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The exact solutions for planar rods undergoing large rotations and subject to 
kinematically controlled ends are presented in the first part of the thesis. In particular, the 
equilibrium equations for a rod subject to Dirichlet boundary conditions and to 
isoperimetric constraints are derived through variational principles for both the Euler's 
elastica and the Reissner beam, while the related closed-form solutions are obtained in 
terms of the Jacobi elliptic functions. The study of stability of the Euler's elastica is 
addressed in the second part of the thesis through a modified version of the conjugate 
points method, thus disclosing the existence of a universal snap surface that represents 
the whole set of "saddle points" of the total potential energy, and therefore corresponding 
to snapping configurations. These theoretical findings allow for the prediction of snapping 
instabilities along any equilibrium path involving variations in the boundary conditions 
and are confirmed by numerical and experimental data. The universal snap surface is 
also exploited towards the realization of the elastica catastrophe machine, as the first 
extension of the classical Zeeman's machine to continuous elastic elements. Two 
families of the elastica catastrophe machine are presented and the theoretical model is 
fully validated through a prototype designed and tested at the Instability Lab of the 
University of Trento. Finally, the equations of motion of a pre-stressed planar rod and of 
its discretized counterpart subject to non-holonomic constraints are obtained in the last 
part. The analysis of the linearized stability surprisingly proves the existence of flutter 
instabilities despite the conservative nature of the considered systems. Moreover, Hopf 
bifurcations and destabilization paradoxes in the presence of dissipative forces are 
found. The non-linear equations of the proposed discretized model are also numerically 
solved, thus confirming the predicted stability properties and revealing the birth of 
periodic stable solutions.
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1
Introduction

During the last decades, many scientists and engineers have been focusing on
the behaviour of natural and biological systems, which can often be ana-

lyzed with structural models characterized by a strongly non-linear behaviour
involving large deformations. With the purpose to solve complex real life prob-
lems, a large variety of innovative biomimetic technologies has been developed to
achieve superior mechanical performances. For instance, transitions to periodic
solutions for self-oscillating natural systems, which may be modelled through
Hopf bifurcations [1, 60], have inspired the design of new devices which can be
exploited for energy harvesting and locomotion [8, 88]. A very special atten-
tion is also dedicated to the so called ‘soft-robotics’ [72, 101, 106, 116], which
is devoted to the development of machines made up of compliant components.
This new branch of robotics has found appplications in several fields, such as
limbless locomotion [39] (for instance via snapping instabilities [82, 112, 115]),
energy harvesting [54, 61] and medical rehabilitation [92]. Within this frame-
work, compliant structural systems are analysed through non-linear mechanical
modelling, numerical simulations and experiments towards the design of a new
generation of efficient devices and actuators, with special attention to snapping
instabilities and Hopf bifurcations of mechanical systems.

The first part of the present work is devoted to the development of closed-
form solutions for non-linear elastic rods deforming in a plane where large rota-
tions may arise. Particular attention is given to the problem of a rod with kine-
matically controlled ends, namely whose rotations and displacements at both
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1. INTRODUCTION

ends are specified by imposing Dirichlet boundary conditions and isoperimetric
contraints, respectively. It is worth underlining that, due to the generality of the
proposed closed-form solutions, the presented mathematical framework can be
easily extended to the study of different boundary value problems (for instance
with Dirichlet-Neumann or Neumann-Neumann boundary conditions).

In Chapter 2, the closed-form solution for the inextensible Euler’s elastica is
obtained by means of the Jacobi’s elliptic functions. Such exact formulation al-
lows to reduce the problem to the evaluation of two real parameters only, which
can be calculated by exploiting the set of imposed isoperimetric constraints.
Multiple solutions for the aforementioned parameters, which correspond to the
multiple equilibrium configurations of the Euler’s elastica, can therefore be nu-
merically obtained through the resolution for a non-linear algebraic system.

In Chapter 3 the closed-form solution for the Reissner beam [97] is devel-
oped. In particular, differently from the Euler’s elastica, this rod is character-
ized by finite axial and shear deformations, while the generic cross-section is still
constrained to remain undeformed. The exact solution, obtained through the
Jacobi’s elliptic functions, represents a generalization of the analogous solution
holding for the Euler’s elastica. In analogy with the latter case, the solution
for the Reissner beam is a function of a few unknown parameters, which can
be obtained by exploiting the imposed constraints’ equations arranged into a
non-linear algebraic system of which the roots are to be evaluated.

Some examples of the obtained deformed shapes for both the Euler’s elastica
and the Reissner beam are shown in Fig.1.1, where the fundamental distinction
is made between the ‘inflectional’ and ‘non-inflectional’ solutions.

The second part of the thesis is devoted to applications of the closed-form
solution for the Euler’s elastica presented in Chapter 2.

In Chapter 5, snapping mechanisms are investigated for an elastic rod with
both ends prescribed to move and rotate. By means of the stability criterion
(presented in Chapter 4) based on the study of the sign second variation of the
total potential energy, the number of stable equilibrium configurations for every
combination of the boundary conditions is obtained. This result leads to the
definition of a universal snap surface, collecting the sets of critical boundary
conditions for which the system snaps. The elastic energy release at snapping
is also investigated, providing useful insights for the optimization of impulsive
motion devices[112]. The theoretical predictions are finally validated through
comparisons with experimental results and finite element simulations, both fully
confirming the reliability of the introduced universal surface. The presented
analysis may find applications in a wide range of technological fields, as for
instance energy harvesting and jumping robots.

2 Alessandro Cazzolli



1. INTRODUCTION

Figure 1.1: Examples of deformed configurations for the Euler’s elastica (left) and the Reiss-
ner beam (right) subject to controlled rotations and displacements at both ends. Solutions
are discriminated into two fundamental cases of presence (upper part) and absence (lower
part) of inflection points within the span of the rods. The effects of shear deformations for
the Reissner beam are immediately evidenced by the fact that cross-sections (black lines) do
not in general remain orthogonal to the centerline (blue). Moreover, the extensibility effect is
clearly indicated by the variable distance between successive cross-sections.

The theory, design, and experimental validation of a catastrophe machine
based on a flexible element are addressed in Chapter 6. A general theoreti-
cal framework is developed through an extension of the classical catastrophe
machines, which are made up of discrete elastic elements [114, 118]. The new
formulation, based on the non-linear solution for the Euler’s elastica, is enhanced
by considering the concept of the universal snap surface. Among the infinite
set of elastica catastrophe machines, two families are proposed and investigated
to explicitly assess their features. The related catastrophe locus (representing
the border of the bistability domain of the structure) is disclosed to encompass
a large variety of shapes, very different from those generated by the classical
counterpart. Substantial changes in the catastrophe locus properties, such as
convexity and number of bifurcation points, can be obtained by tuning the de-
sign parameters of the proposed machines towards the design of very efficient
snapping devices. Experiments performed on the physical realization of the
proposed catastrophe machine fully validate the theoretical framework. The de-
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1. INTRODUCTION

Figure 1.2: Comparison between the classical Zeeman’s catastrophe machine (left) and a
photo of the prototype realized for the proposed elastica catastrophe machine (right). Both
machines are characterized by bistability when the rubber’s end coordinates Xc, Yc for the
classical machine (left) and the final end of the elastica (right, coordinates Xl, Yl) lie inside
of the respective green area. The catastrophe locus, denoted by C, therefore represents the
the border between bistable and monostable domains (gray background) and corresponds to
snapping configurations.

veloped model can find applications in mechanics at different scales, for instance,
in the design of new devices for actuation or of hysteresis loop mechanisms to
achieve energy harvesting, locomotion, and wave mitigation. The classical Zee-
man’s machine and the proposed elastica catastrophe machine are compared in
Fig.1.2.

In the third and last part of the present work, the equations of motion and
the stability of visco-elastic devices subject to non-holonomic constraints are
studied in detail. In particular, it is shown that dynamic instabilities, includ-
ing Hopf bifurcations, flutter, divergence, and destabilizing effects connected to
dissipation phenomena, can be obtained in structural systems loaded by conser-
vative forces, as a consequence of the application of non-holonomic constraints.
Such feature is in contrast with the fact that non-conservative loads (as those
of the follower type) are usually believed to be the only possible source of such
dynamic instabilities [2]. Non-holonomic constraints may be realized through a
‘perfect skate’ (or a non-sliding wheel), or, more in general, through the slipless
contact between two circular rigid cylinders, one of which is free of rotating
about its axis.
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1. INTRODUCTION

Figure 1.3: Time evolution for the dynamics of a discrete chain subject to a ‘skate’ non-
holonomic constraint (which may be realized through a skate or a wheel) applied at its final
end and loaded through an horizontal compressed spring (highlighted in blue). The system
is made up of N = 5 rigid bars connected through visco-elastic hinges, and exhibits a flutter
instability as the compression of the spring overcomes a critical load. The induced horizontal
motion causes a relaxation of the spring, so that the system eventually reaches a stable straight
configuration. Differently, a steady horizontal motion can be triggered by substituting the
elastic spring with a dead load acting on the initial end.

Chapter 7 is devoted to the study of a visco-elastic non-holonomic chain
made up of an arbitrary number N of rigid bars. In particular, special attention
is devoted to the study of a double-pendulum subject to both the introduced
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1. INTRODUCTION

non-holonomic constraints and stressed through two different, but conservative,
loading conditions. The study of the linearized stability, that also includes the
discovery of a new type of Ziegler’s destabilization paradox, is complemented
by the stability analysis of the Hopf bifurcations that the system may undergo
and by the numerical analysis of the post-critical behaviour. The motion of
the structure produced by these dynamic instabilities may also reach a limit
cycle, a feature that can be exploited for soft-robotics applications, especially
for the realization of limbless locomotion. A numerical solution showing flutter
instability for the aforementioned discretized system subject to viscous forces
and a conservative loading is shown in Fig.1.3.

Finally, the non-linear equations of motion for a continuous rod subject to
a ‘skate’ non-holonomic constraint is presented in Chapter 8. The analysis of
the linearized stability is also performed, leading to conclusions which are very
similar to those holding for the discretized system. Finally, the flutter load for
the discretized model (with homogenized parameters) reveals a behaviour which
tends to that calculated for the continuous system when the number N of its
constitutive rigid bars is increased.

6 Alessandro Cazzolli



Part I

Exact solutions for the Euler’s
elastica and the Reissner

beam
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2
The exact solution for the Euler’s

elastica

An inextensible elastic rod of length l is considered to be deformed within
a plane orthogonal to the axis of minimum momenta of inertia of the

rod’s cross section. The rod has a uniform cross section and is initially flat,
so that its centerline is described by a straight line in the undeformed config-
uration. Moreover, no further constraints induced by self-contact phenomena
are considered. Neglecting the effects of self weight and disregarding rigid body
motions, the mechanical fields along the generic curvilinear coordinate s ∈ [0, l]
can be represented in a ‘local’ reference system x − y (Fig. 2.1), with origin
at one rod’s end (s = 0), and x-axis passing by the other one (s = l), so that
x(0) = y(0) = y(l) = 0, and pointing from the initial to the final curvilinear
coordinate. The primary kinematic field is the rotation angle θ(s), which mea-
sures the rotation of the structure’s centerline with respect to the x-axis, from
which, by considering the inextensibility constraint

x′(s) = cos θ(s), y′(s) = sin θ(s), (2.1)

the position fields can be obtained as

x(s) =

∫ s

0

cos θ(ς)dς, y(s) =

∫ s

0

sin θ(ς) dς. (2.2)

Alessandro Cazzolli 9



2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

The rod is considered subject to kinematic boundary conditions in terms
of position and rotation at both ends, which slowly move in time along quasi-
static evolutions. By considering the x − y reference system allows for the
rational interpretation of the boundary conditions imposed at the two rod’s
ends. Indeed, the six kinematic boundary conditions (two positions and one
rotation at each end) affect the rod configuration by means of the following
three primary kinematical quantities

x(l) = d, θ(0) = θ0, θ(l) = θl, (2.3)

being d the distance between the two clamps, d ∈ [0, l] where the lower bound is
given by the definition of the x-axis direction while the upper bound is related to
the inextensibility assumption (although extensibility may affect the mechanical
response even in the proximity of the limit condition, d ' l).

Figure 2.1: Generic deformed configuration for a rod of length l with kinematically con-
trolled ends within the ‘global’ reference system X −Y and the ‘local’ reference system x− y.
Neglecting rigid-body motions, the equilibrium configuration is dependent only on the three
independent kinematic quantities d, θ0, and θl. Reaction forces and moments at the two
controlled ends are also reported.

The planar behaviour of the considered rod is modelled as the Euler’s elas-
tica, so that a linear elastic constitutive law is introduced for the bending mo-
ment M , which is given by M(s) = Bθ′(s) where the symbol ′ stands for the
derivative with respect to the curvilinear coordinate s and B is the bending stiff-
ness, constant because the rod’s cross section is uniform. The total potential
energy V expressing the energy of the system under quasi-static conditions is

10 Alessandro Cazzolli



2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

given by

V = E −
∫ l

0

[Rx(x′ − cos θ) +Ry(y′ − sin θ)] ds−Ny y(l)+

−Nx[x(l)− d]−Ml

[
θl − θ(l)

]
−M0

[
θ0 − θ(0)

]
,

(2.4)

where E is the elastic energy stored within the rod

E =
B

2

∫ l

0

θ′(s)2 ds, (2.5)

while the quantities Rx and Ry are the Lagrangian multipliers representing the
internal forces’ components along the x and y directions, Nx and Ny are those
related to the reaction forces at both ends along the x and y directions and,
similarly, Ml and M0 are those referred to the rotational degrees of freedom of
the rod’s coordinates s = l and s = 0.

The fundamental variables considered in the total potential energy (2.4) are

w = {θ, θ′, θ(0), θ(l), x(l), y(l), x′, y′, Rx, Ry, Nx, Ny, M0, Ml} (2.6)

and where the fulfilment of the imposed boundary conditions leads to the fol-
lowing vanishing variations of the variables (2.6)

{δθ(0), δθ(l), δx(l), δy(l)} = 0 (2.7)

which are complemented by the following vanishing variations of the displace-
ments x and y at the origin of the reference system

δx(0) = 0, δy(0) = 0 (2.8)

so that the first variation becomes

δV =

∫ l

0

[
R′xδx+R′yδy

]
ds−

∫ l

0

[δRx(x′ − cos θ) + δRy(y′ − sin θ)] ds+

−
∫ l

0

δθ [Bθ′′ +Rx sin θ −Ry cos θ] ds− δNx [x(l)− d]− δNy y(l)+

− δMl

[
θl − θ(l)

]
− δM0

[
θ0 − θ(0)

]
,

(2.9)
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2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

The stationarity of the total potential energy for arbitrary perturbations leads
to the following system of governing equations

R′x = 0 → Rx = const1

R′y = 0 → Ry = const2

x′ − cos θ = 0

y′ − sin θ = 0

Bθ′′ +Rx sin θ −Ry cos θ = 0

x(l)− d = 0

y(l) = 0

θl = θ(l)

θ0 = θ(0)

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)

(2.10f)

(2.10g)

(2.10h)

(2.10i)

finally leading to the following equilibrium equation for the rotation field

θ′′(s) +
Rx
B

sin θ(s)− Ry
B

cos θ(s) = 0 (2.11)

which is complemented by the following Dirichlet boundary conditions on the
rotation field

θ(0) = θ0, θ(l) = θl (2.12)

and by the integral isoperimetric constraints on θ(s)

0 =

∫ l

0

sin θ(s) ds, d =

∫ l

0

cos θ(s) ds, (2.13)

Moreover, the following global equilibrium equation has to be satisfied

M(0) +Ry d−M(l) = 0 (2.14)

where M(0) and M(l) are the values of the bending moment at the end coordi-
nates s = 0 and s = l, respectively.

12 Alessandro Cazzolli



2.1. Exact solution for the governing equation

2.1 Exact solution for the governing equation
The following changes of variables are introduced

ψ(s) = θ(s)− β, Γ2 =
|R| l2

B
, s =

s
l

(2.15)

where β ∈ [−π, π] is the unknown angle assumed by the resultant force |R| =√
R2
x +R2

y at both ends taken with respect to the x-axis (see Fig.2.1, right) and
where

Rx l
2

B
= Γ2 cosβ,

Ry l
2

B
= Γ2 sinβ (2.16)

are the dimensionless x and y components of the reaction forces at both ends,
respectively.

It is worth to underline that the proposed formulation is fully dimensionless,
being referred to a curvilinear coordinate s = s/l defined within the interval
[0, 1] and to a dimensionless ‘load’ Γ2.

The change of variables (2.15) lead to the differential equation of the Euler’s
elastica

ψ′′(s) + Γ2 sinψ(s) = 0 ∀s ∈ [0, 1] (2.17)

where ’ denotes now the derivative taken with respect to the dimensionless
coordinate s. In the case of a non-vanishing curvature ψ′(s), the equation (2.17)
can be integrated as follows

d
ds

[
1

2
(ψ′)

2 − Γ2 cosψ

]
= 0, → 1

2
(ψ′)

2 − Γ2 cosψ = cost (2.18)

finally obtaining

ψ′(s) = ±Γ
√

2
√

cosψ(s) + Υ, (2.19)

where Υ is the constant of integration to be evaluated with reference to the
boundary conditions and defining the elastica as a part of a non-inflectional
mother curve (Υ ∈ [1,∞]) or an inflectional mother curve (Υ ∈ [−1, 1]) (see
Love [77]).

In the following paragraphs, the exact description of the deformed configu-
rations is presented with reference to the number m ∈ N0 of ‘inflection points’,
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2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

corresponding to the curvilinear coordinates within the set s ∈ (0, 1) where
the curvature vanishes. It is remarked that points with null curvature located
at both ends are not considered in the definition of m. For convenience, the
constant of integration Υ is defined distinguishing the fundamental cases of the
absence (m = 0) and the presence (m 6= 0) of inflection points and the deformed
configurations are described, respectively, in terms of the equations related to
the so-called non-inflectional and inflectional elastica. Therefore it is worth
to remark that, differently from Love [77], the deformed configurations with
m = 0 associated with an inflectional mother curve are here described for sim-
plicity through the expressions used for the non-inflectional mother curve (for
which the ideal unlimited elastica, −∞ < s < ∞, has no inflection points) but
restricted to the physical range of the curvilinear coordinate, s ∈ [0, 1].

Presence of m inflection points along the rod (m 6= 0). In this case
ψ′(ŝj) = 0 at the curvilinear coordinates ŝj ∈ (0, 1) with j ∈ [1,m] ordering
the inflection points with respect to their curvilinear coordinate, ŝj < ŝj+1.
Eq.(2.19) implies that the integration constant Υ is a function of the angle
ψ(ŝ1) = ψ̂1 measured at the inflection point along the rod and closest to the
origin as

Υ = − cos ψ̂1. (2.20)

so that Υ ∈ [−1, 1]. Being cos ψ̂j = cos ψ̂1 with ψ(ŝj) = ψ̂j (j = 1, ...,m)
because of Eq.(2.19), the rotation angle at the j-th inflection point is given by

θ(ŝj) = −(−1)jθ(ŝ1) +
[
1 + (−1)j

]
β. (2.21)

Because the curvature changes sign at each inflection point, the solution (2.19)
for the curvature can be rewritten as

ψ′(s) =


(−1)pΓ

√
2

√
cosψ(s)− cos ψ̂1, ∀s ∈ [0, ŝ1],

(−1)p(−1)jΓ
√

2

√
cosψ(s)− cos ψ̂1, ∀s ∈ [ŝj , ŝj+1] ∀ j ∈ [1,m− 1],

(−1)p(−1)mΓ
√

2

√
cosψ(s)− cos ψ̂1, ∀s ∈ [ŝm, 1],

(2.22)

where p is a boolean parameter defining the curvature sign at the left end s = 0,
namely p = 0 (p = 1) when the curvature is positive (negative) at the left end,
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2.1. Exact solution for the governing equation

θ′(s = 0) > 0 (θ′(s = 0) < 0). 1 The multiplicity of solutions given by the
imposed sign (−1)p is illustrated in Fig.2.2.

Figure 2.2: Two stable solutions for the Euler’s elastica having a different sign (−1)p of the
curvature at s = 0 and satisfying the imposed rotations and displacements at both ends. The
blue solution for p = 0 corresponds to a positive curvature, and therefore to a positive bending
moment M(0) = M+

0 , at the initial end s = 0. The red solution for p = 1 corresponds to a a
configuration having a negative curvature, or equivalently a negative bending moment M−0 ,
at the same end. Therefore, p plays the role of an input parameter that has to be imposed in
order to focus on a solution having a specific sign of the curvature at the initial end s = 0.

Absence of inflection points along the rod (m = 0). In this case ψ′(s) 6=
0 for s ∈ (0, 1) and the integration constant Υ can be defined as a function of
an unknown parameter ξ as

Υ =
2− ξ2

ξ2
(2.23)

For the classical non-inflectional elastica, the parameter ξ is confined within
the interval [0, 1] so that the constant of integration ranges between 1 and

1In the case of null curvature at the initial coordinate, θ′(0) = 0, the boolean p is defined
by the sign of the curvature at positive infinitesimal values of the coordinate θ′(s = 0+).
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2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

infinite, Υ ∈ [1, ∞), namely the range which is non covered by the constant
of integration of the inflectional case2. However differently from Love [77], in
the present work the range of ξ is extended to values higher than 1 in order to
describe the behaviour of the curves with zero inflection points along their span
but belonging to an inflectional mother curve.

The expression for the curvature (2.19) can be rewritten as

ψ′(s) = (−1)p Γ

√
2

(
cosψ(s) +

2− ξ2

ξ2

)
(2.24)

where in spite of the presence of the sign function (−1)p, the sign of the curvature
at s = 0 can be proven to be constrained by the sign of the imposed rotations
at both ends θ0 and θl, thus implying a uniqueness of the solution in terms
of the sign of ψ′(0). Therefore, the value of p can not be considered an input
parameter anymore for the case of elasticae having no inflection points. The
mathematical proof of this statement is shown in the following sections.

An example of a solution for an elastica having no inflection points is illus-
trated in Fig.2.3.

Figure 2.3: The unique stable solution for the non-inflectional Euler’s elastica satisfying the
imposed rotations θ0 = −θl = π and displacement d = 0.4l at both ends. In this case, the
negative sign of the internal curvature (and therefore of the bending moments at both ends
M−0 and M−l ) corresponding to p = 1 is given by the sign of the imposed rotations at both
ends, so that p can not be considered an input parameter for the elasticae having no inflection
points anymore.

Moreover, the existence of only one deformed shape of the elastica hav-
ing no inflection points has been observed for any given combination of the
proper boundary conditions. This characteristic, corroborated by a recent
demonstration obtained by Batista [12] of the unconditioned stability of the

2The limit condition Υ → ∞, or equivalently ξ = 0, represents the case of an arc of
circumference with constant curvature
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2.2. The elastica with m inflection points

non-inflectional elastica subject to Dirichlet boundary conditions, seems to be
related to the uniqueness of these type of solutions. However, as far as the
author knows, a complete mathematical proof is still missing.

2.2 The elastica with m inflection points
An example of a deformed shape having m = 7 inflection points is repre-

sented in Fig.2.4, showing the periodicity of the solution. Such behaviour reveals
the presence of the aforementioned inflectional mother curve, which in given by
an infinite succession of a characteristic structure located between two nearby
inflection points (and characterized by the same magnitude of the angle angle ψ̂
at both ends). Moreover, such inflection points are disposed on a line inclined
at an angle β with respect to the horizontal, thus representing the inclination
of the total reaction force |R|.

Figure 2.4: Periodic behaviour of a generic elastica with internal inflection points. The line
connecting the inflection points is inclined at an angle β, which represents the inclination of
the reaction force with respect to the horizontal.

Towards the achievement of a closed-form solution, it is instrumental to
introduce the unknown parameter η ∈ [0, 1] and the auxiliary field ω(s) defined
as

η = sin
|ψ̂|
2
, η sinω(s) = sin

ψ(s)

2
. (2.25)
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2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

where ψ̂ represents the angle ψ at a generic inflection point, so that the following
equations hold

cosψ = 1− 2η2 sin2 ω(s), cos ψ̂ = 1− 2η2. (2.26)

By considering the equations (2.22) and (2.25) the curvature ψ′(s) can be ex-
pressed as

dψ
ds

= (−1)p S̃ 2Γη
√

1− sin2 ω = 2Γη cosω (2.27)

where S̃(s) is a function expressing the change of sign of the curvature at each
inflection point (see Eq. (2.22)) in a more compact form and where in particular

S̃(s)

√
1− sin2 ω(s) = cosω(s)

Through the Eq.(2.25) one can write

ψ = 2 arcsin (η sinω) −→ dψ =
2√

1− η2 sin2 ω
η cosω dω

where substitution into the Eq.(2.27) leads to the following condition

dω
ds

= (−1)pΓ

√
1− η2 sin2 ω(s) (2.28)

expressing the derivative of the function ω as a function of the unknown nor-
malized reaction force Γ, the unknown parameter η and the imposed sign of the
curvature at the initial end s = 0 (through the integer p).

A further integration leads to the following condition∫ s

0

Γ ds = (−1)p

∫ ω(s)

ω(0)

dw√
1− η2 sin2 w

(2.29)

corresponding to

Γs = (−1)p

∫ ω(s)

0

dw√
1− η2 sin2 w

− F (ω(0), η)

 (2.30)

where

F (σ, ϕ) =

∫ σ

0

dφ√
1− ϕ2 sin2 φ

(2.31)
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2.2. The elastica with m inflection points

is the Jacobi’s incomplete elliptic integral of the first kind. The ‘load’ parameter
Γ can be therefore obtained from Eq.(2.30)

Γ = (−1)p [F (ω(1), η)− F (ω(0), η)] (2.32)

and represents a function of the values taken by the function ω at the initial
s = 0 and final end s = 1.3

Due to the following property

F (σ, ϕ) =

∫ σ

0

dφ√
1− ϕ2 sin2 φ

−→ σ = am [F (σ, ϕ), ϕ] (2.33)

one obtains the final formulation of the function ω for the elastica having inflec-
tion points (m 6= 0) along its span

ω(s) = (−1)p am [Γs+ (−1)p F (ω(0), η), η] (2.34)

where am[σ, ϕ] is the Jacobi’s amplitude function, representing a monotonic
function for every η ∈ [0, 1]. Through the Eq.(2.32), the Eq.(2.34) can be
rewritten as

ω(s) = am [[F (ω(1), η)− F (ω(0), η)] s+ F (ω(0), η), η] (2.35)

where, as shown in the next Section, the sign of the initial curvature (−1)p is
contained within the formulation of the term ω(1).

2.2.1 Values assumed by ω at both ends
By considering Eq.(2.25), the function ω may be obtained through the inver-

sion of a sinus function, but restricting its image within the interval [−π/2, π/2]
despite the monotonic trend of the exact solution expressed by the Eq.(2.35).
On the other hand, it is instrumental to exploit the Eq.(2.25) in order to explic-
itly introduce the imposed Dirichlet boundary conditions at both ends θ(0) = θ0

and θ(1) = θl (see (2.12)) through the parameters

w0 = arcsin

[
1

η
sin

(
θ0 − β

2

)]
, w1 = arcsin

[
1

η
sin

(
θl − β

2

)]
. (2.36)

3The positiveness of the parameter Γ leads to the following conditions

F (ω(1), η) > F (ω(0), η) → ω(1) > ω(0) if p = 0

F (ω(1), η) < F (ω(0), η) → ω(1) < ω(0) if p = 1
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2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

Such parameters need therefore to me manipulated in order to restore the correct
expressions of ω(0) and ω(1) at both ends.

In particular, by considering the Eq.(2.27), the following condition is achieved
at any inflection point

(−1)p cosω(ŝj) = 0 (2.37)

By imposing an initial value ω(0) = w0 within the interval [−π/2, π/2]4 and
due to the monotonic trend of the function ω, the value assumed by ω(ŝj+1) at
any inflection point ŝj+1 has to be equal to the one at the inflection point ŝj
but incremented of a factor (−1)pπ, such that

ω(ŝ1) = (−1)p
π

2
, ω(ŝ2) = (−1)p

3π

2
, . . . (2.38)

Therefore, the values of the function ω(s) attained at the two ends, ω(s =
0) = ω0 and ω(s = 1) = ω1 as a function of the imposed number of inflection
points m and the sign of the initial curvature (−1)p can be defined as

ω0 = arcsin

[
1

η
sin

(
θ0 − β

2

)]
,

ω1 = (−1)m arcsin

[
1

η
sin

(
θl − β

2

)]
+ (−1)pmπ,

(2.39)

representing the fundamental parameters involved in the problem’s resolution,
which depend on the unknown parameters β and η.

The main advantage introduced by the relations (2.39) is represented by their
generality. In particular, any combination of the imposed boundary conditions
[θ0, θl], the number of inflection points m and the sign function (−1)p can be
explicitly introduced within the mathematical framework, allowing for the exact
evaluation of any deformed shape corresponding to the chosen input data.

However, it is worth to underline that the presented equations are valid for
the case m > 0 only, while the treatise of the non-inflectional equations having
m = 0 is deferred to Section 2.3.

4It is observed that a ‘shifting’ in the function ω of a constant factor does not modify the
corresponding solution for the elastica.
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2.2. The elastica with m inflection points

2.2.2 The exact solution for the elastica with m inflection
points

The Eq.(2.35) can be substituted within the condition (2.25) obtaining the
exact solution for the angle ψ(s)

ψ(s) = 2 arcsin [η sn [[F (ω1, η)− F (ω0, η)] s+ F (ω0, η), η]] (2.40)

where ω0 and ω1 are given by the equations (2.39).
For the sake of brevity, the following function is introduced

Gm(s, ω1, ω0) = [F (ω1, η)− F (ω0, η)] s+ F (ω0, η) (2.41)

Through the Eq.(2.15) and (2.41), the exact expression for the function θ(s) is
given by

θ(s) = 2 arcsin [η sn [Gm(s, ω1, ω0), η]] + β (2.42)

representing the exact formulation of the rotation field for the Euler’s elastica
having m > 0 inflection points as a function of the unknown parameters η and
β, where sn[σ, ϕ] = sin (am[σ, ϕ]) is the Jacobi’s sine amplitude function.

The exact expression for the curvature ψ′ = θ′ can be achieved through the
derivation of the equation (2.40). Due to the following property of the elliptic
functions

∂

∂σ
am[σ, ϕ] =

√
1− ϕ2sn2[σ, ϕ]

dn[σ, ϕ] =
√

1− ϕ2sn2[σ, ϕ]

(2.43)

where dn[σ, ϕ] is the Jacobi’s elliptic function, the following expression for the
rod’s curvature holds

θ′(s) = 2η [F (ω1, η)− F (ω0, η)] cn [Gm(s, ω1, ω0), η] (2.44)

where cn[σ, ϕ] = cos (am[σ, ϕ]) is the Jacobi’s cosine amplitude function.
The inextensibility constraint (2.2) can be exploited through the Eq.(2.42),

so that through the well-known properties of trigonometric functions one obtains

[
x′(s)
y′(s)

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
Am(s)
Bm(s)

]
(2.45)
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where

Am(s) = 1− 2η2 sn2 [Gm(s, ω1, ω0), η]

Bm(s) = 2η sn [Gm(s, ω1, ω0), η] dn [Gm(s, ω1, ω0), η]
(2.46)

A further integration of the Eqs.(2.45) leads to the exact expression for the
deformed shape of the Euler’s elastica having m inflection points. In particular,
the following properties are needed

∂

∂σ
cn[σ, ϕ] = −sn[σ, ϕ] dn[σ, ϕ]

∂

∂σ
E [σ, ϕ] = dn2[σ, ϕ]

where E is the Jacobi’s epsilon function

E [σ, ϕ] = E(am(σ, ϕ), ϕ) (2.48)

and E is the Jacobi’s incomplete elliptic integral of the second kind

E (σ, ϕ) =

∫ σ

0

√
1− ϕ2 sin2 φ dφ. (2.49)

The final expression for the deformed shape of the rod is obtained[
x(s)/l
y(s)/l

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
Am(s)
Bm(s)

]
(2.50)

where

Am(s) =

∫ s

0

Am(ς)dς = 2
E [Gm(s, ω1, ω0), η]− E [F (ω0, η), η]

F (ω1, η)− F (ω0, η)
− s

Bm(s) =

∫ s

0

Bm(ς)dς = 2 η
cn [F (ω0, η), η]− cn [Gm(s, ω1, ω0), η]

F (ω1, η)− F (ω0, η)

(2.51)

Finally, the exact expression for the dimensionless elastic energy (2.5) is
obtained through the equation of the curvature of the rod (2.44). After many
calculations, the following expression is obtained

E
B
l = 2 [F (ω1, η)− F (ω0, η)]

2

(∫ 1

0

dn2 [Gm(s, ω1, ω0), η]ds+

−
∫ 1

0

(1− η2)ds

) (2.52)
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2.2. The elastica with m inflection points

leading to the final expression for the elastic energy

E
B
l = 2

[
F (ω1, η)− F (ω0, η)

]2 [E(ω1, η)− E(ω0, η)

F (ω1, η)− F (ω0, η)
− (1− η2)

]]
(2.53)

2.2.3 Evaluation of the unknown parameters η and β

In the previous sections, the exact solution for the rotation field θ has been
obtained. The imposed rotations at both ends θ0 and θl (see Eq.(2.12)), together
with the imposed values of the sign of the curvature (−1)p at s = 0 and the
number of inflection points m are explicitly introduced through the parameters
ω1 and ω0 in the expressions (2.39).

However, the solution is a function of two unknown parameters, namely given
by η, representing the characteristic parameter of the elastica, and the angle β
representing the inclination of the reaction force |R| with respect to the x-axis.
The values of [η, β] corresponding to the imposed set of boundary conditions
are therefore obtained by exploiting the further integral equations expressing
the isoperimetric constraints (2.13), which can be in turn expressed through the
exact solution for the deformed shape of the elastic rod given by Eq.(2.50).

The functions Am and Bm evaluated at the final end of the rod s = 1 are
given by

Am(1) = 2
E (ω1, η)− E (ω0, η)

F (ω1, η)− F (ω0, η)
− 1

Bm(1) = 2 η
cosω0 − cosω1

F (ω1, η)− F (ω0, η)

(2.54)

such that the isoperimetric constraints (2.13) assume the following form[
d/l
0

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
Am(1)
Bm(1)

]
(2.55)

Finally, the following non-linear system is obtained{
d/l cosβ = Am(1),

d/l sinβ = −Bm(1),
(2.56)

whose roots provide all the couples of the unknown parameters [η, β] corre-
sponding to the combination of the imposed kinematical conditions at both
ends. In particular, the non-linearity of the system (2.56) leads to possible non-
uniqueness for the equilibrium configuration, providing interesting conditions of
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bifurcation or snap instability during a quasi-static variation of the boundary
conditions.

Finally, the Eq.(2.14) governing the global equilibrium of the Euler’s elastica
is satisfied. In fact, the dimensionless equation of Eq.(2.14)

θ′(0) +
Ry l

2

B

d

l
− θ′(1) = 0 (2.57)

is automatically verified by substituting the exact expressions of the curvature
at both ends θ′(0) and θ′(1) (Eq.(2.44)), the expression for the reaction force
Ry (Eq.(2.16)), the load parameter Γ (Eq.(2.32)) and the imposed displacement
d/l = −Bm(1)/ sinβ (through Eqs.(2.56)).

As a final remark, the proposed exact solution for the Euler’s elastica can
be directly exploited to attack various boundary value problems, so that the
present formulation can also be considered to treat structural systems as an
alternative to previously adopted procedures[124]. In fact, different boundary
conditions, corresponding in general to different sets of unknown parameters
(which are always contained within the set {η, β, θ(0), θ(1)}), can be considered
by properly re-arranging the non-linear system (2.56).

2.3 The elastica with m = 0 inflection points

The governing equations of an Euler’s elastica having no inflection points
within its span are obtained in this Section, thus representing solutions exhibit-
ing a constant sign of the curvature at any coordinate s ∈ (0 1).

Under this circumstance, the imposed boundary conditions are such that
the bending moment cannot vanish at any internal point, with the exception
of limit configurations exhibiting a null curvature exactly at one or both ends
s = 0 and s = 1. As previously sentenced at the end of Section 2.1, the
expressions used for the non-inflectional mother curve[77] are here extended to
elasticae belonging to inflectional mother curves but exhibiting no inflection
point within the restricted domain s ∈ (0, 1).

The Eq.(2.24) expressing the curvature ψ′ along the span of the rod is firstly
rewritten in the following form

ψ′(s) = (−1)p
2Γ

ξ

√
1− ξ2 sin2

(
ψ(s)

2

)
(2.58)
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2.3. The elastica with m = 0 inflection points

Furthermore, an auxiliary rotation field is introduced as

ζ(s) =
ψ(s)

2
(2.59)

whose values at the two ends are defined as ζ(0) = ζ0 and ζ(1) = ζ1, can be
directly explicitly expressed as a function of the imposed ends rotations, thus

ζ0 =
θ0 − β

2
, ζ1 =

θl − β
2

. (2.60)

The equation (2.58) can be therefore rewritten as

ζ ′(s) = (−1)p
Γ

ξ

√
1− ξ2 sin2 ζ(s) (2.61)

expressing the counterpart of the Eq.(2.28) for the elastica having no inflection
points. A first integration of equation (2.61) leads to

∫ s

0

Γ

ξ
ds = (−1)p

∫ ζ(s)

ζ0

dφ√
1− ξ2 sin2 φ

(2.62)

or equivalently

Γ

ξ
s = (−1)p

∫ ζ(s)

0

dφ√
1− ξ2 sin2 φ

− F (ζ0, ξ)

 (2.63)

The load parameter Γ can be therefore expressed as

Γ = (−1)pξ [F (ζ1, ξ)− F (ζ0, ξ)] (2.64)

where due to its positiveness (see Eq.(2.15)){
p = 1 → F (ζ0, ξ) > F (ζ1, ξ) → ζ0 > ζ1

p = 0 → F (ζ0, ξ) < F (ζ1, ξ) → ζ0 < ζ1

so that through the Eqs.(2.60) one can demonstrate that the choice of the im-
posed rotation boundary conditions θ0 and θl leads necessarily to a certain sign
of the curvature at s = 0, namely

p = 1 ↔ θ0 > θl

p = 0 ↔ θl > θ0

(2.65)
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2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

so that the parameter p does not represent a true input parameter for the
evaluation of an elastica without inflection points, being it fully determined by
the values of the imposed rotations at both ends.

The Eq.(2.63) is finally exploited obtaining the general solution for the elas-
tica with no inflection points

ζ(s) = (−1)p am
[

Γ

ξ
s+ (−1)p F (ζ0, ξ), ξ

]
(2.66)

or equivalently through Eq.(2.64)

ζ(s) = am [[F (ζ1, ξ)− F (ζ0, ξ)] s+ F (ζ0, ξ), ξ] (2.67)

Finally, it is remarked that when the deformed configuration is associated
with an inflectional mother curve, Υ ∈ [−1, 1], but there are no inflection points
along the rod, m = 0, the exact representation of the normalized load Γ and of
the rotation field ψ(s) = 2ζ(s) for the case m = 0 coincides with that for the
case m 6= 0.5

2.3.1 The exact solution for the elastica with no inflection
points m = 0

The rotation filed ψ can be obtained exploiting the equation (2.59), thus

ψ(s) = 2 am [[F (ζ1, ξ)− F (ζ0, ξ)] s+ F (ζ0, ξ), ξ] (2.70)

For the sake of brevity, the following function is introduced

G0(s, ζ1, ζ0) = [F (ζ1, ξ)− F (ζ0, ξ)] s+ F (ζ0, ξ) (2.71)

Through the Eq.(2.15) and (2.71), the expression for the unknown rotation field
θ(s) is obtained

θ(s) = 2 am [G0(s, ζ1, ζ0), ξ] + β (2.72)
5In addition to the general property for the reciprocal modulus transformation for the

Jacobi’s sine amplitude function (Byrd [27], his Eq.162.01, pag 38)

sn
(
σϕ,

1

ϕ

)
= ϕ sn (σ, ϕ) , (2.68)

under the circumstance Υ ∈ [−1, 1] and m = 0 the following properties hold:

ξ = 1/η, sinω(s) = ξ sin ζ(s), F (ω(s), η) = ξF (ζ(s), ξ) . (2.69)
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2.3. The elastica with m = 0 inflection points

representing the exact formulation of the rotation field for the Euler’s elastica
having no inflection points. The expression (2.72) is again a function of two
unknown parameters, namely ξ and β, representing the unknown parameter
of the elastica and the inclination of the total reaction force at both ends,
respectively.

The exact expression for the curvature ψ′ = θ′ can be achieved through
derivation of the Eq.(2.70), which by means of the following property

∂

∂σ
am[σ, ϕ] = dn[σ, ϕ]

leads to the following expression

θ′(s) = 2 [F (ζ1, ξ)− F (ζ0, ξ)] dn [G0(s, ζ1, ζ0), ξ] . (2.73)

where the positive sign of the elliptic function dn [σ, ϕ] ≥ 0 causes a never sign-
changing curvature within the whole domain s ∈ (0, 1). It is also remarked that
an acceptable solution may also be characterized by a vanishing moment exactly
at one or at both ends of the rod, while the ‘inflectional’ solution is needed in all
the other cases. Moreover, the sign of the curvature is entirely specified by the
difference of the two integrals F (ζ1, ξ)−F (ζ0, ξ), and namely by the difference
of the imposed angles at both ends θl − θ0.

The inextensibility constraint (2.2) is exploited through the Eq.(2.72) leading
to [

x′(s)
y′(s)

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
A0(s)
B0(s)

]
(2.74)

where

A0(s) = −2− ξ2

ξ2
+

2

ξ2
dn2 [G0(s, ζ1, ζ0), ξ]

B0(s) = 2 sn [G0(s, ζ1, ζ0), ξ] cn [G0(s, ζ1, ζ0), ξ]

(2.75)

A further integration of the Eqs.(2.74) leads to the exact expression for the
deformed shape of the Euler’s elastica having no inflection points. The following
properties are needed

∂

∂σ
dn[σ, ϕ] = −ϕ2 sn[σ, ϕ] cn[σ, ϕ]

∂

∂σ
E [σ, ϕ] = dn2[σ, ϕ]

Alessandro Cazzolli 27



2. THE EXACT SOLUTION FOR THE EULER’S ELASTICA

so that the final expression for the deformed shape of the rod is obtained[
x(s)/l
y(s)/l

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
A0(s)
B0(s)

]
(2.77)

where

A0(s) =

∫ s

0

A0(ς)dς =
2

ξ2

(
E [G0(s, ζ1, ζ0), ξ]− E [F (ζ0, ξ), ξ]

F (ζ1, ξ)− F (ζ0, ξ)
− 2− ξ2

2
s

)
B0(s) =

∫ s

0

B0(ς)dς =
2

ξ2

dn [F (ζ0, ξ), ξ]− dn [G0(s, ζ1, ζ0), ξ]

F (ζ1, ξ)− F (ζ0, ξ)

(2.78)

Finally, the exact expression for the elastic energy (2.5) is obtained through
the equation of the curvature of the rod (2.73). After many calculations, the
following expression for the dimensionless energy is obtained

E
B
l = 2 [F (ζ1, ξ)− F (ζ0, ξ)]

2
∫ 1

0

dn2 [G0(s, ζ1, ζ0), ξ]ds (2.79)

leading to the final expression for the elastic energy

E
B
l = 2 [F (ζ1, ξ)− F (ζ0, ξ)] [E(ζ1, ξ)− E(ζ0, ξ)] (2.80)

2.3.2 Evaluation of the unknown parameters ξ and β

The solution for the Euler’s elastica having no inflection points has been
obtained, showing its dependence on the imposed rotations at both ends θ0 and
θl (2.12). Differently from the case of presence of inflection points, the sign of
the curvature (−1)p does not represent an input parameter, being it prescribed
once the rotational boundary conditions are imposed to the system. Moreover,
the parameter m is constrained to be equal to 0.

The solution is now a function of two unknown parameters, namely given
by ξ, representing the characteristic parameter of the elastica, and the angle
β representing the inclination of the reaction force |R| with respect to the x-
axis. Again, the unkonown [ξ, β] are obtained by exploiting the further integral
equations expressing the isoperimetric constraints (2.13), which can be now
expressed through the exact solution for the ‘non-inflectional’ deformed shape
given by the Eq.(2.77).
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2.3. The elastica with m = 0 inflection points

The functions A0 and B0 evaluated at the s = 1 end of the rod are given by

A0(1) =
2

ξ2

(
E (ζ1, ξ)− E (ζ0, ξ)

F (ζ1, ξ)− F (ζ0, ξ)
− 2− ξ2

2

)
B0(1) =

2

ξ2

√
1− ξ2 sin2 ζ0 −

√
1− ξ2 sin2 ζ1

F (ζ1, ξ)− F (ζ0, ξ)

(2.81)

such that the isoperimetric constraints (2.13) assume the following form[
d/l
0

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
A0(1)
B0(1)

]
(2.82)

Finally, the following non-linear system is obtained{
d/l cosβ = A0(1),

d/l sinβ = −B0(1),
(2.83)

whose roots provide all the couples of the unknown parameters [ξ, β] correspond-
ing to any combination of the imposed kinematical conditions at both ends. It
is worth to underline that for any given combination of the boundary conditions
corresponding to the existence of elasticae having no inflection points, the num-
ber of the obtained solutions of this type is found to be always equal to one.
This observation strongly suggests the uniqueness of the solution for elasticae
having no inflection points and subject to Dirichlet boundary conditions, even
though no mathematical proofs have been obtained by the author.

As for the elastica with inflection points, the Eq.(2.14) governing the global
equilibrium is satisfied. Such condition can be easily proved by substituting
exact expressions of the quantities θ′(0), θ′(1), Ry, Γ and d introduced in the
present Section.

Alessandro Cazzolli 29





3
The exact solution for the Reissner

beam

In this chapter, the exact formulation of a shear-deformable and extensible
beam undergoing large rotations and subject to kinematically controlled

boundary conditions at both ends is proposed. More specifically, the beam is
modelled through the kinematics proposed by Reissner [97], where the unknown
deformed shape, together with the unknown internal quantities and measures
of strain, is expressed in a referential description, as a function of the curvilin-
ear coordinate s ∈ [0, l], which is defined along the centerline of the unstressed
and straight configuration. As for the case of the Euler’s elastica, a local ref-
erence system x − y is adopted, so that rigid motions can be neglected, and
self-contact phenomena are disergarded. Moreover, neither distributed nor con-
centrated loads are applied within the span of the beam, which is only deformed
through the imposition of displacements and rotations of the cross sections at
both ends s = 0 and s = l. The general closed-form solution for the Reissner
beam is obtained following the works of Batista[9, 11] and Goto et al.[51], where
in particular the closed-form solution for the ‘non-inflectional’ Reissner beam
(without points of null curvature within its span) was not considered, so that it
is addressed here for the first time.

Following Reissner [97], the fundamental kinematical fields are represented
by the rotation angle θ(s), which measures the rotation of the generic cross
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3. THE EXACT SOLUTION FOR THE REISSNER BEAM

section with respect to the x-axis, the angle χ(s), representing the rotational
gap (null for an Euler’s elastica) between the normal to the cross section and
the tangent to the centerline, and the strain e(s) of the centerline; in this way,
the total length of the centerline in its deformed configuration is given by

L = [1 + e(l)] l. (3.1)

The kinematical fields are sketched in Fig.3.1 together with a (calculated) de-
formed shape of the Reissner beam, showing how the generic cross sections are
not in general orthogonal to the centerline (because the rotation field χ does
not vanish).

Figure 3.1: (Left) Inclination of the cross section θ(s) (positive when anticlockwise) with
respect to the x-axis. The angle χ(s) measures the gap between the cross section normal and
the tangent to the centerline, so that this angle is null for the Euler’s elastica. The strain
measure e(s) represents the elongation of the centerline. The internal axial and shear forces (N
and T respectively) and the bending moment M are also shown (assumed positive). (Right)
Deformed shape of the Reissner beam with imposed displacements and rotations of the cross
sections at both ends compared to the solution for the Euler’s elastica (dashed-blue).

The following kinematical conditions determine the derivative of coordinates
x and y of the deformed centerline

x′(s) = (1 + e) cos (θ + χ),

y′(s) = (1 + e) sin (θ + χ),
(3.2)

which are taken in accordance with Fig.3.2.
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3. THE EXACT SOLUTION FOR THE REISSNER BEAM

Figure 3.2: Geometrical representation of the kinematics of the Reissner beam. An element
of length ds is mapped onto a deformed element of length (1 + e)ds. The angle χ represents
the gap between the normal to the cross-section (purple) and the tangent to the centerline
(blue), while θ represents the inclination of the normal to the cross-section with respect to
the x axis. The components x′ and y′ in Eqs.(3.2) are also highlighted.

