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Thesis Overview

The thesis considers different sources of risk that affect financial business in general,

and in particular the banks’ value. It is divided as follows: Part I treats an optimal

dividend problem with investment opportunities, taking into consideration a source of

strategic risk; Part II and III concern the wide concept of credit risk from two different

perspectives, namely considering the systemic risk feature and the regulatory risk

point of view; part IV and V concern the financial risk in general, and in particular

the volatility risk. Notably the last part is devoted to the implementation of exact

formulas for a strategy designed to reduce the volatility risk of the investment strategy.

Let me briefly explain the main results and characteristics of each part, taking

the opportunity to list the co-authors. More introductory details will be introduced

at the beginning of each part.

Part I: Strategic Risk and Dividend Control Problem under Financing

Constraints This part results from the collaboration with the Laboratoire de Prob-

abilités, Statistique et Modélisation at the university of Paris Diderot, in particular

with Assoc. Prof. Scotti and Prof. Ly Vath.

In the first part, the effect of market frictions on the decision process of the

financial entities is considered. It concerns the problem of determining an optimal

control of the dividend under debt constraints and investment opportunities in an

economy with business cycles. It is assumed that the company is to be allowed to

accept or reject investment opportunities arriving at random times with random sizes,

by changing its outstanding indebtedness, which would impact its capital structure

and risk profile. This work mainly focuses on the strategic risk faced by the companies;

and, in particular, it focuses on the manager’s problem of setting appropriate priorities

to deploy the limited resources available. This component is taken into account by

introducing frictions in the capital structure modification process.

The problem is formulated as a bi-dimensional singular control problem under
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regime switching in presence of jumps. An explicit condition is obtained in order to

ensure that the value function is finite. A viscosity solution approach is used to get

qualitative descriptions of the solution.

Furthermore, in the second chapter of this part it is shown that the bi-dimensional

problem could be reduced, by writing the value function and the processes under the

debt value. The reduced value function is characterized and used to perform complete

comparative statics.

Part II: A lending scheme for systemic risk with probabilistic constraints

of failure This part results from the collaboration with Assoc. Prof. di Persio and

Dr. Cordoni of the probability team at the university of Verona.

Financial institutions cannot possibly carry enough capital to withstand counter-

party failures or systemic risk. In such situations, the central bank or the government

becomes effectively the risk manager of last resort or, in extreme cases, the lender of

last resort. If, on the one hand, the health of the whole financial system depends on

government intervention, on the other hand, guaranteeing a high probability of sal-

vage may result in increasing the moral hazard of the banks in the financial network.

In this part we derive a closed form solution for an optimal control problem related

to interbank lending schemes, subject to terminal probability constraints on the failure

of banks which are interconnected through a financial network. The derived solution

applies to real bank networks by obtaining a general solution when the aforementioned

probability constraints are assumed for all the banks. We also present a direct method

to compute the systemic relevance parameter for each bank within the network.

Part III: The Default Risk Charge approach to regulatory risk measure-

ment processes This part results from the collaboration with Assoc. Prof. di

Persio and Dr. Bonollo.

This part considers the Default Risk Charge measure as an effective alternative to

the Incremental Risk Charge one, proposing its implementation by a quasi exhaustive-

heuristic algorithm to determine the minimum capital requested to a bank facing the

market risk associated to portfolios based on assets emitted by several financial agents.

While most of the banks use the Monte Carlo simulation approach and the empirical

quantile to estimate this risk measure, we provide new computational approaches,

exhaustive or heuristic, currently becoming feasible, because of both new regulation

and the high speed - low cost technology available nowadays. Concrete algorithms

and numerical examples are provided to illustrate the effectiveness of the proposed
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techniques.

Part IV: Portfolio optimization for Hawkes-Merton models with transac-

tion costs This part results from the collaboration with Assoc. Prof. Scotti and

Assoc. Prof. Sgarra.

A financial market is deemed to be composed of two investment opportunities: a

risk-free asset, also called money market account or Government bond or simply bond,

which evolves at a risk-free interest rate, and a risky asset, also referred to as stock

or share, subject to a significant degree of volatility and a jump component driven

by a Hawkes process. We investigate the Optimal Consumption-Investment problem

when proportional transaction costs are taken into account. The solution of the

problem, which is stochastic, is proven to be the deterministic solution of a second-

order integro-differential equation in the viscosity sense, and a detailed qualitative

analysis of the solution obtained is provided.

We show that the global effects of the combination of self-exciting jumps and

proportional transaction costs is to increase the investors’ fear whenever they perceive

a hint of financial crisis, in other words we take into account the emotional states of

irrational market behavior, which is inconsistent with the efficient market hypothesis.

Part V: Closed formula for options linked to target volatility strategies

This part results from the collaboration with Assoc. Prof. di Persio and Dr. Wall-

baum, Head of Global Asset-Life Solution (Allianz GI).

In recent years we have seen a new class of structured products emerging, which

made use of options linked to dynamic asset allocation strategies. One of the most

chosen approaches is the so-called “target volatility mechanism”, which shifts between

risky and riskless asset, aiming to control the volatility of the overall portfolio. This

strategy aims to reduce the volatility risk in portfolios of derivative instruments.

There are a series of articles looking into options linked to the target volatility

mechanism, but this study is the first, which tries to develop closed-end formulas for

VolTarget options. In a Black-Scholes environment we develop closed-end formulas

for option prices and some key hedging parameters, when the underlying is following

a target volatility mechanism.
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Part I

Strategic Risk and Dividend

Control Problem under Financing

Constraints
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Financial peace isn’t the acquisition

of stuff. It’s learning to live on less

than you make, so you can give

money back and have money to

invest. You can’t win until you do

this.

Dave Ramsey (1960-)
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Introduction

Firm managers have often to solve a dilemma about the cash flows. The shareholder’s

are waiting for dividends but the same money could be kept to invest and make future

cash flows. The celebrated paper of Modigliani and Miller [92] addresses the problem

and shows that the value of a firm is unaffected by how that firm is financed, that

is cash reserves are irrelevant. However, this capital structure irrelevance principle is

crucially based on frictionless hypothesis. In particular, managers could cover funding

for future projects without costs and capital supply is totally elastic. Empirical

studies indicate that the credit suppliers, instead firm managers, have the upper

hand in financing decisions, see for instance Graham and Harvey [62]. Moreover,

other studies highlight the precautionary role of the cash holdings by pointing that

cash ratios have more than doubled during the last decades, see for instance Bates et

al. [14].

There is a vast and increasing literature on firm’s dividend and investment policy

in a stochastic environment, see for instance [35, 47, 52, 67, 71, 116] and Dixit and

Pindick [49] for a survey. The optimal strategy for the firm is generally characterized

by means of stopping times defined by the time when the cash process reaches an

endogenous threshold obtained as free boundary of a variational problem. Probably

the first attempt to study dividend policies without external constraint is due to Jean-

blanc and Shiryaev [71] where singular stochastic control theory is used in a Brownian

framework. Chevalier et al. [35] propose a model for dividend and investment policy

of a firm under debt constraints.

The firm, we consider in these two chapters, has a cash reserve following a ge-

ometric Brownian motion as in the Merton model. As in Chevalier et al. [35], we

assume that the firm carries a debt obligation on its balance sheet. In this part of the

thesis we as well will assume that firm assets is cash equivalent as in the literature

mainstream. We allow firm’s manager to pay dividends and to leverage firm capital

structure by debt raising. However, the firm cannot increase debt straightaway but

needs to search for credit suppliers, that is we introduce liquidity risk in the manager’s
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optimization problem. We model the related matching times via a Poisson process.

Mathematically, we formulated the problem as a combined singular and optimal con-

trol problem. The related Hamilton Jacobi Bellman system is a variational partial

integro-differential equation.

Our main contribution is to give an analytical solution to the firm optimal policy

in presence of external financing frictions, in other words the hypothesis of perfect

elastic credit supply is relaxed, but in a weak sense, since the inelasticity will not be

money but only time consuming. For instance, Graham and Harvey [62] found little

evidence that managers are concerned about transaction costs.

We enrich our analysis including a business cycle into the evolution of cash flows.

The uncertainty conveyed by the business cycle to the cash flow has an evident impact

on the cash holding and, combined with credit frictions, could explain the increasing

size of cash ratio of firms. The credit crisis of 2008 gives an illustration, Campello

et al. [32] found that the inability to borrow externally caused many firms to bypass

attractive investment opportunities. Therefore, the analysis of this part will focus on

the strategic risk faced by the company’s decision maker, that is the source of loss

that may arise from an unsuccessful business plan, e.g. dividend payments, wrong

timing of investment activities, inadequate resource allocation, or from a failure to

respond well to changes in the business environment. Another analysis about the

impact of credit constraints on the behavior of real firms is proposed by Duchin et

al [51] finding that corporate investment declines significantly following the onset of

the crisis. Consistent with a causal effect of a supply shock, the decline is greater for

firms that have low cash reserves.

The firm, we consider, in this part of the thesis, must decide when it is optimal to

pay dividends and debt modifications with business cycle uncertainty and credit sup-

ply frictions. We consider in particular search frictions in a similar way as Hugonnier

et al. [67, 68], see also Villeneuve and Warin [116]. We first show that the value

function is finite if and only if the discount factor is larger than an explicit threshold

different to the average value of the growth rates. We characterize the optimal pol-

icy and the value function in term of the unique viscosity solution to the associated

system of quasi-variational integro partial differential inequalities. Then, assuming

that the debt interest rate does not depend on the debt level, we show that the value

function can be written using the firm debt as unit of account reducing the dimension

to a one-dimensional problem. The auxiliary value function can be characterized via a

system of variational inequality. We study numerically the sensitivity of the auxiliary

value function.
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Our main result, in financial point of view, is to reconcile the seminal model of

Jeanblanc and Shiryaev [71] with Modigliani and Miller [92] cash irrelevance. As a

matter of fact, our comparative statics highlight that the optimal dividend threshold

decreases as the frequency of external financing opportunities arrival. When the

intensity is zero, our model could be seen as a Merton version of Jeanblanc and

Shiryaev one. When the intensity grows to infinity, the optimal threshold falls to the

level such that the equity is negligible with respect to the debt. This result could in

particular explain the increase of cash ratios pointed by Bates et al. [14] linking it

with the credit crunch.

The remainder of this part is organized as follows. We define the model describing

the decision variables in the first chapter. Section 2 is devoted to the characteriza-

tion of the solution of the problem in terms of the unique viscosity solution to the

associated HJB system and to obtain some qualitative results about this solution.

In Section 4 an approximation scheme of the HJB is provided through a Picard’s

type procedure. Chapter 2 presents the dimension reduction result showing that

the value function could be deduced using an auxiliary value function, solution of

a one-dimensional HJB, and discusses empirical predictions of the markets and the

comparative statics.

8



Chapter 1

The model

We consider an economy with risk neutral agents that discount the cash flow at a

fixed rate ρ > 0. The uncertainty is described by a filtered complete probability space

(Ω,F , {Ft}t≥0,P), with right-continuous filtration. An admissible control strategy

will be α =
(
Zt, {πk}k∈N

)
, where Z is a non-decreasing càdlàg process representing

the dividend policy, and {πk} is {0, 1}-valued, where its values 0 and 1 correspond

respectively to the rejection or the acceptance of the k-th investment or withdraw

event and it is measurable with respect to the filtration at the arrival time. Moreover

we consider admissible strategies avoiding the asset value going below the debt value.

1.1 Model formulation

We consider a firm which has assets denoted by {Xt}t∈R+ . This assets are assumed

cash equivalent. We assume that the firm is conditioned by a business cycle, that is

the drift of cash flows depends on an external random source. We consider that the

business cycle is driven by a continuous time homogeneous Markov chain {Mt}t∈R+

with state space S = {0, 1}: the expansion period in which the economy faces growth

and increased production and the contraction period characterized by slowed growth.

When the contraction reaches the trough, the economy starts the recovery and a

new cycle begins. Historically, form the economical perspective on this topic and

considering short business cycles of about 3-5 years it is worth noting the Kitching

business cycle, see e.g., [73], or, see e.g., [105], for an argument concerning general

length periods of the economic waves and more updated on the present financial

situation. The related transition matrix Λ = (Λh,k)h,k=0,1, where Λi,1−i is the intensity

of transition form state i to state 1−i. Namely the economic phase at time t, denoted

by Mt, is the current state of the Markov chain: assumed to be continuous time
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homogeneous, and generated by its transition matrix Λ = (Λh,k)h,k=0,1, where Λh,k is

the constant intensity of transition form state h to state k.

lim
∆t→0

P(Mt+∆t = k |Mt = h, {Ms}0≤s<t)

∆t
= Λk,h , (1.1.1)

while for h ∈ {0, 1}, Λh,h = −Λh,1−h; this implies that the lifetime of each state is

exponentially distributed with parameter Λh,h. Denote by j ∈ {0, 1} the starting

value for M , and by τn the time of the n-th switch in the business cycle, hence

Mτn = 1+(−1)n+j−1

2
for each n ∈ N+, i.e. for odd n, thenMτn = j, otherwiseMτn = 1−j.

The firm assets generates a continuous stream of cash flow satisfying a Black

Scholes model

dXt = bMt Xt dt+ σXt dWt .

The Asset-Liability Model is referred to the balance sheet theory, where in particular,

as defined by the Accounting Standard Board, by asset we mean a resource controlled

by the enterprise as a result of past events and from which future economic benefits

are expected to flow in the enterprise, and on the other hand the liabilities are the

future sacrifices of economic benefits that the enterprise is presently obliged to make

to other entities as a result of past transactions or past events. In other words, poor

business decisions made by the manager of the company can lead to losses, both

realized losses and losses of future possible profits. That is the company has to take

into account the strategic risk, a leading factor in modern risk management.

Since assets are assumed cash equivalent, we consider that current liabilities are

negligible. Long liabilities value, hereinafter debt, is denoted by {Yt}t∈R+ and then

shareholders’ equity worth {Xt− Yt}t∈R+ . In order to simplify the model, we assume

that debt is not going to expire, instead the firm has to pay interests continuously.

Unlike assets, credit markets exhibit frictions, which implies that the firm manager

needs to look for credit providers. We assume that this search is time consuming

but there is no issuance or cancellation costs for debt changes. The firm meets a

credit supplier at the random arrival times of a Poisson process N with intensity

rate λ > 0. The sequence of random times will be denoted by {θi}i∈N. However,

credit suppliers have finite financial resources, we suppose that the firm manager can

choose to accept or refuse the proposal of the credit supplier. We consider that the

size of the proposed debt is proportional to the actual level of the debt. We justify

this choice in a reputation acquisition point of view, see Diamond [48]. A possible

interpretation of our assumption is that the previous debt could be used by credit

suppliers as a measure of the reliability of the firm. Moreover, we assume that credit
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suppliers can also propose to withdraw a part of the debt previously provided and we

furthermore assume that firm’s manager can accept or refuse bearing in mind that

the credit suppliers and the manager herself have signed an agreement for a perennial

debt and then a new agreement is needed. We also suppose that the credit supplier

has finite financial resources then she proposes a size, denoted by {ζi}i∈N taking value

on (−1,∞)\{0}, where a positive (resp. negative) ζ constitutes a incremental (resp.

withdraw) offer. The firm’s acceptance/refusal is described by the sequence {πi}i∈N.

With these definition the evolution of the debt reads

Yt = y
∞∏
k=1

(1 + ζk πk 1θk≤t) , for t ≥ 0 , (1.1.2)

assuming the initial value Y0 = y > 0.

The firm is liquidate when the equity value reaches zero and then the manager

refunds the debt holders in advance. We then denote by Tα, or simply T when no

ambiguity occurs, the bankruptcy time

Tα = inf
{
t ≥ 0 : X

(j,x,y,α)
t ≤ Y

(j,x,y,α)
t

}
, (1.1.3)

i.e. we assume that the firm faces bankruptcy whenever its asset value goes beyond

its liabilities, the so called balance sheet insolvency.

We assume that the interest rate r is a non-decreasing bounded function of the

debt level y. The repayment of the debt in advance is contrary to the initial agreement

of perennial loan and then it affects the reliability of the manager. Then we add a

penalty for the firm manager at bankruptcy proportional to the level of the debt, in a

similar way of Eaton and Gersovitz [54]. This penalty P is non negative and it could

be included the case of a loss given default rate. We will see the implication of no

penalty in the last section of the next chapter assuming a constant interest rate, the

two hypotheses can be seen as a limit of no credit risk.

The firm’s asset dynamics, denoted by a process X, is then governed by the

following stochastic differential equation (SDE):

dXt = (bMt Xt − r(Yt)Yt) dt+ σXt dWt − dZt + dYt , ∀t ≥ 0, (1.1.4)

with X0 = x. By convention we set the ordering b0 < b1, where b0 represents the drift

of the firm’s asset value in the contraction period and b1 its drift in the expansion

period.
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The maximization problem has the following value function

vj(x, y) = sup
α∈A

E(j,x,y)

[∫ T−

0

e−ρ t dZt − P YT e−ρ T
]
, (x, y) ∈ D, M0 = j , (1.1.5)

where the subscript of v corresponds to the starting economic phase, ρ is the discount

rate, the domain D := {(x, y)|0 < y < x}, and A is the set of admissible control

strategies

A := {α = (Zt, {πk}k∈N+) : 0 < Y α
t < Xα

t , ∀ t > 0} ,

i.e. an admissible strategy is adapted to the filtration and it avoids the enterprise to

pay dividends that exceed the debt value.

1.2 Dynamic Programming Principle and related

HJB equation

Let us introduce the auxiliary process S
(j,x,y)
t solution to

dSt = bj St dt+ σ St dWt − r(y) y dt, for t ∈ R+, (1.2.1)

with S0 = x and j ∈ {0, 1}, where the first two terms of the right-hand side represent

the asset value generation, and the last term the initial liability cost.

We may now assume the following Dynamic Programming Principle: for every

stopping time η and every (x, y) ∈ D, we have

vj(x, y) = sup
α∈A

E(j,x,y)

[∫ T−∧η

0

e−ρ t dZt + e−ρ (T−∧η)v
M
T−∧η

(XT−∧η, YT−∧η)

]
, (1.2.2)

by using the dynamic programming principle we obtain the system of variational

inequalities satisfied by the value functions: min
{
ρ vj(x, y)− Ljvj(x, y)− J vj(x, y)− Gjvj(x, y) ;

∂vj(x,y)

∂x
− 1
}

= 0 ,

vj(y, y) = −P y ,
(1.2.3)

for (x, y) ∈ D and j ∈ {0, 1}, where we have the following operators

Ljvj(x, y) =
(
bj x− r(y) y

) ∂vj
∂x

(x, y) +
1

2
σ2 x2 ∂

2vj
∂x2

(x, y) ,

Gjvj(x, y) = Λj,1−j
(
v1−j(x, y)− vj(x, y)

)
,

12



J vj(x, y) = λ

∫ ∞
−1

(
vj(x+ y ζ, y (ζ + 1))− vj(x, y)

)
+
ν(dζ) .

1.3 Properties of value function and viscosity char-

acterization

In this section, we deal with the characterization of the value function via viscosity

theory. We start by showing some basic properties of value function and a necessary

condition (1.3.9) for the discount rate to avoid divergence in the value function.

Condition (1.3.9) is not standard since it depends on both the growth rates bj and

the regime switching rates Λj,1−j in a non linear way. Then we prove a comparison

principle guaranteeing a sufficient condition for being a supersolution to the original

HJB equation (1.2.3). Moreover we show that the value functions satisfy a linear

growth condition under the same condition (1.3.9) that is then also sufficient and

that they are continuous on their whole domain. Finally, the main result of this

section is Theorem 1.3.6, where we prove that the value functions are indeed the

unique viscosity solution to HJB (1.2.3).

1.3.1 Basic properties

Lemma 1.3.1 The value function is

• increasing with respect to x;

• decreasing with respect to y and

• v0(x, y) ≤ v1(x, y) for all (x, y) ∈ D.

Proof. Assume x1 < x2 and fix 0 < ε < x2 − x1, consider the strategy consisting

in distributing at initial time x2 − x1 as dividends and then follow an ε-optimal

strategy for the initial condition (x1, y). Thanks to the DPP we have vi(x2, y) ≥
x2 − x1 + vi(x1, y)− ε > vi(x1, y).

Assume y1 < y2 and consider ε small enough, let αε be an ε-optimal strategy for the

initial condition (x, y2), we will denote by Tα2 the related bankruptcy time. If Tα2 = 0

then we just consider the liquidation strategy also for the initial condition (x, y1) and,

supposing ε < y2 − y1, we obtain easily vi(x, y1) ≥ y2 − y1 + vi(x, y2)− ε > vi(x, y2).

Otherwise, we consider the initial condition (x, y1) and a strategy αε that consists in

following the strategy αε adding the continuous rate of dividend r(y2) y2 − r(y1) y1

13



up to Tα2 . It is easy to remark that this strategy is admissible and that the related

bankruptcy time Tα1 is larger than Tα2 , thanks to the DPP we have

vi(x, y1) ≥ [r(y2) y2 − r(y1) y1] E [Tα2 ] + vi(x, y2)− ε

since the expectation of Tα2 is strictly positive and that the previous inequality is true

for any positive ε we obtain vi(x, y1) > vi(x, y2).

Finally fix the same initial condition (x, y) with two regimes and consider ε small

enough, let αε be an ε-optimal strategy for the regime 0, we will denote by Tα0 the

related bankruptcy time. If Tα0 = 0 the result is evident, we then consider Tα0 > 0.

We introduce τ := Tα0 ∧τ
(0)
1 ∧τ

(1)
1 , where τ

(i)
1 denotes the first transition time between

regime i to 1 − i. We consider now the regime 1 and a strategy αε that is to follow

the strategy αε adding the continuous rate of dividend (b1− b0)Xt up to τ . It is easy

to check that the strategy is admissible and that the related bankruptcy time Tα1 is

not smaller than τ and, a fortiori, than τ ∧ θ1. Thanks to the DPP we have

v1(x, y) ≥ E
[∫ τ∧θ1

0

(b1 − b0)Xt dt

]
+ v0(x, y2)− ε

≥ (b1 − b0) y E [τ ∧ θ1] + v0(x, y2)− ε

since the expectation of Tα2 is strictly positive and that the previous inequality is true

for any positive ε, we obtain v1(x, y) ∧ v0(x, y). �

1.3.2 Necessary condition for non-divergent value functions

Lemma 1.3.2 Let ρ < max{b1−Λ1,0, b0−Λ0,1} then vj(x, y) diverges to infinity for

all (x, y) ∈ D.

Proof. We first consider the case b1−Λ1,0 > b0−Λ0,1 and ρ < b1−Λ1,0. We consider

as starting regime 1, let τ 1
1 the first switching time from regime 1 to 0. We introduce

a restriction A on the class of admissible strategies A, such that for all θi ≤ τ 1
1 , πi = 0

and Zτ11 = Xj,x,y

τ11
− y. That means that the class A is such that the manager refuses

all investment/disinvestment opportunities and she returns all the cash to investors

at time τ 1
1 liquidating the firm. We can define the value function u1(x, y) associated

14



to this problem via the definition (1.1.5) restricted to A. The associated HJB is

min

{
(ρ+ Λ1,0)u1(x, y)−(b1x−r(y)y)

∂u1

∂x
(x, y)−1

2
σ2x2∂

2u1

∂x2
(x, y)−Λ1,0(x−y−Py),

∂u1

∂x
− 1

}
= 0

with the condition u1(y, y) = −Py. This HJB is the same of an optimal dividend

payment over infinite horizon with discount rate ρ+Λ1,0 smaller than the growth rate

b by hypothesis. It is well-known that the associated value function u1(x, y) equals

infinity for all x > y. Since A ⊂ A we have that v1(x, y) ≥ u1(x, y) and then v1(x, y)

equals infinity for all x > y.

We now consider the regime 0, applying the dynamic programming principle

(7.3.1) choosing η = τ 0
1 that is the first regime switching time from regime 0 to

1, we have

v0(x, y) = sup
α∈A

E(0,x,y)

[∫ T−∧τ01

0

e−ρ t dZt + e−ρ T
−
v0(XT− , YT−)1T−≤τ01

+ e−ρ τ
0
1 v1(Xτ01

, Yτ01 )1T−>τ01

]
.

Since the last term is infinite by the previous analysis and that the indicator is not

always zero, we have v0(x, y) diverges to infinity for all x > y.

A symmetric argument gives the result if b1 − Λ1,0 < b0 − Λ0,1 and ρ < b0 − Λ0,1.

�

Proposition 1.3.1 Let

b̃ :=

(
b0

Λ0,1

+
b1

Λ1,0

) (
1

Λ0,1

+
1

Λ1,0

)−1

=
Λ1,0 b0 + Λ0,1 b1

Λ1,0 + Λ0,1

and assume ρ < b̃, then vj(x, y) diverges to infinity (x, y) ∈ D, j ∈ {0, 1}.

Proof. Let ρ < b̃. We now fix ε > 0 such that ρ < b̃ − ε. Consider the following

sequence of admissible strategies with

Z
(k)
t =

0 if t < tk

Xt−k
− y if t = tk

, πi = 0, ∀i

k ∈ N+, where {tk}k≥1 is strictly non-decreasing and tends to infinity when k tends

15



to infinity, i.e. the strategy αk = (Z
(k)
t , 0) consists in rejecting every opportunity

and waiting up to tk to pay everything in dividends, hence for each strategy αk the

bankruptcy time is T = tk. The corresponding asset process X(j,x,y,αk), denoted by

X(k), satisfies the SDE

dX
(k)
t = X

(k)
t

(
bMt dt+ σ dWt

)
− r(y) y dt , for 0 < t < tk , (1.3.1)

X
(k)
0 = x. Let Ct :=

∫ t
0
bMs ds + σWt, and Ht := x − r(y) y t, using [103, Thm. 52

Sec. 9 Ch. V], we may rewrite (1.3.5) as

dX
(k)
t = X

(k)
t dCt + dHt , for 0 < t < tk ,

and, defining the Doléans-Dade exponential E(C)t = exp{
∫ t

0
bMs ds + σWt − 1

2
σ2 t},

by [103] we have the following expression for X
(k)
t for 0 < t < tk

X
(k)
t = E(C)t

(
x−

∫ t

0

r(y) y

E(C)s
ds

)
= xUt exp

(∫ t

0

bMs ds

)
− r(y) y

∫ t

0

Ut
Us

exp

(∫ t

s

bMu du

)
ds ,

with Ut = exp(σWt − 1
2
σ2 t). Therefore, taking the expectation, by Fubini theorem

and the independence of exp(
∫ t

0
bMs ds) and Ut, we have

E
[
X

(k)
t

]
= xE

[
exp

(∫ t

0

bMs ds

)]
− r(y) y

∫ t

0

E
[
exp

(∫ t

s

bMu du

)]
ds . (1.3.2)

By denoting Φ(s, t) := E[exp(
∫ t
s
bMudu)] for every 0 ≤ s ≤ t, and discounting the

expectation in (1.3.6), we get the following expression

E
[
e−ρ tX

(k)
t

]
= e−ρ t Φ(0, t)

(
x− r(y) y

∫ t

0

Φ(s, t)

Φ(0, t)
ds

)
, for 0 < t < tk , (1.3.3)

We first compute

e−ρ t Φ(0, t) = e−ρ t E
[
exp

(∫ t

0

bMudu

)]
≥ e−ρ t exp

(
E
[∫ t

0

bMudu

])
≥ e−(ρ−b̃) t exp

(
E
[∫ t

0

(
bMu − b̃

)
du

])

16



≥ exp

((
ε+

1

t
E
[∫ t

0

(
bMu − b̃

)
du

])
t

)
,

since 1
t
E
[∫ t

0

(
bMu − b̃

)
du
]

tends to zero when t tends to infinity, we have that

e−ρ t Φ(0, t) tends to infinity when t tends to infinity.

We now consider the second term in (1.3.3). Let x(y) := r(y) y limt→∞
∫ t

0
Φ(s,t)
Φ(0,t)

ds,

which is bounded from above

x(y) ≤ lim
t→∞

∫ t

0

E[exp(−b0 s)] ds = r(y) y lim
t→∞

1

b0

(
1− e−b0 t

)
=
r(y) y

b0

,

by simply noticing that Φ(0, t) ≥ Φ(s, t) eb0 s.

So we distinguish two cases:

• x ≥ x(y) + ε, then the admissible strategy αk gives a lower bound to the value

function which tends to infinity when k → ∞. Then, we have shown that the

value function vj(x, y) is infinite for all x ≥ x(y) + ε and j = 0, 1.

• y < x < x(y) + ε, and introduce η := inft{Xt ≥ x(y) + ε}, using the dynamic

programming principle we may obtain that

vj(x, y) ≥ E
[
e−ρ η v

Mη
(Xη, y)1η<T − P e−ρ T 1η≥T

]
≥ E

[
e−ρ η 1η<T

]
v0(x(y) + ε, y)− P .

Since it is well known that the expected value E [e−ρη1η<T ] is strictly positive,

we have that the value function vj(x, y) equals infinity thanks to the first case.

�

We can now state a more general result about the constraint on the discount rate.

Proposition 1.3.2 Let ρ > max{b1−Λ1,0, b0−Λ0,1} and assume that ρ is such that

(ρ+ Λ1,0 − b1) (ρ+ Λ0,1 − b0) < Λ1,0Λ0,1 , (1.3.4)

then vj(x, y) equals infinity for every (x, y) ∈ D.

Proof. Consider the following sequence αk of admissible strategies with {πi = 0}i∈N
and

Z
(k)
t =

0 if t < τ2k

Xτ−2k
− y if t = τ2k
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Hence for each strategy αk the bankruptcy time is T = τ2k. The corresponding asset

process X(j,x,y,αk), denoted by X(k), satisfies the SDE

dX
(k)
t = X

(k)
t

(
bMt dt+ σ dWt

)
− r(y) y dt , X

(k)
0 = x . (1.3.5)

Let Ct :=
∫ t

0
bMs ds + σWt, and Ht := x− r(y) y t, using Protter[103, Thm. 52 Sec. 9

Ch. V], we may rewrite (1.3.5) as

dX
(k)
t = X

(k)
t dCt + dHt , for 0 < t < tk ,

and, defining the Doléans-Dade exponential E(C)t = exp{
∫ t

0
bMs ds + σWt − 1

2
σ2 t}.

By the method of “variation of constants”, see for instance Section V.9 in [103], we

have the following expression for X
(k)
t for 0 < t < τ2k

X
(k)
t = E(C)t

(
x−

∫ t

0

r(y) y

E(C)s
ds

)
= xRt exp

(∫ t

0

bMs
ds

)
− r y

∫ t

0

Rt
Rs

exp

(∫ t

s

bMu
du

)
ds ,

with Rt = exp(σWt − 1
2
σ2 t). Therefore, taking the expectation, by Fubini theorem

and the independence of exp(
∫ t

0
bMs ds) and Rt, we have

E
[
e−ρ tX

(k)
t

]
= xE

[
exp

(
−
∫ t

0

(ρ− bMs
) ds

)]
− r(y) y e−ρ t

∫ t

0

E
[
exp

(∫ t

s

bMu
du

)]
ds

= E
[
exp

(
−
∫ t

0

(ρ− bMs
) ds

)]{
x− r(y) y

∫ t

0

E
[
exp

(
−
∫ s

0

bMu
du

)]
ds

}
.

(1.3.6)

We focus on t = τ2k and we consider the first term in (1.3.6), we have

E
[
exp

(
−
∫ τ2k

0

(ρ− bMs) ds

)]
(1.3.7)

= E

[
exp

{
−

k∑
j=1

(∫ τ2j−1

τ2j−2

(ρ− bMs) ds+

∫ τ2j

τ2j−1

(ρ− bMs) ds

)}]

=
k∏
j=1

E
[
e−(τ2j−1−τ2j−2)(ρ−b0)−(τ2j−τ2j−1)(ρ−b1)

]
=

(
Λ0,1

ρ+ Λ0,1 − b0

Λ1,0

ρ+ Λ1,0 − b1

)k
. (1.3.8)

Thanks to (1.3.4), the first term in (1.3.6) tends to infinity when k goes to infinity.
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We now consider the second term in (1.3.6). Let ’s define

x(y) := r(y) y lim
k→∞

∫ τ2k

0

E
[
exp

(
−
∫ s

0

bMu du

)]
ds ,

which is bounded from above

x(y) ≤ lim
k→∞

∫ τ2k

0

E[exp(−b0 s)] ds = r(y) y lim
k→∞

1

b0

(
1− e−b0 τ2k

)
=
r(y) y

b0

.

So we distinguish two cases:

• x ≥ x(y) + ε, then the admissible strategy αk gives a lower bound to the value

function which diverges to infinity when k → ∞. Then, we have shown that

the value function vj(x, y) is infinite for all x ≥ x(y) + ε and j = 0, 1.

• y < x < x(y) + ε, and introduce η := inf{t |Xt ≥ x(y) + ε}, using the dynamic

programming principle we may obtain that

vj(x, y) ≥ E
[
e−ρ η v

Mη
(Xη, y)1η<T − P y e−ρT 1η≥T

]
≥ E

[
e−ρ η 1η<T

]
v0 (x(y) + ε, y)− P y .

Since it is well known that the expected value E [e−ρη1η<T ] is strictly positive,

we have that the value function vj(x, y) equals infinity thanks to the first case.

�

To avoid the value function to be infinite, from now on we will assume that the

discount rate satisfies ρ > max{b1 − Λ1,0, b0 − Λ0,1} and

(ρ+ Λ1,0 − b1) (ρ+ Λ0,1 − b0) ≥ Λ1,0 Λ0,1 . (1.3.9)

We remark that this condition is more restrictive to the usual one defined by Propo-

sition 1.3.2. Moreover, as shown in Proposition 1.3.1, the discount rate ρ has to be

larger than the long run mean value of the drift b̃ :=
(

b0
Λ0,1

+ b1
Λ1,0

) (
1

Λ0,1
+ 1

Λ1,0

)−1

=
Λ1,0b0+Λ0,1b1

Λ1,0+Λ0,1
. A direct computation shows that condition (1.3.9) is more restrictive

than ρ > b̃. Condition ρ > b̃ could be seen as a linear constraint with respect to the

growth rate, whereas condition (1.3.9) could be read as a geometric, and then non-

linear, condition between growth and discounting in the spirit of relation (1.3.8). Our

next objective is to show that this condition is not only necessary but also sufficient

to have that the value function is finite. For that, we need some intermediate results.
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1.3.3 Comparison principle and supersolution

Proposition 1.3.3 Let {ϕj}j∈{0,1} ∈ C2,0(D) be such that ϕj(y
+, y) := limx↓y ϕj(x, y) ≥

−Py, ϕj(x, y) = −Py for x < y, and

min
{
ρϕj − Ljϕj − Jϕj − Gjϕj ;

∂ϕj(x, y)

∂x
− 1
}
≥ 0 , (1.3.10)

then ϕ, classical supersolution for the HJB equation (1.2.3), dominates the value

function, that is ϕj ≥ vj for all j ∈ {0, 1} and all (x, y) ∈ D.

