velocity error (points)
and velocity error standard deviation (bars). The position of the points for Phys and NN datasets have been offset in velocity by
−1, +1 m/s for clarity only. Grey lines show the bin edges).

trained the models on the remaining subsets and for each
model, we simulated the usual validation dataset to com-
pute a VAF. For the neural network model, we sub-divided
the data using a different method. Because it must find the
parameters for the gear model (as shown in Fig. 3, the neural
network learns one sub-model per gear), it requires input
data for the vehicle operating in all gears. (In contrast, the
physical and state-space models use the post-gearbox torque
which incorporates the known gear ratios). Thus, the data
was divided into 10 s sections, then (for example) to create
the 1/4 length data subset, every 4th 10 s section was added
(subsets that still did not include examples for all gears were
also excluded). Fig. 8 shows the mean VAF for each subset
length, with error bars showing the standard deviation. The
data-drivenmodels are seen tomaintain a good accuracy, with
little change in VAF until the training set length drops below
about 600 s (for the neural network the limit is the size of the
examples for the first gear, which is the one with least data).
The variability of the physical models is much greater than

that of the data-driven models, especially for small training
set sizes.

To verify that longitudinal-lateral coupling is weak, and
that data-driven models trained on datasets which incorporate
road bends can provide good prediction accuracy, we took
the neural network Lancia Delta model, which was trained
on the full-length training dataset, and validated it on subsets
of the data which included i) only roads with bends (radius
< 500 m) or ii) only roads with sharp bends (radius< 50 m).
Validating on the 13.3% of the data with mild and sharp bends
gave a VAF of 98%. Validating on the 3.4% with only sharp
bends gave a reduced VAF of 79.1%. The model appears to
lose accuracy only in sharp bends.

IV. SUMMARY OF RESULTS
In this paper, we have compared several mathematical mod-
els of longitudinal car vehicle dynamics using large-scale
real-world driving experimental data for two different vehi-
cles, specifically:
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FIGURE 8. Variation-accounted-for (VAF) metric giving simulation
accuracy for physical (Phys), state-spate (SS - tbg1o) and neural
network (NN) models trained on differing set sizes. SS and Phys models
were trained on halves, quarters, eighths, etc of the original training
dataset. However, if a given fraction of the data did not have at least
10 m/s of variability in the velocity, that fraction was discarded and not
used for training. The NN model was trained on data that had been
subdivided into ten second sections and then interleaved to make, say,
4 training datasets each a quarter of the length of the original dataset.
The reason for this approach was to ensure that the NN model received
data from driving conducted in all gears. The number of VAFs computed at
each training set length varied; for the full length of 2500 s, there is only
one VAF (and is the value reported in the main results). For 625 s four
VAFs were computed; for 312 s, up to 8 VAFs were computed etc. The
mean VAF is plotted, with error bars giving the standard deviations. The
graph indicates that approximately 10 minutes of training data is required
as a minimum to get a good model.

• a nonlinear physical model
• linear state-space models, focusing on first and second
order, obtained by system identification techniques

• a neural network model whose design is guided by phys-
ical knowledge

The key results are that the data-driven models improve
on the accuracy of the nonlinear physical model for both
vehicles (Fig. 9). The most accurate model for each vehicle
was the neural network, which slightly out-performed the
state-space model for the Lancia Delta and was a significant
improvement for the Jeep Renegade data.

Model accuracy for all three models was lower for the Jeep
than for the Lancia. The torque signal from the Jeep’s ECU
is generally noisier, contributing to the increased scatter in
the upper plots in Fig. 6. Secondly, there is a nonlinear trend
in the upper plot of Fig. 6(b) for the state-space model of
the Jeep. This non-linearity is consistent with the quadratic
drag term in the physical model: the linear state-space model
is over-estimating the speed when the Jeep is travelling fast.
This could be attributable to the less aerodynamic profile of
the Jeep vehicle (an SUV) in comparison with the Lancia
Delta car. Indeed, the physical model finds the drag parame-
ters, kD to be greater for the Jeep than for the Lancia. Notably,
the neural network model is able to learn the non-linearity in
the Jeep data.