It is instrumental now to introduce the following strain measures{
ε = (1 + e) cosχ− 1

γ = (1 + e) sinχ,
(3.3)

so that ε(s) and γ(s) represent the axial strain and the shear deformation, re-
spectively, which are non-linear functions of the aforementioned unknown fields
e(s) and χ(s). In particular, the following limitation is introduced[11]

1 + ε > 0 (3.4)

so that the deformed centerline of the rod can not ‘contract’ into a point (e >
−1) and χ is restricted to the range −π/2, π/2, thus preventing the normal to
the cross section to overcome the inclination orthogonal to the centerline.

The kinematical conditions (3.2) can be expressed in terms of the new strain
measures,

x′(s) = (1 + ε) cos θ − γ sin θ,

y′(s) = (1 + ε) sin θ + γ cos θ,
(3.5)
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so that the coordinates of the centerline can be obtained as

x(s) =

∫ s

0

((1 + ε) cos θ − γ sin θ) dς,

y(s) =

∫ s

0

((1 + ε) sin θ + γ cos θ) dς,
(3.6)

which reduce to the equations holding for the Euler’s elastica when ε = γ = 0,
which in turn correspond to e = χ = 0.

It is worth to underline that, except for the condition (3.4), no restrictions
are imposed on the magnitude of the unknown rotations and displacements of
the deformed configurations. Thus, the position fields (3.6) represent the exact
formulation for a planar beam undergoing finite shear and axial deformations,
under the assumption that the cross sections remain straight.

As for the Euler’s elastica, see Chapter 2, both ends are assumed to be
constrained through kinematical boundary conditions in terms of positions and
rotations, while only the quasi-static case is addressed. Such boundary condi-
tions are represented by

x(l) = d, θ(0) = θ0, θ(l) = θl, (3.7)

where no upper-bound restrictions are imposed to d > 0, because the beam
is extensible. Moreover, the boundary conditions θ0 and θl represent now the
imposed inclinations of the cross sections at both ends.

A linear elastic constitutive law is introduced for the bending moment M(s)
and for the axial and shear internal actions N(s) and T (s)

M(s) = B θ′(s)

N(s) = EAε(s)

T (s) = GAs γ(s)

(3.8)

where the symbol ′ stands for the derivative with respect to the curvilinear coor-
dinate s and B, EA and GAs are the constant bending, axial and shear stiffness,
respectively, which are assumed to be independent of the current deformation
of the system. Moreover, the axial and shear internal actions N(s) and T (s)
are respectively the normal and parallel components of the total internal action
with respect to the cross section.
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The total potential energy V for the Reissner beam can be expressed as

V =E +Rx

[
−d+

∫ l

0

((1 + ε) cos θ − γ sin θ) ds

]
+

+Ry

∫ l

0

((1 + ε) sin θ + γ cos θ) ds−Ml [θl − θ(l)] +

−M0 [θ0 − θ(0)] ,

(3.9)

where in contrast with the formulation introduced for the Euler’s elastica (2.4),
the holonomic constraints x(l) = d and y(l) = 0 are made explicit through
the displacement fields (3.6). The elastic energy E stored within the beam is a
quadratic form of the introduced strain measures

E =
1

2

∫ l

0

(
B θ′2 + EAε2 +GAs γ

2
)
ds. (3.10)

The quantities Rx and Ry are Lagrangian multipliers representing the reaction
forces at both ends along the x and y directions andMl andM0 are the reaction
bending moments at the ends s = l and s = 0, respectively.

The fundamental variables considered in the total potential energy (3.9) are
in this case , θ(0), θ(l),

w = {θ, θ′, θ(0), θ(l), ε, γ, Rx, Ry, M0, Ml}, (3.11)

where the fulfilment of the imposed boundary conditions imposes the vanishing
of the variations

{δθ(0), δθ(l)} = 0. (3.12)

The first variation of the total potential energy is

δV =

−
∫ l

0

δθ [Bθ′′ +Rx ((1 + ε) sin θ + γ cos θ)−Ry ((1 + ε) cos θ − γ sin θ)] ds+

+

∫ l

0

δε [EAε+Rx cos θ +Ry sin θ] ds +

∫ l

0

δγ [GAsγ −Rx sin θ +Ry cos θ] ds+

+ δRx

[∫ l

0

((1 + ε) cos θ − γ sin θ) ds− d

]
− δMl

[
θl − θ(l)

]
− δM0

[
θ0 − θ(0)

]
+

+ δRy

∫ l

0

((1 + ε) sin θ + γ cos θ) ds
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(3.13)

so that the stationarity of the total potential energy (3.13) for arbitrary pertur-
bations {δθ, δε, δγ, δMl, δM0, δRx, δRy} leads to the following system of equa-
tions

Bθ′′ +Rx [(1 + ε) sin θ + γ cos θ]−Ry [(1 + ε) cos θ − γ sin θ] = 0

EAε+Rx cos θ +Ry sin θ = 0

GAsγ −Rx sin θ +Ry cos θ = 0

θl = θ(l)

θ0 = θ(0)

d =

∫ l

0

((1 + ε) cos θ − γ sin θ) ds

0 =

∫ l

0

((1 + ε) sin θ + γ cos θ) ds

(3.14a)

(3.14b)

(3.14c)

(3.14d)

(3.14e)

(3.14f)

(3.14g)

Denoting with R the total reaction force at both ends,

Rx = |R| cosβ, Ry = |R| sinβ, (3.15)

where |R| =
√
R2
x +R2

y (or equivalently, through the axial and shear compo-

nents, |R| =
√
N(s)2 + T (s)2), the following equilibrium equations are obtained

for the unknown rotation and strain fields

Bθ′′ + (1 + ε)|R| sin (θ − β) + γ|R| cos (θ − β) = 0

ε = − |R|
EA

cos (θ − β)

γ =
|R|
GAs

sin (θ − β)

(3.16)

where the axial strain and shear deformation can be expressed as non-linear
functions of the rotation field θ. Eqs.(3.16) are complemented by the Dirichlet
boundary conditions on the cross sections’ rotations at both ends

θ(0) = θ0, θ(l) = θl (3.17)
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and by the following integral isoperimetric constraints

0 =

∫ l

0

((1 + ε) sin θ + γ cos θ) ds, d =

∫ l

0

((1 + ε) cos θ − γ sin θ) ds. (3.18)

Moreover, the following global equilibrium equation has to be satisfied

M(0) +Ry d−M(l) = 0 (3.19)

whereM(0) andM(l) are the values of the bending moment at both ends, which
are parametrized by the coordinates s = 0 and s = l, respectively.

3.1 Exact solution for the governing equation

Following Batista[9, 11] and Goto et al.[51] a dimensionless formulation is
introduced through the following changes of variables

ψ(s) = θ(s)− β, Γ2 =
|R| l2

B
,

1

λ2
=
B

l2

(
1

GAs
+

1

EA

)
,

ν =
GAs − EA
GAs + EA

, s =
s
l
∈ [0, 1]

(3.20)

where β ∈ [−π, π] is the unknown angle assumed by the resultant force |R| at
both ends, measured with respect to the x-axis (see Fig.3.1, right) and where
the dimensionless curvilinear coordinate s ranges from 0 to 1. λ is a positive
slenderness parameter, so that the equations governing the dimensionless Euler’s
elastica can be recovered in the limit for λ→∞. The dimensionless equilibrium
equations can be written as

ψ′′ + Γ2 sinψ

[
1− ν Γ2

λ2
cosψ

]
= 0,

ε = −1 + ν

2λ2
Γ2 cosψ,

γ =
1− ν
2λ2

Γ2 sinψ,

(3.21)

where the limits of null axial strain ε = 0 (inextensible rod) or null shear
deformations γ = 0 (extensible Euler’s elastica) can be recovered by setting
the parameter ν equal to −1 and 1, respectively. Moreover, the condition (3.4)
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can be substituted into the Eq.(3.21)2 thus obtaining the following limit for the
dimensionless load

Γ2

λ2
<

2

1 + ν
, (3.22)

so that for the shearless beam (ν = 1) the limit Γ2 < λ2 holds, while no
limitations exist in the case of an inextensible beam (ν = −1).

In the case of a non-vanishing curvature ψ′(s), Eq.(3.21) can be rewritten
as follows

d
ds

[
1

2
(ψ′)

2 − Γ2

(
cosψ − ν Γ2

2λ2
cos2 ψ

)]
= 0, (3.23)

and finally integrated to yield

ψ′ = ±Γ

√
2

(
cosψ − ν Γ2

2λ2
cos2 ψ + Υ

)
, (3.24)

where the constant of integration Υ is introduced.
As for the problem of the Euler’s elastica, the exact description of the Reiss-

ner beam can be obtained through a discrimination between the two cases of
presence and absence of inflection points (say, m points), which in this specific
case are related to the vanishing points of the field ψ′ and not of the curvature
of the centerline. Moreover, new expressions for the constant of integration Υ
for the dual cases of presence and absence of inflection points are proposed, so
that the formulations (2.20) and (2.23) reported for the Euler’s elastica can be
recovered by imposing λ→∞.

Presence of m points of null curvature ψ′ (m 6= 0). As proposed by
Batista[11], the constant of integration is obtained by imposing a vanishing
curvature ψ′ at the first point of null curvature ŝ1, thus obtaining

Υ = − cos ψ̂1

(
1− ν Γ2

2λ2
cos ψ̂1

)
, (3.25)

an expression which represents an extension of the definition (2.20) introduced
by Love[77] for the inflectional elastica. Moreover, also in this case a multiplicity
of solutions is given in terms of the sign of the field ψ′ at the coordinate s = 0,
so that the sign function (−1)p is introduced together with the sign function
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S̃(s) expressing the change of sign of the curvature at each inflection point. The
Eq.(3.24) can be represented in compact notation as

ψ′(s) = (−1)pS̃ Γ

√
2
(

cosψ(s)− cos ψ̂1

)[
1− ν Γ2

2λ2

(
cosψ(s) + cos ψ̂1

)]
.

(3.26)

The multiplicity of solutions given by the imposed sign (−1)p is illustrated in
Fig.3.3, where two solutions, symmetric with respect to the x-axis, are presented
for the Reissner beam suject to the same boundary conditions (both solutions
are also compared with the solution for the Euler’s elastica).

Figure 3.3: Two solutions for the Reissner beam having a different sign (−1)p of the curvature
at s = 0 and satisfying the same imposed rotations and displacements at both ends. The
particular case θ0 = θl = 0, d = 0.4l, ν = 0 and λ ≈ 9.5 is represented. In order to better
appreciate the effect of extensibility of the centerline and of shear deformations (resulting in
the fact that the cross sections are not orthogonal to the centerline), a comparison is also
reported with the Euler’s elastica (highlighted with blue and red dashed lines) subject to the
same boundary conditions.
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Absence of points of null curvature for ψ′ (m = 0). In this case ψ′(s) 6= 0
for every coordinate s ∈ (0, 1) and the following form of the integration constant
Υ is proposed, function of the unknown parameter ξ > 0,

Υ =
2− ξ2

ξ2

(
1 +

ν Γ2

2λ2

2− ξ2

ξ2

)
, (3.27)

where the upper bound of ξ is set to be greater than 1 in order to catch solu-
tions without inflection points within the span, but belonging to the inflectional
problem. In any case, the generalization of the non-inflectional mother curve for
the Reissner beam is given for every value of the unknown parameter ξ ∈ [0, 1].

The expression for the curvature (3.24) can be rewritten as

ψ′(s) = (−1)p Γ

√
2

(
cosψ(s) +

2− ξ2

ξ2

)[
1− ν Γ2

2λ2

(
cosψ(s)− 2− ξ2

ξ2

)]
,

(3.28)

where again the sign function (−1)p is specified by the imposed rotations θ0 and
θl at both cross sections’ ends, so that p cannot be considered as an input pa-
rameter. A solution for the Reissner beam without inflection points is illustrated
in Fig.3.4 together with the comparison solution for the Euler’s elastica. As in
the previous Chapter, only one solution is found for the specific combination of
the boundary conditions.

Figure 3.4: Solution for the Reissner beam without inflection points, subject to the imposed
rotations θ0 = −θl = π and displacement d = 0.4l at both ends. As for the problem of the
Euler’s elastica, the sign (−1)p is specified by the values of rotations at both ends.

40 Alessandro Cazzolli



3.2. The Reissner beam with m points of null curvature

3.2 The Reissner beam with m points of null cur-
vature

As for the case of integration of the Euler’s elastica, it is instrumental to
introduce the unknown parameter η ∈ [0, 1] and the auxiliary field ω(s) defined
as

η = sin
|ψ̂1|

2
, η sinω(s) = sin

ψ(s)

2
, (3.29)

so that the curvature can be rewritten as

dψ
ds

= (−1)p 2 Γ η cosω

√
1− ν Γ2

λ2
+
ν Γ2

λ2
η2(1 + sin2 ω). (3.30)

Through Eq.(3.29) one can write

ψ = 2 arcsin (η sinω) −→ dψ =
2√

1− η2 sin2 ω
η cosω dω

which can be substituted into Eq.(3.30) to obtain

dω
ds

= (−1)p
Γ̃√

1 + n2

√(
1− η2 sin2 ω(s)

) (
1 + n2 sin2 ω(s)

)
, (3.31)

where the following parameters have been introduced

n2 =

ν Γ2η2

λ2

1 +
ν Γ2

λ2
(η2 − 1)

, Γ̃ = Γ

√
1 +

ν Γ2

λ2
(2η2 − 1). (3.32)

The integration of Eq.(3.31) requires a first change of variables, namely,

u(s) = sinω(s) → u′ = cosω ω′ = S̃
√

1− u2 ω′, (3.33)

where S̃(s) is a function expressing the change in the sign of the curvature
occurring at each inflection point (see Eq. (3.26)) in a compact form, and
where in particular

S̃(s)

√
1− sin2 ω(s) = cosω(s).
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Moreover, u(s) ∈ [−1, 1] so that the Eq.(3.31) can be rewritten as

du
ds

= (−1)p
Γ̃√

1 + n2
S̃
√

1− u2
√

1− η2u2
√

1 + n2u2 (3.34)

A second change of variables is introduced

u(s) =
t(s)√

1 + n2(1− t2(s))
, → u′ =

t′(1 + n2)

(1 + n2(1− t2))
3
2

, (3.35)

where the new function t(s) is in turn defined within the interval t(s) ∈ [−1, 1].
The expression for u′ can be substituted in Eq.(3.34) leading to the following
condition

dt
ds

= (−1)p Γ̃S̃
√

1− t2
√

1− η̃2t2, (3.36)

where

η̃2 =
η2 + n2

n2 + 1
. (3.37)

A third (and last) change of variables is introduced,

t(s) = sin τ(s) → S̃
√

1− t2 = cos τ, (3.38)

so that the following equation can be obtained for the unknown field τ(s)

dτ
ds

= (−1)p Γ̃

√
1− η̃2 sin2 τ , (3.39)

which can be integrated between 0 and the generic coordinate s, to yield

∫ s

0

Γ̃ ds = (−1)p

∫ τ(s)

τ(0)

dt̃√
1− η̃2 sin2 t̃

. (3.40)

The properties of the elliptic integrals allow to obtain the load parameter Γ̃
by setting the second integration endpoint equal to s = 1 (which singles out to
the right end of the Reissner beam)

Γ̃ = (−1)p [F (τ(1), η̃)− F (τ(0), η̃)] . (3.41)
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3.2. The Reissner beam with m points of null curvature

The load parameter Γ̃ is therefore a function of the values assumed by the
unknown function τ at the initial s = 0 and final s = 1 ends.1 The parameter
Γ can be therefore obtained as the positive roots of the following equation

Γ

√
1 +

ν Γ2

λ2
(2η2 − 1) = (−1)p [F (τ(1), η̃)− F (τ(0), η̃)] , (3.42)

which has been obtained through the Eqs.(3.32)2 and (3.41). Note that the
unknown coefficient Γ is also implicitly present in Eq.(3.42) through the coeffi-
cients η̃, n, τ(1) and τ(0). Note that the limit λ → ∞ leads to the condition

Γ = (−1)p [F (ω(1), η)− F (ω(0), η)] , (3.43)

so that the limit of the Euler’s elastica is recovered.
The function τ(s) for the Reissner beam having points of null curvature θ′

is therefore equal to

τ(s) = (−1)p am
[
Γ̃s+ (−1)p F (τ(0), η̃), η̃

]
. (3.44)

By considering τ(0) = τ0 and τ(1) = τ1, the following function is introduced

Rm(s, τ1, τ0) = [F (τ1, η̃)− F (τ0, η̃)] s+ F (τ0, η̃), (3.45)

so that by means of Eq.(3.41), Eq.(3.44) can be rewritten in the following com-
pact form

τ(s) = am [Rm(s, τ1, τ0), η̃] . (3.46)

Therefore, the equation governing the field t(s) can be obtained through the
change of variables (3.38), to yield

t(s) = sn [Rm(s, τ1, τ0), η̃] . (3.47)

The function u(s) can now be obtained by substituting the latter equation
into Eq.(3.35), thus obtaining

u(s) =
sn [Rm(s, τ1, τ0), η̃]√

1 + n2cn2 [Rm(s, τ1, τ0), η̃]
. (3.48)

1The positiveness of the parameter Γ̃ leads to the following conditions

F (τ(1), η̃) > F (τ(0), η̃) → τ(1) > τ(0) if p = 0

F (τ(1), η̃) < F (τ(0), η̃) → τ(1) < τ(0) if p = 1
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3. THE EXACT SOLUTION FOR THE REISSNER BEAM

Consistently with the formulation of the inflectional Euler’s elastica, the de-
pendency on the sign of the initial curvature (−1)p is implicitly contained in
Eq.(3.48) through the parameter τ1, as shown in the next Section.

The following identity is finally obtained

sinω =
sin τ√

1 + n2 cos2 τ
, (3.49)

so that in the limit λ → ∞, namely once the Euler’s elastica is recovered, one
obtains n2 → 0 and then sin τ = sinω.

3.2.1 Values assumed by τ at both ends
By considering Eq.(3.30), the following condition is achieved at any point ŝj

corresponding to a null curvature ψ′

cosω(ŝj)
√

1 + n2 sin2 ω(ŝj) = 0, (3.50)

where due to the strict positiveness of the term under square root, condition
(3.50) reduces to the vanishing of cosω(ŝj). Through Eq.(3.49), one can obtain
the following expression

sinω(ŝj) = sin τ(ŝj), (3.51)

proving the identity between the sinus of the functions ω and τ at any inflection
point (note that the identity above is not in general extended to the whole
domain of the aforementioned functions, being the latter case verified only under
the assumption λ → ∞ or in the particular case n2 = ν = 0). Due to the
fact that the function τ(s) is monotonic (see Eq.(3.46)) and following the same
procedure developed for the Euler’s elastica, the values of τ at any inflection
point is equal to

τ(ŝ1) = (−1)p
π

2
, τ(ŝ2) = (−1)p

3π

2
, . . . (3.52)

where the initial value τ0 belongs to the interval [−π/2, π/2].
The Dirichlet boundary conditions can be explicitly introduced by rewriting

the function τ with respect to θ through Eqs.(3.292) and (3.49), so that one can
write

sin τ = sin

(
θ − β

2

)√√√√√ 1 + n2

η2 + n2 sin2

(
θ − β

2

) . (3.53)
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3.2. The Reissner beam with m points of null curvature

As for the problem of the Euler’s elastica, the values of the function τ(s)
attained at both ends, τ(0) = τ0 and τ(1) = τ1, can therefore be expressed
as functions of the number of inflection points m and of the sign of the initial
curvature (−1)p, so that

τ0 = arcsin

sin

(
θ0 − β

2

)√√√√√ 1 + n2

η2 + n2 sin2

(
θ0 − β

2

)
 ,

τ1 = (−1)m arcsin

sin

(
θl − β

2

)√√√√√ 1 + n2

η2 + n2 sin2

(
θl − β

2

)
+ (−1)pmπ.

(3.54)

Eqs.(3.54) provide the two fundamental parameters involved in the solution,
which both depend on the unknown parameters β, η and Γ (the latter only
through coefficient n).

The main advantage introduced with relations (3.54) is represented by their
generality. In particular, for every combination of the imposed boundary con-
ditions [θ0, θl], the number of inflection points m and the sign function (−1)p

can explicitly be imposed, allowing for the evaluation of every deformed shape
which corresponds to prescribed boundary conditions.

However, it is worth to underline that the presented equations are valid for
the case m > 0 only, while the treatment of the non-inflectional equations,
m = 0, is deferred to Section 3.3.

3.2.2 The solution for the Reissner beam with m points
of null curvature

Eq.(3.49) can be substituted into Eq.(3.29)2 to obtain the solution for the
angle ψ(s)

ψ(s) = 2 arcsin

[
η

sn [Rm(s, τ1, τ0), η̃]√
1 + n2cn2 [Rm(s, τ1, τ0), η̃]

]
, (3.55)

where τ0 and τ1 are explicitly expressed by Eqs.(3.54).

Alessandro Cazzolli 45



3. THE EXACT SOLUTION FOR THE REISSNER BEAM

Through Eq.(3.20), the exact expression for the function θ(s) can be obtained
as

θ(s) = 2 arcsin

[
η

sn [Rm(s, τ1, τ0), η̃]√
1 + n2cn2 [Rm(s, τ1, τ0), η̃]

]
+ β (3.56)

representing the solution for the cross sections’ rotations of the Reissner beam
in the case when m > 0 points of null curvature for θ′ are present. It is worth
to underline that expression (3.56) contains the unknown parameters η, β and
Γ.

The exact expression for the curvature ψ′ = θ′ can be achieved by a differ-
entiation of the Eq.(3.56), thus obtaining

θ′(s) = 2η [F (τ1, η̃)− F (τ0, η̃)]

√
1 + n2 cn [Rm(s, τ1, τ0), η̃]

1 + n2cn2 [Rm(s, τ1, τ0), η̃]
. (3.57)

Further calculations lead to the exact expressions for the strain measures ε
and γ (Eqs.(3.21)2 and (3.213)), which can be expressed as

ε = −1 + ν

2λ2
Γ2

(
1− 2 η2 sn2 [Rm(s, τ1, τ0), η̃]

1 + n2cn2 [Rm(s, τ1, τ0), η̃]

)
, (3.58)

and

γ =
1− ν
λ2

Γ2η
√

1 + n2
sn [Rm(s, τ1, τ0), η̃] dn [Rm(s, τ1, τ0), η̃]

1 + n2cn2 [Rm(s, τ1, τ0), η̃]
, (3.59)

respectively.
The kinematics equations (3.5) can be rewritten in terms of the closed-form

solution for the rotation ψ, namely[
x′(s)
y′(s)

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
AR,m(s)
BR,m(s)

]
, (3.60)

where

AR,m(s) = cosψ − Γ2

2λ2
− ν Γ2

2λ2

(
2 cos2 ψ − 1

)
,

BR,m(s) = sinψ − ν Γ2

2λ2
sin 2ψ = −ψ

′′(s)

Γ2
.

(3.61)

The exact expression for the centerline’s coordinates x(s) and y(s) can be
obtained by integrating the equations above. In particular, the integration of
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3.2. The Reissner beam with m points of null curvature

the second term BR,m(s) can be immediately obtained through the following
condition

BR,m(s) = − 1

Γ2

∫ s

0

ψ′′(ς)dς =
1

Γ2
(ψ′(0)− ψ′(s)) ,

which leads to the following expression

BR,m(s) =
2η
√

1 + n2

Γ2
[F (τ1, η̃)− F (τ0, η̃)]

(
cos τ0

1 + n2 cos2 τ0
+

− cn [Rm(s, τ1, τ0), η̃]

1 + n2cn2 [Rm(s, τ1, τ0), η̃]

)
.

(3.62)

On the other hand, the integration of AR,m(s) turns out to be extremely
tedious. More specifically, a first integration of the Eq.(3.61)1 leads to

AR,m(s) = −Γ2 s

2λ2
(1− ν) +

∫ s

0

cosψ(ς)dς − νΓ2

λ2

∫ s

0

cos2 ψ(ς)dς. (3.63)

Through the exact solution for the rotation field ψ in Eq.(3.55), the first of the
two integrals in Eq.(3.63) can be separated as∫ s

0

cosψ(ς)dς =
2η2 + n2

n2
s− 2η2

n2

∫ s

0

[
1

1− n2sn2[Rm(ς, τ1, τ0),η̃]
n2+1

]
dς

=
2η2

n2

Π
(

n2

n2+1 , τ0, η̃
)
−Π

(
n2

n2+1 , am [Rm(s, τ1, τ0), η̃] , η̃
)

F (τ1, η̃)− F (τ0, η̃)
+

+
2η2 + n2

n2
s

(3.64)

where

Π
(
α2, am [σ, ϕ] , ϕ

)
=

∫ σ

0

dφ
1− α2 sn2 [φ, ϕ]

(3.65)

is the incomplete elliptic integral of the third kind.
The second integral in Eq.(3.63) can be rewritten as the sum of two integrals

I1 and I2∫ s

0

cos2 ψ(ς)dς = I1 + I2, (3.66)
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where

I1 =

(
n2 + 2η2

)2
n4

s−∫ s

0

 4η2

n2
(

1− n2sn2[Rm(s, τ1, τ0),η̃]
n2+1

) +
8η4

n4
(

1− n2sn2[Rm(s, τ1, τ0),η̃]
n2+1

)
ds,

(3.67)

and

I2 =
4η4

n4

∫ s

0

 dn2 [Rm(s, τ1, τ0), η̃](
1− n2sn2[Rm(s, τ1, τ0),η̃]

n2+1

)2 +
η̃2sn2 [Rm(s, τ1, τ0), η̃](
1− n2sn2[Rm(s, τ1, τ0),η̃]

n2+1

)2

ds.
(3.68)

The integral I1 in Eq.(3.67) can be expressed in terms of elliptic integrals of
the third kind as

I1 =

(
n2 + 2η2

)2
n4

s+

4η2
(
n2 + 2η2

)
n4

Π
(

n2

n2+1 , τ0, η̃
)
−Π

(
n2

n2+1 , am [Rm(s, τ1, τ0), η̃] , η̃
)

F (τ1, η̃)− F (τ0, η̃)

(3.69)

The solution for the integral I2 introduced in Eq.(3.68) is not trivial and has
been performed using formulas found in Byrd and Friedman[27], not reported
here for brevity (see Eqs.362.15 and 362.17 at page 218). Skipping long calcu-
lations, finally, the following equation expressing the sum of the two integrals
I1 + I2 can be obtained

∫ s

0

cos2 ψ(ς)dς =
4η2

n2
s−

2η4
(
n2 − 1

)
n4

s+ s+

2η2

n4

n2(1 + n2)
(
n2∆G (s)−∆E (s)

)
+ ∆Π(s)

(
n2(η2 − 1)− η2

)
∆F

(3.70)
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3.2. The Reissner beam with m points of null curvature

where the following quantities have been introduced

∆E (s) = E [Rm(s, τ1, τ0), η̃]− E(τ0, η̃)

∆G (s) =
cn [Rm(s, τ1, τ0), η̃] dn [Rm(s, τ1, τ0), η̃] sn [Rm(s, τ1, τ0), η̃]

1 + n2cn2 [Rm(s, τ1, τ0), η̃]
+

− cos τ0 sin τ0
√

1− η̃2 sin τ0
1 + n2 cos2 τ0

∆Π(s) = Π

(
n2

n2 + 1
, am [Rm(s, τ1, τ0), η̃] , η̃

)
−Π

(
n2

n2 + 1
, τ0, η̃

)
∆F = F (τ1, η̃)− F (τ0, η̃).

(3.71)

The sum of the two integrals in Eq.(3.63) and performed through Eqs.(3.64),
(3.66) and (3.70) leads surprisingly to the simplification of the elliptic integrals
of the third kind, so that the final expression for equation (3.63) becomes

AR,m(s) = 2
∆F

Γ2

(
∆E (s)− n2∆G (s)− ∆F

2
s

)
− (1− ν)

Γ2 s

2λ2
. (3.72)

The final expression for the centerline’s position is obtained through Eqs.(3.72)
and (3.62) in the form[

x(s)/l
y(s)/l

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
AR,m(s)
BR,m(s)

]
. (3.73)

Elastic energy

Finally, the expression for the elastic energy (3.10) is obtained through the
the curvature θ′, Eq.(3.57), and through the equations for the axial and shear
strain, Eqs.(3.58) and (3.59), respectively.

The dimensionless elastic energy can be written as

E
B
l =

1

2

∫ 1

0

θ′2ds+
EA l2

2B

∫ 1

0

ε2ds+
GAs l

2

2B

∫ 1

0

γ2ds

=
1

2

∫ 1

0

θ′2ds+
1

4

Γ4

λ2
(1− ν) +

ν

2

Γ4

λ2

∫ 1

0

cos2 ψ ds,
(3.74)

so that in the limit of λ → ∞, the elastic energy of the Euler’s elastica can
easily be recovered.
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The contribution to the elastic energy associated to bending can be written
as2

Eθ
B
l = 2η2 ∆F

n2 + 1

∫ Rm(1, τ1, τ0)

Rm(0, τ1, τ0)

 cn2 [r](
1− n2sn2[r]

n2+1

)2

dr, (3.75)

an integral which can be evaluated using Byrd and Friedman[27] (see Es. 362.16
at page 218) to obtain the final expression for Eθ

Eθ
B
l = ∆F

[
∆E − n2∆G (1) +

η2

n2

(
∆F +

n2(η2 − 1)− η2

η2(1 + n2)
∆Π(1)

)]
, (3.76)

where

∆E = ∆E (1) = E(τ1, η̃)− E(τ0, η̃), (3.77)

and the further expressions defined in Eqs.(3.71) have been particularized at
the coordinate s = 1 as follows

∆G (1) =
cos τ1 sin τ1

√
1− η̃2 sin τ1

1 + n2 cos2 τ1
− cos τ0 sin τ0

√
1− η̃2 sin τ0

1 + n2 cos2 τ0
,

∆Π(1) = Π

(
n2

n2 + 1
, τ1, η̃

)
−Π

(
n2

n2 + 1
, τ0, η̃

)
.

(3.78)

The contribution to the elastic energy associated to the axial and shear
strains can be calculated taking advantage of Eq.(3.70) particularized at the
coordinate s = 1, thus obtaining

Eε,γ
B

l =
Γ4

4λ2
(1 + ν) +

ν Γ4

λ2

η2

n4

[
2n2 − η2

(
n2 − 1

)
+

+
n2(1 + n2)

(
n2∆G (1)−∆E

)
+ ∆Π(1)

(
n2(η2 − 1)− η2

)
∆F

]
.

(3.79)

2The substitution r = Rm(s, τ1, τ0) has been performed, so that

dr = ∆Fds
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3.2. The Reissner beam with m points of null curvature

The final expression for the elastic energy is therefore given by

E
B
l =∆F

[
∆E − n2∆G (1) +

η2

n2

(
∆F +

n2(η2 − 1)− η2

η2(1 + n2)
∆Π(1)

)]
+

+
Γ4

4λ2
(1 + ν) +

ν Γ4

λ2

η2

n4

[
2n2 − η2

(
n2 − 1

)
+

+
n2(1 + n2)

(
n2∆G (1)−∆E

)
+ ∆Π(1)

(
n2(η2 − 1)− η2

)
∆F

]
.

(3.80)

3.2.3 Evaluation of the unknown parameters η, β and Γ

Differently from the problem of the Euler’s elastica, the closed-form solution
for the Reissner beam with inflection points is a function of three unknown pa-
rameters η, β and Γ, which can be obtained by exploiting the integral equations
of the isoperimetric constraints (3.18) together with the Eq.(3.42). The exact
solution for the deformed shape given by Eqs.(3.73) is calculated at the final
end s = 1 of the Reissner beam as

AR,m(1) = 2
∆F

Γ2

(
∆E − n2∆G (1)− ∆F

2

)
− (1− ν)

Γ2

2λ2

BR,m(1) =
2η
√

1 + n2

Γ2
∆F

(
cos τ0

1 + n2 cos2 τ0
− cos τ1

1 + n2 cos2 τ1

) (3.81)

so that the dimensionless isoperimetric constraints (3.18) assume the following
form [

d/l
0

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
AR,m(1)
BR,m(1).

]
(3.82)

Finally, the following non-linear system is obtained
d/l cosβ = AR,m(1),

d/l sinβ = −BR,m(1),

Γ

√
1 +

ν Γ2

λ2
(2η2 − 1) = (−1)p [F (τ1, η̃)− F (τ0, η̃)] ,

(3.83)

whose roots provide all the (non-unique) triplets of unknown parameters [η, β, Γ]
corresponding to every combination of the boundary conditions at both ends of
the beam.
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3.3 The Reissner beam with m = 0 points of null
curvature

By considering the following change of variable

ζ(s) =
ψ(s)

2
, (3.84)

Eq.(3.28), expressing the non-vanishing curvature ψ′ within the span of the rod,
can be rewritten as

ζ ′(s) = (−1)p
Γ̃0√

1 + n2
0

√(
1− ξ2 sin2 ζ

) (
1 + n2

0 sin2 ζ
)
, (3.85)

where the following parameters have been introduced

n2
0 =

ν Γ2

λ2

1 +
ν Γ2

λ2ξ2
(1− ξ2)

, Γ̃0 =
Γ

ξ

√
1 +

ν Γ2

λ2ξ2
. (3.86)

Moreover, the values of ζ(s) at the two ends are defined as ζ(0) = ζ0 and
ζ(l) = ζl and can be expressed as functions of the imposed ends rotations,

ζ0 =
θ0 − β

2
, ζl =

θl − β
2

. (3.87)

Eq.(3.85) is definitely similar to the expression for the curvature (3.57) for
the Reissner beam with inflection points. Therefore, the exact solution for the
rotation field θ and for the axial and shear strains can be obtained using the
same procedure introduced in the previous Section. In particular, the following
change of variables is introduced

u(s) = sin ζ(s), (3.88)

so that further changes of variables (3.35) and (3.38) lead to the final expression
for the field u(s)

u(s) =
sn
[
R0(s, τ1, τ0), ξ̃

]
√

1 + n2
0cn2

[
R0(s, τ1, τ0), ξ̃

] , (3.89)
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3.3. The Reissner beam with m = 0 points of null curvature

so that

Γ̃0 = (−1)p
[
F (τ1, ξ̃)− F (τ0, ξ̃)

]
, (3.90)

where

R0(s, τ1, τ0) =
[
F (τ1, ξ̃)− F (τ0, ξ̃)

]
s+F (τ0, ξ̃), ξ̃2 =

ξ2 + n2
0

n2
0 + 1

. (3.91)

Moreover, the unknown dimensionless load parameter Γ is given by the pos-
itive roots of the following equation

Γ

ξ

√
1 +

ν Γ2

λ2ξ2
= (−1)p

[
F (τ1, ξ̃)− F (τ0, ξ̃)

]
, (3.92)

which has been obtained through Eqs.(3.86)2 and (3.90).
The expression for ζ can therefore be implicitly expressed through the fol-

lowing two equivalent expressions

sin ζ =
sn
[
R0(s, τ1, τ0), ξ̃

]
√

1 + n2
0cn2

[
R0(s, τ1, τ0), ξ̃

] , tan ζ =
tn
[
R0(s, τ1, τ0), ξ̃

]
√

1 + n2
0

,

(3.93)

where tn[σ, ϕ] = sn[σ, ϕ]/cn[σ, ϕ] is the Jacobi’s tangent amplitude function
and the expression holding for the Euler’s elastica can be recovered by setting
n0 → 0.

In the non-inflectional case, however, the monotonic function ζ cannot be
expressed through inverse trigonometric functions as in Eq.(3.55), because the
right-hand sides of the expressions (3.93) may not be restrained to belong to
the interval [−1, 1]. The exact expression for the rotation field can therefore be
obtained through the following integral expression

ζ(s) = ∆F0

√
1 + n2

0

∫ s

0

 dn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

]
ds+

θ0 − β
2

, (3.94)

where

∆F0 = F (τ1, ξ̃)− F (τ0, ξ̃), (3.95)

so that one can directly compute the function ζ(s) through a numerical evalu-
ation of integral (3.94).
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3.3.1 Values assumed by τ at both ends

The Dirichlet boundary conditions can explicitly be introduced by rewriting
the function ζ through the angle θ. By means of Eqs.(3.84) and (3.93)1, one
can write

sin τ = sin

(
θ − β

2

)√√√√√ 1 + n2
0

1 + n2
0 sin2

(
θ − β

2

) . (3.96)

which is similar to the equation holding for the inflectional case.
In contrast to the problem of the Euler’s elastica, the values of the monotonic

function τ(s) attained at both ends, τ(0) = τ0 and τ(1) = τ1, can not be directly
expressed through the inverse trigonometric functions in the general case n0 6= 0.
In fact, differently from the inflectional case, the solution strongly depends not
only on the difference between the values assumed by τ at both ends, but also
on their actual value. Consequently, the introduction of the Dirichlet boundary
conditions θ0 and θl cannot be pursued through the inversion of Eq.(3.96) via
function ‘arcsin’.

For that reason, τ1 and τ0 for the Reissner beam having no points with null
curvature are treated as true unknown parameters, governed by the following
implicit equations

sin τ0 = sin

(
θ0 − β

2

)√√√√√ 1 + n2
0

1 + n2
0 sin2

(
θ0 − β

2

) ,
sin τ1 = sin

(
θl − β

2

)√√√√√ 1 + n2
0

1 + n2
0 sin2

(
θl − β

2

) . (3.97)

Finally, the particular condition n0 = 0 leads to the following simplified
expressions

τ0 =
θ0 − β

2
, τ1 =

θl − β
2

. (3.98)
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3.3.2 The exact solution for the Reissner beam with 0
points of null curvature

The rotation ψ can be obtained by exploiting Eq.(3.94), together with the
change of variable (3.84), yielding

ψ(s) = 2∆F0

√
1 + n2

0

∫ s

0

 dn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

]
ds+ θ0− β (3.99)

so that through Eq.(3.20), the exact expression for the function θ(s) becomes

θ(s) = 2∆F0

√
1 + n2

0

∫ s

0

 dn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

]
ds+ θ0, (3.100)

a function of the unknown parameters η, β and Γ and of the two unknowns τ1
and τ0. Differentiation of Eq.(3.100) leads to the expression for the curvature
ψ′ = θ′

θ′(s) = 2∆F0

√
1 + n2

0 dn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

] . (3.101)

Further calculations lead to the expression for the strain measures ε and γ
(Eqs.(3.21)2 and (3.21)3, respectively) which can be written as

ε = −1 + ν

2λ2
Γ2

1− 2
sn2
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

]
 , (3.102)

and

γ =
1− ν
λ2

Γ2
√

1 + n2
0

sn
[
R0(s, τ1, τ0), ξ̃

]
cn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

] , (3.103)

respectively.
The kinematic equations (3.5) can therefore be rewritten in terms of the

solution for the rotation field ψ in the form[
x′(s)
y′(s)

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
AR,0(s)
BR,0(s)

]
(3.104)
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where again

AR,0(s) = cosψ − Γ2

2λ2
− ν Γ2

2λ2

(
2 cos2 ψ − 1

)
BR,0(s) = sinψ − ν Γ2

2λ2
sin 2ψ = −ψ

′′(s)

Γ2
.

(3.105)

As for the inflectional case, the expression for the centerline’s coordinates
x(s) and y(s) can be obtained firstly by integrating the equations above. The
integration of the second term BR,0(s) is immediate

BR,0(s) =
2
√

1 + n2
0

Γ2
∆F0


√

1− ξ̃2 sin2 τ0

1 + n2
0 cos2 τ0

−
dn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

]
 ,

(3.106)

while the integration of AR,0(s) leads to

AR,0(s) = −Γ2 s

2λ2
(1− ν) +

∫ s

0

cosψ(ς)dς − νΓ2

λ2

∫ s

0

cos2 ψ(ς)dς. (3.107)

The first integral in Eq.(3.107) can be expressed as∫ s

0

cosψ(ς)dς = s+ 2
∆F0s−∆Π0(s)

∆F0n2
0

, (3.108)

where

∆Π0(s) = Π

(
n2

0

n2
0 + 1

, am
[
R0(s, τ1, τ0), ξ̃

]
, ξ̃

)
−Π

(
n2

0

n2
0 + 1

, τ0, ξ̃

)
. (3.109)

Following a procedure similar to that adopted for the inflectional case, the sec-
ond integral of Eq.(3.107) can be obtained as∫ s

0

cos2 ψ(ς)dς = s+ 4
∆F0s−∆Π0(s)

∆F0n2
0

+

2

[
∆Π0(s) + (1 + n2

0)
(
n2

0∆G0(s)−∆E0(s)
)]
n2

0 + (n2
0 − 1)ξ2 (∆Π0(s)−∆F0s)

∆F0 n4
0 ξ

2
,

(3.110)
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where

∆E0(s) = E
[
R0(s, τ1, τ0), ξ̃

]
− E(τ0, ξ̃)

∆G0(s) =
cn
[
R0(s, τ1, τ0), ξ̃

]
dn
[
R0(s, τ1, τ0), ξ̃

]
sn
[
R0(s, τ1, τ0), ξ̃

]
1 + n2

0cn2
[
R0(s, τ1, τ0), ξ̃

] +

−
cos τ0 sin τ0

√
1− ξ̃2 sin τ0

1 + n2
0 cos2 τ0

.

(3.111)

The term AR,0(s) can finally be expressed as

AR,0(s) =
Γ2s

2λ2

2ν − ξ2(ν + 1)

ξ2
+2

∆F0

Γ2

(
∆E0(s)− n2

0∆G0(s)−∆F0

(
2− ξ2

)
2

s

)
,

(3.112)

where, as for the inflectional case, the above expression results to be independent
of the elliptic integrals of the third kind.

The final expression for the centerline’s position can be obtained through
the Eqs.(3.112) and (3.106) in the form[

x(s)/l
y(s)/l

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
AR,0(s)
BR,0(s)

]
(3.113)

Elastic energy

The expression for the elastic energy stored in the Reissner beam can be
obtained through Eqs.(3.74), (3.101) and (3.110), where the involved integrals
are particularized at the coordinate s = 1. Following a route similar to that
followed for the inflectional case, the contribution to the elastic energy associated
to bending can be written as

Eθ
B
l = 2

∆F

n2
0 + 1

∫ R0(1, τ1, τ0)

R0(0, τ1, τ0)

 dn2 [r](
1− n2

0sn2[r]

n2
0+1

)2

dr, (3.114)
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so that the above integral can be evaluated ([27], Es. 362.17 at page 218) leading
to the final expression for Eθ

Eθ
B
l = ∆F0

[
∆E0 − n2

0∆G0(1) +
ξ2

n2
0

(
∆F0 +

n2
0(1− ξ2)− ξ2

ξ2(1 + n2
0)

∆Π0(1)

)]
,

(3.115)

where

∆E0 = ∆E0(1) = E(τ1, ξ̃)− E(τ0, ξ̃)

∆G0(1) =
cos τ1 sin τ1

√
1− ξ̃2 sin τ1

1 + n2
0 cos2 τ1

−
cos τ0 sin τ0

√
1− ξ̃2 sin τ0

1 + n2
0 cos2 τ0

∆Π0(1) = Π

(
n2

0

n2
0 + 1

, τ1, ξ̃

)
−Π

(
n2

0

n2
0 + 1

, τ0, ξ̃

)
.

(3.116)

The contribution to the elastic energy associated to the axial and shear
strains can be calculated by taking advantage of Eq.(3.110) particularized at
the coordinate s = 1, thus obtaining

Eε,γ
B

l =
Γ4

4λ2
(1 + ν) +

ν Γ4

λ2 n4
0

[
n2

0 + 1+

+
n2

0(1 + n2
0)
(
n2

0∆G0(1)−∆E0

)
+ ∆Π0(1)

(
n2

0(1− ξ2)− ξ2
)

∆F0 ξ2

]
.

(3.117)

The final expression for the elastic energy is therefore given by

E
B
l =∆F0

[
∆E0 − n2

0∆G0(1) +
ξ2

n2
0

(
∆F0 +

n2
0(1− ξ2)− ξ2

ξ2(1 + n2
0)

∆Π0(1)

)]
+

Γ4

4λ2
(1 + ν) +

ν Γ4

λ2 n4
0

[
n2

0 + 1+

+
n2

0(1 + n2
0)
(
n2

0∆G0(1)−∆E0

)
+ ∆Π0(1)

(
n2

0(1− ξ2)− ξ2
)

∆F0 ξ2

]
.

(3.118)
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3.3.3 Evaluation of the unknown parameters ξ, β, Γ, τ1

and τ0

In the non-inflectional case, the closed-form solution is parametrized by three
unknown parameters η, β and Γ, which can be obtained by exploiting the in-
tegral equations expressing the isoperimetric constraints (3.18) together with
Eq.(3.92). In the general case n0 6= 0, the two further parameters τ0 and τ1 are
now unknown, which represent the solution for the implicit Eqs.(3.97).

The exact solution for the deformed shape of the beam, given by Eqs.(3.113),
is particularized at the right end s = 1 of the rod, through functions AR,0 and
BR,0, thus obtaining

AR,0(1) =
Γ2

2λ2

2ν − ξ2(ν + 1)

ξ2
+ 2

∆F0

Γ2

(
∆E0 − n2

0∆G0(1)−∆F0

(
2− ξ2

)
2

)

BR,0(1) =
2
√

1 + n2
0

Γ2
∆F0


√

1− ξ̃2 sin2 τ0

1 + n2
0 cos2 τ0

−

√
1− ξ̃2 sin2 τ1

1 + n2
0 cos2 τ1

 ,

(3.119)

so that the dimensionless expression for the isoperimetric constraints (3.18) is
given by[

d/l
0

]
=

[
cosβ − sinβ
sinβ cosβ

]
·
[
AR,0(1)
BR,0(1)

]
(3.120)

Finally, the following non-linear system is obtained

d/l cosβ = AR,0(1),

d/l sinβ = −BR,0(1),

Γ

ξ

√
1 +

ν Γ2

λ2ξ2
= (−1)p

[
F (τ1, ξ̃)− F (τ0, ξ̃)

]
,

sin τ0 = sin

(
θ0 − β

2

)√√√√√ 1 + n2
0

1 + n2
0 sin2

(
θ0 − β

2

) ,
sin τ1 = sin

(
θl − β

2

)√√√√√ 1 + n2
0

1 + n2
0 sin2

(
θl − β

2

) .

(3.121)
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3. THE EXACT SOLUTION FOR THE REISSNER BEAM

whose roots provide all the (non-unique) sets of the unknown parameters [ξ, β, Γ,
τ0, τ1], corresponding to every combination of boundary conditions at both ends.
Note that in the particular case n0 = 0 the number of unknowns reduces from 5
to 3, as the parameters τ0 and τ1 can be expressed as functions of the unknown
parameter β through Eqs.(3.98).
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Part II

Snapping of the Euler’s
elastica with controlled ends
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4
Stability of the elastica with

controlled ends

Extending the procedures presented by other authors [10],[18], [76], the sta-
bility of the equilibrium configurations for the Euler’s elastica (as shown

in Chapter 2) is judged with reference to small and compatible perturbations
in the rotation field θ(s). In particular, the stability is connected to the sign of
the second variation of the total potential energy (2.4), which referring to weak
perturbations can be written as

δ2V =

∫ l

0

[
Bδθ′2 − 2

[
δRx(δx′ + sin θδθ) + δRy(δy′ − cos θδθ)

]
− δθ2

[
Rx cos θ +Ry sin θ

]]
ds− 2 (δNx δx(l) + δNy δy(l)) +

+ 2 (δMl δθ(l) + δM0 δθ(0)) ,

(4.1)

Integration by parts together with the conditions on vanishing variations at both
ends (see Eqs.(2.7) and (2.8)) leads to the following identity

δ2V =−
∫ l

0

δθ
[
Bδθ′′ + δθ

[
Rx cos θ +Ry sin θ

]
+

+ 2
[
δRx sin θ − δRy cos θ

]]
ds + 2

∫ l

0

[
δR′xδx+ δR′yδy

]
ds.
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(4.2)

It is worth to underline that, according to Eqs.(2.10)1 and (2.10)2, the internal
forces Rx and Ry, and consequently their variations δRx and δRy, are inde-
pendent on the curvilinear coordinate s. Moreover, the constant parameters
C3 = −2 δRx/B and C4 = 2 δRy/B are introduced, so that, operating the
substitutions (2.16), the second variation can be finally written by as

δ2V =−B
∫ l

0

δθ

[
δθ′′ + δθ

Γ2

l2
cos (θ − β)− C3 sin θ − C4 cos θ

]
ds. (4.3)

A generic equilibrium configuration can be therefore judged stable when δ2V
is positive definite (δ2V > 0 for every compatible perturbation δθ(s)), while
unstable when δ2V is indefinite or negative definite. Differently, in the case
that δ2V is semi-positive definite, the configuration is critical and higher order
variations have to be considered (as described at the end of this Chapter).