Proof. Fix (x, y) and j ∈ {0, 1}, and consider the admissible strategy α =(
Z, {πk}k∈N

)
∈ A. Let m > 0, k ∈ N0, we consider the time t such that

T ∧ θk ≤ t < t̃m,k := T ∧ θk+1 ∧ κm ,

where κm := inf{t ≥ T ∧ θk : X
(j,x,y,α)
t ≥ m or X

(j,x,y,α)
t ≤ Y

(j,x,y,α)
t + 1

m
}. Hence

define ϕ := [ϕ0, ϕ1]T , and apply Itô formula to e−ρ tϕ(Xt, Yt) we have

e−ρ t̃m,k ϕ(Xt̃−m,k
, Yt̃−m,k

) =e−ρ (T∧θk) ϕ(XT∧θk , YT∧θk)

+

∫ t̃m,k

T∧θk
e−ρ t (−ρϕ + Lϕ + Jϕ)(Xt, Yt) dt

+

∫ t̃m,k

T∧θk
e−ρtσXt

∂ϕ

∂x
(Xt, Yt)dWt −

∫ t̃m,k

T∧θk
e−ρt

∂ϕ

∂x
(Xt, Yt)dZ

c
t

+
∑

T∧θk<t<t̃m,k

e−ρ t
(
ϕ(Xt, Yt)−ϕ(Xt− , Yt−)

)

+

∫
t̃m,k

T∧θk

e−ρ t J2 ϕ(Xt, Yt) dMt −
∫ t̃m,k

T∧θk
e−ρ t Jϕ(Xt, Yt) dt ,

(1.3.11)

where L := diag(L0,L1), J2 := [0, 1; 1, 0] is the 2-dimensional exchanging matrix,

the fourth term results from the dividends continuously distributed, i.e. Zc is the

continuous part of Z. The fifth term arises from possible jumps in Xt due to the

dividend distribution, i.e. ∆Z. We remark the fact that the martingale associated to

the fore-last term in equation (1.3.11) reads as∫
J2 ϕ(Xt, Yt) dMt − Λϕ(Xt, Yt) dt, where Λ =

[
−Λ0,1 Λ0,1

Λ1,0 −Λ1,0

]
. (1.3.12)
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We remark that the debt process Yt is constant and equal to YT∧θk over the interval

[T ∧ θk, t̃m,k).
By the Lagrange theorem, and since ∂ϕj/∂x ≥ 1 by (7.4.1), we obtain the value

of the jump ϕj(Xt, YT∧θk)−ϕj(Xt− , YT∧θk) ≤ Xt−Xt− = −(Zt−Zt−). Then we take

the expectation, noticing that again by (7.4.1), we have ρϕ− Lϕ− Λϕ− Jϕ ≥ 0,

where we have also considered the compensator found in (1.3.12), to eventually get

E
[
e−ρ t̃m,k ϕ(Xt̃−m,k

, YT∧θk)
]
≤

E
[
e−ρ (T∧θk) ϕ(XT∧θk , YT∧θk)

]
− E

[∫ t̃m,k

T∧θk
e−ρ t dZc

t

]
− E

[ ∑
T∧θk<t<t̃m,k

e−ρ t (Zt − Zt−)

]
− E

[∫ t̃m,k

T∧θk
e−ρ t Jϕ(Xt, YT∧θk) dt

]
,

where, by the localization of the process, the Brownian part disappears since it is

a true martingale, and the same happens with the martingale in (1.3.12). Putting

together Zc with the jump part

E
[
e−ρ (T∧θk) ϕ(XT∧θk , YT∧θk)

]
≥

E
[∫ t̃m,k

T∧θk
e−ρ t dZt +

∫ t̃m,k

T∧θk
e−ρ t Jϕ(Xt, YT∧θk) dt+ e−ρ t̃m,k ϕ(Xt̃−m,k

, YT∧θk)

]
.

Since Jϕ(Xt, YT∧θk) ≥ 0 and
∫ t̃−m,k
T∧θk e

−ρ t dZt + e−ρ t̃m,k ϕj(Xt̃−m,k
, YT∧θk) ≥ −P YT∧θk ,

i.e. the argument of the RHS is bounded from below, we take the limit for m→ +∞
and by Fatou’s lemma we obtain

E
[
e−ρ (T∧θk) ϕ(XT∧θk , YT∧θk)

]
≥E
[∫ T∧θk+1

T∧θk
e−ρ t dZt +

∫ (T∧θk+1)−

T∧θk
e−ρ t Jϕ(Xt, YT∧θk) dt

+ e−ρ (T∧θk+1) ϕ(X(T∧θk+1)− , YT∧θk)

]
. (1.3.13)

Then we have

E
[
e−ρ (T∧θk) ϕ(XT∧θk , YT∧θk)

]
≥ E

[∫ T∧θk+1

T∧θk
e−ρ t dZt+e

−ρ (T∧θk+1) ϕ(XT∧θk+1
, YT∧θk+1

)

]
,

since, considering the upper boundary in the integration interval in (1.3.13), θk+1∧T ,

it suffices to check the cases in which the debt offer arrival happens first, and the case

in which the default event happens first. Consider first the case {θk+1 < T}, and we
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obtain that the expectation of the last two terms in (1.3.13) satisfy the inequality

E
[∫ θ−k+1

θk

e−ρ t Jϕ(Xt, Yθk) dt+ e−ρ θk+1 ϕ(Xθ−k+1
, Yθk)

]
= E

[
e−ρ θk+1 ϕ(Xθk+1

, Yθk+1
)
]
,

(1.3.14)

by the fact that
∫ t

0
e−ρ s Jϕ(Xs, Ys) ds is the compensator of the càdlàg pure jump

process∑Nt
k=0 e

−ρ θk
(
ϕ(Xθk , Yθk)−ϕ(Xθ−k

, Yθk)
)
, and therefore their difference is a martingale.

Turning on the case {T ≥ θk+1}, we have ϕj(XT , YT ) = −PYT , since XT ≤ YT , and

hence we obtain a similar inequality as (1.3.14).

Iterating this procedure for all the indexes k such that θk < T we obtain

ϕj(x, y) ≥ E
[∫ T−

0

e−ρ t dZt + e−ρ T ϕj(XT− , YT )

]
.

We remark that, by the finiteness of the intensity of the Poisson process, in finite

intervals we have a finite number of jumps. �

1.3.4 Linear growth condition and continuity

We can now show that condition (1.3.4) is not only necessary but also sufficient to

have that v is finite.

Corollary 1.3.4 Assume (1.3.4), for all (x, y) ∈ D, j ∈ {0, 1}, we have

vj(x, y) ≤ Ej x− Fj y +Gj . (1.3.15)

In particular the value function is finite.

Proof. Assume (1.3.9) is satisfied and let us consider the following functions

ϕ0(x, y) = x− F0 y +G0 ,

ϕ1(x, y) =

{
x− F1 y +G1 if ρ ≥ b1 ,

Λ1,0

ρ−b1+Λ1,0
x− F1 y +G1 if ρ < b1 ,

where (G0, G1) are large enough and the couple (F0, F1) is the unique solution to the

system (ρ+ Λj,1−j)Fj −Λj,1−jF1−j − rEj − λ
∫
R [(Ej − Fj)ζ]+ ν(dζ) = 0, and r is the

upperbound of the interest rate.
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A tedious computation shows that this function is a supersolution. Therefore the

conclusion comes directly by Proposition 1.3.3. �

We are now left with the study of the continuity of the value function.

Proposition 1.3.5 The value functions vj(·, y) are continuous on D and satisfy

vj(y
+, y) := lim

x→y+
vj(x, y) = −P y ,

Proof. a) For what concerns the continuity on the border, consider the auxiliary

process Sj,x,y, see (1.2.1), and define the first hitting time of the lower barrier y, that

is Θj,x,y := inf{t ≥ 0 : Sj,x,yt = y}. Notice that Sj,x,y is dominated by Sj,x,0, i.e. a

geometric Brownian motion, and define its hitting time on y as Θj,x,0 := inf{t ≥ 0 :

Sj,x,0t = y}. Moreover, define Θj,x,0 := inf{t ≥ 0 : S
j,x,0

t = y} where S is the auxiliary

process with constant drift b1. Therefore we have the following inequalities

Θj,x,y ≤ Θj,x,0 ≤ Θj,x,0, ∀j ∈ {0, 1}, x ≥ y . (1.3.16)

Fix some γ > 0 such that y < x < y+γ and denote Θ
γ

j,x,y = inf{t ≥ 0 : S
j,x,y

t = y+γ},
hence, by Proposition 3.2 in [104, Chapter VII], we have

P
(
Θj,x,0 > Θ

γ

j,x,0

)
=

s(x)− s(y)

s(y + γ)− s(y)
,

with θ1 the time of the first arrival of a investment/divestment offer where s is a scale

function of the process S
j,x,0

.

P
(
Θj,x,0 > Θ

γ

j,x,0

)
→ 0 , for x→ y .

For y+γ we have the previous inequality on the hitting times Θ
γ

j,x,0 ≤ Θγ
j,x,0 ≤ Θγ

j,x,y.

Therefore, combing with (1.3.16) we obtain P(Θj,x,y > Θγ
j,x,y) ≤ P(Θj,x,0 > Θ

γ

j,x,0),

hence

P
(
Θj,x,y > Θγ

j,x,y

)
→ 0, for x→ y . (1.3.17)

Moreover, we have that the first opportunity arrival time is less than the hitting

barrier for S with probability given by

P
(
(θ1 ∧ τ1) < Θj,x,0 < Θ

γ

j,x,0

)
= E

[
1(θ1∧τ1)<Θj,x,0<Θ

γ
j,x,0

]
= E

[
E[1(θ1∧τ1)<Θj,x,0

| FΘj,x,0
]1Θj,x,0<Θ

γ
j,x,0

]
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= E
[(

1− e−λΘj,x,0
) (

1− e−Λ Θj,x,0
)
1Θj,x,0<Θ

γ
j,x,0

]
,

and by equation 2.1.4.(1) in [24, page 622], since the integrand is bounded, we can

take the limit x→ y inside the integral, and the integral tends to zero, therefore

P
(
(θ1 ∧ τ1) < Θj,x,0 < Θ

γ

j,x,0

)
→ 0 , for x→ y . (1.3.18)

Let α = (Z, {πk}k≥1) be an arbitrary policy, and denote η = T j,x,y,α ∧Θ
γ

j,x,y ∧Θj,x,y ∧
θ1 ∧ τ1. Notice that η ≤ Θγ

j,x,y. Taking the limit x→ y, for t ≤ η no offers are arrived

a.s., hence Xj,x,y,α
t ≤ Sj,x,y,αt and also T j,x,y ≤ Θj,x,y, which together with (1.3.18)

implies limx→y η = T j,x,y,α ∧Θ
γ

j,x,y a.s..

Then, considering x approaching y, we have

E
[ ∫ T−

0

e−ρ t dZt

]
= lim

x→y

(
E
[∫ η−

0

e−ρ t dZt

]
+ E

[
1T>η

∫ T−

η

e−ρ t dZt

])
≤ lim

x→y

(
E [Zη− ] + E

[
E
[
1T>η

∫ T−

η

e−ρ t dZt

∣∣∣∣FΘ
γ
j,x,y

]])
≤ lim

x→y

(
E
[
S
j,x,0

η − y
]

+ E
[
1T>Θ

γ
j,x,y

E
[∫ T−

Θ
γ
j,x,y

e−ρ t dZt

∣∣∣∣FΘ
γ
j,x,y

]])
≤ lim

x→y

(
E[S

j,x,0

η − y] + E
[
1T>Θ

γ
j,x,y

e−ρΘ
γ
j,x,y

(
vj

(
X i,x,y

Θ
γ
j,x,y

, Y i,x,y

Θ
γ
j,x,y

)
+ P Y i,x,y

Θ
γ
j,x,y

)])
.

(1.3.19)

Now, since vj is non-decreasing w.r.t. the first component and Yt = y is fixed for

t ≤ Θ
γ

j,x,y and x→ y, since Θ
γ

j,x,y < θ1 a.s., we have vj

(
X i,x,y

Θ
γ
j,x,y

, Y i,x,y

Θ
γ
j,x,y

)
≤ vj(y+γ, y).

Then by (1.3.17) and (1.3.19), we obtain

0 ≤ E
[∫ T−

0

e−ρ t dZt

]
≤ lim

x→y

(
E

[
sup

0≤t≤Θ
γ
j,x,y

S
j,x,0

t − y

]
+
(
vj(y + γ, y) + P y

)
P
(
Θj,x,y > Θ

γ

j,x,y

))
= 0 .

So, by the properties of hitting times of geometric Brownian motion,

E
[
−P YT e−ρ T

]
≤ −P E

[
YΘj,x,0

e−ρΘj,x,0
]
→ −P y,
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and we obtain

−P y ≤ vj(x, y) ≤ sup
α∈A

E

[∫ T−

0
e−ρ t dZt − P YT e−ρ T

]

≤ lim
x→y

(
E

[
sup

0≤t≤Θ
γ

j,x,y

S
j,x,0
t − y

]
+
(
vj(y + γ, y) + P y

)
P
(

Θj,x,y > Θj,x,y

)
− P E

[
YΘj,x,0

e−ρΘj,x,0

])
= −P y ,

and finally we proved vj(y
+, y) = −P y.

b) Now we prove the continuity of the value function vj(·, y) w.r.t to the first

component on (y,+∞). Consider the auxiliary process S solution to (1.2.1), and

define T α̂,γ as the hitting time of the point x+ γ for S, i.e.

Tα,γ := inf{t ≥ 0 : S
(j,x,y,α)
t ≥ x+ γ} .

This time depends on the chosen strategy. Therefore consider α̂ the admissible strat-

egy in which dividends are not paid, and new debt facilities offers are not accepted,

i.e. X
(j,x,y,α̂)
t = S

(j,x,y,α̂)
t and Y

(j,x,y,α̂)
t = y up to τ1. Since this strategy is not said to

be the optimal, by the dynamic programming principle, we have

vj(x, y) ≥ E
[
e−ρ (T α̂∧T α̂,γ∧τ1) vj

(
XT α̂∧T α̂,γ∧τ1 , YT α̂∧T α̂,γ∧τ1

)]
,

where we recall that T α̂ is the bankruptcy time and comes from (1.1.3). Notice that

the term inside the expectation can be rewritten as

e−ρ T
α̂,γ∧τ1 vj(XT α̂,γ∧τ1 , YT α̂,γ∧τ1)1T α̂,γ∧τ1<T α̂ − P YT α̂ e

−ρ T α̂
1T α̂,γ∧τ1≥T α̂ ,

moreover XT α̂,γ ≥ x+γ. Therefore, since vj is non-decreasing with respect to its first

component we obtain

vj(x+γ, y)− vj(x, y)

≤ E
[(

1− e−ρ T α̂,γ
)
vj(x+ γ, y)1T α̂,γ<T α̂∧τ1 + vj(x+ γ, y)1T α̂,γ∧τ1≥T α̂

]
+ E

[
P YT α̂ e

−ρ T α̂
1T α̂,γ∧τ1≥T α̂

]
+ E

[(
vj(x+ γ, y)− e−ρ τ1vj(Xτ1 , y)

)
1τ1≤T α̂,γ∧T α̂

]
≤ vj(x+ γ, y)

(
1− E

[
e−ρ T

α̂,γ
])

+
(
vj(x+ γ, y) + Py

)
P(T α̂,γ ∧ τ1 ≥ T α̂)

+
(
vj(x+ γ, y) + Py

)
P(τ1 ≤ T α̂,γ ∧ T α̂) ,
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where the last term is obtained using vj(x, y) ≥ Py. Now consider a fixed upper

barrier in x+ γ0 and consider another one in x+ γ with γ ≤ γ0, then we have

vj(x+ γ, y)− vj(x, y)

≤ vj(x+ γ0, y)
(

1− E
[
e−ρ (T α̂,γ∧τ1)

])
+ (vj(x+ γ0, y) + Py)P(T α̂ ∧ τ1 ≤ T α̂,γ).

By Proposition 3.2 in [104, Chapter VII, Section 3], and using the same arguments

as for the right continuity on the border, we have

P
(
T α̂,γ ≥ T α̂

)
→ 0, for γ → 0,

P
(
T α̂,γ ≥ τ1

)
→ 0, for γ → 0, and

E
[
e−ρ (T α̂,γ∧τ1)

]
→ 1, for γ → 0.

By the linear growth condition on vj in Corollary 1.3.4, we reach the right-continuity

also in the interior of the domain, letting γ → 0. A similar argument gives the

left-continuity. �

1.3.5 Unique viscosity solution

Theorem 1.3.6 The value functions vj(·, y) are continuous on D and constitute the

unique viscosity solution to the system of variational inequalities:

min

{
ρ vj(x, y)− Ljvj(x, y)− J vj(x, y)− Gjvj(x, y) ;

∂vj(x, y)

∂x
− 1

}
= 0, x > y,

(1.3.20)

with linear growth condition in both x and y given by equation (1.3.15), and the

boundary condition

vj(y
+, y) := lim

x→y+
vj(x, y) = −P y .

The proof is based on the following lemmas.

Lemma 1.3.3 The value function v defined by (1.1.5) is a viscosity supersolution to

the system of variational inequalities (1.2.3).

Proof. Let (x, y) ∈ D and consider a C2-test function (ϕ0, ϕ1) such that ϕj ≤ vj

and vj(x, y) = ϕj(x, y). Assume w.l.o.g. that (x, y) is a minimum for vj − ϕj on the

neighborhood B+
ε (x, y) := {(x, y) ∈ R+ × R+ : |x − x| ≤ ε, |y − y| ≤ ε, x > y} for
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j ∈ {0, 1}. We have to prove that

min
{
ρϕj(x, y)−Ljϕj(x, y)−Jϕj(x, y)−Gjϕj(x, y) ;

∂ϕj(x, y)

∂x
− 1
}
≥ 0 . (1.3.21)

Notice that the manager at each time is allowed to pay everything in dividends,

therefore we have the lower bound ϕj(x, y) = vj(x, y) ≥ x − y − P y. Consider the

admissible strategy in which at time 0 a quantity 0 < δ < (x − y) ∧ ε is paid in

dividends, therefore, by the fact that the value function dominates all strategies, we

have

ϕj(x, y) = vj(x, y) ≥ vj(x− δ, y) + δ ,

by the supersolution condition, we have ϕj(x, y) − ϕj(x − δ, y) ≥ δ. Then dividing

by δ, consider the limit δ → 0, to get that that the left derivative of ϕj with respect

to the first component has to be greater or equal than 1, but since ϕj ∈ C2, the left

derivative is equal to right derivative, hence we obtain

∂ϕj(x, y)

∂x
− 1 ≥ 0 ,

so we have just to prove the inequality for the first member in (1.3.21), i.e.

ρϕj(x, y)− Ljϕj(x, y)− Jϕj(x, y)− Gjϕj(x, y) ≥ 0 .

Now define the exit time

tε = inf{t ≥ 0 : (M j
t , X

x
t , Y

y
t ) /∈ {j} ×B+

ε (x, y)} ,

and consider a general stopping time h > 0, a strategy consisting in no dividend

payment up to time h, and again by the dynamic programming principle we have

ϕj(x, y) = vj(x, y) ≥ E
[
vj(Sh∧tε , y)1h∧tε<θ∧τ∧T

+ max{vj(Sθ + yζ, y(ζ + 1)), vj(Sθ, y)}1θ<h∧tε∧τ∧T
+ v1−j(Sτ , y)1τ<h∧tε∧θ∧T − P y e−ρ T 1T<h∧tε∧τ∧θ

]
≥ E

[
ϕj(Sh∧tε , y)1h∧tε<θ∧τ∧T

+ max{ϕj(Sθ + yζ, y(ζ + 1)), ϕj(Sθ, y)}1θ<h∧tε∧τ∧T
+ ϕ1−j(Sτ , y)1τ<h∧tε∧θ∧T − P y e−ρ T 1T<h∧tε∧τ∧θ

]
,

(1.3.22)
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where θ and τ are the times respectively of first opportunity arrival and the first switch

in the regime and S is the auxiliary process given by (1.2.1). Apply Itô formula to

e−ρ tϕj(St, y) for times t such that

0 ≤ t < γε := tε ∧ h ∧ τ ∧ θ ,

and take the expectation to get

E
[
e−ρ γε ϕj(Sγε , y)

]
= ϕj(x, y) + E

[∫ γε

0

e−ρ t
(
−ρϕj + Ljϕj

)
(St, y) dt

]
,

where we remark that Xγ−ε
= Sγε . Combining with inequality (1.3.22), and noticing

that E[e−ρ t ϕj(Xt, Yt)] ≤ E[ϕj(Xt, Yt)], we obtain

0 ≥ E
[∫ γε

0
e−ρ t

(
−ρϕj + Ljϕj

)
(St, y) dt

]
+E
[
e−ρ θ

(
max

{
ϕj(Sθ + yζ, y(ζ + 1)), ϕj(Sθ, y)

}
− ϕj(Sθ− , y)

)
1θ<γε∧τ

]
+ E

[
e−ρ τ

(
ϕ1−j(Sτ , y)− ϕj(Sτ− , y)

)
1τ<γε∧θ

]
≥ E

[∫ γε

0
e−ρ t

(
−ρϕj + Ljϕj + Jϕj + Gjϕj

)
(St, y) dt

]
. (1.3.23)

By definition of the exit time tε, we see that the integrand part of (1.3.23) is bounded,

take the limit ε → 0, and obtain the supersolution property by the mean value

theorem. �

Lemma 1.3.4 The value function vj defined by (1.1.5), for j ∈ {0, 1}, is a viscosity

subsolution to the system of variational inequalities (1.2.3).

Proof. To prove the subsolution property we proceed by contradiction, i.e. we

assume that there exists a constant ε > 0, a point (j, x, y) ∈ {0, 1} × R+ × R+, with

(x, y) ∈ D, a C2-function ϕj, j ∈ {0.1}, such that (ϕj − vj)(x, y) = 0 and ϕj ≥ vj on

the neighborhood B(x,y)(ε) := {(x, y) ∈ R+×R+ : |x−x| ≤ ε, |y−y| ≤ ε, (x, y) ∈ D}
for j ∈ {0, 1}, and η > 0 such that for all (x, y) ∈ B(x,y)(ε) we have

(
ρϕj − Ljϕj − Jϕj − Gjϕj

)
(x, y) > η , (1.3.24)

∂ϕj(x, y)

∂x
− 1 > η . (1.3.25)

Then consider the exit time from the ball

tε := inf
{
t ≥ 0 : (M j

t , X
x
t , Y

y
t ) 6∈ {j} ×B(x,y)(ε)

}
,
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define the time γε := tε∧θ∧T = tε∧θ, apply Itô formula to e−ρ tϕ(Xt, y) for t ∈ [0, tε),

and take the expectation to get

E
[
e−ρ γεϕ(Xγε , y)

]
=ϕ(x, y) + E

[∫ γε

0
e−ρ t

(
−ρϕ + Lϕ + Λϕ

)
(St, y) dt

−
∫ γε

0
e−ρ t

∂ϕ

∂x
(Xt, y) dZct −

∑
0<t<γε

e−ρ t
(
ϕ(Xt, y)−ϕ(Xt− , y)

)]
,

since ∫
J2 ϕ(Xt, yk) dMt − Λϕ(Xt, yk) dt, where Λ =

[
−Λ0,1 Λ0,1

Λ1,0 −Λ1,0

]
,

is a martingale. From inequality (1.3.24) and (1.3.25) we obtain

ϕ(x, y) ≥ E
[
e−ρ γε ϕ(Xγε , y) +

∫ γε

0
e−ρ t

(
η + Jϕ(Xt, y)

)
dt+

∫ γε

0
(1 + η) e−ρ t dZt

]
≥ E

[
e−ρ γεϕ(Xγε , y) +

∫ γε

0
e−ρ t dZt

]
+ η E

[∫ γε

0
e−ρ t dt +

∫ γε

0
e−ρ t dZt

]
≥ E

[
e−ρ γεv(Xγε , y) +

∫ γε

0
e−ρ t dZt

]
+ η E

[
1− e−ρ (tε∧θ)

ρ
+

∫ γε

0
e−ρ t dZt

]
,

(1.3.26)

coming from the fact that Jϕ(Xs, Ys) is non-negative, and take C as the multiplica-

tion term of η in (1.3.26). We easily deduce that C is strictly positive, since the two

terms can not be both null. By the dynamic programming principle, we obtain

ϕ(x, y) ≥ v(x, y) + η C,

and hence the contradiction. �

The following Lemma is the key to see the uniqueness of the solution, since it

gives a strict super-solution dominating the value function.

Lemma 1.3.5 Let
(
wj(·, y)

)
j∈{0,1} be a continuous viscosity super-solution to the sys-

tem of variational inequalities (1.3.20) on D, and define the following function

hj := A+ Ej(x+ e) log(x+ e) + y log(y + e) , (1.3.27)

with (E0, E1) =
(

1,max
{

1, Λ1,0

ρ+Λ1,0−b1

})
and Aj positive constant large enough.

Then, for all γ ∈ (0, 1), wγj := (1 − γ)wj + γ hj is a strict supersolution to the
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HJB equation (1.2.3), i.e. there exists some δ > 0 such that

min

{
ρwγj − Ljw

γ
j − Jw

γ
j − Gjw

γ
j ;

∂wγj (x, y)

∂x
− 1

}
≥ δ . (1.3.28)

Proof. Let uj and wj continuous viscosity subsolution and supersolution, respec-

tively, to the system of variational inequalities, for j ∈ {0, 1} and with starting

asset and debt value (x, y) ∈ D. Assume that they satisfy the boundary condition

uj(y
+, y) ≤ wj(y

+, y), with the linear growth condition

|uj(x, y)|+ |wj(x, y)| ≤ C1 + C2 x, ∀j ∈ {0, 1},

for some positive constants C1 and C2. We want to prove that in the interior the

same inequality as the boundary condition holds, i.e. uj(x, y) ≤ wj(x, y), for j ∈
{0, 1}, (x, y) ∈ D.

Step 1: Consider the strict supersolution hj to (1.2.3) as in equation (1.3.27), and its

linear combination with the supersolution wj, w
γ
j := (1− γ)wj + γ hj, for j ∈ {0, 1}.

Notice that hj dominates wj.

Starting from the second term in (1.3.28), we have

∂wγj
∂x

= (1− γ)
∂wj
∂x

+ γ
∂hj
∂x
≥ 1 + δ , (1.3.29)

since the first term of the RHS is greater or equal to 1 since wj is supersolution, while

∂hj
∂x

= Ej [1 + log(x+ e)]

is strictly greater than 1, and we have the required inequality for the second term in

(1.3.28). For the first term in (1.3.28), we have

ρ hj − Ljhj − J hj − Gjhj = [Ej(ρ+ Λj,1−j − bj)− Λj,1−jE1−j] x log(x+ e) + o(x) ,

where the dominant term is always non-negative thanks to (1.3.9). By straightforward

calculation, for x ∈ (y,∞), we have

ρ hj − Ljhj − J hj − Gjhj ≥ δ > 0 , (1.3.30)

by taking A large enough. Therefore hj is a supersolution dominating v(x, y) for

|(x, y)| → ∞.

30



Combining (1.3.29) with (1.3.30), for j ∈ {0, 1}, we have inequality (1.3.28).

Step 2: In order to prove the comparison principle, it suffices to show that for all

γ ∈ (0, 1):

max
j∈{0,1}

sup
D

(
uj(x, y)− wγj (x, y)

)
≤ 0 ,

since the required result is obtained by letting γ to 0. We argue by contradiction and

suppose that there exists some γ ∈ (0, 1) and j ∈ {0, 1} such that

ϑ := max
j∈{0,1}

sup
D

(
uj(x, y)− wγj (x, y)

)
= sup

D

(
uj(x, y)− wγ

j
(x, y)

)
> 0 .

Notice that uj(x, y) − wγj (x, y) tends to minus infinity when x tends to infinity. We

also have limx→y+
(
uj(x, y) − wγj (x, y)

)
≤ γ

(
limx→y+ wj(x, y) − hj(y, y)

)
. Hence, by

the continuity of the functions uj and wγj , there exists x0 ∈ (y,∞) such that

ϑ = uj(x0, y)− wγj (x0, y) .

For any ε > 0, we consider the functions

Φε(x, x
′) = uj(x, y)− wγj (x′, y)− φε(x, x′) ,

φε(x, x
′) =

1

4
|x− x0|4 +

1

2ε
|x− x′|2 ,

for all x, x′ ∈ (y,∞). By standard arguments in comparison principle, the function

Φε attains a maximum in (xε, x
′
ε) ∈ (y,∞)2, which converges (up to a subsequence)

to (x0, x0) when ε goes to zero. Moreover,

lim
ε→0

|xε − x′ε|2

ε
= 0 .

Applying Theorem 3.2 in [41], we get the existence of Mε,M
′
ε ∈ R such that:

(pε,Mε) ∈ J2,+uj(xε) ,

(p′ε,M
′
ε) ∈ J2,+wγj (x′ε) ,

and, [
Mε 0

0 −M ′
ε

]
≤ D2φε(xε, x

′
ε) + ε

(
D2φε(xε, x

′
ε)
)2
, (1.3.31)
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where I2 is the 2× 2-identity matrix, and

pε = Dxφε(xε, x
′
ε) =

1

ε
(xε − x′ε) + (xε − x0)3,

p′ε = Dx′φε(xε, x
′
ε) =

1

ε
(xε − x′ε) ,

D2φε(xε, x
′
ε) =

[
3(xε − x0)2 + 1

ε
−1
ε

−1
ε

1
ε

]
.

By writing the viscosity subsolution property of uj and the strict supersolution prop-

erty (1.3.28) of wγj , we have the following inequalities:

min
{
ρ uj(xε, y)− (bj xε − r y)

(1

ε
(xε − x′ε) + (xε − x0)3

)
− 1

2
σ2 x2

ε Mε

− J uj(xε, y)− Gjuj(xε, y) ;
1

ε
(xε − x′ε) + (xε − x0)3 − 1

}
≤ 0 , (1.3.32)

min
{
ρwγj (x′ε, y)− (bj x

′
ε − r y)

1

ε
(xε − x′ε)−

1

2
σ2 x′2ε M

′
ε

− Jwγj (x′ε, y)− Gjwγj (x′ε, y) ;
1

ε
(xε − x′ε)− 1

}
≥ δ . (1.3.33)

We then distinguish the following two cases depending on (1.3.32):

• Case 1: 1
ε

(xε − x′ε) + (xε − x0)3 ≤ 1. Notice that by (1.3.33), we have

1

ε
(xε − x′ε) ≥ 1 + δ ,

which implies

(xε − x0)3 ≤ −δ .

By sending ε to zero, we obtain a contradiction.

• Case 2:

ρ uj(xε, y)− (bj xε − r y)
(1

ε
(xε − x′ε) + (xε − x0)3

)
− 1

2
σ2 x2

ε Mε − J uj(xε, y)− Gjuj(xε, y) ≤ 0 . (1.3.34)

From (1.3.33), we have

ρwγj (x′ε, y)− (bj x
′
ε−r y)

1

ε
(xε−x′ε)−

1

2
σ2 x′2ε M

′
ε−Jw

γ
j (x′ε, y)−Gjwγj (x′ε, y) ≥ δ,

(1.3.35)

Using (1.3.31), we obtain an upper bound for 1
ε

(x2
ε Mε − x′2ε M ′

ε). Combing it
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with (1.3.34)−(1.3.35), yields to an upper bound for ρ
(
uj(xε, y) − wγj (x′ε, y)

)
,

which goes to −δ when we send ε to zero.

Using the continuity of uj and wγj , we obtain the required contradiction ρ ϑ ≤
δ < 0.

�

1.4 Picard iteration scheme

The aim of this section is to provide approximation schemes to the HJB equation

(1.2.3) through a Picard’s type sequence, starting from an exact solution of a sim-

plified problem. Let us start with the definition of the Picard sequence from the

probabilistic point of view, and then move to the HJB sequence which will be proven

to be satisfied by the Picard sequence, see Lemma 1.4.1.

Definition 1.4.1 (Picard iteration) Let N ∈ N and j ∈ {0, 1}, we define the

N -th element of the sequence of Picard iteration {v(N)

j }N∈N as the value function

v(N)

j corresponding to the maximization problem as in Section 1.1, except that the

underlying asset-debt dynamics is getting N arrival-event, where by arrival-event we

mean a switch in the business cycle’s state or an investment/divestment opportunity

arrival, whether it is accepted or not, i.e.

v(N)

j (x, y) = sup
αN∈AN

E

[∫ T−

0

e−ρ t dZt − P YT e−ρ T
]
, x ≥ y ≥ y , (1.4.1)

where AN is the set of admissible strategies for a manager able to accept only the

opportunities among the first N arrival-events, and the dynamics of XαN and Y αN

come fromdXt = (b
M̃

(N)
t

Xt − r(YT )Yt) dt+ σXt dWt − dZt + dYt ∀t ≥ 0

X0 = x

with M̃ (N)

t , Y αN
t coincide with M , Y up to the N -arrival event and constant after-

wards.

The particular case N = 0, i.e. v(0)

j , is the first element of the Picard iteration and its

value function corresponds to the maximization problem for an underlying asset-debt
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structure with no arrival events; in other words, the value function of an optimal

dividend problem for a diffusion model.

Definition 1.4.2 (HJB sequence) We define the sequence of solutions to the HJB

sequence {v(N)

j }N∈N starting at v(0)

j solution of the linear PDE of the second order:

min
{
ρ v(0)

j (x, y)− Ljv(0)

j (x, y) ; ∂xv
(0)

j (x, y)− 1
}

= 0, for (x, y) ∈ D , (1.4.2)

v(0)

j (y, y) = −P y ,

by the following recurrence relation for the next elements of the sequence N ∈ N

min

{
ρ v(N+1)

j (x, y)− Ljv(N+1)

j (x, y)− λ
∫
R

[
max

(
v(N)

j (x+ y ζ, y (1 + ζ)), v(N)

j (x, y)
)

− v(N+1)

j (x, y)
]
ν(dζ)− Λj,1−j

(
v(N)

1−j(x, y)− v(N+1)

j (x, y)
)

; ∂xv
(N+1)

j (x, y)− 1

}
= 0 ,

(1.4.3)

with initial condition v(N+1)

j (y, y) = −P y.

First of all, we would like to prove that {v(N)}N∈N converges in Cauchy sense, and

then it converges to the value function v defined by HJB (1.2.3), and therefore v can

be obtained through the method of successive approximation starting from the exact

solution of (1.4.2).

In the next subsection we will prove that indeed the Picard iteration defined in

Definition 1.4.1 is solution to the HJB sequence 1.4.2, see Lemma 1.4.1.

1.4.1 Convergence of approximation sequence

Lemma 1.4.1 Let N ∈ N and (x, y) ∈ D, and assume (1.3.4) is satisfied

• Classic supersolution: if {ϕ(N+1)

j }j∈{0,1} ∈ C2,0(D) is such that

ϕ(N+1)

j (y+, y) := lim
x↓y

ϕ(N+1)

j (x, y) ≥ −P y ,

ϕ(N+1)

j (x, y) =− P y, for x < y ,
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and satisfies

min

{
(ρ−Lj+λ)ϕ(N+1)

j (x, y)−λ
(∫

R
max

{
v(N)

j (x+yζ, y(1+ζ)), v(N)

j (x, y)
}
ν(dζ)

)
− Λj,1−j

(
v(N)

1−j(x, y)− ϕ(N+1)

j (x, y)
)

; ∂xϕ
(N+1)

j (x, y)− 1

}
≥ 0 ,

then ϕj ≥ v(N+1)

j .

• Linear growth: we have

v(N+1)

j (x, y) ≤ Ej x− Fj y +Gj .

• Continuity: the value functions v(N+1)

j (·, y) are continuous on D and satisfy

v(N+1)

j (y+, y) := lim
x→y+

v(N+1)

j (x, y) = −P y .

• Dividend area: there exists k∗ ∈ R+ such that x∗y < y + k∗, such that

v(N+1)

j (x, y) = x− x∗y + v(N+1)

j (x∗y, y), for each x > x∗y and each N ∈ N.

• Viscosity characterization: the value functions v(N+1)

j , defined by (1.4.1), con-

stitute the unique viscosity solution to the system of variational inequalities

(1.4.3).

Proof. The proof is analogous to the results in Proposition 1.3.3, and 1.3.5, Corollary

1.3.4, and Theorem 1.3.6, and it is therefore omitted. �

Let us now show that the solutions to the sequence of HJB obtained as a lineariza-

tion to equation (1.2.3) is a contracting sequence.

Lemma 1.4.2 (Compactness) Let D∗ := {(x, y) ∈ D : x ≤ y + k∗} ⊂ D, for

N ∈ N and k∗ defined as in Lemma 1.4.1, there exists a positive real constant C∗,N

such that

∥∥v(N+1)

j (x, y)− v(N)

j (x, y)
∥∥
L∞(D)

=
∥∥v(N+1)

j (x, y)− v(N)

j (x, y)
∥∥
L∞(D∗)

= C∗,N .