V. DISCUSSION
The aim of theworkwas to assess the advantages of each form
of modelling within the context of developing autonomous

vehicle control systems. Autonomous vehicles will require
accurate vehicle dynamics models both for control applica-
tions and as forward models for prediction to aid decision
making processes. Thus, the focus of the work is predic-
tion accuracy, rather than parameter estimation. Experimental
data used in the study was drawn from normal driving over
circa 100 km of roads. This dataset was particularly useful
as it reflects the type of data that would be continuously
available to an autonomous vehicle during its operational life,
that might be used to update data-driven models.

A. APPLICATION OF DATA DRIVEN MODELS
The models described in this work are all ‘forward’ (i.e. pre-
dictive) models. Given control input, they produce a predicted
output, v(t). The use of such models is common in control
systems, even though for control it is the ‘inverse model’ that
is required; a desired trajectory is the input and control sig-
nals are the required output. Nonetheless, the exploitation of
forwardmodels is important in several control schemeswhich
incorporate both forward and inverse data-driven models. For
examples, see [39] (their Fig. 8) which shows neural network
models being used as inverse/forward pairs and the ‘feedfor-
ward inverse control’ system, which feeds an estimate of the
disturbance back to the controller as an adaptive signal. For
comprehensive discussions of adaptive control, see [40], [41].

Exploiting a neural network model of the real plant to find
the neural network for the inverse model can be carried out
by training the network that cancels the forward network.
This can be i) more efficient than learning a neural network
controller via direct interaction with the plant, allowing algo-
rithms such as gradient descent to be applied; and ii) safer,
as it is possible to test actions that would be dangerous.
Furthermore, the training of the network that cancels the
forward model is an unsupervised learning problem (once
the forward model is learned) and, by controlling the set of
training data (which trajectories we are really interested in
producing well) it is possible to control on which domain the
inverse model is accurate. Inverting the forward model to find
the inverse can even be analytically computed for the linear
state-space models explored in this work.

The resulting data-driven inverse model is, also, somewhat
equivalent to model predictive control in the sense that (after
training is completed) when used for control it takes a future
desired trajectory as input and returns the control commands
that, fed into the plant model, drive it onto the desired trajec-
tory. If the inverse model is then transferred to controlling the
real plant, the accuracy of the plant model becomes important
(the real plant will otherwise diverge from the model), which
is the main motivation of this paper.

Another use for forward models is in online model selec-
tion. If there is significant mismatch between the model’s
prediction and sensory data, the control system could select
between alternative inverse models [42]. For example if the
car runs on a slippery road the predictions of a model trained
on a dry, well-maintained road will fail. The agent may have
multiple forward models (one for slippery roads; one for dry
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FIGURE 9. (a)–(d). Model fit, RMS error (RMSE), variance accounted for (VAF) and Akaike’s final prediction error metrics (FPE) for the physical (phy),
first-order state-space (ss) and neural network (nn) models. For the Lancia Delta data (left bars), the physical model is out-performed by the
alternatives for each metric. The neural network model performs slightly better than the state-space model, though at a cost of an increased training
time. For the Jeep Renegade data, the neural network model still outperforms the physical model by a substantial margin, but the state-space model is
comparable with the physical model in terms of accuracy; (e) Model training time. Note the log scale and note also that training was carried out on
three separate computer systems and so this graph provides a guide, rather than a direct comparison of the three methods.

roads) and estimate which condition holds. If no existing
model matches sensory data then a new model could be
created.

Finally, forward models provide the ability to carry
out internal simulations, which is considered to be at the
root of thought. Indeed the simulation theory of cogni-
tion postulates that thoughts are sequences of simulated
actions and simulated perception at different levels of
abstractions [43], [44].

B. VEHICLE DIFFERENCES
The differences in the parameters found by the physical
model for the two vehicles warrants discussion (Table 2).
While it is possible to explain the difference in the torque
parameter, kτ , by an additional gearing in one vehicle,
the magnitude of the differences in the other parameters is
less easy to dismiss. Although the increased drag parameter,
kD, is consistent with the less aerodynamic design of the Jeep
SUV, it is hard to believe that the rolling resistance (kr ) of
the Lancia is orders of magnitude greater than the Jeep. More
likely is that this is simply the best fitting parameter for a
system which is failing to capture some unmodelled effects

and throws into doubt the interpretability argument in favour
of the physical model.

