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Abstract

Proactive and reactive inhibitory processes are a fundamental part of executive

functions, allowing a person to stop inappropriate responses when necessary and

to adjust performance in in a long term in accordance to the goals of a task. In the

current study, we manipulate, in a single task, both reactive and proactive inhibition

mechanisms, and we investigate the within-subjects effect of increasing, by means

of anodal transcranial direct current stimulation (tDCS), the involvement of the right

inferior frontal cortex (rIFC). Our results show a simultaneous enhancement of

these two cognitive mechanisms when modulating the neural activity of rIFC. Thus,

the application of anodal tDCS increased reaction times on Go trials, indicating a

possible increase in proactive inhibition. Concurrently, the stop-signal reaction time,

as a covert index of the inhibitory process, was reduced, demonstrating an

improvement in reactive inhibition. In summary, the current pattern of results

validates the engagement of the rIFC in these two forms of inhibitory processes,

proactive and reactive inhibition and it provides evidence that both processes can

operate concurrently in the brain.

Introduction

A key aspect of executive functions is behavioral inhibition, the ability to control

inappropriate or unwanted responses [1]. This ability constitutes the basis of
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accurate performance [2] and it is essential for adaptive behavior in everyday life.

Indeed, there are many situations requiring to stop a specific response or to move

in a controlled fashion. For instance, we can eat slowly in an etiquette dinner, even

though being ‘‘famished’’, and we can even react and stop eating if somebody asks

us to do it or if we perceive a strange taste or smell in the food. While healthy

adults are generally adept at inhibiting a wide-range of behaviors if needed,

diminished capacity has been highlighted in aging [3] and clinical [4] populations.

A better understanding of the underlying cognitive processes and its neural

substrates would be the key to furthering the knowledge of this field and

developing clinical treatments.

At the cognitive level, the stopping performance has been described as a

mechanism in relation with the appearance of a signal –reactive inhibition–, and

with the preparation to stop an upcoming response tendency in accordance with

the goals of a person –proactive inhibition– [4]. These Reactive and Proactive

inhibitory function can also be understood as global and selective processes,

respectively, thereby not functioning in opponent but in a complementary mode

[5, 6] and permitting a more suitable control on behavior relying on the

necessities and instructions of the task. In fact, reactive and proactive processes are

not considered to compete against each other and have been described as the two

principal mechanisms of cognitive control in the Dual Mechanism Control

(DMC) framework [7].

At the neural level, the inhibitory function in the brain is proposed to be

implemented by a specific fronto-basal-ganglia circuit [11, 12]. Reactive inhibition

has been associated with the activation of the subthalamic nucleus (STN) of the

basal ganglia blocking its outputs with a widespread effect on the motor system

[8, 9], which is reflected by a rapid and global suppression of behavior. The

proactive control process has been associated with sustained activation in the

prefrontal cortex (PFC), reflecting the active maintenance of task goals and a top-

down bias to facilitate the processing of upcoming cognitive demanding events

[10]. Functional neuroimaging studies have shown a large coincidence in the

activation of the right inferior frontal cortex (rIFC), the presupplementary motor

area (preSMA), and the STN of basal ganglia [9], with a clear overlapped network

for tasks involving the recruitment of reactive or proactive inhibitory processes

[10]. Among these cortical areas, the rIFC is considered to be a critical one for

stopping and for the attentional control of behavior [8, 13, 14]. In fact, recent

studies provided evidence of the importance of the rIFC for stopping behavior in

the reactive inhibition using either transcranial magnetic stimulation (TMS)

[15, 16] or transcranial direct current stimulation (tDCS) [17, 18]. Moreover,

recent studies have shown that the role of rIFC can be parceled out, with

appropriate experimental designs, into distinct cognitive functions [19, 20].