Moreover, the null perturbations (2.7) at both ends provide the boundary
conditions on the perturbation field δθ(0) = δθ(l) = 0, together with the follow-
ing isoperimetric constraints∫ l

0

δθ sin θ ds = 0,

∫ l

0

δθ cos θ ds = 0. (4.4)

which are in turn derived from vanishing of the variations δx(l) and δy(l)
through Eqs.(2.3)1 and (2.13).

The change of variables s = s/l is introduced, so that the dimensionless
equation of the second variation (4.3) is given by

δ2V
B

l =

−
∫ 1

0

δθ(s)
[
δθ′′(s) + δθ(s)Γ2 cos (θ(s)− β)− C̃3 sin θ(s)− C̃4 cos θ(s)

]
ds

(4.5)

where the symbol ’ denotes now the derivative with respect to the dimensionless
curvilinear coordinate s. The dimensionless parameters C̃3 = −2 δRxl

2/B and
C̃4 = 2 δRyl

2/B have also been introduced. The perturbation field δθ(s) is
therefore subject to the following homogeneous boundary conditions

δθ(0) = 0, δθ(1) = 0 (4.6)
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and to the following dimensionless version of the isoperimetric constraints (4.4)

∫ 1

0

δθ sin θ ds = 0,

∫ 1

0

δθ cos θ ds = 0. (4.7)

At this stage, the stability of a generic configuration of the system with total
potential energy (2.4) can be studied through the conjugate points method
(see for instance Bolza[25]), where the perturbation field δθ is subject to the
homogeneous boundary conditions δθ(0) = δθ(1) = 0 and to the isoperimetric
constraints (4.7).

Hovewer, the equivalent procedure proposed by Levyakov and Kuznetsov
[75] and Bigoni et al.[19] is adopted, because of its immediate applicability to
problems subject to boundary conditions different from those of the Dirichlet
type. More specifically, the eigenfunction φn(s) is introduced, which is subject
to the boundary conditions

φn(0) = 0, φn(1) = 0,

∫ 1

0

φn(s) sin θ(s)ds = 0,

∫ 1

0

φn(s) cos θ(s) ds = 0,

(4.8)

so that the positive definiteness of the second variation, Eq.(4.5), can be an-
alyzed investigating the non-trivial solutions for the following Sturm-Liouville
problem

φ′′n(s) + ζn w(s)φn(s) = C̃3,n sin θ(s) + C̃4,n cos θ(s), (4.9)

where n ∈ N and w is the weight function, defined as

w(s) = Γ2 cos
(
θ(s)− β

)
. (4.10)

The inclination β, the normalized load Γ and the rotation field θ(s) are known at
this stage from the definition of equilibrium configuration, while ζn is the eigen-
value related to the eigenfunction φn(s). In particular, according to Broman[26],
there exist for the problem (4.9) a countably infinite set of eigenvalues ζn which
are all non-negative and which can be disposed into an increasing sequence (so
that ζn < ζn+1). Moreover, ζn → ∞ as n → ∞ and the following ortogonality
condition with the weight function (4.10) holds [19] for any n 6= m∫ 1

0

wφnφm ds = 0 (4.11)
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while for n = m

ζn

∫ 1

0

wφ2
n ds =

∫ 1

0

φ′n
2 ds (4.12)

and therefore any compatible perturbation δθ can be expressed as the Fourier
series expansion of the eigenfunctions φn(s)

δθ(s) =

∞∑
n=1

cnφn(s), (4.13)

where cn are the Fourier coefficients. The proof of the Eq.(4.11) can be easily
obtained by considering an eigenfunction φm(s) (with m 6= n) being a solution
for the following equation

φ′′m(s) + ζm w(s)φm(s) = C̃3,m sin θ(s) + C̃4,m cos θ(s), (4.14)

and satisfying the same boundary conditions (4.8) holding for φn . The Eqs.(4.9)
and (4.14) can be multiplied by φm(s) and φn(s) respectively and then inte-
grated between s = 0 and s = 1. The isoperimetric constraints (4.8)3 and (4.8)4
provide the right-hand sides of both equations to vanish, so that one obtains∫ 1

0

φ′′nφm ds+ ζn

∫ 1

0

wφnφm ds = 0,

∫ 1

0

φ′′mφn ds+ ζm

∫ 1

0

wφmφn ds = 0.

Taking the difference of the latter equations and integrating by parts, the fulfil-
ment of the boundary conditions (4.8)1 and (4.8)2 leads to the condition (4.11)
for every ζn 6= ζm. On the other hand, the proof of the Eq.(4.12) can be ob-
tained through a similar procedure, but multiplying the Eq.(4.9) by φn. The
desired conclusion can be proven again through the fulfilment of the isoperimet-
ric constraints (4.8)3 and (4.8)4 and then integrating by parts.

By considering the properties (4.11) and (4.12) together with the aforemen-
tioned Fourier series expansion (4.13), the second variation of the total potential
energy (4.3) can be rewritten as

δ2V
B

l =

∞∑
n=1

(
1− 1

ζn

)
c2n

∫ 1

0

φ′n(s)2 ds, (4.15)

so that the equilibrium configuration is stable whenever ζn /∈ [0, 1] for every
n, unstable when ζn ∈ (0, 1) for at least one value of n, and to be investi-
gated through higher-order variations otherwise. It follows that the condition
of smallest eigenvalue greater than one implies that the configuration is stable.
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The proof of Eq.(4.15) can be obtained by firstly eliminating the terms
C̃3 sin θ(s) and C̃4 cos θ(s) from the equation of the dimensionless second vari-
ation (4.5) through the constraints (4.4) and then substituting the expression
(4.13). The following equation is obtained

δ2V
B

l = −
∫ 1

0

[ ∞∑
m=1

cmφm

] [ ∞∑
n=1

cn (φ′′n + wφn)

]
ds,

where substituting the function φ′′n through Eq.(4.9) and exploiting again the
isoperimetric constraints (4.4), the previous equation reduces to

δ2V
B

l =

∫ 1

0

[ ∞∑
m=1

cmφm

] [ ∞∑
n=1

cn

(
1− 1

ζn

)
ζn wφn

]
ds.

As a result of the orthogonality condition (4.11), the second variation reduces
to the following sum of integrals

δ2V
B

l =

∞∑
n=1

c2n

(
1− 1

ζn

)
ζn

∫ 1

0

wφ2
n ds,

so that employing the condition (4.12) leads to the final formulation of the
Eq.(4.15).

4.1 Numerical evaluation of the stability prop-
erty

Following Levyakov and Kuznetsov [75], the eigenfunction φn(s) can be rep-
resented as the linear combination of the functions ϕ(j)

n (s) (j = 1, ..., 4)

φn(s) =

4∑
j=1

C̃j,nϕ
(j)
n (s), (4.16)
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where the four functions are defined respectively as the solutions for the follow-
ing four second order differential problems

ϕ(1)
n

′′
(s) + ζn w(s)ϕ(1)

n (s) = 0,

ϕ(1)
n (0) = 1,

ϕ(1)
n

′
(0) = 0,


ϕ(2)
n

′′
(s) + ζn w(s)ϕ(2)

n (s) = 0,

ϕ(2)
n (0) = 0,

ϕ(2)
n

′
(0) = 1,

ϕ(3)
n

′′
(s) + ζn w(s)ϕ(3)

n (s) = sin θ(s),

ϕ(3)
n (0) = 0,

ϕ(3)
n

′
(0) = 0,


ϕ(4)
n

′′
+ ζn w(s)ϕ(4)

n (s) = cos θ(s),

ϕ(4)
n (0) = 0,

ϕ(4)
n

′
(0) = 0.

(4.17)

By considering the boundary condition (4.8)1, and the boundary conditions
defined for each function ϕ(j)

n (s) (j = 1, ..., 4) in the differential problems (4.17),
it follows that C̃1,n = 0 so that the evaluation of the function ϕ

(1)
n (s) can be

disregarded. Imposing the remaining boundary conditions (4.8)2, (4.8)3, and
(4.8)4, the homogeneous linear problem A(ζn)C = 0 is obtained for the vector
C =

{
C̃2,n, C̃3,n, C̃4,n

}
, where

A(ζn) =


ϕ

(2)
n (1) ϕ

(3)
n (1) ϕ

(4)
n (1)∫ 1

0
ϕ

(2)
n (s) cos θ(s) ds

∫ 1

0
ϕ

(3)
n (s) cos θ(s)ds

∫ 1

0
ϕ

(4)
n (s) cos θ(s)ds∫ 1

0
ϕ

(2)
n (s) sin θ(s) ds

∫ 1

0
ϕ

(3)
n (s) sin θ(s) ds

∫ 1

0
ϕ

(4)
n (s) sin θ(s) ds

 ,
(4.18)

so that the eigenvalues ζn can be finally evaluated from the condition of van-
ishing determinant, detA(ζn) = 0. From the operational point of view, with
reference to every equilibrium rotation field θ(s), the differential system (4.17)
can be numerically solved as a function of ζn ∈ [0, 1] and the configuration
judged stable when detA(ζn) 6= 0 for ζn ∈ [0, 1], while unstable if this condition
is not fulfilled.

It is noted that if detA(ζn) vanishes for ζ1 = 1, the related equilibrium
configuration is unstable if the third variation is non-null for the related eigen-
function φn(s), while if this latter variation vanishes the analysis should consider
higher-order variations. In particular, if the next even variation is positive (neg-
ative) for δθ(s) = φn(s), the configuration is stable (unstable). Otherwise, if
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the next even variation is null for δθ(s) = φn(s), the next odd variation should
be considered and if not null the configuration is unstable.

Moreover, the limit condition ζn = 1 causes the perturbation δθ = φn,
which is a solution for the differential equation (4.9), to be also a solution for
the differential equation within the integral of the second variation (4.5), which
is known in literature as Jacobi’s accessory equation[25], and satisfying the im-
posed boundary conditions at both ends. Consequently, the second variation
is null, so that the corresponding equilibrium configuration having ζ1 = 1 is at
the stability limit. All the snapping configurations obtained in the present work
correspond to the aforementioned condition, which is always complemented by
a non-null third variation of the total potential energy δ3V (unstable ‘saddle’
points). In contrast, supercritical or subcritical pitchfork bifurcations have null
second and third variations, which are complemented by a positive fourth vari-
ation δ4V (stable stationary points).

Finally, the k-th variation of the total potential energy can be written for
k ≥ 3 as

δkV l
B

=

 (−1)
k+1
2 Γ2

∫ 1

0

[δθ(s)]
k

sin
(
θ(s)− β

)
ds, k odd,

(−1)
k
2 Γ2

∫ 1

0
[δθ(s)]

k
cos
(
θ(s)− β

)
ds, k even.

(4.19)
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5
Snapping of rods with controlled

ends

5.1 Introduction

Snap instability is a well-known phenomenon in mechanics for which a struc-
tural system suffers a sudden and dramatic change in the deformed configu-

ration triggered by a small variation in the loading conditions. This behaviour is
explained as the consequence of the stability loss for the deformed configuration,
so that the structure dynamically moves towards a non-adjacent configuration
through a partial release of its elastic energy. Classical examples of snap mecha-
nisms can be found in shell structures, also in everyday life, as for instance when
squeezing an empty can of soda. Other examples may be found in nature, as in
the case of click-beetles (elateridae) [44], insects able to turn on their side when
initially lying on their back by means of a jump realized by a snap mechanism.

Following the new paradigm of exploiting (instead of avoiding) instabilities in
the structural design for advanced applications [56, 96], in the last years many
researchers have investigated the snap mechanisms towards the realization of
bistable or multistable devices [4, 28, 29, 32, 36, 37, 98, 105], metamaterials
[48, 83, 95], locomotion [82, 112, 115, 116], and energy harvesting [54, 61].
Because the typical approach adopted in these investigations is to focus on
specific evolutive mechanical problems and specific structural properties, the
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evaluation of the whole set of critical snap conditions is missed from a general
perspective.

The present chapter provides a general criterion to be exploited in the non-
linear design of structures to obtain (or to avoid) snap mechanisms. With refer-
ence to the model of an inextensible (weightless) linearly elastic strip, modelled
as a planar Euler’s elastica, the number of stable equilibrium configurations is
disclosed by varying the parameters defining the kinematics of the rod ends,
which are reduced to a normalized distance between the two ends and the two
rotations of the ends. The stability of the equilibrium configurations, expressed
in closed form through elliptic integrals as shown in Chapter 2, is assessed by
analyzing the sign of the second variation of the total potential energy through
the procedure show in Chapter4. This analysis allows one to define the cor-
respondence between the ends’ kinematics and the presence of multiple stable
configurations, so that the set of boundary conditions for which one of these
configurations loses its stability follows.

The obtained results are used to define universal snap surfaces, collecting
the whole sets of critical boundary conditions for which the system snaps. The
energy release at snapping is also estimated and investigated by means of a
dimensionless analysis for varying the snap conditions. The theoretical predic-
tions are experimentally validated through comparisons with data available for
specific symmetric boundary conditions and observations on a physical model
proposed for investigating non-symmetric cases. Finally, finite element simula-
tions performed with ABAQUS show the reliability of the presented universal
surface in the case of evolutions with moderate velocity and its limits in the
case of very fast ends evolutions. The presented results have been published in
an international journal (see Cazzolli and Dal Corso[33]).

5.2 Number of stable solutions, bifurcations and
universal snap conditions

For any triad of parameters {d, θ0, θl} representing the imposed boundary
conditions (2.3) at both ends of the rod, the non-linear systems (2.56) and (2.83)
can be solved to numerically evaluate the existing pairs of parameters (β and ξ
form = 0, or β and η form 6= 0, respectively) associated with the possible stable
equilibrium configurations. Reference is made solely to configurations with m ∈
[0, 2] because those with m > 2 are numerically found to be always unstable
(although a general analytical proof seems awkward, [77]). The number of stable
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solutions has been observed to vary from 1 to 3 within the kinematical parameter
space defined by {d, θ0, θl}.1 Furthermore, being the developed model referred
to the case of rods with loads applied only at the two ends, configurations of
self-intersecting elastica are found through the presented numerical evaluation
for a set of boundary conditions, while the respective self-contact configurations
between different parts of the rod are excluded (see Section 5.2.4 for further
details).

A typical map in the plane [θ0, θl] representing the number of stable solutions
is shown in Fig. 5.1 (left) for a distance d = 0.6l, where the existence of one,
two, and three stable configurations for a specific triad {d, θ0, θl} is identified
by the regions I, II, and III, respectively. The figure shows that the regions
within this plane are characterized by a periodicity vector [2π, 2π] related to
the shifting in the solution for 2jπ (j ∈ Z) when the imposed rotations are
modified by 2jπ at both ends,{

θ∗(0) = θ(0) + 2jπ,

θ∗(l) = θ(l) + 2jπ,
⇔ θ∗(s) = θ(s) + 2jπ, ∀j ∈ Z, (5.1)

With reference to such periodicity property, it is instrumental to introduce
the angles θA and θS , respectively defined as the antisymmetric and symmetric
parts of the imposed rotations,

θA =
θ0 + θl

2
, θS =

θl − θ0

2
, (5.2)

which are reported in Fig. 5.1 (left) through grey axes inclined at an angle π/4
with respect to the axes θ0− θl. By considering the shifting of the rotation field
expressed by Eq.(5.1) it follows that

θ∗A = θA + 2jπ, θ∗S = θS , ∀j ∈ Z, (5.3)

highlighting the mentioned periodicity property of the equilibrium configura-
tions which is given only in the θA variable within the θA−θS reference system.2

1It is remarked that the end rotations θ0 and θl have no restriction on their value, being
unlimited their difference θl− θ0 =

∫ l
0 θ
′(s)ds. If the angles θ0 and θl were referred to the end

inclinations (instead of being referred to the end rotations, as in the present analysis), their
respective sets would be limited due to angular periodicity, for example to θ0 ∈ (−π, π) and
θl ∈ (−π, π), and more than 3 stable configurations could be found as solution to the same
end inclinations problem [3].

2The periodicity for the solution in the rotation field for the elastica is similar to that
observed in the kinematic description of the physical pendulum, which is insensitive to an
increase of an angle 2jπ (j ∈ Z).
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Figure 5.1: (Left) Number of stable equilibrium configurations for a distance d = 0.6l for
varying θ0 and θl (or equivalently, θA and θS). Regions with different colors and marked with
I, II, and III identify triads {d, θ0, θl} for which one, two, and three stable configurations exist,
respectively. (Right, upper part) Pairs of stable equilibrium configurations possible for the
boundary conditions a, b, c, and d highlighting the mirroring properties when the modulus of
the antisymmetric and the symmetric parts of the rotations is kept constant. (Right, bottom
part) The three stable equilibrium configurations possible for the boundary conditions e.

Another interesting property is now pointed out. A change in sign for each
of the two parameters θA and θS is related to a specific ‘mirror’ in the boundary
conditions for the parameters θ0 and θl, namely

Conf. a:

 θa
A = θA

θa
S = θS

⇔
 θa

0 = θ0

θa
l = θl

 , Conf. b:

 θb
A = −θA

θb
S = θS

⇔
 θb

0 = −θl

θb
l = −θ0

 ,

Conf. c:

 θc
A = −θA

θc
S = −θS

⇔
 θc

0 = −θ0

θc
l = −θl

 , Conf. d:

 θd
A = θA

θd
S = −θS

⇔
 θd

0 = θl

θd
l = θ0

 .

(5.4)

It follows that the respective deformed configurations of the cases b, c and d
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can be obtained through the mirroring of the reference deformed configurations
of the case a, Fig. 5.1 (right, upper part). The mirroring properties can be
summarized as:

• a change in sign for the parameter θA defines a configuration obtained as
the mirroring with respect to the line orthogonal to that joining the two
ends and passing at its center;

• a change in sign for the parameter θS defines a configuration obtained as
two mirrorings, one with respect to the line joining the two ends and the
other with respect to the orthogonal line at its mid point;

• a change in sign for both the parameters θA and θS defines a configuration
obtained as the mirroring with respect to the line joining the two ends.

These mirroring properties allow a simplified representation of the number
of stable solutions within the plane |θA| − |θS |, so that only the first quadrant
is drawn and restricted to the condition |θA| ≤ π because of the periodicity
vector. In this way, the map of solutions number reported in Fig. 5.1 (left) for
a distance d = 0.6l is represented in Fig. 5.2 (right), where the inflection points
number m related to each stable solution is specified as listed in the subscript
within parentheses. As a further example, the representation of the number of
stable solutions is also reported for a distance d = 0.3l in Fig. 5.2 (left). Lines
crossing and lines bounding the regions I, II, and III are reported in Fig. 5.2,
in particular:

• the grey thin lines crossing the regions define the transition for which the
number m of inflection points along the rod changes, while the number
of stable solutions is kept constant. These lines can be defined imposing
null curvature at one of the two ends (so that the rod has one hinged end
while the other is a rotating clamp);

• the thick lines bounding the regions define the transition for which the
number of stable solutions changes, so that they represent the critical
condition of snap for one of the stable solutions. The lines are reported as
thick orange and thick brown in order to identify the two possible different
snap-back conditions (described in the following).

Because of the simple reference (clamped-hinged) structure to which are related,
the grey lines can be found from straightforward computations. Indeed, for a
given distance d, the relation θS = θS(θA) tracing the grey line can be computed
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from the nonlinear system (??) by imposing the condition of null moment at
one of the two rod’s ends, for example considering ω0 = (−1)pπ/2 if the hinge is
located at the coordinate s = 0. Differently, drawing the orange and brown thick
lines is a more complex task because they are related to the issue of stability
loss for one of the possible equilibrium configurations. Such analysis requires a
further representation for the solution domains which is now introduced.

P
er

io
d
ic

it
y

I(0)

I(1)

II(2,2)

I(2)

II(1,2)

II(1,1)

4

4

4 4

d=0.6 ld=0.6 l

θ!

III(1,2,2)

θ"

P
er

io
d
ic

it
yd=0.6 ld=0.3 l

I(0)

I(1)

II(2,2)

I(2)

II(1,2)

II(1,1)

I(2)

II(2,2)

II(2,2)

III(2,2,2)

4

4

4 4

θ!

θ"

III(1,2,2)

II(1,2)

Figure 5.2: Number of stable equilibrium configurations in the plane |θA| − |θS |, with the
specification of the inflection points number m related to each stable solution listed in the
subscript within parentheses, for the distances d = 0.3l (left) and d = 0.6l (right).

5.2.1 Equilibrium paths for a fixed distance d
In the attempt to simplify the visualization of the solution domains for a

fixed distance d, reference is made to the quasi-static evolutions of the rotations
θA and θS starting from a stable configuration for null angles at both clamps,
θ0 = θl = 0 so that θA = θS = 0 (namely, a shortening of the distance between
the two clamps is imposed starting from the straight configuration). Only two
stable solutions can be obtained for these ‘initial’ boundary conditions, both
characterized by the same number of inflection points (m = 2) but differing in
the value of p, and representative of the two possible buckled configurations for
a rod clamped at both ends and subject to a shortening l − d. By considering
this, the solution maps of Fig. 5.1 and of Fig. 5.2 (right) for a fixed distance
d = 0.6l can be split in two separate representations, each of these restricted to
a specific value of p (identifying the positiveness, p = 0, or negativeness, p = 1,
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of the curvature at the coordinate s = 0) as shown in Fig. 5.3 and therefore
related to one of the two initial configurations possible for θA = θS = 0. In this
way, the generic evolution for the boundary conditions can be represented with
a continuous curve in the plane θA − θS starting from its origin. Despite the
non-linearity of the problem, each point along this curve is related to a (when
existing) unique deformed configuration whenever snap conditions or bifurcation
points are not encountered along the considered evolution. Consequently, such
a representation provides a fundamental tool in the definition of the solution
domains and of the snap-back conditions for every possible evolution of the
imposed rotations at a fixed distance d, showing the critical and bifurcation
conditions depending on the value of p.

The moment-rotation response curve associated with each evolution of the
boundary conditions reveals the presence of snap-back instabilities (related to
the annihilation of the second variation, δ2V = 0) when a point with vertical
tangent in the response curve is reached and no smooth stable3 evolutions of
the deformed configuration can be obtained for a further monotonic variation in
the rotation. The set of boundary conditions {d, θA, θS} corresponding to the
vertical tangency in the moment-rotation response are identified by means of a
standard bisection algorithm applied to the analyzed equilibrium path.

The above described analysis provides the domains and lines as reported in
Fig. 5.3, where also specific equilibrium configurations are displayed for some
critical pairs of boundary conditions. The solution domains are reported with
different colors, identifying different properties as follows:

• blue/green/red regions – the unique stable equilibrium configuration cor-
responding to the considered p has zero, one, and two inflection points
along the rod for the blue, green, and red regions, respectively;

• white regions – no stable equilibrium configuration is possible for that spe-
cific value of p. However, for the mirroring property, the stable equilibrium
configuration exists for the other value of p;

• grey regions – the equilibrium configuration related to a pair θA, θS be-
longing to this region can be represented by that related to the pair within
the colored or white regions (namely, outside the grey regions) considering
the shifting of the solution as highlighted by Eq.(5.3). The corresponding

3In general, the equilibrium path smoothly continues after the snap point with an opposite
change of the rotation value. However, this path is not considered here due to its unstable
nature.
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dual values can be evaluated from θA and θS as

θA = θA − 2π

⌊
1

2
+
θA
2π

⌋
, θS = θS , (5.5)

where the symbol b·c represents the floor function, which evaluates the
greatest integer that is less than or equal to the relevant argument. Note
that, from Eq.(5.5) follows that θA ∈ [−π, π] for every θA.
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Figure 5.3: Domains of unique stable solutions within the plane θA− θS for p = 0 (left) and
p = 1 (right) for evolutions with a fixed distance d = 0.6l and starting from the boundary
conditions θA = θS = 0. Regions with the same color identify stable equilibrium configurations
having the same number m of inflection points along the rod (note the mirroring property of
the domains for varying p). See the main text for the definition of the domain and line colors.

Similarly, the lines separating the different domains are drawn with various
styles, representing the type of transition in the equilibrium configuration oc-
curring when the evolution of the boundary conditions passes from one region
to another.

With reference to any continuous evolution in the set of applied rotations
{θA(τ), θS(τ)} from an initial (τ = τi) to a final instant (τ = τf ), where τ is a
time-like parameter, the following cases are possible:

• if a dashed grey line is crossed, the equilibrium configuration smoothly
varies changing the number m of the inflection points, while the value of
p is kept constant;
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• if a continuous grey line is crossed, the equilibrium configuration smoothly
varies changing both the number m of the inflection points and the value
of p, in particular p(τf ) = 1 − p(τi). Therefore, the final configuration is
related to a solution map dual to that of the initial value of p(τi). As it
can be noted in Fig. 5.3, the continuous grey lines are present only at the
borders between one of the colored regions with a white region;

• if a dashdotted grey line is crossed, the equilibrium configuration smoothly
varies keeping fixed both the number m of the inflection points and the
value of p. As it can be noted in Fig. 5.3, these lines appears only at θS =
±π and are connected to the shifting property of the solution, Eq.(5.3),
so that, by considering Eq.(5.5), the final equilibrium configuration has to
be referred to the values {θA(τf )− 2πb1/2 + θA(τf )/(2π)c , θS(τf )};

• if a thick orange line is crossed, a critical configuration of snap-back type 1
instability is encountered so that a small variation in the boundary condi-
tions realizes a large variation in the equilibrium configuration. Therefore,
the final equilibrium configuration is achieved by means of a dynamic mo-
tion from the initial one. The initial and final configurations are described
by a different value of p, namely, p(τf ) = 1 − p(τi). From the present
analysis it is also observed that before and after the snap-back type 1
mechanism there are always two inflection points, m(τf ) = m(τi) = 2;

• if a thick brown line is crossed, the critical condition of snap-back type
2 instability is encountered. However, differently from crossing the thick
orange line, in this case the boundary conditions of the final configuration
{θA(τf )/(2π), θS(τf )} lie within the grey region, so that the interpretation
of the considered solution map requires a further effort. Indeed, from
the solution shifting principle, the final configuration should be referred
to the values {θA(τf )− 2πb1/2 + θA(τf )/(2π)c, θS(τf )}. If these values
correspond to a white region for the solution map with p(τi), the final
configuration is the one associated with the same values but related to the
dual map for which p(τf ) = 1− p(τi);

• if no line is crossed, the initial and final configurations have the same values
for p and m, and therefore are represented within the same solution map
corresponding to p(τi) = p(τf ).

It is worth to remark that crossing a colored thick line does not always
provide a snap-back instability. Indeed, this phenomenon is strictly related to
the equilibrium configuration taken by the structural system before crossing this
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condition. More specifically, referring to the θA − θS plane and a fixed distance
d, the snap mechanism is realized whenever the scalar product between the
incremental vector connecting the initial to the final boundary conditions and
the normal (defined as the derivative of the tangent) to the snap-back curve is
non-negative.

Moreover, the snap-back curves display the typical structure of cusps (a
typical shape analysed within the theory of catastrophes [6, 13, 109, 119]), re-
vealing how the magnitude of the so-called control parameter at a critical point
decreases with respect to the perfect case (maximum critical rotation at the
cusp) due to the presence of increasing imperfections. In particular, the role
of such control parameter is played by the symmetric part of the rotation θS
for snap-back curves of type 1 and by the antisymmetric part θA for snap-back
curves of type 2, while the role of the imperfection is respectively played by θA
and θS .

It is finally noted that all the regions and lines reported in Fig. 5.3 satisfy
the mirroring properties shown in Eqs.(5.4) and highlighted in Fig. 5.1 (right).
Therefore, when p is switched from 0 to 1, the domains of the case p = 1 (Fig.
5.3, right) can be obtained from those of the case p = 0 (Fig. 5.3, left) through
a mirroring with respect to the axis θS for the configurations with m = 1 and
through a double mirroring (with respect to both axes, θA and θS) for those
with m = 0 and m = 2.

Similarly to Fig. 5.3, the domains are reported in Figs. 5.4 and 5.5 for
different values of the end’s distance, respectively for d = {0.05, 0.1, 0.2, 0.3} l
and d = {0.4, 0.5, 0.7, 0.8} l. The maps are reported only for p = 0, since those
are related to the case p = 1 through mirroring.

A last comment is made about the two limit cases of maximum and minimum
distance between the ends, respectively d ' l and d = 0:

• In the former case (d ' l), although the analysis should be improved by
considering stretching energy, the present model (based on the inexten-
sibility assumption) shows that the curve of snap-back type 1 reduces to
the point with coordinates θA = θS = 0 while the curve of snap-back
type 2 reduces to the four line segments defined by |θS | = 2π − |θA| with
|θA| ∈ [π, 2π];

• Differently, in the case when the two ends have the same position (d =
0), the mechanical system shows the independence of the parameter θA,
because in the case of null distance the angle θA merely expresses a rigid
rotation of the entire structure and the elastic energy stored within the
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Figure 5.4: Domains of unique stable solutions within the plane θA − θS for evolutions
starting from the boundary conditions θA = θS = 0 and related to p = 0 (the domains related
to p = 1 can be obtained through the respective mirroring properties highlighted in the text
and visible in Fig. 5.3). The domains are reported for different values of fixed distance between
the two ends, d = {0.05, 0.1, 0.2, 0.3} l. See the main text for the definition of the domain and
line colors.

structure is only a function of the angle θS . In this case, the curve of snap-
back type 1 becomes the segment lines given by θS = 0 and |θA| . 0.726π
while the curve of snap-back type 2 becomes the segment lines given by
θS = 0 and |θA| ∈ [1, 1.726]π. It is also worth to mention that in the very
special case of θS = 0, an infinite set of stable and equivalent (namely,
corresponding to the same elastic energy) solutions exists for the rod with
fixed end rotations, provided by a ‘8-shaped’ configuration [74, 102].
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Figure 5.5: As for Fig. 5.4, but for higher values of fixed distance between the two ends,
d = {0.4, 0.5, 0.7, 0.8} l. See the caption of Fig. 5.3 and the main text for the definition of
the domain colors and the other lines. Being d > 0.369l, the yellow points (associated with
bifurcations) are absent at the cusps of the snap-back curves type 2 (see Sect. 5.2.3).

5.2.2 Equilibrium paths for a variable distance d

The families of snap curves reported for fixed values of d in Figs. 5.3, 5.4
and 5.5 suggest the existence of snap surfaces within the space d/l − θA − θS .
These snap surfaces can be disclosed by interpolating the snap curves within
specific planes. The snap curves evaluated for twenty planes, taken for compu-
tational convenience at constant θA and θS for snap types 1 and 2, respectively,
have been exploited to generate the snap-back surfaces by means of the func-
tion Interpolation in Mathematica®. Due to mirroring properties, the snap
surfaces are entirely described through their representations within one octant
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of the space d/l− θA − θS , displayed in Fig. 5.6 for snap-back type 1 (left) and
type 2 (right) surfaces. Such snap surfaces represent a fundamental tool in the
investigation about snap mechanisms and the definition of the correspondent
critical boundary conditions during a quasi-static evolution of rods with con-
trolled ends. Before exploiting the concept of universal snap surfaces in some
applicative examples presented in Sect. 5.3, it is worth to discuss the possibility
of bifurcations during a loading process, the amount of elastic energy release,
and the conditions of self-intersecting elastica.

| !|θ

| "|θ

d/l

| "|θ

| !|θ

d/l

Figure 5.6: Surfaces defining the critical boundary conditions in the {|θA|, |θS |, d/l} space
for which snap-back type 1 (left) and type 2 (right) occurs. The surfaces are built from the
related snap-back curves, respectively orange and brown, obtained for different values of d
and reported in Figs. 5.3, 5.4, and 5.5.

5.2.3 Bifurcations at snap
The boundary conditions corresponding to (almost all) the intersections of

the orange and brown snap-back curves with the lines θA = {−π, 0, π} and with
the line θS = 0 (corresponding to the cusps and end points of the snap curves)
are marked with colored spots in Figs. 5.3, 5.4, and 5.5. For the boundary
conditions corresponding to these points, the semi-positive definiteness of the
second variation δ2V is complemented by the annihilation of the third variation
δ3V for the related eigenfunction (while δ3V is different from zero for the other
points along the snap curve) and a positive value is found for the corresponding
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fourth variation δ4V. These special points (some of them also observed in [79])
are marked as red and yellow spots, respectively corresponding to pitchfork
(with no snapping) and unstable-symmetric bifurcation points (with snapping),
and defined as follows.

Red spots. These points are located at the intersections of the orange thick
curve with the condition θS = 0 and of the brown thick curve with the con-
dition θA = ±π. Snap never occurs when the snap curve is crossed through
these points; however when the snap curve is crossed from outside to inside,
a bifurcation may be encountered. More specifically, a pitchfork bifurcation is
found when crossing the orange (brown) curve from outside to inside at the red
point with a null increment in the angle θS (θA), namely a purely antisymmetric
(symmetric) variation in the boundary conditions at the critical point. These
bifurcative behaviours are displayed in Fig. 5.7 and Fig. 5.8, where specific
loading processes are considered for a fixed distance d = 0.4l and crossing the
red spots located at the edges of the snap-back type 1 and type 2 curves.

The antisymmetric case, θS = 0, at increasing θA is considered in Fig. 5.7,
where in the first line the loading path is reported on the left and the moment
M0 at the left clamp as a function of the angle parameter θA on the right. The
evolution of the deformed shape is displayed in the second, third, and fourth lines
and is reported for the six specific stages of the boundary conditions, highlighted
both in the solution maps and moment-angle response through the alphabetic
letters a, b, c, d, e, f , g, h, and i. During the evolution, the bifurcation occurs
when the stage c is attained, namely, when the snap curve is crossed from out-
side to inside, and corresponds to the condition of null moment at both clamps.
Just after the stage c is passed, the structure may equally evolve through two
different loading paths, namely, the structure may equally reach configuration
d1 or d2. Once that one of these two branches is undertaken, the evolution
continues on that specific branch. However, at increasing the rotation param-
eter, both branches finally join together when the stage g is reached and, after
this stage (from g to i), the structure follows the only possible evolution. It is
also important to highlight that the configurations c and g are stable solutions
having m = 1 internal inflection point and null curvature at both ends (similar
configurations are also present for all the bifurcation conditions, red spots, on
snap-back curve type 1 for every distance d, and for some bifurcation conditions,
yellow spots, on snap-back curve type 2 as discussed below).

A similar behaviour is also displayed in Fig. 5.8 with reference to θA = −π
and decreasing θS . Differently from Fig. 5.7, here the bifurcation occurs for a

84 Alessandro Cazzolli



5.2. solutions

θ!= -0.5296π

Bifurcation limit m=1

b c

d e

Bifurcation 1: = 0θ!

θ!

θ"

ihga c d fb e

a

θ!= -1.846π

1 solution m=1 p=0

θ!= -π

1 solution m=1 p=0

θ!= -0.4775π

2 solutions

m=2 p={0,1}

hg

f

i

2 solutions

m=2 p={0,1}

θ!= 0

θ!= 0.5296π

Bifurcation limit

m=1

θ!= 1.846π

1 solution m=1 p=1

θ!= π

1 solution m=1

p=1

θ!= 0.4775π

2 solutions

m=2 p={0,1}

d1

d2

e1

e2

f1

f2

a

b

c

d1 f1

g

h

i

θ!

f2

e1

e2

d2

M l₀

B

Figure 5.7: Evolution of the left clamp moment M0 for increasing θA (upper line, right col-
umn), showing the existence of pitchfork bifurcation points at c and g along the antisymmetric
loading path θS = 0 at fixed distance d = 0.4l (upper line, left column). The evolutions of
the stable equilibrium configurations along the considered path are shown in the second, third
and fourth line.

symmetric configuration and is associated with a non-null moment value at both
clamps. The pitchfork bifurcation at the point c reveals a symmetry-breaking
behaviour. In fact, the initial symmetric configuration becomes unstable after
the bifurcation point is reached, and the system may only follow two other stable
paths described by the mirrored configurations. A similar behaviour has also
been detected in the case of a ring pinched by two radial loads [75], while the
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Figure 5.8: As for Fig. 5.7, but for varying θS with θA = −π and d = 0.4l. As the configu-
ration c is reached, a pitchfork bifurcation occurs at the limit configuration (purple, m = 2)
followed by symmetry-breaking in both branches, as shown by the two stable configurations
(green and pink) at stages d, e, and f .

existence of a central unstable and symmetric solution has also been reported
by [19] and [75], where the symmetric configuration for the double-clamped
rod with null rotations at its ends is proven to snap towards the S-shaped
configurations e1 or e2.

Yellow spots. These points are located at the intersections of the orange
thick curve with the condition θA = 0 and, only for d ≤ 0.369 l, of the brown
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thick curve with the condition θS = 0.4 Snap occurs when the snap curve is
crossed through these points from inside to outside and a bifurcation may be
even encountered. More specifically, an unstable-symmetric bifurcation is found
at the snap when crossing the orange (brown) curve from inside to outside at
the yellow point with a null increment in the angle θA (θS), namely a purely
symmetric (antisymmetric) variation in the boundary conditions at the critical
point. The moment rotation response at increasing value of θS crossing the
snap type 1 curve is displayed in Fig. 5.9 for a fixed distance d = 0.4l and at
very small fixed values of θA = {0, 10−4, 10−3, 10−2}. An example of unstable-
symmetric behaviour can be envisaged in the purely symmetric case, θA = 0,
where the symmetric response (for which the moments at the two clamps have
the same value,M0 = Ml) intersects the two other unstable paths. Differently, if
a small constant value is assumed for the antisymmetric part of rotation θA, the
moment rotation response reaches a critical condition of snap-back, for which
the tangent of the response curve is vertical.

5.2.4 Self-intersecting elastica

The snap surfaces reported in Fig. 5.6 have been obtained assuming that
the rod is only loaded at its ends. It follows that the obtained critical conditions
hold whenever the development of self-contact points along the rod is excluded.5
This circumstance is trivially realized when the deformed configuration is not
self-intersecting, but also when the self-intersection is made possible by the
out-of plane geometry. The latter case is realized with rods shaped along the
out-of-plane direction in such a way that during the planar intersection two
external halves of the rod contain a central rod, namely a Y-shaped rod with
specific out-of-plane variations [18, 75].

In order to detect when self-intersection does occur before snapping and,
equivalently, when it does not, it is of practical interest to define the boundary
conditions for which a contact point is first realized. This information can be
consequently used to determine which portions of snap surfaces are attained

4It is remarked that the yellow points given by the intersection of the brown snap-back
curve with the axis θS = 0 exist only for d ≤ 0.369 l and correspond to stable configurations
with m = 1 inflection point and null curvature at both ends. This behaviour is not observed
for d > 0.369 l, where the third variation δ3V is not null and snap mechanism occurs without
any bifurcation as soon as the snap curve is crossed at any other point. It follows that no
yellow point appears in Fig. 5.5 for snap-back curves of type 2, being the considered distances
d > 0.369 l.

5Analysis of elasticae with self-contact points requires the resolution for two or more elas-
ticae subject only to end loadings [90].
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Figure 5.9: Moment-rotation responses at increasing modulus of θS (crossing the snap
type 1 curve) for a fixed distance d = 0.4l and θA =

{
0, 10−4, 10−3, 10−2

}
. The presence

of an unstable-symmetric bifurcation point (yellow spot) is reported for symmetric loading
condition, θA = 0. (Left) Responses in terms of normalized symmetric and antisymmetric
parts of the moment at the clamps, (M0+Ml)/2 and (M0−Ml)/2. (Right) Responses in terms
of the normalized moment at the right clamp, Ml, and (inset) three deformed configurations
before snapping and corresponding to θS = {0, 0.9, 1.621} and to θA = 0.

only after an evolution involving the self-intersection. The boundary conditions
of first self-contact can be found imposing that for one and only one pair of
curvilinear coordinates s(1) and s(2) have the same position,

x
(
s(1)
)

= x
(
s(2)
)
, y

(
s(1)
)

= y
(
s(2)
)
,

{
s(1), s(2)

}
∈ [0, l]. (5.6)

Evaluating the conditions of first self-contact, it is observed that:

• the conditions of snap-back type 1 (orange surface, Fig. 5.6 left) are
always reached without developing a self-intersecting elastica if d & l/4.
For d . l/4, the snap-back most likely occurs after developing a self-
intersecting configuration, however the exact limit distance for which the
self-intersection is realized depends on the values of θA and θS , Fig. 5.10;

• the conditions of snap-back type 2 (brown surface, Fig. 5.6 right) are
always reached after developing a self-intersecting elastica.

It is finally observed that self-contact may occur during snapping although
the rod has no self-contact at the critical snap condition. Indeed, the dynamic
transition from the pre and post snap configurations may evolve requiring self-
intersecting shapes, which could be not geometrically feasible even for Y-shaped
rods.
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Figure 5.10: (Left) Surface portion for the boundary conditions of first self-contact within
the space d/l − |θA| − |θS |, which are contained within the snap-back type 1 surface (repre-
sented only through its contour levels). (Right) The most restrictive condition of self-contact,
corresponding to the case θA = 0, is reported as a blue curve within the plane d/l−|θS | show-
ing that self-intersecting elasticae may realize before attaining snap-back type 1 (orange curve)
only when d . l/4. An example of self-intersecting elastica is also reported for |θS | = π/4.

5.2.5 Energy release at snapping
The design of snapping devices can be optimized through the maximization

of the energy release during mechanisms. In a first approximation, the energy
release ∆E can be estimated as the difference in the energy amounts E , Eq.(2.5),
between the stages before and after the snap-back and evaluated under the
quasi-static assumption through Eq.(2.53).

Restricting attention only to snap-back type 1, the elastic energy differ-
ence ∆E is reported in Fig. 5.11. Two nondimensionalizations are consid-
ered, division by B/l (Fig. 5.11, upper part) and division by the elastic en-
ergy before snapping E0 (Fig. 5.11, lower part). On the left part of Fig.
5.11, the elastic energy difference ∆E is shown for different distances d/l =
{ 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } for varying the angle for which the
snap-back type 1 occurs. The angle measure is expressed as the modulus of
θsb1A , the antisymmetric critical angle at the snap-back, normalized through di-
vision by θsb1,bifA , the antisymmetric angle at bifurcation for snap-back (the red
spots on the θA axis in Fig. 5.3, 5.4 and 5.5 and for which no snap occurs,
θsb1,bifA (d) = maxθS

{
θsb1A (θS , d)

}
= θsb1A (θS = 0, d)). For all the reported cases

it can be concluded that the maximum elastic energy release for a fixed distance
d is always attained under symmetric conditions, θsb1A = 0. For such symmetric
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condition, the elastic energy difference ∆E is shown on the right part of Fig.
5.11 as a function of the distance d between the rods’ ends. The plot on the
upper right part shows that the energy release ∆E has a maximum value of
about 76.67B/l at d ≈ 0.189l and has null values for both the limit-cases d = l
and d = 0. The plot on the lower right part shows that the relative energy
release ∆E/E0 monotonically increases with the increase of the distance d and
attains its maximum ratio of about 0.889 in the limit condition of d = l. With
reference to this last case, it is also worth to highlight that the relative energy
release is approximately constant for d > l/4, more specifically it varies from
∆E/E0(d = l/4) = 0.884 to ∆E/E0(d→ l) = 0.889.

5.3 Validation of the analytical predictions

The universal critical surface for snap type 1 is validated through compari-
son with experimental observations and results from numerical simulations. The
available experimental data [15],[91], restricted to symmetric boundary condi-
tions (θA = 0), are complemented by testing a physical model developed to cover
non-symmetric paths (θA 6= 0). Finally, the influence of dynamical effects on
the system response is assessed through numerical simulation of evolutive prob-
lems performed in ABAQUS. Reliability of the quasi-static predictions obtained
through the universal surface is shown in the case of evolutions with moderate
velocity.

5.3.1 Experimental results

A physical model (Fig. 5.12, left) is developed in order to experimentally
investigate the snap conditions of the structural system under non-symmetric
paths. Two forks in steel are exploited to control in practice the clamps, con-
straining the position and the rotation at both ends of an elastic rod. The rod is
obtained from cutting a transparency film by Folex and has cross section 12 mm
width times 0.1 mm height and length l = 200 mm. Restricting the kinematics
of the two forks, specific non-symmetric paths are covered with the developed
device. More specifically, the fork constraining the left end has a fixed position
while the fork constraining the right end imposes null inclination, θl = 0, and
may move along the x-axis. From these boundary conditions it follows that the
evolution expressed in terms of the three main kinematic quantities is given by

d = d(τ), θ0 = θ0(τ), θl = 0, (5.7)
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Figure 5.11: Energy release ∆E estimated as the difference in the energy amounts E,
Eq.(2.5), between the stages before and after the snap-back of type 1, normalized by B/l
(upper part) and by the elastic energy before snapping E0 (lower part). The energy re-
lease ∆E is shown in the left column for different distances d/l for varying the modulus
of the angle for which the snap-back type 1 occurs, θsb1A , normalized through division by
θsb1,bifA = maxθS

{
θsb1A (θS , d)

}
. With reference to symmetric condition, θA = 0, the energy

release is shown in the right column as a function of the normalized distance d/l.

so that the non-symmetric paths characterized by θA(τ) = −θS(τ) = θ0(τ)/2
can be investigated. Varying only one kinematical parameter, the two following
types of experiments are performed:

Exp. A – keeping a fixed distance d(τ) = d between the two forks, the rotation
at the left end θ0(τ) changes in time;

Exp. B – keeping a fixed rotation at the left end θ0(τ) = θ0, the distance d(τ)
between the two forks changes in time.
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During each experiment, the rotation θ0(τ) or the distance d(τ) is slowly varied
by hand. The variation in the kinematical parameter is stopped as soon as the
rod snaps and the respective critical value is measured for the rotation θ0,cr(d)
in Exp. A or for the distance dcr(θ0) in Exp. B with the goniometer or the
ruler mounted on the device, respectively. The critical conditions experimentally
collected from Exp. A and Exp. B are respectively reported as dots and crosses
within the plane θ0−d/l in Fig. 5.12 (right) together with the theoretical critical
curve, namely the intersection of the universal snap surface type 1 (Fig. 5.6,
left) with the plane θA = −θS . These experimental measures are also reported

θ₀

d/l

Exp. A

Exp. B

Figure 5.12: (Left) The developed physical model used to experimentally detect the critical
snap configurations of the considered system, realized as a rod (obtained from cutting a
transparency film) constrained at its ends by two forks. (Right) Critical snap conditions
θ0 − d/l from Exp. A (dots) and Exp. B (crosses) confirming the theoretical predictions
(curve) from the present model.

together with those measured in the case of purely symmetric rotation θA = 0
by Beharic et al. [15] (for d/l w {0.833, 0.862, 0.893, 0.926, 0.962, 0.980, 0.990})
and by Plaut and Virgin [91] (for d/l w {0.413, 0.637, 0.827, 0.955}) in Fig.
5.13, where the universal snap surface type 1 and its intersection with planes
at constant values of d/l, |θA|, and |θS | are represented, fully confirming the
reliability of the predictions from the present model.

5.3.2 Numerical simulations and dynamic effects

In order to evaluate the possible influence of inertia on the snapping con-
ditions of the system, the presented quasi-static predictions are finally com-
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Figure 5.13: Intersections of the universal snap surface type 1 with planes at constant values
of d/l (upper part), |θA| (lower part, left), and |θS | (lower part, right). Critical conditions
assessed from Exp. A and Exp. B (performed on the developed physical model, Fig. 5.12,
left) confirm the theoretical predictions reported for fixed d and for fixed |θA|, respectively.
Experimental results performed for the purely symmetric case (θA = 0) by other authors [15],
[91] are also reported (lower part, right), further confirming the excellent agreement between
the experiments and the theoretical predictions from the present model.

pared with the response obtained from the numerical simulations performed in
ABAQUS (v.6.13) for two different evolutive problems.