Proof. For x ≥ y + k∗ and each N ∈ N, the value functions v(N+1)

j and v(N)

j are just
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vertical translations of each other, since ∀N ∈ N and ∀x ≥ y + k∗

v(N)

j (x, y) = v(N)

j (y + k∗, y) + x− y − k∗,

therefore there exist a positive constant C∗,N such that

∥∥v(N+1)

j (x, y)− v(N)

j (x, y)
∥∥
L∞(D\D∗) = |v(N+1)

j (y + k∗, y)− v(N)

j (y + k∗, y)| =: C∗,N .

�

Lemma 1.4.2 proves that

arg max
(x,y)∈D

|v(N+1)

j (x, y)− v(N)

j (x, y)| ∈ D∗;

this compactness result will be used in the next proposition, stating that the sequence

of approximations is a contraction.

Proposition 1.4.3 Let v := [v0, v1], then the sequence {v(N)}N∈N given by (1.4.3) is

a contracting sequence in the L∞(R2)-norm, that is there exists a constant C ∈ (0, 1)

such that

‖v(N+1)(x, y)− v(N)(x, y)‖L∞(D) ≤ C ‖v(N)(x, y)− v(N−1)(x, y)‖L∞(D) , for N ∈ N,
(1.4.4)

defining v
(−1)
j (x, y) := x− y − P y for j ∈ {0, 1}.

Proof. Notice that by the compactness lemma 1.4.2 and the continuity property

of v(N)

j (x, y) by Lemma 1.4.1 we can consider (x, y) ∈ D∗ instead than in the whole

unbounded D. Then let ϕ be stopping time, by the DPP for (1.4.1), we have

v(N+1)

j (x, y) = sup
α∈AN+1(0,ϕ)

E
[∫ T∧ϕ∧θ1∧τ1

0

e−ρ t dZt − P y e−ρ T
α

1T<ϕ∧θ1∧τ1

+
(
v(N)

j (Xα
θ−1

+ y ζ, y (1 + ζ))− v(N)

j (Xα
θ−1
, y)
)

+
1θ1<ϕ∧T∧τ1

+ v(N+1)

j (Xα
ϕ , y)1ϕ<T∧θ1∧τ1 + v(N)

1−j(X
α
τ1
, y)1τ1<θ1∧ϕ∧T

]
.

Consider the optimal strategy αN+1,∗ (denoted as α∗ to simplify the notations where no

ambiguity occurs) in the interval [0, ϕ] for a manager able to accept the opportunities

among the first N+1 arrival events, and apply it to a problem allowing the acceptance

of only the opportunities among the first N arrival events, with the difference that
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the (N + 1)-st opportunity will be rejected. Notice that this strategy αN+1,∗ belongs

to the admissible strategies AN , and that if the default time for v(N+1)

j is less or equal

to θN+1, then in any case it coincides to the default time in the case in which the

(N + 1)-st opportunity has to be rejected. We have

v(N)

j (x, y) ≥ E
[∫ T∧ϕ∧θ1∧τ1

0

e−ρ t dZt − P y e−ρ T 1T<ϕ∧θ1∧τ1 + v(N)

j (Xα∗
ϕ , y)1ϕ<T∧θ1∧τ1

+
(
v(N−1)

j (Xα∗
θ−1

+ y ζ, y (1 + ζ))− v(N−1)

j (Xα∗
θ−1
, y)
)
1θ1<ϕ∧T∧τ1

1{
v(N)

j (Xα∗
θ−1

+y ζ,y (1+ζ))≥v(N)

j (Xα∗
θ−1
,y)
} + v(N−1)

1−j (Xα
τ1
, y)1τ1<θ1∧ϕ∧T

]
.

Therefore taking into consideration the difference between v(N+1)

j and v(N)

j we have

v(N+1)

j (x, y)− v(N)

j (x, y) ≤

E
[(
v(N+1)

j (Xα∗
ϕ , y)− v(N)

j (Xα∗
ϕ , y)

)
1ϕ<T∧θ1∧τ1+1{

v(N)

j (Xα∗
θ
−
1

+y ζ,y (1+ζ))≥v(N)

j (Xα∗
θ
−
1

,y)
} 1θ1<ϕ∧T∧τ1

×
(
v(N)

j (Xα∗

θ−1
+ y ζ, y (1 + ζ))− v(N)

j (Xα∗

θ−1
, y)− v(N−1)

j (Xα∗

θ−1
+ y ζ, y (1 + ζ)) + v(N−1)

j (Xα∗

θ−1
, y)
)

+
(
v(N)

1−j(X
α∗
τ1 , y)− v(N−1)

1−j (Xα∗
τ1 , y)

)
1τ1<θ1∧ϕ∧T

]
. (1.4.5)

Let T ∗ be the default time for an enterprise with starting asset value x∗y and paying

no dividends, see Lemma 1.4.1. Then, for ε > 0 and ϕ = T ∗+ ε, we have that T < T ∗

for x ∈ [y, x∗y], and therefore equation (1.4.5) becomes

v(N+1)

j (x, y)−v(N)

j (x, y) ≤ E
[{(

v(N)

j (Xα∗
θ−1

+y ζ, y (1+ζ))−v(N−1)

j (Xα∗
θ−1

+y ζ, y (1+ζ))
)

−
(
v(N)

j (Xα∗
θ−1
, y)− v(N−1)

j (Xα∗
θ−1
, y)
)}

1{
v(N)

j (Xα∗
θ−1

+y ζ,y (1+ζ))≥v(N)

j (Xα∗
θ−1
,y)
}1θ1<T∧τ1

+
(
v(N)

1−j(X
α∗
τ1
, y)− v(N−1)

1−j (Xα∗
τ1
, y)
)
1τ1<θ1∧T

]
. (1.4.6)

A similar argument works also considering the difference v(N)

j − v
(N+1)

j : apply to both

the optimization problem for v(N)

j and the optimization problem for v(N+1)

j the optimal

strategy for the manager able to accept only the opportunities among the first N

arrival events. Therefore we can take the absolute values on both sides of (1.4.6), and
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recalling that v := [v0, v1], by Hölder inequality and triangle inequality, we obtain

|v(N+1)(x, y)− v(N)(x, y)|

≤ ‖1θ1∧τ1<T‖L1(dP) ·
∣∣∣∣∣∣P(θ1 < τ1)

∣∣∣v(N)
(
X
αN+1,∗
θ1

, Y
αN+1,∗
θ1

)
− v(N−1)

(
X
αN+1,∗
θ1

, Y
αN+1,∗
θ1

)∣∣∣
+ J2 P(τ1 < θ1)

∣∣∣v(N)
(
XαN+1,∗
τ1

, Y αN+1,∗
τ1

)
− v(N−1)

(
XαN+1,∗
τ1

, Y αN+1,∗
τ1

)∣∣∣∣∣∣∣∣∣
L∞(dP)

,

for every (x, y) ∈ D∗, where by | · | we mean the distance in an L2-space. Equivalently

we may write

∣∣(v(N+1)(x, y)− v(N)(x, y)
)∣∣

≤ E(x,y)

 sup
θ1>0
ω∈Fθ1

{∣∣v(N)
(
X
αN+1,∗
θ1

, Y
αN+1,∗
θ1

)
− v(N−1)

(
X
αN+1,∗
θ1

, Y
αN+1,∗
θ1

)∣∣}
P (θ1 ∧ τ1 < T ) .

For the expectation term we may take the supreme of its argument

sup
θ1≥0, ζ∈(−1,∞), ω∈F−θ1

{∣∣∣v(N)

(
XZα

∗

θ−1
+ y πα

∗

1 ζ, y(1 + πα
∗

1 ζ)
)

− v(N−1)

(
XZα

∗

θ−1
+ y πα

∗

1 ζ, y (1 + πα
∗

1 ζ)
)∣∣∣} ,

and then ∀(x, y) ∈ D∗

∣∣(v(N+1)(x, y)− v(N)(x, y)
)∣∣ ≤ ‖v(N)(x, y)− v(N−1)(x, y)‖L∞(D∗) P (θ1 ∧ τ1 < T ) .

(1.4.7)

Notice that the second term of the RHS in (1.4.7) is equal to 1−P(θ1 > T ) ·P(τ1 > T );

therefore it is enough to show that P(θ1 > T ) is non null and a similar argument works

also for the other term, since they are both exponential random variables. We have

that θ1 is just an Ft-stopping time independent on asset and debt values, while T

depends on the optimal strategy and both on x and y. We consider a process X̂ with

the following dynamicsdX̂t = bj X̂t dt+ σ X̂t dWt , t > 0 ,

X̂0 = k∗ + y ,

see Lemma 1.4.1 for the definition of k∗. It is easy to see that X̂t dominates Xt. We

have that, for t ∈ R+, X̂t = k∗ exp {(bj − σ2/2) t+ σWt}. Then, define T̂ := inf{t ≥
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0 : 0 ≤ X̂t} = inf{t ≥ 0 : X̂t = 0}, i.e. the first hitting time for a geometric

Brownian motion, independent on both x and y, and therefore, by [24, 9.1.2.2 Part

II], we have

P(θ1 > T̂ ) = 1− P
(

inf
0≤s≤θ1

X̂s > 0

)
= 0 .

Hence taking the supremum of (1.4.7) over the couples (x, y) ∈ D∗, we obtain

inequality (1.4.4). �

In the following proposition we prove that the sequence {v(N)

j }N∈N converges to

the solution to HJB equation (1.2.3).

Proposition 1.4.4 The sequence {v(N)

j }N∈N solution to (1.4.2) and (1.4.3) converges

to the values function defined by equation (1.1.5).

Proof. Proposition 1.4.3 guarantees the convergence of {v(N)

j }N∈N towards a solution

in viscosity sense of HJB (1.4.3), the limit of v(N)

j clearly satisfies HJB (1.2.3), and

then, by uniqueness result of Theorem 1.3.6, v(N)

j defined by (1.4.1) converges to the

value function defined by (1.1.5). �

1.4.2 Exact solution for the approximated sequence

In this subsection we give the exact formulae for the starting function to the sequence

of Picard iterations given by equation (1.4.2), and its following elements given by

Definition 1.4.1.

Proposition 1.4.5 The solutions to (1.4.2) and (1.4.3), for N ∈ N+, read as

v(0)

j (x, y) =



x−Â
0
j

[
C0

1 Φ
(
Â0
j , B̂

0
j ; −

2 r y

σ2 x

)
+ C0

2 Ψ
(
Â0
j , B̂

0
j ; −

2 r y

σ2 x

)]
, x < x0,∗

j (y),

x− x0,∗
j (y) +

(
x0,∗
j (y)

)−Â0
j

[
C0

1 Φ
(
Â0
j , B̂

0
j ; −

2 r y

σ2 x0,∗
j (y)

)
+C0

2 Ψ
(
Â0
j , B̂

0
j ; −

2 r y

σ2 x0,∗
j (y)

)]
, x ≥ x0,∗

j (y),

v(N+1)

j (x, y) =


CN+1

1 Φj(x, y) + CN+1
2 Ψj(x, y) + Θ(N)

j (x, y), x < xN+1,∗
j (y),

x− xN+1,∗
j (y) + CN+1

1 Φj

(
xN+1,∗
j (y), y

)
+CN+1

2 Ψj

(
xN+1,∗
j (y), y

)
+ Θ(N)

j

(
xN+1,∗
j (y), y

)
, x ≥ xN+1,∗

j (y),
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where we have defined the parameter ρ := ρ+ λ+ Λj,1−j,

Â0
j :=

bj
σ2
− 1

2
+

1

2

√(
1− 2 bj

σ2

)2

+
8 ρ

σ2
, Âj : =

bj
σ2
− 1

2
+

1

2

√(
1− 2 bj

σ2

)2

+
8 ρ

σ2
,

B̂0
j := 1 +

√(
1− 2 bj

σ2

)2

+
8 ρ

σ2
, B̂j : = 1 +

√(
1− 2 bj

σ2

)2

+
8 ρ

σ2
,

and the following auxiliary functions

Φj(x, y) := x−Âj Φ
(
Âj, B̂j; −

2 r y

σ2 x

)
,

Ψj(x, y) := x−Âj Φ
(
Âj, B̂j; −

2 r y

σ2 x

)
,

Υ(N)

j (x, y) := −λ
∫
R

(
v(N)

j (x+ y ζ, y (1 + ζ))− v(N)

j (x, y)
)

+
ν(dζ)

− Λj,1−jv
(N)

1−j(x, y)− λv(N)

j (x, y),

Θ(N)

j (x, y) :=

∫ ∞
y

Υ(N)

j (z, y)

[(
Φj(x, y)

)−2

z−
2bj

σ2 e−
2ry

σ2z

]
dz .

Moreover, for N ∈ N, xN,∗j (y) ∈ [y,+∞), CN
1 and CN

2 are given by imposing the

initial condition and the smooth-fit condition
v(N)

j (y, y) = −P

∂xv
(N)

j

(
xN,∗j (y), y

)
= 1

∂2
xxv

(N)

j

(
xN,∗j (y), y

)
= 0

and the functions Φ and Ψ are the confluent hypergeometric functions of the first and

second type respectively.

The proof is based on tedious but fairly standard calculations consisting in sub-

stituting all of the defined terms in equation (1.4.2).
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Chapter 2

Comparative statics

2.1 Dimension reduction

This section deals with an important invariance in our model. We suppose that the

interest rate r is constant and independent from the debt level y. This hypothesis

could be easily justified remarking that the bankruptcy is declared at the first time

when the asset process X reaches the debt level Y . Due to the continuity of the evo-

lution of X and its cash equivalence, the manager could refund debt holders entirely.

In this case the penalty P is justified by the breach of perennial loan agreement.

Our main result is to show that the value function v that depends both on the

asset value x and the debt value y could be written using the debt y as unit of

account. We will introduce an auxiliary value function ṽ depending only on the asset

value written on the debt u := x/y.

Proposition 2.1.1 (Debt as unit of account) Let Ut := Xt/Yt and Z̃t :=
∫ t

0
Y −1
s− dZs

be respectively the asset value X and the cumulated dividend process Z written using

the debt Y as unit of account, the related SDE reads

dUt = (bj Ut − r) dt+ σ Ut dWt − dZ̃t + dỸt , (2.1.1)

where the effect of a change of the debt is given by dỸθi = −πi ζi
ζi+1

(Uθi − 1). Define

ṽj(u) := sup
α∈A

E(j,u)

[∫ T−

0

e−ρ t
∞∏
k=1

(1 + ζk πk 1θk<t) dZ̃t − Pe−ρ T
∞∏
k=1

(1 + ζk πk 1θk≤T )

]
(2.1.2)

Then ṽj(x/y) := 1
y
vj(x, y) on {0, 1}×[1,∞). Moreover, we have the following dynamic
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programming principle

ṽj(u) := sup
α∈A

E(j,u)

[∫ T−∧η∧θ1

0

e−ρ t dZ̃t − Pe−ρ T 1T<η∧θ1 + e−ρ η ṽ
Mη

(Uη)1η<T∧θ1

+ (1 + π1ζ1) ṽ
Mθ1

(
Uθ1 − π1

ζ1

ζ1 + 1
(Uθ1 − 1)

)
1θ1<T∧η

]
, (2.1.3)

and ṽ is the unique viscosity solution of the system of variational inequalities

min
{
ρṽj − L̃j ṽj − Gj ṽj − J̃ ṽj(u) ; ṽ′j − 1

}
= 0 , (2.1.4)

with ṽj(1) = −P where

L̃j ṽj(u) =
(
bj u− r

)
ṽ′j(u) +

1

2
σ2 u2 ṽ′′j (u) ,

Gj ṽj(u) = Λj,1−j
(
ṽ1−j(u)− ṽj(u)

)
,

J̃ ṽj(u) = λ

∫ ∞
−1

(
(ζ + 1) ṽj

(
u− 1

ζ + 1
+ 1

)
− ṽj(u)

)
+

ν(dζ) .

Proof. First, the SDE (2.1.1) is obtained by a direct computation of Ut := Xt/Yt.

We then remark that T coincides with inf{t | Ut ≤ 1}. Since Z̃t :=
∫ t

0
Y −1
s− dZs, we

have dZ̃t = dZt/Yt− . Using the definition of value function (1.1.5) and dividing by y

we found easily the relation between the two value function.

Using Theorem 1.3.6, we can deduce that {ṽj}j=0,1 are the unique continuous

viscosity solution of the system of inequalities (2.1.4).

We now turn to the dynamic programming principle, we write (2.1.2) in the fol-

lowing way

ṽj(u) = sup
α∈A

E(j,u)

[∫ T−∧θ1

0

e−ρ t dZ̃t − P e−ρ TY,1T<θ1

+

∫ T−

T−∧θ1
e−ρ t

∞∏
k=1

(1 + ζk πk 1θk<t) dZ̃t − P e−ρ T 1T≥θ1
∞∏
k=1

(1 + ζk πk 1θk≤T )

]

= sup
α∈A

E(j,u)

[∫ T−∧θ1

0

e−ρ t dZ̃t − Pe−ρ T1T<θ1 + (1 + π1ζ1 1T≥θ1)×

×

{∫ T−

θ1

e−ρ t
∞∏
k=2

(1 + ζk πk 1θk<t) dZ̃t − Pe−ρ T
∞∏
k=2

(1 + ζk πk 1θk≤T )

}]

= sup
α∈A

E(j,u)

[∫ T−∧θ1

0

e−ρ t dZ̃t − Pe−ρ T1T<θ1
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+(1 + π1ζ1)1T≥θ1 ṽMθ1

(
Uθ−1 − π1

ζ1

ζ1 + 1
(Uθ1 − 1)

)]
,

we consider the original one (7.3.1) stopped at η ∧ θ1 where η is a stopping time.

�

2.2 Sensitivity analysis

Using the reduced HJB equation (2.1.4), we perform a comparative statics. We first

consider a single regime case and we fix the following parameters, in accord with

Hugonnier et al. [68].

b σ λ ρ r

0.0824 0.2886 3 0.12 0.042

The law of proposal debt is ν(dζ) = 1
2
δ(0.10)(ζ)+ 1

2
δ(−0.10)(ζ), that is the debt offers

are of ±10% of the original debt. The three first sensitivity analysis are with respect

to the penalty P , the volatility σ and the growth rate b, see Figure 2.1. We remark

that without penalty all the new debt facilities would be accepted, in contrast no

debt redemption would occur. The debt redemption area increases with the penalty

as can easily forecast. We then have fixed P = 0.08 for the sensitivity with respect to

σ and b, the other sensitivities are obtained for P = 0. We observe that the dividend

threshold increases with P , σ and b.

Figure 2.1: Sensitivity of optimal dividend threshold (blue line), debt signature
(green) and debt redemption (red) area as function of (a) penalty P , (b) volatility σ
and (c) growth rate b.

The most interesting sensitivity is with respect to the intensity λ of the arrival of

debt proposal. Figure 2.2 shows that the dividend threshold is a decreasing function
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of λ. This result could reconcile the model of Jeanblanc and Shiryaev [71] with the

indifference law of Modigliani and Miller [92]. In fact, when the intensity λ increases,

the optimal threshold u? decreases to the level 1, that is the firm has to keep very

few cash since all growing opportunities could be financed on the credit markets.

On the contrary, when the firm has no access to the credit markets, it needs to keep

money to absorb negative shocks, then they pay dividends only if the cash is relatively

high, higher than in the case where the credit market is accessible. The same figure

in logarithmic scale indicates that the behavior of the convergence of the dividend

threshold to 1 is near to a power decay with parameter a little bit smaller than 1.

Figure 2.2: Sensitivity of optimal dividend threshold as function of the intensity of
the arrival of debt proposal, linear (a) and logarithmic (b) scales. For the logarithmic
scale, the optimal dividend threshold is plotted for σ = 0.35 (yellow line), σ = 0.2886
(blue line) and σ = 0.2 (red line).

Finally, we focus on the two regimes case, we assume that Λ0,1 = 0.5 and Λ1,0 = 0.2

in accord with the standard duration of expansion and recession periods, that is five

and two years respectively. Figure 2.3 shows the sensitivities of the dividend thresh-

old. When the frequency of the regime changes increases, the dividend thresholds

converge toward the same limit. They split as the difference of growth rates in-

creases. Finally, both the dividend thresholds decrease to 1 when the intensity of

debt proposal equals infinity, in accord with Modigliani and Miller paradigm.
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Figure 2.3: Sensitivity of optimal dividend thresholds for regime 1 (red lines) and
regime 0 (blue lines) as function of (a) the frequency of regime changes Λi,1−i, (b)
the intensity of the arrival of debt proposal λ and (c) the difference between the two
growth rates b0 and b1.
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Part II

A lending scheme for systemic risk

with probabilistic constraints of

failure
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A too-big-to-fail is one whose size,

complexity, interconnectedness, and

critical functions are such that,

should the firm go unexpectedly

into liquidation, the rest of the

financial system and the economy

would face severe adverse

consequences.

Ben Bernanke (1953-)
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Introduction

One of the most relevant changes within the financial world has been caused by the

worldwide crisis of 2007-2008. Starting from that breaking event, financial analysts,

bank practitioners, applied mathematicians and economists, have been pushed to re-

think the models they were used to work with. In particular, it was necessary to

stop relying on a series of assumptions turned out to be too far from real markets, as

well as from the new altered financial worldwide scenario and its changed functioning.

Such a big crunch, along with its consequences, forced both investors and financial

institutions to be aware that almost every financial quantity is exposed to concrete

failure risk.

As an example, the standard Black and Scholes (BS) model, whose restrictions on co-

efficients have been the focus of several studies determining a plethora of alternative

and effective approaches, see, e.g., [90, 91], has shown evident limits. In particular,

as in the BS model, we base our framework on the geometric Brownian motion. Nev-

ertheless, a major focus of this part of the thesis will be on default probabilities that

any financial entity must face.

We underline that such credit risk analysis has seen an increasing interest in the

theoretical financial community, pushing the development of mathematically rigor-

ous models which take into account both the risk exposure factor and related default

events. Along aforementioned lines, two main approaches have been developed: the

totally unexpected failure method, also known as reduced-form intensity-based model,

see, e.g., [17, ch. 8], and the triggered failure method, also known as structural

model, see, e.g., [17, sec. 1.4]. Mathematically speaking, the first approach defines

the default time as the first jump time of some stochastic process, so that the default

event is completely inaccessible to the probabilistic reference filtration modeling the

information flow available to traders. After exogenously specifying the conditional

probability of default, a typical method to deal with this inaccessibility issue is based

on filtration enlargement, see, e.g., [17, 82, 106].

The second approach supposes the default event to be triggered as soon as the value
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of the financial entity reaches an endogenous lower threshold. Hence, one of the main

issues of the method is the evolution modeling of both the financial entity value and

of its capital structure. Therefore, differently from the first mentioned approach, the

default time results in being a predictable stopping time with respect to the reference

filtration. Let us recall that structural default risk models have been extensively stud-

ied in literature, see, e.g., [17, 19, 91, 95]. In what follows we focus our attention on

the latter approach, taking into consideration a network of interconnected financial

entities, such as banks or general economic agents, who are willing to lend money to

each other. We assume that the bankruptcy event for a bank occurs when its capital

hits a lower barrier whose value is linked to the characterization of the whole system.

As a main reference setting we refer to the one introduced in [55], then generalized

in [33, 86, 106]. In particular, following [33], we consider a financial supervisor, usu-

ally referred as lender of last resort (LOLR) aiming at guarantee the wellness of the

financial network, by lending money to those agents who are near to default. At the

same time, the LOLR also tries to minimize a given cost function.

Our results also allow to compute the optimal controls for highly complex networks,

as the real banking ones. The main novelty of our solution is that, in addition to

considering a LOLR who lends money aiming at minimizing a given cost function,

we further assume fixed probability constraints the banks have to satisfy at a specific

terminal time. From a financial point of view, such constraint implies that the LOLR

optimal strategy has to be derived satisfying the assumption that each bank is char-

acterized by a probability of bankruptcy. As in [91], we assume that a bank may fail

only at a fixed terminal time, namely it goes under bankruptcy if, at terminal time,

its wealth is below a given threshold. This allows us to derive the optimal strategy

exploiting techniques related to stochastic target problems. We recall that first results

in this direction have been derived in [114], where an ad hoc dynamic programming

principle has been provided. Later, several papers appeared generalizing such results

by considering different constraints schemes, spanning from expectation constraints

at fixed time, to almost sure constraints, see, e.g., [22, 29, 30, 31, 63]. In [97], an

optimal solution is derived within a similar setting, but without using the stochastic

target problem approach. Since in the above mentioned papers examples of concrete

solutions are often missing, at the end of this work we consider an example. In par-

ticular, we compare our result with the one obtained in [33] limiting, for the sake of

clarity, ourselves to a small set of interconnected banks, the case of larger network

being of easy derivation. Moreover, because the model construction is strongly based

on the mathematical theory of networks, we will exploit its characteristics in order to
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derive a page rank approach, first introduced in [98], which will be used to determine

the relative importance of any bank in the network. We then exploit this quantity to

decide the admitted probability of each bank’s failure, requiring that important banks

have larger non-failure probability, hence adopting a too big to fail paradigm.

The part of the thesis is organized as follows: in Chapter 3 we introduce the main

setting, giving the mathematical and financial definitions; in particular Section 3.3 we

introduce the optimal control problem with probability constraints and we provide its

solution; in Chapter 4 we present the Pagerank method for the relative importance

of the banks in the network and we apply the derived results to a toy example.
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Chapter 3

The general setting

3.1 General framework for systemic risk in finan-

cial networks

Let us first introduce the mathematical notation needed to properly treat the general

financial scenario we are interested in. In particular, we consider a finite connected

financial network identified with a graph G composed by n ∈ N vertices v1, . . . , vn,

corresponding to n banks, and m ∈ N edges e1, . . . , em assumed to be normalized on

the interval [0, 1], which represents the interactions between the n banks. In what

follows we will use the Greeks letters α, β, γ = 1, . . . ,m to denote edges, whereas

i, j, k = 1, . . . , n, will denote vertexes. We refer to [38, 39, 95], for further details.

The structure of the graph is based on the incidence matrix Φ := Φ+−Φ−, where

the sum is intended componentwise and Φ = (φi,α)n×m, together with the incoming

incidence matrix Φ+ =
(
φ+
i,α

)
n×m and the outgoing incidence matrix Φ− =

(
φ−i,α
)
n×m,

is defined as follows

φ+
i,α =

1 vi = eα(0)

0 otherwise
, φ−i,α =

1 vi = eα(1)

0 otherwise
.

In particular, we will say that the edge eα is incident to the vertex vi if |φi,α| = 1, so

that

Γ(vi) = {α ∈ {1, . . . ,m} : |φi,α| = 1} ,

represents the set of incident edges to the vertex vi. We also introduce the adjacency

matrix I = (ιi,j)n×n, defined as I := I+ + I−, where I+ =
(
ι+i,j
)
n×n, resp. I− =(

ι−i,j
)
n×n, is the incoming adjacency matrix, resp. outgoing adjacency matrix, defined

51



as

ι+i,j =

1 it existsα = 1, . . . ,m : vj = eα(1) , vi = eα(0) ,

0 otherwise ,

ι−i,j =

1 it existsα = 1, . . . ,m : vj = eα(0) , vi = eα(1) ,

0 otherwise .

Notice that since I+ = (I−)T , then we have that I is symmetric with null entries on

the main diagonal.

3.2 Model formulation

Following the financial network setting proposed in [55, 106], and the notion presented

in the previous section, we consider a network composed by n nodes, each of them

representing a different financial agent, and we denote by X i(t) the asset value of the

ith agent at time t ∈ [0, T ], being T < ∞ a fixed positive terminal time. Each node

may have nominal liabilities to other nodes directly connected with it. In this case, we

denote by Li,j(t) the payment that the bank i owes to the bank j, at time t ∈ [0, T ].

Then, we introduce the time-dependent liabilities matrix L(t) = (Li,j(t))n×n, defined

as Li,j(t) ι+i,j 6= 0 ,

0 otherwise ,
(3.2.1)

where, as shown in Section 3.1, ι+i,j is equal to one if i and j are connected, while

it equals zero otherwise. In particular, equation (3.2.1) explicitly states that there

cannot be any cash flows between any two banks which are not edge-connected.

At any time t ∈ [0, T ] , the ith agent may also have an exogenous cash inflow

F i(t) ≥ 0. We will denote by ui(t) the payment made at time t ∈ [0, T ] by the ith

bank, whereas ūi(t) =
∑n

j=1 Li,j(t) is the total nominal obligation of node i towards

all other nodes. Therefore, if ūi(t) = ui(t), then i has satisfied all its liabilities.

We also introduce the relative liabilities matrix Π(t) = (πi,j(t)) defined as
Li,j(t)

ūi(t)
ūi(t) > 0 ,

0 otherwise .

Let us notice that the matrix Π(t) is row stochastic, in the sense that
∑n

j=1 πi,j(t) = 1,
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so that πi,j(t) represents the proportion of the total debt at time t that the node i

owes to the node j.

Similarly, we can define the cash inflow of the node i as the sum of the exogenous

cash inflow F i(t) plus the total payment that node i receives at time t by other nodes,

that is
∑n

j=1 π
T
i,j(t)uj(t) , where we denoted the transposed of the relative liabilities

matrix and its elements as ΠT = (πTi,j(t)). We thus have that the value of the ith node

at time t ∈ [0, T ] is given by

V̄ i(t) =
n∑
j=1

πTi,j(t)uj(t) + F i(t)− ūi(t) . (3.2.2)

Let us now introduce the notion of clearing vector as a specification of the payments

made by each of the banks in the financial system, see, e.g., [55, Definition 1], [106,

Definition 2.6]. In what follows, if not otherwise specified, we will use standard point-

wise ordering for vectors in Rn, namely for every x, y ∈ Rn it holds x ≤ y if and only

of xi ≤ yi, for any i = 1, . . . , n.

Definition 3.2.1 In the aforementioned financial setting a clearing vector is a vector

u∗(t) ∈ [0, ū(t)] satisfying

• Limited liabilities:

u∗i (t) ≤
n∑
j=1

πTi,j(t)u
∗
j(t) + F i(t) , i = 1, . . . , n ;

• Absolute priority: that is either obligations are paid in full, or all value of

the node is paid to creditors, i.e.

u∗i (t) =

ūi(t) if ūi(t) ≤
∑n

j=1 π
T
i,j(t)u

∗
j(t) + F i(t)∑n

j=1 π
T
i,j(t)u

∗
j(t) + F i(t) otherwise.

Existence and uniqueness of a clearing vector, in the sense of Definition 3.2.1, is

treated in [55, 106]. In particular, in [55] it is shown that u∗(t) is a clearing vector if

and only if

u∗(t) = ūi(t) ∧

(
n∑
j=1

πTi,j(t)u
∗
j(t) + F i(t)

)
. (3.2.3)

Equation (3.2.3) can be interpreted as follows: the term ūi(t) specifies which i−node

53



owes to the other nodes at time t ∈ [0, T ], whereas the second term(
n∑
j=1

(πi,j(t))
T u∗j(t) + F i(t)

)

represents the cash inflow for the node i at time t ∈ [0, T ]. Consequently, clearing

vector represents the payment at time t of each node: each node pays the minimum

between what it has and what it owes. Combining equation (3.2.2) and (3.2.3), we

say that the bank i is in default if it is not able to meet all of its obligations, therefore

the value of a bank equals

V i(t) =

(
n∑
j=1

πTi,j(t) ūj(t) + F i(t)− ūi(t)

)+

, (3.2.4)

where (f(x))+ denotes the positive part of the function f , so that if V̄ i(t) ≤ 0, then

the bank i is in default, and we set its value to V i(t) = 0.

To simplify the notation, let us define the matrix

L̃ =
(
L̃i,j

)
n×n

:= L− diag(u(t)) ,

where diag(u(t)) indicates a n×n diagonal matrix with the vector u(t) := (u1(t), . . . , un(t))

as its diagonal. The matrix L̃ has entry Li,j(t) off diagonal, and −
∑n

j=1 Li,j(t), rep-

resenting the total payment that the bank i owes at time t to other nodes, on the

main diagonal.

Following [86], we assume the liabilities between banks to evolve according the

following equation
d

dt
Li,j(t) = µij Li,j(t) , (3.2.5)

for a fixed positive growth rate µ > 0. We stress that the present setting can be

generalized taking L as a geometric Brownian motion. In such scenario the terminal

constraint becomes stochastic. Nonetheless, computing the conditional expectation

of the terminal constraint, it is possible to recover results analogous the the setting

used in the present thesis. We leave this topic to be addressed in a future work.

Similarly, we assume the bank i, at any time t, invests the difference between cash

inflow ans cash outflow in an exogenous asset X i(t) whose dynamic is given by

dX i(t) = X i(t)
(
µi dt+ σi dW

i(t)
)
, i = 1, . . . , n .
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Moreover, see [86], we introduce continuous (deterministic) default boundaries as

follows

X i(t) ≤ vi(t) , P–a.s. ,

with

vi(t) :=

Ri
(
ūi(t)−

∑n
j=1 π

T
i,j(t) ūj(t)

)
t < T ,

ūi(t)−
∑n

j=1 π
T
i,j(t) ūj(t) t = T ,

(3.2.6)

where Ri ∈ (0, 1), i = 1, . . . , n, are suitable constants representing the recovery rate

of the bank i.

3.3 The stochastic optimal control with probabil-

ity constraints

In what follows, we introduce the mathematical formulation of our problem, ex-

pressing it as an optimal control problem with terminal probability constraint. Fur-

thermore, we provide an analytic solution which allows us to compute the optimal

controls.

We consider a complete filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
satisfying

usual assumptions, namely right–continuity and saturation by P–null sets. Next re-

sults will be applied in Chapter 4 to analyse some financial networks toy models. As

in the paper by Capponi et al. [33], we consider a financial supervisor, called Lender

Of Last Resort (LOLR), connected to any node belonging to the financial network.

The LOLR aims at saving the network from default, ant it is assumed to have full

information about the network state. In particular, at any time t the LOLR can

lend money to the bank i, i = 1, . . . , n, so that the controlled evolution of the bank i

satisfies

dX i
α(t) =

(
µiX i

α(t) + αi(t)
)

dt+ σiX
i
α(t) dW i(t) , (3.3.1)

being αi(t) the loan from the LOLR to the bank i, at time t ∈ [0, T ] and such that

α ∈ A, where A is the collection of progressively measurable processes α ∈ L2([0, T ]),

P–a.s. . In particular, α(t)–vector components represent the amounts of money lent

to each bank by the LOLR.

In order to derive a closed form solution, we will consider the setting proposed

originally by Merton in [91]. Therefore, we assume that default can happen only at
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some fixed time ti, i = 1, . . . , l, l < ∞, hence allowing to only consider constraints

defined at terminal time. This allows to avoid introducing strong bonds at each time

t ∈ [0, T ].

Let us note that an analogous result can be obtained considering banks allowed

to fail at some discrete times t1 < t2 < · · · < tM = T , by separately considering any

control problem between two fixed time [ti, ti+1]. This allows to obtain a global control

solution by gluing together an ordered sequence of optimal control problems, then

exploiting results presented along subsequent sections. Nevertheless, the obtained

glued solution is not the optimal one. In fact, in deriving the optimal solution for

any time t, one has to consider also possible future evolution of the system. We shall

study the latter scenario in a future research exploiting the results here provided,

hence deriving the global optimal solution via backward induction, as addressed in

[36, 100]. Assuming that the LOLR aims at minimizing lend resources implies that

he tries to minimize the functional

J(α) = E
[

1

2

n∑
i=1

∫ T

0

αi(s)2 ds

]
. (3.3.2)

Moreover, the LOLR minimizes equation (3.3.2) over the probabilistic constraint

P
(
X i(T ) ≥ vi(T )

)
≥ qi , i = 1, . . . , n , (3.3.3)

for suitable constants qi ∈ (0, 1), i = 1, . . . , n. For the ease of notation, in what

follows, we will drop the index i. Hence, with respect to the agent i, we are going

to solve the general control problem, then we apply such result to all banks in the

system.