Nevertheless, the simultaneous contribution of the rIFC to reactive and proactive

inhibitory control has not been proved yet, although assuming a general updating

function for the rIFC [20], it has been postulated that the inhibitory function

occurs along with other processes which are critical for updating behavior.
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At the experimental level, response inhibition is often assessed using the Stop-

Signal task (SST) or the Go/Nogo task (GNG). In the SST, subjects are instructed

to stop responding immediately after the appearance of a specific signal, and its

underlying inhibitory process is reactive inhibition. The effectiveness of a correct

performance in the SST is understood as an independent [21] or an interactive

[22] race between the ‘‘go process’’ and the ‘‘stop process’’ triggered by

presentation of a go stimulus and a stop-signal, respectively. In a variant of the

SST, in which is introduced a key informing the subject about the possible

appearance of the stop signal in that trial [23, 24], or in tasks where the

proportion of the stop signal overwhelms the proportion of go-trials in an

experimental block [25], a proactive inhibition is recruited [4], slowing down

reaction times (RTs) but usually increasing accuracy in the task. The time

measurement that is assumed to reflect the effectiveness of response inhibition

required for the stop-process to occur is estimated for individual subjects in the

context of the race model and is called the Stop-Signal RT (SSRT). In contrast, in

the GNG it is required the engagement of a distinct process triggered by a ‘NoGo’

signal. During the task subjects need to occasionally refrain from responding in

front of certain stimuli, thus engaging in an internally driven (rather than

externally driven, as in the SST) inhibitory process. In has been stated that

proactive response-strategy adjustments are made just before a trial or before a

series of trials [26, 27], and so, a GNG task demands the maintenance of a long

lasting goal, which is most likely to correspond to a proactive control process.

Thus, people may increase responses threshold or suppress motor output

in situations in which stop signal is expected to occur in comparison with

situations in which the stop signal is not expected to appear [23, 27]. Thus, it is

hypothesized that subjects may balance the go and stop processes by adjusting the

response threshold on go trials and this adaptation on the response threshold is

reflected by increases in both go RT and accuracy [28]. While reactive inhibition is

understood as a process that usually interferes with an already initiated response,

proactive inhibition permits the subject to increment executive control over

selective signals over a longer time frame. Thus, to accurately perform in distinct

situations and experimental task, different cognitive operations may be engaged,

which ultimately stem for the notion that inhibitory behavior may not be a

unitary modus operandi.

In fact, several authors have challenged the idea of response inhibition as a

‘‘unitary’’ and isolated function in the last decade (see [29], for a review). For

instance, an interesting new theoretical framework for understanding response

inhibition states that non-inhibitory processes have a critical role in stopping

responses [30]. Hence, the importance of monitoring for environmental relevant

and irrelevant information for stop signals points out the significance of signal

detection, and more specifically, the output of the sensory detection process for

stopping behavior [30]. It is obvious that for the stop process to occur –either

triggered externally or internally–, first the stop signal has to be identified. Thus,

an interesting question is whether the complexity of the stimuli –e.g.,

discriminability– may affect the inhibitory response. In the current study,
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participants were engaged in a mixed SST and GNG task and in addition they

needed to classify the command signal along two dimensions, with one involving

a more difficult time-consuming discrimination than the other [31]. The outcome

of the hard discrimination provided the information of whether or not to respond

(Go-Nogo), and the outcome of the easy discrimination informed the subject

about which hand to use if a response was called for. Osman and colleagues [31]

demonstrated that both stimulus attributes were processed in parallel and that the

Nogo response was delayed in the condition in which the stimuli were harder to

discriminate. It is unclear, however, whether both reactive and proactive

inhibitory processes will be affected in a similar way by the attributes of the

stimuli, i.e., by the underlying signal detection and monitoring processes, but by

manipulating the difficulty of perceiving the stimuli needed for the inhibitory

function to proceed, we pursued to further characterize the so far postulated

different inhibitory functions.

To examine the specific role of the rIFC in behavioral inhibition and the nature

of the underlying cognitive mechanism and its related processes –either reactive or

proactive inhibitory processes, or both, and how they are influenced by the signal

detection and monitoring processes– we designed a new within-subject

experimental task in which both externally and internally driven inhibitory

processes were manipulated equivalently (via the combination of a SST and a

GNG task) together with the manipulation of the difficulty in discriminating the

stimuli and implemented anodal tDCS to the rIFC. We hypothesize that if both

inhibitory processes are governed by rIFC, an increase in both reactive (reduction

of the SSRT) and proactive inhibitory processes (increase of RT and/or reduction

of commission and omissions) should be achieved, providing direct evidence that

these two processes can operate simultaneously. Moreover, by contrasting how

signal detection process affects the different outlined measurements on the

inhibitory function, we expect to provide new data on the interrelation of

response inhibition with other aspects of the executive function.