Interestingly, kD and kr can also be obtained by inspection
of the trained neural network, thanks to its structured nature.
Indeed, as already explained, branch 1 (Fig. 3) learns the
combined aerodynamic and rolling resistance (respectively
by means of its weight and bias). Hence, inspection of the
trained parameters reveals the sub-model parameters. For
the Delta, the network estimates are kD = 0.2854 (kg/m)
and kr = 0.01208, which are similar to Table 2. Instead,
for the Renegade they are kD = 0.4209 (kg/m) and
kr = 0.00657, which are more plausible. It is likely that
the neural network model, having a more flexible nonlinear
structure, also correctly fits the parameters. Hence, the inter-
pretability argument is reversed in favour of the network in
this case.

C. EXTENDING THE DOMAIN
The study focused only on the ordinary driving domain; good
driving conditions; safe, legal speeds and comfortable accel-
erations [32]. It is worth considering the approach that would
be necessary to extend these models to data collected in more
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extreme conditions, such as driving in an icy environment,
hard, emergency braking or track driving at high speed. For
the physical model, it would be necessary to re-engineer the
model, introducing additional terms and refined models for
tyre forces, which in turn might call for complex and more
costly experiments [45]. In more extreme driving, it would
also be necessary to consider selecting between prediction
models (and their inverted control counterparts), depend-
ing on conditions [42]. Also, the assumption of de-coupled
lateral-longitudinal dynamics would need to be examined
carefully; the introduction of a lateral physical model signif-
icantly increases the complexity of physical vehicle dynamic
modelling. If this assumption were to fail for the physical
model, it would also fail for the data-driven models. How-
ever, for these models, the solution is more straightforward;
the additional control inputs are incorporated into the mod-
elling, but the methodology remains the same, albeit with a
requirement for a wider range of conditions in the training
set, i.e. for more experiments in the targeted domain (extra
experiments are also needed for more parameter estimation
of the analytical models).

D. PERSISTENCY OF EXCITATION
The focus of this study is on ordinary driving on public roads,
which consequently means there is an imperfect fulfilment
of the usual requirement in system identification to fully
excite the inputs, i.e. the system lacks full ‘persistency of
excitation’. Given that the data collected is from normal, legal
driving on public roads, it is clearly impossible to excite the
inputs across their full ranges. For example, we do not have
data for conditions corresponding to hard braking manoeu-
vres or for full acceleration in all gears and at all speeds.

However, we allow for partial excitation of the system for
two reasons:

Firstly, the results indicate that the identification process is
still successful, in agreement with other studies of persistency
of excitation [46]–[48].

Secondly, we seek to compare predictivemodels in real-life
conditions typical of normal, safe driving. If predictive mod-
els can be trained from normal driving data, manufacturers
will incur lower development costs because they will not need
to conduct the work at dedicated track facilities. Such models
could even be trained on-line, by automated driving agents
or driver assistance systems. Thus, it is worthwhile to make
a comparison of the accuracy of different models trained on
these datasets.

E. SUMMARY
Wefind that the use of data-drivenmodelsmay be encouraged
within the vehicle control community. Linear state-space
models, which have advantages for use in control and state
estimation due to their linear structure, may be favoured as
long as the vehicle operates linearly in the driving conditions
in which it will be deployed. The neural network model
was most accurate, offering a systematic approach to the
learning of models that better describe vehicle dynamics in

nonlinear conditions. The recommendation of this paper is
therefore to test a vehicle with both linear state-space and
neural network data-driven models to evaluate which will
fit best. For autonomous vehicle applications, the ability to
use the simplest, and most quickly identified, state-space
models may motivate the specification of low-drag vehicle
bodies for driverless cars. On the other hand, neural network
models may be the building block on which a complete
sensorimotor strategy can be bootstrapped. In other words,
neural network models can be learned (by a driving agent or
by a human supervisor designer) and used to produce lower
and higher-level control loops in way that resembles human
hierarchical control, as explained in [49].

VI. FUTURE WORK
A limitation of this investigation is that it focused on longi-
tudinal vehicle dynamics only, and providing no modelling
of the vehicles lateral dynamics. The lateral dynamics might
lead to more severely nonlinear behaviour, necessitating
further nonlinear modelling to adequately describe the car
behaviour for full path control. In future work, we plan to
extend the comparison of physical and data-driven models to
the coupled longitudinal-lateral vehicle dynamics.
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