Therefore, let us consider the value of a bank evolving over time according to

dX i(t) =
(
µiX i(t) + αi(t)

)
dt+ σiX i(t) dW i(t) ,

X i(0) = xi , i = 1 , . . . , n ,
(3.3.4)

and the corresponding default value vi := vi(T ) at terminal time. Moreover, we will

assume that the external supervisor chooses the control α minimizing the following

criterion

J(t, α) = E
[

1

2

n∑
i=1

∫ T

t

αi(s)
2 ds

∣∣∣∣ Ft] , (3.3.5)

s.t. P
(
X i(T ) ≥ vi | Ft

)
≥ qi , i = 1, . . . n . (PC)
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3.3.1 Reduction to a stochastic target problem

In the current subsection we are going to formally introduce the Hamilton–Jacobi–

Bellman (HJB) equation associated to the control problem defined in equation (3.3.2),

subject to constraint given by equation (3.3.3), hence reducing the related optimal

control problem to a stochastic target one. We stress that, due to the structure of the

optimal control problem, we will focus on the single agent i. In particular, to avoid

heavy notation, if not otherwise stated, we will denote for short X := X i.

Exploiting the value function form given by equation (3.3.5) and by rewriting the

terminal probability in equation (PC) as an expectation, namely

P
(
X(T ) ≥ v

∣∣ Ft) = E
[
1[X(T )≥v]

∣∣ Ft] ,
then we have the following

Lemma 3.3.1 Given the stochastic optimal control problem with terminal probability

constraint (PC), then the terminal probability constraints holds if and only if there

exists an adapted sub-martingale (P (s))s∈[t,T ] such that

P (t) = q , P (T ) ≤ 1[X(T )≥v] .

Proof. Let us first prove (⇐): since P (s) is a sub-martingale we have that

E
[
1[X(T )≥v]

]
≥ E [P (T ) | Ft] ≥ P (t) = q .

To prove the converse implication (⇒), let us first denote

q0 := E
[
1[Xs(T )≥v]

]
,

P (s) := E
[
1[Xs(T )≥v]

∣∣Fs]− (q0 − q) ,

where Xs represents the solution with initial time s ∈ [t, T ], then P is an adapted

martingale and the claim follows. �

Let us note that when the probability constraints is active, the sub-martingale P

is given by

P (s) = E
[
1[X(T )≥v]

∣∣Fs] ,
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hence P is in fact an adapted martingale, and we obtain the new state variable

P (s) = q +

∫ T

t

αP (s) dW (s) , (3.3.6)

where αP , taking values in R, is a new control which, a priori, cannot be assumed to

be bounded, being derived from the martingale representation theorem.

Remark 3.3.1 Since P represents the probability required to satisfy a terminal con-

straint, we could have defined P in equation (3.3.6) as

P (s) = q +

∫ T

t

P (s) (1− P (s))αP (s) dW (s) ,

so that P lies in [0, 1].

Before explicitly deriving the HJB equation we are interested in, and following

[29, 30, 114], let us further simplify our setting by introducing the set

D = {(t, x, q) ∈ [0, T ]× Rn × [0, 1] : 1[Xi(T )≥vi] − P i(T ) ≥ 0 P–a.s.} ,

along with considering the new state variable P , see equation (3.3.6), in such a way

that, via the geometric dynamic programming principle proved in [114], we can define

the value function

V (t, x, q) = inf

{
1

2
Et

[
n∑
i=1

∫ T

t

αi(s)2 ds

]
: 1[Xi(T )≥vi] − P i(T ) ≥ 0 P–a.s.

}
,

(3.3.7)

where Et is the conditional expectation with respect to the filtration Ft.
Since V is non-decreasing in q, we have

V (t, x, 0) ≤ V (t, x, q) ≤ V (t, x, 1) , q ∈ (0, 1) ,

therefore V (t, x, 0) corresponds to the unconstrained problem and its value function is

given by V (t, x, 0) = 0. As regards to the upper bound, we set V (t, x, 1) =∞, and we

prolong the value function outside [0, 1], setting V (t, x, q) = 0, resp. V (t, x, q) = ∞,

for q < 0, resp. for q > 1.

Let us then introduce the Hamiltonian that must be satisfied by the unconstrained
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optimal control

HX(x, α, p,Qx) = (µx+ α) · p+
1

2
σ2 x2Qx +

1

2
‖α‖2 , (3.3.8)

where used the following notations

µx := (µ1x1, . . . , µnxn) ,

and

σ2 x2 := diag((σ1x1)2, . . . , (σnxn)2) ,

being diag the n× n diagonal matrix.

Intuitively, we are expecting that, when the terminal constraint is satisfied, one

can solve the classical associated HJB equation whose Hamiltonian is given in equa-

tion (3.3.8), deriving that the optimal control coincides with the unconstrained case.

Notice that the optimal solution to the present problem is α = 0.

As for the constrained case, and taking into account the new martingale process

P , we have to consider the couple

dX i(s) =
(
µiX i(s) + αi(s)

)
ds+ σiX i(s) dW i(s) ,

dP i(s) = αiP (s) dW i(s) ,

so that we can define the constrained Hamiltonian as

H(X,P )(x, α, p,Qx, αP , Qxq, Qq)

= (µx+ α)p+
1

2
σ2x2Q+

1

2
‖α‖2 + σxQxqαP +

1

2
α2
PQq , (3.3.9)

which should play the role of the Hamiltonian of the associated problem when the

constraint is binding. Therefore, the HJB associated to the optimal control reads as

follow

− ∂tV − inf
α∈A

inf
αP∈R

H(X,P )(x, α, ∂xV, ∂
2
xV, αP , ∂

2
xqV, ∂

2
qV ) = 0 , (3.3.10)

where, above and in what follows, for the ease of notation we avoided writing explicitly

the dependencies of V (t, x, q).

As mentioned above, αP could be unbounded, implying that the associated Hamil-
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tonian may be infinite. Since the following holds

H(X,P )(x, α, p,Qx, αP , Qxq, Qq) ≥ HX(x, α, p,Qx) ,

to evaluate the minimum of H(X,P ) with respect to αP , we can exploit a first order

optimality condition that

αP = −σ x Qxq

Qq

,

which, when plugged into equation (3.3.9), gives the following minimum for H(X,P )

inf
αP∈R

H(X,P ) = H̄(x, α, p,Qx, Qxq, Qq) =

=


(µx+ α)p+ 1

2σ
2x2Qx + 1

2‖α‖
2 − 1

2Qq
σ2x2Q2

xq Qq > 0 ,

(µx+ α)p+ 1
2σ

2x2Qx + 1
2‖α‖

2 Qq = 0 ,

−∞ otherwise .

(3.3.11)

It follows that the associated value function introduced in equation (3.3.7) solves the

following HJB equation

− ∂tV − inf
α∈A

H̄(x, α, ∂xV, ∂
2
xV, ∂

2
xqV, ∂

2
qV ) = 0 , (3.3.12)

subject to the terminal condition

V (T, x, q) =

0 x ≥ v ,

∞ otherwise ,

where the Hamiltonian H̄ is defined as in equation (3.3.11).

3.3.2 The affine control case

In order to obtain a closed form solution for the HJB equation (3.3.11) we will further

assume that the admissible controls are of the form

αi(t) = ψi(t)X i(t) , (3.3.13)

for a fixed constant ψi ∈ [0,Ψ], Ψ ∈ R+ ∪ {∞}. From a financial point of view this

implies that the LOLR can decide the interest rate at which the banks assets accrues,

allowing the bank to have a higher interest rate to lower the probability of failure.

In the current subsection we derive the explicit solution for the optimal rate ψ
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that the LOLR has to give to each bank in order to guarantee their terminal survival

probability.

The strategy is as follows: given the structure of the optimal control problem, we

can analyse each node i separately, where we ansatz the value function to be of the

form V (t, x, q) =
∑n

i=1 V
i(t, xi, qi), where each V i is regarded as the value function

for the optimal problem with respect to the element i. Thus, for each player i we

compute the solution to the above problem in terms of contour line of a function

γi(t, x, q), defining first the boundaries of the domain for the value function V i, then

computing explicitly the contour line on the interior of the domain. We stress that

the computations will be performed independently for any bank i, nonetheless for the

sake of brevity we will omit the index i.

Notice first that given an initial datum and a required survival probability q̄, it

holds that P(X(T ) ≥ v(T )) ≥ q̄, then the optimal control is given by ψ ≡ 0, and

the value function V (t, x, q) ≡ 0. Therefore we compute three different domains,

obtaining, in closed form, two switching curves splitting such domains. The first

region Γ0 is the region in which the constraint is not binding, implying that the

optimal control is given by ψ ≡ 0. Financially speaking, whenever the value of the

bank lies within the region Γ0, the bank satisfies the LOLR requirement regarding

survival probability meaning that it does not need further help to increase its liquidity.

Recall that, the more the value of the bank increases, the safer is the bank.

The second region is characterized by the condition ΓΨ. In this region the optimal

control exceed the maximum rate Ψ that the LOLR is willing to grant, implying that

the terminal constraint is not satisfied and the value function V diverges. The last

domain, denoted by Γ, is characterized by a binding terminal constraint, and here the

optimal control ψ ∈ (0,Ψ) has to be explicitly computed. Similarly, we will denote

by γ0, resp. γΨ, the switching region between Γ0 and Γ, resp. between Γ and ΓΨ.

Regarding Γ let us define the highest reachable probability for node i as

WH(t, x) := sup {q : V (t, x, q) <∞} = sup
ψ∈[0,Ψ]

P
(
X t,x;ψ(T ) ≥ v(T )

)
,

where X t,x;ψ(T ) denotes the value at time T with initial datum (t, x) and control ψ ∈
[0,Ψ]. It follows that the highest reachable probability is attained when considering

the maximum admissible control Ψ < ∞, so that by Itô formula and the Feynman–
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Kac theorem, we have that WH(t, x) solves the parabolic PDEWH(t, x)(T, x) = 1[v(T ),∞)](x) ,

−∂tWH(t, x) = ∂xW
H(t, x) (µ+ Ψ)x+ 1

2
σ2x2∂2

xW
H(t, x) ,

whose solution can be explicitly computed to be

WH(t, x) = P
(
log
(
X t,x;Ψ(T )

)
≥ log

(
v(T )

))
= P

(
W (T − t) ≥ 1

σ

(
log

(
v(T )

x

)
−
(
µ+ Ψ− σ2

2

)
(T − t)

))

=
1

2

1− Erf

 log
(
v(T )
x

)
−
(
µ+ Ψ− σ2

2

)
(T − t)√

2σ2(T − t)


=

1

2

(
1− Erf

(
d(µ,Ψ, σ, T − t

))
, (3.3.14)

with

d(µ,Ψ, σ, T − t) :=
log
(
v(T )
x

)
−
(
µ+ Ψ− σ2

2

)
(T − t)√

2σ2(T − t)
,

and Erf denotes the error function. For WH(t, x) = q̄ ∈ (0, 1), we have that

1

2

(
1− Erf

(
d(µ,Ψ, σ, T − t

))
= q̄ ,

and solving for Ψ, we obtain the boundary region in implicit form

Ψ = γΨ(t, x; q̄) =

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

, (3.3.15)

with

ρ :=
√

2 Erf−1 (1− 2q̄) .

Thus, for a required probability of success q̄, the control problem is not feasible in

ΓΨ =

(t, x) :

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

> Ψ


so that, for starting data (t, x) within the left hand side of γΨ(t, x; q̄), see equation

(3.3.15), the terminal constraint cannot be satisfied, see Figure 3.1. If Ψ = ∞, that

62



is the LOLR is willing to give a possibly infinite return rate, any point is control-

lable, and therefore we can always find an admissible control such that the terminal

probability constraint is attained.

As regard Γ0, computing the no-action region we have

W 0(t, x) = P
(
X t,x;ψ0(T ) ≥ v(T )

)
=

1

2
(1− Erf (d(µ, ψ0, σ, T − t)) ,

then by assuming that W 0(t, x) = q̄ ∈ (0, 1), we have

1

2
(1− Erf (d(µ, ψ0, σ, T − t)) = q̄ ,

and, solving for ψ0, we obtain the boundary region

0 = γ0(t, x; q̄) =

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

, (3.3.16)

where

ρ :=
√

2 Erf−1 (1− 2q̄) ,

and, as done before, we are left with the following no-action region

Γ0 =

(t, x) :

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

< 0


so that, given a starting value (t, x) ∈ Γ0, the terminal constraint is satisfied and the

optimal return is given by the null control ψ ≡ 0.

At last the action region Γ is the one delimited by Γ0 and ΓΨ, that is

Γ =

(t, x) : 0 <

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

< Ψ

 .

Thus, being (t, x) ∈ Γ, the controller has to find the optimal control so that the

terminal probability constraint holds. By computing the reachability set with fixed

constant control ψ̄, that is

W ψ̄(t, x) = P
(
X t,x;ψ̄(T ) ≥ v(T )

)
= E

[
1[[v(T ),∞)]

(
X t,x;ψ̄(T )

)]
,
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Figure 3.1: Representation of different domains for the optimal control problem.

and proceeding as above, we obtain

W ψ̄(t, x) = P
(

log
(
X t,x;ψ̄(T )

)
≥ log

(
v(T )

))
=

1

2

(
1− Erf

(
d(µ, ψ̄, σ, T − t

))
,

(3.3.17)

which implies

ψ̄ = γψ̄(t, x; q̄) =

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

. (3.3.18)

What we have obtained so far has to be intended as follows: if the autonomous process

X t,x;0(T ) already satisfies the terminal probability constraint, then it is optimal to

solve the control problem with no terminal constraint, whose solution is given by the

null control in the present case.

Therefore, for a fixed q ∈ (0, 1), if (t, x) ∈ Γ, the optimal control ψ is given by

γψ(t, x; q) =

(
σ2

2
− µ

)
+

log
(
v(T )
x

)
T − t

− σρ√
T − t

= ψ , (3.3.19)

see Figure 3.1 for a representation of the above obtained regions. Moreover, along
the curve W ψ̄(t, x), the terminal probability of success remains constant, so that the
optimal control is given by the constant control ψ̄.
Being the optimal control for node i constant along W ψ̄(t, x), then, exploiting equa-
tion (3.3.7), the value function for the above control problem reads as follow

V i
(
t, xi,W ψ̄i(t, xi)

)
= (ψ̄i)2(xi)2

(
e(2(µi+ψ̄i)+(σi)2)(t−T ) − 1

2(µi + ψ̄i) + (σi)2

)
, (3.3.20)

so that we have the following theorem.

64



Theorem 3.3.2 The value function for the optimal control problem (3.3.5) is given

by

V (t, x,W ψ̄(t, x)) =
n∑
i=1

V i(t, xi,W ψ̄i(t, xi)) , (3.3.21)

where

(i) if (t, xi) ∈ Γi and qi ∈ (0, 1) are such that γψ̄i(t, x
i, q) = ψ̄i, then V̄ (t, xi,W ψ̄i(t, xi))

is given as in equation (3.3.20).

(ii) if (t, xi) ∈ Γi0 and qi ∈ (0, 1), then it holds V i(t, xi, qi) = 0.

Then V , as defined above in equation (3.3.21) ,is a classical solution to the HJB

equation (3.3.12) on Γ ∩ Γ0.

Moreover, the optimal control within the class of affine controls is given as in equation

(3.3.13), where ψ is given as in equation (3.3.18)

Proof. The structure of the optimal control problem gives that the contribute of

each node can be treated separately, so that the value function is of the form (3.3.21),

where each V i can be regarded as the value function for the optimal control for the

node i alone. As above, for ease of notation, we will omit the index i.

Fixing the node i, it can be trivially shown that for (t, x) ∈ Γ0 we have that

V (t, x, q) = 0.

Let (t, x) ∈ Γ, thus along W ψ̄(t, x), the terminal probability of surviving is fixed,

so that explicit computation shows that V , as defined in equation (3.3.20), solves the

HJB equation (3.3.12). Observing that the map

q 7→ V (t, x, q) ,

is non–decreasing, together with the fact that W ψ̄(t, x) > Wψ(t, x) for ψ̄ > ψ, we

have that

V
(
t, x,Wψ(t, x)

)
= −∞ , ψ < ψ̄ ,

since the terminal constraint in equation (3.3.7) is not satisfied. Analogously, if ψ > ψ̄,

then W ψ̄(t, x) < Wψ(t, x). Therefore, as before, the non-decreasing property of V

with respect to the third argument q, implies

V
(
t, x,Wψ(t, x)

)
> V

(
t, x,W ψ̄(t, x)

)
,

and the minimum is attained for the control ψ̄ implicitly given by equation (3.3.19).
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Regarding the value function regularity, notice that it is a classical solution in

both region Γ and Γ0. In order to prove that it is a global classical solution we need

to prove that it is regular on γ0. Let x̄ the value on the switching curve γ0, that is

for fixed (t, q), we have that γ0(t, x̄, q) = 0; then since ψ̄ → 0 as x → x̄− we have

that limx→x̄− ∂
2
xV = 0 = limx→x̄+ ∂

2
xV and limx→x̄− ∂xV = 0 = limx→x̄+ ∂xV , hence

the value function is differentiable on Γ ∪ Γ0. �
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Chapter 4

Application to a network of

financial banks

In the present chapter we use the previously obtained results to study a real-world

application characterized by an interconnected network of banks. In particular, we

will show how optimal solutions previously computed can modify the evolution of

such a network. We stress that, for the sake of readability, we will apply our results

to a small network, even if, due the fact that the optimal solution is computed in

closed form, our results can be easily extended to arbitrary big systems.

4.1 PageRank

Before introducing the model, let us introduce an explicit method to address relative

importance of a single node in a network. In particular, such an approach will be

then used to systematically decide the survival probability for each node.

Let us note that, along previous sections, we have stated an optimal control prob-

lem which has been then solved deriving its solution under the assumption that the

accepted probability of failure qi is a fixed parameter to be chosen endogenously. In

what follows we propose a general, automatic, criterion to deduce the global impor-

tance of each node in the system. Next computations exploit results on network

analysis already used, e.g., to set the functioning logic of the Google research engine,

see, e.g., [98]. According to the network formulation introduced in Chapter 3, and

using results derived in [98], we show how to score the relative importance of any

bank in the network, computing its so called Page Rank, allowing us to choose the

best survival probability q.

According to the framework described in Chapter 3 let us consider a system of
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interconnected n banks and related standard bank enumeration. Namely, we take into

account the usual one-to-one correspondence relation between the set of banks and

the set of vertexes V := {v1, v2, . . . , vn}, referred to as nodes, while I := {1, 2, . . . , n}
is the associated set of indexes. Moreover, consider a LOLR strategy in which for each

vi ∈ V the default probability constraint parameter qi depends on a predetermined

rank Ri associated to the banki, hence representing its systemic importance in the

network.

In what follows we are considering graphs as defined in Chapter 3. In particular, to

each node vi ∈ V corresponds a bank, while to edges connecting nodes (vi, vj) ∈ V×V ,

we associate the following quantities

γ+
(i,j) =

c+ Li,j + c− Lj,i
Nj −min(N) + 1

, γ−(i,j) =
c+ Lj,i + c− Li,j
Ni −min(N) + 1

, (4.1.1)

where, letting

L+
j =

∑
i∼j

Lij , L−j =
∑
i∼j

Lji , (4.1.2)

i ∼ j ⇐⇒ vi, vj are connected,

we define Nj as the net amount of money held by bank j if it would pay its debts at the

actual time, i.e. Nj := Xj + L+
j − L−j . It is worth empathising that the denominator

represents simply a measure for the excess of capitalization for each bank in relation

to the less capitalized bank, whose capital is indeed min(N). Moreover c+ and c−

are two non-negative constants chosen to confer more importance to due debts, resp.

to owed credits. For the sake of simplicity, since c+ and c− are meant to be weight

parameters, we set c+ + c− = 1. Notice that γ+
(i,i) = γ−(i,i) = 0 and γ−(i,j) = γ+

(j,i), for all

i, j ∈ I.

Let us introduce the notion of outdegree deg+
γ , resp. indegree deg−γ , for any vertex

vi ∈ V , namely

deg+
γ (vi) =

∑
j∈I

γ+
(i,j) , deg−γ (vi) =

∑
j∈I

γ−(i,j) ,

and normalize the quantities defined in (4.1.1) associated to any couple (i, j) of edges

in the graph

−→τ (i,j) =
γ+

(i,j)

deg+
γ (vj)

, ←−τ (i,j) =
γ−(i,j)

deg−γ (vj)
,

corresponding to the ratio of a linear combination on the liabilities between bank i

and bank j, and the asset value of bank j. Moreover, we define the matrix
−→
T as the
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matrix whose entries are −→τ (i,j), for i, j ∈ I, the quantities −→τ (i,j) being the weights

assigned to each oriented edge.

Therefore, the rating value associated to any node/bank vi is given by the following

recursive formula

Ri
d = d

∑
j∼i

−→τ (i,j) R
j
d, (4.1.3)

where d ∈ (0, 1) is a parameter to be chosen, typically d = 0.85, see, e.g., [95]. To

compute equation (4.1.3), we introduce the so called Google-matrix, see, e.g., [95,

Ch. 2].

We assume that our network is composed by banks that not only own liabilities if

c+ = 1, resp. not only own liabilities if c+ = 0, and at least connected for c+ ∈ (0, 1).

Of course, banks that are non connected to others in the network, are simply not

ranked, since their default cannot affect the system. On the other hand, even if the

conditions for c+ ∈ {0, 1} are not required, they guarantee the boundedness of all the

elements of the matrix defined in the next Definition 4.1.1. We stress that, to avoid

above restrictions, one can modify the values assigned to edges by equation (4.1.1),

e.g., as follows: for c+ = 1 and for every i ∼ j, define γ̃+
(i,j) = Li,j/(Nj−min(N)+1)+ε

as the modified value assigned to the edges.

Definition 4.1.1 (Google-matrix) Let J be a n× n–matrix whose entries are all

ones. A Google-matrix is a n× n–matrix given by

Gd :=
1− d
n

J + d
−→
T , (4.1.4)

where d ∈ (0, 1) can be chosen to guarantee irreducibility of Gd, while J is the n× n
matrix whose all entries are 1.

Since the matrix defined in equation (4.1.4) is positive we can apply the Perron-

Frobenius Theorem which assures that there exists a maximum real eigenvalue λ > 0

of Gd, indeed λ is the so-called dominant Perron-Frobenius eigenvalue. Moreover,

there exists one of the associated eigenvectors, denoted by Rd and usually called

Perron-Frobenius dominant vector, which is both strictly positive and normalized

and whose components represent the rating of each bank. Let us recall that d is

usually chosen to be approximately equals to 0.85, see, e.g., [95].

It follows that proposed ranking procedure consists in computing the following

series

Rd = d
∞∑
k=0

(1− d)k (Gd)k 1 ,
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where we denoted by 1 an n-dimensional vector whose entries are all equal to one.

4.2 A concrete case study

In the present section we consider a systems of banks aiming at computing their

ranking. First of all, we are considering a LOLR willing to save banks whose failure

would cause insolvency and inability to pay back their liabilities, i.e. c+ = 0, which

also implies c− = 1. According to what we have seen along previous sections, see also

[95], we fix d = 0.85 and we consider a system of banks whose liability matrix and

cash vector are as follows, see Figure 4.1 for the associated graph:

L =


0 0 10 0

5 0 5 5

0 0 0 0

10 4 0 0

 , X =


5.2

6

13

3

 .

Let us note that proxies for L and X can be evaluated through the methodology

proposed in [50] starting by synthetic data generated by FX markets settlements.

However, the aim of this part of the thesis is to focus on the LOLR strategy which

should have complete information on the financial market, therefore we do not go

into technical details on the estimation procedure.

As explained in Definition 4.1.1, the associated Google-matrix can be easily com-

puted and results as follows

Gd =


0.0375 0.8344 0.0375 2.3042

0.0375 0.0375 0.0375 0.9442

2.9352 0.8344 0.0375 0.0375

0.0375 0.8344 0.0375 0.0375

 ,

where the eigenvalues of the matrix Gd are λ1 = 1.2892, λ2 = −0.8449, λ3 = −0.1472+

0.3982i and λ4 = λ3. The absolute value of the eigenvector corresponding to the

highest eigenvalue is

R = v1 =
[
0.3516 0.1342 0.9177 0.1275

]T
.

The third bank is the one with the highest ranking. Indeed, it is easy to note that

its default would cause the default of the first bank and then an insolvency cascade.
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Figure 4.1: Graph representing the system of banks: nodes report the cash value of
each bank, while the oriented edges represent the amount of money lend from a bank
to another.

Banks (i) 1 2 3 4

Xi 5.2 6 13 3∑
j∼i Lji 15 4 15 5

Ri 0.3516 0.1342 0.9177 0.1275

Table 4.1: Comparison among the banks rankings.

This is due to the fact that the third bank is systematically more important than

the others. Notice that the amount of money due is the most important aspect to

be taken into account for the safety of the system. We have reported in Table 4.1

further considerations.

Remark 4.2.1 Looking at Figure 4.1 and Table 4.1, we can see that although the

first and third banks are owning the same amount of money to other banks, nonethe-

less their rankings R are significantly different. This is due to the fact that Bank

3 owns to Bank 1 and its insolvency would probably cause the default of Bank 1.

In this example the cascade effect caused by the default of Bank 3 would stop with

the default of two banks because of the small dimension of the system, while, on the

contrary, such an effect amplifies in big networks.

4.2.1 LOLR strategy under the PageRank approach

In what follows we will describe how to adapt the LOLR problem stated in Section 3.3

to guarantee more flexibility to those banks that are more important for the network’s

health. Such type of strategies are often referred to as Systemic importance driven

(SID) strategies, see the next Section 4.3 for more details.
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Figure 4.2: 100 simulations for the evolution of Bank 1 (top panel), 100 simulations
for the evolution of Bank 3, without LOLR intervention (middle panel) and 100
simulations for the evolution of Bank 3, with LOLR intervention (bottom panel).
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We recall that the aim of the LOLR is to minimize the expenditure on banks

bailout given by equation (3.3.2) constrained by (3.3.3), i.e. guaranteeing a probability

qi that the bank i will not default. Let us fix an identical probability constraint

q ∈ [0, 1) for all the banks, hence adopting an equality policy analogous to the max

liquidity (ML) strategy introduced in [33]. We note that a ML strategy guarantees

no privileges to any banks, which would lead the LOLR to lend the same amount of

money for systematically important banks as for those banks whose failure would not

cause a cascading effect.

The main idea of the subsequent analysis consists in defining the probability con-

straints as an increasing function of the rank assigned to each bank. Namely, we

have

qi = f(Ri), for f : R+ → [0, 1) increasing function ,

where, as seen in Section 4.1, Ri is the ranking of the bank i. Notice that requiring

f ′ = 0 the LOLR will again be restricted to the ML strategy.

In [33] was shown that choosing f to be an increasing function leads to a more

convenient scenario for the health of networks which have a core-periphery structure,

whereas, normally, banks networks have a dense cohesive core, with a periphery less

connected.

Coming back to the type of network already defined in Section 4.2, see Figure 4.1,

we assume that the LOLR assigns the following probability constraints

qi = 0.9 + 0.05 · 1{Ri>0.5} + 0.04 · 1{Ri>0.75} ; (4.2.1)

and we perform a one period simulation of the network, see Figure 4.1, taking t0 = 0

and T = 1. Let us assume, for the sake of simplicity, that all the liabilities expire at

time T , and that they exponentially increase in time with fixed growth rate r = 0.08,

i.e.

L(t) = Ler t, for t ∈ [0, 1] .

Furthermore, we assume that cash vectors’ dynamic evolve according to geometric

Brownian motions evolving, namely:

dX1
t = X1

t (0.2 dt+ 0.1 dWt),

dX2
t = X2

t (0.15 dt+ 0.25 dWt),

dX3
t = X3

t (0.3 dt+ 0.2 dWt),

dX4
t = X4

t (0.05 dt+ 0.4 dWt) .
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Then, accordingly to equation (3.3.19), we have that the banks’ log-switching regions

yi, i = 1, . . . , 4, read as follow

y1 = 1.622593 , y2 = 0 , y3 = 2.97332 , y4 = 0 ,

q1 = 0.9 , q2 = 0.9 , q3 = 0.99 , q4 = 0.9 ,

recalling that they have to be less than the log initial wealth X i(0) in order to guar-

antee the fulfilment of the probability constraint. Therefore, since

log(X1(0)) = 1.6487, log(X2(0)) = 1.7918 ,

log(X3(0)) = 2.5649, log(X4(0)) = 1.0986 ,

we have that the LOLR has to intervene controlling Bank 3. Notice that the LOLR

has not to intervene in banks 2 and 4, since they have more credits than debits,

hence they cannot face bankruptcy, while the opposite is true for banks 1 and 3. For

q1 = 0.95, we would have ỹ1 = 1.6589 and there would need a LOLR intervention

injecting money also in bank 1.

Figure 4.2 (top panel) represents 100 simulation for the evolution of Banks 1 and

3, with and without LOLR intervention. Since the probability of Bank 1 to survive

is greater than q1 = 0.9, the LOLR is not going to intervene, whereas indeed its

probability to default is approximately 0.062. Clearly, requiring q1 = 0.95 would

imply that the LOLR has to intervene lending money to Bank 1. In the middle

Figure 4.2, there are represented 100 simulations of the process associated to Bank 3;

since q3 = 99% and the default probability of Bank 3 is 0.388, the LOLR is going to

intervene injecting capital in its cash reserve. After the optimal injection of capital,

Bank 3 has probability 0.01 to face the default event, see the lower Figure 4.2, for the

representation of 100 simulations of Bank 3 in the case in which the LOLR is going

to intervene. Let us underline that the simple case-study we analysed has been set to

provide an example as clear as possible, nonetheless, because all the analytical results

we derived are in closed form, general complex networks can be theoretically treated as

well. Clearly, increasing the graph connection grade, we have an exponential growth

in computing the quantities of interest.

4.3 Comparison with the paper by Capponi et al. [33]

As mentioned above, the financial setting has been mainly borrowed by [55] as con-

cerns the lending system formulation, and from [33] for the optimal control problem
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with an external supervisor aiming at guaranteeing the overall sanity of the system.

This section is devoted to a comparison with [33]. We stress that our assumptions

on the optimal control are in the spirit of [33], in the sense that we consider failure at

discrete times; also we will not consider a global optimal control, deriving a control for

the whole time interval but rather we derive a series optimal control and then gluing

together the resulting optimal controls. As mentioned we leave the optimal global

control to future research being this latter point mathematically more demanding.

This comparison is significant since their work is based on a similar framework,

namely a multi-period controlled system of banks, represented by a network, in which

an outside entity, named LOLR, provides liquidity assistance loans to financially

unstable banks in order to reduce the level of systemic risk within the whole network of

banks. To analyze the systemic risk in interbank networks their work follows a clearing

system framework consistent with bankruptcy laws. In particular they generalize the

single period clearing system in the paper by Eisenberg and Thomas, see [55], by a

multi-period controlled clearing payment system assuming limited liability of equity,

priority over equity, and proportional repayments of liabilities after the default event.

This generalization leads to a better insight in the propagation and aftershocks of

defaults. The main feature in [33] is the comparison between two possible LOLR

strategies:

• the Systemic Importance Driven (SID) strategy, in which liquidity assistance is

available only to banks considered systemically important, i.e. the banks whose

default would cause significant losses to the financial system (because of their

size, complexity and systemic interconnectedness);

• the Max-Liquidity (ML) strategy, in which the regulators aim to maximize the

instantaneous total liquidity of the system.

By the analysis of these two different strategies they showed that the SID strategy is

preferred when the network has a core-periphery structure, i.e. consisting of a dense

cohesive core and a sparse, loosely connected periphery. This is due to the fact that

the ML strategy increases the default probability for systematically important banks.

Although these two strategies are simplified and do not consider the amount of capital

that the LOLR has to inject in the banks network, nonetheless such comparison is

useful because the numerical approach fits easily through simulations and systemic

risk analysis.

Our work has some important similarities with the one by Capponi et al., in

particular we also have considered a finite connected multi-period financial network
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representing the banks system and the assumptions guaranteeing the consistency with

the bankruptcy laws. But, despite this, instead of comparing the two strategies, SID

and ML, we considered a LOLR wishing to minimize the square of the lend resources

over the probabilistic constraint. Therefore, we did not give an initial budget at

disposal to the LOLR as in [33], but took into consideration regulators aiming to find

the loan control {αi(t)}i=1,...,N,t∈[tk,tk+1] minimizing the functional given by equation

(3.3.2) for each time interval, i.e. ∀k = 1, . . . ,M −1, ensuring that the probability for

each exogenous asset value to be greater than the default boundary is greater than a

given constants qi for each bank i ∈ {1, . . . , N}.
Moreover, while [33] is meant to compare two strategies for the LOLR, our ap-

proach follows a different path in searching the optimal budget consumption to guar-

antee a prescribed level of safety of the financial network, given by the parameters

qi i = 1, . . . , N . In particular, we do not assume strong constraint over the regula-

tors budget, which depends on the default probability constraint parameters qi. To

switch on a similar comparison as in [33], i.e. considering banks networks of the type

core-periphery and baseline random networks, and regulator policies of the type SID

and ML, it suffices to fix the probability constraint depending on the systematic im-

portance of the banks. That is, banks whose failure would cause significant losses to

the financial network, because of their size and systemic interconnectedness, should

be endorsed with greater default probability parameters qi. Therefore, our study pro-

vides an extension of the admissible policies, through considering an optimal control

theory approach.

4.4 Conclusions

In these two chapters of the thesis, we have derived a closed form solution for an opti-

mal control of interbank lending subject to specific terminal probability constraints on

the failure of a bank. The obtained result can be applied to a system of interconnected

banks, providing a network solution.

We have also shown a simple and direct method to derive the relative importance

of every node within the studied network. We would like to underline that such a

ranking value is fundamental in deciding the accepted probability of failure which

modifies the final optimal strategy of a financial supervisor aiming at controlling the

system to prevent global crisis as generalized default.

The results here presented constitute a first step of a wider research program. In

particular, in future works we shall consider sequence of checking times each of which
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characterized by possibly different constraints to be considered by the supervisor.

In this setting, a solution can be obtained by a backward induction approach, see

[36, 100], applied to results here derived. Moreover, as a further development we

will consider a framework where the failure can happen continuously in time, hence

imposing strict constraints at any time before the terminal one T .

To conclude and anticipate Part III, it is worth noting that central banks and

regulators already consider the systematically relevance of important financial insti-

tution, and indeed for such institutions and corporations they required different and

stricter minimum capital requirements, see e.g. the Enhanced Prudential Standards

for US globally systematically important banks of the Comprehensive Capital Anal-

ysis and Review (CCAR) of the US Federal Reserve. This technique to tackle the

problem concerning the preservation of the health of the financial system is another

alternative to the LOLR approach, which also clearly emphasizes the important role

that big banks have, but, on the other hand, it forces them to be “too cautious to

fails”.
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Part III

The Default Risk Charge approach

to regulatory risk measurement

processes
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It might be a lot easier to take risks

if you’re part of a group who will

look out for one another.

Andrew Yang (1975-)
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Chapter 5

Introduction

The financial crisis obliged the authorities to improve in a dramatic context the bank-

ing regulation about the risk management processes and the related capital require-

ments. The new rules along with the awareness about the weakness of the current

practices implied a new exciting research era in the risk management field, covering

the whole end to end process, from new previously forgotten risk sources (systemic

risk, liquidity risk, etc) to the attempt to quantify the model risk, to the algorithmic

effort in order to get faster, granular, reliable risk measures, according to the best

reporting standard, such as auditability, drill down features and so on. In this wide

scenario, one of the challenging tasks is to capture the credit risk of the financial

instruments, hence removing the classical old boundary where only for the banking

book instruments, namely mortgages and loans, the credit risk was measured, while

for the financial instruments in the trading book the credit risk calculation was not

requested. In fact, it was prescribed only within the so called Basel 2.5 regulation

established starting from 2011, see, e.g., [11], for further details.