Materials and Methods

Participants

Twenty-two healthy volunteers (4 males; mean age521.2 years; S.D.52.7)

participated in the experiment. All participants were right handed according to

the Edinburgh handedness inventory test [32] and had normal or corrected-to-

normal visual acuities. They had no risk factors for noninvasive brain stimulation

application, as assessed through safety questionnaires. All participants were naïve

to tDCS effects. The use of tDCS in the current study was approved by the

Comissió de Bioètica of the University of Barcelona. Written informed consent was

obtained from each participant before the experiment.
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Go/Nogo-Stop-Signal Task (GNG-SST)

We implemented a new experimental design that aimed to observe at within-

subject level both proactive and reactive inhibitory processes. We adapted a

choice-reaction GNG task [31], which allowed incorporating a variant of the SST

[21]. In this way, the GNG could preserve the original two variant perceptual

complexity conditions, consisting in the manipulation of the difficulty in

perceiving the Go and Nogo stimuli, and permitted to further evaluate the role of

reactive inhibitory process (i.e., [31]). Thus, two letter-digit pairs in Courier new

font served as stimuli (0.8˚ of visual angle), with one pair being easily

discriminable (letter: V and number: 5) and another pair being hard to

discriminate (letter: l and number: 1). One stimulus at a time was presented on

the left or right side of a central fixation cross, requiring either left or right hand

responses with the corresponding index finger (see Figure 1). The two response

hands and the two types of discriminable items (easy/hard) were equally frequent

and randomly presented within each block of the experiment. The stop-signal was

a red frame (0.9˚ of visual angle) that was presented after a variable delay in the

same location of the last Go stimulus, indicating participants to inhibit the Go

response in those trials. The delay was adapted to each participant’s behavior by

means of a staircase-tracking algorithm [33] as follows: the stop-signal delay

(SSD) was set to 250 msec at the beginning of the two blocks and was adjusted

separately for the easy and hard discriminability conditions. The SSRT was

afterwards calculated first individually for each block and condition and then

averaged for each condition. After a successful response inhibition, the SSD was

increased by 25 msec, whereas after an unsuccessful inhibition, the SSD was

reduced by 25 msec, making the inhibition easier or harder, respectively, in the

next stop trial. This dynamic tracking procedure yielded an overall ratio of

p(response|stop-signal) of 0.5. Participants were instructed to respond to letters or

numbers in two separated and consecutive blocks that were counterbalanced

across participants. The Go stimuli were presented for 50 msec, whereas the

duration of the stop-signal was always 300 msec. Stimulus onset asynchrony was

fixed to 1000 msec. Total number of trials was 432 in each block, for which 50%

of the trials corresponded to Go responses, 25% to Nogo responses and 25% to

Go+Stop responses. The following constraints were introduced into the task: i) no

more than three consecutive stimuli appeared on the same side, ii) two

consecutive stop trials never occurred, and iii) the same type of stimuli (either

letters or numbers) was not presented more than three consecutive trials in a row.

Procedure

Each subject participated in two experimental sessions (sham vs. anodal tDCS)

counterbalanced across participants and conducted at least one week apart. The

experiment began with a practice block that consisted of 64 trials to familiarize the

participants with the task. To guarantee that participants began the task aware of

the difference between ‘‘l’’ and ‘‘1’’, the practice block was repeated until the

number of commission and omission errors were equal or less than 10. The

Modulating Proactive and Reactive Inhibition with tDCS
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practice block lasted for ,4 min, and it was repeated for all participants except for

3. Only 1 subject needed 3 practices blocks to achieve the defined criterion. In the

second session, a single practice block was administered, with the only purpose of

reminding participants of the task procedure. After every 29 trials, a short break of

Figure 1. Illustration of the combined GNG-SST designed for the current study. Participants were instructed to respond to letters or numbers in two
separated and consecutive blocks with the right or left hand depending on the side of the appearance of the Go-stimuli. In this example, different conditions
are shown in the three rows of the Figure for the block ‘‘go for letters’’, in which participants are asked to respond to the side of appearance of the letters V
and l (easy and hard discriminability, respectively). In the top row is presented an example of a Go-trial (letter ‘‘V’’) for the easy discrimination condition,
whereas in the middle row an example of Stop-trial is illustrated for the hard discrimination condition. The Stop-Signal delay (SSD) was adapted (¡25 ms)
after each Stop-trial by means of a staircase-tracking algorithm. The bottom row corresponds to a Nogo-trial (number ‘‘1’’) in the hard discrimination
condition. The % of Trials (right column) describes the percentage of trials in each condition of a total of 452 trials composing the task.

doi:10.1371/journal.pone.0113537.g001
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5 sec was included to allow participants to rest, and after 144 trials, a 10 sec break

was given. Each experiment session lasted for approximately 23 min.

tDCS

In both experimental sessions the location of the tDCS electrodes was established

following the Jacobson et al. [17] study. Thus, in accordance with the 10–20 EEG-

system, the anodal electrode was placed on the crossing point between the T4-Fz

and F8-Cz positions, whereas the cathodal electrode was placed on the crossing

point between the T3-Fz and F7-Cz positions, corresponding to the location rIFC

and left IFC on the scalp, respectively.