Sim. I – Clamps rotating cyclically and with opposite velocity. By consider-
ing a fixed distance d, the kinematics for the rod’s ends is described
by

d = d, θ0(τ) = −ϑ(τ) + θA, θl(τ) = ϑ(τ) + θA, (5.8)

or equivalently, through Eq.(5.2), in terms of symmetric and antisym-
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metric parts of the angles as

θS(τ) = ϑ(τ), θA = θA, (5.9)

from which it is evident that the function ϑ(τ) represents the evolution
of the symmetric part of the two angles in the time-like parameter τ
while θA represents a constant anti-symmetric angle during the evo-
lution. Referring to the physical time t = Tτ , where T =

√
ρl4/B

is the characteristic time for the system having a linear mass density
ρ, results from Sim. I are reported for a fixed antisymmetric rota-
tion θA = 0.16π and two fixed distances d/l = 0.4 (Fig. 5.14, upper
part, left) and d/l = 0.8 (Fig. 5.14, lower part, left). In both cases,
the cyclic evolution in the boundary conditions is realized through
the succession of the increase and decrease in the symmetric rotation
within the range θS ∈ [−π/2, π/2] keeping a constant modulus in the
velocity,∣∣∣ϑ̇(τ = t/T )

∣∣∣ =
Ω

T
, (5.10)

where a superimposed dot corresponds to the derivative in the physical
time t and Ω is the dimensionless (angular) velocity. The cyclic path
prescribed in Sim. I theoretically encounters two snap conditions given
by the same modulus of θS .

Sim. II – Monotonic variation in the clamps distance. Constant rotations θ0

and θl are assumed for the two ends, so that the kinematical evolution
of the rod’s ends is given by

d = d(τ), θ0 = θ0, θl = θl, (5.11)

where the function d(τ) defines a monotonic increase or decrease in the
distance between the two clamps. Results from Sim. II are reported
for fixed rotations θ0 and θl such that θS = π/8 (Fig. 5.14, upper part,
right) and θS = π/4 (Fig. 5.14, lower part, right), and in both cases
θA = 0.16π. In both cases, the monotonic variation in the distance
d is considered from the value d(τ = 0)/l = 0.336 with a constant
velocity,∣∣∣ḋ(τ = t/T )

∣∣∣ =
∆ l

T
, (5.12)
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where ∆ is the dimensionless velocity. During both the monotonic
shortening and the monotonic lengthening in the clamps distance pre-
scribed in Sim. II, a snap mechanism is theoretically predicted for
each evolution.

A linear viscous Rayleigh damping acting on the mechanical system, mod-
eled as 100 planar beam elements with linear elastic constitutive behaviour,
is considered in all the simulations through the mass-proportional and the
stiffness-proportional damping coefficients respectively as Ad = 8.25 × 10−3/T
and Bd = 6.06 × 10−3T . The inherent extensibility of the rod modeled in
ABAQUS has been considered through the axial stiffness EA = 106×B/l2. All
the presented analyses are performed using the nonlinear geometry option and
started from the undeformed straight configuration with null rotations, d = l
and θ0 = θl = 0. All the simulations share the first two static steps, while are
different in the last dynamic step as follows:

Step 1 – Static: An end’s distance d(0) is imposed and a transversal load is
applied in order to achieve the buckled configuration;

Step 2 – Static: the transversal load is removed and the clamp rotations are
imposed in order to set the initial values of θA and θS(0);

Step 3 – Dynamic implicit: inertial effects are analyzed during the evolution in
the boundary conditions at velocity with constant modulus from t = 0
to t = tf as

Sim. I – initial and final configurations have θS(0) = ϑ(0) = ϑ(tf ) =
0. Introducing the reference time Tr = πT/(2Ω), the duration
of the evolution is given by tf = 4Tr. The rotation velocity
is assumed ϑ̇ = Ω/T for t ∈ [0, Tr] and t ∈ [3Tr, 4Tr], while is
assumed ϑ̇ = −Ω/T as for t ∈ [Tr, 3Tr], so that the velocity
changes sign whenever the modulus of rotation reaches |θS | =
π/2;

Sim. II – the initial and final configurations have the ends distance
given by d(0) and d(tf ). The transition between these two
conditions occurs with constant velocity and has a duration
tf = Tr, where Tr = 0.637T/∆. The constant velocity is taken
positive or negative in order to investigate the snap mechanism
during lengthening or shortening.
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The results of the simulations of the two evolutive problems are reported in
Fig. 5.14 and compared with the respective quasi-static behaviour predictions
using the inextensible elastica (and highlighting the snap angles and snap dis-
tances, defined by the snap curve θA = 0.16π in Fig.5.13 right, lower part). In
particular, results for the Sim. I are reported in Fig. 5.14 (left) in terms of the
moment (at the right end) at cyclically varying (symmetric) rotation θS , while
those for the second evolutive problem are reported in Fig. 5.14 (right) in terms
of the horizontal reaction (at the right end) for monotonic increase and decrease
in the clamps distance. The respective numerical results are reported for three
values of dimensionless velocities, Ω = {0.01, 0.1, 1} and ∆ = {0.001, 0.01, 0.1},
showing that the quasi-static model accurately describes the mechanical be-
haviour of the structural system until approaching the snap-back conditions,
identified as the intersection of the loading path with presented snap-back sur-
face type 1. Due to the presence of dissipative effects, the post-snap quasi-static
path is reached after a transient time from the snap for which the dynamical
effects are decayed. More specifically, non-negligible dynamic effects lead to a
delay in the occurrence of snap with respect to the quasi-static prediction for
high velocities. Oppositely, the dynamic response becomes almost completely
superimposed (except for a small transient) to the quasi-static curve in the case
of a velocity Ω = 0.01 and ∆ = 0.001, values defining the velocity orders below
which the present model, although obtained within the quasi-static framework,
fully represents a reliable model.

5.4 Conclusions

Within a quasi-static framework, the number of stable equilibrium configura-
tions has been disclosed for an elastic rod for varying the parameters controlling
the kinematics of its ends. This analysis has led to the definition of universal
snap surfaces, collecting the critical values of ends distance and rotations for
which the rod shows a snap mechanism. Available experimental data and ex-
perimental results from testing a developed physical model fully validate the
presented theoretical universal snap surface. Finally, finite element simulations
show the influence of inertia on the snapping mechanisms and, in the case when
the controlled ends move moderately, confirm the theoretical predictions based
on the present quasi-static model. These results are complemented by the di-
mensionless analysis of elastic energy release at snapping, towards the optimal
design of impulsive motion. In addition to the relevant contribution to the sta-
bility of structures, the present results may find application in a wide range of
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Figure 5.14: Theoretical predictions from the quasi-static model versus results from numer-
ical simulations performed through finite element code (ABAQUS) for different values of the
dimensionless velocities Ω and ∆. (Left column) Ml− θS response from Sim. I for a cyclically
varying symmetric rotation θS at fixed antisymmetric rotation θA = 0.16π and fixed clamps
distance d/l = 0.4 (upper part) and d/l = 0.8 (lower part). (Right column) Ml− d/l response
from Sim. II for a monotonic increase and decrease in the distance d from d(τ = 0)/l = 0.336,
with fixed antisymmetric rotation θA = 0.16π and fixed symmetric rotations θS = π/8 (upper
part) and θS = π/4 (lower part).

technological fields, ranging from energy harvesting to jumping robots.
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6
Elastica catastrophe machine:

theory, design and experiments

6.1 Introduction

Catastrophe theory is a well-established mathematical framework initiated by
R. Thom [108] for analyzing complex systems exhibiting instability phe-

nomena. From its birth, concepts of this theory have been exploited over the
years in several fields to provide the interpretation of sudden large changes in
the configuration as the result of a small variation in the boundary conditions.
Owing to its multidisciplinary application, catastrophe theory has found rele-
vance in the mechanics of fluids, solids, and structures [38, 53, 73, 86, 94, 110,
120], but also in optics, physical chemistry, economics, biology and sociology
[6, 49, 93, 109].

About fifty years ago, E.C. Zeeman invented and realized a simple but
intriguing mechanical device [118] to illustrate for the first time concepts of
catastrophe theory. The pioneering (planar) two-spring system, also known as
‘Zeeman’s catastrophe machine’, can be easily home-built by fixing two elastic
rubber bands and a cardboard disk on a desktop through three drawing pins
(Fig. 6.1, left). More specifically, the two elastic bands are tied together through
a knot pinned on the cardboard disk. The other end of the first elastic band
is pinned on the table while that of the second elastic band is held by hand,
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controlling its position within the plane. Lastly, in turn, the disk is pinned to
the desktop. The resulting system has two control parameters (the hand po-
sition coordinates Xc and Yc) and one state variable (the rotation angle ϑ of
the cardboard disk). The number of equilibrium configurations for the system
varies by changing the two control parameters (hand coordinates). In partic-
ular, the physical plane is split into two complementary regions separated by
a symmetric concave diamond-shaped curve (with four cusps): the monostable
region outside the closed curve and the bistable region inside. These two re-
gions are respectively associated to hand position providing either a unique or
two different stable equilibrium configurations (expressed by the state variable
ϑ). The separating closed curve is called the catastrophe locus because when
crossed by the hand position from inside to outside1 provides the snapping of
the system, as visual representation of the catastrophic behaviour.

Several modified versions of the Zeeman’s catastrophe machine have been
proposed with the purpose to display various concepts of catastrophe theory.
Different two-spring [55] and three-spring [117] systems have been shown to
possibly display more (than one) separated closed curves representing the catas-
trophe locus by choosing specific design parameters. A different behaviour, the
butterfly catastrophe, has been displayed when the elastic band pinned to the
desktop is replaced by two identical elastic bands, with their ends symmetrically
pinned to the desktop [114]. The analysis of catastrophe locus has been also
extended to discrete systems with elastic hinges [30, 31]. Moreover, Zeeman’s
machine has also been used to show chaotic motion [84] and its principle has
been exploited to motivate the electro-mechanical instabilities of a membrane
under polar symmetric conditions [78]. However, the elastic response in all of
these systems has been considered to depend only on a finite number of degrees
of freedom.

In this chapter, the design of a catastrophe machine is extended for the
first time to an elastic continuous element, namely the planar elastica, within
the finite rotation regime.2 The increase of the number of degrees of freedom

1Snapping occurs only for the configuration inside the bistable region which loses stability
when crossing the catastrophe locus. For the classical machine this is strictly related to the
sign of the rotation angle ϑ and, similarly, for the presented elastica machine to that of the
curvature at the rod’s ends.

2The framework of catastrophe theory is found in the literature to be only exploited for
continuous systems in investigating their equilibrium configurations as small perturbations
of the undeformed one, as in the buckling problem for a pin ended rod under a lateral load
[120, 121] or for a stiffened plate [58]. Differently, the catastrophe framework is here exploited
for the whole set of equilibrium configurations, without any restriction on the amplitude of
the related rotation field, being the analytical solutions for the Euler’s elastica equation.
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(from finite to infinite) together with the increase in the number of kinematic
boundary conditions (from two to three) requires a more complex formulation
in comparison with that considered for treating the classical discrete systems.

More specifically, by considering as fixed the position of one end of the elas-
tica, the three kinematic boundary conditions Xl, Yl (the two coordinates) and
Θl (the rotation angle) at the other end are imposed through two control pa-
rameters. This relationship introduces a multiplicity issue for the configuration
associated with the same coordinates Xl, Yl of the final end (because of the
sensitivity of the angular periodicity for the rotation angle) to be overcome for
a proper representation of the catastrophe locus in the physical plane.

Furthermore, the analysis of catastrophe loci for elastica based machines re-
quires to consider a further space, the primary kinematical space, in addition to
the two spaces usually considered in the analysis of classical machines, the con-
trol parameter and the physical planes (no longer coincident here). It is shown
that the catastrophe locus is provided by the projection in the physical plane of
the intersection of the elastica machine set (defined by design parameters chosen
for a specific machine) and the snap-back surfaces (universal for elasticae with
controlled ends, see Chapter 5) within the primary kinematical space.

Among the infinite set of elastica catastrophe machines (ECMs), two families
are proposed and thoroughly investigated through the developed theoretical
formulation, fully confirmed by experiments performed on a physical model
(Fig. 6.1, right).

An example of snapping motion displayed by the realized physical model of
the elastica catastrophe machine (Fig. 6.1, right) is illustrated in Fig. 6.2. Two
sequences of deformed configurations are shown for two different evolutions of
the rod’s final end position (controlled by hand). Both evolutions start from
the bistable (green) domain (first column) and end to the monostable (white)
domain (third column). Snapping occurs at crossing the catastrophe locus from
inside to outside (second column highlighted in purple), as the elastic rod dy-
namically reaches the reverted stable configuration.

A parametric analysis performed by varying design parameters shows that
the introduced families define catastrophe loci in a large variety of shapes, very
different from those realized with classical catastrophe machines. In contrast
to the classical machines, it is shown that such sets may display unexpected
geometrical properties. On one hand, the number of bifurcation points along the
catastrophe locus can be different than four. On the other hand, the convexity
measure [125] of catastrophe locus is found to change significantly, while that
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Figure 6.1: A sketch of the classical (discrete) catastrophe machine (left, cf. Fig. 5.1 in
[93]) and a photo of the prototype realized for the proposed elastica catastrophe machine
(right). The respective catastrophe locus CP is reported for both machines as the union of
C(+)
P (blue line) and C(−)

P (red line). Two stable equilibrium configurations exist for the elastic
systems when the hand position, controlling the rubber’s end coordinates Xc, Yc (left) or the
elastica’s end coordinates Xl, Yl, is within the bistable (green background) region enclosed by
catastrophe locus. Differently, the stable equilibrium configuration is unique when the hand
position is located within the monostable region (non-green background) defined as outside
of the closed curve defining the catastrophe locus. Crossing the catastrophe locus from inside
may provide snapping of the system.

of classical machines (Fig. 6.1, left) is usually around 0.65.3 In particular,
the convexity measure is found to possibly approach 1 with obtuse corners at
the bifurcation points. This property facilitates reaching high-energy release
snapping conditions, while these are difficult to attain in classical machines
because associated with acute corner points.

The combination of the variable number of bifurcation points and the ap-
proximately unit value for the convex measure paves the way to realize very
efficient snapping devices. Therefore, in addition to the interesting mechanical
and mathematical features with reference to catastrophe theory in combination
with snapping mechanisms [4, 19, 28, 36, 37, 46, 104, 103, 105], the proposed

3Convex catastrophe loci can be found for force controlled discrete systems [117]. Nev-
ertheless, convex catastrophe loci are not observed for classical catastrophe machines under
displacement control.
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Figure 6.2: Evolution of the deformed configuration for two different sequences in the rod’s
end position controlled by hand. Snapping occurs at crossing the catastrophe locus through
the blue line C(+)

P (upper part)/red line C(−)
P (lower part) for the elastica having positive/neg-

ative curvature at its ends. Four snapshots taken during snapping are superimposed in the
second column (deformed configurations highlighted with purple dashed lines). Experiments
are performed using ECM-I (with κR = 0.5, λR = 0.1, υ = 0) with a carbon fiber rod by
increasing the first control parameter p1 (radial distance from the rotation point) at fixed
value of p2 (the angle Θl at the moving end). Deformed configurations with positive/negative
curvature at its ends are highlighted with blue/red dashed line.

model may find application in the design of cycle mechanisms for actuation and
dissipation devices towards energy harvesting, locomotion and wave mitigation
[16, 40, 47, 54, 65, 95, 116]. The presented results have been published in an
international journal, see Cazzolli et al. [34].
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6.2 Equilibrium configurations for the elastica and
the universal snap surface

The equilibrium configurations and the concept of universal snap surface
are recalled for the inextensible Euler’s elastica of length l and lying within
the X − Y plane, which models the elastic element of the elastica catastrophe
machine. In particular, the ‘global’ reference system X−Y is introduced, which
is simply related to the ‘local’ components x(s) and y(s) of the deformed shape
introduced in Chapter 2 (see Eqs.(2.2)) through a rotation matrix[

X(s)−X(0)
Y (s)− Y (0)

]
=

[
cos$ − sin$
sin$ cos$

] [
x(s)
y(s)

]
, (6.1)

where s ∈ [0, l] denotes arc length along the rod and $ is the anti-clockwise
angle between the X-axis and the line connecting the two clamps of the rod.
Moreover, the rotation field of the elastic rod can be represented through the
angle Θ(s) taken with respect to the X-axis, which is connected to the rotation
field θ(s) introduced in Chapter 2 by the simple following rule

Θ(s) = θ(s) +$. (6.2)

By considering the flexible element (the rod) kinematically constrained at
its two ends, the following six boundary conditions are imposed

X(s = 0) = X0, Y (s = 0) = Y0, Θ(s = 0) = Θ0,

X(s = l) = Xl, Y (s = l) = Yl, Θ(s = l) = Θl,
, (6.3)

so that the inclination of the ‘global’ reference system X − Y with respect to
the ‘local’ one x− y can be expressed through the following equation

$ = arctan

[
Yl − Y0

Xl −X0

]
. (6.4)

For the sake of clarity, the ‘global’ X − Y and ‘local’ x − y reference systems,
the related rotation fields Θ and θ and the boundary conditions (2.3) and (6.3)
are represented in Fig.6.3.

The inextensibility of the elastic rod constrains the distance d (see Eq.(2.3))
between its two ends to satisfy the following kinematic compatibility condition

d(X0, Y0, Xl, Yl) =
√

(Xl −X0)2 + (Yl − Y0)2 ≤ l. (6.5)
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Figure 6.3: Deformed shapes of the inflectional elastica differing in the sign of the curvature
at the initial end s = 0 (negative p = 1 in red, positive p = 0 in blue) and represented within
the ‘global’ X − Y and ‘local’ x − y reference systems, being the latter rotated by $ with
respect to the X-axis. The boundary conditions (2.3) and (6.3) are also highlighted.

The inextensibility assumption also introduces the dependence of the coor-
dinate fields X(s) and Y (s) on the rotation field Θ(s) through the following
differential relations

X ′(s) = cos Θ(s), Y ′(s) = sin Θ(s), (6.6)

where the symbol ′ denotes the derivative with respect to the curvilinear coor-
dinate s.

Given the six boundary conditions (6.3), the deformed configuration of the
elastic rod at equilibrium can be alternatively described by

X(s) = X0 +
Xl −X0

d
x(s)− Yl − Y0

d
y(s),

Y (s) = Y0 +
Xl −X0

d
y(s) +

Yl − Y0

d
x(s),

Θ(s) = arctan

[
Yl − Y0

Xl −X0

]
+ θ(s),

(6.7)

where the ‘local’ coordinates x(s) = x(s)l, y(s) = y(s)l and θ(s) = θ(s l) (where
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s = s/l ∈ [0, 1]) are specified through the exact solution for the Euler’s elas-
tica, namely through Eqs.(2.50) and (2.42) in the case when the number m of
inflection points is greater than zero, through Eqs.(2.77) and (2.72) for m = 0,
respectively.

The equilibrium configuration (in general non-unique) can be characterized
once the two unknown parameters (ξ and β for m = 0, η and β for m 6= 0)
are evaluated for a given set of kinematical boundary conditions, Eq.(6.3). The
pair(s) of these parameters can be obtained by solving the following non-linear
system,x(s) =

d

l
,

y(s) = 0,
(6.8)

which is particularized as in Eq.(2.56) in the case m 6= 0 and in Eq.(2.83) in the
case m = 0.

Towards the stability analysis of a specific equilibrium configuration related
to the six boundary conditions X0, Xl, Y0, Yl, Θ0, Θl, it is instrumental to refer
to the following three primary kinematical quantities: the distance d, Eq.(6.5),
and the angles θA and θS , as introduced in Eqs.(5.2), respectively defined as the
antisymmetric and symmetric parts of the imposed end rotations. These latter
angles can be expressed through the ‘global’ coordinates as

θA =
Θl + Θ0

2
− arctan

[
Yl − Y0

Xl −X0

]
, θS =

Θl −Θ0

2
. (6.9)

In particular, the triads {d, θA, θS} can be related to a unique or two different
stable configurations through a function SK(d, θA, θS) as in Chapter 5 (see
Cazzolli and Dal Corso [33])

SK(d, θA, θS) > 0 ⇔ monostable domain: one stable configuration,

SK(d, θA, θS) < 0 ⇔ bistable domain: two stable configurations.
(6.10)

Universal snap surface. The transition between the aforementioned bistable
and monostable domains (6.10) occurs for the set of critical conditions of snap-
back for one of the two stable configurations, differing by the sign of curvature
at the two ends. Such a condition can be represented through the concept of
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universal snap surface (restricted here to type 1 only, see Chapter 5 and Cazzolli
and Dal Corso [33]), which can be expressed in the following implicit form

SK(d, θA, θS) = 0 ⇔ one stable and one critical configuration at snap,
(6.11)

The equation (6.11) defines a closed surface within the space of the primary kine-
matical quantities {d, θA, θS}, with two planes of symmetry defined by θA = 0
and θS = 0 (Fig. 6.4, left).4 The intersection of the surface SK with its two
symmetry planes provides two closed curves representing the whole set of pitch-
fork bifurcation points. More specifically, the pitchfork bifurcation points are
distinguished as supercritical or subcritical, the former corresponding to the
intersection curve with θS = 0 and the latter with θA = 0. Therefore, the
generic planar section of SK at fixed values of d has shape and physical mean-
ing definitely similar to those of the catastrophe locus of the classical Zeeman
machine (see Fig. 6.1 left) having two canonical and two dual cusps, see [33]
and [93]. A critical configuration with a certain sign of curvature at the two
ends is characterized by symmetric angle θS with the same sign. Due to the
symmetry properties described above, the implicit function SK(d, θA, θS) can
be described through two single value functions θsb (+)

S and θ
sb (−)
S of the two

primary kinematical quantities d and θA,

θ
sb (+)
S = θ

sb (+)
S (d, θA), θ

sb (−)
S = θ

sb (−)
S (d, θA), (6.12)

where the sign enclosed by the superscript parentheses is related to the sign
of curvature at the two ends before snapping, related to the sign of the rod’s
curvature at the coordinate s = 0 (through the sign (−1)p in Eq.(2.39)2). This
sign is also coincident with that of the symmetric angle of the snapping con-
figuration. Furthermore, symmetry properties lead to the following conditions

θ
sb (+)
S (d, θA) = θ

sb (+)
S (d,−θA) = −θsb (−)

S (d, θA) = −θsb (−)
S (d,−θA). (6.13)

4It is noted that a type 1 snapping configuration is always related to an elastica with two
inflection points, m = 2, which snaps towards another elastica with two inflection points.
Therefore, each configuration at snapping displays the same curvature the sign at both ends,
changing sign from just before to just after the snap mechanism.
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Figure 6.4: (Left) Universal snap surface Sk (type 1) within the space of the primary
kinematical quantities {d, θA, θS} and its section with the plane d = 0.5l. (Right) Snap
surface section for d = 0.5l as thick closed curve within the plane θA − θS composed by blue
(+) and red (−) parts. The blue (red) part refers to snapping configurations with positive
j = 0 (negative j = 1) curvature at both ends. The bistable (monostable) domain is reported
as the green (white) region inside (outside) the closed curve. The deformed shapes of the
elastica before and after snapping are reported as insets for some critical condition along the
closed curve are reported. The two cusps B1 (B2) are supercritical (subcritical) pitchfork
bifurcations, and are associated with a non-snapping (a snapping) configuration.

6.3 Theoretical framework for elastica catastro-
phe machines

The aim of this section is to develop the theoretical framework for the real-
ization of the elastica catastrophe machine. For the sake of simplicity, the initial
coordinate of the elastic rod, s = 0, is considered fixed and taken as the origin
of the reference system X −Y and with tangent parallel to the X-axis, so that

X0 = Y0 = Θ0 = 0. (6.14)

It follows that the three primary kinematical quantities, Eq.(6.9) can be ex-
pressed as functions (overtilde symbol) of the position at the final coordinate
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(s = l) only,

d = d̃(Xl, Yl), θA = θ̃A(Xl, Yl,Θl), θS = θ̃S(Θl), (6.15)

which simplify as5

d̃(Xl, Yl) =
√
X2
l + Y 2

l , θ̃A(Xl, Yl,Θl) =
Θl

2
− arctan

[
Yl
Xl

]
, θ̃S(Θl) =

Θl

2
,

(6.16)

Relations (6.16) can be inverted to provide the position at the final coordinate
(s = l) as a function (hat symbol) of the primary kinematical quantities

X̂l(d, θA, θS) = d cos(θS−θA), Ŷl(d, θA, θS) = d sin(θS−θA), Θ̂l(θS) = 2θS .

(6.17)

The definition of a (catastrophe) machine leads to the introduction of control
and design parameters, respectively collected in the two vectors p = {p1, ..., pM}
and q = {q1, ..., qN} (withM,N ∈ N). In particular, p is the fundamental vector
collecting the degrees of freeedom of the considered machine. Thus, the position
of the rod at the final curvilinear coordinate (s = l) can be also described as
functions (overbar symbol) of such parameters as

Xl = X l(p,q), Yl = Y l(p,q), Θl = Θl(p,q), (6.18)

and similarly, by considering Eqs.(6.16) and (6.18), the three primary kinemat-
ical quantities d, θA and θS as

d = d(p,q), θA = θA(p,q), θS = θS(p,q). (6.19)

Although both the control and design parameters affect the elastica configura-
tion, a distinction is made being the former varied at fixed values of the latter.

In the following, towards the geometrical representation of the catastrophe
locus (namely, the critical conditions providing snapping for the elastica) within
the physical plane X −Y , the number of control parameters is taken as M = 2,
so that p = {p1, p2}.

5Details about overcoming periodicity issues inherent to the trigonometric function arctan
are reported in Section A.1.1 of the Appendix A.
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Finally, it is assumed that the relations (6.18) and (6.19) can be inverted,
thus obtaining

pj = p̃j(Xl, Yl,Θl,q) j = 1, 2, (6.20)

and

pj = p̂j(d, θA, θS ,q) j = 1, 2, (6.21)

respectively. A generic configuration of the elastica can be therefore represented
by the three equivalent parametrisations of the boundary conditions, namely
i) by the two control parameters {p1, p2}, ii) by the three coordinates of the
rod’s final end {Xl, Yl,Θl} or iii) by the three primary kinematical quantities
{d, θA, θS}. This discrepancy in the number of the required parameters suggests
that one of the coordinates of the triads {Xl, Yl,Θl} or {d, θA, θS} might be
expressed as a function of the remaining two. Section A.1.1 of the Appendix A
is devoted to the development of such statement.

6.3.1 Three spaces for representing the catastrophe locus

In light of the above, the complete understanding of the principles underly-
ing the present catastrophe machine requires to consider the projection of the
controlled end’s configuration within the three different spaces,

C: the control parameter plane p1 − p2;

K: the primary kinematical quantities space d− θA − θS ;

P : the physical spaceXl−Yl−Θl, where the rotational coordinate Θl (possibly
even more than one) is condensed to the physical plane Xl − Yl.

The need of these three different representations and the (unavoidable) projec-
tion of the rotational coordinate Θl to the physical plane Xl − Yl are the new
constituents of the elastica catastrophe machine with respect to the classical
one [118, 119], where the control plane coincides with the physical one and the
kinematical space is not needed. Furthermore, differently from the classical
catastrophe machine, the values of the control parameters p1 and p2, kinemati-
cal quantities d, θA, and θS , and the end’s coordinates Xl, Yl, and Θl are here
restricted by the inextensibility constraint, Eq.(6.5), so that their variation is
limited to the ‘inextensibility set’ I, which is defined in the three different spaces
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as

IC := {p ∈ R2
∣∣ 0 ≤ d(p,q) ≤ l},

IK := {{d, θA, θS} ∈ R3
∣∣ 0 ≤ d ≤ l},

IP := {{Xl, Yl} ∈ R2
∣∣ 0 ≤ d̃(Xl, Yl) ≤ l}.

(6.22)

In order to minimize the presence of self-intersecting configurations6 for the
elastica, the symmetric θS and antisymmetric θA angles are considered to be
restricted by

{|θA| , |θS |} < π, (6.23)

so that the variables within the three spaces are also limited to the ‘machine
set’M,

MC :=
{
p ∈ R2

∣∣ {∣∣θA(p,q)
∣∣ , ∣∣θS(p,q)

∣∣} < π
}
,

MK :=
{
{d, θA, θS} ∈ R3

∣∣ {d = d(p,q), θA = θA(p,q), θS = θS(p,q)},p ∈MC

}
,

MP :=
{
{Xl, Yl} ∈ R2

∣∣ {Xl = X l(p,q), Yl = Y l(p,q)},p ∈MC

}
.

(6.24)

The intersection of the inextensibility I and machineM sets provides the ‘elas-
tica machine set’ E , defining the configurations that can be attained by the
designed elastica catastrophe machine,

EJ :=MJ ∩ IJ , J = C,K,P. (6.25)

The two single-valued functions θsb (+)
S (d, θA) and θ

sb (−)
S (d, θA), Eq.(6.12), in-

troduced in the previous section as the collection of critical snap-back (type 1
[33]) conditions for positive and negative sign of ends’ curvature configurations,
define respectively the ‘snap-back subsets’ S(+)

K and S(−)
K within the d−θA−θS

space

S(+)
K :=

{
{d, θA, θS} ∈ IK

∣∣ θS = θ
sb (+)
S (d, θA)

}
,

S(−)
K :=

{
{d, θA, θS} ∈ IK

∣∣ θS = θ
sb (−)
S (d, θA)

}
.

(6.26)

6The considered limitation for the values of the angles θA and θS also provides that the
machine set does not display type 2 snapping mechanisms [33].
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The union of the two ‘snap-back subsets’ S(+)
K and S(−)

K provides the ‘snap-back
set’ SK

SK = S(+)
K ∪ S(−)

K , (6.27)

splitting the d− θA − θS space into two regions, the ‘bistable set’ BK collecting
kinematical quantities for which two stable solutions exist

BK :=
{
{d, θA, θS} ∈ IK

∣∣SK (d, θA, θS) < 0
}
, (6.28)

and the ‘monostable set’ UK collecting kinematical quantities for which only
one stable solution exists

UK :=
{
{d, θA, θS} ∈ IK

∣∣SK (d, θA, θS) > 0
}
. (6.29)

The snap-back set SK is independent from the design parameters and has only
a representation within the primary kinematical space. Its intersection with the
‘elastica machine set’ EK provides the critical kinematical quantities dC , θCA, and
θCS associated with the designed elastica machine and collected in the ‘catastro-
phe set’7 CK

CK :=SK ∩ EK =
{
{dC , θCA, θCS} ∈ IK

∣∣
SK
(
dC = d(p,q), θCA = θA(p,q), θCS = θS(p,q)

)
= 0
}
.

(6.30)

By considering Eqs.(6.18) and (A.6), the ‘catastrophe set’ (or, equivalently, the
catastrophe locus) CK can be also projected within the control and physical8
planes

CC := {pC ∈ IC
∣∣pC = p̂

(
θCA, θ

C
S

)
},

CP := {{XCl , Y Cl } ∈ IP
∣∣Xl = X l(pC ,q), Yl = Y l(pC ,q)}.

(6.32)

7It is worth mentioning that the present nomenclature differs from that used by some
authors [31, 55] defining the projection CC of the catastrophe set in the control (force) plane
as bifurcation set and the snap-back set SK as catastrophe set.

8It is noted that the ‘catastrophe set’ CP is a curve within the physical plane Xl − Yl,
obtained as the projection of the ‘catastrophe set’ C3DP collecting the critical rotation angle
ΘCl as third physical coordinate

C3DP := {{XCl , Y
C
l , ΘCl } ∈ IP

∣∣Xl = Xl(pC ,q), Yl = Y l(pC ,q), Θl = Θl(pC ,q)}. (6.31)
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Similarly to the ‘snap-back set’ SK , the ‘catastrophe sets’ CJ are given by the
union of the two ‘catastrophe subsets’ C(+)

J and C(−)
J (J = C,K,P ), being the

sign referred to that of the symmetric angle/ends curvature for which the equi-
librium configuration snaps. Due to the non-linearities involved, the catastrophe
sets can be evaluated only numerically. The algorithm used for the numerical
evaluation of the catastrophe set is presented in Section A.1.3 of the Appendix
A.

6.3.2 ‘Effectiveness’ of the elastica catastrophe machine

Following the principles of the classical catastrophe machine, the ‘effective’
elastica catastrophe machine should repetitively display snapping mechanisms
along specific equilibrium paths. This property corresponds to the hysteretic be-
haviour typical of nonlinear elastic structures characterized by cusp catastrophes
when subject to cyclic variations in their control parameters [93]. Therefore,
the design of an ‘effective’ elastica catastrophe machine is guided by tuning the
design parameters q towards the morphogenesis of an ‘effective’ catastrophe set
CP displaying hysteresis. In particular, this set defines a closed curve in the
physical plane which is composed of both the ‘catastrophe subsets’ C(+)

P and
C(−)
P joined together, allowing snapping for both signs of symmetric angle/ends

curvature.
The hysteretic (non-hysteretic) behaviour associated to the ‘effectiveness’

(‘non-effectiveness’) of the catastrophe locus is sketched in the upper (lower)
part of in Fig. 6.5 for a cyclic variation in the control parameters.

The points B1 (magenta in Fig. 6.5, left) common to both C(+)
P and C(−)

P

subsets are present only for effective sets and always correspond to supercritical
pitchfork bifurcations as the limit case displaying a non-snapping elastica [33].
Contrarily, the sharp corner points B2 (yellow in Fig. 6.5, left) within the subsets
C(−)
P or C(+)

P are associated with subcritical pitchfork bifurcations displaying
high-energy release for the snapping elastica.

Because of its generality, the present theoretical framework can be exploited
to design a specific elastica catastrophe machine by particularizing the kinematic
relations Xl(p,q), Yl(p,q), and Θl(p,q). Within the infinite set of possible
elastica catastrophe machines, as evidence of feasibility, two specific families
are proposed and investigated in the next section, showing that catastrophe
locus can be attained with peculiar properties by tuning the design parameters
vector q. More specifically, the catastrophe locus CP of the elastica catastrophe
machine might exhibit a number of bifurcation points not necessarily equal
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Figure 6.5: (Left) Sketch of effective and non-effective catastrophe sets within the physical
plane, the former composed of the two subsets C(+)

P (blue curve) and C(−)
P (red curve) while

the latter of a unique closed subset C(−)
P (red closed curve). Cyclic paths crossing the two

sets are drawn as orange and purple closed loops, respectively. Green areas represent the set
of coordinates {Xl, Yl} of the rod’s end corresponding to bistability of the equilibrium. Sharp
corner points B1 (magenta) and B2 (yellow) denote supercritical and subcritical bifurcations
for the elastica with controlled ends, respectively. (Right) Sketch of the structural response
in terms of the end’s curvature Θ′l versus the evolution of the end’s coordinate Xl (Yl) along
the orange/continuous (purple/dashed) cyclic path and providing hysteretic (non-hysteretic)
behaviour.

to four. Indeed, such multiplicity can vary here because coincident with the
number, variable through the design parameters, of intersections of the elastica
machine set EK (which is in general not a plane) with the snap-back set SK
with θS = 0 (points B1) or θA = 0 (points B2). Even more unusual, the
catastrophe locus CP may substantially vary its non-convexity, differently from
the classical machines. This property is fundamental for crossing bifurcation
points at high-energy release. Indeed, convexity facilitates reaching bifurcation
points, otherwise confined within acute angles in the classical machines. Because
an analytical proof is awkward, with the purpose to evaluate the convex property
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of the catastrophe locus CP , the convexity measure C(CP ) is introduced [125]

C(CP ) =
Area(CP )

Area(CH(CP ))
. (6.33)

In eqn. (6.33) CH(CP ) is the convex hull of CP , namely the smallest convex set
including the shape of the catastrophe locus. The convexity measure C ranges
between 0 and 1, being equal to 1 if and only if the planar shape is convex.

6.4 Two families of elastica catastrophe machines

With the purpose to explicitly evaluate catastrophe loci generated by elas-
tica catastrophe machines, the two families ECM-I (Fig. 6.6, left) and ECM-II
(Fig. 6.6, right) are considered and investigated by means of the general theo-
retical framework presented in the previous section. The elastica’s end s = l is
considered attached to an external rigid bar, which configuration is defined by
the two control parameters p1 and p2. In both ECM-I and ECM-II the control
parameter p2 is taken coincident with the rigid bar rotation, so that, introduc-
ing the design angle parameter υ between the rigid bar and the elastica end
tangent, the rotation Θl imposed at the final curvilinear coordinate is given by

Θl(p,q) = p2 + υ. (6.34)

For each one of the two proposed families, the dependence on the control
parameters is specified for the physical coordinatesXl(p,q) and Yl(p,q). There-
fore, the respective inextensibility and machine sets, introduced in the previous
Section with a general perspective, can be explicitly identified. Finally, the
shape change of the corresponding catastrophe set and the achievement of ‘ef-
fective’ catastrophe sets are disclosed with varying the design parameters vector
q.

6.4.1 The elastica catastrophe machine ECM-I

In the first family of catastrophe machine (Fig. 6.6, left), the external rigid
bar is constrained by a sliding sleeve, centered at the fixed point R = (κRl;λRl)
and whose inclination with respect to the X-axis corresponds to the control
parameter p2. By sliding the rigid bar, the distance p1l between the elastica
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Figure 6.6: The two proposed families of elastica catastrophe machine: ECM-I (left) and
ECM-II (right). An inextensible elastic rod of length l has an end with a fixed position and
rotation. The kinematics of the elastic rod, considered within the plane X−Y , is ruled by the
configuration of an external rigid bar defined through two control parameters p1 and p2. The
design parameter vectors qI = {κR, λR, υ} and qII = {κD, λD, α, ρ, υ} define respectively a
family of elastica catastrophe machines ECM-I and ECM-II.

end s = l and the sliding sleeve rotation center is ruled by the control parameter
p1, so that the coordinates of the elastica’s end are

X l(p,qI)
l

= κR + p1 cos p2,
Y l(p,qI)

l
= λR + p1 sin p2, (6.35)

with p1 restricted to positive values (p1 > 0)9 and the control parameters vector
has length N = 3 and is given by

qI = {κR, λR, υ}. (6.36)

The different relations connecting the configuration representation through
control parameters, primary kinematical quantities and physical coordinates
can be derived from the explicit kinematical rules (6.34) and (6.35). These are
reported in the Appendix A (Section A.2.1).

The ‘elastica machine set’ EC is defined in the control parameters plane p1−
p2 as the intersection of the inextensibility set IC , provided by the inextensibility

9It is noted that the catastrophe sets related to negative values (disregarded here) of p1 can
be obtained from those restricted to positive values, being the configuration corresponding
to a control vector p = {p[1, p[2} and a design vector qI = {κ[R, λ

[
R, υ

[} the same of that
corresponding to p = {−p[1, p[2 + π} and qI = {κ[R, λ

[
R, υ

[ − π}.
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condition (6.5) as

IC =
{
p : p2

1 + 2p1 (κR cos p2 + λR sin p2) + κR
2 + λR

2 ≤ 1
}
, (6.37)

with the set machine domainMC , Eq.(6.23), expressed as

MC =

{
p :

∣∣∣∣p2 + υ

2

∣∣∣∣ < π,

∣∣∣∣p2 + υ

2
− arctan

(
λR + p1 sin p2

κR + p1 cos p2

)∣∣∣∣ < π

}
. (6.38)

The different sets in the primary kinematical space and in the physical plane
can be obtained from the respective projections of IC (6.37) andMC (6.38) by
means of equations (A.14)-(A.22).

The I,M, E , and C sets are reported in Fig. 6.7 for the control parameters
κR = 0.5, υ = 0 and λR = {0.3, 0.35, 0.4}. Therefore, the considered ECMs-I
differ only in the position of the rigid bar rotation center R, slightly moving
up from the first to the third line. In the Figure, three different spaces are de-
picted: the control plane (left column), the primary kinematical space (central
column, also containing the snap-back surface SK), and the physical plane (right
column). The catastrophe set CK is evaluated within the primary kinematical
space as the curve defined by the intersection of two surfaces, representing the
snap set SK and the elastica set EK . The obtained catastrophe curve has pro-
jections CC and CP within the control and physical planes as planar curves.
The positive and negative sign of ends’ curvature related to the configuration at
snapping is highlighted along the catastrophe curves C with blue (C(+)) and red
(C(−)) colour, respectively. How the catastrophe set changes with increasing the
design parameter λR may be appreciated from the figure. In particular, the sets
of coordinates corresponding to two stable equilibrium configurations are given
by the union of one (λR = 0.3), two (λR = 0.35), and three (λR = 0.4) simply
connected domains in the physical plane. However, for each of the three cases,
only one of these simply connected domains (drawn as a thick line) provides
hysteresis when crossed during a cyclic path. When existing (λR = {0.35, 0.4}),
the other simply connected domains have boundary (drawn with thin line) for
which snapping occurs only for a positive or for a negative sign of the ends’
curvature, so that no more than one snap (and therefore no hysteresis) can be
related to these during a cyclic path. The existence and properties of these
simply connected domains are strictly dependent on the selected design vec-
tor. With this regard, by considering10 only non-negative values of λR and
υ ∈ [0, 2π) and restricting the attention to the physical plane representation,

10Symmetry and periodicity properties of expressions (6.34) and (6.35) in the design pa-
rameters λR and υ define symmetry properties for the catastrophe sets. More specifically, a
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Figure 6.7: Inextensibility I, machineM, elastica E, and catastrophe C sets within the three
different spaces (from the left to right: control plane, primary kinematical space, physical
plane) for three ECMs-I with κR = 0.5, υ = 0 and λR = {0.3, 0.35, 0.4} increasing from
the first to the third line. The yellow surface appearing in the primary kinematical space
{d/l, θA, θS} is the snap-back set SK . The portions C(+)/C(−) of the ‘catastrophe sets’ are
reported as blue/red lines. The effective ‘catastrophe sets’ are reported as thick lines and
are those defined by the union of C(+) with C(−) (where the superscript is related to the
sign of the ends’ curvature of the snapping configuration). The shifting of the rotation centre
R parallel to the Y -axis provides a change of the catastrophe locus, with the realization of
possible non-effective sets (closed thin lines drawn with only one colour).

change in the sign of both the design parameters λR and υ provides a mirroring of the catas-
trophe set (with respect to the X axis within the physical plane and with respect to the p2
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the influence of the design parameters is shown through the following effective
and non-effective catastrophe sets:

• for κR = 0.5, υ = {0, 1}π, and λR = {0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7}
in Fig. 6.8, showing that the elastica catastrophe machine is non-effective
for both the considered values of υ when λR = 0.7, while effective in the
remaining cases;

• for κR = {0.25, 0.5, 0.75, 1}, υ = {0, 1/4, 1/2, 3/4, 1, 5/4, 3/2, 7/4}π, and
λR = 0 in Fig. 6.9, showing that the elastica catastrophe machine is non-
effective for κR = 1 when υ = {0, 1/4, 1/2, 3/2, 7/4}π, while effective in
the remaining cases.

Figure 6.8: Catastrophe loci in the physical plane X − Y for ECM-I with κR = 0.5,
λR = {0.1, 0.2, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7}, and υ = {0, 1}π. The red spots identify the position
rotation center R of the rigid bar. Effectiveness and non-effectiveness of the catastrophe loci
is distinguished through thick and thin coloured lines, respectively.

Dramatic changes in the projection of the catastrophe set within the physical
plane can be observed from these figures, as the result of changing the design
parameter vectors q. In particular, a loss of symmetry in the catastrophe locus

within the control plane) and a change in sign for the related curvature displaying snapping.
An increase of 2kπ (k ∈ Z) in υ provides a shifting of −2kπ of the catastrophe set with respect
to the p2 axis within the control plane and no change within the physical plane.
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Figure 6.9: As for Fig. 6.8, but for λR = 0, κR = {0.25, 0.5, 0.75, 1} and υ =
{0, 1/4, 1/2, 3/4, 1, 5/4, 3/2, 7/4}π. The parameter υ∗ is introduced to represent the two cases
υ = υ∗ and υ = υ∗ + π in the same plot. The position rotation center R of the rigid bar is
identified as red spots.

occurs when υ 6= {0, π} or λR 6= 0. Furthermore, the catastrophe loci that may
be generated by ECM-I encompass a large variety of shapes, very different from
those related to the classical catastrophe machines. In particular, the following
new features of the catastrophe sets are found:

• Variable number of bifurcation points. The effective catastrophe loci, re-
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ported for different values of q in Figs. 6.8 and 6.9, display a variable
number of bifurcation points depending on the number of intersections of
EK with SK for θS = 0 and θA = 0. In Fig. 6.8, the reported effective
sets have two (e.g. second row, first column, υ = 0) or four bifurcation
points (e.g. first row, second column, υ = 0). In Fig. 6.9, the number of
bifurcation points can be equal to one (e.g. first row, first column, υ = π),
two (e.g. second row, second column, υ = π/4), three (first row, first
column, υ = 0) or four (second row, first column, υ = π/4);

• Convex measure of the catastrophe locus CP . In Fig. 6.9, the catastro-
phe sets for {υ = π, κR = 0.25} (first row, first column) and for {υ =
0, κR = 0.75} (first row, third column) have convex measure approaching
the unit value, C ' 1. The catastrophe set for {υ = π, κR = 0.5} (first
row, second column) has C = 0.9997 while that for {υ = π, κR = 0.75}
(first row, third column) has C = 0.998. Finally, the catastrophe sets
for υ = 0 and λR = {0.3, 0.35, 0.4} shown in Figs. 6.7 and 6.8 have
C = {0.5707, 0.4475, 0.9402}.

The recommendations about how to select the initial values of the control
parameters p(τ0) to belong to the inextensibility set IC are included in Sect.
A.2.1 of the Appendix A. Some considerations drawn for ECM-I under the two
special conditions for the position center R are respectively reported in Sects.
A.2.1 and A.2.1) of the Appendix A.
Similarly to the classical Zeeman machine, all the sharp corner points, when not
coincident with the rotation centre R, correspond to pitchfork bifurcations.

6.4.2 The elastica catastrophe machine ECM-II
In the catastrophe machine ECM-II (Fig. 6.6, right) the rigid bar of fixed

length ρl can rotate and has one end constrained to slide along a straight line,
inclined at an angle α with respect to the X-axis. The center of rotation of
the rigid bar is at a controlled distance p1l from a fixed point D, of coordinates
{XD, YD} = {κD, λD}l, located on the straight line. By controlling the incli-
nation p2 and the distance p1l of the movable rotation center of coordinates
{κD +p1 cosα, λD +p1 sinα}l from the reference point D, the elastica end s = l
has coordinates

X l(p,qII)
l

= κD+p1 cosα+ρ cos p2,
Y l(p,qII)

l
= λD+p1 sinα+ρ sin p2,

(6.39)
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while the design parameters vector (of length N = 5) for ECM-II is

qII = {κD, λD, α, ρ, υ}. (6.40)

The equations relating the control parameters, the primary kinematical
quantities and the physical coordinates are obtained through the equations
(6.34) and (6.39) and reported in the Appendix A (Section A.2.2).

The control parameters vector p for ECM-II is restricted to the set EC , given
by the intersection of the inextensibility set IC ,

IC =
{
p : p2

1 + ρ2 + 2
[
p1ρ cos(α− p2) + κD (p1 cosα+ ρ cos p2) +

+ λD (p1 sinα+ ρ sin p2)
]

+ κD
2 + λD

2 ≤ 1
}
,
(6.41)

with the machine domainMC

MC =

{
p :

∣∣∣∣p2 + υ

2

∣∣∣∣ < π,

∣∣∣∣p2 + υ

2
− arctan

(
λD + p1 sinα+ ρ sin p2

κD + p1 cosα+ ρ cos p2

)∣∣∣∣ < π

}
.

(6.42)

In order to have a non-null elastica machine set E , the first four design
parameters are constrained to satisfy the following inequality

|κD sinα− λD cosα| − ρ < 1. (6.43)

From Eq.(6.39), it may also be noted that two different control parameters
vectors p[ and p] provide the same end’s coordinates {Xl(p[,q)) = Xl(p],q),
Yl(p[,q)) = Yl(p],q)} when

p]1 = p[1 + 2ρ cos(p[2 − α), p]2 = π + 2α− p[2. (6.44)

Therefore, in addition to the natural multiplicity due to the angular periodicity
in the physical angle Θl, the same position Xl, Yl in the physical plane is associ-
ated to two physical angles Θl(p],q) 6= Θl(p[,q) not differing by 2kπ (k ∈ Z),
namely

Θl(p],q) = π + 2(α+ υ)−Θl(p[,q). (6.45)

Due to this additional multiplicity, it is instrumental to analyze the behaviour
of ECM-II through the analysis of two machine subtypes, ECM-IIa and ECM-
IIb, having the control parameter p2 (ruling the rigid bar rotation) restricted to
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specific sets p(a)
2 and p(b)

2 ,

ECM-IIa : p
(a)
2 ∈

⋃
k∈Z

[
−π

2
+ α+ 2kπ,

π

2
+ α+ 2kπ

]
,

ECM-IIb : p
(b)
2 ∈

⋃
k∈Z

[
π

2
+ α+ 2kπ,

3π

2
+ α+ 2kπ

]
.