The regulation path to this unified view has not yet been completed, but a new

relevant step has been developed in the last years with the new Basel framework for

the market risk. The new regulation and the new capital charges for the default risk

of the trading book portfolio permit to evaluate some alternative computational tools,

that can be compared to the usual Monte Carlo approach (MC from now on) used in

this area. This part is organized as follows:

• Section 5.1 describes in a self consistent style the financial context and the main

objective of the work,

• Section 5.2 introduces the mathematical framework underlying the financial

settings,
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• Chapter 6, besides containing the outline of the usual model for the default risk

calculation, describes the proposal of a quasi exhaustive-heuristic algorithm

along with its set-up for real cases.

5.1 The financial context and goal of the work

Since the risk management is a vast field, enriched by a large amount of different

applications, spanning from pure practitioners’ ones to more theoretically oriented

subjects, we have provided some references to avoid any possible misunderstanding

concerning both the main goal characterizing the present work and the general context

within which it has been considered.

First of all, let us underline that we can distinguish two main different paths in the

risk management history. The first one is the scientific risk management, namely the

whole set of models, and mathematical techniques developed by both the scientific

and the professional community. Such models are often used by banks, according to

internal scrutiny procedures mainly aiming at adapting them to real scenarios and

contingent decisions.

The second path is constituted by the so called regulatory risk management, which

is nothing but the set of rules the banks are requested to apply to measure their risks.

The latter point is strictly linked to the banks’ obligation to have enough capital to

prevent them from huge losses. In this direction, a fundamental regulatory framework

is the one represented by the Basel Committee on Banking Supervision, or BCBS for

brevity. BCBS outlines and updates for each topic the proper framework, then each

country adapts them to build their actual regulation, taking care to respect some

general not negotiable financial constraints.

The two paths meet and interact, very frequently. Typically, new techniques and

models are accepted in the general regulation framework, provided there exists a

robust awareness about them.

A milestone example is represented by the competition between the Value at Risk

(VaR) and Expected Shortfall (ES). The VaR was adopted as the official market risk

measure in 1996 by BCBS, see, e.g., [9]. Then, the academic community pointed out

its drawbacks, such as the lack of sub-additivity property, see, e.g., [2, 3]. Never-

theless, such risk measure has been adopted so far and is going to be revised within

the incoming Fundamental Review of Trading Book (FRTB) framework forecasted to

enter in force from 2022, when the VaR will be replaced by the ES, see [13] for further

details. In this scenario, our work has been mainly focused to consider the credit risk
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in the trading book, namely to consider the risk associated to a portfolio of financial

instruments held by the banks, such as bonds and equities. Even if the credit risk

field is a very large area, it is possible to split it in two main research areas. The

first one is represented by the development and analysis of suitable default models

for each counterparty, along with the estimation of related default probabilities. The

second major theme is the so called portfolio credit risk which, roughly speaking,

aims to optimize the way to collect each debtor’s risk to obtain a consistent risk

measure for the whole portfolio. The latter implies a difficult point to be solved,

namely how to properly infer the default correlations among different debtors that

have not yet been observed at the calculation date. Let us recall that, concerning

the default probabilities evaluation, the most celebrated contributions are the struc-

tural models by Merton, see [89], while, to what concerns the portfolio credit risk, a

fundamental seminal work dates back to the Vasiceck contributions, see [115]. The

banking industry has tried to exploit these first scientific contributions, working on

their mathematical peculiarities, to develop more effective calculation processes, as in

the case of the binomial-based model by Credit Suisse and the Credit Metrics model,

for further details see [96]. The embedding of previously mentioned developments

within the Credit Risk general framework started in in 2006, when the Basel 2 regula-

tion admitted the statistical models to measure the credit risk of the portfolio. Until

that date, only the standard models where allowed, which implied to consider a set of

grids of coefficients, each of which applied to a different exposure category. Along this

regulatory line, the statistical model prescribed by the BCBS has been the Gordy one

(2003), also known as the Asymptotic Single Risk Factor model (ASRF). The ASRF

model is characterized as follows: each debtor (i) has a behavior Yi defined by

Yi = bi ·X +
√
q − b2

i · wi ,

where wi, X ∼ N(0, 1), with ρ(X,wi) = 0. In particular, X is the single systematic

risk factor and all the debtors depend on it by the factor loading b, while the specific

features are summarized in the independent Brownian-type noise represented by wi.

The counterparty defaults if Yi is below a threshold K, given by K = Φ−1(P ), P

being the default probability of (i) that is estimated by other statistical models.

We underline that ASRF model is very appealing for the regulator, in fact, if the

credit portfolio has many positions with exposures amount Ei and it holds the perfect

granularity property, i.e.
Ei∑n
j=0Ej

→ 0 ∀i ,
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then the VaR of the whole portfolio can be analytically obtained by summing up the

risk contributions coming from each position. It is worth to mention that, in real

markets, the perfect granularity property does not hold perfectly, nevertheless if the

credit portfolio is very large and not much concentrated, then the analytical VaR

formula represents a good approximation. We have to consider that typical banks’

positions belong to two broad categories, namely: the banking book and the trad-

ing book. While the banking book mostly consists of classical credit products, such

as loans, mortgages and so on, the trading one is mainly constituted by structured

financial instruments, such, e.g., bonds, equities, derivatives. For the sake of simplic-

ity, we do not analyze the accounting perspective that allows to classify also some

financial portfolio in the banking book category, if there is not a trading purpose for

those positions. One of the most important weaknesses of the Basel 2 regulation lies

exactly in the banking vs trading book classification challenge. More explicitly, the

default risk has to be measured within the regulatory framework only for the banking

book portfolio, not for the trading book. As an example we consider a portfolio of

plain vanilla bond. Only the interest rate risk, which is referred as the generic risk

in the BCBS language, and the spread risk, or specific risk from the regulation point

of view, are captured by a 10 day 99% VaR, without any measurement and capital

constraint assignment for the portfolio default risk.

From the 2007-2008 crisis we learned that also the big banking institutions and

large corporates can fail, implying a huge amount of losses in the trading book port-

folio, also because of possible contagion phenomena, see, e.g., [15] and Part II. These

types of losses can not be absorbed by the bank capital, at least if no provision for the

risk has been previously stated. To solve this gap an updated regulatory directive,

namely the Basel 2.5 one, has been developed, see [12] and [11] for further details, al-

lowing, in particular, for a new risk parameter called Incremental Risk Charge (IRC).

This new risk measure is a 99.9% VaR with 1 year horizon. It takes into account

both default risk and migration risk, or down grade, and it has been mainly pre-

scribed for bonds-type instruments. The Basel 2.5 regulation came into force in 2012,

accompanied by a lot of criticisms because of its overreaction properties that obliged

banks to immobilize huge amount of their capital. In particular, the IRC measure

is an example of risks double counting. In fact, the migration risk captured by the

99.9% 1 year VaR clearly overlaps the old classical risk measure for the market risk,

i.e. the 99% 10 days VaR. Such an issue generates too high risk figures, with banks

unable to efficiently allocate the requested capital. Therefore, BCBS published an

updated version of the previous regulatory rules, providing the fundamental review of
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the trading book (FRTB), see, e.g., [13], which, even if becoming into effect just start-

ing from 2022, has immediately pushed banks to be compliant with it, by applying

its the new rules in advance within their reporting and limits system as well as to try

to develop properly adapted internal models. Therefore, the FRTB has allowed to

overcome some of the previously present financial misunderstandings. The IRC has

been replaced by the Default Risk Charge (DRC, formally Incremental Default Risk

charge or IDR).

The main features of DRC are:

• It is still a 99.9% 1 year VaR.

• Only default risk is considered, while migration risk is removed.

• Equity style positions have to be considered.

• The default model must be a 2 systematic factors model, to overcome the draw-

backs of ASRF. In fact, since trading book often consists of a relative small

number of concentrated positions, namely just dozens or hundreds of debtors,

instead of set many thousands, the ASRF proxy could provide too rough esti-

mates.

• The default correlations must be jointly estimated, hence taking into consider-

ation both equity prices and spread movements.

An excellent review of the FRTB regulation can be found in [83], while the new DRC

challenges are clearly explained in [102]. Within this scenario, we do not aim to

suggest what systematic risk factors have to be selected, how to estimate the default

correlations, how to map illiquid instruments, or what is the proper proxy to be

considered. Instead, in the global DRC calculation work-flow, we try to innovate in the

final quantile calculation procedure. In other words, once the model has been stated,

the positions have been classified and we know the joint default probabilities of all

the debtors, we want to compare the classical Montecarlo approach with deterministic

exhaustive or near exhaustive procedures.

It is worth to observe that the more the quantile level is extreme, 99.9% for DRC,

the more the Montecarlo empirical quantile can suffer of high variance estimation

error, as outlined, e.g., in [43].

Then a huge number, such as 10 or 100 millions, of heavy simulations are run

by the banks to get convergence of the empirical estimator, implying a high time

consuming procedure which is also not so easy to set-up.
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At the best of our knowledge, our analysis innovates the already present literature

on the subject, showing a new proposal that we are confident can be a very promising

alternative to the existing ones.

5.2 The mathematical setting - Model for the IRC

and DRC measure

To focus on the statistical and algorithmic problem, we skip some of the several

technical details of the regulation, and we simplify a bit the complex model. Roughly

speaking, most of the model for IRC are structural models, where the default event of

each issuer is related to some background risk factors. Moving from IRC to DRC, the

model for the portfolio losses could remain the same, only the events to be considered

are changing.

For a general overview of the structural model á la Merton, see the seminal paper

in [89]. For the practical implementation in the industry, the benchmark model is the

CreditMetrics model, see [96].

For the sake of simplicity we focus now on the most common model in the banking

practice, avoiding too many theoretical definitions and preliminaries.

Notation

• J : the number of issuers (of bonds, equities, ...) in the trading portfolio. Usually

for medium banks J could be of some dozens, more than one hundred only for

very large banks. Moreover, we have a concentration effect, e.g. with the top

10 issuers one has a relevant fraction of the whole portfolio value.

• MtM j: the mark to market, or present value, of the instruments issued by the

j-th issuer, then MtM j =
∑I(j)

i=1 MtM i,j, where I(j) is the number of instruments

hold in the portfolio and issued by issuer j.

• DP j: the default probability of the j-th issuer.

• Rj: the rating level of the j-th issuer at the evaluation time. Usually (it is

merely a convention) the lower the rating code, lower the default probability.

Usually the ratings are useful tools to group the default probability levels, hence

one can write DP (Rj) instead of DP j to make explicit this mapping process.
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• rr j: the recovery rate for the j-th issuer once the default event happens. This

value is a fraction in the range [0, 1], but usually it is quite close to 35%, 40% for

bond instruments, 0% for equity instruments. In the practice, we can not have

an estimated recovery rate for each issuer, before it defaults, then the recovery

rates are grouped by historical data and clustering all the default events by

sector (financial, corporates, govies) and / or geography. We indicate with s(j)

the sector to which the issuer j belongs, we can write more explicitly rr(sj).

The complement to 1 of the recovery rate is the loss given default (LGD in

short), lgd j = 1− rr j.

• Lj: the loss due to the default of the j-th issuer. Here we do not focus on the

joint stochastic dynamics of market (interest rate, forex exchange, equity prices)

and credit (default, spread) risk factors, hence we simply use the expression

Lj = MtM j · lgd j ·Ft, where F is the forward factor over a time horizon t and is

equal to 1 at the default time is the MtM is supposed not to change significantly.

Hence here L is not a random variable, but the loss once the default occurs.

Furthermore, as usual from the practitioner’s point of view as well as within the

Basel regulation models, we replace the random loss given default fraction with

its expected value LGD. Therefore, L can be considered as an expected loss,

conditioned to the default event.

• RL: number of rating levels.

• PLj (rl) is the profit (or loss) for the holdings in the j-th issuer if its rating

moves from the current level to the level rl = 1, 2, . . . ,RL. Practically, a fur-

ther mapping process is performed, and for each combination (s, rl1, rl2) of

rating migration for a given sector s a spread movement is established, let be

∆spread{s,rl1,rl2}. We stress the fact that, since the lgd j do not differ signifi-

cantly from a j to another, the vector of the losses Lj may be viewed as almost

proportional to the vector of the mark to markets MtM j.

With the above equipment, we can finally write the portfolio loss due to the default

events, let LossP

LossP =
∑

Lj · 1D(j) ,

being 1D(j) the indicator function of the default event. Despite the very compact

expression, the calculation process of the risk figures (quantile, expected shortfall,

etc.) are very involved, because of the complex parameters estimation process one
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has to set and to maintaining, and for the dependency structure between the issuers

defaults. The IDR measure is defined as VaR (LossP , 99.9%, 1Y ).

If we are interested to the broad profits and losses profile that we could observe

in the portfolio because of the migration events we have

PLP =
∑

PLj (Rj) .

In the above expression most of the complexity is in the chain of possible migration

events, the associated PL, the dependency between the different issuers migration.

The above quantities are the key point of our application in the next section. At

the end, the random variable PLP is a discrete one. How many possible outcomes

could it have? Given the J issuers, and given the number RL of rating levels, we

have that the cardinality of the outcomes of the random variable PLP equals RLJ ,

i.e. #{outcomes(PLP )} = RLJ .

Here we are analyzing the issue by a strict cardinality perspective of the points

in the space Ω where the elementary events ωi take place. Of course we could have

different events with the same numerical value of PLP or some events that have

very negligible probabilities. Anyway, with practical cases parameters it comes out a

number of outcomes that can not be dealt satisfactorily in an exhaustive fashion.

Here exhaustive means that we could theoretically calculate the exact distribution

of the random variable PLp, i.e. its outcomes {xi} and the related probability masses

{qi}, and then to obtain the quantile by properly cutting the cumulative (discrete)

distribution function at a given level.

With J = 20, RL = 10 we have 1020 possible outcomes. Obviously this cardinality

cannot be actually managed due to 3 main reasons:

1. computational, i.e. to calculate all the {qi} probability masses;

2. ordering, i.e. to order the PLP (i) to get the quantile;

3. storage, i.e. to write in a database the whole input-output combinations for

auditability purposes.

But thanks to the IDR new regularization the number of outcomes decreases dramat-

ically, hence one can wonder if some exact calculation can be performed. Let us recall

that in this case we have “only” 2J elementary outcomes. With the above parameters

220 ' 1, 000, 000. Then at least theoretically we can try to face it by exploiting its

feasibility, computational time and so on.
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Chapter 6

Evaluation approaches

In this chapter we will face our aim to determine the value of the minimum capital

required to stand up to losses due to the 99.9% worst possible scenarios of issuers

defaults with shares in the portfolio considered.

This chapter will be divided in two main sections that correspond to the de-

scription of a numeric algorithm for a relatively small portfolio dimension and the

description of a simulation algorithm for a portfolio with larger dimension. Because

of the heuristic approach for the larger dimension portfolio, the second section will

be integrated by a statistical comparison.

For both cases it will be considered a portfolio consisting of J issuers; J will be the

dimension of the problem. Practical experience has shown that common portfolios

usually satisfy some characteristics on the loss vector L = [L1, L2, . . . , LJ ] and on the

default probability vector DP = [DP1, DP2, . . . , DPJ ] which are summarized by the

following properties:

• We have a usual concentration effect in the asset allocation, that is more in the

govs bonds and less in the corporate bonds. Furthermore we can heuristically

assume that the loss determined by the default of the 10% of the issuers among

the larger ones, should be at least the 90% of the maximum possible loss in

the portfolio,
∑J

j=1 Lj. Here the values 10% and 90% are an example, and

other similar assumptions on the concentration may be made. As we outlined

in section 3, we have that L ≈ c ·MtM , i.e. the 2 vectors have approximately

the same distribution. Hence from now on we simply use L = (Lj);

• L can be satisfactorily approximated by a Beta distribution. This approximation

is justified since the global loss L =
∑
Li is bounded, which is coherent with

the Beta distribution characteristics and, moreover, by updating its parameters,
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the distribution behavior can be adapted to fit different loss shapes. It is also

worth to mention that the Beta distribution is rather popular within financial

applications to describe the loss given default quantity, which implies that it

is a widely accepted random model in the credit risk management practice.

We would also like to underline that the loss is the sum of weighted, by the

portfolio fractions, loss given defaults. From this point of view, one can also

consider different alternative probability distributions, as the Gamma or Log-

normal ones, nevertheless they are more suited for unbounded losses cases, as,

e.g., when considering the operational risk field, as pointed out in [94].

• Issuers with greater Lj have a lower default probability DPj, because of the

prudent asset allocation of the bank’s portfolio.

• Default probabilities are in the range [0, 10%].

It is worth to mention that such empirical facts admit some exceptions, never-

theless the above points have some rather intuitive rationale. Typically, if we look

at the bond portfolio of a typical European commercial bank, it is characterized by

long positions with a relevant part of government bonds, and, in this category, the

first holding is for the national country bonds with good tradition, e.g., BTP for Italy,

bonos for Spain, bunds for Germany, etc. Moreover, all banks have some limits in

the asset allocation policies, where some strict upper bounds are assigned for instru-

ments and issuers with low rating, such as B, BB, etc. Furthermore, some limits are

given also by sector, where corporate bonds, typically with higher default probabil-

ity, cannot exceed a given threshold. Hence we have the double concentration effect

mentioned above. As an example, we exhibit the portfolio composition, as of 2016,

December, of one of the largest Italian banks. For the sake of clarity, here the weights

are relative weights, and the total value of portfolio is about 20 billions AC:

• Numbers of issuers in portfolio: about 90;

• Weight of the first bond issuer, or Italian Republic issuer: 84%;

• Weight of the first 5 holdings: 91%.

Figure 6.1 represents the plot of the cumulative weight of the bond issuers. Due to

the huge variety of banks and issuers in the market, there is not a comprehensive

empirical analysis in the literature, but several specific studies, most of which have

been conducted by central banks and financial authorities that have access to data
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Figure 6.1: Plot of the cumulative weight of the bond issuers.

where generally there is not a granular disclosure, namely the bank portfolios holdings.

A very recent deep analysis can be found in [87].

These portfolio management techniques explain both the concentration effect and

the negative relationships between the PDs values and the exposures sizes. To this

extent, let us recall that the market spread values for bonds can be misleading in

the perception of the default probability, namely for the government bonds. In fact

the FRTB regulation strictly prescribes to not use the market, risk neutral, PDs

implied by the spread, but instead the statistical real world estimation, see, in [13],

the 352 BCBS paper, par.186.(s). Therefore, the high spread levels and volatilities

characterizing some EU countries, where the banks have the most relevant holdings,

do not imply high PDs in the DRC calculation, namely: the real probabilities are

very low, hence matching the negative relationship principle.

To obtain a vector L satisfying these properties, for each single issuer j = 1, . . . , J

we simulate the values of Lj through a beta distribution f(α, β), with parameters

α = 1/15 and β = 5, of the default probability, DPj, that will be proportional to

its Lj. In Figure 6.2 we split the range for the loss values into 40 sub-segments and

represented the frequencies of occurrence of 1000 losses Lj, simulated by a Beta
(
5, 1

15

)
,

and we did the same for the default probabilitiesDPj, which are inversely proportional

to the value assumed by the correspondent Lj. Figure 6.3 represents the scatter plot

of J = 200 points of a single portfolio simulation for the couple (DP , L) to show

the tendency of an inverse relation between the amount of losses and the default

probabilities.
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Figure 6.2: Histogram representing the frequency of occurrences of 1000 values of L
and DP. We remark the fact that banks have different portfolios from each other, and
that the portfolios are time changing, therefore taking into consideration simulated
portfolios is not less accurate than considering samplings that are relatively small
with respect to the wide empiric variety.

Figure 6.3: Scatter plot of a single simulation of J = 200 points of the couples (DP , L)
with logarithmic scale for the y-axis.
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6.1 Determination of the minimal capital required

through comprehensive exact approach

Let us start from a simple case. We consider a portfolio P consisting in shares of

J = 20 issuers, assuming that the loss vector L and the default probability vector

DP are such that P satisfies the properties derived by practical experience.

Since every issuer is associated to a DPj, we can compute the conditional default

probabilities determined by defaults of combinations of issuers. In this part of the

thesis we will assume that the issuers are uncorrelated, therefore it is the starting point

for further analysis. The reason for this independence assumption on the issuers is

mainly motivated by the fact that this study is meant to emphasize the calculation

procedures and the machine execution effort, instead of the statistical model that

binds the issuers.

Having J = 20 issuers in the considered portfolio, implies that the number of

possible conditional default scenarios is

N = 2J = 1048576,

and if we have n issuers that will default, the number of possible combinations is

given by the binomial coefficient
(
J
n

)
. To each default scenario we can associate its

conditional default probability CDP . For n issuers that will default, we consider the

index set I with dimension n such that each element in I represents the index of a

issuer that will default in the simulated scenario. Then the indexes for the solvent

issuers belong to the set

{1, 2, 3, ..., J} \ I.

The Conditional Default Probability associated to the index set I is

CDP(I) =
∏
i∈I

DP(i)×
∏

1≤j≤J
j /∈I

(
1− DP(j)

)
, (6.1.1)

and its corresponding loss is

LossP (I) =
∑
i∈I

L(i) . (6.1.2)

We want to determine the 99.9% worst case, therefore we sort all the possible

LossP in descending order as elements of the vector LossDec
P , and the CDP with the
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same order as the sorted LossP (I) as elements of the vector CDP LossP -sort. Hence

the first element of the vector for the reordered LossDec
P is the loss determined by the

default of every issuer, i.e.

LossDec
P (1) = LossP

(
{1, 2, . . . , J}

)
=

J∑
i=1

L(i) ,

and the first element of the CDPLossP -sort reordered as the LossDec
P is

CDPLossP -sort(1) =
J∏
i∈1

DP (i) .

To provide an example, let us assume that the issuer with lower L is the j-th one, then

the second element for the sorted LossDec
P would be the summation of all the issuers

L except the one of issuer j, and in general the second element for the reordered

CDPLossP -sort is

CDPLossP -sort(2) =
J∏

1≤i≤J
i 6=argminjL(j)

DP(i)×
(
1− DP(argminjL(j))

)
,

and so on for all the 2J possible scenarios.

The IDR we are searching for is the element of LossDec
P corresponding to k̂ − 1,

where k̂ is the lower index such that the cumulative probability satisfies

k̂∑
i=1

CDP LossP -sort(i) > 0.1% .

Since CDP is a discrete variable, we cannot consider the usual definition of quantile

of a continue random variable, instead we read the 99.9% quantile of the discrete

variable CDP as the higher index k̂ such that

P(Loss ≤ LossDec
P (k̂ − 1)) ≤ 99.9% ,

where Loss : Ω → R+ is a discrete random variable which takes values accordingly

to (6.1.2) for all the possible combinations in Ω = {0, 1}J , where one and zero en-

tries represent default and non-default for each issuer, e.g. an outcome ω ∈ Ω =
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(0, 0, 0, 1, 0, 0, 1) would represent the default of the fourth and seventh issuer in a

J = 7 dimensional portfolio. Therefore for simplicity of notation we consider this

approximation as the desired percentile, i.e.

IDR(99.9%) = LossDec
P (k̂ − 1) . (6.1.3)

To conclude the analysis of the deterministic approach, let us underline that the

exact algorithm we have presented, works satisfactorily for low dimension portfolios

and uncorrelated issuers. While, if the dimension J representing the number of issuers

starts to be greater than 30, then the computational efforts needed to evaluate the

IDR for the 99.9% starts to be rather demanding, since the algorithm complexity

grows exponentially in J , i.e. T (J) = O(2J).

6.2 Determination of the minimal capital required

through heuristic technique HR

As we have seen in the previous section, increasing the portfolio dimension the exe-

cution time for the exact algorithm becomes prohibitive. For this reason, for higher

dimensions we simplify the complexity of the IDR evaluation problem through an es-

timate from a regression model. Let us denote by J∗ such higher dimensions in order

to mark the difference between this estimation problem and the previous one. We

also denote as P ∗ the portfolio consisting in shares of J∗ issuers, and will be referred

as Portfolio Target.

Considering n simulated J dimensional portfolios, we estimate the relationship

between y, ratio of IDR(99.9%) with respect to the maximum possible LossP given

by default scenarios, i.e.

y =
IDR(99.9%)∑J

i=1 L(i)
, (6.2.1)

and two concentration indexes. We remark the fact that y is a relative IDR which is

a dimensionless index. Indeed, the basic idea behind the evaluation of y is to start

estimating the IDR of the Portfolio Target P ∗ through the concentration indexes

and then switching to a dimensionless scale with respect to its dimension J∗. To be

more precise, supposing that the quantile is a well estimable fraction, given by the

concentration curves of L and DP , we extrapolate the behavior observed in the lower

dimension J < J∗ to adapt it to the Target problem in dimension J∗. We consider

the concentration indexes that measure how the total LossP and the sum of all the
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default probabilities are divided through the issuers. Let us explain how we get these

concentration indexes. First of all we sort the issuers by their losses L. Then, since

to each issuer is associated a L and a DP, from the reordering we obtain two vectors:

1. LInc, which has as elements the L arranged increasingly,

2. DPL-sort, which has as elements the DP corresponding to the losses L with same

index in the vector LInc.

Let us denote by Q
(p)
1 and Q

(p)
2 the concentration indexes for LInc and DPL-sort

given by the formulas

Q
(p)
1 =

∑dp·Je
i=1 LInc(i)∑J
i=1 L

Inc(i)
, Q

(p)
2 =

∑dp·Je
i=1 DPL-sort(i)∑J
i=1 DP

L-sort(i)
, (6.2.2)

where p is the percentage corresponding to the portion of issuers which will cause a

lower loss in the portfolio with respect to the other (1− p) J issuers. We remark the

fact that the index Q
(p)
1 represents the ratio of minimum possible loss in the portfolio∑J

i=1 Lj that would occur in the case that the portion p of issuers which would cause

the lower loss in the portfolio will face the default event. Respectively, Q
(p)
2 is the

concentration ratio of the default probabilities of the issuers which would determine

lower losses in the portfolio.

In the regression we consider as regressors the concentration indexes Q
(90%)
1 Q

(75%)
2 ,

i.e. through linear regression the model would be

y = β0 + β1Q
(90%)
1 + β2Q

(75%)
2 + ε , (6.2.3)

where the slopes β1 and β2 and the intercept β0 are the unknown parameters, the

normalized quantile y is the dependent variable, the rate index, Q1 and Q2 are the

independent variables and ε represents the estimation error. Namely, the underlying

idea is that a general portfolio satisfying the characteristics arising from practical

experience can adequately be represented by these two concentration indexes; and

therefore, for high-dimension portfolios, it suffices to perform the regression for Q
(p1)
1

and Q
(p2)
2 , for proper p1 and p2.

The choice of such a percentage p for Q
(p)
1 is embedded in the hypothesis of

concentration above the construction of L. To select such p we simulate several

curves Q1 : [0, 1] → [0, 1], p 7→ Q
(p)
1 , as shown in Figure 6.4, and we consider the
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Figure 6.4: Plot of the concentration indexes of a simulated portfolio.

tangent lines Tp̄ to the graph described by Q1 in different points p̄ ∈ (0, 1)

Tp̄(x) =
dQ

(p)
1

dp
(x− p̄) + p̄ . (6.2.4)

In particular we consider the slopes of the tangent lines and it turns out that for

p ∈ (0, 0.85] these slopes are close to zero and far less than 1, which imply that the

variations
∆Q

(p)
1

∆p
are exiguous and it means that choosing p̄ = 0.1 or p̄ = 0.7 would

result in Q
(p̄)
1 very close to each other; on the contrary for p̄ ∈ [0.95, 1) the slopes

are too large and therefore different simulations could give values of Q
(p̄)
1 too distant.

For these reasons we choose a middle value p = 0.9, so that Q
(p)
1 is appropriate and

meaningful for the regression. We follow the same theory to choose the percentage

p for Q
(p)
2 . This time the only care needed is p not being close to 1 since the issuers

with higher L have very poor DP, so the variations
∆Q

(p)
2

∆p
would be close to zero and

the values of the regressors would be not very significant for the regression.

Figure 6.4 represents the concentration indexes for a portfolio simulated as ex-

plained previously, the chosen Q90%
1 and Q75%

2 are marked.

A linear regression model could be inappropriate to estimate the rate y. In fact,

it would not consider the upper and lower boundaries, hence, to avoid predictions

outside the interval [0, 1], we apply the Logistic Quantile Regression(LQR). There
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are several application of the LQR to systemic risk analysis, see [108] for a study

concerning the forecast of recovery rates. Moreover, LQR is widely used in many

statistical fields, as, e.g., in Economics, as well as in Ecology, Meteorology, Biomedical

sciences, etc., see, e.g., [25, 75], and references therein.

Hence through the logistic formula for the dependent variable y

logit(y) = log
( y

1− y

)
we bound the estimated values between 0 and 1. Inverting the logit function we get

the regression model as

y ∼ 1

1 + exp
(
−
(
β0 + β1Q

(90%)
1 + β2Q

(75%)
2 + ε

)) . (6.2.5)

We start considering the simulation of n = 50 portfolios composed by shares of

J = 12 different issuers. At this first step n does not play a specific role, we just use

n = 50 as it is enough for an estimation of the 2 parameters in the regression. Each

of them is simulated by the procedure explained in the previous subsection. So we

compute n couples of concentration indexes Q
(90%)
1 and Q2,

(75%), and rate indexes y,

and through the logit regression model we estimate the parameters β0, β1 and β2.

Once the parameters β0, β1 and β2 are estimated, they can be used to estimate

the value of the rate y∗ corresponding to the 99.9% worst case for the portfolio P ∗

with dimension J∗ as

y∗ = logit−1
(
−β̂0 − β̂1Q

(90%)∗

1 − β̂2Q
(75%)∗

2

)
, (6.2.6)

where Q
(90%)∗

1 and Q
(75%)∗

2 are the concentration indexes for P ∗ and β̂0, β̂1 and β̂2

denote the estimates for the regressor coefficients. Consequently the estimated Loss

for P ∗ is

IDR∗(99.9%) = y∗ ·
J∗∑
i=1

L∗(i) , (6.2.7)

where L∗(i) is the loss determined by the default of the ith issuer in the portfolio P ∗.

6.2.1 Monte Carlo simulation and IDR estimation

Let us consider a portfolio P with J independent issuers. As before, a loss value L(j)

and a default probability DP(j) are assigned to each issuer j = 1, . . . , J . The Monte

Carlo (MC) method consists in the simulation of N default scenarios which can be
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summarized by the following steps:

1. Start simulating a uniform-randomly based matrix U , with values in [0, 1]J×N ,

namely each of its elements U(j, n), for j ∈ {1, . . . , J} and n ∈ {1, . . . , N},
corresponds to the j-th issuer in the n-th scenario;

2. Then, for each scenario n = 1 . . . , N , we have the j-th issuer default as soon as

U(j, n) < DP(j);

3. The loss in the portfolio P , for the n-th simulated scenario, is given by the sum

of the L(j) such that U(j, n) < DP(j), i.e.

LossMC(n) =
J∑
j=1

L(j)1{U(j,n)<DP(j)}, for n = 1, . . . , N. (6.2.8)

We use the empirical quantile as the MC estimate of the theoretic quantile, i.e. the

estimated IDRMC (99.9%) is the (N/1000)-th greatest LossMC .

By construction, we have that the random variable Loss is such that

P
(
Loss ≤ IDR(99.9%)

)
≈ 99.9% , (6.2.9)

where IDR(99.9%) is the 99.9% percentile that we want to estimate. Therefore the

sample p = 99.9% quantile IDRMC (p) satisfies the following equation

σ̂2
N = Var(IDRMC ) ≈ p (1− p)

(N + 2) f 2(IDR)
+O(1/N2) , (6.2.10)

with f probability density function (PDF) of Loss , see, e.g., [34]. In Figure 6.5

is plotted f , the PDF estimated from the simulated data LossMC
1 , . . . ,LossMC

N , with

N =1,000,000. The estimation is based on a normal kernel function. We estimate

the confidence interval with 99.9% confidence level as

CI MC
N (99.9%) = IDRMC ± 3.0902 σ̂N . (6.2.11)

6.2.2 Comparison between heuristic model and exact algo-

rithm

We consider J∗ = 18 as the dimension of the portfolio target. Our aim is to compare

the HR model with the exact algorithm and the MC model and see how far is the
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Figure 6.5: Estimated PDF of Loss from the MC simulated data represented in the
adjacent frequency histogram.

prediction for the IDR obtained by the HR from the correct IDR obtained by the

exact algorithm. So we simulate n = 32 regression portfolios with dimension J = 12

(at the end of this paragraph our choice for n and J will be explained).

The portfolios share the characteristics of beta distributed losses and default prob-

abilities are inversely related to the correspondent losses. The choices of J∗, n and J

are arbitrary, with the premise that J < J∗; but, moreover we have to explicit that n

and J condition the time spent to realize the regression, since the regression model

has complexity T (J) = n × O(2J ln(2J)) ≈ n × O(2J). From the logistic regression

we get the parameters

β̂0 = 3.2945 ,

β̂1 = −5.6408 ,

β̂2 = −0.8441 .

Afterwards, these parameters are used to estimate the IDR of N = 10 portfolios target

in order to compare them with the IDR computed by using the exact algorithm.

Alongside this we simulate N∗ = 10, 000 and N∗∗ = 100, 000 default scenarios

for the MC method and we estimate the IDR and the CI, as shown in the previous

paragraph.

In Figure 6.6 are plotted the rate values y∗ obtained by the exact algorithm and

the HR model, both corresponding to the N Portfolios Target, and in Table 6.1 are

shown the obtained values compared with the CI resulting from the MC simulations.

The order of magnitude concerning execution time and accuracy of the iterations

of the HR and the MC model are not clearly comparable, since HR is much faster,
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Figure 6.6: Histogram of the comparison between the values obtained with the exact
algorithm and the HR model.

while MC is usually more accurate, especially for a great number of MC simulations

NMC . As to provide a meaningful comparison, we have simulated 20 portfolios with

dimension J∗ = 18. Figure 6.7 represents the execution times in a logarithmic scale

and the estimation errors that we got from the HR method and the MC simulations

for NMC = 103, 104, 105; despite MC for NMC = 1000 is not very meaningful, we

considered it in order to compare it with HR and have a similar order of magnitude

for the error. We point out the fact that even though the real distribution of the IDR

estimated by MC is not known, we build the order statistics in order to estimate the

probability density relying on a normal kernel function. Then the estimate of the

PDF was exploited to estimate the variance of IDRMC , and enable us to construct

the CI and compare them with the errors of the HR method.

In order to compare the time consumption, we remark the fact that to compute

the estimation for the regression coefficients β0, β1 and β2 it took 28 seconds, and

less than a millisecond for the prediction of the IDR for each portfolio target, i.e. by

applying the HR model. Instead, the evaluation of the IDR took approximately a

minute. The computation time for the simulation with MC depends on the dimension

J∗ and on the number of simulations NMC ; the times listed in Table 6.2 have to be

compared with the millesimal time required by the HR model.
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Figure 6.7: Comparison between HR and MC model that relates the execution times
T and the estimation errors E. The HR error is given by the absolute value of the
difference between the exact IDR and the estimated IDR, while the MC error is equal
to the width of the estimated confidence interval, i.e. equal to 6.1804 σ̂N . We marked
with a red circle the outliers of MC, and stress the fact that even for a MC with
NMC = 104, which is almost equal to 2J

∗
= 262144, there are chances of outliers.