In the anodal condition, a direct current of 1.5 mA was induced by two square

saline-soaked surface sponge electrodes (9 cm2; current density 0.16 mA/cm2) and

delivered by a battery, constant-current stimulator (BrainStim, www.brainstim.it)

for 18 min. An automatic on and off ramp of 10 sec was used. In the sham

condition, the intensity of the current was the same, but the duration of the

stimulation was limited to the duration of the current being ramped on and off

(over 20 sec) at the beginning and at the end of the 18 min period. By following

this protocol in the sham tDCS session, we ensured that participants felt the same

sensations that they felt in the anodal stimulation session.

Importantly, participants were not informed about the different stimulation

protocols until the end of the entire experiment, and they could not distinguish

between the anodal and the sham tDCS, as assessed by subject responses on a

questionnaire completed at the end of each session [34] (nonparametric Wilcoxon

rank sum tests all p-values.0.08; p50.08 corresponded to the value obtained with

the rating of fatigue caused by tDCS, with the higher values observed for sham

tDCS. Importantly, for the question regarding the influenced tDCS in the

performance of the task, we obtained a p-value of 0.32 in the Wilcoxon test).

Results

For all the analyses the same two factors were introduced in separated repeated

measures ANOVAs with two within-subjects factors: tDCS-session (sham vs.

anodal) and discriminability (easy vs. hard).

Participants inhibited approximately half of the stop trials in both tDCS-

session, indicating a correct implementation of the tracking algorithm

[p(response|stop-signal), sham-easy: 49.3¡3.6%; sham-hard: 49.1¡3.9%; ano-

dal-easy: 47.8¡4.0%; anodal-hard: 47.0¡3.9%]. Only in the anodal session the

p(response|stop-signal) was significantly less than expected (50%) [sham, easy

and hard, p.0.2; anodal-easy: t(21)522.6; p,0.02; anodal-hard: t(21)523.7;

p,0.01]. ANOVA results revealed a main effect of tDCS, denoting that

participants inhibited a significantly larger number of trials in the anodal than in

the sham tDCS-session [F(1,21)59.6; p,0.01]. A trend towards a significant

difference was observed for the discriminability factor [F(1,21)53.5; p50.077],
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which indicated a propensity toward responding to more trials for the hard than

for the easy condition.

The main results are summarized in Table 1 and Figure 2. The most-used

measure for the inhibitory process is the SSRT, which reflects the covert time it

takes to suppress a response. Following the integration method, the point at which

the stop process finished was estimated as the time corresponding to the nth RT,

with n equal to the number of RTs in the RT distribution multiplied by the overall

p(respond|stop-signal) [35]. The SSRT was then calculated by subtracting the

mean SSD from the nth RT separately for each block and condition. ANOVA

revealed a significant main effect of tDCS-session [F(1,21)58.4; p,0.01],

reflecting a behavioral inhibitory improvement caused by the anodal stimulation.

No significant effects were found for the discriminability factor or interaction

term (all p-values.0.05). However, and for the purpose of further exploring the

data, a subsequent post-hoc analysis was conducted which revealed that a

significant effect of tDCS-session was observed in the easy-discriminability

condition [t(21)52.6; p,0.02]. For the hard-discriminability condition, a trend

towards significance was found [t(21)51.9; p50.078]. Comparable results were

obtained when analyzing the SSRT using the mean method (see Table 1), in which

the SSRT is calculated by subtracting the mean SSD from the mean RT. An

abundant set of studies has proven the reliability of these two methods.

Table 1. Behavioral data.

Sham Anodal
t-value
(d.f. 521) p-value

ms (S.D.) ms (S.D.)