(6.46)

The inextensibility I, the machineM, the elastica E and catastrophe C sets
for ECM-II are shown in Fig. 6.10 within the control plane (left column), pri-
mary kinematical space (central column), and the physical plane (right column)
for κD = λD = α = υ = 0 and ρ = {0.5, 0.6, 0.65}, with increasing values
from the upper to the lower line. The portions C(+)

P /C(−)
P of catastrophe loci are

reported as blue/red lines, continuous for ECM-IIa and dashed for ECM-IIb.
In the figure, the blue/red line defines configurations for which elastica with
positive/negative ends curvature snaps. The thick line identifies an effective
catastrophe locus while a thin line a non-effective one, so that, in Fig. 6.10, the
catastrophe sets of EMC-IIa are all effective while those of ECM-IIb are not. It
is evident that for ρ = {0.5, 0.6} the catastrophe sets of ECM-IIa and ECM-IIb
have in common their end points (also at the boundary of I/M in the physical
plane) while for ρ = 0.65 the two machine subtypes do not share any point with
each other.

The catastrophe sets of ECM-IIa and ECM-IIb for κD = λD = α = υ = 0
and ρ = 0.5 shown in Fig. 6.10 (upper part, right) are also reported separately
for the two machine subtypes in Fig. 6.11 (upper part). This latter represen-
tation contains also some elasticae, highlighting the two possible equilibrium
configurations for a state within the bistable region and the only possible con-
figuration after crossing the catastrophe locus. The catastrophe sets are also
reported in the lower part of Fig. 6.11 for a machine with the same design pa-
rameters of that considered in the upper part of Fig. 6.11 except for the value
of υ, taken as υ = π (instead of υ = 0).

It can be appreciated that for the same design parameters no more than
one of the two machine subtypes is effective, namely ECM-IIa with υ = 0 and
ECM-IIb with υ = π. The remaining two machine subtypes are non-effective,
but each of them displays a different behaviour. ECM-IIb with υ = 0 has a non-
effective catastrophe set so that only one snap may occur during a continuous
evolution while ECM-IIa with υ = π has no catastrophe locus so that no snap is
possible with this machine subtype. Performing a parametric analysis of ECM-
II (by varying the design parameters) it can be concluded that a principle of
exclusion about the effectiveness for the two subtypes of machine exists, namely,
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Figure 6.10: As for Fig. 6.7, but for three ECMs-II with κD = λD = υ = α = 0 and
ρ = {0.5, 0.6, 0.65} increasing from the first to the third line. The portions C(+)/C(−) of
the ‘catastrophe sets’ are reported as blue/red lines, continuous for ECM-IIa and dashed for
ECM-IIb. For the reported cases, the effective ‘catastrophe sets’ are related only to ECM-IIa.
The increase in the rigid bar parameter length ρ provides a change of the catastrophe locus,
as the detachment from the elastica machine set boundary in the case ρ = 0.65.

if ECM-IIa (or ECM-IIb) is an effective machine then ECM-IIb (or ECM-IIa)
is not. This principle finds also evidence in the Figs. 6.12-6.15, referred to
different design parameters vectors (restricted to υ ∈ [0, 2π) due to periodicity)
as follows:

• for κD = λD = α = 0, ρ = {0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 1} and υ = 0 in
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Figure 6.11: Catastrophe sets of ECM-IIa and ECM-IIb with κD = λD = α = 0, ρ = 0.5,
and υ = 0 (upper part) or υ = π (lower part). While ECM-IIa is effective for υ = 0, ECM-
IIb is effective for υ = π. Deformed configurations are also displayed for some specific end’s
position, highlighting equilibrium multiplicity (when existing).

Fig. 6.12 and for the same values of λD, κD, α, and ρ but υ = π in Fig.
6.13, showing that only ECM-IIa is effective in the former figure while
only ECM-IIb is effective in the latter. In particular, ECM-IIa does not
display any catastrophe set in all the cases in Fig. 6.13 (similarly to Fig.
6.11, bottom left) except when ρ = 1;

• for κD = λD = 0, ρ = 0.5, υ = {0, π} and α = {0, 1/8, 1/4, 1/2}π in
Fig. 6.14, showing that only ECM-IIa is effective for υ = 0 and α =
{0, 1/8, 1/4}π, only ECM-IIb is effective for υ = π and α = {0, 1/8}π,
while no machine subtype is effective in the remaining cases;
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• for κD = α = 0, ρ = 0.5, λD = {0, 0.2, 0.4, 0.6} and υ = {0, 1/4, 1/2, 3/4}π
in Fig. 6.15, showing that only ECM-IIa is effective for υ = {0, 1/4}π for
all the reported values of λD and only ECM-IIb is effective for υ = 3/4π
for all the reported values of λD, while no machine subtype is effective in
the remaining cases.

Figure 6.12: Catastrophe loci in the physical plane X−Y for ECM-II with κD = λD = α =
υ = 0 and λD = {0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 1}. Sets related to ECM-IIa are represented
by continuous lines while those releated to EMC-IIb by dashed lines. Effectiveness and non-
effectiveness of the catastrophe loci is distinguished through thick and thin coloured lines,
respectively.

In analogy with the observations for ECM-I machine, the following new
features of the catastrophe sets for ECM-II are displayed:

• Variable number of bifurcation points. The catastrophe sets in Figs. 6.12,
6.13, 6.14 and 6.15 exhibit a number of bifurcation points ranging from two
to five. For instance, the ECM-IIa machines in Fig. 6.12 and the ECM-IIb
machines in Fig. 6.13 have a catastrophe set with two bifurcation points
on the symmetry axis. Moreover, In Fig. 6.15, the catastrophe set for
the ECM-IIa machine for υ = π/4 and λD = 0.2 (second row and second
column) has five bifurcation points.

• Convex measure of the catastrophe locus CP . The catastrophe sets reported
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Figure 6.13: As for Fig. 6.12, but for υ = π.

Figure 6.14: As for Fig. 6.12, but for κD = λD = 0, ρ = 0.5. A constant value of υ
is considered for each line (first line υ = 0, second line υ = π) and of α for each column
(α = {0, 1/8, 1/4, 1/2}π, increasing from left to right).
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Figure 6.15: As for Fig. 6.12, but for κD = α = 0, ρ = 0.5. A constant value of υ is
considered for each line (υ = {0, 1/4, 1/2, 3/4}π, increasing from above to bottom) and of λD
for each column (λD = {0, 0.2, 0.4, 0.6}, increasing from left to right).

in the first row of Fig. 6.13 have C ' 1 for ρ = {0.1, 0.2, 0.3} (first three
columns) and C = 0.9998 for ρ = 0.5 (fourth column).

The three-dimensional representation in Fig. 6.16 shows the curvature at the
final curvilinear coordinate as a function of the two control parameters for
ECM-IIb with κD = λD = α = 0, υ = π, and ρ = 0.8 (corresponding to
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the setting considered in the third column, second line, of Fig. 6.13). The same
three-dimensional plot is reported on the left and the right under two opposite
perspectives. Multiplicity and uniqueness of equilibrium configuration are high-
lighted for control parameters pairs respectively inside and outside the closed
curve defining the catastrophe locus (projection on the p1 − p2 plane). The
jump in the equilibrium configuration, displayed at the catastrophe locus with
arrows, implies a change in the curvature sign (for the same value of control
parameters).

Figure 6.16: Curvature at the final curvilinear coordinate, Θ′l = Θ′(s = l), (made di-
mensionless by multiplication with the length l) as a function of the control parameters p1
and p2 for ECM-IIb with κD = λD = α = 0, υ = π, and ρ = 0.8 (corresponding to the
setting considered in the third column, second line, of Fig. 6.13). Two opposite views of the
three-dimensional plot are reported on the left and the right. Green line highlights critical
configurations for which snap occurs toward a configuration laying along the blue and red
curve having the same control parameters pair but opposite curvature sign. The projection of
C(+) (blue line) and C(−) (red line) on the p1−p2 plane is also reported as the representation
of the catastrophe locus within the control plane.

Finally, the analysis of ECM-II is complemented by a discussion about the
special case of the rigid bar with infinitely large length reported in Sect. A.2.2
of the Appendix A and the suggestion for the initial values of the control pa-
rameters p(τ0) in Sect. A.2.2 of the Appendix A.
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6.5 The physical realization of the elastica catas-
trophe machine

A prototype of the elastica catastrophe machine was designed and realized
at the Instabilities Lab of the University of Trento, Fig. 6.17. This setup,
thought to be as versatile as possible, allowed the experimental investigation
of both the two proposed families, ECM-I and ECM-II (a and b). The two
clamps, one fixed and the other moving, constraining the ends of the elastic
rod are assembled on an HDF (High-density fibreboard) desk. This panel acts
as a support for mounting the screen printing of the catastrophe locus, which
changes by varying the selected design parameters. More specifically, the clamp
constraint at the rod coordinate s = 0 is fixed and mounted on a PMMA
structure. The constraint at the other end of the rod (s = l) is provided by
a clamp which may slide along a rotating aluminium hollow bar (10 × 10 mm
cross-section) with its end pinned to and possibly sliding along an aluminium rail
(aluminium extrusions bar, 20×20 mm cross-section), fixed on the desk through
two clips. Three goniometers are mounted to measure during the experiments
(i.) the angle between the desk and the rail (design angle α in ECM-II), (ii.)
the angle between the rail and the rotating bar (to be used for imposing the
control angle p2), and (iii.) the angle between the rotating bar and the moving
clamp inclination (design angle υ).

Each one of the two proposed families can be tested by properly constraining
one of the degrees of freedom of the prototype to a fixed value. In particular,
ECM-I is attained by fixing the rotating bar end to a specific point R (design
parameters κR, λR) along the fixed rail, while ECM-II by fixing the moving
clamp along the rotating bar at a distance ρl from its end and by defining the
inclination α and the passing point D (design parameters κD, λD) for the fixed
rail.

Rods of (net) length l = 40 cm with different cross-sections and made up of
different materials have been tested. In the following, results are shown for two
types of rods: a polikristal rod (by Polimark, Young modulus E = 2750 MPa,
density ρ = 1250 kg m−3) with a cross section 20x0.8 mm, and a carbon fiber
rod (by CreVeR srl, Young modulus E = 80 148 MPa, density ρ = 1620 kg m−3)
with a cross section 20x0.45 mm.

The ECM prototype was tested as EMC-I, ECM-IIa, and ECM-IIb for differ-
ent continuous evolutions of the moving clamp position repetitively crossing the
catastrophe locus and providing a sequence of snapping mechanisms. Photos
taken at specific stages during the experiments are displayed in Fig. 6.18. In
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Figure 6.17: Prototype of the elastica catastrophe machine. A (carbon fiber) rod constrained
at its two ends by a fixed clamp (inset upper right, cyan) and another clamp (inset lower left,
red) which may move along a stiff bar, which, in turn, may rotate about its end pinned and
possibly moving along a fixed rail (inset lower right, green). The rail is fixed to the plastic
desk through two clips. The angles υ and α can be respectively measured from the black
goniometers fixed on the movable clamp and the plane, while the angle p2 can be measured
from the white goniometer fixed at the rotation centre of the stiff bar.

the figure, all the stable equilibrium configurations are reported at three stages
for ECM-I (with κR = 0.5, λR = 0.1, υ = 0). The three stages are related to
the position of the moving clamp, located (a) within the bistable region, (b) on
the catastrophe locus, and (c) within the monostable region (from left to right
in Fig. 6.18). The two equilibrium configurations related to each of the two first
stages (left and central column) differ in the curvature sign at the clamps and are
displayed as the superposition of two photos. The only ‘surviving’ configuration
is displayed at stage c (right column), which can be reached through a smooth
transition from the adjacent deformed configuration or through snapping from
the non-adjacent deformed configuration (characterized by an opposite sign of
the curvature at both clamps). The experimental results are reported for a
clamp position’s evolution ruled by different variations of the control parame-
ters: (i) variation in both the control parameters p1 and p2 (Fig. 6.18, upper
part) and (ii) variation in the control parameter p1 at fixed value of p2 (Fig.
6.18, lower part).
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Figure 6.18: Evolution of the equilibrium configurations for a carbon fiber rod in the ECM-I
(with κR = 0.5, λR = 0.1, υ = 0) with varying the position of the moving clamp: within the
bistable (green background) region (stage a, left column), on the catastrophe locus (stage
b, central column), and within the monostable region (stage c, right column). The control
parameters {p1, p2} are represented in the upper left figure, while deformed configurations
with positive/negative curvature at the fixed clamp are highlighted by blue/red dashed curve.
At each stage, the clamp position at the previous stage and its path until then is highlighted.
While two deformed configurations are possible for stages a and b, only one stable configuration
exists at stage c.

The transition of the deformed configuration during a continuous evolution
is highlighted in Figs. 6.2 (for ECM-I with κR = 0.5, λR = 0.1, υ = 0). Four
snapshots captured during the fast motion at snapping (taken with a high-
speed camera Sony PXW-FS5, 120 fps) are superimposed in the second column
of the figure (the deformed configurations are highlighted with purple dashed
lines), where each two consecutive snapshots are referred to a time interval of
approximately 0.15 sec. These sequences display the rod motion towards the
change of curvature sign at both clamps. Further experiments performed on
different ECM are reported in the section A.3 of the Appendix A.
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During the experiments, photos were taken with a Sony α9 and videos with
a high-speed camera (model Sony PXW-FS5 4K, 120 fps). A couple of videos
showing example of use of the prototype as ECM-I and ECM-IIb are available
as supplementary material.11

Finally, the quantitative assessment of the theoretically predicted catastro-
phe loci is reported in Fig. 6.19 superimposing the experimental critical points
for polikristal (star markers) and carbon fiber (crosses markers) rods. The
following settings are shown: (i) ECMs-I (with κR = 0.5, λR = 0.1, υ = 0,
Fig. 6.19a, and with κR = 0.5, λR = 0.3, υ = 0, Fig. 6.19b), (ii) ECM-IIb
(case κD = λD = α = 0, ρ = 1, υ = π, Fig. 6.19c) and (iii) ECM-IIa (case
κD = λD = υ = 0, ρ = 0.5, α = π/4, Fig. 6.19d). The comparisons reported
in the figure fully display the experimental validation of the theoretical catas-
trophe loci. During the tests, very small portions of the catastrophe locus were
not investigated because of some unavoidable physical limitations (for instance
rod’s self-intersection). The accuracy in the experimental measure of the critical
conditions is observed to be higher when using carbon fiber rods. The inferior
accuracy in testing with polikristal rods is expected to be related to the intrinsic
viscosity and weight-stiffness ratio of the material.

6.6 Conclusions

For the first time, the design and the experimental validation of a catas-
trophe machine has been addressed for a system made up of a continuous and
elastic flexible element, extending the classical formulation for discrete systems.
A theoretical framework referring to primary kinematical quantities and exploit-
ing the concept of the universal snap surface has been introduced. Among the
infinite set of elastica catastrophe machines, two families have been proposed
and the related catastrophe locus investigated to explicitly show the features of
the present model. A parametric analysis has disclosed substantial differences
in the shape of the catastrophe locus in comparison with those deriving from
classical catastrophe machines. In particular, the proposed machines can fulfil
peculiar geometrical properties as convexity and a variable number of bifurcation
points for the catastrophe loci. These meaningful characteristics may enhance
the efficiency of snapping devices exploting high-energy release points otherwise
unreachable. The research has been completed by the validation of the theoret-
ical results through the physical realization of a prototype enabling experiments

11Movies of experiments can be found in the additional material available at
http://www.ing.unitn.it/~dalcorsf/elastica_catastrophe_machine.html
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Figure 6.19: Experimental validation of the theoretically predicted catastrophe locus for
ECMs-I (a: {κR = 0.5, λR = 0.1, υ = 0}; b: {κR = 0.5, λR = 0.3, υ = 0}), for ECM-IIb (c:
{κD = λD = α = 0, ρ = 1, υ = π}, for ECM-IIa (d: {κD = λD = υ = 0, α = π/4, ρ = 0.5}).
Measures from testing polikristal rod of thickness 0.8 mm (stars) and with a carbon fiber rod
of thickness 0.45 mm (crosses) show an excellent agreement with the theoretical predictions.

with each of the two presented families of elastica catastrophe machines.
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Part III

Non-holonomic constraints
inducing flutter instability in
structures under conservative

loadings
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7
Fluttering of elastic rods subject to

non-holonomic constraints.
Discrete model

7.1 Introduction

Flutter and divergence (in a word, ‘dynamic’) instabilities of elastic structures
are connected to a number of counterintuitive and surprising features: (i.)

they may occur in the absence of quasi-static bifurcations, and may or may
not degenerate into a limit cycle, determining a so-called ‘Hopf bifurcation’
in the former case; (ii.) they are facilitated by a sufficiently small viscosity.
Moreover, (iii.) a vanishing viscosity leads to a discontinuity in the critical load
value, an oddity called ‘Ziegler paradox’, so that (iv.) this value may depend
on the direction of limit when more than one dissipative source is present. All
these features and the presence itself of flutter and divergence instabilities in
structures are believed to be strictly related to the action of non-conservative
loads,1 which are considered of difficult realization.2 Indeed, quoting Anderson

1Bolotin [24] writes ‘The Euler method is [only] applicable if the external forces have a
potential (i.e. if they are conservative forces), and in general is not applicable if they do not.’

2The attempt by Willems [113] of producing a tangential follower load was indicated as
misleading by Huang et al. [57]. Elishakoff [43] reports that ‘Bolotin felt –if my memory
serves me well!– that it should be impossible to produce BeckâĂŹs column experiment via
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and Done [2], a ‘conservative system can not become dynamically unstable since,
by definition, it has no energy source from which to supply the extra kinetic
energy involved in the instability’.

It is shown in the present chapter that the last sentence is wrong, as a supply
of ‘extra kinetic energy’ can be provided by means of a mass falling within a
gravitational field, or through a release of the elastic energy initially stored in
a spring and therefore:

We introduce two ways to induce dynamical instablities (such as flut-
ter and divergence), Hopf bifurcation, destabilizing effect of dissipa-
tion, Ziegler paradox and directionality of it in visco-elastic mechan-
ical structures under purely conservative loading conditions. The key
to this behaviour is the use of non-holonomic constraints.

Recently, flutter and divergence instabilities have been shown to occur in
structures loaded through non-conservative forces produced with frictional de-
vices by Bigoni and Noselli [17], realizing the tangentially follower load postu-
lated by Ziegler [122], and by Bigoni and Misseroni [23], obtaining the fixed-line
load introduced by Reut [99]. The same type of instabilities is disclosed here in
structural systems subject to conservative loadings, when non-holonomic con-
straints are applied to the structure. More specifically, similarly to [59, 69, 85],
the non-holonomic constraint is realized through two rigid (massless) cylinders

a conservative system of forces.’ Anderson and Done [2] write ‘Sometimes, the creation of a
force like [a follower force] in the laboratory presents awkward practical problems, and the
simulation of this force wherever possible by a conservative force would be very convenient.
However, because of the differing nature of the fundamental properties of the conservative and
non-conservative systems, the simulation could only work in a situation where the two systems
behave in similar ways; that is when the conservative system is not operating in a regime of
oscillatory instability. (The conservative system can not become dynamically instable since,
by definition, it has no energy source from which to supply the extra kinetic energy involved
in the instability).’ Koiter [66] states that ‘[...] it appears impossible to achieve any non-
conservative loading conditions in the laboratory by purely mechanical means’, because ‘non-
conservative external loads always require an external energy source, much as a fluid flow
or an interaction with electro-dynamic phenomenon’. Koiter was strongly convinced that
follower forces were a sort of ‘physical non-sense’ (Koiter, [67], [68]), so that Singer et al.
[107] write ‘An example in the field of elastic stability of what Drucker referred to as playing
useless games was presented by Koiter, in his 1985 Prandtl lecture, where he discussed the
physical significance of instability due to non-conservative, purely configuration-dependent,
external loads.’ Several years after these negative views, Bigoni and Noselli [17] and Bigoni
and Misseroni [23] respectively showed how to realize a tangentially follower force (Ziegler,
1952 [122]) and a fixed-line force (Reut, 1939 [99]) with devices involving Coulomb friction.
Friction is a dissipative and follower force, in the present article we show how this force can
be eliminated thus realizing a purely conservative system of load.
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in slipless contact, one of which can freely rotate about its axis, while the other
cannot. The non-existence of a potential [71, 85] characterizes both a frictional
device and a non-holonomic constraint, but the latter is conservative and intro-
duces a kinematic condition, prescribed in terms of velocity, corresponding to a
(reaction) force acting on the structure and having a modulus varying in time
during motion [100]. In particular, the velocity ṙC of the instantaneous contact
point C between the two cylinders is constrained to have a null component along
the axis of the freely rotating cylinder (Fig. 7.1)

ṙC · e = 0, (7.1)

where a superimposed dot represents the derivative in the time variable t and
e(t) is the unit vector aligned parallel to the rotating cylinder’s axis.

Figure 7.1: A non-holonomic constraint forbidding relative velocity ṙC of the instantaneous
contact point C along direction e(t), Eq.(7.1). This constraint is obtained through slipless
contact between two rigid (massless and circular) cylinders, one of which is free of rotating
about its axis, while the other is not.

When properly connected to the end of a structure, for instance a visco-
elastic double pendulum, the two cylinders imposing condition (7.1) may be
exploited to realize either a ‘skate’, or a ‘violin bow’ constraint, the former trans-
mitting to the structure a tangential follower reaction similar to the Ziegler’s
load and the latter a reaction acting on a fixed line similar to the Reut’s load,
but now varying in their modulus during motion. In Fig.7.2, the two proposed
structures with non-holonomic constraints (which will be subject to conserva-
tive loads) are shown on the left, while the non-conservative counterparts are
shown on the right. In particular, the ‘skate’ constraint can be realized (i.) with
a freely-rotating, but non-sliding wheel, or (ii.) with a perfect skate, or (iii.)
by connecting the freely-rotating cylinder to the end of the structure, with the
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Figure 7.2: (Left) The two rigid circular cylinders (of which only one is free of rotating
about its axis) in slipless contact, Fig.7.1, and connected to a double pendulum realize two
types of non-holonomic constraints, called in the following ‘skate’ and ‘violin bow’ constraints,
the former (the latter) transmitting to the structure a reaction tangential to the following
structure (a reaction on a fixed line) similar to the force postulated by Ziegler (Reut). Right:
the original version of the Ziegler’s and Reut’s structures, loaded through non-conservative
forces.

other cylinder initially orthogonal to it and fixed in space. On the other hand,
the ‘violin bow’ constraint can be obtained by connecting the fixed cylinder to
the end of the structure, with the freely-rotating cylinder initially orthogonal to
it and fixed in space, Fig.7.2.

In the present article, a generalization of the structures shown in Fig.7.2
to a system made up of N rigid bars and inclined non-holonomic constraints
is proposed. Such structures are loaded in a conservative way, namely, either
with a dead force F , or with a deformed linear spring (see Figs.7.4 and 7.5 and
details presented in the next Section).

The non-holonomic constraint acting on these structures permits the exis-
tence of infinite equilibrium configurations [85] and of Hopf bifurcations con-
nected to stable limit cycles in the presence of dissipation, as partially antic-
ipated by the motion of the non-holonomic Chaplygin’s sleigh on an inclined
plane [85] and by the problem of shimmy instability [45, 123].

With reference to a column made up of N rigid segments and subject to a
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perfectly aligned non-holonomic constraint (realized for β0 = 0 in Figs.7.4 and
7.5), the trivial configuration becomes the unique quasi-static solution. It is
shown that:

A visco-elastic column subject to the ‘skate’ or the ‘violin bow’ con-
straint and the same structure subject to non-conservative load, re-
spectively of the Ziegler or Reut type, evidences exactly the same
critical loads for flutter (Hopf bifurcation) and divergence, and the
same Ziegler paradox, with the same directionality dependence oc-
curring when multiple sources of dissipation are considered.

More specifically, the directionality dependence in the limit of null viscosity has
been analyzed by Bolotin [24] and Kirillov [62] for non-conservative systems
subject to follower forces, showing that the ideal critical load for the undamped
system may be recovered only for special ratios between different viscosities.

In addition, a ‘viscosity-independent Ziegler paradox’ is found, in which the
flutter load becomes independent of the viscosity, but cannot become higher
than that evaluated for the corresponding system assumed without viscosity
‘from the beginning’. In particular, such a surprising behaviour is shown to
be related to the presence of two specific damping parameters acting on the
proposed structures subject to non-holonomic constraints.

The stability of Hopf bifurcation, and therefore the achievement of limit
cycles in the neighbourhood of the critical point, is influenced by the considered
mechanical system, so that a perfect match between the mechanical behaviour of
the proposed non-holonomic systems and of their non-conservative counterparts
is lost, particularly when non-linearities dominate.

A typical dynamic evolution of a double visco-elastic column connected to
a non-holonomic ‘skate’ constraint at its final end (represented as a non-sliding
wheel) is shown in Fig.7.3. The structure is loaded on the left end through
a dead force of constant magnitude (a conservative load), selected within the
flutter region. The occurrence of flutter is shown, through evaluation of the
first Lyapunov coefficient [70, 80], to correspond to a supercritical Hopf bifur-
cation, so that the complex motion taking place after bifurcation [sketched in
parts (a)-(f) of Fig.7.3] reaches a periodic orbit in the neighbourhood of the
bifurcation point (lower part of Fig.7.3). It may be interesting to note that
the structure shown in Fig. 7.3 is subject to a constant force, so that it would
suffer a varying acceleration in the absence of viscosity. However, the presence
of viscosity (only the rotational viscosity at the hinges is enough) is sufficient to
allow the mechanical system to reach, after a transient phase, a steady motion
with a constant mean velocity, as detailed in Section 7.5.
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Figure 7.3: Dynamics of a visco-elastic double pendulum subject to a ‘skate’ non-holonomic
constraint (realized with a non-sliding wheel) at one end and to a dead load at the other.
When the applied dead force lies within the flutter region, a complex motion is generated
(parts a-f), leading the structure to reach a limit cycle. Such behaviour is visible in the
trajectory of the structure’s end shown in the lower part, exhibiting sharp corners induced by
the non-holonomic constraint. Note that instability permits motion to a structure that would
be at rest in the trivial configuration as the friction parallel to the wheel axis is assumed to
be infinite (non-slip condition).

The presented results provide a new key to theoretically interpret and ex-
perimentally realize dynamic instabilities until now believed to be possible only
as connected to non-conservative loads. Several applications in energy harvest-
ing and soft robotics can be envisaged, but two in particular merit a special
attention, namely, frictional contact and locomotion. In particular, our results
show how a micromechanism might act at a sliding surface between two solids
to reduce friction through instability. Moreover, it will be shown that imposing
rotations (instead than applying forces) to the structures that will be analyzed,
a motion is induced, which means that our results have implications in the prob-
lem of limbless locomotion. The presented results have been submitted to an
international journal [35].
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7.2 Elastic columns with non-holonomic constraints

7.2.1 The column and its loadings
The motion in the X–Y plane is analyzed for an elastic column of total

length L, discretized as a chain of N rigid bars of length li (i = 1, ..., N , so
that L =

∑N
i=1 li), connected to each other with visco-elastic hinges of elastic

stiffness ki and viscous parameter ci, Fig.7.4. It is also worth to underline that
no self-contact phenomena are taken into account in the present analysis.

The first hinge is connected to a rigid block which may only slide along the
X-direction and is loaded in one of the following conservative ways :

• A - elastic device: the rigid block is loaded by imposing a compressive
displacement ∆ at the left end of a linear spring of stiffness K, whose right
end is attached to the rigid block (Fig.7.5);

• B - dead load: the rigid block is subject to a force F (for instance
produced by gravity) of fixed direction parallel to the X-axis (Fig.7.5).

Denoting with Θi(t) the anti-clockwise inclination of the i-th bar with respect
to X-axis and with X0(t) the position of the sliding block along the X-axis
(Fig.7.5), the configuration of the column at generic instant of time t is fully
described through the generalized coordinates vector q(t) with the following
N + 1 components

q(t) = [Θ1(t), ... , Θi(t), ... , ΘN (t), X0(t)]. (7.2)

The undeformed trivial configuration of the system (q(t) = 0
¯
) is given by all

the rigid bars aligned with the X-axis (Θi = 0, i = 1, ..., N) and X0 = 0 (thus
neglecting horizontal rigid motions).

The mass of the column is discretized in N masses mi, one for each rigid
bar and located at a distance di ≤ li from the i-th hinge, so that the position
in time for each mass mi is given by the coordinates Xi(t) and Yi(t), namely,

Xi = X0 +di cos Θi+

i−1∑
j=1

lj cos Θj , Yi(t) = di sin Θi+

i−1∑
j=1

lj sin Θj . (7.3)

Moreover, the sliding block is considered to have mass MX . Generic de-
formed configurations are reported in Fig.7.5 for the two considered structures
subject to conservative loads and to the non-holonomic ‘skate’ and ‘violin bow’
constraints (detailed in the next section).
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Figure 7.4: Two undeformed structures differing only in the non-holonomic constraint
applied at the right end. Each structure is discretized as a chain made up of N rigid bars of
mass mi and connected to each other through rotational visco-elastic springs (with viscosity
parameter ci and stiffness ki, i = 1, ..., N). The first rigid bar on the left (i = 1) is connected
to a rigid block sliding along the X−axis. The two non-holonomic constraints are inclined at
an angle β0 with respect to the last bar. These constraints are a ‘skate’ (upper part) or a
‘violin bow’ (lower part) and constrain the velocity to have a null component in the direction
orthogonal to the skate (realized for instance with a non-sliding wheel) or parallel to a non-
sliding freely rotating cylinder (which is in turn in contact with the ‘violin bow’). In the case
β0 = 0, the two structures reduce to the non-holonomic counterpart of the non-conservative
Ziegler and Reut columns, respectively. Note that the last rigid element of the column reported
in the lower part is ‘T–shaped’, so that the freely-rotating cylinder can continue to transmit
a force to the structure during motion.

7.2.2 The non-holonomic constraints

Two types of non-holonomic constraints (both sketched in Figs.7.4 and 7.5)
are assumed to be acting at the end of the elastic column, singled out by the
coordinates

XL = X0 +

N∑
i=1

li cos Θi, YL =

N∑
i=1

li sin Θi. (7.4)
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Figure 7.5: Deformed configuration for the elastic column subject to the non-holonomic
‘skate’ (left) and ‘violin bow’ (right) constraints. The conservative load is applied via (A) a
prescribed compressive displacement ∆ at the left end of a linear elastic spring of stiffness K
attached to the rigid block or through (B) a dead load F . The particular condition β0 = 0
leads to uniqueness of the trivial quasi-static solution.

Each one of these two constraints generates an unknown reaction p(t) (positive
when compressive), through the imposition of the linear kinematic restriction on
the velocity, Eq.(7.1), which can be expressed in terms of generalized velocities
q̇k (k = 1, ..., N + 1) as

N+1∑
k=1

ak(q, β0)q̇k = 0, (7.5)
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where ak(q, β0) is the vector of coefficients expressing the specific type of non-
holonomic constraint (‘skate’ or ‘violin bow’). Taking into account the reaction
force p, the problem is characterized by N + 2 unknowns. Each of the non-
holonomic constraints is characterized by a mass ML and a rotational moment
of inertia Ir,L, both applied at the end of the final bar (i = N).

As sketched in Figs.7.4 and 7.5, the two non-holonomic constraints can be
obtained from condition (7.1) as follows.

• A ‘skate’ type constraint applied with inclination β0, representing the
angle between the ‘skate’ and the last bar of the column; the skate can
freely rotate about its vertical axis and is constrained to slide parallely
to its cutting edge, so that the only non-null component of the velocity is
parallel to it:[

ẊL ẎL
]
·
[
cos (ΘN + β0)
sin (ΘN + β0)

]
=

Ẋ0 cos (ΘN + β0) +

N∑
i=1

liΘ̇i sin (ΘN + β0 −Θi) = 0.

(7.6)

The vector of the non-holonomic coefficients a(q, β0) shown in the Eq.(7.5)
for this type of constraint is therefore given by

a(q, β0) =
[
l1 sin (ΘN + β0 −Θ1), . . . , lN−1 sin (ΘN + β0 −ΘN−1),

lN sin (β0), cos (ΘN + β0)
]
.

(7.7)

Finally, the reaction force p(t) is always orthogonal to the sliding direction
of the ‘skate’.

• A ‘violin bow’ type constraint applied with inclination β0, represent-
ing the angle between the freely-rotating cylinder and the X−axis; the
‘T-shaped’ rigid element (attached to the N -th rigid bar of the column)
can freely rotate about the contact point with the cylinder and can trans-
late orthogonally to the cylinder’s axis, such that the velocity component
parallel to it must vanish. The coordinates XC and YC of the contact
point C (see Fig.7.5) between the ‘T-shaped’ rigid element and the freely
rotating cylinder is singled out by the coordinates

XC = XL+ζ tan ΘN , YC = YL−ζ, where ζ =
YL + (L−XL) tanβ0

1 + tanβ0 tan ΘN
,
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(7.8)

so that its velocity can be obtained through the Poisson’s theorem as[
ẊC

ẎC

]
=

[
ẊL

ẎL

]
+ Θ̇Ne3 ×

[
XC −XL

YC − YL

]
=

[
ẊL + Θ̇Nζ

ẎL + Θ̇Nζ tan ΘN ,

]
, (7.9)

where e3 is the unit vector orthogonal to the X − Y plane. The non-
holonomic constraint is therefore expressed by the vanishing of the com-
ponent of the velocity along the cylinder’s axis at the point C, namely

(
ẊL + Θ̇N ζ

)
cosβ0 +

(
ẎL + Θ̇N ζ tan ΘN

)
sinβ0 = 0 (7.10)

which, recalling Eq.(7.4), can be rewritten as

Ẋ0 cosβ0 + Θ̇N sinβ0L+

N−1∑
i=1

li sin(β0 −Θi)(Θ̇i − Θ̇N ) = 0. (7.11)

Therefore, the vector a(q, β0), representing the non-holonomic constraint
as introduced in the Eq.(7.5), is given by

a(q, β0) =

[
l1 sin (β0 −Θ1), . . . , lN−1 sin (β0 −ΘN−1),

lN

(
sinβ0L−

N−1∑
i=1

li sin(β0 −Θi)

)
, cosβ0

]
.

(7.12)

Finally, the reaction force p(t) is always directed along the axis of the
freely-rotating cylinder.

7.2.3 Energies and dissipation
The total potential energy V(q) = E(q) − W(q), equal to the difference

between the elastic energy E and the work W done by the external loads, is
given for the considered structural systems by

V(q) = Ξ(q) +
1

2
k1Θ2

1 +
1

2

N∑
i=2

ki (Θi −Θi−1)
2
, (7.13)
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where (note that ∆ is independent of time)

Ξ(q) =


1

2
K [X0 −∆]

2 for elastic device A,

−F X0 for dead loading B.
(7.14)

The expression for the kinetic energy T is the same for both systems A and
B and given by

T (q, q̇) =
1

2
MXẊ0

2
+

1

2
ML

(
Ẋ2
L + Ẏ 2

L

)
+

1

2

N∑
i=1

mi

(
Ẋ2
i + Ẏ 2

i

)
+

1

2
Ir,LΘ̇2

N .

(7.15)

Dissipative effects are taken into account from different viscous sources through
the following Rayleigh dissipation function

Fd(q̇) =
1

2
ce

N∑
i=1

∫ li

0

(Ẋi(si)
2 + Ẏi(si)

2)ds+
1

2
ct,L(Ẋ2

L + Ẏ 2
L ) +

1

2
cr,LΘ̇2

N+

+
1

2
ci Θ̇2

1 +
1

2
ci

N∑
i=2

(Θ̇i − Θ̇i−1)2,

(7.16)

where Xi(si) and Yi(si) are coordinates of the generic point located at the
curvilinear coordinate si along the i-th bar, which can be written as

Xi(si) = X0 + si cos Θi +

i−1∑
j=1

lj cos Θj , Yi(si) = si sin Θi +

i−1∑
j=1

lj sin Θj .

(7.17)

Each (non-negative) linear damping coefficient ce, ci, ct,L, and cr,L intro-
duced in Eq.(7.16) is related to a specific viscous source:

• external translational damping ce, providing a distributed viscous force
along each bar, which may model the air drag during motion;

• internal rotational damping ci, modelling a viscous dissipation induced by
torsion at the hinges (and identical for all the hinges);

148 Alessandro Cazzolli



7.2. Elastic columns with non-holonomic constraints

• translational damping of the non-holonomic constraint ct,L, modelling the
effects of the air drag generated by the device realizing the constraint;

• rotational damping of the non-holonomic constraint cr,L, modelling the
damping generated by pivoting movements at the contact of the device
realizing the constraints, for instance the rotational resistance of a wheel
on a plane.

The presence of these four viscous sources allows to analyze their different
influences on the stability of the structure, an influence which is often stronger
than one might expect [111]. In the quasi-static case, the velocity is null and so
the dissipation function Fd vanishes.

It is remarked that both the loading systems A and B are conservative,
so that the supply of energy is provided for System A by the elastic energy
initially stored in the spring through the compressive displacement ∆ and for
system B by the potential energy of the dead load F . In the stability evaluations
concerning the loading system A, perturbations on the distance ∆ will not be
considered. Finally, functionals (7.13), (7.15) and (7.16) are independent of the
choice of the non-holonomic constraint [which acts on the system via Eq.(7.5)]
and of its inclination β0.

7.2.4 Equations of motion

The equations of motion for the visco-elastic column subject to non-holonomic
constraints can be derived from the d’Alembert-Lagrange equation [85] ex-
pressed for virtual displacements δqk as

N+1∑
k=1

(
d

dt

∂T (q, q̇)

∂q̇k
− ∂T (q, q̇)

∂qk
−Qk(q, q̇) + p(t) ak(q, β0)

)
δqk = 0, (7.18)

where the generalized forces Qk are given by

Qk(q, q̇) = −∂V(q)

∂qk
− ∂Fd(q̇)

∂q̇k
, k = 1, ..., N + 1, (7.19)

and account for the dissipative forces obtained from the dissipation function Fd,
Eq.(7.16), and for the presence of the external energy supply, contained in the
total potential energy V in terms of parameter ∆ for the elastic device A, or
force F for the dead load B, Eq.(7.14).
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In the d’Alembert-Lagrange equation (7.18), the unknown reaction force p(t)
transmitted to the column by the non-holonomic constraint plays the role of a
Lagrangian multiplier enforcing condition (7.5).

Invoking arbitrariness of the virtual displacements δqk, the d’Alembert-
Lagrange equation (7.18) yields

d

dt

∂T (q, q̇)

∂q̇k
− ∂T (q, q̇)

∂qk
−Qk(q, q̇)+p(t) ak(q, β0) = 0, ∀ k = 1, 2, ..., N+1,

(7.20)

which, together with the non-holonomic constraint, Eq.(7.5), provides a system
of N+2 equations in N+2 unknowns, namely, the N+1 generalized coordinates
qk(t) and the non-holonomic constraint reaction p(t).

The equations of motion (7.20) are obtained through the Lagrange formal-
ism, where in particular the existence of non-holonomic conditions on the vari-
ations of the generalized coordinates is introduced by means of the Lagrange
multiplier method. Following Greenwood [52] and Neimark and Fufaev [85],
an alternative formulation based on the so-called quasi-coordinates can also be
exploited, thus leading to a new version of the system (7.20) known in literature
as Boltzmann-Hamel equations. In particular, this latter formulation allows to
eliminate the reaction forces from the analysis, as the non-holonomic constraints
can be introduced by means of some mathematical tricks.

In Appendix B, the governing equations for a non-holonomic system in
quasi-coordinates are shown for the general case and then particularised in the
case of the non-holonomic discrete chain considered in the present Chapter.
Moreover, a numerical simulation is performed in order to compare the solu-
tions obtained through the Lagrange equations (7.20) and the aforementioned
Boltzmann-Hamel equations, showing an excellent agreement between their re-
sults.

7.2.5 Quasi-static response of the column with non-holonomic
constraints

Under quasi-static conditions (q̇(t) = 0
¯
) the kinetic energy and the dissipa-

tion are null (T = Fd = 0, so that Qk = ∂V/∂qk) and the equations of motion
(7.20) simplify to the N + 1 equilibrium equations

∂V(qQS)

∂qQS
k

+ pQS ak(qQS, β0) = 0, ∀ k = 1, 2, ..., N + 1, (7.21)
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to be solved for the unknown reaction force pQS at prescribed values of the spring
displacement ∆ or dead load F . In particular, the total potential energy (7.13)
is a polynomial of degree 2 in the generalized coordinates, so that Eq.(7.21) can
be rewritten as

K(N)
ik qQS

k + pQS ak(qQS, β0) = 0 ∀ i, k = 1, 2, ..., N

∂ Ξ(qQS)

∂X0
+ pQS aN+1(qQS, β0) = 0

(7.22)

where the dependence of the vector ak on the considered quasi-static solution
qQS
k and on the inclination angle β0 is highlighted and

∂ Ξ(q)

∂X0
=

{
K [X0(t)−∆] elastic device A,

−F dead load B,
(7.23)

while the N ×N stiffness matrix K(N)

K(N) =



k1 + k2 −k2

−k2 k2 + k3 −k3

−k3 k3 + k4
. . .

. . . . . . −kN−1

−kN−1 kN−1 + kN −kN
−kN kN


, (7.24)

is tridiagonal, symmetric and positive-definite. Moreover, it is also independent
of the type of non-holonomic constraint applied at the end of the structure and
of the loading condition. It can be proven (this delicate proof is deferred to
Appendix C.1) that the determinant of matrix (7.24) is given by the product of
the N rotational stiffness parameters kj , so that

detK(N) =

N∏
j=1

kj . (7.25)

Note that the loading condition in the specific case of a straight column with
β0 = 0 is given by the (N +1)–th equation of system (7.22) where aN+1(0, 0) =
1, yielding

pQS =

{
K [∆−X0] elastic device A,

F dead load B.
(7.26)
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Under the quasi-static assumption the velocities are null and the non-holonomic
constraint (7.1) is automatically satisfied but the equilibrium equations (7.21),
which still depend on the non-holonomic constraint through the coefficients ak,
contain N + 2 unknowns. As a consequence, the value of one of the gener-
alized coordinates qQS

k or the reaction force pQS can be selected within a one-
dimensional manifold of equilibrium states [85] and the remaining unknowns
solved using Eqs.(7.21). In other words, the columns admit an infinite set of
quasi-static solutions.

As examples of multiple solutions, non-trivial equilibrium configurations are
shown in Fig.7.6 for two columns made up of 7 rigid bars and loaded through
the horizontal spring (loading condition A). The two columns differ in the di-
mensionless parameter KL∆/k, being equal to 0.1 (above) or 1.5 (below), and
in the inclination of the ‘skate’, β0 = π/4 (above) or π/2 (below). The two
columns are loaded by a force K(XQS

0 − ∆), which is prescribed through the
application of both ∆ and XQS

0 = 0.
The straight configuration (with null bar rotations, ΘQS

k = 0) can be a so-
lution for the equilibrium equations (7.21) for both non-holonomic ‘skate’ and
‘violin’ bow constraints, at every inclination β0, in the following cases:

• When β0 6= 0, the straight configuration is a solution whenever the reac-
tion force at the non-holonomic constraint is null (pQS = 0), corresponding
to an unstressed column and which occurs when XQS

0 = ∆ for the elastic
device A or when F = 0 for every value of XQS

0 in the case of the dead
loading B.

This statement can be proven by considering that the first N equations
of the system (7.22) at qQS = 0 are characterized by a non-null vector
ak(0, β0) 6= 0, so that the trivial configuration corresponds to a null value
of the reaction force pQS = 0, and consequently to null external load
∂ Ξ/∂X0 = 0 (namely XQS

0 = ∆ for the device A or F = 0 for the device
B), as shown by the (N + 1)-th equation of the system (7.22);

• When β0 = 0, the straight configuration is the unique equilibrium solu-
tion admitted by the system (7.21). The proof of this statement can be
demonstrated with equilibrium consideration; a formal proof is difficult
and deferred to Appendix C.2.

In contrast with the case β0 6= 0, now the reaction force provided by
the non-holonomic constraint pQS may be different from zero, so that the
elastic chain in its straight configuration may be axially-stressed as the
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Figure 7.6: Examples of non-unique (and non-trivial) equilibrium configurations for a column
made up of 7 rigid bars and subject to the non-holonomic ‘skate’ constraint. Equilibrium has
been solved by fixing both XQS

0 = 0 and ∆, in particular, two pairs of non-unique solutions
are reported for KL∆/k = 0.1 and β0 = π/4 (upper part), and KL∆/k = 1.5 and β0 = π/2
(lower part).

result of the imposition of F or ∆ (when XQS
0 6= ∆).3

In the next Section, the stability is analyzed for a generic configuration of
the elastic column subject to both loading conditions A and B and both the
non-holonomic constraints. The condition β0 = 0 finally restricts the analysis
to the trivial configuration qQS = 0

¯
only, where rigid body motions are neglected

by setting XQS
0 = 0.

3The fact that the straight configuration for β0 = 0 can be arbitrarily stressed is obvious.
Formally, since ak(0, 0) = 0 but aN+1(0, 0) 6= 0 for both the non-holonomic constraints,
the first N equations of system (7.22) particularized for qQS = 0 are always satisfied for any
value of the reaction force pQS, which is given by ∂ Ξ/∂X0 and aN+1 through the (N + 1)-th
equation in (7.22).
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7.3 Linearized dynamics and stability of the col-
umn with non-holonomic systems

A first-order expansion of Eqs.(7.20) about a generic quasi-static solution
for both the generalized coordinates qQS and the Lagrangian multiplier pQS,
therefore satisfying Eqs.(7.21), can be performed by assuming

q(t) = qQS + εq̂(t), p(t) = pQS + εp̂(t), (7.27)

where ε is an arbitrarily small real parameter and {q̂(t), p̂(t)} is the set denoting
the perturbation fields. From the quasi-static nature of the configuration qQS,
it follows that

q̇(t) = ε ˙̂q(t), q̈(t) = ε¨̂q(t). (7.28)

A Taylor series expansion of the Eqs.(7.20) about ε = 0 yields the following
linearized equations of motion for the perturbed fields, which, removing the
superscript ‘ ̂ ’, are expressed by{

Mq̈ + Cq̇ + (K + pQS G)q + pw = 0,

w · q̇ = 0,
(7.29)

as functions of the time-dependent ‘load’ perturbation p. M, C, and K are,
respectively, the mass, damping and elastic stiffness (symmetric and positive
definite) matrices of dimension N + 1, while the geometric stiffness matrix G
is non-symmetric as influenced by the presence of the non-holonomic constraint
reaction pQS. The vector w is related to the linearized version of the non-
holonomic constraint (7.6) or (7.11) for the ‘skate’ and ‘violin bow’, respectively.
A comparison with Eqs.(7.22) and (7.24) shows that the stiffness matricesK and
K(N) are related through the second derivative of the function Ξ with respect
to the generalized coordinate X0 [see Eq.(7.13)] as

K =

 K(N) 0

0
∂2 Ξ(q)

∂X2
0

 where
∂2 Ξ(q)

∂X2
0

=

{
K for elastic device A,

0 for dead load B.

(7.30)

The geometric stiffness matrixG is the gradient of vector a(q, β0) calculated
with respect to the generalized coordinates vector q and evaluated at the generic
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quasi-static solution qQS

G =
∂ a(q, β0)

∂ q

∣∣∣∣
q=qQS

, (7.31)

and is strictly related to the choice of the non-holonomic constraint through
coefficients ak given by Eqs.(7.7) and (7.12) for the ‘skate’ or ‘violin bow’ con-
straint, respectively. Following the same notations adopted for K, the matrix
G can be represented as

G =

[
G(N) 0
g 0

]
, (7.32)

where

g =

{
[0, 0, ...., 0, − sin (ΘQS

N + β0)] for the skate constraint,

0 for the violin bow constraint.
(7.33)

In the previous equations, G(N) is a N × N matrix and g is a N -component
vector. The expressions for the N × N non-symmetric and singular geomet-
ric stiffness matrices for the ‘skate’ and ‘violin bow’ constraints, respectively
denoted by G(N)

S and G(N)
V , are

G(N)
S =


−γS,1 γS,1

−γS,2 γS,2
. . .