Ex. IDR HR IDR Delta σ̂MC
N∗ CI MC

N∗ (99.9%) σ̂MC
N∗∗ CI MC

N∗∗(99.9%)

59.83% 61.89% -2.06% 0.24% [59.21%, 60.69%] 0.05% [59.73%, 60.03%]

29.60% 31.58% -1.97% 0.87% [28.90%, 34.28%] 0.20% [29.53%, 30.76%]

49.76% 48.77% 0.99% 0.23% [49.20%, 50.63%] 0.06% [49.51%, 49.89%]

71.85% 73.77% -1.92% 0.15% [71.59%, 72.52%] 0.03% [71.76%, 71.95%]

34.23% 33.52% 0.71% 0.09% [33.71%, 34.26%] 0.01% [34.21%, 34.28%]

74.29% 76.09% -1.79% 0.50% [73.45%, 76.54%] 0.12% [74.02%, 74.76%]

31.93% 31.47% 0.46% 0.01% [31.90%, 31.97%] 0.004% [31.93%, 31.95%]

37.99% 36.87% 1.11% 0.54% [36.12%, 39.46%] 0.18% [37.24%, 38.35%]

59.04% 60.97% -1.92% 0.28% [58.62%, 60.11%] 0.07% [58.87%, 59.30%]

60.82% 63.36% -2.53% 0.02% [60.78%, 60.91%] 0.003% [60.82%, 60.83%]

Table 6.1: IDR resulting from the HR model and the exact algorithm for a J∗ = 18
dimensional portfolio, where Delta = HR IDR − Exact IDR. The σ̂N∗ and σ̂N∗∗ are
estimated by equation (6.2.10) with N∗ = 10, 000 and N∗∗ = 100, 000, the CI are
centered in the IDR values obtained by the MC estimation.

101



J∗ MC time HR time MCtime/HRtime

15 3.83s 0.002s 1900
20 4.96s 0.004s 1250
25 5.86s 0.004s 1450
30 6.43s 0.003s 2150
40 8.64s 0.007s 1250

Table 6.2: Times spent to evaluate the IDR with the MC and HR methods and for
different portfolio dimensions J∗ (the parameters β0, β1, β2 were estimated once and
for all). In the last column we indicate how many times the HR method results faster
than the MC method.

Moreover, increasing the dimension of the problem, the time to estimate the IDR

with the HR approach remains almost the same, indeed previously we saw that the

computational complexity is T (J∗) ≈ n×O(2J), i.e. it depends on the chosen regres-

sion parameters n and J , instead of J∗. On the other hand, the time to evaluate

the IDR with the exact approach of Section 6.1 increases exponentially. This is due

to the fact that the computational complexity for the exact algorithm is related to

the input parameter J∗, since the mean complexity of the best possible sort of a

k-dimensional vector is O(k ln(k)), see [74, sec. 5.4, pp. 248379]. Therefore, the

resulting complexity is

T (J∗) = O(2J
∗

ln(2J
∗
)) = O(2J

∗
J∗ ln(2)) ≈ O(2J

∗
) . (6.2.12)

We have this order of computational complexity since we are using an exact algorithm

that sorts the vector of the 2J
∗

possible loss outcomes, then it computes the CDP

until it finally stops when it reaches the desired percentile.

An alternative approach for the exact algorithm is represented by the scanning

of the tree of cases, i.e. an algorithm that firstly computes the greatest loss L1, and

its CDP, then the second greatest loss L2 and its CDP, the third and so on, until

the percentile 0.1% is reached. But for the choice of structuring the portfolios as

explained at the beginning of this chapter, it is necessary to consider approximately

the half of all possible combinations, and therefore it takes even more time than the

previous exact algorithm.

Let us underline that we have decided to consider J = 12 and n = 32, with

respect to J∗ = 18, mainly because of the computational effort required by the HR

and exact method. In particular, to make the HR more efficient with respect to the
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n
J 32 64

12 29” 53’
13 54” 1’ 56”
14 1’ 48” 3’ 37”
15 3’ 32” 7’ 17”
16 7’ 12” 13’ 50”

Table 6.3: The time to compute the regression does not depend on the Portfolio
target P ∗, and in particular not on J∗. This table reports the times spent to compute
the regression for different J and n. We remark the fact that the regression time is
a set-up which can be estimated once a month, and therefore since the meaningful
time for the HR method is the one reported in the third column of table 6.2, for high
Portfolio dimensions, the time saved is considerable.

exact calculation, i.e. with smaller computational complexity

O(HR) < O(exact) ,

we need n×O(2J)) < O(2J
∗
), hence

J∗ − log2(n) > J ,

see equation (6.2.12) for the complexity of the exact algorithm. Therefore, since

n = 32 is a sufficient sample size, for J∗ = 18, J has to be at least less than 14. In

Table 6.3 are shown the times spent to compute the regression model for various J

and n, these times have to be compared with the time spent to execute the exact

algorithm.

6.2.3 The computational workflow - A summary

In the application perspective, the accuracy and the execution time are very im-

portant, but we also need to have a clear description of the algorithm, its set-up

complexity, the maintenance effort and so on.

Generally the “long” bank bond portfolios change quite slowly, hence the concen-

tration and correlation measures between the exposures are very smoothly over time.

Hence, we can split the workflow in 3 different levels. A first level is the general (near

static) set-up, i.e. the definition of the general parameters, such as the number of

simulation N , the regression technique, the size J for the benchmark portfolio, the α

levels for Q1 and Q2, etc.
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The second level, with a periodic update, is given by the core parameters estima-

tion, i.e. the IDR calculation for benchmark portfolios and the parameters (β1, β2)

estimation by the regression procedures.

Finally the third level is the execution task, in other words the calculation of the

estimate IDR, given the current actual portfolio parameters and the estimated β’s.

As concerns the frequency of the above processes, the general set-up is usually

triggered by any top management (risk control, risk committee) new guidelines or

yearly. The periodic update could be run monthly or quarterly according to the

portfolio dynamics. Finally the execution process is related to the bank regulatory

constraints. If the bank has validated the internal model for the specific market risk,

e.g. following a specific solution as the one underlined in [23] a daily calculation is

usually required. Otherwise the bank can set its own reporting frequency.

To summarize, the proposal can fit quite easily the internal usual bank procedures

and processes.

6.3 Extension to the correlated case and possible

approaches

Until now only the case with uncorrelated issuers was considered. In the previous

sections of this chapter the outside-diagonal elements of the correlation matrix were

set equal zero. Although this setting is useful to be the starting point to deal with the

heuristic approaches to the IDR estimation problem, from a financial point of view

this is unrealistic.

In the non-independent portfolio case, i.e. removing the issuers’ independence

assumption, also the elements outside the diagonal are non-zero. Correlations are

not observable from the market, and depend on the underlying assumptions of the

assets values, such as the Black and Scholes model, from which they can be obtained.

However from a theoretical point of view the correlations are estimated from the CDS

spreads of the the issuers: but usually this is impracticable also for the shortage of

data. So often they are estimated from the equity prices. Furthermore computing

the IDR for dependent portfolios is more complex, and in particular unfeasible even

for portfolios with not very huge dimensions due to the great execution time.

Therefore our aim is to build an adequate structure to apply an HR model. The

technical problem underlying the new HR model is that we would not have to esti-

mate only the coefficients β0, β1, β2 of the previous (uncorrelated) model, but also all
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the coefficients concerning the correlations between the issuers. Since this is imprac-

ticable, we have to find less variables that properly represent the correlations between

the issuers.

Before explaining our proposal, let us summarize what the FRTB regulations

claims for the IDR model parameters calibration. The general point is that the high

confidence level for the measure, i.e. 99.9%, along with the rather long time horizon,

i.e. 1 year, does not allow for an easy IDR-back test procedure for both the default

events of the financial instruments issuers and for the related correlations. Practically,

this is not feasible, hence in the FRTB new framework some flexibility is allowed, see

[13]. In particular, we have the following main points to be considered:

• Correlations should be estimated over a 10 years periods, covering a stress

period, hence allowing to consider increases of correlations during the financial

crisis

• Correlations must be inferred from spreads or equity prices, with some prox-

ies/benchmark where not available

• Banks must have clear policies and procedures that describe the correlation

calibration process

• Previous correlations must be based on objective data

• A bank must validate its modeling approach for such correlations, namely it

has to show that the provided internal method is appropriate for the detained

portfolio, also with respect to the chosen systematic risk factors and associated

weights.

We would also like to point out the remark written by BCBS about the DRC vali-

dation, namely “Accordingly, the validation of a DRC model has to rely more heavily

on indirect methods including, but not limited to, the stress tests, sensitivity analysis

and scenario analysis, hence to assess both its qualitative and quantitative efficiency

and robustness, particularly with regard to the models treatment of concentrations”.

To be more explicit, banks must have sound procedures and processes to assess,

build and update their models with proper documentation, even if, due to the very

challenging goal of the IDR estimation, some flexibility is permitted.

We note that usually portfolios are comprised of issuers that are correlated to each

other in a similar way (this feature is due to the geographic consistence of portfolios).

Therefore the outside-diagonal correlation matrix elements don’t vary very much and
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we can consider the mean value of them as one of the regressors of the new HR model,

let us call it σ̃. Moreover in the regression we add the regressor D, corresponding

to the index of dispersion of the outside diagonal elements. So, for each portfolio,

simultaneously to the computation of Q
(90%)
1 and Q

(75%)
2 , obtained as concentration

indexes of L and DP respectively, we need to compute σ̃ and D.

Therefore the new linear regression will be

y = β0 + β1Q
(90%)
1 + β2Q

(75%)
2 + β3 σ̃ + β4D + ε , (6.3.1)

where the dependent variable y is the normalized quantile, the intercept β0 and the

slopes βi for i = 1, 2, 3, 4 are the unknown parameters, the rate indexes Q1 and Q2,

the mean correlation σ̃ and the dispersion index D are the independent variables, and

ε represents the estimation error.
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Part IV

Portfolio optimization for

Hawkes-Merton models with

transaction costs

107



I will tell you the secret to getting

rich on Wall Street. You try to be

greedy when others are fearful. And

you try to be fearful when others

are greedy.

Warren Buffett (1930-)
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Introduction

The optimal consumption-investment problem in continuous time, pioneered by Mer-

ton [89] has been extensively investigated in many different model settings. In the

original approach, the risky asset dynamics was described by a geometric Brownian

motion. This assumption has been proved to be quite naive during the last 30 years.

The model proposed by Merton for the portfolio optimization problem, and later

adopted by Merton himself and by Black and Scholes in their historical paper on

European option pricing [20], has been refined and modified over the years in order

to take into account more realistic features of asset prices. Extensions have been

proposed in several directions: some models include a stochastic dynamics for volatil-

ity, some include jumps into the asset price dynamics in order to describe sudden

and unexpected price variations, difficult to explain by Gaussian fluctuations, some

model include transaction costs. The portfolio optimization problem for stochastic

volatility models was investigated by Kraft [77] in a Heston-type setting; Zeng and

Taksar [118] studied the case of power utility by providing an explicit solution for the

optimal portfolio problem still in the Heston setting.

As far as models with jumps are concerned, among the first contributions provided

to the optimal consumption-investment problem we mention the papers by Jeanblanc

and Pontier [81], by Aase [1] and by Aı̈t-Sahalia et al. [4].

The portfolio optimization problem with proportional transaction costs has been

extensively investigated in the paper by Davis and Norman [44], where an exhaustive

qualitative analysis is performed of the optimal investment strategy. Shreve and Soner

[109] extended this result in order to include short positions and they characterized

mathematically the value function by using the viscosity approach. Øksendal and

Sulem [112] discussed the portfolio optimization problem in a market model where

both fixed and proportional transaction costs appear.

Up to some extent, all these papers show the robustness of results obtained by

Merton, since the optimal policy obtained is similar to the policy computed by him,

suitably modified in order to take into account the different particular features with
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a direct effect. For instance, the presence of jumps increases the variance of the stock

and reduces then the exposition of the optimal portfolio, while transaction costs

reduce dramatically the number of portfolio reallocations.

When transaction costs are included in modeling financial markets, the optimal

portfolio problem is not only relevant per se, but also in view of derivatives pric-

ing. By applying the so-called Utility Indifference Pricing approach, introduced by

Hodges and Neuberger [80], Davis et al. [45] provided a suitable valuation procedure

of contingent claims in models with transaction costs based on portfolio optimization

strategy.

In this part of the thesis, a financial market is considered, composed by two

investment opportunities: a risk-free asset, also called money market or Government

bond or simply bond, which evolves at a risk-free interest rate, and a risky asset, also

referred to as stock or share, subject to a significant degree of volatility and a jump

component driven by a Hawkes process.

We now detail the contribution these chapters by comparing the usual constant

intensity case (Poisson) to our self-exciting structure (Hawkes). The variance of the

stock is explained by both the Brownian and the jump part. In particular, the stock

variance turns out to be an increasing function of the jumps intensity; and, since

the investors are risk-adverse, the slope of Merton line, see e.g. [89], and of the two

buy-sell lines delimiting the no-transaction region, see e.g. [44] , [109], are decreasing

with the variance. In other words these three lines spin downwards for an increased

jump intensity. We shall call the Merton and no-transaction lines (UNT, Upper No

Transaction and LNT, lower No Transaction lines respectively) the three decision

lines.

In a Poisson framework, a jump does not affect the intensity of future jumps, and

therefore, after a jump in the stock dynamics take place, the position of the three

decision lines stays unchanged. As a consequence after a negative (resp. positive)

jump the optimal strategy is to do nothing or to buy (resp. sell) the asset depending

whether the jumps is smaller or larger than a threshold given by the buy (resp. sell)

line. Therefore, the result of the pioneering model on transaction costs by Davis and

Norman [44] is consistent with the Poissonian jumps framework, see e.g. [113], since

in both framework the no-transaction region is static.

Instead, in a Hawkes framework, when a jump occurs, the intensity will increase

dramatically. The main consequence is that the three decision lines turn clockwise

brutally due to the increase of future variance. Conversely, in a period of lack of

jumps, the same lines turn anticlockwise slowly due to the smooth decreasing of
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intensity between two jumps.

As a consequence, the symmetry of the original model is broken and in particular

the jump sign becomes significant. We first focus on the effect of a positive jump:

since after a jump the lines turn clockwise, the policy for a Hawkes framework is

mainly unchanged with respect to the Poisson framework, and probably magnified,

i.e. the investor has to sell the risky asset in the case of a jump overflowing the no-

transaction region. Conversely, this policy is no longer optimal when negative jumps

are considered, since a third zone can appear as detailed in the Figure 6.8. That is,

if the jump size is smaller than a threshold the decrease of the ratio between risky

and risk-free assets could be more than compensated by the increase on the portfolio

variance. In other words, the direct effect of a negative jump could be smaller than

the feedback effect related to self exciting property of Hawkes process.

Globally the effect is that it is possible that rational investors have to sell risky

asset after a negative jump. In contrast, positive jumps do not have this snowball

effect. This two-sided phenomenon is mainly motivated by the risk aversion of the

investors. Indeed, in a risk-lover case, a similar analysis will give birth to a snowball

effect only for positive jumps.

Moreover we highlight that the self exciting property of our model is self-produced

only when negative jumps are concerned. Positive jumps could exist but are pure

(compound) Poisson.

We now focus on a period between two jumps. As time goes up the intensity of the

Hawkes process decreases toward its basic value. The result is that the variance of the

risky asset decreases smoothly with the time. As highlighted before the effect is that

the lines turn anticlockwise but this movement is regular. The effect is that investors

along the buy line will progressively increase their exposure on the risky asset, not

due to a change on the asset’s drift, but only on the reduction of its variance risk,

which means that between two jumps the asset price increases supported by investors

buying for endogenous variance reduction reasons and not for an exogenous change

of drift.

This fourth part of the thesis is organized as follows: in Chapter 7 we are going

to present our modeling framework. In Section 7.2 we prove some properties of the

value function resulting from this problem and in Section 7.3 we provide a dynamic

programming principle. In Section 7.5 we investigate existence, uniqueness and regu-

larity of the solution for the problem formulated in the previous sections. In Section

8.1 we show that, under suitable hypothesis, the dimension of previous problem can

be reduced by a similarity argument, and we provide a qualitative description of the
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reduced problem solution in Section 8.3. In Section 8.2 we present a numerical scheme

in order to obtain an approximate solution of the previous problem.

Figure 6.8: Top figures represent the Poisson framework, while bottom figures the
Hawkes framework. In the left figures positive jumps are considered, while in the
right figures negative jumps. The top figures are consistent with the efficient-market
hypothesis, that is “fearful when others are greedy and greedy only when others are
fearful” quoting W. Buffet. On the other hand, the bottom figures represent the
influence of the emotional states influencing market behaviors, and which may cause
unpredictability and volatility in the stock market.
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Chapter 7

Merton-Hawkes model with

proportional transaction costs

This chapter deals with the mathematical characterization of the related optimal

policy. In the same spirit of Davis and Norman [44] and Shreve and Soner [109], we

will show that the Merton line is replaced by two lines identifying three regions, one

where is optimal to buy, another to sell and a third one where is optimal to wait due

to the costs.

7.1 The model

Let (Ω,F , {Ft}t≥0,P) be a filtered, complete probability space, with right-continuous

filtration, supporting a Brownian motion and a self-exciting point process, and con-

sider a market consisting of two investment opportunities: a risky asset {St}t∈R+ and

a risk-free asset {S0
t }t∈R+ , evolving according to the following equationsdSt = St

(
α dt+ σ dWt +

∫ +∞
−1

ηN (dt, dη)
)

dS0
t = r S0

t dt
(7.1.1)

where N is the Hawkes process, W is a Brownian motion Ft-adapted, α, r ∈ R+ are

parameters representing the mean rate of return of the risky asset and the risk-free

rate respectively, such that α > r, σ ∈ R+ is the volatility, while dNt =
∫ +∞
−1
N (dt, dη)

is a Hawkes process Ft-adapted with Lévy measure ν with negative expectation and
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with exponentially decaying intensity λt, i.e. the intensity process {λt} satisfies:

dλt = a (b− λt) dt+ κ dNt ,

or equivalently, by Itô lemma

λt = b+ e−a t (λ0 − b) + κ

∫ t

0

e−a (t−s) dNs ,

where a is the speed of mean reversion of the intensity to its long-run mean b, κ is the

increase in the intensity generated by a jump, and λ0 is its starting value, with λ0 ≥ b.

We remark the fact that the class of processes to which Nt belongs are non-Markovian

extensions of Poisson processes, but at the same time (Nt, λt) is a continuous-time

Markov process.

Moreover, consider an investor holding a portfolio, starting with a positive posi-

tion x invested in the risk-free asset and a positive position y invested in the risky

asset, and assume that she is able to consume the amount invested in the risk-free

asset and to transfer its capitals from an investment to another paying proportional

transaction costs. Therefore let us introduce the instantaneous consumption process

C, assumed to be non-negative and integrable on each finite time interval, the pro-

cesses L representing the cumulative amount of risk-free asset sold in order to buy

risky asset, and M the process representing the cumulative amount of risky asset

sold in order to buy risk-free asset. Both L and M are assumed to be non-negative,

non-decreasing and càdlàg.

The portfolio value can be represented continuously in time by the couple (Xt, Yt),

for t ≥ 0 and starting at X0 = x, Y0 = y, with (X, Y ) representing the amount of

capital invested in the risk-free asset and in the risky asset, respectively, and evolving

according to the following stochastic differential equations

dXt = (r Xt − Ct) dt+ (1− µM) dMt − dLt , (7.1.2)

dYt = αYt dt+ σ Yt dWt + Yt−

∫ +∞

−1

ηN (dt, dη) + (1− µL) dLt − dMt , (7.1.3)

where µM ∈ [0, 1) is the proportional transaction cost associated to transfer a unit of

risky asset to (1 − µM) units of risk-free asset, while µL ∈ [0, 1) corresponds to the

relocation of the investment in the risk-free asset to the risky asset.

Because of the positive and negative jumps, we define the solvency region as in

[44], i.e. S := {(x, y) ∈ R+ × R+}, and denote by A(x, y) the set of admissible con-
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sumption/investment policies for (x, y) ∈ S, defined as the set of (C,L,M) such that

(Xt, Y 1t), given by (7.1.2) and (7.1.3), stays in S for all t ≥ 0. In [109] the invest-

ments dynamics were assumed to be continuous, and therefore also short positions

on both the risk-free and the risky asset were allowed, as long as the agent was able

to cover his short positions of one investment with the long position of the other. In

our case we need to restrict the solvency region to the 1st quadrant, because at any

time a jump can occur and we are considering risk-adverse investors.

For p ∈ (0, 1) fixed, let us introduce the agent’s utility function Up defined as

Up = cp/p, for all c ≥ 0 and a positive discount factor β, and we assume that

the agent aims to maximize the expected value of the discounted value of its utility

function. Therefore the maximization problem has the following value function

v(x, y, λ) = sup
(C,L,M)∈A(x,y)

E
[∫ ∞

0

e−β t Up(Ct) dt

]
, ∀(x, y, λ) ∈ S × [b,+∞). (7.1.4)

Notice that the utility function is concave, and therefore the agent is assumed to be

risk adverse. This point will be better remarked later when the change in intensity

will be considered.

7.2 Basic properties of the value function

Proposition 7.2.1 The value function v defined by (7.1.4) is

1. concave on S;

2. p-homothetic with respect to the first two components, i.e. v(γ x, γ y, λ) =

γp v(x, y, λ), ∀(x, y, λ) ∈ S × [b,+∞) and γ > 0;

3. strictly increasing with respect to the first two components.

Proof.

1. By the linearity of (7.1.2) and (7.1.3) we have that linear combinations of two

admissible policies for two different starting values of the couple (x, y) are still

admissible policies for the linear combination of the starting values: i.e. for

(x1, y1), (x2, y2) ∈ S, γ ∈ (0, 1), (C1, L1,M1) ∈ A(x1, y1), and (C2, L2,M2) ∈
A(x2, y2) we have

(
γC1 + (1− γ)C2, γL1 + (1− γ)L2, γM1 + (1− γ)M2

)
∈ A(γx1 + (1− γ)x2, γy1 + (1− γ)y2).
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Therefore

v(γ x1 + (1− γ)x2, γ y1 + (1− γ) y2, λ)

≥ E
[∫ ∞

0

e−β tUp(γ C1(t) + (1− γ)C2(t)) dt

]
≥ γ E

[∫ ∞
0

e−β tUp(C1(t)) dt

]
+ (1− γ)E

[∫ ∞
0

e−β tUp(C2(t)) dt

]
,

where the last inequality follows by the concavity of Up. Then maximizing over

the first term of the right hand side over (C1, L1,M1) ∈ A(x1, y1) and the second

over(C2, L2,M2) ∈ A(x2, y2), we obtain property 1.

2. It is a direct consequence of the fact that (C,L,M) ∈ A(x, y) if and only if

(γ C, γ L, γ M) ∈ A(γ x, γ y).

3. Let us consider δ ∈ R+, then by simply applying the sub-optimal admissible

strategy consuming the quantity δ at the starting time we have

v(x+ δ, y, λ) ≥ v(x, y, λ) + Up(δ) > v(x, y, λ),

i.e. v is increasing with respect to the first component. For the increasing

property with respect to the second component, consider a strategy that at

the starting time transfers the quantity δ from the capital invested in the risky

asset to the capital invested in the risk-free asset, and consumes the quantity

(1− µM) δ, i.e.

v(x, y+ δ, λ) ≥ v(x+ (1−µM) δ, y, λ) ≥ v(x, y, λ) +Up((1−µM) δ) > v(x, y, λ).

�

We have the following lower bound for the value function.

Proposition 7.2.2 For β > r p and defining C∗ := β−r p
1−p , for all (x, y, λ) ∈ S ×

[b,+∞) we have

v(x, y, λ) ≥ 1

p
Cp−1
∗ (x+ (1− µM) y)p.

Proof. Consider the admissible strategy consisting in transferring at the original

time the capital invested in the risky asset in the investment in the risk-free asset

v(x, y, λ) ≥ v(x+ (1− µM) y, 0, λ) = sup
C∈A(x+(1−µM ) y, 0)

∫ ∞
0

e−β t
Cp
t

p
dt . (7.2.1)
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In particular our original problem (7.1.4) is reduced to a purely deterministic optimal

problem. Moreover let us consider the admissible consumption strategy consisting

in consuming continuously in time the proportional quantity Ct = γ Xt. Therefore

(7.1.2) reduces to Xt = (x+ (1− µM) y)e(r−γ)t, we have also the dynamics of C, and

in particular we have a lower bound to (7.2.1):

v(x+ (1− µM) y, 0, λ) ≥ (x+ (1− µM) y)p

p
max
γ∈(0,1)

γp

β + p (γ − r)
,

where γ∗ = argmaxγ∈(0,1)
γp

β+p (γ−r) = β−r p
1−p =: C∗ . �

7.3 Dynamic programming principle and related

HJB equation

Let us formulate the Dynamic Programming Principle (DPP) for our problem:

v(x, y, λ) = sup
(C,L,M)∈A[0,τ ](x,y)

E
[∫ τ

0

e−β t Up(Ct) dt+ e−β τ v(Xτ , Yτ , λτ )

]
, (7.3.1)

for every (x, y, λ) ∈ S × [b,∞) and where τ is a stopping time, possibly depending on

(C,L,M) ∈ A[0,τ ](x, y) in (7.3.1).

Define the following integro-variational inequalities of dimension three, also called

Hamilton-Jacobi-Bellman (HJB) equation:

min
{
β v − Av − J v − Ũp(vx); vy − (1− µM) vx; vx − (1− µL) vy

}
= 0 , (7.3.2)

where we have defined the following operators

Av(x, y, λ) :=
1

2
σ2 y2 vyy(x, y, λ) + α y vy(x, y, λ) + r x vx(x, y, λ) + a (b− λ) vλ(x, y, λ) ,

J v(x, y, λ) := λ

∫ ∞
−1

(
v(x, (1 + η)y, λ+ κ)− v(x, y, λ)

)
ν(dη) ,

Ũp(c̃) := sup
c∈R+

{Up(c)− c c̃} =
1− p
p

c̃ p/(p−1) .

In section 7.5 it will be proven that the value function defined in (7.1.4) is super-

and sub- solution in viscosity sense for the HJB equation (7.3.2), and therefore after

proving the uniqueness result we are allowed to study directly the HJB instead of the

value function given by equation (7.1.4).
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7.4 Continuity and upper-bounds to the value func-

tion

With the next result we are going to prove that supersolutions to the HJB equation

(7.3.2) dominates the value function defined (7.1.4).

Proposition 7.4.1 Let (x, y, λ) ∈ S × [b,+∞), if ϕ ∈ C2(S × [b,+∞)) is such that

ϕ(0, 0) = 0, increasing in the first two components, and

min
{
β ϕ− Aϕ− Jϕ− Ũp(ϕx); ϕy − (1− µM)ϕx; ϕx − (1− µL)ϕy

}
≥ 0 , (7.4.1)

then we have ϕ ≥ v.

Proof. Consider t such that

θk ≤ t < θk+1 ∧ τm,k =: t̃m,k ,

where {θk}k∈N is the sequence of arrival times in the Hawkes process, and τm,k :=

inf{t ≥ θk : Yt ≥ m or Yt ≤ 1/m}. In what follows we will use the simplified

notation ϕ(t) = ϕ(Xt, Yt, λt). Apply Itô formula to the discounted supersolution, to

obtain

e−β t̃m,k ϕ(t̃m,k) = e−β θkϕ(θk) +

∫ t̃m,k

θk

e−β t
(
−βϕ(t) + Aϕ(t)− Ct ϕx(t) + Jϕ(t)

)
dt

+

∫ t̃m,k

θk

e−βtσYtϕy(t)dWt +

∫ t̃−m,k

θk

e−β t
(
(1− µM)ϕy(t)− ϕx(t)

)
dLt

+

∫ t̃−m,k

θk

e−β t
(
(1− µL)ϕx(t)− ϕy(t)

)
dMt −

∫ t̃m,k

θk

e−β t Jϕ(t) dt .

Since for all c > 0

Aϕ+ Ũp(ϕx) = sup
c∗>0

{1

2
σ2 y2 ϕyy(x, y, λ) + α y ϕy(x, y, λ) + (r x− c∗)ϕx(x, y, λ)

+ a (b− λ)ϕλ(x, y, λ) + Up(c
∗)
}

≥ 1

2
σ2 y2 ϕyy(x, y, λ) + α y ϕy(x, y, λ) + (r x− c)ϕx(x, y, λ)

+ a (b− λ)ϕλ(x, y, λ) + Up(c) ,
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then by (7.4.1) and taking the expectation we obtain

E[e−βθkϕ(θk)] ≥ E[e−βt̃m,kϕ(t̃m,k)] + E

[∫ t̃m,k

θk

e−β tUp(Ct)dt

]
+ E

[∫ t̃m,k

θk

e−β tJϕ(t)dt

]
,

and by Fatou’s lemma

E[e−β θkϕ(θk)] ≥ E[e−β θk+1 ϕ(Xθk+1
, Yθ−k+1

, λθ−k+1
)]

+ E
[∫ θk+1

θk

e−β tUp(Ct) dt

]
+ E

[∫ θ−k+1

θk

e−β t Jϕ(t) dt

]
.

Therefore since
∫ t

0
Jϕ(s) ds is the compensator of the pure jump process

Nt∑
k=0

e−β θk(ϕ(θ−k )− ϕ(θk)) ,

their sum is a martingale, and we reach

E[e−β θkϕ(θk)] ≥ E[e−β θk+1 ϕ(θk+1)] + E
[∫ θk+1

θk

e−β tUp(Ct) dt

]
.

Iterating this procedure for all the indexes k we obtain

ϕ(x, y, λ) ≥ E
[∫ ∞

0

Up(Ct) dt

]
,

since limt→+∞ e
−β tϕ(t) ≥ 0. �

Let us give an explicit supersolution to obtain a dominant to the value function.

Corollary 7.4.2 Let γ be a positive constants such that 1 − µM ≤ γ ≤ 1
1−µL

, and

define the function B : [0, 1] 7→ R by

B(p) :=
β − r p
p

− (α− r)2

2σ2 (1− p)
.

Then for p ∈ (0, p), and p ∈ (0, 1) the unique solution of B(p) = 0 on the domain of

B, we have the following upper bound for the value function solution to (7.3.2):

v(x, y, λ) ≤ Ap−1(p)

p
(x+ γ y)p , ∀(x, y, λ) ∈ (R+)2 × [b,∞) , (7.4.2)
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where A(p) = p
1−p B(p).

Proof. We have to prove that ϕ(x, y, λ) := Ap−1(p)
p

(x+γ y)p satisfies inequality (7.4.1).

The second and third term in the minimum operator are greater than or equal to zero

by definition of γ, while for the first one we have the following expression

β ϕ−Aϕ− Jϕ− Ũp(ϕx) =Ap−1(p) (x+ γy)p
[β − rp

p
− (α− r)2

2σ2(1− p)
− 1− p

p
A(p)

+
1

2(1− p)

(σ(1− p)γy
x+ γy

− α− r
σ

)2

− λ

p

∫ ∞
−1

((x+ γy(1 + η)

x+ γy

)p
− 1
)
ν(dη)

]
(7.4.3)

≥Ap−1(p) (x+ γy)p
[β − rp

p
− (α− r)2

2σ2(1− p)
− 1− p

p
A(p)

]
(7.4.4)

≥Ap−1(p) (x+ γy)p
[
B(p)− 1− p

p
A(p)

]
, (7.4.5)

where (7.4.3) is obtained by rearranging the terms in the first member in (7.4.1), and

(7.4.4) is obtained by the following upper bound on the integral∫ ∞
−1

((x+ γy(1 + η)

x+ γy

)p
− 1
)
ν(dη) =

∫ ∞
−1

(
1 +

γ y

x+ γy
η
)p
ν(dη)− 1

≤
(

1 +
γ y

x+ γy

∫ ∞
−1

η ν(dη)

)p
− 1 = 0 .

This comes from the fat that f : [−1,∞) 7→ R defined as f(x) = (1 + c x)p is concave

∀c, p ∈ [0, 1], then we can apply Jensen’s inequality, and we reach the final result by

using the fact that the measure ν has negative expectation. Then, since (7.4.5) is

equal to zero, we have the result as a consequence of Proposition 7.4.1. �

Remark 7.4.3 The upper bound for the value function given by (7.4.2) setting γ = 1

and λ = 0 is the one found in [89] with no transaction costs and no jump component,

i.e. µM , µL = 0 and λ ≡ 0.

Let us show that the value function is continuous on its whole domain, i.e.∀(x, y, λ) ∈
S×[b,+∞), and therefore by the concavity property in Proposition 7.2.1 and the lower

bound in Proposition 7.2.2 we will also obtain that the value function is increasing.

Proposition 7.4.4 The value function v defined by (7.1.4) is continuous in the in-

terior of its domain: S × (b,+∞).
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Proof. Continuity with respect to to (x, y) in S follows by concavity, see Proposition

7.2.1, and Corollary 7.4.2.

Let us prove that the value function is jointly continuous in the interior of its

domain. Consider (x, y, λ) ∈ S×(b,+∞) and a positive constant γ such that γ < κ/2,

and define the first exit time from the cube centered in (x, y, λ) with side length 2γ

as

T γ := inf
{
t ≥ 0 : max{|Xt − γ|, |Yt − γ|, |λt − γ|} ≥ 0

}
,

and similar definitions for the exit times from the intervals centered respectively in

x, y, λ:

TX,γ := inf{t ≥ 0 : |Xt − γ| ≥ 0} ,

T Y,γ := inf{t ≥ 0 : |Yt − γ| ≥ 0} ,

T λ,γ := inf{t ≥ 0 : |λt − γ| ≥ 0} .

Notice that by definition of γ we have θ1 ≥ T λ,γ, where by θ1 we denote the first arrival

time for the Hawkes process, and moreover we have T γ = min{TX,γ, T Y,γ, T λ,γ}.
We are going to prove that

v(XT γ , YT γ , λT γ )→ v(x, y, λ), a.s. for γ → 0 ,

where by (XT γ , YT γ , λT γ ) we mean the process following the optimal strategy.

• Let us now consider the auxiliary process (X(0,0,0), Y (0,0,0), λ) not considering

transactions and consumption, and the auxiliary process (X(0,0,0), Ỹ (0,0,0), λ̃)

not considering any arrival from the jump process, no transactions and no con-

sumption:

dY
(0,0,0)
t = αY

(0,0,0)
t dt+ σ Y

(0,0,0)
t dWt + Y

(0,0,0)

t−

∫ +∞

−1

ηN (dt, dη) ,

dX
(0,0,0)
t = r X

(0,0,0)
t dt ,

dỸ
(0,0,0)
t = α Ỹ

(0,0,0)
t dt+ σ Ỹ

(0,0,0)
t dWt ,

dλ̃t = a (b− λ̃t) dt ,

notice that X(0,0,0) is deterministic and increasing in time, λ̃ deterministic and

decreasing in time, and that (X(0,0,0), Y (0,0,0)) corresponds to the portfolio with-

out transactions and consumption.
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By the DPP we have

v(x, y, λ) = sup
(C,L,M)∈A[0,Tγ ](x,y)

E
[∫ T γ

0

e−β t Up(Ct) dt+ e−β T
γ

v(XT γ , YT γ , λT γ )

]
,

therefore, by considering the sub-optimal strategy consisting in no transactions

and no consumption, we have E
[
v(X

(0,0,0)
T γ , Y

(0,0,0)
T γ , λT γ )− v(x, y, λ)

]
≤ 0, more-

over

E
[
v(X

(0,0,0)
T γ , Y

(0,0,0)
T γ , λT γ )− v(x, y, λ)

]
≥ E

[
v(x, Y

(0,0,0)
T γ , λT γ )− v(x, y, λ)

]
≥ E

[(
v(x, Y

(0,0,0)
T γ , (λ− b)eaθ1 − b+ κ)− v(x, y, λ)

)
1T γ=θ1

]
+ E

[(
v(x, Ỹ

(0,0,0)
T γ , λ)− v(x, y, λ)

)
1T γ>θ1

]
≥ (v(x, 0, λ+ κ)− v(x, y, λ)) P(T γ = θ1)

+ E
[
v(x, Ỹ

(0,0,0)
T γ , λ)− v(x, y, λ)

]
,

where E[v(x, Ỹ
(0,0,0)
T γ , λ) − v(x, y, λ)] goes to zero for γ → 0, since, being a

geometric Brownian motion, Ỹ (0,0,0) has continuous paths, and by the continuity

of v with respect to the second component. Moreover, also P(θ1 = T γ) goes to

zero for γ → 0, since

P(θ1 = T γ) = P
(
θ1 = min{TX,γ, T Y,γ, T λ,γ}

)
≤ P

(
θ1 ≤ T λ̃,γ

)
≤ P

(
θ1 ≤

1

a
log

(
1 +

γ

λ− b− γ

))
= 1−

(
1 +

γ

λ− b− γ

)−λ/a
, (7.4.6)

since T λ,γ < T λ̃,γ, and the (7.4.6) tends to zero for γ → 0.