GO-RT Easy 472 (66) 501 (70) 22.68 ,0.02

Hard 502 (60) 524 (61) 22.05 50.05

SSD Easy 251 (68) 292 (78) 23.25 ,0.01

Hard 284 (62) 312 (65) 22.41 ,0.03

SSRT (integration meth.) Easy 212 (27) 196 (26) 2.56 ,0.02

Hard 206 (26) 197 (29) 1.86 50.08

SSRT (mean meth.) Easy 221 (22) 209 (16) 2.34 ,0.03

Hard 219 (21) 212 (25) 1.35 .0.19

% (S.D.) % (S.D.)

Go-Correct Easy 98.2 (1.9) 97.7 (2.4) 0.88 .0.3

Hard 90.0 (5.1) 89.9 (6.9) 0.11 .0.9

False Alarms Easy 2.6 (3.2) 1.1 (1.5) 2.55 ,0.02

Hard 19.4 (14.3) 17.6 (14.4) 0.54 .0.5

Omissions Easy 1.8 (1.8) 2.2 (2.4) 20.91 .0.3

Hard 10.0 (4.9) 10.1 (6.9) 20.13 .0.8

Values of all different parameters analyzed in the task are shown, separated for easy and hard discrimination conditions and for sham and anodal tDCS
sessions. For Go trials, three mean values are presented for easy and hard discrimination conditions: RTs, Percentage of correct responses and omissions.
False alarms represent errors in Nogo trials. Mean stop-signal delay (SSD) refers to the average (SSD) in the two blocks (go for letters, go for numbers),
computed with different staircases (see Materials and Methods). The Stop-Signal Reaction Time (SSRT) values presented were computed for each subject
and condition using both the integration and the mean methods.

doi:10.1371/journal.pone.0113537.t001
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The SSRT improvement observed in the anodal tDCS-session was mainly

driven by the large increase in the SSD, which was augmented by 30–40 msec

under the effects of the anodal tDCS [F(1,21)58.7; p,0.01]. The discriminability

factor was also found to modulate the SSD, as revealed by the significant effect

[F(1,21)550.3; p,0.001] and a trend, albeit non-significant, towards an

interaction of discriminability by tDCS-session [F(1,21)53.9; p50.060]. Post-hoc

analysis showed a larger increase of the SSD in the easy (41 msec) than in the hard

(29 msec) condition caused by anodal tDCS (see Table 1).

When analyzing the RT for Go trials, a strong main effect of discriminability

was found [F(1,21)561.8; p,0.001], which indicated that this manipulation

worked as expected. Importantly, a significant main effect of tDCS-session was

found for Go RT [F(1,21)56.0; p,0.03]. The interaction was not significant

[F(1,21)52.2; p.0.1]. The analysis of commission errors revealed only a main

effect of discriminability [F(1,21)550.2; p,0.001; tDCS-session: F(1,21)50.8;

p.0.3; tDCS-session by discriminability: F,0.1], although a significant reduction

of commission errors was observed for the easy discriminability condition during

the anodal tDCS condition [t(21)52.5; p,0.02]. Finally, the analysis of omitted

responses revealed again only a main effect of discriminability [F(1,21)561.5;

p,0.001; tDCS-session and tDCS-session by discriminability: F,0.2]. Thus,

participants did not increase omission rates during the anodal tDCS condition,

but a significant reduction of commission errors was observed for the easy

discriminability condition, as it could be predicted by the speed-accuracy trade-

off, yielding a slight improvement in response accuracy and indicating that tDCS

applied over the rIFC could modify both reactive and proactive processes

simultaneously.

In order to further testing whether discriminability modulated performance in

a considered general inhibitory function, we conducted a Multivariate Analysis of

Figure 2. Mean reaction times (¡SEM) for Stop-Signal Reaction Time (SSRT), Stop-Signal Delay (SSD) and Go trials for sham and anodal tDCS
sessions; the easy and hard discriminability conditions were collapsed. Asterisks represent p-values: *p,0.05; **p,0.01; ***p,0.001; n.s. represents
statistically non-significance differences (p.0.05).

doi:10.1371/journal.pone.0113537.g002
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Variance (MANOVA) in which Z-scores of RT and SSRT values were entered into

the analysis as dependent variables and discriminability and tDCS-session as fixed

factors. The results of this analysis revealed a main effect of tDCS-session

[F(2,83)53.03; p50.054], while the factor discriminability [F(2,83)51.86; p.0.1]

and the interaction of tDCS-session by discriminability [F(2,83)50.17; p.0.8]

did not reach statistical significance.