...
−γS,N−1 γS,N−1

0

 , G(N)
V =


−γV,1

−γV,2
. . .

−γV,N−1

γV,1 γV,2 . . . γV,N−1 0


(7.34)

where the only non-vanishing components lie on the diagonal and on the N -th
column (N -th row) for the ‘skate’ (‘violin bow’) constraint. The coefficients γS,i
and γV,i are given by

γS,i = li cos (ΘQS
N + β0 −ΘQS

i ) , γV,i = li cos (β0 −ΘQS
i ) , ∀i = 1, ..., N−1,

while γS,N = γV,N = 0.
A property that will be useful later, holding for every (null or non-null) value

of β0, is the following (the proof is deferred to Appendix C.3)

det
(
K(N) + pQSG(N)

)
= det

(
K(N)

)
=

N∏
j=1

kj . (7.35)
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The symmetric and positive-definite mass and damping matrices defined in
Eq.(7.29) can be rewritten as

M =

[
M(N) m
mᵀ m̂

]
, C =

[
C(N) c
cᵀ ĉ

]
(7.36)

where M(N) and C(N) are N ×N matrices, m and c are N−component column
vectors, both dependent on vector qQS, and m̂ and ĉ are positive real numbers
depending on the mass and damping coefficients acting along the X0 generalized
coordinate. Moreover, the superscript ‘ ᵀ ’ denotes the transpose operator. It is
obvious that M and C are independent of the choice of both the non-holonomic
constraint (skate or violin bow) and the loading condition (elastic device A or
dead load B).

Finally, the N−component column vector w expressing the non-holonomic
constraint, linearized about a generic quasi-static solution qQS, is given by

w = [l1 sin (ΘQS
N + β0 −ΘQS

1 ) , l2 sin (ΘQS
N + β0 −ΘQS

2 ) , ....., lN sin (β0) , cos (ΘQS
N + β0)]ᵀ skate,

[l1 sin (β0 −ΘQS
1 ) , ....., lN−1 sin

(
β0 −ΘQS

N−1

)
, L sinβ0 −

∑N−1
i=1 li sin (β0 −ΘQS

i ) , cosβ0]ᵀ violin bow.

(7.37)

For convenience, the vector w is rewritten in the following form

w = [w(N), wN+1]ᵀ (7.38)

where w(N) is the vector collecting the first N components of w.
Assuming time-harmonic perturbations qk = Ake

ωt and p = Ape
ωt, the

differential system (7.29) reduces to[
Mω2 + Cω + K + pQS G w

ωwᵀ 0

]
A = 0, (7.39)

where vector A collects the unknown N + 2 amplitudes

A = [A1, A2, ...., AN , AN+1, Ap]
ᵀ, (7.40)

and the singularity of the matrix defined by Eq.(7.39) provides the value of ω
for which non-null perturbations A 6= 0 exist.

Because all the coefficients in the last row of the matrix in Eq.(7.39) are
linear in ω, the trivial eigenvalue ω = 0 is always a solution for the problem.
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According to Neimark and Fufaev [85], this peculiarity is usual in non-holonomic
systems, so that the trivial eigenvalue is omitted in order to perform the stability
analysis of the configurations belonging to the manifold of equilibrium states.
The stability is lost when the determinant of the relevant matrix in Eq.(7.39)
vanishes,

det

[
Mω2 + Cω + K + pQS G w

wᵀ 0

]
= 0, (7.41)

a condition depending on the non-holonomic reaction pQS, related through the
(N + 1)–th equation of the system (7.22) to the displacement ∆ (loading con-
dition A) or the dead load F (loading condition B).

Due to the fact that the last row and column of the matrix appearing in
Eq.(7.41) are independent of the eigenvalue ω, the vanishing of its determinant
provides a polynomial equation in ω of order m = 2N , with real coefficients ρj
(j = 0, ...,m) in the form

ρ0 ω
m + ρ1 ω

m−1 + ... + ρm−1 ω + ρm = 0, (7.42)

where in the specific case of null damping forces (C = 0) all the terms ρj with
odd index j are equal to zero.

Two equivalent techniques can be exploited to assess the stability of config-
urations belonging to the manifold of equilibrium states. The first technique
is based on the direct evaluation of the eigenvalues ω, so that a configuration
is stable if the real part of every eigenvalue ω is non-positive. The other tech-
nique is the Routh-Hurwitz criterion, which, for ρ0 > 0 in Eq.(7.42), relates
stability to the positiveness of every determinant Di of the square matrix Hi

(i = 1, ...,m) defined as the upper-left corner square matrix of rank i of the
Hurwitz matrix Hm, defined as

Hm =



ρ1 ρ0 0 · · · 0
ρ3 ρ2 ρ1 ρ0 0 · · · 0
ρ5 ρ4 ρ3 ρ2 ρ1 ρ0 0 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·

ρ2m−1 ρ2m−2 · · · ρm


. (7.43)

It is worth noting that the direct inspection of the eigenvalues is of difficult
use, as analytical expressions for eigenvalues are hardly obtained for systems
with many degrees of freedom N .
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The determinant condition (7.41) is strongly influenced by both the choice
of the non-holonomic constraint, through the geometric stiffness matrix G and
vectorw, and the choice of the loading conditions, through the term Ξ appearing
in the stiffness matrix (7.30). Therefore, critical loads for β0 6= 0 depend on the
quasi-static configuration under consideration, on the type of non-holonomic
constraint, and on the loading conditions.

7.3.1 Buckling

Buckling is a quasi-static bifurcation of the equilibrium path driven by a
slow increase in either ∆ or F , providing a slow variation in the non-holonomic
reaction pQS. Therefore, buckling can be determined by setting the inertial
terms to zero, ω = 0, in Eq.(7.42), thus imposing the condition ρm = 0. Once
pQS
cr is evaluated, ∆cr or Fcr follow from the last equation of the system (7.22).
The buckling conditions ρm = 0 for a generic quasi-static configuration is

expanded in the Appendix C.4 for both the non-holonomic constraints and both
the loading conditions at the initial end. An interesting result is found, namely,
that buckling loads are excluded for all possible trivial or non-trivial solutions
for the ‘violin bow’ constraint with prescribed force F , case (B), a result which
is not obvious for β0 6= 0.

For β0 = 0 and for all considered non-holonomic constraints and loading
conditions, the trivial configuration (qQS = 0) is the unique quasi-static solu-
tion (see Appendix C.2). Such statement leads to the obvious conclusion that
buckling loads are absent, which is confirmed by the fact that the components
of the vector w always reduce to

w(N) = 0, wN+1 = 1, (7.44)

so that the buckling condition ρm = 0 becomes

det
(
K(N) + pQSG(N)

)
= 0, (7.45)

which is never satisfied as condition (7.35) holds true.
Buckling will not be further considered in the following and the stability

analysis will be restricted to the straight configuration of the column with β0 =
0.
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7.3.2 Flutter and divergence instabilities for the straight
column with β0 = 0

For every specific chain composed by N rigid bars, it is proven now that all
the critical loads (for flutter and divergence instability) are the same for both
considered non-holonomic constraints (of the ‘skate’ or ‘violin bow’ type) in the
case β0 = 0. This statement can be proven by considering the Eq.(7.34), where
in the case β0 = 0 the coefficients γi for both ‘skate’ and ‘violin bow’ constraints
become the same γS,i = γV,i = li, so that

GS = Gᵀ
V and G(N)

S = G(N)ᵀ
V , (7.46)

and therefore the geometric stiffness matrix for the ‘skate’ constraint is equal to
the transpose of the geometric stiffness matrix for the ‘violin bow’ constraint.
Due to the Eqs.(7.44), the determinant condition (7.41) reduces to

det
[
M(N)ω2 + C(N)ω + K(N) + pQSG(N)

]
= 0, (7.47)

where the symmetric matrices M(N), C(N) and K(N) do not depend on the type
of non-holonomic constraint. The property of the determinant detB = detBᵀ

closes the proof. In fact, the critical loads for both ‘skate’ and ‘violin bow’
constraints in the case β0 = 0 are the same because the related characteristic
polynomial is provided by the same determinant condition (7.47).

In the following, the analysis will be restricted to a double pendulum N = 2.

7.4 The double pendulum subject to the skate
and violin bow constraints

The geometric and inertial properties are considered for simplicity coincident
for the two bars, so that {li, mi, di} = {l, m, d} (i = 1, 2) and L = 2l, with a
total mass M = 2m. By introducing the characteristic time T = L

√
M/k of

the structure and the stiffness k = k2 for the rotational springs, the following
dimensionless quantities can be introduced

χ =
X0

L
, ∆̃ =

∆

L
, d̃ =

d

l
, l̃ =

l

L
=

1

2
, τ =

t

T
, p̃ =

pL

k
, F̃ =

FL

k
,

M̃X =
MX

M
, M̃L =

ML

M
, m̃ =

m

M
=

1

2
, Ĩr,L =

Ir,L
L2M

, K̃ =
KL2

k
,

k̃1 =
k1

k
, c̃e =

ceL
2

√
kM

, c̃t,L =
ct,LL√
kM

, c̃r,L =
cr,L

L
√
kM

, c̃i =
ci

L
√
kM

,
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(7.48)

Henceforth, the superimposed dot ‘ ˙ ’ denotes the derivative with respect to
the dimensionless time τ . For both cases of the ‘skate’ and ‘violin bow’ non-
holonomic constraints, the non-linear equations of motion (7.20) are given by

c̃e
8

(
4

3
Θ̇1 +

1

2
Θ̇2 cos(Θ1 −Θ2)− 3 sin Θ1χ̇

)
+ c̃i

(
2Θ̇1 − Θ̇2

)
+

+
M̃L

4

(
Θ̈1 + Θ̈2 cos(Θ1 −Θ2) + Θ̇2

2 sin(Θ1 −Θ2)− 2 sin Θ1χ̈
)

+

+
c̃t,L
4

(
Θ̇1 + Θ̇2 cos(Θ1 −Θ2)− 2 sin Θ1χ̇

)
+ p̃ ã1 + (1 + k̃1)Θ1+

−Θ2 +
1

8

[
4d̃2Θ̈1 + d̃ Θ̈2 cos(Θ1 −Θ2) + d̃ Θ̇2

2 sin(Θ1 −Θ2)+ (7.49a)

− 2χ̈
(
d̃ sin Θ1 + sin Θ2

)
+ Θ̈1 − 2 Θ̇2 cos Θ2χ̇

]
= 0

c̃e
8

(
1

2
Θ̇1 cos(Θ1 −Θ2) +

1

3
Θ̇2 − sin Θ2χ̇

)
+ Ĩr,LΘ̈2 + c̃r,L Θ̇2+

+ c̃i

(
Θ̇2 − Θ̇1

)
+
c̃t,L
4

(
Θ̇1 cos(Θ1 −Θ2) + Θ̇2 −

1

2
sin Θ2χ̇

)
+

+
1

8

(
d̃2Θ̈2 + d̃ Θ̈1 cos(Θ1 −Θ2)− d̃ Θ̇2

1 sin(Θ1 −Θ2)− 2d̃ sin Θ2χ̈+

+ 2 Θ̇1 cos Θ2χ̇
)

+p̃ ã2 + Θ2 −Θ1+ (7.49b)

+
M̃L

4

(
Θ̈1 cos(Θ1 −Θ2)− Θ̇2

1 sin(Θ1 −Θ2) + Θ̈2 − 2 sin Θ2χ̈
)

= 0

c̃e
8

(
8χ̇− 3 Θ̇1 sin Θ1 − Θ̇2 sin Θ2

)
+
c̃t,L
2

(
2χ̇− Θ̇1 sin Θ1 − Θ̇2 sin Θ2

)
+

+
1

4

(
4χ̈− d̃ Θ̈1 sin Θ1 − d̃ Θ̇2

1 cos Θ1 − d̃ Θ̈2 sin Θ2 − d̃ Θ̇2
2 cos Θ2+

− Θ̈1 sin Θ2 − Θ̇1Θ̇2 cos Θ2

)
+ M̃X χ̈+ p̃ ã3 +

∂ Ξ̃

∂ χ
+ (7.49c)

+
M̃L

2

(
2χ̈− Θ̈1 sin Θ1 − Θ̇2

1 cos Θ1 − Θ̈2 sin Θ2 − Θ̇2
2 cos Θ2

)
= 0

ã1 Θ̇1 + ã2 Θ̇2 + ã3χ̇ = 0 (7.49d)
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where {χ, Θ1, Θ2} are functions of the dimensionless time τ and

Ξ̃ =


1

2
K̃
[
χ(τ)− ∆̃

]2
for elastic device A,

−F̃ χ(τ) for dead loading B.
(7.50)

The dimensionless non-holonomic constraint (7.49d) is expressed through
coefficients ãi representing the dimensionless coefficients of Eqs.(7.7) and (7.12).
In particular, the coefficients ãi are expressed

• for the ‘skate’ non-holonomic constraint by

ã1 =
1

2
sin(β0−Θ1 +Θ2), ã2 =

1

2
sin(β0), ã3 = cos(β0 +Θ2), (7.51)

• for the ‘violin bow’ non-holonomic constraint by

ã1 =
1

2
sin(β0 −Θ1), ã2 = sin(β0)− 1

2
sin(β0 −Θ1), ã3 = cos(β0).

(7.52)

Henceforth, the analysis is restricted to the case when β0 = 0, corresponding
to the non-holonomic counterpart of the Ziegler and Reut double pendulums.
The mass M, damping C and elastic stiffness K matrices in Eqs.(7.29) can
easily be evaluated for the trivial equilibrium solution qQS = 0 and β0 = 0.
Their dimensionless counterparts can be written as

M̃
(2)

=

 1
8

(
d̃2 + 1 + 2M̃L

)
1
8 (d̃+ 2M̃L) 0

1
8 (d̃+ 2M̃L) Ĩr,L + 1

8 (d̃2 + 2M̃L) 0

0 0 M̃X + 1 + M̃L

 , (7.53)

C̃
(2)

=

 2 c̃i + 1
4 c̃t,L + 1

6 c̃e
1
4 c̃t,L + 1

16 c̃e − c̃i 0

1
4 c̃t,L + 1

16 c̃e − c̃i c̃r,L + c̃i + 1
4 c̃t,L + 1

24 c̃e 0

0 0 c̃t,L + c̃e

 , (7.54)

K̃
(2)

=


1 + k̃1 −1 0
−1 1 0

0 0
∂2 Ξ̃

∂ χ2

 . (7.55)
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The difference between the ‘skate’ and the ‘violin bow’ non-holonomic con-
straints lies in their respective geometric stiffness matrices GS and GV , which
for β0 = 0 are one the transpose of the other, Eq.(7.46). The dimensionless
expression for these matrices is

G̃
(2)

S = G̃
(2) ᵀ
V =

1

2

 −1 1 0
0 0 0
0 0 0

 . (7.56)

The characteristic polynomial defining the stability properties for both the
‘skate’ and ‘violin bow’ non-holonomic constraints, Eq.(7.47), for a system of
two rods (N = 2) with β0 = 0 becomes

det
[
M̃(2)Ω2 + C̃(2)Ω + K̃(2) + p̃QSG̃(2)

]
= 0, (7.57)

where Ω = ω T is the dimensionless eigenvalue and M̃(2), C̃(2), K̃(2) and G̃(2)

are the 2 × 2 upper-left corner partitions of matrices (7.53), (7.54), (7.55) and
(7.56), respectively.

As a consequence of the determinant property detB = detBᵀ (holding for
every matrix B), the same loads leading to the vanishing of the determinant
(7.57), which include the critical loads, are obtained for both non-holonomic
constraints of the ‘skate’ and ‘violin bow’ type.

Note that the dimensionless mass M̃X of the sliding block does not appear
in the mass matrix M̃(2), Eq.(7.53), so that it does not influence the value of
the critical loads.

Eq.(7.57) leads to a 4th-order polynomial equation in the eigenvalues Ω,

ρ0 Ω4 + ρ1Ω3 + ρ2Ω2 + ρ3Ω + ρ4 = 0, (7.58)

where coefficients ρi (i = 0, ..., 4) can be evaluated through the Cayley-Hamilton
theorem as (details are deferred to Appendix C.5, while the explicit expression
for ρi is included in the Appendix C.8)

ρ0 = det M̃(2), ρ1 = trM̃(2) trC̃(2) − tr
[
M̃(2)C̃(2)

]
,

ρ2 = trM̃(2) trK̃(2)
Tot − tr

[
M̃(2)K̃(2)

Tot

]
+ det C̃(2),

ρ3 = trC̃(2) trK̃(2)
Tot − tr

[
C̃(2)K̃(2)

Tot

]
, ρ4 = det K̃(2)

Tot = det K̃(2),

(7.59)
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where ‘tr’ defines the trace operator and the following definition has been used

K̃(2)
Tot = K̃(2) + p̃QSG̃(2). (7.60)

The coefficients ρ0 and ρ4 are assumed to be always greater than zero, a
condition expressing a non-vanishing determinant for the matrices M̃(2) and
K̃(2), respectively. Such assumption is automatically satisfied when k̃1 > 0 and
at least one of the positive input parameters d̃, M̃L and Ĩr,L is different from
zero. Moreover, the coefficient ρ1 is always greater than zero when at least one
viscosity parameter takes non null value.

The eigenvalues Ω of the characteristic equation(7.58) can be therefore ana-
lyzed as functions of the reaction p̃QS of the non-holonomic constraint.

It is important to remark that the polynomial (7.58), obtained for the visco-
elastic double pendulum subject to the non-holonomic constraint, coincides with
the corresponding equation holding when a non-conservative load (of the Ziegler
or Reut type) is applied, so that all the instability thresholds –flutter and
divergence– are shared between the non-conservative systems and their con-
servative counterparts subject to non-holonomic constraint. Therefore,

the presence of non-holonomic constraints may induce flutter and divergence
instabilities in mechanical systems subject to conservative loads, a

circumstance usually considered impossible.

Flutter instability. According to Ziegler [123], the Hurwitz matrix H4 for
N = 2, Eq.(7.43) with m = 4, is equal to

H4 =


ρ1 ρ0 0 0
ρ3 ρ2 ρ1 ρ0

0 ρ4 ρ3 ρ2

0 0 0 ρ4

 . (7.61)

Because ρ1 and ρ4 are strictly positive, D1 is also always positive while
D4 = ρ4D3 is not fundamental, so that the stability condition is given by the
two following inequalities{

D2 = ρ1 ρ2 − ρ0 ρ3 > 0,
D3 = (ρ1 ρ2 − ρ0 ρ3) ρ3 − ρ2

1 ρ4 > 0.
(7.62)

The imposition of the two inequalities (7.62) is equivalent to impose only that
related to the determinant D3 subject to the condition of positive values for the
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coefficients ρ2 and ρ3. Therefore, the critical flutter load p̃QS
flu is given by the

condition

(ρ1 ρ2 − ρ0 ρ3) ρ3 − ρ2
1 ρ4 = 0, ρ2 > 0, ρ3 > 0. (7.63)

Divergence instability. By considering the real part of the eigenvalues Ω,
the bifurcation for divergence can be obtained as the roots of a fifth-order poly-
nomial in the non-dimensional reaction p̃QS (see Appendix C.6 for details) given
by

[
27
(
ρ2

1 ρ4 + ρ0 ρ
2
3

)
− 9 ρ2(8 ρ0 ρ4 + ρ1 ρ3) + 2 ρ3

2

]2
+

− 4
(
ρ2

2 − 3 ρ1 ρ3 + 12 ρ0 ρ4

)3
= 0.

(7.64)

The real roots p̃QS of Eq.(7.64) can be exploited to investigate the divergence
load corresponding to vanishing imaginary parts of the eigenvalues. The diver-
gence load p̃QS

div can be therefore analytically computed as a root of Eq.(7.64)
corresponding to at least a couple of positive eigenvalues Ω. Moreover, the
Eq.(7.64) is a quintic in the non-holonomic constraint reaction for the general
case and a quartic in the special case c̃e = c̃t,L = c̃r,L = 0 and c̃i 6= 0.

7.4.1 Critical load for flutter and divergence in the ideal
case of null dissipation

In the ideal case of null dissipation, when all the damping forces are absent
(C̃(2) = 0) ‘from the beginning’, the eigenvalues Ω can be evaluated as

Ω = ±

√
±
√(

trM̃(2) trK̃(2)
Tot−tr

[
M̃(2)K̃(2)

Tot

])2
−4 det M̃(2) det K̃(2)−

(
trM̃(2) trK̃(2)

Tot−tr
[
M̃(2)K̃(2)

Tot

])
2 det M̃(2)

,

(7.65)

so that the critical load p̃QS for flutter and divergence instabilities can be com-
puted through the Eq.(7.64) in the case ρ1 = ρ3 = 0 (for which the Eq.(7.63) is
automatically satisfied)(

trM̃(2) trK̃(2)
Tot − tr

[
M̃(2)K̃(2)

Tot

])2

− 4 det M̃(2) det K̃(2) = 0, (7.66)
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The instability loads corresponding to flutter p̃QS
flu and divergence p̃QS

div can be
written introducing the following notation

p̃QS
flu = P0(ξ), p̃QS

div = D0(ξ), (7.67)

where the subscript ‘0’ denotes the absence of damping coefficients within the
mathematical model from the beginning and ξ = [d̃, M̃L, Ĩr,L, k̃1] is the vector
collecting all the input parameters describing the magnitude and distribution
of mass and stiffness of the system. Using the above notation, it follows that{ P0(ξ)

D0(ξ)

}
= 2

d̃2(k̃1 + 2) + 2d̃+ 8Ĩr,L(k̃1 + 1) + 2(k̃1 + 4)M̃L + 1

d̃2 + d̃+ 8Ĩr,L + 4M̃L

∓ 4

√
k̃1

(
d̃4 + 8d̃2Ĩr,L + 2M̃L(2(d̃− 1)d̃+ 8Ĩr,L + 1) + 8Ĩr,L

)
d̃2 + d̃+ 8Ĩr,L + 4M̃L

.

(7.68)

The eigenvalues Ω for the ideal undamped double pendulum are investigated
in Fig. 7.7. Assuming d̃ = 1/2, M̃L = 15, Ĩr,L = 15, k̃1 = 50, or equivalently
ξ̂ = [1/2, 15, 15, 50], two different representations for the real and imaginary
parts of Ω are shown as functions of the dimensionless load p̃QS. The figure
shows the presence of two critical loads corresponding to flutter (complex con-
jugate eigenvalues) and divergence (real eigenvalues) instabilities, which can be
calculated from Eq.(7.68) as

P0(ξ̂) =
20

723

(
3102−

√
120482

)
≈ 76.2073,

D0(ξ̂) =
20

723

(
3102 +

√
120482

)
≈ 95.4109.

(7.69)

7.4.2 The damped case and the Ziegler destabilization
paradox for structures subject to non-holonomic con-
straints

The introduction of viscous dissipative forces in the model of structures sub-
ject to non-conservative forces leads to the well-known ‘Ziegler destabilization
paradox’ [62],[63],[64],[122]. The paradox consists in a substantial (and unex-
pected) decrease in the critical load for flutter instability when a small damping
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Figure 7.7: Flutter and divergence loads for a (conservative) elastic double pendulum, sub-
ject to a non-holonomic constraint and loaded through compression of a linear spring. Real
and imaginary parts of the eigenvalues Ω are reported as functions of the load p̃QS. The ideal
undamped case is considered, assuming d̃ = 1/2, M̃L = 15, Ĩr,L = 15, k̃1 = 50.

is introduced. Furthermore, such critical load remains lower than the ideal one
P0 (evaluated by considering null viscosity ‘from the beginning’, Eq.(7.68)) even
in the limit of vanishing viscosity.

In order to assess the existence of such a paradox in the presence of non-
holonomic constraints, the critical loads for the double pendulum are obtained
keeping into account all the four damping sources introduced in the governing
equations of motion. The evaluation of the critical loads causing flutter insta-
bilities can be obtained analytically by means of the Routh-Hurwitz criterion
(case m = 4) through the evaluation of the minor determinants of (7.61), and
in particular via Eq.(7.63).

In order to evaluate the critical load of flutter and divergence by consider-
ing the effect of the four damping coefficients at the same time, the following
notation is introduced

p̃QS
flu = Pd(c, ξ), p̃QS

div = Dd(c, ξ), (7.70)

where the subscript ‘d’ highlights the presence of dissipation, while c = {c̃t,L,
c̃r,L, c̃i, c̃e} is the dissipation vector collecting the four viscosity parameters of
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the system. The dissipation vector can be represented as c = rϕ, where r ≥ 0
measures the dissipation magnitude while ϕ collects the direction cosines within
the four-dimensional space defined by c

ϕ =


cosφ1

sinφ1 cosφ2

sinφ1 sinφ2 cosφ3

sinφ1 sinφ2 sinφ3

 . (7.71)

The three angles φ1, φ2 and φ3 are restricted to range between 0 and π/2 for
limiting the dissipation parameters to non-negative values, so that the critical
load for flutter (7.70)1 can be alternatively expressed as

Pd = Pd(r, φ1, φ2, φ3, ξ). (7.72)

Eq.(7.71) allows to take limits for the vanishing of any number of damping
coefficients, ranging from 1 to 4. The limits for vanishing viscosities obtained
keeping some of them fixed and the others tending to zero provide the same
flutter loads that can be obtained by neglecting from the beginning the damping
sources made to vanish, so that that there is no paradox. Therefore, the Ziegler
paradox only occurs in the case when all the damping sources are made to
vanish.

The limit value P∗d for the flutter load Pd, calculated when all 4 viscosities
vanish, can be calculated by taking the limit for r → 0, namely,

P∗d (φ1, φ2, φ3, ξ) = lim
r→0
Pd(r, φ1, φ2, φ3, ξ). (7.73)

The symbolic expression for P∗d for a generic direction ϕ and input parameters
ξ is cumbersome so that a direct proof of specific behaviours becomes awkward.
Nevertheless, based on a very large number of parametric analyses for the vector
ϕ, the following features were always found to be verified:

• The limit flutter load P∗d strongly depends on the direction ϕ and is never
higher than the ideal flutter load P0 found for the undamped system,
Eq.(7.68), namely,

P∗d (φ1, φ2, φ3, ξ) ≤ P0(ξ), (7.74)

where, when damping coefficients are non-negative, the equality sign can
be attained only for specific directions ϕ.
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The minimum value for the critical flutter load is always the smallest of
the four ones evaluated taking the limit of only one vanishing viscosity
(while the remaining three are assumed null),

min
φ1, φ2, φ3

{P∗d (φ1, φ2, φ3, ξ))} ≡ min{P∗d (0, 0, 0, ξ), P∗d (π/2, 0, 0, ξ),

P∗d (π/2, π/2, 0, ξ), P∗d (π/2, π/2, π/2, ξ)}.
(7.75)

Differently, the maximum value can either be the maximum over the 4
mentioned values or P0, the latter obtained along special directions ϕ.

• The limit of the divergence load is independent of the direction ϕ and
equal to the ideal divergence load D0 obtained for the system with no
damping ‘from the beginning’,

D0(ξ) = lim
r→0
Dd(r, φ1, φ2, φ3, ξ), (7.76)

so that, in other words, no paradox is present for divergence instability
load.

In the following paragraphs, the analytical expressions for the critical flutter load
are reported for the four specific cases where only one and two damping sources
are present. Such equations are introduced to illustrate the different effects
of dissipative sources on instability and to show that a viscosity-independent
Ziegler paradox may exist.

Influence of one damping source

The influence of each dissipation source on the flutter loads is now analyzed
in detail, while the remaining three sources are considered null.

Internal damping c̃i (c̃e = c̃t,L = c̃r,L = 0). The flutter load can be evalu-
ated through the Routh-Hurwitz criterion, Eq.(7.63), providing the expression
for the critical load Pd(c̃i, ξ) as a function of the internal damping coefficient
and the input parameters ξ = [d̃, M̃L, Ĩr,L, k̃1]. The exact solution is reported
in Appendix C.9, together with the specific case of vanishing damping, c̃i → 0.
The limit value shows (the proof was obtained using the command Reduce of
Mathematica®the occurrence of the Ziegler paradox for every values of ξ, so
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that the critical load for flutter is never higher than that related to the ideal
case of null damping ‘from the beginning’.

Assuming ξ̂ = [1/2, 15, 15, 50] as seen in Fig.7.7, the value of the critical
load of flutter is given by

Pd(c̃i, ξ̂) =
64

723
c̃2i +

4410529058

57927483
,

showing the existence of the Ziegler paradox as Pd(c̃i → 0, ξ̂) ≈ 76.1388. The
divergence load can be analytically evaluated through Eq.(7.64), which is now
a quartic in the load, leading to (7.76) for vanishing viscosity ci → 0, thus
excluding Ziegler paradox for divergence.

The real and imaginary parts of the eigenvalues, solutions for the fourth-
order polynomial Eq.(7.58), are reported in Fig.7.8 as functions of the dimen-
sionless reaction load p̃QS in the particular case c̃i = 1.5. Note that the critical
loads for flutter and divergence instabilities are Pd ≈ 76.338 and Dd ≈ 108.916
respectively.

Figure 7.8: Flutter and divergence loads for a visco-elastic double pendulum, subject to
a non-holonomic constraint and loaded through compression of a linear spring. Real and
imaginary parts of the eigenvalues Ω are reported as functions of the load p̃QS. The structure
is the same reported in Fig.7.7, except that now viscosity is present, c̃i = 1.5 and c̃e = c̃t,L =
c̃r,L = 0.
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External damping c̃e (c̃i = c̃t,L = c̃r,L = 0). The flutter load can be evalu-
ated through the Routh-Hurwitz criterion, Eq.(7.63), providing the expression
for the critical load Pd(c̃e, ξ) as a function of the external damping coefficient
c̃e and the parameters ξ = [d̃, M̃L, Ĩr,L, k̃1]. The expression for the critical load
Pd(c̃e, ξ) as a function of the external damping and the specific load for c̃e → 0
is reported in the Appendix C.9. Such limit load P∗d is never higher than the
ideal load P0 for any combination of the coefficients ξ.

Assuming the values ξ̂ = [1/2, 15, 15, 50] used to generate Fig.7.7, the crit-
ical load for flutter can be calculated to be

Pd(c̃e, ξ̂) =
11566752096 + 25235c̃2e − 721

√
245 (5c̃2e + 1465344) c̃2e + 40956144431616

169589580
,

showing the existence of the Ziegler paradox Pd(c̃e → 0, ξ̂) ≈ 40.9964 (while
the divergence load again does not show any Ziegler paradox).

It is also worth mentioning the limiting behaviour of the flutter load for
infinite value of viscosity c̃e → ∞, which (differently from the limit values
obtained with infinite values of internal viscosity c̃i) remains finite,

lim
c̃e→∞

Pd(c̃e, ξ) =
4(k̃1 + 8)

5
, (7.77)

so that the external damping cannot eliminate flutter instability. Eq.(7.77) re-
veals that for k̃1 = 50 the dimensionless critical load at infinite external viscosity
is approximately 46.4, smaller than the ideal case, so that the critical load cal-
culated for ξ = ξ̂ and c̃e ≥ 0 is always inferior to the ideal case for every value
of viscosity. The proof of the aforementioned property is obtained through the
command Reduce of Mathematica®.

Non-holonomic constraint with translational damping c̃t,L (c̃i = c̃e =
c̃r,L = 0). The presence of the translational damping c̃t,L at the non-
holonomic constraint leads to the following statement:

the value of the flutter load is independent of the translational damping
coefficient and is never higher than that calculated for the ideal undamped case.

This form of dissipation paradox has never been previously encountered and is
denoted here as ‘viscosity-independent Ziegler paradox’.
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In particular, according to the Routh-Hurwitz criterion (7.63), the flutter
load is equal to

Pd(c̃t,L, ξ) = P∗d (0, 0, 0, ξ) =
2k̃1((d̃− 1)d̃+ 8Ĩr,L)

8Ĩr,L − 1
+ 4, if (d̃− 1)d̃k̃1 + 8Ĩr,L(k̃1 + 2) < 2,

16Ĩr,L − 2

(d̃− 1)d̃+ 8Ĩr,L
+ k̃1, otherwise,

(7.78)

(expressions obtained using Mathematica®) leading (through the command
Reduce) to the conclusion that the critical load is independent of c̃t,L and never
higher than the critical load P0, Eq.(7.68), for the ideal case without damp-
ing. Assuming ξ̂ = [1/2, 15, 15, 50], the following value of the critical load is
obtained

P∗d (0, 0, 0, ξ̂) =
24902

479
≈ 51.9875 < 76.2073,

which is lower than the corresponding value for the undamped system, so that
the Ziegler’s destabilization paradox again occurs. Eq.(7.64) leads to a fifth-
order polynomial in the loading parameter p̃QS that can be exploited in order to
evaluate the analytical divergence load. Also in this case the divergence load as
a function of the damping parameter c̃t,L tends to the ideal case for vanishing
viscosity, so that no destabilization paradox for the divergence is observed.

Non-holonomic constraint with rotational damping c̃r,L (c̃i = c̃e =
c̃t,L = 0). In the presence of only the rotational damping at the non-
holonomic constraint c̃r,L, again the critical flutter load results to be independent
of this damping coefficient and never higher than the value obtained for the ideal
system without damping. In particular, Eq.(7.63) leads to

Pd(c̃r,L, ξ) = P∗d
(π

2
, 0, 0, ξ

)
=

2
(
d̃2 + d̃k̃1 + d̃+ 2(k̃1 + 2)M̃L + 1

)
d̃2 + d̃+ 4M̃L + 1

, (7.79)

which is independent of c̃r,L and never higher than the critical load (7.68) of
the ideal case without damping. The proof of this statement was obtained
using the command Reduce of the commercial code Mathematica®. Assuming
ξ̂ = [1/2, 15, 15, 50], the following value of the critical load for flutter is obtained

P∗d
(π

2
, 0, 0, ξ̂

)
=

12694

247
≈ 51.3927 < 76.2073,
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which is remarkably lower than the value obtained in the undamped case, thus
confirming again the Ziegler paradox.

Again the divergence load tends to the value of the ideal undamped system
for vanishing viscosity, so that no destabilization paradox for the divergence is
observed.

Influence on stability of two damping coefficients

Two examples related to the simultaneous presence of two damping coeffi-
cients are presented to highlight the disappearance of the Ziegler paradox when
specific directions ϕ are considered. Such condition is strictly related to the
specific choice of the vector of parameters ξ, for instance it can be achieved
with ξ̂ = [1/2, 15, 15, 50] but it can not with ξ̌ = [1/10, 1/10, 0, 1].

Combined effect of internal and external damping {c̃i, c̃e} 6= 0 (ct,L =
c̃r,L) = 0. This case has also been analyzed for the Ziegler’s double pendulum
in [111, 89]. The two non-null viscosities can be parametrized through c̃e =
r sinφ3, c̃i = r cosφ3 (so that r =

√
c̃2e + c̃2i ) and the related critical flutter load

(reported in the Appendix C.10) can be evaluated through the Routh-Hurwitz
criterion. The behaviour of the flutter load, when varying the magnitude r and
angle φ3, is shown in Fig.7.9 (left) for ξ̂ = [1/2, 15, 15, 50]. Its limit value for
vanishing both viscosities (r → 0) along any direction φ3 is given by

P ∗d

(π
2
,
π

2
, φ3, ξ̂

)
=

4

5

(
576 cotφ3(57927483 cotφ3 + 10504342) + 240974002

54519984 cotφ3 + 2826493
+

−
3
√

2(12568 cotφ3 + 721)
√

34704 cotφ3(11283138 cotφ3 − 711833) + 987561353

54519984 cotφ3 + 2826493

)
,

(7.80)

whose maximization yields

max
φ3

{
P ∗d

(π
2
,
π

2
, φ3, ξ̂

)}
≡ P ∗d

(π
2
,
π

2
, φ3 ≈ 0.995, ξ̂

)
≡ P0

(
ξ̂
)
, (7.81)

namely, the maximum value of the critical flutter load is coincident with that of
ideal case of null viscosity (further details can be found in the Appendix C.10).

The combined effect of translational and rotational damping for non-
holonomic constraints {c̃t,L, c̃r,L} 6= 0 (c̃i = c̃e = 0). The parametrization
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of the two non-null viscosity parameters as c̃r,L = r sinφ1, c̃t,L = r cosφ1 (so
that r =

√
c̃2r,L + c̃2t,L) leads to the critical flutter load. For the sake of concise-

ness, the related expression is reported in the Appendix C.10.
The behaviour of the flutter load, when varying the magnitude r and angle

φ1, is shown in Fig.7.9 (right) for ξ̂ = [1/2, 15, 15, 50]. Its limit value for
vanishing both viscosities (r → 0) along any direction φ1 is given by

P∗d
(
φ1, 0, 0, ξ̂

)
=

440805 cos(2φ1)− 3(8854828 sin(2φ1) + 6098513)

6534 cos(2φ1)− 288272 sin(2φ1)− 234538
+

+
(250 sinφ1 + 241 cosφ1)

√
632330074− 423120376 sin(2φ1)− 12220470 cos(2φ1)

6534 cos(2φ1)− 288272 sin(2φ1)− 234538
,

(7.82)

whose maximization provides, similarly to the previous case,

max
φ1

{
P∗d
(
φ1, 0, 0, ξ̂

)}
≡ P∗d

(
φ1 ≈ 0.771, 0, 0, ξ̂

)
≡ P0

(
ξ̂
)
. (7.83)

Further details are available in the Appendix C.10.
Note in Fig.7.9 (right) the two red lines showing an example of the ‘viscosity-

independent Ziegler paradox’, namely the critical load is constant for every
modulus r when φ1 = 0 (c̃r,L = 0) or when φ1 = π/2 (c̃t,L = 0).

7.5 Post-critical behaviour and limit cycles

The linearized eigenvalue analysis so far developed shows that the straight
configuration of the visco-elastic double pendulum is always stable (unstable) for
loads smaller (higher) than the critical value for flutter, but nothing can be said
about stability at the critical load and also on the stability of the post-critical
dynamics involving large displacements.

The post-critical behaviour has been analyzed numerically to show that, in
the presence of dissipation, limit cycles can be attained only through application
of a dead load F (condition B), while loading with the external elastic device
(condition A) always realizes a decaying motion. The latter behaviour is shown
in Fig.7.10 through the integration of the non-linear equations of motion for
a triple visco-elastic pendulum. The elastic column is loaded through a linear
spring compressed beyond the flutter load, while the initial conditions Θi(0) =
10−7 and Θ̇i(0) = 0 (i = 1, 2, 3) have been imposed for the bars’ rotation and
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Figure 7.9: (Left) Critical load Pd for flutter instability in a double visco-elastic pendulum
with internal c̃i = r cosφ3 and external c̃e = r sinφ3 viscosities (but ct,L = c̃r,L = 0), as

a function of the modulus r =
√
c̃2i + c̃2e and of the angular parameter φ3 (φ1 = φ2 = 0).

The ideal critical load P0 is recovered in the limit of vanishing viscosity only for φ̄3 ≈ 0.995.
(Right) As for the left part, but with translational c̃t,L = r cosφ1 and rotational c̃r,L = r sinφ1

viscosities (while c̃i = c̃e = 0), r =
√
c̃2t,L + c̃2r,L and angular parameter φ1. The ideal critical

load P0 is recovered in the limit of vanishing viscosity only for φ̄1 ≈ 0.771. The ‘viscosity-
independent Ziegler paradox’ is highlighted by red lines, corresponding to a constant flutter
load.

velocity, respectively. The structure is defined by ξ̄ = [1/2, 1, 0, 10], K̃ = 40,
∆̃ = 0.2 and c̃i = 0.2.

It is clear from Fig.7.10 that the motion following instability is an oscilla-
tion which initially increases to relieve the compression in the spring, but later
decreases and decays to zero as a consequence of the effect of dissipation. Note
also the sharp corners visible in the trajectory of the skate and typical of the
non-holonomic constraint.

In the following, the case of a double pendulum subject to dead loading F
is analyzed, where the Hopf theorem in R4 allows to analyze the stability at
the critical point. In particular, it becomes possible to detect the correspon-
dence of the flutter load with a Hopf bifurcation and therefore the existence of
limit cycles in the neighbourhood of the critical load. Following Kutznetsov [70]
and Marsden and McCracken [80], the first Lyapunov coefficient is evaluated to
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Figure 7.10: Post-critical behaviour (in terms of time evolution of the bars’ rotations Θi and
of the global horizontal displacement χ) for a visco-elastic triple (N = 3) pendulum subject to
the non-holonomic ‘skate’ constraint and loaded through a linear elastic device. The dynamic
instability occurs as the compressive force exceeds a critical value, thus generating a global
horizontal motion χ. Eventually, oscillation decays due to the progressive unloading of the
spring, so that periodic motion cannot be achieved. Note the sharp corners evidenced by the
trajectory of the end of the structure, typical of the non-holonomic constraint.

discriminate between supercritical (positive coefficient) and subcritical (nega-
tive coefficient) Hopf bifurcation, respectively corresponding to the existence of
stable or unstable periodic orbits in the neighbourhood of the bifurcation point.

Hopf bifurcations are investigated by expressing the governing equations
through the Hamiltonian formalism. Moreover, although the following equations
are referred for simplicity to the double pendulum only, the approach remains
valid for an N–link column. The Lagrangian equations of motion (7.49) are
independent of χ = X0/L, but depend on its derivatives χ̇ and χ̈, so that it
is possible to rewrite them by explicitly substituting such derivatives through
the non-holonomic constraint, Eq.(7.49d). On the other hand, Eq.(7.49c) can
be solved in the reaction force p, which can be substituted in Eqs.(7.49a) and
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(7.49b) to provide a system of two non-linear equations in the two unknown
rotations Θ1 and Θ2. The obtained system can be expressed via Hamiltonian
formalism as

ẋ = f(x, F̃ ), x =
[
Θ1,Θ2, Θ̇1, Θ̇2

]
∈ R4, (7.84)

where F̃ is the dimensionless dead load, playing now the role of a bifurcation
parameter, and f : R4×R→ R4 is an analytic and smooth function of x and F̃ .

By considering an equilibrium point x0 such that

f(x0, F̃ ) = 0, (7.85)

a Hopf bifurcation occurs [50, 70, 80] at a critical value of the bifurcation pa-
rameter F̃ = F̃cr when both the following conditions hold:

(i.) the Jacobian matrix J of the function f at the equilibrium point x0 and
load F̃cr has a pair of pure complex conjugate eigenvalues λ1,2 = ±i ω0

(ω0 > 0), while the remaining two eigenvalues have negative real part;

(ii.) the imaginary eigenvalues λ1 and λ2 of the Jacobian matrix J(x0, F̃cr)
cross the imaginary axis at a non-null ‘speed’ (crossing condition)

∂ Re [λ1,2]

∂F̃

∣∣∣∣
F̃=F̃cr

6= 0. (7.86)

From the above discussion, the fulfilment of the two conditions (i.) and (ii.)
guarantees the existence of periodic orbits in the neighbourhood of the equilib-
rium point x0. It may also be concluded that Hopf bifurcations are excluded
for null dissipations, because the real part of the eigenvalues is always zero until
the critical flutter load is reached.

In the following, calculations are referred to the case of perfectly-aligned
non-holonomic constraint β0 = 0, so that the only possible equilibrium state for
systems subject to both ‘skate’ or ‘violin bow’ constraints is the trivial config-
uration, x0 = 0.

In order to evaluate the stability condition for the Hopf bifurcation, the equa-
tions of motion (7.84) are expanded up to the third order around the equilibrium
configuration x0 = 0 at a fixed value of the dead load F̃ = F̃cr

ẋ = Jx +
1

2
B(x,x) +

1

6
C(x,x,x) +O

(
||x||4

)
, (7.87)
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where B and C are symmetric multilinear vector functions of x ∈ R4. The sta-
bility of the Hopf bifurcation point has been assessed by exploiting two different
but equivalent procedures, the first described by Kutsnetsov [70] and the second
by Marsden and McCracken [80]:

• the right q and left p eigenvectors of the Jacobian matrix J are obtained
as

Jq = iω0 q , Jᵀp = −iω0 p, (7.88)

and respectively correspond to the eigenvalues iω0 and −iω0. A normal-
ization of the eigenvectors q and p is introduced, so that 〈p, q〉 = 1 and
〈q , q̄〉 = 0, where 〈a , b〉 = ā1b1 + ...+ ānbn denotes the scalar product in
Cn while ā denotes the conjugate vector of a . The (real) so-called first
Lyapunov coefficient l1(0) [70] can be finally evaluated as

l1(0) =
1

2ω0
Re
[
〈p,C(q , q , q̄)〉 − 2

〈
p,B(q ,J−1B(q , q̄))

〉
+

+
〈
p,B(q̄ , (2iω0I− J)−1B(q , q))

〉]
,

(7.89)

where the sign of l1(0) provides the stability property of the critical point.

• the third order Eq.(7.87) is transformed through a linear invertible change
of basis x = Ay defined in a way that the transformed Jacobian matrix
assumes the following canonical real Jordan form

J̃ = A−1JA =


0 ω0 0 0
−ω0 0 0 0

0 0 λ3 0
0 0 0 λ4

 , (7.90)

as the eigenvalues λ3 and λ4 have a negative real part. One can demon-
strate (see proof in Appendix C.7) that the matrix A can be written in
terms of the eigenvector q defined in Eqs.(7.88) and the right eigenvectors
vr3 and vr4 related to λ3 and λ4 as

A = [Re [q ] , Im [q ] ,vr3,v
r
4] . (7.91)

At this stage the center manifold theorem is exploited to ‘isolate’ the
two variables [y1, y2] considered responsible for the instability, namely by
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imposing [y3, y4] = h(y1, y2) in the neighbourhood of the bifurcation point,
where h = [h1, h2] is a vector of quadratic forms in the variables [y1, y2].
Finally, differentiations of the right-hand sides of the equations governing
[y1, y2][

ẏ1

ẏ2

]
=

[
0 ω0

−ω0 0

] [
y1

y2

]
+ F (y1, y2, h(y1, y2)), (7.92)

where F is a smooth function containing all the non-linear terms, lead to
the expression for the real term called V ′′′(0) by Marsden and McCracken
(Eq.(4.2) at page 126 of [80]), whose sign provides the stability property
of the critical point.

In summary, a Hopf bifurcation occurs at a critical point once the two condi-
tions (i.) and (ii.) for the validity of the Hopf theorem are satisfied. The stability
of the periodic orbits in the neighbourhood of such critical point can be classi-
fied on the basis of the sign of the first Lyapunov coefficient l1(0) (Eq.(7.89))
or, equivalently, through that of V ′′′(0) as

l1(0) or V ′′′(0)

 < 0 → supercritical Hopf bif. (stable orbits),
= 0 → critical case,
> 0 → subcritical Hopf bif. (unstable orbits).

(7.93)

7.5.1 Limit cycles by applying a dead load F

The conditions obtained in the previous section are now used together with
numerical integration to analyze the post-critical dynamics of a visco-elastic
double pendulum N = 2 subject to non-holonomic constraints. Two numerical
simulations are presented in Fig.7.11 referred to the same initial conditions
(Θi(0) = 0 and Θ̇i(0) = 10−2), damping coefficients (c̃i = 1.5, c̃e = c̃t,L = c̃r,L =

0), input parameters (ξ̂ = [1/2, 15, 15, 50]) and dead load (F̃ /F̃cr = 1.1 being
F̃cr ≈ 76.338). Both the ‘skate’ and ‘violin bow’ constraints are considered.

The following two pairs of complex conjugate eigenvalues are obtained at
the critical point

λ1,2 ≈ ±1.01923 i, λ3,4 ≈ −0.625886± 0.653007 i,

so that criterion (i.) of the Hopf theorem is satisfied, together with the crossing
condition (ii.)

∂ Re [λ1,2]

∂F̃

∣∣∣∣
F̃=F̃cr

≈ 0.0744935 6= 0,
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showing the existence of a Hopf bifurcation at the critical point.
The first Lyapunov coefficient (or equivalently V ′′′(0) from [80]) calculated

at the bifurcation point is negative for both systems, so that a supercritical
Hopf bifurcation occurs and the periodic orbits are stable. In fact, calculations
performed with the commercial code Mathematica®show that

l1(0) =
V ′′′(0)

3π
≈
{
−2.1838 for the ‘skate’ constraint;
−0.900238 for the ‘violin bow’ constraint.

Despite the identity of the linearized stability, the two systems based on dif-
ferent non-holonomic constraints display different post-critical behaviours, and
consequently different shapes of their limit cycles. However, for the particular
choices of viscosities and input parameters, both systems show a supercritical
Hopf bifurcation at the critical point and are characterized by periodic stable
orbits, which exhibit increasing amplitudes at increasing F̃ (beyond the critical
load for flutter, but within a finite interval).