• By the DPP we have

E[v(XT γ , YT γ , λT γ )− v(x, y, λ)]

≤ E[(1− e−β T γ ) v(XT γ , YT γ , λT γ )]

≤ E[(1− e−β T γ ) v(XT γ , YT γ , λT γ )1T γ<θ1 ] (7.4.7)
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+ E[(1− e−β τ1) v(Xτ1 , Yτ1 , λτ1)1T γ≥θ1 ]

≤ E[(1− e−β T γ )] v(x+ y + 2 γ, x+ y + 2 γ, λ− γ)

+ E[v(x+ y + 2 γ, Yτ1 , λ− γ)1T γ≥θ1 ]

≤ E[(1− e−β T γ )] v(x+ y + 2 γ, x+ y + 2 γ, λ− γ) + P(θ1 ≤ T γ)

×
(
Ap−1(p)

p

∫ ∞
−1

(x+ y + 2 γ + γ (x+ y + 2 γ) (1 + η))p ν(dη)

)
(7.4.8)

≤ E[(1− e−β T γ )] v(x+ y + 2 γ, x+ y + 2 γ, λ− γ) + P(θ1 ≤ T γ)

×
(
Ap−1(p)

p

(
(x+ y + 2 γ) (1 + γ) + γ (x+ y + 2 γ)

∫ ∞
−1

η ν(dη)

))
(7.4.9)

≤
(

γ

γ + b− λ

)−β/a
v(x+ y + 2 γ, x+ y + 2 γ, λ− γ)

+
Ap−1(p)

p
(x+ y + 2 γ) (1 + γ)P(θ1 ≤ T γ) , (7.4.10)

where inequality (7.4.8) is direct consequence of Corollary 7.4.2 and the inde-

pendence of v(x+ y+ 2 γ, x+ y+ 2 γ+ η1, λ− γ) by 1T γ≥θ1 , where η1 is the size

of the first jump that arrives at time θ1, inequality (7.4.9) comes by Jensen’s

inequality, then (7.4.10) is obtained by the fact that T γ ≤ T λ,γ = T λ̃,γ ∧ θ1

implies that

T γ ≤ T λ̃,γ =
1

a
log

(
1 +

γ

λ− b− γ

)
,

and finally we have (7.4.10) since the Lévy measure has negative expectation.

Therefore, by the boundedness of v and by (7.4.6), the last expression tends to

zero for γ → 0. �

7.5 Viscosity solution

Lemma 7.5.1 The value function defined by (7.1.4) is a viscosity supersolution to

the system of variational inequalities (7.3.2).

Proof. Let (x, y, λ) ∈ S × [b,+∞), and consider a test function ϕ ∈ C2 such that

ϕ ≤ v and ϕ(x, y, λ) = v(x, y, λ). Therefore, defining B+
ε := {(x, y, λ) ∈ S× [b,+∞) :

|x − x| ≤ ε, |y − y| ≤ ε, |λ − λ| ≤ ε}, we clearly have that (x, y, λ) minimizes v − ϕ
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over B+
ε . By Proposition 7.2.2 we have

ϕ(x, y, λ) = v(x, y, λ) ≥ 1

p
Cp−1
∗ (x+ (1− µM) y)p .

Consider the strategy consisting in transferring the quantity δ < ε ∧ x from the

risk-free asset to the risky asset, therefore we have

ϕ(x, y, λ) = v(x, y, λ) ≥ v(x− δ, y + δ (1− µL), λ) ,

and also ϕ(x, y, λ)−ϕ(x−δ, y+δ (1−µL), λ) ≥ 0. Hence dividing by ||[−δ, (1−µL) δ]||,
and taking the limit δ → 0, we obtain

∇ϕ · [−1; (1− µL)] ≥ 0 .

A similar argument works also by transferring an amount δ from the asset to the

stock to get

∇ϕ · [(1− µM);−1] ≥ 0 ,

and we are left with proving that

β ϕ− Aϕ− Jϕ− Ũp(ϕx) ≥ 0 .

Now we have to prove the inequality for the first member in (7.4.1), i.e.

β ϕ(x, y, λ)− Aϕ(x, y, λ)− Jϕ(x, y, λ)− Ũp(ϕx(x, y, λ)) ≥ 0 .

Let h be a stopping time, θ the first arrival in the Hawkes process, define γε := tε∧h∧θ,
and consider an admissible strategy (C,L,M) ∈ A(x, y) such that L = M ≡ 0 and

Ct = c for t ∈ [0, tε), then by the DPP we have

ϕ(x, y, λ) = v(x, y, λ) ≥E
[∫ γε

0

e−β sUp(c) ds+ v
(
X

(c,0,0)
h∧tε , Y

(c,0,0)
h∧tε , λh∧tε

)
1h∧tε<θ

+ v
(
X

(c,0,0)

θ− , Y
(c,0,0)

θ− (1 + η), λθ− + κ
)
1θ<h∧tε

]
≥E
[∫ γε

0

e−β sUp(c) ds+ ϕ
(
X

(c,0,0)
h∧tε , Y

(c,0,0)
h∧tε , λh∧tε

)
1h∧tε<θ

+ ϕ
(
X

(c,0,0)

θ− , Y
(c,0,0)

θ− (1 + η), λθ− + κ
)
1θ<h∧tε

]
, (7.5.1)
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where η is the size of the jump arrive at time θ and (X(C,L,M), Y (C,L,M)) is the process

given by equations (7.1.2) and (7.1.3) applying an admissible strategy (C,L,M).

Apply Itô formula to e−β tϕ(X
(c,0,0)
t , Y

(c,0,0)
t , λt) for times t ∈ [0, γε), and take the

expectation to get

E[e−β γε ϕ(X(c,0,0)
γε , Y (c,0,0)

γε , λγε)]

= ϕ(x, y, λ) + E
[∫ γε

0

e−β t (−β ϕ+ Aϕ− c ϕx)(X(c,0,0)
t , Y

(c,0,0)
t , λt) dt

]
.

Then combining it with (7.5.1), and noticing that E[e−β tϕ] ≤ E[ϕ], we obtain

0 ≥E
[∫ γε

0

e−β t (−β ϕ+ Aϕ− c ϕx)(X(c,0,0)
t , Y

(c,0,0)
t , λt) + Up(c) dt

]
+ E

[
ϕ
(
X

(c,0,0)

θ− , Y
(c,0,0)

θ− (1 + η), λθ− + κ
)
1θ<h∧tε

]
≥E
[∫ γε

0

e−β t (−β ϕ+ Aϕ+ Jϕ− c ϕx)(X(c,0,0)
t , Y

(c,0,0)
t , λt) + Up(c) dt

]
,

whose integrand part is bounded by definition of tε, therefore letting ε→ 0 and taking

the supremum over c > 0, we obtain the supersolution property for the value function.

�

Lemma 7.5.2 The value function defined by (7.1.4) is a viscosity subsolution to the

system of variational inequalities (7.3.2).

Proof. To prove the subsolution property we proceed by contradiction, i.e. we assume

that there exist a constant ε > 0, a point (x, y, λ) ∈ S × [b,+∞), a C2-function ϕ

such that (ϕ− v)(x, y, λ) = 0 and ϕ ≥ v on a neighborhood Bε(x, y, λ) := {(x, y, λ) ∈
S × [b,+∞) : |x − x| ≤ ε, |y − y| ≤ ε, |λ − λ| ≤ ε}, and ζ > 0 such that for all

(x, y, λ) ∈ Bε(x, y, λ) we have

β ϕ(x, y, λ)− Aϕ(x, y, λ)− Jϕ(x, y, λ)− Ũp(ϕx(x, y, λ)) > ζ , (7.5.2)

−(1− µM) ∂xϕ(x, y, λ) + ϕy(x, y, λ) > ζ , (7.5.3)

ϕx(x, y, λ)− (1− µL)ϕy(x, y, λ) > ζ . (7.5.4)

Consider the exit time form the ball

tε := inf{t ≥ 0 : (Xt, Yt, λt) /∈ Bε(x, y, λ)} ,
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and define the time γε := tε ∧ τ , for τ ∈ [0,∞). Then apply Itô formula to

e−β t ϕ(Xt, Yt, λt) for t ∈ [0, tε)

e−β γε ϕ(γε)

= ϕ(x, y, λ) +

∫ γε

0

e−β t(−βϕ(t) +Aϕ(t)− Ct ϕx(t)) dt+

∫ γε

0

e−β t σ Yt ϕy(t) dWt

+
∑

0<t<γε

e−β t
(

(λt − λt−) ∂λϕ(t) + (Yt − Yt−) ∂yϕ(t)
)

+

∫ γε

0

e−β t
(
(1− µM)ϕy(t)− ϕx(t)

)
dLt +

∫ γε

0

e−β t
(
(1− µL)ϕx(t)− ϕy(t)

)
dMt ,

and take the expectation to get

ϕ(x, y, λ) ≥E[e−β γε ϕ(γε)] + E
[∫ γε

0

e−β t
(
βϕ(t)− Aϕ(t)− Jϕ(t) + Ct ϕx(t)

)
dt
]

+ ζ E
[∫ γε

0

e−β t (dLt + dMt)
]

=E[e−β γε ϕ(γε)] + E
[∫ γε

0

e−β t
(
βϕ(t)− Aϕ(t)− Jϕ(t)− Ũp(ϕx(t))

)
dt
]

+ ζ E
[∫ γε

0

e−β t (dLt + dMt)
]

+ E
[∫ γε

0

e−β t
(
Ũp(ϕx(t)) + Ct ϕx(t)

)]
≥E[e−β γε ϕ(γε)] + E

[∫ γε

0

e−β t Up(Ct) dt
]

+ f(t), (7.5.5)

where

f(t) = inf
(C,L,M)∈A(x,y)

{
ζ e−β γε E[γε+Lγε+Mγε ]+E

[∫ γε

0

e−β t
(
Ũp(ϕx(t))−(Up(Ct)−Ct ϕx(t))

)
dt
]}
.

Therefore taking the supremum over the admissible strategies in the right hand side

of (7.5.5) we have

ϕ(x, y, λ) ≥ f(t) + v(x, y, λ) ≥ f(t) + ϕ(x, y, λ)

hence, since for t sufficiently small f(t) > 0, we obtain our contradiction. �

Theorem 7.5.1 (Viscosity solution) The value function v given by (7.1.4) is the

viscosity solution to the system of variational inequalities (7.3.2).

Proof. This theorem is a direct consequence of Lemma 7.5.1 and Lemma 7.5.2. �
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Chapter 8

Comparative statics

8.1 Reduction of the dimension of the problem

We reduce the dimension of the problem by one variable. Define

u(z, λ) = v(1− z, z, λ) , for z ∈ [0, 1], λ ≥ b ,

then by the homotheticity property in Proposition 7.2.1, for all (x, y, λ) ∈ S \{0, 0}×
[b,∞) we have

v(x, y, λ) = (x+ y)p u
( y

x+ y
, λ
)
. (8.1.1)

For z ∈ [0, 1] and λ ∈ [b,∞), we define

d1(z) = r + (α− r) z − 1

2
σ2 (1− p) z2

d2(z) = (α− r) z (1− z)− σ2 (1− p) z2 (1− z)

d3(z) =
1

2
σ2 z2 (1− z)2

d4(z) =
1

µM
(1− µM z)

d5(z) =
1

µL
(1− µL (1− z))

J̃ψ(z, λ) = λ

∫ ∞
−1

[
(1 + z η)p ψ

(
z (1 + η)

z η + 1
, λ+ κ

)
− ψ(z, λ)

]
ν(dη) . (8.1.2)

Proposition 8.1.1 The value function v is solution to the HJB equation (7.3.2) if

and only if u, given by (8.1.1), is solution to the two-dimensional second-order integral
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differential equation

min{β ψ(z, λ)− d1(z) pψ(z, λ)− d2(z) ∂zψ(z, λ)− d3(z) ∂2
zzψ(z, λ) (8.1.3)

−a (b− λ) ∂λψ(z, λ)− J̃ψ(z, λ)− Ũp(pψ(z, λ)− z ∂zψ(z, λ)),

p ψ(z, λ) + d4(z) ∂zψ(z, λ), p ψ(z, λ)− d5(z) ∂zψ(z, λ)} = 0 . (8.1.4)

Proof. Let us start proving that the fact that the value function v satisfies equation

(7.3.2) implies that u given by (8.1.1) satisfies (8.1.4). Consider the integral term in

(7.3.2), by definition of (8.1.1) the integral term results in

J v(x, y, λ) = λ

∫ ∞
−1

(
(x+ y (1 + η))p u

( y (1 + η)

x+ y (1 + η)
, λ
)
− (x+ y)p u

( y

x+ y
, λ
))

ν(dη) ,

then consider the change of variable y
x+y

= z, implying x
x+y

= 1− z and also

y (1 + η)

x+ y (1 + η)
=
z (1 + η)

1 + z η
, (x+ y (1 + η))p = (x+ y)p (1 + z η)p ,

then

J v(x, y, λ) = (x+ y)p J̃ u(z, λ) .

Proceed in the same way for all the terms in (7.3.2), then equation (8.1.4) satisfied by

u comes by direct computation. For the other implication, simply start from (8.1.4)

instead of (7.3.2). �

8.2 Numerical results

Let us start by a penalty approximation of the HJB (8.1.3) obtained after the conve-

nient change of variable

a (b− λ) ∂λψ
m + L ψm + Jmψm +K {(Lψm)+ + (Mψm)+} = 0 , (8.2.1)

for λ > b, m ∈ N, and where K is the penalty parameter big enough in order to

penalize the solutions that are not satisfying the constraints of the original HJB
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(8.1.4). Furthermore, we defined the operators as follows

Lψm =

(
−β
γ

+ r + (α− r) z − 1

2
σ2 (1− γ) z2

)
γ ψm +

1− γ
γ

(γ ψm − z ∂zψm)
γ

γ−1

+
(
(α− r) z (1− z)− σ2 (1− γ) z2 (1− z)

)
∂zψ

m +
1

2
σ2 z2 (1− z)2 ∂2

zzψ
m ,

Jmψm =λ

∫ ∞
−1

[
(1 + z η)γ ψm−1

(
z (1 + η)

z η + 1
, λ+ κ

)
− ψm(z, λ)− z η ∂zψm(z, λ)

]
ν(dη) ,

(8.2.2)

Mψm =(−1 + µM z) ∂zψ
m − µM γ ψm ,

Lψm =(1− µL (1− z)) ∂zψm − µL γ ψm .

The solutions ψm of (8.2.1) are defined interactively, starting at m = 0 where the

integral operator is

J 0ψ0 = λ

∫ ∞
−1

[
(1 + z η)γ ψ0

(
z (1 + η)

z η + 1
, λ

)
− ψ0(z, λ)− z η ∂zψ0(z, λ)

]
ν(dη) ,

instead the one in (8.2.2). Notice that we expressed the integral operator (8.2.2)

slightly differently in order to be able to consider also jump measures with non-null

expectation while retaining the assumption of compensated jumps.

We remark the fact that the penalty equation (8.2.1) holds for λ > b, while we

have the initial condition for λ = b solution of the same Penalty HJB but with the

difference that there is no exponential time-decay in the intensity of the jump process.

To avoid numerical oscillations, we will consider the following change of variables:

W (z, λ) =
log(γ ψ)

γ
,

and the corresponding equation is

a (b− λ) ∂λW
m + L1W

m + Jm
1 Wm +K {(L1W

m)+ + (M1W
m)+} = 0 , (8.2.3)

for λ > b, where, letting ν = λ
∫∞

0
η ν(dη) be the compensator of the jumps, we

defined the operators as follows

L1W
m =

(
−β + λ

γ
+ r + (α− ν − r) z − 1

2
σ2 (1− γ) z2

)
+

1− γ
γ

(1− z ∂zWm)
γ
γ−1

+ ((α− ν − r) z (1− z)− σ2 (1− γ) z2 (1− z)) ∂zW
m

+
1

2
σ2 z2 (1− z)2

(
∂2
zzW

m + γ (∂zW
m)2
)
,
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Jm
1 Wm =

λ

γ
e−γ W

m

∫ ∞
−1

(1 + z η)γ exp

(
γ Wm−1

(
z (1 + η)

z η + 1
, λ+ κ

))
ν(dη) ,

M1W
m =(−1 + µM z) ∂zW

m − µM Wm ,

L1W
m =(1− µL (1− z)) ∂zW

m − µLWm ,

for m > 1, and for m = 0 we have the following integral operator

J 0
1 W

0 =
λ

γ
e−γ W

0

∫ ∞
−1

(1 + z η)γ exp

(
γ W 0

(
z (1 + η)

z η + 1
, λ

))
ν(dη) .

8.2.1 Discretization

We perform the following discretizations:

• Truncation of the λ interval with uniform discretization

b = λ0 < λ0 + ∆λ = λ1 < . . . < λN = λmax ,

where ∆λ = (λmax − b)/N .

• Space discretization

0 = z0 < z0 + h = z1 < . . . < zL = 1 ,

where the discretization step h = 1/L.

• Jump size truncation and discretization.

• Finite difference approximation for ∂λW , ∂zW , ∂2
zzW .

To simplify the notation, let us consider again the case m = 0. Through the Implicit

Euler λ-discretization we have

− a (b− λn+1)
W n+1 −W n

∆λ
−L1W

n+1 − 1− γ
γ

(
1− z ∂zW n+1

) γ
γ−1 =

K {(L1W
n+1)+ + (M1W

n+1)+} ,

and collecting the unknown in the left-hand side we have{
I +

∆λ

a (b− λn+1)

(
Llin ·+

1− γ
γ

(1− z ∂z·)
γ
γ−1 +K {L∗1 ·+M∗

1·}
)}

W n+1,l+1 =

W n − ∆λ

a (b− λn+1)
Lnon-linW

n+1,l , (8.2.4)
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where we splitted the operator L in linear and non-linear part as follows

LlinW =((α− r) z (1− z)− σ2 (1− γ) z2 (1− z)) ∂zW +
1

2
σ2 z2 (1− z)2 ∂2

zzW ,

Lnon-linW =− β + λ ν̃

γ
+ r + (α− r) z − 1

2
σ2 (1− γ) z2

+
1

2
σ2 z2 (1− z)2γ (∂zW )2

+
λ

γ
e−γ W

∫ ηmax

−1

(1 + z η)γ exp

(
W

(
z (1 + η)

z η + 1
, λ

))
ν(dη) , (8.2.5)

and

ν̃ =

∫ ηmax

−1

ν(dη) .

For the case m > 0, the discretized integral operator (8.2.5) would be substituted by

λ

γ
e−γ W

m

∫ ηmax

−1

(1 + z η)γ exp

(
Wm−1

(
z (1 + η)

z η + 1
, λ+ κ

))
ν(dη) .

8.3 Sensitivity Analysis

In this section we will start by fixing the following values for the parameters:

• a = 10, b = 0.25, κ = 0.5, λmax = 10, for the intensity of the jumps,

• α = 0.12, σ = 0.4, r = 0, β = 0.09, for drift, volatility, risk-free interest rate

and discount factor,

• γ = 0.4, µM = 0.01, µL = 0.01, the utility function parameter and the transac-

tion costs.

• The density on the size of the jumps in the risky asset:

ν(η) = (η + 1)η−1 e
−(η+1)/θ

θk Γ(k)
, (8.3.1)

i.e. a gamma density function on [−1,∞) with mean value k θ − 1, which a

priori has non-null expectation.

• θ ∈ {0.4, 0.5, 0.75}, k = 2, for the parameters of the gamma distribution for

the sizes of the jumps in the risky asset, see (8.3.1).

In the case in which the expectation of the jump sizes is positive, but not too large,

we have a weakened “buy region shrink” and “sell region expansion”, see Figure 8.1
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Figure 8.1: From the left to the right we represented the value functions surfaces in
the cases in which the expectations of the jumps size are -0.2, 0 and 0.5.

for a representation of the surfaces corresponding to the value function for different

expected value of the jumps, while see Figure 8.2 for a representation of the lines

delimiting the sell and buy regions. Despite the fact that the jumps have positive

expectation we have similar effects as in the previous cases and we still have that the

value function is decreasing with respect to λ. This is mainly due to the fact that the

utility function is concave and to the fact that the expectation on the jumps is only

slightly positive.

In Figure 8.2 we compared the curves delimiting the buy/sell regions in case of

self-exciting jumps and in the case of jumps with constant intensity. We plotted these

graphs displaying the dependence with respect to the intensity of the jumps, but we

remark the fact that, while in the Hawkes framework the intensity of the jumps λ is

a true variable which varies in time, for Poisson jumps their intensity is only a fixed

parameter.

Comparing the Hawkes-NTR and the Poisson-NTR one may notice that in the

Hawkes case the NTR expands as the intensity increases, while for the Poisson case

the NTR is almost constant in width. Moreover, looking at Figure 8.2, the buy region

shrinks slower (and the sell region expands slower) than the buy (sell resp.) region in

the Poisson framework. This is mainly due because we are considering a high speed

of mean reversion coefficient a = 10.

8.4 Financial interpretation of the Hawkes jumps

This section is devoted to a comparison of the Hawkes-jump diffusion framework for

a Merton type model and transaction costs with the the usual Poisson framework.

In the usual Poisson framework, when a positive (respectively negative) jump oc-

curs the proportion π? of the wealth invested in the risky asset increases (respectively
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Figure 8.2: Buy/sell curves for a Merton-Hawkes and a Merton-Poisson framework.
From the top down the expectation of the jump size is fixed to be -0.2, 0, 0.5 (θ = 0.4,
0.5, 0.75, respectively, see equation (8.3.1)). The buy region is below the red curve,
the sell region is above the blue curve and the no transaction region is between the
two curves. In the left graphs we assumed the self-exciting component to be κ = 0.5,
while in the right graphs we considered the case with intensity λ constant in time.
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decreases) in order to keep this proportion constant. This result due to Merton [89]

was extended in several papers, e.g. to cite some of them [4], [44], [58], [81], [109],

and could be interpreted as a self-regulating rule for financial markets, since investors

will sell (respectively buy) after a positive (respectively negative) fluctuation.

In contrast, in the Hawkes framework, both positive and negative jumps contribute

to increase the intensity of future jumps. This sudden positive change in the intensity

has an impact that is twofold on the optimal Merton proportion π?. First, increasing

the frequency the variance of the risky asset is magnified and therefore the proportion

π? decreases, this phenomenon is outlined by Aı̈t-Sahalia and Hurd [5] as a flight-to-

quality due to risk aversion. Nevertheless the intensity has also a second potential

effect related to the mean level of jumps affecting the mean level of stock return.

Then, if jump size is non positive in average both previous effects are going in the

same direction reducing the Merton proportion π? during clustering periods. However,

an ambiguous effect could rise if the jump size is positive in average. The financial

explanation is that if clusters of positive jumps are allowed, the excess of positive

return could compensate the excess of variance. In this part of the thesis, we focused

mainly on the first effect due to the Hawkes process, since the jumps observed in

financial markets are often negative. We then conclude that the optimal policy after

a positive jump is always to sell the risky asset, as in the Poissonian case, but the

quantity sold is larger, see Figure (6.8). In contrast, after a negative jump the optimal

policy could be also to sell it, in contrast with the Merton rule, see Figure (8.3). This

asymmetry is a by product of cluster structure of jumps combined with risk aversion.

We now turn on more general consequences of Hawkes framework showing that

this feature could be seen as a self-fulfilling assumption joint with negative jumps.

In order to do that, we relax the hypothesis of fully competitive markets since the

assumption that investors can purchase and sell arbitrary large amounts of the risky

asset at a fixed price per share is unrealistic due to liquidity constraints.

We consider now that a large part of agents are rational and consider the previous

Hawkes framework, where a large investor decides to buy a large amount of risky

asset (for exogenous reasons). The main effect is that the large investor pays a price

per share larger than the one observed when she decided to buy, see for instance

Kuhn and Stroh [79]. That is, a positive jump will appear, but there is no problem of

lack of counterparties and then the decision of the large investor could be absorbed

without other long term effects.

The situation is completely different if the same large investor wants to sell (always

for exogenous reasons) since the optimal policy of the other agents is also to sell since
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they foresee an increasing frequency of future jumps, that is the main difference with

the usual Poisson paradigm. There is then a lack of counterparties that is generally

covered by opportunistic liquidity providers which are selling the excess of shares in

the future - diluting the effect over large times. At the same time this time dilation

could explain the existence of clusters. As a consequence jump clustering, the like as

Hawkes type jumps, could be rise as a self-fulfilling prophecy.

This aspect could also participate to explain the observed volatility asymmetry

with the leverage and volatility feedback effects. The strong dependency of the future

volatility with respect to past negative jumps, compared to positive ones, detailed by

Patton and Sheppard [99] could be explained by the previous mechanism.

Moreover, the asymmetry of the reaction of other agents to an external shock is

clearly more important in the negative direction than in the positive one. In this way,

the fact that the jumps are negative on average could be seen as a consequence of the

clustering framework and, at the end, of the risk aversion.

Relaxing the hypothesis of fully competitive markets in order to study the impact

of phenomena just detailed, we introduce proportional costs to buy and sell risky

assets, that is a parsimonious way to take into account liquidity issues.

The main novelty of the presence of clustering had a double effect. First, we saw

that the optimal buying and selling line are decreasing with lambda. But at the same

time, the selling line never touches zero, forcing investors to keep a strictly positive

proportion of wealth invested in the risky asset, even when the frequency λ goes

to infinity, in contrast to the case without costs. More surprisingly, the clustering

effect has another side, since after each jump the intensity λ sharply increases, but in

absence of jumps the intensity smoothly decreases. This downhill has the effect that

the buy line gradually turns anti-clockwise pushing investor to buy progressively the

risky assets. As a consequence between two clusters, risky asset exhibits a positive

excess of return due to the fact that agents progressively increase their exposure on

the risky asset until the next cluster.
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Figure 8.3: In the left figure the Merton Optimal allocation line (Merton line in
short) is compared to a the Poisson Jump Diffusion optimal allocation line (MJD line
in short), and shows that adding jumps in the model it becomes optimal to place a
smaller wealth proportion in the risky asset , i.e. introducing jumps leads to a similar
effect as increasing volatility. In the right figure the Merton line is compared to the
Hawkes Jump Diffusion optimal allocation lines (MHD line in short) for different
times. Here the parameters a, κ are assumed to be strictly positive and λ0 > b. We
represented the starting MHD line at time t = 0, the MHD line at the instant before
of a jump arrival t = θ−1 (which corresponds in continuously increasing the proportion
of wealth invested in the risky asset for the period (0, θ1)), and the MHD line at the
first jump arrival time t = θ1. From the figure it is clear that after a jump occurs the
proportion of wealth invested in the risky asset increases dramatically.
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Part V

Closed formula for options linked

to target volatility strategies
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There’s no free lunch.

Sir John Templeton (1912-2008)
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Introduction

In the aftermath of the financial markets, risk management solutions became more

and more important for institutional and retail investors. The low interest rate en-

vironment forced practitioners to develop innovative and more efficient techniques to

proficiently handling clients’ portfolios risk budgets. To this aim, one of the most

successful strategies, introduced both in multi asset portfolios and within structured

products offering at least partial capital protection, is the so-called target volatility

strategy. This concept shifts dynamically between risk-free and risky assets to gen-

erate a portfolio with a stable risk level independent of market volatilities. Such an

approach assumes that market volatilities are a good indicator for asset allocation

decisions. This method works well in rising markets with low volatility as well as in

falling markets with higher volatilities. Practitioners often compare this solution with

a constant portfolio protection insurance (CPPI) strategy, also dynamically allocat-

ing funds between risky and risk-free assets, see [56]. Nevertheless, CPPI also aims

at achieving capital protection, see e.g. [66] for an overview on risk overlay portfolio

strategies.

In recent years, dynamic asset allocation process as Target Volatility Strategies or

CPPI Strategies were used as underlying of options and a series of academic papers

studied option theory when the underlying of the derivative follows a certain trading

rule shifting between risky and risk-free assets. Most of them took a numeric approach

to determine option prices or hedging parameters. We refer to, e.g. Albeverio et

al. [6, 7], Jawaid [69, 70], Zakamulin [117], to what concerns the analysis of Target

Volatility Strategies in different market models, while Zagst et al. [56] focused on

option on a CPPI, also developing a closed-end formula of CPPI options in a Black-

Scholes environment.

The analysis of this part of the thesis is the first attempt, at the best of our

knowledge, which considers closed-end formulas for VolTarget-linked options. Our

underlying environment can be compared to the one considered by Zagst et al. in

[56], where the risky asset is assumed to evolve as in the Black-Scholes model; we
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extend it through considering a generalized geometric Brownian motion framework.

This choice was mainly motivated by the evidence found in the papers by Binder

et al. [21] and by Hilliard and Li [65], in which they heuristically showed that the

stock market volatilities are mainly driven by the underlying asset price, the risk-free

interest rate, the risk premium on equity and the ratio of expected returns. Since our

aim is not to study the effect of variations of the interest rate and we are considering

risk-neutral pricing formulas, the principal factor in determining the level of volatility

of the stock price is the stock price value itself. In particular in [65] they provided

a measure for the implied volatility based on the underlying asset price changes,

showing that indeed, even for the implied volatility hedging approach, including the

underlying market price enables to outperform traditional methods not including the

relationship of the volatility with respect of the underlying price. In our study we focus

on the derivation of a closed-end formula for call and put options linked to VolTarget

strategies. We also consider the associated Greeks, deriving closed-end expressions

for key hedging parameters of options linked to Target Volatility Strategies. Such a

novel result constitutes a key point for any practitioner aiming at concretely exploiting

options linked to the VolTarget portfolios.

Chapter 9 is organized as follows: in Section 9.1 we analyze VolTarget portfolios

when the risky-asset dynamics is described by a generalized geometric Brownian mo-

tion. We treat the evaluation problem for options that have, as underlying, VolTarget

portfolios determined by standard VolTarget strategies, preserving fixed volatility in

time. In section 9.3 we consider a modification of the VolTarget strategy, which is

placing an upper bound to the leverage effect caused by the VolTarget strategy. In

this case we consider a risky asset evolving as a geometric Brownian motion with

time-dependent drift and volatility. For both strategies exact formulas for the price

of call and put options are presented. In section 9.4 we analyze the sensibility of

the prices of options written on VolTarget portfolios with respect to volatility and

risky asset value. We give emphasis on the analysis of the Greeks (Vega, Delta and

Gamma) with respect to changes in the underlying volatility, also providing several

graphs to better illustrate the obtained results. In section 9.5 we enrich our study

by presenting a numerical scheme via Euler-Maruyama and Milstein discretization to

simulate paths of a VolTarget portfolio, assuming that the risky asset is described by

a Heston model.
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Chapter 9

VolTarget strategies in generalized

GBM environment

Let us start by considering a framework similar to the pioneering paper by Merton

[90]. This means that throughout this chapter we are going to consider a market in

which there are two investment opportunities: a risk-free asset, also referred as money

market or Government bond or simply bond, and a risky underlying asset, also called

stock or share. Moreover we assume that the randomness of the underlying asset

is described by Black-Scholes-Merton stochastic differential equations and that there

exist continuously-trading perfect markets where the agents are not subjected to any

transaction costs to trade the risky asset for the risk-free asset and vice versa.

9.1 The model

Let (Ω,F , {F(t)}t≥0,P) be a filtered, complete probability space, with right-continuous

filtration, supporting a Brownian motion W , and consider a market consisting of two

investment opportunities: a risky asset {S(t)}t≥0, and a risk-free asset {B(t)}t≥0,

evolving as a stochastic process satisfying the generalized geometric Brownian mo-

tion and a deterministic function:

dS(t) = S(t)
(
µ(t) dt+ σ(t) dW (t)

)
, (9.1.1)

dB(t) = r B(t) dt ,

for each t ≥ t0, where t0 ≥ 0 is the starting time, W is a Brownian motion F(t)-

adapted, r ∈ R+ is a positive constant representing the risk-free rate, and µ and

σ are adapted to {FW}, the natural filtration generated by the Brownian motion,
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and represent the mean rate of return and the percentage volatility of the risky asset

respectively. Let s, b ∈ R+ be the values at time t0 for the risky and risk-free assets.

Moreover, consider an investor holding a portfolio, starting with a positive position

x invested in the risk-free asset and a positive position y invested in the risky asset,

and assume that she is able to transfer its capitals from an investment to another

without paying any transaction costs. Therefore let us introduce the processes L

representing the cumulative amount of risk-free asset sold in order to buy risky asset,

and M the process representing the cumulative amount of risky asset sold in order to

buy the risk-free asset. Both L and M are assumed to be non-negative, non-decreasing

and càdlàg.

Finally, the portfolio value can be represented continuously in time by the couple

(X(t), Y (t))t≥t0 , starting at X(t0) = x, Y (t0) = y, with (X, Y ) representing the

amount of capital invested in the risk-free asset and in the risky asset, respectively,

and evolving according to the following stochastic differential equations

dX(t) = r X(t) dt+ dM(t)− dL(t) , (9.1.2)

dY (t) = µ(t)Y (t) dt+ σ(t)Y (t) dW (t) + dL(t)− dM(t) . (9.1.3)

For the moment in our work we are not introducing neither proportional or fixed

transaction costs, but it is a possible extension for future studies. In such cases,

continuous re-balancing would cause non-negligible expenses to the investor in the

portfolio aiming to preserve a fixed volatility and it has to be considered a volatility

target interval, instead of a punctual volatility target.

Denote the total portfolio value of the investor at time t > t0 by V (t), and let α(t)

denote the percentage of portfolio invested at time t in the risky asset assumed to be

adapted predictable càdlàg processes, while 1− α(t) will denote the portfolio weight

invested in the risk-free-asset at time t. In other words we define V (t) = X(t) + Y (t)

and α(t) = Y (t)
X(t)+Y (t)

. Since the investments evolve according to (9.1.2) and (9.1.3), by

substituting the risky asset dynamics (9.1.1), we derive the dynamics of the portfolio

value process:dV (t) = V (t)
{(
α(t) (µ(t)− r) + r

)
dt+ α(t)σ(t) dW (t)

}
, t > t0 ,

V (0) = x+ y =: v,
(9.1.4)

where α is controlled by the investor and adapted to the filtration F . We make two

remarks: first of all notice that the portfolio whose value is determined by (9.1.4) is
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self-financing, i.e. the dynamics of (9.1.4) are equivalent to

dV (t) = V (t)

(
α(t)

dS(t)

S(t)
+ (1− α(t))

dB(t)

B(t)

)
, (9.1.5)

moreover notice that V is a Markovian portfolio and that a priori we do not know

the future value of the wealth process, which indeed is stochastic.

Now that the mathematical framework is settled, we can turn to the Volatility

Target (VT, in short) investment strategy. The VT mechanism is a dynamic asset

allocation process in which the amount invested in the risky asset is determined by a

pre-defined volatility target level, denoted by σ̂, and the volatility of the underlying

risky asset, σ(t), see (9.1.1). By shifting dynamically between the two investment op-

portunities evolving accordingly to equations (9.1.1), the investor aims to preserve a

constant volatility level of the resulting portfolio Vσ̂(t), which can be used as underly-

ing of derivatives, e.g. European call options. We resume this notion in the following

definition:

Definition 9.1.1 (VolTarget portfolio) Consider the stochastic process Vσ̂ evolv-

ing according to

Vσ̂(t) = X1−α̂(t) + Yα̂(t), t ≥ t0. (9.1.6)

where Yα̂ = α̂ Vσ̂ and Xα̂ = (1− α̂)Vσ̂, and by α̂ we meant the proportion of portfolio

value α(t) dynamically invested in the risky asset. We say that Vσ̂ is a VolTarget

portfolio if it is self-financing and the weight process is preserving a constant volatility

equal to σ̂, where X and Y represent the amount of capital invested in the risk-free

and risky asset and evolve according to (9.1.2) and (9.1.3), respectively.