Finally, we conducted a set of Pearson correlation analyses between RT,

Commission and Omission and SSRT values with the aim to explore a possible

relation between reactive and proactive inhibitory behavior. These analyses were

computed separately for easy and hard discrimination condition and considering

only the effects of the tDCS (anodal minus sham). The results did not reveal any

significant correlation (all p-values.0.5), thereby indicating certain level of

independency between the two studied inhibitory processes.

Discussion

This study evaluated the specific role of the rIFC in behavioral inhibition, its

relation with signal detection processes, and that effective inhibitory response

within the same region by either reactive inhibition or proactive inhibition or

both. We assessed this by combining the use of anodal tDCS over rIFG while

participants were performing a task that combined, at within subject level, two

classical tasks oriented to specifically target inhibitory responses by engaging

reactive (i.e., GNG task) and proactive (i.e., SST task) processes. Anodal tDCS

slowed down the RT on Go trials, and this result was accompanied by a significant

reduction in commission errors when the discriminability of stimuli was easy,

although a significant interaction discriminability per tDCS-session did not reach

statistical significant levels. These results point out to a speed-accuracy trade-off,

thereby indicating a possible increase in task control, which was interpreted as an

index of a proactive inhibitory process. Additionally, under tDCS stimulation, the

SSRT, a covert index of the inhibitory process, was reduced, demonstrating an

improvement in reactive inhibition. Thus, although the activity of the rIFC is

directly related in the SST and GNG tasks, the neural mechanisms through which

the rIFC plays a role in their execution differs, engaging proactive and reactive

inhibitory processes concurrently when needed. Therefore, our data supports a

view in which the rIFC is characterized as a key area for behavioral inhibition, and

supports the view that the same brain structure could be engaged in a distinct and

adaptive manner to inhibit behavioral responses [29, 30].

A variety of tasks has been used for the assessment of response inhibition in a

large set of studies. However, none of these studies explored whether two typically

differentiated processes like proactive and reactive inhibition can be manipulated

concurrently through the influence of the same brain structure, namely the rIFC.

In fact, previous studies have noted that such methodological difficulty resided in

the high degree of functional similarity of these two processes [36] or postulated

that they just co-occur during behavioral inhibition, making it difficult to
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differentiate one from the other [37]. We resolved this issue by experimentally

combining the GNG and SST in a single task –which at the same time triggered

the inhibitory processing needed to perform the task by external and internal

signals– and by modifying neural excitability of the rIFC by anodal tDCS. The

rIFC is recruited in many different task conditions that require sustained

attention, and has been proposed as a key cortical area for implementing

attentional monitoring and attentional detection rather than inhibition [38, 39].

Taking this idea one step further, the inhibitory function has been proposed to be

unnecessary for executive control [36, 40, 41]. However, the rIFC has been

functionally and anatomically differentiated into two separate areas, with the

ventral posterior part of rIFC being primarily in charge of a global and reactive

inhibition process and the dorsal part of IFC being primarily delineated by its role

in executive control processes and updating [19, 20].

Although the GNG and SST are the most commonly used tasks for assessing

behavioral inhibition, we believe that in the current study they engage different

cognitive operations in their execution. In the current GNG task, subjects select

the response strategy at the beginning of the block, thereby requiring the subjects

to constantly adjust their responding threshold such that a motor response can be

withheld before it is initiated [27]. This process is considered to be under

proactive control, because task goals are maintained active during the period in

which they are required. In the current study we state that a proactive process was

engage mainly due to the difficulty of the task that forced the subject for

optimizing the response preparation [7]. Our results showed that such

phenomenon is reflected as a slower RT and a reduced number of commission

errors in the less demanding discriminability condition. In contrast, the SST is

specifically efficient in minimizing decision-making because stopping a response

implicates withdrawing a motor command already initiated when the stop-signal

appears [4, 42].

In terms of cognitive control and under reactive control, goal representations

are only retrieved at the time they are needed, giving the advantage of its

computational efficiency due to the fact that resources are freed up after the

inhibitory command is executed [7]. Crucially, both processes are described as

compatible in the DMC framework [7], in terms of the required attentional

commitment, because albeit proactive control entails the continuous maintenance

of task goals and it forcedly depends on manipulating attentional resource,

reactive control is defined as a stimulus driven and transient process that does not

make great demands on attentional control [7]. Given that we observed behavioral

improvement in both proactive and reactive inhibition processes by experimen-

tally manipulating one single brain region, i.e., the rIFC, we conclude that this

brain region may be at least partially responsible for an efficient performance in

these two processes.