The time evolution of the global horizontal displacement χ is reported in
Fig.7.11 (left), showing that the velocity of the rigid block quickly approaches
an oscillatory behaviour with a constant mean value. Meanwhile, the mechanical
system achieves a limit cycle, shown in the phase portraits in Fig.7.11 (right),
which, according to the Hopf theorem, is stable at least in a neighbourhood of
the critical load for flutter.

The stability of the critical points can be evaluated by expressing the first
Lyapunov coefficient in Eq.(7.89) as a function of the damping parameters, so
that the domain of stability of the Hopf bifurcations, given by the sign of l1(0),
can be directly expressed in terms of the magnitude of the damping parameters
acting on the system. This calculation was possible only by fixing the values of
ξ and by considering only one damping coefficient acting on the system. Two
examples of the calculated Lyapunov coefficients (functions of one of the four
damping sources assumed of magnitude r), are reported in Fig.7.12, providing
a sketch of the qualitative stability behaviour.

Fig.7.12 shows that, depending on the magnitude of dissipation, the sign of
the Lyapunov coefficient may or may not change, so that the Hopf bifurcations
may be either supercritical (l1(0) < 0) or subcritical (l1(0) > 0). Changes in
stability are highlighted in the figure by dashed lines. In the case of the ‘skate’
constraint with ξ̂ = [1/2, 15, 15, 50] (upper left corner) it can be concluded that
both damping sources c̃i (reported green) and c̃e (reported red) can stabilize
the bifurcation point if they overcome a certain threshold value (respectively,
≈ 22.07 and ≈ 482.14). On the other hand, no subcritical Hopf bifurcations can
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Figure 7.11: Evolution in time of the global horizontal displacement χ (left) and phase
portraits {Θi, Θ̇i} for the rotations of the two rigid bars, (right, with limit cycles highlighted
in dark blue), for a double pendulum subject to a ‘skate’ (upper part) and ‘violin bow’ (lower
part) constraints and loaded through a dead load F̃ = 1.1F̃cr. Note that the post-critical
behaviour is different if a ‘skate’ or a ‘violin bow’ constraint applies, even though the same
initial conditions, viscosities, and input parameters have been imposed and even though the
two structures have the same critical flutter load.

be obtained at varying every damping source (acting alone) when the structure
with ξ̂ ends with the ‘violin bow’ constraint (lower left part of the figure).

It may be interesting to remark, in closure of this Section, that analyses not
reported for conciseness show that structures subject to dead loading reach a
limit steady motion with constant mean velocity even when only the viscosity
of the hinges is present. This situation is in contrast to what happens in the
absence of viscosity where the system, subject to a constant force, is subjected
to an increasing velocity. In other words, the rotational viscosity of the hinges,
taken alone, acts as the ambient viscosity during the falling of a mass in a
gravitational field.
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Figure 7.12: First Lyapunov coefficient l1 (only the sign matters, so that ticks are not
reported on the vertical axis) as a function of the magnitude of only one of the four damping
parameters (the other three are assumed null) for the ‘skate’ constraint (upper part) and for the
‘violin bow’ constraint (lower part). The coefficient discriminates between supercritical and
subcritical Hopf bifurcations and was obtained for two sets of coefficients: ξ̂ = [1/2, 15, 15, 50]

(left part) and ξ̃ = [1/2, 1, 0, 1] (right part). Changes in stability are highlighted by dashed
lines and show that subcritical Hopf bifurcations cannot be obtained when the structure with
ξ̂ = [1/2, 15, 15, 50] ends with the ‘violin bow’ constraint (lower left corner).

7.5.2 A note on non-aligned constraint (β0 6= 0)

Until now the non-holonomic constraints have always be assumed to be
aligned parallel to the last bar, β0 = 0. Therefore, it may be interesting to
explore the effect of constraint non-alignment. In particular, a case of double
pendulum with non-aligned ‘violin bow’ constraint, β0 = π/100 = 1.8◦, is inves-
tigated and the phase portraits of the two bars’ rotations is shown in Fig.7.13,
reported as green curves, together with the blue curves representing the perfect
system (β0 = 0, analyzed at a load F̃ = 80, beyond the flutter load ≈ 76.338).

A non-trivial equilibrium solution for the double pendulum with β0 = π/100
is found for ΘQS

1 ≈ −0.050282 and ΘQS
2 ≈ 0.701512 (shown in Fig.7.13 on the left)
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at a load F̃ = 80, beyond the flutter load (≈ 78.276). For this configuration, the
solutions for the characteristic equation (7.42) (with m = 4) consist in two pairs
of complex conjugate eigenvalues, where only two eigenvalues have a positive
real part, so that the equilibrium configuration is unstable.

The non-trivial equilibrium configuration is used to analyze the unstable
dynamics of the system by imposing the initial conditions Θi(0) = ΘQS

i and
Θ̇i(0) = 10−2 (the coordinates of the center of the spirals representing the
phase portraits in Fig.7.13) and assuming c̃i = 1.5, c̃e = c̃t,L = c̃r,L = 0 and
ξ̂ = [1/2, 15, 15, 50]. The following observations can be drawn from Fig.7.13:

• The non-trivial equilibrium solution corresponding to a small imperfection
β0 = π/100 exhibits a large deviation from rectilinearity;

• The flutter load for the non-trivial solution (≈ 78.276) is slightly higher
than that relative to the trivial solution (≈ 76.338);

• The phase portraits for the imperfect system confirm the existence of
periodic orbits in the presence of imperfections, intended now as a mis-
alignment of the non-holonomic constraint;

• When the phase portraits of the perfect and imperfect systems are com-
pared, the former possess a symmetry which is lost in the latter. Moreover,
the oscillations of the perfect system exhibit larger amplitudes than the
imperfect one.
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Figure 7.13: Phase portraits (green curves, in terms of bar’s rotations Θ1 on the center,
Θ2 on the right) showing the achievement of a limit cycle for a visco-elastic double pendulum
with a misaligned ‘violin bow’ constraint, β0 = π/100 = 1.8◦ (shown on the left). The phase
portrait of the perfect system β0 = 0 is also reported for comparison (blue curve). The initial
equilibrium configuration for the imperfect system exhibits a large deviation from rectilinearity
(ΘQS

1 ≈ −0.050282, ΘQS
2 ≈ 0.701512, shown on the left) and is unstable, so that the system

starts oscillating with increasing amplitudes towards a stable limit cycle.

7.6 Locomotion and friction

Limbless locomotion. The periodic solutions so far obtained for the ana-
lyzed structures can be exploited in the design of limbless locomotion devices.
In fact, the time evolution of the rigid bars’ rotations exhibiting a generic limit
cycle can directly be imposed to the same structures which are left only with
the horizontal motion X0 of the end of the structure as ‘free coordinate’. With
this set-up, the non-holonomic constraint is capable of converting the imposed
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oscillations of the rigid bars into an horizontal displacement, providing the lo-
comotion to the system.

An example of the dimensionless equations of motion of a double pendulum
with controlled rotations at both ends and with an appended dead load F̃ at
the left end of the structure is given by

c̃e
8

(
8χ̇− 3 Θ̇1(τ) sin Θ1(τ)− Θ̇2(τ) sin Θ2(τ)

)
+

+
c̃t,L
2

(
2χ̇− Θ̇1(τ) sin Θ1(τ)− Θ̇2(τ) sin Θ2(τ)

)
+ M̃X χ̈+

+
1

4

(
4χ̈− d̃ Θ̈1(τ) sin Θ1(τ)− d̃ Θ̇2

1(τ) cos Θ1(τ)− d̃ Θ̈2(τ) sin Θ2(τ)+

− d̃ Θ̇2
2(τ) cos Θ2(τ)− Θ̈1(τ) sin Θ2(τ)− Θ̇1(τ)Θ̇2(τ) cos Θ2(τ)

)
+

(7.94a)

+
M̃L

2

(
2χ̈− Θ̈1(τ) sin Θ1(τ)− Θ̇2

1(τ) cos Θ1(τ)− Θ̈2(τ) sin Θ2(τ)+

− Θ̇2
2(τ) cos Θ2(τ)

)
+ p̃ ã3 + F̃ = 0,

ã1 Θ̇1(τ) + ã2 Θ̇2(τ) + ã3χ̇ = 0, (7.94b)

where Θ1(τ) and Θ2(τ) are time-dependent rotations imposed to the two rigid
bars and representing the periodic solution for the same structure with free and
unknown rotations. The coefficients ãi in Eq.(7.94) are expressed by Eqs.(7.51)
for the ‘skate’ and (7.52) for the ‘violin bow’ non-holonomic constraints.

In conclusion, it is suggested that the rotations Θ1(τ) and Θ2(τ) can be
‘borrowed’ from the solution for a structure subject to a dead force. Then, such
a solution can be exploited as imposed rotations for a similar double-pendulum,
but characterized in general by different properties. In this way, because the
coefficients ãi in Eq.(7.94b) are independent of the structural parameters, the
two systems display the same dimensionless displacement of the left end χ(τ),
so generating a steady motion with a constant mean velocity. Therefore, the
controlled system is capable of moving any dead load by tuning the reaction at
the non-holonomic constraint, Eq.(7.94a).

Friction between two solids. Another possible application of the results so
far obtained is in the problem of friction between two different solids in contact.
In fact, the non-holonomic constraint corresponds to a situation of ‘directional
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infinite friction’, so that motion is impossible in all the analyzed structures (with
β0 = 0) if instability does not occur. If the non-holonomic constraint is believed
to remain valid within a friction cone, instability may decrease the force needed
to move the system. In other words, if the structures are regarded as ‘black
boxes’ which are to be displaced through the application of an external force,
perceived as the force needed to overcome some friction, then this force can be
strongly decreased by the instability. As a conclusion, the results presented in
this article can find application in the analysis of microstructural effects at the
contact between two solids, to possibly explain ‘unexpected drop’ in the applied
forces to produce relative motion between the two solids.

7.7 Conclusions
It has been shown how flutter instability and Hopf bifurcations can be

found in visco-elastic structures under conservative loads, when subject to non-
holonomic constraints. This finding opens a new perspective in structures suf-
fering instabilities and provides a proof of the mechanical equivalence between
non-holonomic conditions and polygenic forces, which cannot be derived from
any scalar functional (for instance follower loads) [71]. In this context, the re-
action force related to a non-holonomic constraint can be seen as the polygenic
force applied to the Ziegler or Reut pendulum, but now with possibly varying
modulus, such that the kinematic non-holonomic condition is satisfied. Under
this circumstance, the work done by the force is always null. The obtained re-
sults may find applications in limbless locomotion and as possible explanation of
micromechanics leading to instabilities in frictional contact between two solids.
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8
Fluttering of elastic rods subject to

non-holonomic constraints.
Continuous model

8.1 Introduction

The aim of the present chapter is to prove that flutter instabilities can be
obtained for a continuous conservative system subject to non-holonomic

constraints. In contrast with Chapter 7, calculations are referred to an elastic
rod subject to a ‘skate’ constraint only, while the sliding clamp at the left end of
the rod is loaded through the elastic device (condition A).1 Also in this case, the
imposed displacement ∆ of the left end of the extensional spring is considered
fixed in time, so that the entire system is loaded through a fully-conservative
device.

By considering a perfectly-aligned constraint (case β0 = 0 as in Chapter 7),
such non-holonomic system yields the same critical load, dissipation induced
instabilities, including the so-called ‘Ziegler paradox’, that is found for the Beck
column [14], or more in general, for a Pflüger column [20, 21, 87], two cases

1The case of loading through a dead force F can be easily developed by simply considering
the contribution of its external work within the definition of the total potential energy. Any-
how, according to the findings reported in Chapter 7, the same critical loads for the linearized
structure can be found by considering one or the other loading condition at the initial end.
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where a follower force is applied to an end of a clamped cantilever. Moreover,
according to the findings reported in Chapter 7 in the case of discretized rods,
the Ziegler’s viscosity-independent paradox is found when some external damp-
ing forces acting on the ‘skate’ non-holonomic constraint are introduced, so that
the corresponding flutter load is found to be independent of the magnitude of
viscosities.

Finally, the flutter load for the continuous non-holonomic system in the
presence of internal dissipation is compared with that obtained for a discretized
rod at increasing number N of its constituent rigid bars. The comparison shows
how the latter critical load tends to the value of the continuous rod, as the
number of bars N is increased.

8.1.1 The continuous elastic column with non-holonomic
constraint

A planar elastic rod of constant length l is parametrized through a curvilinear
coordinate s ∈ [0, l]. The rod has a distributed mass ρ and bending stiffness
B and is constrained at the initial end s = 0 by a rigid block of mass MX

equipped with an extensional horizontal spring of stiffness K. Its final end s = l
is constrained through a ‘skate’ non-holonomic constraint (realized for instance
through a wheel or a knife edge) of mass ML and rotational inertia Ir,L, which
constraints the local component of the velocity to be parallel to the sliding
direction of the skate. Following the same notation adopted for the discrete
system, such non-holonomic constraint is rigidly attached to the final end of the
rod (s = l), thus forming an angle β0 with respect to the inclination Θ(l, t) of
the tangent vector at the considered point.

Self-contact phenomena in the rod are disregarded, so that the rod’s de-
formed shape is completely described by the unknown rotation field Θ(s, t),
measured with respect to the horizontal X axis and by the position X0(t) of the
sliding clamp along the horizontal direction. Moreover, the rod is considered
inextensible and shear deformations are neglected.

The same four dissipative effects introduced in Chapter 7 are assumed to
be present. In particular, by considering the external damping coefficient ce
and the further coefficients ct,L and cr,L expressing the translational and ro-
tational damping effects on the non-holonomic constraint, the mathematical
model describing the continuous system is complemented by the effect of the
internal damping, introduced by means of a visco-elastic constitutive law. Fol-
lowing Bigoni [22], a uniaxial constitutive law is assumed relating the internal
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longitudinal stress σ to the strain ε in the form

σ = E ε+ Λ ε̇ , (8.1)

where E is the Young modulus and Λ a constant viscous term, the internal
bending moment is given by

M =

∫
A

[E ε y + Λ ε̇ y] dA. (8.2)

Assuming a linearized theory, so that ε = yΘ′, one obtains

M(s, t) = BΘ′(s, t) +D Θ̇′(s, t) , (8.3)

where the superimposed ‘ ˙ ’ and ‘ ′ ’ symbols represent the derivatives with
respect to time t and to the curvilinear coordinate s, respectively. The constant
term D = ΛI represents the internal viscous damping coefficient and B = EI,
where I is the moment of inertia of the cross section. The described mechanical
system is shown in Fig.8.1.

Differently from what seen in Chapter 2, the considered rod cannot be repre-
sented through the exact solution for the Euler’s elastica because of the presence
of distributed loads within its span. These forces are strictly related to the dy-
namic effects involved in the presented model, and in particular are given by the
distributed inertia and damping sources. Consequently, the quasi-static config-
urations can be expressed through the solution for the Euler’s elastica and the
corresponding load at both ends is given by the unknown reaction force of the
non-holonomic constraint (denoted by p(t) in the following Sections). Moreover,
the elastica can also model the dynamics of such continuous rods in the case of
negligible distributed mass and damping effects along its span, as these effects
are supposed to act only at both ends (see Armanini et al. [4, 5]). In the re-
maining cases, the problem of the dynamics of the rod can be attacked through
the numerical integration of the governing PDE’s or through a FEM code (see
for instance the procedure proposed by Bartels [7]). In the present Chapter, the
non-linear dynamics of the continuous rod is not addressed.

8.2 Equations of motion

The exact equations of motion for a continuous system subject to a non-
holonomic ‘skate’ constraint are obtained by firstly writing the elastic energy of
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Figure 8.1: Structure of the non-holonomic elastic rod as a function of the unknown rotation
field Θ(s, t) and horizontal displacement X0(t) of the clamped initial end s = 0, which is
loaded through an horizontal extensional spring with axial stiffness K. The final end s = l
is constrained by a non-holonomic ‘skate’ constraint, which is inclined at an angle β0 taken
with respect to the tangent vector of the rod.

the system

E =
1

2
K(X0(t)−∆)2 +

1

2
B

∫ l

0

Θ′(s, t)2ds, (8.4)

while its ‘density’ along the span of the rod can be simply defined as

E =
K

2l
(X0(t)−∆)2 +

1

2
BΘ′(s, t)2. (8.5)

so that E =
∫ l

0
E ds. The kinetic energy of the system can be written as

T =
1

2
MXẊ0(t)2 +

1

2
Ir,LΘ̇(l, t)2 +

1

2
ML

(
Ẋ(l, t)2 + Ẏ (l, t)2

)
+

+
1

2
ρ

∫ l

0

(
Ẋ(s, t)2 + Ẏ (s, t)2

)
ds,

(8.6)

so that its ‘density’ along the span of the rod is expressed by

T = MX

2l Ẋ0(t)2 +
Ir,L
2l Θ̇(l, t)2 + ML

2L

(
Ẋ(l, t)2 + Ẏ (l, t)2

)
+ ρ

2

(
Ẋ(s, t)2 + Ẏ (s, t)2

)
.
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(8.7)

The horizontal and vertical coordinates X and Y singling out the deformed
shape of the rod as functions of the time t and of the curvilinear coordinate s
are respectively expressed by

X(s, t) = X0(t)+

∫ s

0

cos Θ(ς, t)dς = X0(t)+ζ(s, t), Y (s, t) =

∫ s

0

sin Θ(ς, t)dς,

(8.8)

where ζ(s, t) denotes the integral introduced in the definition of X and s is
defined within the interval [0, l].

The inextensibility constraint of the elastic rod and the imposed null rotation
Θ(0, t) = 0 at the initial coordinate s = 0 are introduced through the following
(holonomic) constraint equations

X ′(s, t)− cos Θ(s, t) = 0, Y ′(s, t)− sin Θ(s, t) = 0, Θ(0, t) = 0 . (8.9)

The viscous frictional forces are introduced by means of the Rayleigh dissi-
pation function

Fd =
1

2
ce

∫ l

0

(Ẋ(s, t)2 + Ẏ (s, t)2)ds +
1

2
ct,L

(
Ẋ(l, t)2 + Ẏ (l, t)2

)
+

1

2
cr,LΘ̇(l, t)2+

+
1

2
D

∫ l

0

Θ̇′(s, t)2ds,

(8.10)

or in terms of its ‘density’ per unit-length by

Fd =
ce
2

(Ẋ(s, t)2+Ẏ (s, t)2)+
ct,L
2l

(
Ẋ(l, t)2 + Ẏ (l, t)2

)
+
cr,L
2l

Θ̇(l, t)2+
D

2
Θ̇′(s, t)2,

(8.11)

where D is the internal viscous friction term and the time derivatives of the
functions X and Y (see equation (8.8)) can be expressed through the following
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integro-differential equations

Ẋ(s, t) = Ẋ0 −
∫ s

0
sin ΘΘ̇ dς

Ẏ (s, t) =
∫ s

0
cos ΘΘ̇ dς

Ẍ(s, t) = Ẍ0 −
∫ s

0

(
cos ΘΘ̇2 + sin ΘΘ̈

)
dς

Ÿ (s, t) =
∫ s

0

(
− sin ΘΘ̇2 + cos ΘΘ̈

)
dς.

(8.12)

The Lagrangian function of the system can be written in the following form

L = T − E +M0(t) Θ(0, t)+

+

∫ l

0

[
RX(s, t)(X ′ − cos Θ) +RY (s, t)(Y ′ − sin Θ)

]
ds ,

(8.13)

so that the Lagrangian ‘density’ L is given by

L = T − E +
M0

l
Θ(0) +RX(X ′ − cos Θ) +RY (Y ′ − sin Θ) , (8.14)

and the introduced functions RX(s, t), RY (s, t) and M0(t) are the Lagrangian
multipliers associated with the constraints (8.9). The vector collecting the fun-
damental variables of the system is therefore given by

w = {X0, X
′, Y ′, Ẋ, Ẏ , Ẋ(l), Ẏ (l), Ẋ0, Θ, Θ′, Θ(0), Θ̇(l), RX , RY , M0}.

(8.15)

The Hamilton’s action integral can be written as

A =

∫ t1

t0

∫ l

0

L ds dt,

where all the variations in the fundamental variables of the system (8.15) have
to satisfy the imposed boundary conditions at both ends and are null at the
extremal points of the time interval, namely

δΘ(0) = δY (0) = 0, δX(0) = δX0, δX(l) = δX0+δζ(l), δw
∣∣
t0

= δw
∣∣
t1

= 0,

(8.16)
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where the parameter ζ is included in the formulation of X(s, t), Eq.(8.8).
Exploiting the Hamilton’s principle of least action, one can write

δA =

∫ t1

t0

∫ l

0

δL ds dt

=

∫ t1

t0

∫ l

0

{
LẊδẊ + LẎ δẎ + LẊ(l)δẊ(l) + LẎ (l)δẎ (l) + LẊ0

δẊ0+

+ LΘ̇(l)δΘ̇(l) + LΘ′δΘ
′ + LX0

δX0 + LX′δX
′ + LY ′δY

′+

+ LΘδΘ + LRX
δRX + LRY

δRY + LM0
δM0

}
ds dt,

(8.17)

where Lξ = ∂L /∂ξ denotes the derivative of the ‘density’ of the Lagrangian
function with respect to a generic coordinate ξ. Integrations by parts and the
fulfilment of the conditions (8.16) provide the following final form

∫ l

0

δL ds =

∫ l

0

{(
− d

dt
(LẊ)− d

ds
(LX′)

)
δX +

(
− d

dt
(LẎ )− d

ds
(LY ′)

)
δY+

+

(
LΘ −

d

ds
(LΘ′)

)
δΘ + LRX

δRX + LRY
δRY + LM0

δM0

}
ds

+

(
LY ′

∣∣∣
l
−l d
dt

(LẎ (l))

)
δY (l) +

(
LX′

∣∣∣
l
−l d
dt

(LẊ(l))

)
δζ(l)+

+

[
l

(
LX0 −

d

dt
(LẊ0

)

)
+ LX′

∣∣∣l
0
−l d
dt

(LẊ(l))

]
δX0+

+

(
LΘ′

∣∣∣
l
−l d
dt

(LΘ̇(l))

)
δΘ(l).

(8.18)

It is worth to underline that due to the presence of non-holonomic con-
straints, the variations δw in Eq.(8.18) are not independent, so that the equa-
tions of motion can not be directly obtained by simply setting the terms in brack-
ets equal to zero. In the following section, as for the Eq.(7.18) for the discretized
system, the non-holonomic kinematic condition is introduced by means of the
Lagrange multiplier method, leading to a final formulation of the D’Alembert-
Lagrange equation for the continuous system.
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8.2.1 The ‘skate’ non-holonomic constraint acting on the
continuous system

The formulation of the non-holonomic ‘skate’ constraint attached to the final
end of the rod at the coordinate s = l can be expressed either in terms of virtual
displacements

(δX0 + δζ(l)) cosϑ+ δY (l) sinϑ = 0 , (8.19)

where ϑ = Θ(l, t) + β0, or in terms of the true velocities of the system

Ẋ(l) cosϑ+ Ẏ (l) sinϑ = 0. (8.20)

Introducing the non-holonomic constraint (8.19) into the equation (8.18) by
means of the Lagrange multiplier method, one obtains

∫ l

0

δL ds− p(t)
[
(δX0 + δζ(l)) cosϑ+ δY (l) sinϑ

]
=∫ l

0

{(
− d

dt
(LẊ)− d

ds
(LX′)

)
δX +

(
− d

dt
(LẎ )− d

ds
(LY ′)

)
δY + LRX

δRX+

+ LRY
δRY + LM0

δM0 +

(
LΘ −

d

ds
(LΘ′)

)
δΘ

}
ds+

+

(
LY ′

∣∣∣
l
−l d
dt

(LẎ (l))− p sinϑ

)
δY (l) +

(
LX′

∣∣∣
l
−l d
dt

(LẊ(l))− p cosϑ

)
δζ(l)+

+

[
l

(
LX0 −

d

dt
(LẊ0

)

)
+ LX′

∣∣∣l
0
−l d
dt

(LẊ(l))− p cosϑ

]
δX0+

+

(
LΘ′

∣∣∣
l
−l d
dt

(LΘ̇(l))

)
δΘ(l),

(8.21)

where p is the unknown reaction force (positive in compression) acting on the
non-holonomic constraint. The expression (8.21) is therefore a combination of
independent variations of the fundamental variables of the system. For this
reason, all the equations multiplied by the related variations can be set equal to
zero, thus providing the system of the equations of motion for the non-holonomic
elastic rod in the ideal case of null damping forces.
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The effect of viscosities

Viscosities can be introduced by writing the virtual work of the damping
forces. In particular, through the Rayleigh dissipation function (8.10), the fol-
lowing expression is obtained

∫ l

0

∑
i

(
∂Fd

∂ξ̇i
δξi

)
ds = FΘ̇′δΘ

∣∣∣l
0
+

∫ l

0

{
− d

ds
(FΘ̇′)δΘ + FẊδX + FẎ δY

}
ds+

+ l
(
FẎ (l)δY (l) + FΘ̇(l)δΘ(l) + FẊ(l)δζ(l) + FẊ(l)δX0

)
,

(8.22)

where ξi denotes a generic i-th variable of the density of dissipation function
Fd (see Eq.(8.11)). The expression for the equations of motion with non-
conservative dissipative effects can be obtained by setting the following equation
expressing the balance of energy of the system

∫ l

0

δL ds− p(t)
[
(δX0 + δζ(l)) cosϑ+ δY (l) sinϑ

]
=∫ l

0

∑
i

(
∂Fd

∂ξ̇i
δξi

)
ds ,

(8.23)

which represents a generalization of the Eq.(8.21) where dissipation sources are
taken into account.

Finally, after invoking the arbitrariness of the independent variations δw of
the system, one obtains the following equations of motion for the continuous
rod subject to a non-holonomic ‘skate’ constraint (acting on the system through
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the unknown reaction force p) and to dissipative effects



d

dt
(LẊ) +

d

ds
(LX′) + FẊ = 0

d

dt
(LẎ ) +

d

ds
(LY ′) + FẎ = 0

LΘ −
d

ds
(LΘ′) +

d

ds
(FΘ̇′) = 0

LRX
= 0

LRY
= 0

LM0
= 0

l
d

dt
(LΘ̇(l))−LΘ′

∣∣∣
l
+FΘ̇′

∣∣∣
l
+lFΘ̇(l) = 0

l
d

dt
(LẊ(l))−LX′

∣∣∣
l
+lFẊ(l) + p cosϑ = 0

l
d

dt
(LẎ (l))−LY ′

∣∣∣
l
+lFẎ (l) + p sinϑ = 0

l
d

dt
(LẊ)− lLX + l

d

dt
(LẊ(l)) + lFẊ(l) −LX′

∣∣∣l
0
+p cosϑ = 0

Ẋ(l) cos (Θ(l) + β0) + Ẏ (l) sin (Θ(l) + β0) = 0.

(8.24a)

(8.24b)

(8.24c)

(8.24d)

(8.24e)

(8.24f)

(8.24g)

(8.24h)

(8.24i)

(8.24j)

(8.24k)

The equations above can be made explicit through Eqs.(8.10) and (8.13),
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thus obtaining

ρẌ + ceẊ +R′X = 0

ρŸ + ceẎ +R′Y = 0

BΘ′′ +DΘ̇′′ +RX sin Θ−RY cos Θ = 0

X ′ = cos Θ

Y ′ = sin Θ

Θ(0, t) = 0

Ir,LΘ̈(l) + cr,LΘ̇(l) +BΘ′(l) +DΘ̇′(l) = 0

MLẌ(l) + ct,LẊ(l)−RX(l) + p cos (Θ(l) + β0) = 0

MLŸ (l) + ct,LẎ (l)−RY (l) + p sin (Θ(l) + β0) = 0

MXẌ0 +K(X0 −∆) +MLẌ(l) + ct,LẊ(l)−RX(l) +RX(0)+

+ p cos (Θ(l) + β0) = 0

Ẋ(l) cos (Θ(l) + β0) + Ẏ (l) sin (Θ(l) + β0) = 0.

(8.25a)

(8.25b)

(8.25c)

(8.25d)

(8.25e)

(8.25f)

(8.25g)

(8.25h)

(8.25i)

(8.25j)

(8.25k)

The system (8.25) can be rewritten in a more convenient form by firstly inte-
grating the Eqs.(8.25a) and (8.25b), providing the expressions of the Lagrange
multipliers RX(s, t) and RY (s, t) along the span of the rod

RX = RX(l) +
∫ l
s

(
ρẌ + ceẊ

)
dς,

RY = RY (l) +
∫ l
s

(
ρŸ + ceẎ

)
dς,

(8.26)

and representing the space evolution of the components of the total internal
force projected along the horizontal X and vertical Y directions, respectively.
By means of the equations (8.25h) and (8.25i), the terms RX(l, t) and RY (l, t)
can be made explicit, so that the final expressions for the internal forces RX(s, t)
and RY (s, t) are given by

RX = MLẌ(l) + ct,LẊ(l) + p cosϑ+
∫ l
s

(
ρẌ + ceẊ

)
dς,

RY = MLŸ (l) + ct,LẎ (l) + p sinϑ+
∫ l
s

(
ρŸ + ceẎ

)
dς.

(8.27)
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Eqs.(8.27) therefore represent the balance of linear momentum along the X and
Y directions for the portion of rod comprised between the coordinates s and l.

The substitution of Eqs.(8.27) into Eqs.(8.25c) and (8.25j) yields the follow-
ing final expression for the system (8.25)



BΘ′′ +DΘ̇′′ + p sin(Θ− ϑ)+

sin Θ

(
MLẌ(l) + ct,LẊ(l) +

∫ l

s

(
ρẌ + ceẊ

)
dς

)
+

− cos Θ

(
MLŸ (l) + ct,LẎ (l) +

∫ l

s

(
ρŸ + ceẎ

)
dς

)
= 0

Θ(0, t) = 0

Ir,LΘ̈(l) + cr,LΘ̇(l) +BΘ′(l) +DΘ̇′(l) = 0

MXẌ0 +K(X0 −∆) +MLẌ(l) + ct,LẊ(l) + p cosϑ+

+

∫ l

0

(
ρẌ + ceẊ

)
dς = 0

Ẋ(l) cos (Θ(l) + β0) + Ẏ (l) sin (Θ(l) + β0) = 0

X ′ = cos Θ

Y ′ = sin Θ.

(8.28a)

(8.28b)

(8.28c)

(8.28d)

(8.28e)

(8.28f)

(8.28g)

which collects the equations of motion for the mechanical system, expressed in
terms of rotation field Θ(s, t) and position of the clamp X0(t) at the rod’s initial
coordinate s = 0. In fact, equations (8.28f) and (8.28g) can be integrated and
expressed through Eqs.(8.8). Therefore, Eqs.(8.28) represent a system of 5 equa-
tions in the 5 unknowns {Θ, X0, p, X, Y }, complemented by Eqs.(8.28b) and
(8.28c) expressing the boundary conditions for Θ. As for the discretized struc-
tures, due to the presence of the unknown reaction force p, the non-holonomic
constraint’s equation (8.28e) has to be introduced within the system of the
governing equations.
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8.3 Quasi-static solutions: the non-holonomic Eu-
ler’s elastica

Neglecting the inertial and damping terms in the system (8.25), one ob-
tains the equations for the Euler’s elastica subject to a ‘skate’ non-holonomic
constraint. Moreover, mixed Dirichlet and Neumann boundary conditions are
given at the ends in virtue of the imposed null rotation at the initial end s = 0
and of the null bending moment at the final one s = l, respectively. The com-
plete set of the governing equations for the quasi-static problem, together with
the appropriate boundary conditions, is given by

R′QS
X = 0 → RQS

X (s) = const

R′QS
Y = 0 → RQS

Y (s) = const

BΘ′′QS +RQS
X sin ΘQS −RQS

Y cos ΘQS = 0

X ′ = cos ΘQS

Y ′ = sin ΘQS

ΘQS(0) = 0

BΘ′QS(l) = 0

RQS
X = pQS cosϑQS

RQS
Y = pQS sinϑQS

K(XQS
0 −∆) + pQS cosϑQS = 0 ,

(8.29a)

(8.29b)

(8.29c)

(8.29d)

(8.29e)

(8.29f)

(8.29g)

(8.29h)

(8.29i)

(8.29j)

where the equation for the non-holonomic constraint (8.28e) is automatically
satisfied. Therefore, as for the case of the discrete chain, the system (8.29) has
a number of unknowns that exceeds the number of the governing equations of
a factor 1.

By considering the exact solution for the inflectional elastica reported in
Chapter 2 through the Jacobi elliptic functions (see also Cazzolli and Dal Corso
[33]), the solution for the Euler’s elastica can be obtained by prescribing the
following four parameters:

• the left end rotation of the rod ΘQS(0), which is prescribed by equation
(8.29f);

Alessandro Cazzolli 199



8. FLUTTERING OF ELASTIC RODS SUBJECT TO NON-HOLONOMIC CONSTRAINTS.
CONTINUOUS MODEL

• the right end rotation of the rod ΘQS(l);

• the inclination of the total reaction force at both ends of the rod β =
−ϑQS = −ΘQS(l)− β0, which is a function of the end rotation ΘQS(l) and
of the known inclination of the non-holonomic constraint β0;

• the characteristic parameter of the elastica η, which can be set equal to
sin(|β0|/2) by properly exploiting the analytical expression for the bound-
ary condition (8.29g) through the Eqs.(2.44) and (2.39)22.

Due to the fact that, with reference to the Eqs.(2.15), (2.32) and (2.39), the
non-holonomic reaction force pQS = |R| can be expressed in terms of ΘQS(l),
such rotation at the final end of the rod s = l represents the only unknown
parameter of the system, while the generalized coordinate XQS

0 can be conse-
quently obtained from the equation (8.29j) as a function the known position of
the left end of the extensional spring, ∆.

As for the case of the discrete chain, the infinite quasi-static solutions for
the system can be parametrized through the only ‘free’ coordinate of the sys-
tem (8.29), in this case they are represented by the rotation ΘQS(l), which is
defined within a manifold of equilibrium states (see Neimark and Fufaev [85]).
In particular, such domain is given by

D :=

ΘQS(l) ∈ R :

∣∣∣∣∣∣∣∣
sin

(
ΘQS(l) + β0

2

)
sin
|β0|
2

∣∣∣∣∣∣∣∣ ≤ 1

 , (8.30)

expressing the condition for the parameter ω0 in equation (2.39)1 to be real.
The domain (8.30) therefore represents the exact expression for the manifold of
equilibrium states for the elastica subject to a ‘skate’ non-holonomic constraint.

An example of multiple solutions for the system (8.29) is shown in Fig.8.2.
Five different quasi-static configurations are presented, corresponding to differ-
ent values of the rotation at the final end ΘQS(l) and XQS

0 = 0, and therefore
to different imposed displacements ∆ of the left end of the extensional spring.
Solutions are represented with different colors for the particular case β0 = 0.1π.

2In fact, the condition of null curvature at the coordinate s = 1 leads to the condition

cos

{
arcsin

[
1

η
sin

(
−β0

2

)]}
= 0, →

√
1−

1

η2
sin2

(
β0

2

)
= 0

so that η = sin(|β0|/2)
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In particular through Eq.(8.30), the rotation ΘQS(l) for an Euler’s elastica with
η ≈ 0.1564 having a single inflection point at the final end s = l can be freely
chosen within the interval ΘQS(l) ∈ [0, −0.2π].

Figure 8.2: Five quasi-static solutions for an Euler’s elastica having an inflection point
at the final end and β0 = 0.1π. The solutions are highlighted with different colors (light
blue, green, red, orange, blue), differing in the values of the end’s rotation ΘQS(l) =
−0.2π [0, 0.25, 0.5, 0.75, 1] and corresponding to the dimensionless parameter Kl2 ∆/B =
[0, 1, 1.5, 2, 3]. Moreover, the displacement of the initial end s = 0 is set to be null XQS

0 = 0.

Finally, the exact definition of the characteristic parameter η as a function
of the inclination of the non-holonomic constraint β0

η = sin
|β0|
2

,

provides a proof of the uniqueness of the trivial solution in the case β0 = 0.
Indeed, in that case the domain (8.30) reduces to the condition ΘQS(l) = 0,
while the obvious condition η = 0 implies that the solution is equal to the
trivial one (ΘQS(s) = 0 for every s ∈ [0, l]).

8.4 Linearized equations of motion
The linearization of the equations of motion (8.28a) and (8.28d) and of the

boundary conditions equations (8.28b) and (8.28c) around the trivial quasi-
static solution ΘQS = 0 is performed by introducing the following perturbations
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Θ = ε Θ̂, X0 = XQS
0 + ε X̂0, p = pQS + ε p̂, (8.31)

and taking the derivative of the perturbed equations with respect to ε around 0.
As for the discretized structures in Chapter 7, no perturbations are considered
for the imposed displacement ∆.

For the sake of simplicity, the symbol ‘ˆ’ is removed in the following equa-
tions and the quantities {Θ, X0, p} will therefore denote perturbations of the
related scalar fields governing the problem.

With reference to the expressions for the time derivatives of X and Y in
Eqs.(8.12), the following linearized version of the equation (8.28a) is obtained

BΘ′′ +DΘ̇′′ −ML

∫ l

0

Θ̈ds− ct,L
∫ l

0

Θ̇ds−
∫ l

s

(
ρ

∫ ς

0

Θ̈dσ + ce

∫ ς

0

Θ̇dσ
)

dς+

− p sin(β0) + pQS cos(β0)(Θ−Θ(l)) = 0 ,

(8.32)

where the reaction force of the non-holonomic constraint is present both in
terms of the ‘pre-stress’ parameter pQS at the equilibrium and in terms of the
perturbation field p.

The linearization of the Eq.(8.28g) leads to the following condition

Y ′ = Θ , (8.33)

which can be substituted within the equation (8.32) leading to the following
expression

B Y ′′′ +D Ẏ ′′′ −ML

∫ l

0

Ÿ ′ds− ct,L
∫ l

0

Ẏ ′ds−
∫ l

s

(
ρ

∫ ς

0

Ÿ ′dσ + ce

∫ ς

0

Ẏ ′dσ
)

dς+

− p sin(β0) + pQS cos(β0) (Y ′ − Y ′(l)) = 0.

(8.34)

In order to simplify the expression (8.34), a derivation with respect to s is
performed, leading to the following partial differential equation

B Y ′′′′ +D Ẏ ′′′′ + ρ Ÿ + ce Ẏ + pQS cos(β0)Y ′′ = 0 , (8.35)

so that the field Y (s, t) is still dependent on the value assumed by the reaction
force pQS of the non-holonomic constraint at equilibrium.
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Due to the presence of fourth order spatial derivatives in the equation (8.35),
a further boundary condition has to be introduced. Such condition is obtained
by particularising the differential equation (8.34) at the coordinate s = l, thus
obtaining

B Y ′′′(l) +D Ẏ ′′′(l)−ML Ÿ (l)− ct,L Ẏ (l)− p sin(β0) = 0, (8.36)

where the following substitutions in terms of the linearised quantities have been
performed (note that Y (0) = 0)

Ÿ (l) =

∫ l

0

Ÿ ′ds, Ẏ (l) =

∫ l

0

Ẏ ′ds.

The linearized formulation of the further boundary conditions’ equations is
given by

B Y ′′(l) +D Ẏ ′′(l) + Ir,L Ÿ
′(l) + cr,L Ẏ

′(l) = 0 , (8.37a)

Y ′(0, t) = 0 , (8.37b)

Y (0, t) = 0. (8.37c)

where the first two expressions represent the linearized versions of the Eqs.(8.28c)
and (8.28b) respectively, and where the latter represents a further Dirichlet
boundary condition expressing the condition Y (0, t) = 0 imposed at the initial
end of the rod s = 0.

Finally, the linearized equations of the non-holonomic constraint (8.28e) and
of the Eq.(8.28d) are given by

Ẋ0 cosβ0 + Ẏ (l) sinβ0 = 0 , (8.38)

and

(MX+ML+ρl)Ẍ0 +(ct,L+cel)Ẋ0 +KX0 = pQS sinβ0 Y
′(l)−p cosβ0 , (8.39)

respectively.
In the next Section, all the aforementioned linearized equations are partic-

ularized for β0 = 0, which represents a perfectly-aligned non-holonomic ‘skate’
constraint, having a rolling direction perpendicular to the tangent vector at the
final end of the rod s = l.
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8.4.1 Case of a perfectly-aligned non-holonomic constraint
β0 = 0

Taking β0 = 0 in Eqs.(8.35), (8.36), (8.37) and (8.38), the following system
of linearized equations holds

B Y ′′′′ +D Ẏ ′′′′ + ρ Ÿ + ce Ẏ + pQS Y ′′ = 0 ,

B Y ′′′(l) +D Ẏ ′′′(l)−ML Ÿ (l)− ct,L Ẏ (l) = 0 ,

B Y ′′(l) +D Ẏ ′′(l) + Ir,L Ÿ
′(l) + cr,L Ẏ

′(l) = 0 ,

Y ′(0, t) = 0 ,

Y (0, t) = 0 ,

Ẋ0 = 0 → X0 = const ,

(MX +ML + ρl)Ẍ0 + (ct,L + cel)Ẋ0 +KX0 + p = 0 ,

(8.40a)

(8.40b)

(8.40c)

(8.40d)

(8.40e)

(8.40f)

(8.40g)

which therefore represents the linearized problem of and elastic rod oscillating
about its trivial solution and whose final end is constrained to slide perpen-
dicularly to the tangent vector of the rod’s final end at any instant of time
t.

Moreover, through Eqs.(8.40f) and (8.40g) the perturbation of the reaction
force p acting on the system through the non-holonomic constraint is constant
and proportional to the perturbation in the parameter X0

p = −KX0 = const1. (8.41)

Dimensionless formulation

The following dimensionless variables are considered

s =
s
l
, τ =

t

T
, Ỹ =

Y

l
, p̃QS =

pQSl2

B
, M̃L =

ML

ρl
, Ĩr,L =

Ir,L
l3ρ

c̃e =
cel

2

√
ρB

, c̃t,L =
ct,Ll√
ρB

, c̃r,L =
cr,L
l
√
ρB

, D̃ =
D

l2
√
ρB

,

(8.42)

where T = l2
√
ρ

B
is the characteristic time of the structure expressed in terms

of some rod’s mechanical parameters. The dimensionless formulation for the
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first five equations of the system (8.40) in the displacement Ỹ (s, τ) is given by

Ỹ ′′′′ + D̃ ˙̃Y ′′′′ + p̃QS Ỹ ′′ + ¨̃Y + c̃e
˙̃Y = 0 ,

Ỹ ′′′(1) + D̃ ˙̃Y ′′′(1)− M̃L
¨̃Y (1)− c̃t,L ˙̃Y (1) = 0 ,

Ỹ ′′(1) + D̃ ˙̃Y ′′(1) + Ĩr,L
¨̃Y ′(1) + c̃r,L

˙̃Y ′(1) = 0 ,

Ỹ ′(0, τ) = 0 ,

Ỹ (0, τ) = 0 ,

(8.43a)

(8.43b)

(8.43c)

(8.43d)

(8.43e)

where the symbols ‘ ′ ’ and ‘ ˙ ’ represent now derivatives with respect to the
dimensionless quantities s and τ .

The exponential solution Ỹ (s, τ) = Ψ(s)eΩτ is introduced, leading to the
following system of equations

(1 + D̃Ω) Ψ′′′′(s) + p̃QS Ψ′′(s) + (Ω2 + c̃e Ω) Ψ(s) = 0 ,

(1 + D̃Ω) Ψ′′′(1) = (M̃L Ω2 + c̃t,L Ω) Ψ(1) ,

(1 + D̃Ω) Ψ′′(1) + (Ĩr,L Ω2 + c̃r,L Ω) Ψ′(1) = 0 ,

Ψ′(0) = 0 ,

Ψ(0) = 0 ,

(8.44a)

(8.44b)

(8.44c)

(8.44d)

(8.44e)

and where Ω represents the dimensionless eigenvalue of the system.

Absence of buckling loads for β0 = 0

Critical loads corresponding to buckling of the elastic rod can be obtained
from Eqs.(8.44) by simply imposing Ω = 0, thus obtainingΨ′′′′(s) + p̃QS Ψ′′(s) = 0 ,

Ψ′′′(1) = 0, Ψ′′(1) = 0, Ψ′(0) = 0, Ψ(0) = 0 ,

(8.45a)

(8.45b)

so that the only solution for Ψ satisfying the imposed boundary conditions is
the trivial one. In analogy with Chapter 7, one can therefore conclude that no
buckling occurs also for the continuous non-holonomic system in the case of a
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perfectly-aligned constraint β0 = 0. This statement is in agreement with the
conclusions obtained for the quasi-static solutions in Section 8.3, as the unique
parameter η holding for β0 = 0 is the null one, thus corresponding to the trivial
configuration.

Evaluation of the flutter load

The general solution for the differential equation (8.44a) can be written as

Ψ(s) = A1 sin (λ1s) +A2 cos (λ1s) +A3 sinh (λ2s) +A4 cosh (λ2s) , (8.46)

where

λ1 =

√√√√√√ (D̃Ω + 1)

√
(p̃QS)

2 − 4 Ω(D̃Ω + 1)(c̃e + Ω)

(D̃Ω + 1)2
+ p̃QS

2 D̃Ω + 2
,

λ2 =

√√√√√√ (D̃Ω + 1)

√
(p̃QS)− 4 Ω(D̃Ω + 1)(c̃e + Ω)

(D̃Ω + 1)2
− p̃QS

2 D̃Ω + 2
.

(8.47)

The imposition of the boundary conditions (8.44b), (8.44c), (8.44d) and
(8.44e) on the general solution (8.46) leads to the following linear system

0 1 0 1
λ1 0 λ2 0
a31 a32 a33 a34

a41 a42 a43 a44



A1

A2

A3

A4

 = 0 , (8.48)

where

a31 = λ1 cosλ1

(
c̃r,LΩ + Ĩr,LΩ2

)
− λ2

1(D̃Ω + 1) sinλ1,

a32 = −λ1 sinλ1

(
c̃r,LΩ + Ĩr,LΩ2

)
− λ2

1(D̃Ω + 1) cosλ1,

a33 = λ2 coshλ2

(
c̃r,LΩ + Ĩr,LΩ2

)
+ λ2

2(D̃Ω + 1) sinhλ2,

a34 = λ2 sinhλ2

(
c̃r,LΩ + Ĩr,LΩ2

)
+ λ2

2(D̃Ω + 1) coshλ2,

(8.49)
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and 

a41 = − sinλ1

(
c̃t,LΩ + M̃LΩ2

)
− λ3

1(D̃Ω + 1) cosλ1,

a42 = − cosλ1

(
c̃t,LΩ + M̃LΩ2

)
+ λ3

1(D̃Ω + 1) sinλ1,

a43 = − sinhλ2

(
c̃t,LΩ + M̃LΩ2

)
+ λ3

2(D̃Ω + 1) coshλ2,

a44 = − coshλ2

(
c̃t,LΩ + M̃LΩ2

)
+ λ3

2(D̃Ω + 1) sinhλ2.

(8.50)

The system (8.48) admits non-trivial solutions for vanishing determinant of
the related matrix, providing the equation for the determination of the eigen-
values Ω as functions of the dimensionless reaction force p̃QS. Such equation is
given by

sinhλ2

[
(λ2

1 − λ2
2) sinλ1

(
λ2

1λ
2
2C

2
1 − C2C3

)
+ λ1C1

(
λ2

1 + λ2
2

)
cosλ1

(
λ2

2C2 − C3

)]
+

+ λ2 coshλ2

[
2λ1 cosλ1

(
λ2

1λ
2
2C

2
1 − C2C3

)
+ C1

(
λ2

1 + λ2
2

)
sinλ1

(
λ2

1C2 + C3

)]
+

+ λ1λ2

[
C2

1

(
λ4

1 + λ4
2

)
+ 2C2C3

]
= 0 ,

(8.51)

where

C1 = 1 + D̃Ω, C2 = Ω
(
c̃r,L + Ω Ĩr,L

)
, C3 = Ω

(
c̃t,L + Ω M̃L

)
.