We want to determine explicitly the equation for the control which preserves a

fixed volatility to the portfolio process (9.1.4).

Proposition 9.1.2 For α̂(t) = σ̂/σ(t) we have that the process whose dynamics are

given by (9.1.6) is a VolTarget portfolio.

Proof. By (9.1.4), for α(t) = α̂(t), we have

dVσ̂(t) = Vσ̂(t)

((
σ̂

σ(t)
(µ(t)− r) + r

)
dt+ σ̂ dW (t)

)
, (9.1.7)

i.e. by Definition 9.1.1 we reach our thesis. �

Notice that we are not considering the equation involving the underlying (9.1.1)

and the amounts of capital that have to be invested in the risky and risk-free asset
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respectively. In Proposition 9.1.2 we saw that in order to obtain a VT portfolio the

investor has to keep this proportion inversely proportional to the actual value of the

volatility rate of the risky asset, i.e. equal to α̂(t) = σ̂/σ(t), which is adapted to the

filtration generated by the random component in the asset’s stochastic differential

equation.

9.2 Option pricing

Let X = Φ(VT ) be a contingent claim with date to maturity T and with underlying

portfolio V (therefore we have X ∈ FT ), where Φ is a contract function. The aim of

this section is to determine an arbitrage-free price Π(t;X ) for this claim, sometimes

also denoted as Π(t; Φ) or Π(t).

Let us heuristically assume for the moment that there exists a function F ∈
C1,2([0, T ]× R+) such that

Π(t) = F (t, S(t)) ,

then by the Black-Scholes equation we would have absence of arbitrage if F is solution

to the following PDE∂(t)F (t, s) + r s ∂(s)F (t, s) + 1
2
s2 σ̂2 ∂2

ssF (t, s)− r F (t, s) = 0 ,

F (T, s) = Φ(s) ,
(9.2.1)

for t ∈ [0, T ] and s ∈ R+. In the next subsections we are going to remove the

heuristic assumption and derive some pricing formulas for contingent claims written

on the VolTarget portfolio. One can simply notice that the PDE (9.2.1) can be solved

à la Feynman-Kač, i.e.

F (t, s) = e−r (T−t) EQ
t,s[N(ST )], for t ∈ [0, T ], s > 0,

where we are considering the expectation with respect to the unique risk-neutral

measure Q conditioned by S(t) = s, see e.g. [18, Ch. 14] for what concerns the

existence of a unique risk-neutral measure.

9.2.1 Risk Neutral Valuation

We consider now the unique equivalent martingale measure Q, i.e. the unique measure

under which S(t)/B(t) is a local martingale. Let WQ be a Brownian motion under
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Q, then by Girsanov theorem we have that the risky asset process S satisfies the

following SDE

dS(t) = S(t)
(
r dt+ σ(t) dWQ(t)

)
. (9.2.2)

The underlying risky asset is governed by a geometric Brownian motion with dynamics

given by equation (9.2.2), therefore applying Itô formula to log(S(t)), we obtain

S(t) = S(0) exp

{∫ t

0

(r − σ(s)2/2) ds+

∫ t

0

σ(s) dWQ(s)

}
.

Since the volatility in equation (9.2.2) is not a function only of time, but it is adapted

to W , we cannot say much about the distribution of log(S(t)/S(0)), which would

have been Gaussian, in the special case of deterministic volatility.

We consider now a European call option and a European put option with payoff

function

Φcall(VT ) = (VT −K)+ , (9.2.3)

Φput(VT ) = (K − VT )+ , (9.2.4)

with T ≥ t0 expiration time and K strike price. Through the next propositions and

corollaries we will determine the price at the starting time t0 ≥ 0 of these kinds of

options.

Proposition 9.2.1 The price at time t0 of a call option with payoff (9.2.3), denoted

as Φcall, linked to the VolTarget portfolio Vσ̂(t), see equation (9.1.7), is given by the

following explicit formula

Π(t0,Φcall(Vσ̂(T ))) = v N (d1(t0))−K e−r (T−t0) N (d2(t0)) . (9.2.5)

We recall that the proportion α̂(t) of portfolio value invested in the risky-asset is as

the one defined in Proposition 9.1.2, N is the cumulative distribution function for the

standard normal distribution, v = Vσ̂(t0) is the starting value of the portfolio and we

defined the following parameters

d1(t0) =
−zσ̂(t0) + σ̂ (T − t0)√

T − t0
,

d2(t0) = − zσ̂(t0)√
T − t0

,

zσ̂(t0) =
1

σ̂
log

(
K

v

)
+

(
σ̂

2
− r

σ̂

)
(T − t0) .
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Proof. Notice that, while the underlying risky asset has non constant volatility,

see eq. (9.1.7), the dynamics for the VT portfolio is simpler, and indeed we have the

following explicit formula

Vσ̂(t) = v exp

((
r − σ̂2

2

)
(t− t0) + σ̂ WQ(t− t0)

)
, for t ≥ t0 .

Therefore we have that Vσ̂(T ) > K if and only if

WQ(T − t0) >
1

σ̂
log

(
K

v

)
+

(
σ̂

2
− r

σ̂

)
(T − t0) =: zσ̂(t0) .

We denote by fN(0,t)(x) the probability density function of the a normal random

variable with mean 0 and variance t

fN(0,t)(x) =
1√
2π t

e−
x2

2t ,

and by N(x) the cumulative distribution function of a standard normal variable.

Then we have that the price of the call option on the portfolio value at time t0 is

equal to

Π(t0,Φcall(Vσ̂(T ))) = E
[
e−r (T−t0)(Vσ̂(T )−K)+

∣∣∣Ft0]
= e−r(T−t0)

∫ +∞

zσ̂(t0)

{
v exp

((
r − σ̂2

2

)
(T − t0) + σ̂x

)
−K

}
fN(0,T−t0)(x)dx

= e−r (T−t0) v e

(
r− σ̂2

2

)
(T−t0)+σ̂2/2 (T−t0)

(
1−N

(
zσ̂(t0)− σ̂ (T − t0)√

T − t0

))
−K e−r (T−t0)

(
1−N

(
zσ̂(t0)√
T − t0

))
= v N

(
−zσ̂(t0) + σ̂ (T − t0)√

T − t0

)
−K e−r (T−t0)N

(
− zσ̂(t0)√

T − t0

)
.

�

Corollary 9.2.2 Assuming that the risky asset dynamics follows a generalized geo-

metric Brownian motion with FW -adapted drift and volatility, see equation (9.1.1),

the price at time t0 of a put option with payoff (9.2.4), denoted as Φput, linked to

the VolTarget portfolio Vσ̂(t), see equation (9.1.7), is given by the following explicit
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formula

Π(t0,Φput(Vσ̂(T ))) = K e−r (T−t0)N (−d2(t0))− v N (−d1(t0)) , (9.2.6)

where the parameters d1, d2 and zσ̃ are defined as in Proposition 9.2.1.

Proof. By the put-call Parity, see e.g. [110, 4.5.6], we have that the difference

between the price of a call option and the price of put option with same strike price,

time to expiration and underlying, is equal to difference between the actual price of

the underlying (in our case the VT portfolio) and the discounted strike price, i.e.

Π(t0,Φcall(Vσ̂(T )))− Π(t0,Φput(Vσ̂(T ))) = v −K e−r (T−t0).

Therefore, we obtain (9.2.6), since N(−x) = 1−N(x) for each x ∈ R. �

9.3 VolTarget Strategy with maximum allowed Lever-

age Factor

Now we consider a more interesting strategy from a practical point of view. We

introduce a parameter L ≥ 1 determining the maximum allowed leverage of the

portfolio, i.e. we force the weight process to be less or equal than the parameter L:

α̃(t) := min{L; σ̂/σ(t)} . (9.3.1)

From now on, we will distinguish the notations for standard VolTarget strategies by

the one for VolTarget strategies with maximum allowed Leverage Factor, by marking

the volatility and weight symbols with a hat and a tilde respectively, i.e. σ̂ and α̂

are referred to standard VolTarget portfolios and σ̃ and α̃ are referred to “Maximum

Leverage” VolTarget portfolios.

This limitation is imposed in order to prohibit VolTarget strategies to finance by

loans a large portion of the risky investment. The typical setup occurring in practice

is L = 2, see the paper by Wallbaum et al. [7] for further details.

Let us compute the value of an option on the VolTarget portfolio with limited

leverage and time dependent volatility, i.e. for this VT strategy we consider a partic-

ular case of equation (9.1.1):

dS(t) = S(t)
(
µ(t) dt+ σ(t) dW (t)

)
, (9.3.2)
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where µ, σ : R+ → R+ are deterministic functions of time. Here the percentage drift

term could be assumed to be FW -adapted.

Proposition 9.3.1 Assume that the risky asset dynamics follows a geometric Brow-

nian motion with time-dependent drift and volatility, see equation (9.3.2). The price

at time t0 of a call option with payoff (9.2.3), denoted as Φcall, linked to the VolTarget

leverage portfolio Vσ̃(t), is given by the following explicit formula

Π (t0,Φcall(Vσ̃(T ))) = v N
(
d̃1(t0)

)
−K e−r (T−t0) N

(
d̃2(t0)

)
, (9.3.3)

where the proportion of portfolio value invested in the risky-asset is α̃(t) := min{L; σ̂/σ(t)},
N is the cumulative distribution function for the standard normal distribution, v =

Vσ̂(t0) is the starting value of the portfolio and we defined the following parameters

d̃1(t0) =
−z̃σ̂(t0) + ς(t0)√

ς(t0)
,

d̃2(t0) = − z̃σ̂(t0)√
ς(t0)

,

zσ̃(t0) = log

(
K

v

)
− r (T − t0) +

ς(t0)

2
,

ς(t0) =

∫ T

t0

σ̃(s)2 ds ,

σ̃(t) = min{Lσ(t), σ̂} .

Proof. For this strategy we have that the portfolio value has not a constant volatility

and it has the following expression

Vσ̃(t0, t) = v exp

(
r (t− t0)− ς(t0)/2 +

∫ t

t0

min(Lσ(s), σ̂) dWQ(s)

)
,

and we have W̃ (t− t0) :=
∫ t
t0

min(Lσ(s), σ̂) dWQ(s) ∼ N(0, ς(t0)), which means that

its probability density function is

fN(0,ς(t0))(x) =
1√

2π ς(t0)
exp

(
− x2

2 ς(t0)

)
.

Therefore we have that Vσ̃(T ) > K iff

W̃ (T − t0) > log

(
K

v

)
− r (T − t0) +

ς(t0)

2
=: zσ̃(t0) ,
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and have we have that the considered option value equals to

Π (t0,Φcall(Vσ̃(T ))) = E
[
e−r (T−t0)(Vσ̃(T )−K)+

∣∣∣Ft0]
= e−r(T−t0)

∫ +∞

zσ̃

{
v exp

(
r(T−t0)−ς(t0)/2+x

)
−K

}
fN(0,ς(t0))(x)dx

= e−r (T−t0) v er (T−t0)−ς(t0)/2+ς(t0)/2

(
1−N

(
zσ̃(t0)− ς(t0)√

ς(t0)

))

−K e−r (T−t0)

(
1−N

(
zσ̃(t0)√
ς(t0)

))

= v N

(
−zσ̃(t0) + ς(t0)√

ς(t0)

)
−K e−r (T−t0)N

(
− zσ̃(t0)√

ς(t0)

)
.

�

Remark 9.3.2 Notice that the price of this call option depends on the future volatil-

ity, but, since it is deterministic, it is not an issue, and indeed we have obtained exact

formulas.

Corollary 9.3.3 Assume that the risky asset dynamics follows a geometric Brownian

motion with time-dependent drift and volatility, see equation (9.3.2). Then the price

at time t0 of a put option with payoff (9.2.4), denoted as Φput, linked to the VolTarget

leverage portfolio Vσ̃(t), is given by the following explicit formula

Π (t0,Φput(Vσ̃(T ))) = K e−r (T−t0) N
(
−d̃2(t0)

)
− v N

(
−d̃1(t0)

)
(9.3.4)

where d̃1 and d̃2 are defined as in Proposition 9.3.1, and the proportion of portfolio

value invested in the risky asset is α̃(t) := min{L; σ̂/σ(t)}.

Proof. Direct consequence of the put-call Parity. �

9.4 Greeks

In this section we will move on the quantitative study of the prices of options on

a VolTarget portfolio in continuous time. In other words, we will explicitly derive

the Greeks, which are known in mathematical finance as the quantities representing

the sensitivity of prices of derivatives, such as options, to a change in underlying

parameters on which the value of the portfolio of financial instruments is dependent.
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In what follows we are going to consider a risky asset evolving as in the Black-

Scholes model. Therefore, the price formulas (9.2.5), (9.2.6), (9.3.3) and (9.3.4) for

call and put options, with VT underlying portfolios, can be reduced to

Π (t0,Φcall(Vσ̂(T ))) =v N(d1)−K e−r (T−t0) N(d2) ,

Π (t0,Φcall(Vσ̃(T ))) =

v N(d̃1)−K e−r (T−t0) N(d̃2) for σ < σ̂/L ,

v N(d1)−K e−r (T−t0) N(d2) for σ > σ̂/L ,

Π (t0,Φput(Vσ̂(T ))) =K e−r (T−t0) N(−d2)− v N(−d1) ,

Π (t0,Φput(Vσ̃(T ))) =

K e−r (T−t0) N(−d̃2)− v N(−d̃1) for σ < σ̂/L ,

K e−r (T−t0) N(−d2)− v N(−d1) for σ > σ̂/L ,

where

d1 =
1

σ̂
√
T − t0

(
log(v/K) + (r + σ̂2/2) (T − t0)

)
,

d2 =
1

σ̂
√
T − t0

(
log(v/K) + (r − σ̂2/2) (T − t0)

)
,

d̃1 =
1

σ L
√
T − t0

(
log(v/K) + (r + L2 σ2/2) (T − t0)

)
,

d̃2 =
1

σ L
√
T − t0

(
log(v/K) + (r − L2 σ2/2) (T − t0)

)
.

9.4.1 Vega

Since VolTarget portfolios are meant to preserve a fixed volatility the most repre-

sentative Greek value is the Vega value, i.e. the sensitivity of the option price with

respect to the volatility of the risky asset.

Proposition 9.4.1 The Vega of a call and put option, with payoff (9.2.3) and (9.2.4),

on the VolTarget portfolio with weight strategies α̂ = σ̂/σ and α̃ := min{L; σ̂/σ} are

respectively given by

ν{Φcall,Vσ̂} = ∂σΠ (t0,Φcall(Vσ̂(T ))) = 0 ,

ν{Φcall,Vσ̃} = ∂σΠ (t0,Φcall(Vσ̃(T ))) =


v√
2π

exp
(
− d̃21

2

)
L
√
T − t0 for σ < σ̂

L
,

0 for σ > σ̂
L
,

(9.4.1)
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with ν{Φput,Vσ̂} = ν{Φcall,Vσ̂} and ν{Φput,Vσ̃} = ν{Φcall,Vσ̃}, where

d̃1 =
log(v/K) +

(
r + L2 σ2

2

)
(T − t0)

Lσ
√
T − t0

.

Proof. Let us consider the VT leverage strategy for the case in which σ < σ̂
L

, then

we recall that the price of the call option can simplified as

Π (t0,Φcall(Vσ̂(T ))) = v N(d̃1)−K exp(−r (T − t))N(d̃2) ,

where

d̃1 =
− log(K/v) + (r + L2 σ2/2) (T − t)

Lσ
√
T − t0

,

d̃2 =
− log(K/v) + (r − L2 σ2/2) (T − t)

Lσ
√
T − t0

.

Then computing the partial derivative with respect to σ, we obtain

∂σΠ (t0,Φcall(Vσ̃(T ))) =
1√
2π

(
v e−d̃

2
1/2

(
L
√
T − t0 −

d̃1

σ

)

+K e−d̃
2
2/2−r (T−t0)

(
L
√
T − t0 +

d̃2

σ

))

=
1√
2π

v e−d̃
2
1/2

(
2L
√
T − t0 −

d̃1 − d̃2

σ

)

=
v√
2π

exp

(
−(d̃1)2

2

)
L
√
T − t0 ,

where the second row steams from the identity exp(
d̃22−d̃21

2
) = v

K
exp(r (T − t0)), and

the last by d̃1 − d̃2 = Lσ
√
T − t0.

Similar calculations work also for the Vega of put options. �

Remark 9.4.2 Notice that, for σ < σ̂/L, we have that VT leverage call and the

standard leverage call share the same price, which can be expressed in terms of

the standard call option price, denoted as ΠS := Π (t0,Φcall(S(T ))); i.e. stating the

dependence with respect the risky asset’s volatility

ΠVσ̃(σ) = ΠS(Lσ) ,
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and therefore, computing the partial derivative with respect to the volatility, we

obtain

ν{Φcall,Vσ̃} = ∂σΠVσ̃(σ) = L∂σΠS(Lσ) ,

which is exactly as expressed in equation (9.4.1).

In Figure 9.1 we compared the graphs of a Vega for a call option written on a

portfolio adopting a VT leverage strategy and the Vega for a standard call option.

In the left graph in Figure 9.1, the Vegas taken into account are for at-the-money

options, and one can notice that, while for volatilities higher than σ > σ̂
L

, the VT

leverage Vega is null, for “small” volatilities the VT leverage Vega is even higher than

the Vega for standard call options. In the right graph in Figure 9.1 the comparison

takes into account the sensitivity of Vega with respect to the portfolio value. Notice

that, while for a standard call option the highest Vega is reached for the underlying

share’s value equal

v∗ = s∗ = K e−(T−t0) (r−σ
2

2
),

for the VT leverage call option, it is reached in

v∗ = K e−(T−t0) (r−L
2 σ2

2
).

Finally, in Figure 9.2, we summarized the dependence of Vega with respect to both

the volatility and the underlying portfolio value.

9.4.2 Delta

Before dealing with the Delta of options written on VT portfolios, it is worth starting

analyzing the sensitivity of the VT portfolio with respect to small changes in the risky

asset price. To perform this, we write the VT portfolio dynamics as

dVσ̂(t) = ϕσ̂(t) dS(t) + ψσ̂(t) dB(t) , (9.4.2)

where we defined ϕS and ϕB as the instantaneous number of shares and bonds held

in the portfolio. By the self-financing equation (9.1.5), we have that

ϕσ̂(t) =
V (t) α̂(t)

S(t)
,

ψσ̂(t) =
V (t) (1− α̂(t))

B(t)
,
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Figure 9.1: The plots represent the behavior of Vega values of an option written on
the VolTarget portfolio, with maximum allowed leverage given by the weight strategy
α̃ = min(L, σ̂/σ), highlighting its dependence on the values of the volatility σ (left)
and on the values of v (right). The parameters are set up as r = 5%, v = 12, K =
10, t0 = 0, T = 1, σ̂ = 20%, L = 2. For the volatility dependence (left), the “VolTarget
Maximum Leverage” Vega line (in blue) is also compared with the dotted line of a
hypothetical portfolio holding L times its wealth in the risky asset (in cyan) and the
Vega for a standard call option whose underlying is simply the risky asset. Instead, for
the portfolio initial value dependence (right), we considered σ = 0.08, i.e. σ < σ̂/L.
The “VolTarget Maximum Leverage” Vega line (in blue) is the same as the Vega
of a hypothetical portfolio holding L times its wealth in the risky asset. This line
is compared with the Vega of a portfolio investing all its capital in the risky asset.
We remark the fact that here we obtained that the Vega value for the VT leverage
option was greater than the one for the standard option, since we were considering
a relatively small volatility (less than σ̂/L); instead, if we would have considered a
volatility greater than σ̂/L, the Vega value for the option written on the VolTarget
Maximum Leverage would have been identically zero.

153



Figure 9.2: The two surfaces are the Vega for a portfolio adopting a VolTarget maxi-
mum leverage strategy (left figure) and the Vega for a portfolio investing L times its
wealth v in the risky asset (right figure). One can notice that the VT leverage strategy
hedges well the portfolio against volatility variations when the volatility is high (higher
than σ̃/L). The parameters are set as r = 5%, t0 = 0, T = 1, σ̂ = 20%, L = 2, K = 10.

which means that the Delta of the VT portfolio is

∆Vσ̂ =
V (t) σ̂

S(t)σ
. (9.4.3)

Remark 9.4.3 Let us digress on some implications resulting by Itô calculus. Notice

that the price of an option written on the VT portfolio may be equivalently determined

solely by the dynamics of the VT portfolio and the actual time, or by the risky asset

dynamics, the bond dynamics and the actual time; i.e. we may denote the price of a

generic option on a VT portfolio as Π(t, V ) or Π(t, S, B). Therefore, exploiting the

first notation, by equation (9.4.2) and Itô-Doeblin formula, see [110, Ch. 4], we have

dΠ(t, V ) =∂tΠ(t, V ) dt+ ∂V Π(t, V ) dVt +
1

2
∂2
V V Π(t, V ) d[V, V ]t

=∂tΠ(t, V ) dt+ ∂V Π(t, V )
(
ϕ(t) dSt + Ψ(t) dBt

)
+

1

2
∂2
V V Π(t, V )ϕ(t)2 d[S, S]t , (9.4.4)

where by [V, V ] we denote, as usual, the quadratic variation of the stochastic process

V , see e.g. [110, 3.4.2].

Instead, for the expression of the option price as function of time, risky asset price
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and bond price, by Itô-Doeblin formula, we obtain

dΠ(t, S, B) = ∂tΠ(t, S, B) dt+ ∂SΠ(t, S, B) dSt + ∂BΠ(t, S, B) dBt

+
1

2
∂2
SSΠ(t, S, B) d[S, S]t, (9.4.5)

therefore, combining equations (9.4.4) and (9.4.5), we derive a simpler expression for

Delta and Gamma of an option on VT portfolios

∂SΠ(t, S, B) = ∂V Π(t, V )ϕ(t) ,

∂2
SSΠ(t, S, B) = ∂2

V V Π(t, V )ϕ(t)2 .

Proposition 9.4.4 The Delta of a European call option with payoff (9.2.3) on the

VolTarget portfolio with weight strategies α̂ = σ̂/σ and α̃ := min{L; σ̂/σ} are respec-

tively given by

∆{Φcall,Vσ̂} = ∂SΠ (t0,Φcall(Vσ̂(T ))) =
v σ̂

s σ
N(d1) , (9.4.6)

∆{Φcall,Vσ̃} = ∂SΠ (t0,Φcall(Vσ̃(T ))) =

Lv
s
N(d̂1) for σ < σ̂

L
,

v σ̂
s σ
N(d1) for σ > σ̂

L
,

(9.4.7)

where

d1 =
log(v/K) +

(
r + σ̂2

2

)
(T − t0)

σ̂
√
T − t0

,

d̃1 =
log(v/K) +

(
r + L2 σ2

2

)
(T − t0)

Lσ
√
T − t0

.

While the Delta of a European put option with payoff (9.2.4) is

∆{Φput,Vσ̂} = ∂SΠ (t0,Φput(Vσ̂(T ))) =
v σ̂

s σ
(N(d1)− 1) , (9.4.8)

∆{Φput,Vσ̃} = ∂SΠ (t0,Φput(Vσ̃(T ))) =

Lv
s

(N(d̂1)− 1) for σ < σ̂
L
,

v σ̂
s σ

(N(d1)− 1) for σ > σ̂
L
.

(9.4.9)

Proof. By Itô calculus’ chain rule (see Remark 9.4.3)

∆{Φcall,Vσ̂} = ∂V Π (t0,Φcall(Vσ̂(T ))) ∆Vσ̂ . (9.4.10)

155



Moreover, by simple calculation, we have

∂V Π (t0,Φcall(Vσ̂(T ))) = N(d1) + v N ′(d1) ∂vd1 −K e−r,(T−t0)N ′(d2) ∂vd2

=N(d1) +
1√

2π
√
T − t0 σ̂2 v2

(
v e−

1

2
d21 −K e−r (T−t0)e−

1

2
d22
)

=N(d1) +
e−

1

2
d21

√
2π
√
T − t0 σ̂2 v

(
1− K

v
e−r (T−t0)e−

1

2
(d22−d21)

)
= N(d1) ,

(9.4.11)

where the last equality is reached since e−
1
2

(d22−d21) = v/K er (T−t0). Therefore, substi-

tuting (9.4.3) and (9.4.11) in equation (9.4.10), we obtain (9.4.6).

The same arguments works for ∆Vσ̃ , with the difference that in this case we have

∆Vσ̃ =
Lv

s
, for σ <

σ̂

L
,

since for σ < σ̂
L

, α̃ = L.

For the put option case, we have that ∂V Π (t0,Φcall(Vσ̂(T ))) = N(d1)− 1. There-

fore, by similar calculations, we obtain equation (9.4.8). �

In Figure 9.3 we compared the Deltas for calls and puts written on a VolTarget

portfolio with calls and puts written on the risky asset. One can notice that Deltas

for VT options present an asymptotic behavior for both low and high volatilities.

This is because, for extreme low volatilites, the VT portfolio finances a great amount

of shares through short selling the risk-free asset, while, for extreme high volatilities,

the VT portfolio invests only a small proportion of its value in the risky asset. See

Remark 9.4.3 for the mathematical explanation of this effect.

For VT leverage portfolios the analysis of the Deltas with respect to the volatility

of the risky asset is not significantly different than the Deltas for standard options,

since it suffices to consider the change of variable σL = Lσ in the standard Delta

value and to boost the latter by the maximum leverage parameter L.

9.4.3 Gamma

The computation of the Gamma for options on VT portfolios follows similar proceed-

ings to the ideas beyond the computation of the Delta performed in Subsection 9.4.2,

and in particular Remark 9.4.3.

Proposition 9.4.5 The Gamma of an option with payoff (9.2.3) on the VolTarget

portfolio with weight strategies α̂ = σ̂/σ and α̃ := min{L; σ̂/σ} are respectively given
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Figure 9.3: The right graphs represent the behavior of the Delta of standard call (top
figure) and put (bottom figure) options with respect to different volatility values.
The left graphs represent the Delta for call and put options written on VolTaget
portfolios. We considered strike prices K in order to obtain an “in-the-money” option,
an “at-the-money” option, an “at-the-money-forward” option and an “out-of-the-
money” option. Notice that the Delta for the VT options exhibits two asymptotes:
one vertical, corresponding to null volatility, and one horizontal, corresponding to a
volatility value tending to infinity. The parameters are fixed as s = v = 10, σ̂ = 0.2,
µ = 8%, r = 5%, T = 1, t0 = 0 and the volatilities start at σ = 0.1.
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by

Γ{Φcall,Vσ̂} = ∂2
SSΠ (t0,Φcall(Vσ̂(T ))) =

v σ̂

s2 σ2
√
T − t0

fN(0,1)(d1) , (9.4.12)

Γ{Φcall,Vσ̃} = ∂2
SSΠ (t0,Φcall(Vσ̃(T ))) =

 Lv
s2 σ
√
T−t0

fN(0,1)(d̂1) for σ < σ̂
L
,

v σ̂
s2 σ2

√
T−t0

fN(0,1)(d1) for σ > σ̂
L
,

(9.4.13)

with Γ{Φput,Vσ̂} = Γ{Φcall,Vσ̂} and Γ{Φput,Vσ̃} = Γ{Φcall,Vσ̃}, where by fN(0,1) we denote the

probability density function of a standard normal random variable and

d1 =
log(v/K) +

(
r + σ̂2

2

)
(T − t0)

σ̂
√
T − t0

,

d̃1 =
log(v/K) +

(
r + L2 σ2

2

)
(T − t0)

Lσ
√
T − t0

.

Proof. By Remark 9.4.3 we have that ∂2
SSΠ(t, S, B) = ∂2

V V Π(t, V )ϕ(t)2. Let us

compute ∂2
V V Π(t, V ):

∂2
V V Π(t, V ) = ∂V [∂V Π (t0,Φcall(Vσ̂(T )))]

= ∂VN(d1)

= N ′(d1) ∂V d1

= fN(0,1)(d1)
1

σ̂ v
√
T − t0

.

Then, since ϕ(t0) = v σ̂
s σ

, we obtain (9.4.12).

The Gamma for put VT options is the same as the Gamma for call VT options,

since the second partial derivatives with respect to the portfolio value of the price of

the two options are identical. �

In Figure 9.4 we compared the Gamma for standard European options with the

Gamma for European options written on VT portfolios. Notice that, while the

Gamma for standard European options exhibits two asymptotes only when the un-

derlying risky asset is ATMF, i.e. S = K e−r (T−t0) which implies

ΓS =
1

s σ
√
T − t0

e−
1
2
σ2 (T−t0)

4 ,

for the Gamma of VT options we have always two asymptotes, since for low volatilities

also their Gamma is amplified, in fact even more than the Delta.
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Figure 9.4: The right graph represents the behavior of the Gamma of standard
call/put options with respect to different volatility values. The left graph represents
the Gamma for call/put options written on VolTaget portfolios. As in Figure 9.3, we
considered strike prices K in order to obtain an “in-the-money” option, an “at-the-
money” option, an “at-the-money-forward” option and an “out-of-the-money” option.
Notice that, once again, also this Greek for the VT options exhibits asymptotes, while
this is the case for standard options only when the underlying asset is ATMF. The
parameters are fixed as v = s = 10, σ̂ = 0.2, µ = 8%, r = 5%, T = 1, t0 = 0 and the
volatilities start at σ = 0.05.

9.5 Numerical simulations

To better explain how a VolTarget portfolio works, let us assume that the dynamics

of the risky asset evolve according to the Heston model, see e.g. [8, 64, 84] for further

details on the model, i.e.

dSt = µSt dt+
√
νt St dW

(1)
t , (9.5.1)

dνt = κ (θ − νt) dt+ ξ
√
νt dW

(2)
t , (9.5.2)

where W (1) and W (2) are two Brownian motions with correlation parameter ρ, ν

evolves as a CIR process and represents the instantaneous variance of the risky asset,

θ is the long-variance, κ the rate at which ν reverts to θ, ξ is the volatility of the

volatility, and we assume that the Feller condition holds:

2κ θ > ξ2,

in order to guarantee the process ν to be strictly positive.

Let us consider underlying risky asset’s parameters calibrated to values observed

in the real data, as in the papers by Morellec et al. [93], and CIR parameters as in the
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seminal paper by Samuelson [107]. We consider the parameters as shown in Table 9.1.

which are an adaptation of the ones in [107, 93] in order to show representative

scenarios explaining the effect of the VolTarget and the VolTarget maximum leverage

strategies.

Fig. κ θ ξ ρ ν0 µ S0 r B0 V0 T

9.5 0.6067 0.2207 0.2928 -0.75 0.2154 8.24% 100 4.2% 20 100 1
9.6 ” 0.1707 ” ” 0.1654 ” ” ” ” ” ”

Table 9.1: The parameters of the Heston model that we considered in order to simulate
the asset dynamics.

We partition the time-interval [0, T ] into N equal subintervals of width T/N

0 = t0 < t1 < · · · < tN = T

and simulate a realization of the bivariate process (S, ν)t. Then, through the following

modified Euler-Maruyama scheme, we approximate the path of the corresponding

VolTarget portfolio

V ∆t
σ̂ (tn+1) = V ∆t

σ̂ (tn)

{
1 +

α(tn)

S(tn)
∆Sn +

1− α(tn)

B(tn)
∆Bn

}
, for n ∈ {0, . . . , N − 1},

(9.5.3)

where we defined ∆Sn := S(tn+1)− S(tn), ∆Bn := B(tn+1)−B(tn) and V ∆t(0) = v.

Proposition 9.5.1 Let T > 0 be a fixed constant. The numerical scheme (9.5.3) is

strongly convergent to the solution to (9.1.4), i.e.

lim
∆t→0

E[|VT − V ∆t
T |] = 0 .

Proof. The Euler-Maruyama scheme associated to equation (9.1.4) is

V ∆t
σ̂ (tn+1) = V ∆t

σ̂ (tn)

{
1 +

[
σ̂√
ν(tn)

(µ− r)− r

]
∆t+ σ̂∆W (1)

n

}
, (9.5.4)

which i strongly convergent to (9.1.4). Moreover, we have that

lim
∆t→0

E

[
∆Sn
S(tn)

− µ∆t√
ν(tn)

−∆W (1)
n

]
= 0 . (9.5.5)

Substituting (9.5.5) in (9.5.4), we obtain (9.5.3). �
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The Euler-Maruyama scheme is strongly convergent, but only with order 0.5, and

therefore, since the converging order is poor, it is more convenient to consider the

following modification of Milstein scheme:

V ∆t
σ̂ (tn+1) = V ∆t

σ̂ (tn)

{
1 + α(tn)

∆Sn
S(tn)

+ (1− α(tn))
∆Bn

B(tn)

− α(tn) (1− α(tn))

2

[(
∆Sn
S(tn)

)2

− ν(tn) ∆t

]}
,

which in general converges strongly to the solution with order 1.

9.5.1 Performance analysis

One can notice that the sensitivity analysis of the previous section is widely shown in

Figure 9.6. For example the tendency of the path is more or less met, dependently on

the volatility instantaneous value; see Section 9.4.2 for the treatment of the sensitivity

of the VT portfolio with respect to small changes in the underlying risky asset (the

Delta). Moreover, it is clearly visible that the white noise is affecting the VT portfolio

value linearly, i.e. the Vega for the VT standard portfolio is null, see Section 9.4.1.

9.6 Extension to the transaction case and conclud-

ing remarks

In the present chapter we have presented one of the first attempts to consider options

linked to VolTarget strategies from an analytical perspective. We have developed

closed end formulas for call and put options linked to VolTarget concepts. Further-

more, we have derived also for selected Greeks closed-end formulas.

The results are in line with what we would expect from a practitioner point of

view. One can see, how a VolTarget approach can simplify option pricing for struc-

tured products and why also key hedging parameters look much easier than for stan-

dard options with changing volatility pattern. Of course we made some simplifying

assumptions to obtain the derived results. We aim at developing more general frame-

work within forthcoming researches as to relax (at least some of) the aforementioned

assumptions.

As to make an example, we aim at looking how to incorporate transaction costs

within our framework. In particular, we are going to consider two alternatives to reach
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complete such a task. The first one consists in a modification of the chosen VolTar-

get strategy, i.e. the VolTarget portfolio will no longer pursue a constant volatility,

instead it will aim to have a volatility belonging to a desired interval. The second

possibility consists in a structural modification, in which the times of portfolio weight

adjustments will be restricted to a discrete subset. In other words, the VolTarget

strategy will pursue the target volatility only in these discrete times, instead of con-

tinuous adjustments. Such modifications are required, when the asset dynamics is

assumed to not have a constant volatility, to avoid the cumulated transaction costs to

be theoretically infinity, even when the transaction costs are relatively small. These

new settings are clearly more challenging from a Mathematical point of view, but also

widely treated in the literature, see, e.g. [26, 27, 60, 85, 88], and significantly more

appealing from a practitioner point of view.

We also aim at investigating how dynamic asset allocation strategies can be con-

cretely developed within real world scenarios. Such a topic is of particular importance

from the practitioners’ point of view since portfolio weight re-balancing on contin-

uous time base cannot be done, because of the discrete time nature of all financial

operations in real markets.
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Figure 9.5: The top graphs represent the asset price and the volatility values, simu-
lated as a realization of a Heston model. Here the volatility (top-right figure) is more
frequently greater than the target volatility σ̂ = 0.2, and in these cases the risky
proportion α̂ is less than one (bottom-right figure). In the bottom-left figure is repre-
sented the corresponding realization of the VolTarget portfolio. For the discretization
scheme (9.5.3) we considered a time step ∆t = 10−6.
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Figure 9.6: The left graphs from the top to the bottom represent the risky asset
dynamics, the VT portfolio and the VT leverage portfolio, for σ̂ = 0.2 and L = 2. The
top-right figure represents the volatility of the risky asset (in black), the volatility of
the VT portfolio (in blue) and the effect of the leverage limitation in the VT strategy
(in red). In the bottom-left figure are highlighted in red the path section of the
VT leverage portfolio in which the leverage effect intervenes. For the discretization
scheme (9.5.3) we considered a time step ∆t = 10−6.
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