The recruitment of inhibitory and control mechanisms may explain the

extensive activation encountered within the rIFC in most of the fMRI studies

using variants of SST that increase decision-making demands and strategy

adjustments [39]. In this vein, Verbruggen and Logan [26] in a series of five
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experiments found that subjects made proactive response-strategy adjustments,

increasing response threshold, when they expected the stop-signal to occur. The

authors found longer SSRT in selective than in nonselective stopping, i.e., when

two different tones were presented but only one was assigned as stop-signal.

In addition, we found that the characteristics of the stimuli did not differently

affect the execution of reactive and proactive inhibitory processes, although a

small but significant effect was favored in the condition where the difficulty of task

was reduced. Hence, in the condition in which the stimulus was easy to

discriminate, participants committed less number of errors. Noteworthy, the SSD

was significantly larger for the hard than for the easy condition, leaving the

possibility that the categorization of the stimulus may be related to the inhibitory

response process. Previous neuroimaging studies have investigated the distinct

cognitive processes that are involved in stopping, such as response inhibition,

attentional capture of the stopping stimulus, and error monitoring [43]. In this

vein, Chevrier and colleagues [43] demonstrated that in the Go as well as in the

Nogo phase of the SST, both the inhibitory function and performance monitoring

interact, especially in unsuccessful stop-trials, activating the regions of the middle

PFC associated with response conflict (see also [44]). However, when considering

together key measures of proactive and reactive inhibition in the current study,

i.e., RT and SSRT values respectively, we did not find that discriminability affected

the inhibitory performance.

One important aspect of the present study was the opportunity to employ tDCS

to modulate a cognitive function. The mechanism underlying the neuromodu-

latory effects induced by tDCS are well established. Several studies using animal

models have suggested that tDCS can promote effective excitation or inhibition of

neurons in a polarity-specific manner [45, 46]. Accordingly, it has been shown

that anodal depolarization increases cortex excitability [47, 48]. In a recent tDCS

study, Jacobson et al. [17] employed a SST and tested different sets of stimulation

and demonstrated that anodal tDCS applied unilaterally over the rIFC yielded the

largest improvements in reactive inhibition, as reflected in a reduction of the

SSRT. The most significant difference between the results from Jacobson and

colleagues [17] and the current results is that we observed a significant slowing of

RTs for Go trials in the anodal relative to the sham session. This difference can

only be explained by an enhanced proactive control following anodal tDCS of

rIFC.

Some results of stop-signal studies have shown that subjects trade speed in Go

trials for success in stopping after stop-signal trials [49, 50] and that subjects trade

speed for accuracy in stopping in blocks where the stop-signal is presented (e.g.,

[35]). However, perhaps the most robust effect that demonstrates proactive

behavioral adjustments is found in studies in which the proportion of stop-signals

is manipulated, establishing that slower RTs are found when the proportion of

stop-signals increases [25, 26] and suggesting an increase in proactive inhibition.

Remarkably, in the current study, slower RTs were due to application of anodal

current over the rIFC, supporting a direct link between this cortical region and

proactive inhibition.
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Conclusions

Reactive and proactive inhibitory processes are considered to be an integral part of

cognitive control [2] of executive functions. The major contribution of the

current study is to show the simultaneous enhancement and interrelation of these

two traditionally separated cognitive mechanisms when modulating the neural

activity of rIFC. Altered control in response inhibition has been related to several

dysfunctions, most notably to attention-deficit hyperactivity disorder [51]. In

addition, recent clinical studies have proposed the rIFC as a candidate for altered

cognitive control in diseases like schizophrenia [52] or obsessive compulsive

behavior [53]. Given that we found improvements in proactive and reactive

processes after anodal tDCS of rIFC, a key question in future studies would be to

evaluate if anodal tDCS would be a useful tool to remediate inhibition deficits

associated with the afore-mentioned disorders (but see [18]). Such work would be

important for furthering the knowledge of these processes and for developing

innovative clinical treatments.

Supporting Information

Data S1. Data summary. Average data for all subjects on the different

measurements obtained in the task are provided, as well as data used for

computing the SSRT with the integration method (percentage of correct

inhibition, distribution of the RT and the SSD) and mean method (SSD and mean

RT).

doi:10.1371/journal.pone.0113537.s001 (XLSX)
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