All the critical loads causing flutter instabilities can therefore be obtained from
Eq.(8.51) and are represented by values of pre-stress p̃QS that cause the real
part of the complex conjugate eigenvalues Ω to become positive. Conversely,
the divergence load is given by the value of p̃QS providing a strictly positive
eigenvalue. Moreover, the characteristic equation (8.51) is found to be exactly
the same that governs the problem of a non-conservative follower force applied at
the final end of an elastic cantilever (Pflüger and Beck columns) and proposed
by Detinko [41] and Tommasini et al.[111]. Therefore, in these structures to
critical loads are the same when the ‘new’ parameters of the rotational inertia
Ĩr,L and the damping factors c̃t,L and c̃r,L at final end of the rod are set equal
to zero.

As a final remark, the trivial eigenvalue Ω = 0 is always a solution for
Eq.(8.51). As previously seen in Chapter 7, this peculiarity is typical of non-
holonomic systems, so that the trivial solution can be simply omitted to evaluate
the stability of configurations belonging to the manifold of equilibrium states
(see Neimark and Fufaev [85]).

Alessandro Cazzolli 207



8. FLUTTERING OF ELASTIC RODS SUBJECT TO NON-HOLONOMIC CONSTRAINTS.
CONTINUOUS MODEL

Numerical examples: stability and Ziegler’s destabilization paradox

Branches of the real and imaginary parts of the eigenvalues Ω for the non-
holonomic continuous rod having a mass ratio M̃L = 1, a null rotational inertia
Ĩr,L = 0 at the final end and subject to an internal dissipative effect D̃ = 0.02
(while c̃e = c̃t,L = c̃r,L = 0) are reported in Fig.8.3, together with a comparison
between the flutter load for the continuous rod, calculated through equation
(8.51), and the critical loads obtained for its discretized counterparts (calculated
through the methodology proposed in Chapter 7) at increasing number N of
rigid bars. The approximated values for the ideal flutter and divergence load at
null viscosities ‘from the beginning’ are also calculated. In agreement with the
results obtained for the Pflüger column by Tommasini et al. [111] and according
to the definitions (7.67), one obtains P0 ≈ 16.212 and D0 ≈ 34.465, respectively.
On the other hand, the approximated value of the flutter and divergence loads
for D̃ = 0.02 are equal to p̃QS

flu ≈ 7.920 < P0 and p̃QS
div ≈ 40.646, respectively.

Figure 8.3: (Left) Branching of the real and imaginary parts of the eigenvalues Ω as functions
of the dimensionless reaction force p̃QS of the non-holonomic ‘skate’ constraint. Case M̃L = 1,
Ĩr,L = 0 and D̃ = 0.02. The flutter and divergence loads are approximately equal to p̃QS

flu ≈
7.920 and p̃QS

div ≈ 40.646, respectively. (Right) Comparison between the critical load of the
continuous system and those of the disctretized chains at increasing the number N of rigid
bars, showing an asymptotic behaviour towards the critical load of the continuous rod

In order to compare the flutter load obtained for the continuous rod with
those of its discretized counterparts, the homogenization of the rotational springs
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and of the internal damping is needed. With reference to Domokos [42] and by
considering the definitions of damping coefficients and mechanical parameters
introduced in Chapter 7 for the visco-elastic chain, the following homogenized
quantities are introduced

k =
B

L
N, ci =

D

L
N, k1 = 2 k ,

where the stiffness of the rotational springs is assumed to be the same for all
the rigid bars with the exception of the first one k = k2 = · · · = kN . Moreover,
L is the total length of the discrete system, assumed equal to the length of the
continuous rod. As shown in Fig.8.3 (right), the flutter load of the discrete
structures at increasing number of rigid bars tends to the flutter load of the
non-holonomic continuous column.

Finally, the Ziegler’s destabilization paradox in the limit of vanishing vis-
cosities for the particular case M̃L = 1 and Ĩr,L = 0 is demonstrated in the
presence of a single damping source.

• Internal viscosity D̃ 6= 0: by assuming an extremely small viscosity
D̃ = 10−10, one obtains

lim
D̃→10−10

p̃QS
flu(D̃) ≈ 7.905 < P0 ,

which is lower than the ideal flutter load for the undamped system, so
that the Ziegler’s destabilization paradox occurs

• External damping c̃e 6= 0: assuming for instance an external damp-
ing coefficient equal to c̃e = 0.5, the critical flutter load is equal to
p̃QS
flu ≈ 16.124, which is lower than the ideal load P0. Moreover, the

Ziegler’s paradox can be proven by taking the limit for a vanishing damp-
ing coefficient, thus obtaining

lim
c̃e→10−10

p̃QS
flu(c̃e) ≈ 16.122 < P0 ,

• Translational damping acting on the non-holonomic constraint
c̃t,L 6= 0: consistently with the behaviour of the discretized system intro-
duced in Chapter 7, a viscosity-independent Ziegler’s paradox also occurs
for the continuous rod, as the critical flutter load becomes independent of
the value assumed by the damping coefficient c̃t,L and not higher than the
ideal load P0. In fact, the corresponding critical value is equal to

p̃QS
flu(c̃t,L) = const ≈ 16.052 < P0 ,
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• Rotational damping acting on the non-holonomic constraint c̃r,L 6=
0: again the viscosity-independent Ziegler’s paradox occurs, being the crit-
ical flutter load independent of the value assumed by the damping coef-
ficient c̃r,L and not higher than the ideal load P0. The corresponding
critical value is equal to

p̃QS
flu(c̃r,L) = const ≈ 5.219 < P0 ,

8.5 Conclusions
The presented analysis shows that a continuous elastic rod subject to a non-

holonomic ‘skate’ constraint and loaded through conservative forces can suffer
flutter instabilities.

As for the discrete systems analyzed in Chapter 7, the continuous non-
holonomic device shows exactly the same critical loads for flutter and divergence
and the same Ziegler paradox that one may obtain from the study of the lin-
earized stability of its non-conservative counterpart, represented in this case by
a Pflüger column subject to a follower load. Moreover the rotational and transla-
tional viscous friction terms acting on the non-holonomic ‘skate’ constraint lead
to a viscosity-independent destabilization paradox. Such phenomenon there-
fore represents a new intriguing insight in structural instability and provides a
further proof of the mechanical equivalence between non-holonomic conditions
and polygenic [71] (for instance follower) forces that cannot be derived from any
scalar functional.

Finally, the obtained critical loads for a continuous system are also in good
agreement with those obtained through a discretized model with homogenized
parameters when the number of rigid bars is sufficiently high.
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A
Complementary equations for the

elastica catastrophe machines

A.1 Complementary equations for the theoreti-
cal framework of the elastica catastrophe ma-
chines

This Section is devoted to further considerations regarding the theoretical
framework of the elastica catastrophe machines, with emphasis on the reduction
of the dependencies of the control parameters on the physical and kinematical
coordinates. Moreover, suggested initial values for such control parameters are
proposed to initiate the evolution of the deformed shape within the inextensibil-
ity set and in the neighbourhood of an (if existing) effective catastrophe locus.
Finally, a detailed description of the algorithm for the numerical evaluation of
the catastrophe loci is presented.

A.1.1 Reducing the dependencies between coordinates

As discussed in the main document, the generic configuration of the rod can
be equivalently described (i.) through the three coordinates {Xl, Yl,Θl} express-
ing the position of the rod’s final end, (ii.) through three primary kinematical
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quantities {d, θA, θS} or (iii.) through the two control parameters {p1, p2}. The
discrepancy in the number of the variables in each of these three representations
suggests that the coordinates pj in the equation

pj = p̃j(Xl, Yl,Θl,q), j = 1, 2, (A.1)

can be also expressed as function of only two coordinates of the rod’s final end,
namely

pj = p̃j(Yl,Θl,q) or pj = p̃j(Xl,Θl,q), j = 1, 2, (A.2)

so that the substitution into Eq.(6.18) provides one of the two coordinates in
terms of the other coordinate and the rotation as

Xl = Xl(Yl,Θl,q), or Yl = Yl(Xl,Θl,q). (A.3)

By considering the two relations (A.3) into Eqs.(6.17) leads to two implicit
relations involving the symmetric and antisymmetric angles together with one
of the two physical coordinates,

G(Yl, θA, θS ,q) = Xl (Yl, 2θS ,q) tan(θS − θA)− Yl = 0

or (A.4)

H(Xl, θA, θS ,q) = Xl tan(θS − θA)− Yl (Xl, 2θS ,q) = 0.

Assuming further that the kinematic rule (6.18) defined by the machine is such
that the implicit function (G or H) has continuous and non-null partial deriva-
tive of the implicit function (G or H) with respect to the involved coordinate
(∂G/∂Yl or ∂H/∂Xl), such coordinate can be described as a function of the
symmetric and antisymmetric angles,

Yl = Yl(θA, θS ,q) or Xl = Xl(θA, θS ,q). (A.5)

From this property it follows that, by considering Eqs.(6.17) and (A.2), the
distance d and the control parameters pj (j = 1, 2) can be expressed in turn as
functions of the antisymmetric and symmetric angles only

d = d(θA, θS ,q), pj = p̂j(θA, θS ,q), j = 1, 2. (A.6)

being the latter equation equivalent to

pj = p̂j(d, θA, θS ,q), j = 1, 2, (A.7)
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but expressed as a function of a lower number of coordinates. In the cases
when the function G(Yl, θA, θS ,q) or H(Xl, θA, θS ,q) does not satisfy the afore-
mentioned properties, a different pair of primary kinematical quantities can be
taken as variable to express the remaining kinematical quantity and the control
parameter vector, namely, as

θA = θA(d, θS ,q), pj = p̂j(d, θS ,q), j = 1, 2, (A.8)

or equivalently as

θS = θS(d, θA,q), pj = p̂j(d, θA,q), j = 1, 2. (A.9)

It is also worth remarking that, in order to overcome periodicity issues inherent
to the trigonometric function arctan, the antisymmetric rotation θ̃A (as well
as the other angular quantities) is evaluated as integration over the time-like
parameter t, from an initial and a current state during the controlled ends’
history and corresponding to t = τ0 and t = τ

θ̃A(τ) = θ̃A(τ0) +
Θl(τ)

2
−
∫ τ

τ0

Xl(t)Ẏl(t)− Yl(t)Ẋl(t)

Xl(t)2 + Yl(t)2
dt, (A.10)

where the superimposed dot stands for the derivative with respect to the time-
like parameter t.

A.1.2 Suggested initial values for the control parameters
In order to initiate the evolution from a configuration in the ‘surroundings’ of

the (if existing) catastrophe locus, the initial values of control parameters p(τ0)
are suggested to be selected satisfying the following initial conditions (IC):

(IC1) the end rotation at the final coordinate is null (Θl(τ0) = 0), implying a
null initial value of the symmetric angle

θS(τ0) = 0; (A.11)

(IC2) the initial deformed configuration displays two inflection points, implying
the satisfaction of the modulus restriction for the antisymmetric angle
(|θA(τ0)| < π) provided by Eq. (6.23).

Being the symmetric angle θS only dependent on Θl, Eq.(6.16)3, it follows that
imposing the initial condition (IC1) through Eq.(A.11) is equivalent to impose

p2(τ0) = p0
2 = −υ. (A.12)
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A.1.3 Numerical algorithm for the evaluation of catastro-
phe sets

The evaluation of the ‘catastrophe set’ CK , as the elastica set EK intersection
with the ‘snap-back set’ SK , can be performed only numerically. A specific
algorithm was developed in Mathematica, whose steps are:

Step 1. to define the discrete set of control parameter vectors p ⊆ EC . This is
performed as a fine discretization assuming a maximum spacing equal
to 10−3 for each of the two control parameters;

Step 2. to relate the discrete set of EC (introduced at the previous step) to
the corresponding projections in the primary kinematical space and the
physical plane, as the discretization of the elastica sets EK and EP ;

Step 3. to identify the catastrophe set CC through the evaluation of the (approx-
imated) critical control parameter vector pC , belonging to discretization
of the elastica set EC and numerically found by imposing

pC :
∣∣∣θsb(±)
S

(
d(p,q), θA(p,q)

)
− θS(p,q)

∣∣∣ < 6 · 10−4 π; (A.13)

Step 4. to evaluate catastrophe sets {dC , θCA, θCS} and {XCl , Y CL } as the projection
of the critical control parameters pC (achieved at the previous step) in
the kinematical space and in the physical plane.

A.2 Complementary equations and considerations
about the proposed elastica catastrophe ma-
chines

The equations presented in Sect. A.1 are detailed here for both the families
of elastica catastrophe machines. In particular, the specific cases of rotation
centre coincident (κR = λR = 0) and infinitely far away (

√
κ2
R + λ2

R → ∞)
from the the origin are analyzed for the ECM-I respectively in Sects. A.2.1 and
A.2.1. The limit case of rigid bar with infinite length is developed for ECM-II
in Sect. A.2.2.
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A.2.1 ECM-I
The description of the primary kinematic quantities {d, θA, θS} for ECM-I as

functions of the control parameter vector p follows from Eqs.(6.16) and (6.17)
in the main text as

d(p,qI) =

√
(κR + p1 cos p2)

2
+ (λR + p1 sin p2)

2
l,

θA(p,qI) =
p2 + υ

2
− arctan

λR + p1 sin p2

κR + p1 cos p2
,

θS(p,qI) =
p2 + υ

2
.

(A.14)

By inverting Eq.(6.35), the control parameters can be expressed as functions of
the physical coordinates, in particular the first control parameter is given by

p̃1(Yl,Θl,qI) =
Yl/l − λR

sin (Θl − υ)
, for Θl 6= υ + kπ, k ∈ Z,

p̃1(Xl,Θl,qI) =
Xl/l − κR

cos (Θl − υ)
, for Θl 6= υ + (k + 1

2 )π, k ∈ Z,

(A.15)

the former equation equivalent to the latter, to be used when the rigid bar is not
parallel to the X and Y axis, respectively, while the second control parameter
is given by

p̃2(Θl,qI) = Θl − υ. (A.16)

Exploiting the inverse relations (A.15) and (A.16) into Eq.(6.35), one of the
two coordinates can be expressed as a function of the other coordinate and the
rotation as

Xl(Yl,Θl,qI) =

κR +

Yl
l
− λR

tan (Θl − υ)

 l, for Θl 6= υ + kπ,

Yl(Xl,Θl,qI) =
[
λR + tan (Θl − υ)

(
Xl

l − κR
)]
l, for Θl 6= υ + (k + 1

2 )π

(A.17)
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for any k ∈ Z. Inverting Eq.(A.14) leads to express the control parameters as
functions of two of the primary kinematical quantities. In particular, while the
second control parameter is only dependent on the antisymmetric angle

p̂2(θS ,qI) = 2θS − υ, (A.18)

the first control parameter can be expressed as a function of both the symmetric
and antisymmetric angle only when the rotation center of the rigid bar does not
lay along the straight line connecting the two rod’s ends,

p̂1(θA, θS ,qI) =
κR tan (θS − θA)− λR

sin (2θS − υ)− cos (2θS − υ) tan (θS − θA)
,

for θS + θA 6= υ + kπ, k ∈ Z.

(A.19)

Differently, in the case when the rotation center of the rigid bar and the two
rod’s ends are aligned along a straight line, the first control parameter can be
expressed as a function of the distance and the symmetric angle as

p̂1(d, θS ,qI) = (−1)k dl −
κR

cos 2θS−υ ,

p̂1(d, θS ,qI) = (−1)k dl −
λR

sin 2θS−υ ,
for θS + θA = υ+ kπ, k ∈ Z.

(A.20)

Finally, whenever the rigid bar is not parallel to the straight line connecting
the rod’s ends, the distance d for ECM-I can be described as a function of the
symmetric and antisymmetric angles as

d(θA, θS ,qI) =
κR tan (2θS − υ)− λR

cos (θS − θA) tan (2θS − υ)− sin (θS − θA)
l,

for θS + θA 6= υ + kπ, k ∈ Z,

(A.21)

differently, when the rigid bar becomes parallel, the distance d becomes a free
parameter and the angles are constrained to each other

θS(θA,qI) = υ+kπ−θA, or θA(θS ,qI) = υ+kπ−θS , k ∈ Z, (A.22)

where the parameter k for these last parametrizations is given by evolution
continuity, similarly to Eq.(A.10).

216 Alessandro Cazzolli



A.2. Complementary equations and considerations about the proposed elastica catastrophe
machines

It is also worth noting that a sufficient condition for the connectivity of the
inextensibility set IC is given by a position of the rotation center R within such
a set,

κR
2 + λR

2 < 1, (A.23)

a property however not fundamental for the realization of an ‘effective’ elastica
catastrophe machine. All the cases reported in Figs. 6.7, 6.8 and 6.9 consider a
rotation center R of the rigid bar within the inextensibility set, Eq.(A.23). It is
observed that when the design parameters are such that an ‘effective catastrophe
machine’ is realized, the rotation center R is never inside the catastrophe locus.
It is also worth remarking that the effectiveness of the catastrophe locus does
not imply its simple connection in the control parameters plane. This is indeed
the case when the rotation center R lays along the catastrophe set CP at the
physical coordinates corresponding to the junction point of C(+)

P with C(−)
P . Its

projection in the control parameters plane share only the first coordinate p1 = 0
while has two different values in the second coordinate p2 (as it can be noted in
the left column of Fig. 6.7).
Finally, the recommendation for the initial value of the control parameters vector
p(τ0) = {p0

1, p
0
2 = −υ} to belong to the inextensibility set IC constrains the first

control parameter to the range p0
1 ∈

[
p0

1,min, p
0
1,max

]
, with

p0
1,min = max

[
0,−κR cos υ + λR sin υ −

√
1− κ2

R − λ2
R +

(
κR cos υ − λR sin υ

)2]
,

p0
1,max = −κR cos υ + λR sin υ +

√
1− κ2

R − λ2
R +

(
κR cos υ − λR sin υ

)2
.

(A.24)

From imposing the existence of a range inclusive of positive values in the pre-
vious equation, the design parameters κR and λR are constrained to satisfy

 κ2
R + λ2

R −
(
κR cos υ − λR sin υ

)2 ≤ 1,

−κR cos υ + λR sin υ +

√
1− κ2

R − λ2
R +

(
κR cos υ − λR sin υ

)2
> 0.

ECM-I with rotation centre R coincident with the origin

Null coordinates for the rotation center (κR = λR = 0) imply that the
distance d reduces to a linear function of the first control parameter p1 and that
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the antisymmetric angle θA reduces to a linear function of the second control
parameter p2,

d = p1l, θA =
υ − p2

2
−
⌊ υ
π + 1

2

⌋
2π, (A.25)

where the floor operator b c provides the greatest integer less than or equal to
the relevant argument. Under this condition, the elastica set EK reduces to the
portion of plane

θA + θS = υ −
⌊ υ
π + 1

2

⌋
2π, (A.26)

under the constraint (6.23). From the analysis of the intersection of such elastica
set EK and the snap-back surface SK , it follows that if λR = κR = 0 then an
effective machine is generated only when∣∣∣∣υ − ⌊ υπ + 1

2

⌋
2π

∣∣∣∣ . 0.726π. (A.27)

ECM-I with rotation centre R infinitely far away from the origin

For large values of
√
κ2
R + λ2

R, the inextensibility domain approaches an
ellipse within the control parameter plane p1 − p2, described by

IC =

{
p :

[
p1 −

√
κ2
R + λ2

R

]2

+
(
κ2
R + λ2

R

) [
p2 − π − arctan

λR
κR

]2

≤ 1

}
.

(A.28)

In order to satisfy the aforemmentioned inequality, the second control param-
eter has to assume the approximately constant value p2 ' π + arctanλR/κR.
Therefore, the symmetric angle θS takes the approximately constant values

θS =
π + υ + arctanλR/κR

2
. (A.29)

It follows that the evolution of the final curvilinear coordinate is just a rigid-
body translation within the physical plane, at constant end’s rotation Θl = 2θS .
The equation (A.29) implies that a centre of rotation very distant from the origin
never makes effective ECM-I. In the particular case when θS = Θl = 0, attained
for υ + arctanλR/κR = −π, all the points of the catastrophe set of ECM-I
become pitchfork bifurcations [33]. Under these hypotheses, the ECM-I could
be exploited as a elastica pitchfork bifurcation machine to show the infinite
possible pitchfork bifurcations of the system, as shown in Fig. SM A.1.
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Figure A.1: Projection of the bifurcations set for the elastica pitchfork bifurcation machine
within the primary kinematical space (left) and the physical plane (right). The elastica pitch-
fork bifurcation machine can be generated from ECM-I with infinitely far rotation center R
(κ2R + λ2R →∞) and υ + arctanλR/κR = −π or from ECM-IIa and ECM-IIb with rigid bar
of infinite length (ρ → ∞) and υ = −α and υ = −α − π, respectively. Deformed configura-
tions are reported within the physical plane for some end position, with those laying along
the bifurcation set that display m = 3 inflections points (the mid-point and the two ends,
elastica reported in purple). Elastica in red (blue) colour has negative (positive) curvature at
the initial coordinate, Θ′(s = 0).

A.2.2 ECM-II

By considering Eq.(6.39) in Eqs.(6.16) and (6.17), the primary kinematic
quantities {d, θA, θS} can be expressed for ECM-II as functions of the control
parameters vector p as

d(p,qII) =

√
(κD + p1 cosα+ ρ cos p2)

2
+ (λD + p1 sinα+ ρ sin p2)

2
l,

θA(p,qII) =
p2 + υ

2
− arctan

λD + p1 sinα+ ρ sin p2

κD + p1 cosα+ ρ cos p2
,

θS(p,qII) =
p2 + υ

2
.

(A.30)
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The first control parameter can be expressed as a function of the physical coor-
dinates by inverting Eq.(6.39) as

p̃1(Yl,Θl,qII) = Yl/l−λD−ρ sin (Θl−υ)
sinα , for α 6= kπ,

p̃1(Xl,Θl,qII) = Xl/l−κD−ρ cos (Θl−υ)
cosα , for α 6=

(
k + 1

2

)
π,

(A.31)

where k ∈ Z. The previous two equations, equivalent to each other, can be used
indifferently except for the case of a designed straight line (where the rigid bar
rotation center may move) parallel to the X (Y ) axis where only the second
(first) equation is feasible.
Relations (A.15) and (A.31) together with Eq.(6.39) provide one of the position
coordinates as a function of the two remaining physical coordinates as

Xl(Yl,Θl,qII) =

Yl
tanα

+ l

[
κD + ρ cos (Θl − υ)− λD + ρ sin (Θl − υ)

tanα

]
, for α 6= kπ,

Yl(Xl,Θl,qII) =

Xl tanα+ [λD + ρ sin (Θl − υ)− tanα (κD + ρ cos (Θl − υ))] , for α 6= (k +
1

2
)π.

(A.32)

The inversion of Eqs.(6.34) and Eq.(A.30) provides the same equation obtained
for the ECM-I expressing the second control parameter as a function of the
physical rotation and the symmetric angle, respectively

p̃2(Θl,qII) = Θl − υ, p̂2(θS ,qII) = 2θS − υ. (A.33)

The inversion of Eq.(A.30) also provides the expression for the first control
parameter as function only of the antisymmetric and symmetric angles

p̂1(θA, θS ,qII) =
(κD + ρ cos (2θS − υ)) tan (θS − θA)− λD − ρ sin (2θS − υ))

sinα− cosα tan (θS − θA)
,

for θS − θA 6= α+ kπ

(A.34)
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holding (for k ∈ Z and) except when the straight line connecting the two
rod’s ends is parallel to the designed straight line (where the rigid bar rotation
center may move). Differently, under this condition (equivalent to α + kπ =
arctanYl/Xl), the first control parameter can be expressed as a function of the
distance and symmetric angle as

p̂1(d, θS ,qII) = (−1)k dl −
κD+ρ cos (2θS−υ)

cosα ,

p̂1(d, θS ,qII) = (−1)k dl −
λD+ρ sin (2θS−υ)

sinα ,

for θS−θA = α+kπ, k ∈ Z.

(A.35)

Lastly, one of the three primary kinematical quantities can be expressed as a
function of the other two. The distance d for ECM-II can be described as a
function of the symmetric and antisymmetric angles as

d(θA, θS ,qII) =
κD + ρ cos (2θS − υ) tanα− (λD + ρ sin (2θS − υ))

cos (θS − θA) tanα− sin (θS − θA)
l.

(A.36)

for θS − θA 6= α+ kπ.

As the straight line connecting the two rod’s ends is parallel to the designed
straight line, the aforementioned equation can not be used and one of the angles
θA or θS can be expressed as a function of the other one (leaving the distance
d as free variable)

θS(θA,qII) = α+ kπ+ θA, or θA(θS ,qII) = θS −α− kπ, k ∈ Z. (A.37)

Finally, it is worth remarking that the initial value of the control parameter
vector is constrained by Eq.(A.12) and the condition of belonging to the inex-
tensibility set IC . The latter condition constrains the first control parameter
within the range p0

1 ∈
[
p0

1,min, p
0
1,max

]
with

p0
1,min = −κD cosα− λD sinα− ρ cos (α+ υ)−√
(λD sinα+ ρ cos (α+ υ) + κD cosα)2 −

(
κD2 + λD

2 + ρ2 − 2ρ(λD sin υ − κD cos υ)− 1
)
,

p0
1,max = −κD cosα− λD sinα− ρ cos (α+ υ)+√
(λD sinα+ ρ cos (α+ υ) + κD cosα)2 −

(
κD2 + λD

2 + ρ2 − 2ρ(λD sin υ − κD cos υ)− 1
)
,
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where, in order to have a non-null set for the possible initial vector p0, the
design parameters κD, λD, α, ρ, and υ have to satisfy the following inequality

1+(λD sinα+ρ cos(α+υ)+κD cosα)2 ≥ κD2+λD
2+ρ2−2ρ(λD sin υ−κD cos υ).

(A.38)

ECM-II with the rigid bar of infinite length

In the case of ECM-II with very large values of rigid bar length (ρ→∞), the
inextensibility domain can be approximated by two ellipses within the control
parameter plane p1 − p2. The ellipse for ECM-IIa is defined by

IIIaC =

{
p :

[
p1 +

(
ρ+ κD cosα+ λD sinα− (κD sinα− λD cosα)2

2ρ

)]2

(A.39)

+ ρ2

[
p

(a)
2 − α− κD sinα− λD cosα

ρ

]2

< 1

}
.

while that for ECM-IIb by

IIIbC =

{
p :

[
p1 −

(
ρ− κD cosα− λD sinα− (κD sinα− λD cosα)2

2ρ

)]2

(A.40)

+ ρ2

[
p

(b)
2 − α− π +

κD sinα− λD cosα

ρ

]2

< 1

}
.

These two inextensibility domains imply an approximately constant value for
the second control parameter, p(a)

2 ' α and p(b)
2 ' α+ π, so that the symmetric

angle θS is also constant

θ
(a)
S =

α+ υ

2
θ

(b)
S =

α+ π + υ

2
. (A.41)

Similarly to ECM-I with rotation center infinitely far away from the origin,
ECM-II with infinitely long rigid bars is never an effective catastrophe machine
and in some special case (υ = −α for ECM-IIa or υ = −α − π for ECM-
IIb) displays pitchfork bifurcation points as catastrophe set. The projections
of this bifurcation set within the primary kinematical space and within the
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physical plane are coincident with the special cases of ECM-I and reported in
Fig. SM A.1.
Finally, although the realization of an ‘effective’ ECM-II is not strictly related
to this property, it is noted that the connectivity of its inextensibility domain
IC , Eq.(6.41), is attained when

|κD sinα− λD cosα|+ ρ < 1. (A.42)

A.3 Additional experimental results
Similar to the experimental results shown in Figs. 6.2 and 6.18 of the main

text, photos taken at specific stages are reported here for ECM-IIb with κD =
λD = α = 0, ρ = 1 and υ = π. In particular, all the stable equilibrium
configurations are reported at three stages for in Fig. A.2. The clamp position
moves from inside the bistable region (left photo) to inside the monostable
region (right photo), by crossing the catastrophe locus (central photo) region
(from left to right in Figs. 16 and 17). The evolution of the clamp position is
ruled by varying the control parameter p2 at fixed value of p1. Moreover, the

Figure A.2: As for Fig. 6.18 but for ECM-IIb (with κD = λD = α = 0, ρ = 1 and υ = π),
involving a different definition of the control parameters {p1, p2} (left).

transition of the deformed configuration during a continuous evolution can be
also appreciated in Fig. A.3 where the fast motion at snapping is shown in the
central photo (each two consecutive snapshots are referred to a time interval of
approximately 0.15 sec).

Alessandro Cazzolli 223



A. COMPLEMENTARY EQUATIONS FOR THE ELASTICA CATASTROPHE MACHINES

Figure A.3: As for Fig. 6.2, but for ECM-IIb (with κD = λD = α = 0, ρ = 1, υ = π) with
increasing the second control parameter p2 (rotation angle) and fixed value of p1. Snapping
for a configuration with negative curvature at the two ends (highlighted with a red dashed
line) is shown at crossing the part C−P (red line) of catastrophe locus. Due to the symmetry,
snapping is not reported for crossing the part C+P (blue line) of catastrophe locus.
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B
Equations of motion of the

non-holonomic dicrete system in
quasi-coordinates

In this Appendix, the alternative formulation of the equations of motion for
a non-holonomic system in quasi-coordinates is shown. Such equations represent
the link between the classical form of the Lagrange equations and the equations
of motion of non-holonomic systems, while their main advantage is represented
by the fact that the reaction forces on the non-holonomic constraints can be
disregarded.

In the first Section, the governing equations expressed in quasi-coordinates,
also known in literature as the Boltzmann-Hamel equations [52], are firstly ob-
tained for a system described through n generalized coordinates. The exact
formulation, which is in general valid also for holonomic systems, is obtained
following Greenwood [52] and Neimark and Fufaev [85]. The equations are then
specified for the case of non-holonomic systems.

With reference to Chapter 7, in the second Section the general equations
are specified for the discretized non-holonomic system made up of N rigid
bars. A numerical integration of the governing equations also shows an al-
most perfect match between the results obtained through the ‘classical’ form of
the Lagrange equations given by (7.20) and those of the proposed formulation
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in quasi-coordinates.

B.1 The Boltzmann-Hamel equations
The equations of motion in quasi-coordinates are obtained by considering the

set of generalized ‘true’ coordinates q = {q1, q2, . . . , qn} and of quasi-coordinates
π = {π1, π2, . . . , πn}, whose derivatives are connected to the generalized veloc-
ities q̇ by the following linear equations

π̇s = Ask(q)q̇k, q̇k = Bkl(q)π̇l, s, k, l = 1, 2, . . . , n (B.1)

and where the matrices A and B = A−1 depend only on the generalized coor-
dinates q. It is worth to underline that the transformation (B.11) is completely
arbitrary, although the matrix A has necessarily to be non-singular.

The following properties hold

∂q̇s
∂π̇k

=
∂qs
∂πk

= Bsk, δqs = Bskδπk (B.2)

where δqs and δπk denote variations in the generalized ‘true’ and quasi-coordinates,
so that the D’Alembert-Lagrange equations can be written as

n∑
s=1

(
d

dt

∂T
∂q̇s
− ∂T
∂qs
−Qs

)
Bskδπk = 0, (B.3)

where T is the kinetic energy and Qs is the s-th generalized force. Moreover,
the variations δπk are independent, so that one obtains the following system of
n equations(

d

dt

∂T
∂q̇s
− ∂T
∂qs
−Qs

)
Bsk = 0, k = 1, 2, . . . , n. (B.4)

The function T ∗ is introduced by substituting the transformation (B.1) into
the kinetic energy T . The first component of the k-th equation in (B.4) can be
therefore rewritten as follows

Bsk
d

dt

∂T
∂q̇s

=
d

dt

(
Bsk

∂T
∂q̇s

)
− ∂T
∂q̇s

∂Bsk
∂ql

q̇l

=
d

dt

(
Bsk

∂T ∗

∂π̇i

∂π̇i
∂q̇s

)
− ∂T ∗

∂π̇i

∂π̇i
∂q̇s

∂Bsk
∂ql

q̇l

(B.5)
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where ∂π̇i/∂q̇s = Ais and AisBsk = δik, so that

Bsk
d

dt

∂T
∂q̇s

=
d

dt

∂T ∗

∂π̇k
− ∂T ∗

∂π̇i
Ais

∂Bsk
∂ql

Blj π̇j

=
d

dt

∂T ∗

∂π̇k
+
∂T ∗

∂π̇i
π̇jBskBlj

∂Ais
∂ql

(B.6)

Using a similar procedure, the second term in (B.4) becomes

Bsk
∂T
∂qs

=
∂T ∗

∂qs
Bsk +

∂T ∗

∂π̇i

∂π̇i
∂qs

Bsk

=
∂T ∗

∂πi
δik +

∂T ∗

∂π̇i
Bsk

∂Ail
∂qs

q̇l =
∂T ∗

∂πk
+
∂T ∗

∂π̇i

∂Ail
∂qs

BskBlj π̇j

(B.7)

while the generalized forces can be rewritten as

Πk = BskQs (B.8)

Finally, merging of the terms (B.6), (B.7) and (B.8) into Eqs.(B.4) leads to
the following set of equations

d

dt

∂T ∗

∂π̇k
− ∂T ∗

∂πk
+
∂T ∗

∂π̇i
π̇jBskBlj

(
∂Ais
∂ql

− ∂Ail
∂qs

)
= Πk (B.9)

where the following terms are introduced

γkij = BskBlj

(
∂Ais
∂ql

− ∂Ail
∂qs

)
, (B.10)

which are known as Hamel coefficients. Moreover, such coefficients in Eq.(B.10)
represent a skew-symmetric matrix at fixed indices i, thus

γkij = −γjik. (B.11)

The Eqs.(B.9) therefore assume the final form of the Boltzmann-Hamel equa-
tions

d

dt

∂T ∗

∂π̇k
− ∂T ∗

∂πk
+ γkij

∂T ∗

∂π̇i
π̇j = Πk. (B.12)

which represent a set of n equations in the 2n unknowns given by the ‘true’ and
quasi-coordinates q and π. The system (B.12) needs therefore to be comple-
mented by n further equations, which are represented by the linear transforma-
tion in Eqs.(B.11).
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B.1.1 Formulation with non-holonomic constraints

Following Neimark and Fufaev [85], by considering a mechanical system
subject to m non-holonomic constraints in the form

apiq̇i = 0, p = 1, 2, . . . ,m; i = 1, 2, . . . , n (B.13)

one may conveniently set the transformation (B.11) through a (non-singular)
matrix A such that

An−m+p,i q̇i = π̇n−m+p = 0 p = 1, 2, . . . ,m; i = 1, 2, . . . , n. (B.14)

where An−m+p,i = api, so that the non-holonomic constraints (B.13) can be
introduced within the presented mathematical formulation by simply imposing
the last m components of vector π̇ to vanish, namely π̇n−m+p = 0.

The Boltzmann-Hamel equations for a discrete system subject to m non-
holonomic constraints therefore reduces to

d

dt

∂T ∗

∂π̇k
− ∂T ∗

∂πk
+ γkij

∂T ∗

∂π̇i
π̇j = Πk, k, j = 1, 2, . . . , n−m; i = 1, 2, . . . , n

Ak,iq̇i = π̇k k = 1, 2, . . . , n−m; i = 1, 2, . . . , n

An−m+p,iq̇i = 0 p = 1, 2, . . . ,m; i = 1, 2, . . . , n.

(B.15)

thus representing a system of 2n −m equations in 2n −m unknowns, namely
the n ‘true’ generalized coordinates q̇ and the first n − m quasi-coordinates
{π1, π2, . . . , πn−m}, and where the non-holonomic constraints (B.14) are speci-
fied by the last m equations.

B.2 The governing equations for the discretized
non-holonomic column

With reference to Chapter 7, the vector of the ‘true’ generalized coordinates
of the system made up of N rigid bars is specified by the following N + 1
components

q = [Θ1, ...,Θi, ...,ΘN , X0] (B.16)
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where Θi is the rotation of the generic i-th rigid bar with respect to the hor-
izontal and where X0 is the horizontal displacement of the rigid block at the
initial end of the column.

The (N + 1×N + 1) transformation matrix A in Eq.(B.11) can be therefore
chosen in the following manner

A =

 I(N) 0

{a1(q, β0), . . . , aN (q, β0)} aN+1(q, β0)

 , (B.17)

where I(N) is the N × N identity matrix and the coefficients ai represent the
components of the vector of the non-holonomic constraint a(q, β0), which is
specified by Eqs.(7.7) and (7.12) for the ‘skate’ and ‘violin bow’ constraints,
respectively. Moreover, the determinant of the matrix (B.17) is respectively
equal to cos (ΘN + β0) and cos (β0), being therefore different from zero for every
β0 6= ±π/2 (the latter representing the ‘pathological’ condition for the ‘violin
bow’ constraint).

Due to the well-known properties of the inverse matrices, the matrix B is
therefore given by

B =


I(N) 0

− 1

aN+1(q, β0)
{a1(q, β0), . . . , aN (q, β0)} 1

aN+1(q, β0)

 . (B.18)

The fundamental operators for the definition of Eqs.(B.15) are now obtained
in the case of a non-holonomic double-pendulum subject to a ‘skate’ constraint.
Moreover, a perfectly-aligned constraint is assumed, so that β0 = 0.

B.3 The double-pendulum subject to a ‘skate’
constraint in quasi-coordinates

The general equations are particularized for a double-pendulum N = 2 sub-
ject to a ‘skate’ non-holonomic constraint which is perfectly-aligned with the
rod’s final rigid bar (thus β0 = 0) and loaded through a dead load (loading
condition B). A dimensionless analysis is introduced through the change of vari-
ables (7.48), while the matrix (B.17) is evaluated through the dimensionless
expression for the vector (7.7) holding for the ‘skate’ constraint, thus obtaining
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A =

 1 0 0
0 1 0

−1

2
sin (Θ1 −Θ2) 0 cos Θ2

 , (B.19)

so that the ‘true’ and quasi-velocities are connected by the following linear
equations π̇1

π̇2

π̇3

 =

 1 0 0
0 1 0

−1

2
sin (Θ1 −Θ2) 0 cos Θ2


 Θ̇1

Θ̇2

χ̇

 (B.20)

where the fulfilment of the non-holonomic constraint (7.6) can be simply im-
posed by setting, according to Eqs.(B.14), π̇3 = 0.

The Hamel coefficients at fixed k = 1, 2, 3 can be collected into the following
matrices

γ1 =

 0 0 0
0 0 0

0
1

2
cos Θ1 sec Θ2 0

 , γ2 =

 0 0 0
0 0 0

−1

2
cos Θ1 sec Θ2 0 tan Θ2


γ3 =

 0 0 0
0 0 0
0 − tan Θ2 0


(B.21)

thus verifying the property (B.11), while the function T ∗ is given by

T ∗(Θ1,Θ2, π̇1, π̇2) =

1

16

{
π̇2

2

(
d̃2 + 8Ĩr,L + 2M̃L

)
+ π̇2

1

[
d̃2 − sec2 Θ2 sin(Θ1 −Θ2)

(
2(d̃− M̃X+

+ M̃L − 1) sin Θ1 cos Θ2 + 2(M̃X + M̃L + 1) cos Θ1 sin Θ2 + sin(2Θ2)
)

+

+ 2M̃L + 1
]

+ 2(d̃+ 2M̃L)π̇1π̇2 cos Θ1 sec Θ2

}
(B.22)

which is independent on the horizontal displacement χ and where the condition
π̇3 = 0 has been imposed. The complete set of the Boltzmann-Hamel equations
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B.3. The double-pendulum subject to a ‘skate’ constraint in quasi-coordinates

(B.15) can be therefore easily obtained by operating the terms (B.6), (B.7) and
(B.8), where, from the operational point of view, the derivative of T ∗ with
respect to the quasi-coordinates is given by

∂T ∗

∂πk
= Bsk

∂T ∗

∂qs
. (B.23)

For the sake of brevity, the extended equations are not reported.
The comparison between the solutions obtained through the Lagrange equa-

tions of motion (7.20) and the Boltzmann-Hamel equations in quasi-coordinates
(B.15) for a non-holonomic double-pendulum subject to a ‘skate’ constraint and
loaded through dead load is shown in Fig.B.1. The system is characterized by
the parameters [d̃, M̃L, Ĩr,L, k̃1] equal to ξ̃ = [1/2, 1, 0, 1], β0 = 0 and by a
dimensionless external damping coefficient c̃e = 15 (while c̃i = c̃t,L = c̃r,L = 0),
whose critical point for flutter corresponds (according to Fig.7.12, upper-right
corner, red curve) to a supercritical Hopf bifurcation, and therefore to the ex-
istence of stable orbits in the neighbourhood of the critical point. Moreover,
the system is loaded through a dead load F̃ ≈ 1.15F̃cr, where F̃cr ≈ 6.09 is
the critical flutter load, and the imposed initial conditions are Θi(0) = 0 and
Θ̇i(0) = π̇i(0) = 1/100 for i = 1, 2. The comparison shows an almost perfect
agreement between the numerical solutions for the two systems of equations.
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B. EQUATIONS OF MOTION OF THE NON-HOLONOMIC DICRETE SYSTEM IN
QUASI-COORDINATES

Figure B.1: (Upper part) Comparison between the solutions obtained through the Lagrange
equations (blue lines) and the Boltzmann-Hamel formulation in quasi-coordinates (red-dashed
lines) for a double-pendulum subject to a perfect (β0 = 0) ‘skate’ non-holonomic constraint for
the same external load, machanical parameters, damping coefficients and initial conditions,
showing an almost perfect superposition of the obtained orbits (which finally reach a periodic
solution). (Lower part) Residual ΘBHi −ΘLi as a function of the dimensionless time τ between
the solutions obtained by solving the Boltzmann-Hamel and Lagrange equations and showing
an almost constant null value along the whole simulation.
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C
Complementary equations for the

non-holonomic dicrete system

C.1 Determinant of the stiffness matrix K(N)

The determinant of the matrix (7.24) can be obtained through a recursive
procedure. The three different cases N = 1, N = 2 and N > 2 are treated
separately.

• Case N = 1: the determinant of the stiffness matrix corresponds to the
stiffness k1 of the first rotational spring

detK(1) = k1. (C.1)

• Case N = 2: the determinant of the stiffness matrix is

detK(2) = det

[
k1 + k2 −k2

−k2 k2

]
= k1k2. (C.2)

• Case N > 2: the j-th determinant Dj of the j × j matrix K(j), defined
as the upper-left-corner matrix of K(N) (so that DN = detK(N)), is given

Alessandro Cazzolli 233



C. COMPLEMENTARY EQUATIONS FOR THE NON-HOLONOMIC DICRETE SYSTEM

by

D1 = k1 + k2

D2 = k1k2 + k1k3 + k2k3

Dj = (kj + kj+1)Dj−1 − k2
jDj−2, 2 < j < N,

(C.3)

where Dj is a function of the determinants of the two upper-left-corner
matrices (of j − 1 and j − 2 rank) forming the j × j matrix K(j). Note
that the sum (kj + kj+1) represents the diagonal element K(N)

jj . The
determinant of the whole N ×N matrix (7.24) can be rewritten as

detK(N) = kNDN−1 − k2
NDN−2. (C.4)

In the caseN = 3, the condition (C.4) already provides the final expression
for the determinant condition

detK(3) = k3D2 − k2
3D1 = k1k2k3. (C.5)

In the case N > 3, the substitution of the determinants DN−1 and DN−2

in Eq.(C.4) through Eq.(C.3) can be recursively performed at decreasing
values of the index j until the value 3 is reached, thus obtaining the
following equation

detK(N) = (k3D2 − k2
3D1)

N−4∏
i=0

kN−i, (C.6)

from which Eq.(7.25) can be easily derived.

C.2 Uniqueness of the trivial equilibrium solu-
tion for β0 = 0

The proof of the uniqueness of the trivial quasi-static solution for both the
considered non-holonomic constraints in the case β0 = 0 is given for a column
made up of an arbitrary number N of rigid elements.

Non-holonomic ‘skate’ constraint with β0 = 0. The N -th term of the
vector of non-holonomic coefficients ak in Eq.(7.7) is always zero aN (qQS, 0) =
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C.3. Proof of the Eq.(7.35)

lN sin 0 = 0, so that the N -th equation of system (7.22) is always given by an
identity between the two last rotations of the N–th and (N − 1)–th bars

θQS
N = θQS

N−1,

thus causing the (N − 1)–th coefficient of the non-holonomic constraint (see
Eq.(7.7)) being zero

aN−1(qQS, 0) = lN−1 sin (θQS
N − θ

QS
N−1) = 0. (C.7)

Condition (C.7) can be substituted in the (N − 1)-th equation of system
(7.22) thus obtaining the identity between the rotations of the (N − 2)-th and
(N − 1)-th rigid bars in the form θQS

N−2 = θQS
N−1. The system can be therefore

solved in a recursive way, finally obtaining all the rotations of the rigid bars
being equal the one of the first bar

θQS
k = θQS

1 ∀ k = 2, 3, ..., N

being the latter equal to zero by means of the first equation of the system (7.22).

Non-holonomic ‘violin bow’ constraint with β0 = 0. The N equations
of system (7.22) can be summed up obtaining a null value for the rotation of
the first rigid bar θQS

1 = 0. This condition can be substituted in the expression
for the first coefficient of the non-holonomic constraint given in Eq.(7.12), thus
obtaining

a1(qQS, 0) = −l1 sin 0 = 0

so that the first equation of the system (7.22) leads to the annihilation of the
rotation of the second rigid bar θQS

2 = 0. Recursive substitutions within the
remaining equations of the system (7.22) lead to a vanishing value for all the
bars’ rotations, completing the proof.

C.3 Proof of the Eq.(7.35)
The proof of the Eq.(7.35) for every β0 6= 0 can be obtained by firstly

considering that

det
(
K(N) + pQSG(N)

)
= detK(N) det

[
I + pQS

(
K(N)

)−1

G(N)

]
, (C.8)
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or equivalently, because the determinant of a matrix coincides with the deter-
minant of the transpose of the matrix,

det
(
K(N) + pQSG(N)

)
= detK(N) det

[
I + pQS

(
K(N)

)−1 (
G(N)

)ᵀ]
(C.9)

where the stiffness matrix K(N) (see Eq.(7.24)) is symmetric and positive-
definite. The inverse of the stiffness matrix

(
K(N)

)−1
can be written as a

particular case of the representation given by Meurant [81] in the form (the
components are denoted by ui, with i = 1, ..., N)

(
K(N)

)−1

=


u1 u1 u1 . . . u1

u1 u2 u2 . . . u2

u1 u2 u3 . . . u3

...
...

...
. . .

...
u1 u2 u3 . . . uN

 . (C.10)

For ‘skate’ (‘violin bow’) constraint, matrix G(N) ᵀ
S (matrix G(N)

V ) has a non-
vanishing last row and vanishing last column, see Eq.(7.34). The matrix N is
introduced, expressing the matrix product between the inverse of the stiffness
matrix (C.10) and the geometric stiffness matrix G(N), such that

• for ‘skate’ constraint using the Eq.(C.9)

N =
(
K(N)

)−1

G(N) ᵀ
S ; (C.11)

• for ‘violin bow’ constraint using the Eq.(C.8)

N =
(
K(N)

)−1

G(N)
V . (C.12)

By considering the expression for the inverse of the stiffness matrix (C.10) and
the expressions of the geometrical stiffness matrices for both constraints (7.34),
the matrix N can be evaluated through the Eqs.(C.11) and (C.12) leading to
the following expression

N =



0 0 0 . . . 0
γ1(u2 − u1) 0 0 . . . 0

γ1(u3 − u1) γ2(u3 − u2)
. . .

...
...

... 0
...

γ1(uN − u1) γ2(uN − u2) . . . γN−1(uN − uN−1) 0

 , (C.13)
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C.4. Considerations on the buckling condition ρm = 0 for β0 6= 0

valid for both the ‘skate’ and ‘violin bow’ constraints, where γi can be inter-
preted as the i-th parameter γS,i or γV,i in Eq.(7.34). The strictly upper trian-
gular matrixN is therefore a nilpotent matrix of index N having its N -th power
equal to the null matrix, NN = 0. Due to well-known properties of nilpotent
matrices, the following determinant condition holds

det [I + pQSN] = 1, (C.14)

for every choice of the non-holonomic constraint, such that

det
(
K(N) + pQSG(N)

)
= detK(N), (C.15)

and also leading to the following condition

(
K(N) + pQSG(N)

)−1

=
(
K(N)

)−1 N−1∑
j=0

(−N)j , (C.16)

where (−N)0 = I.
The obtained equations hold for every value of the angle β0 and are valid

for both the non-holonomic constraints and the loading conditions at the initial
end.

C.4 Considerations on the buckling condition ρm =
0 for β0 6= 0

Due to the multiplicity of quasi-static configurations in the case β0 6= 0,
buckling conditions along generic equilibrium paths are theoretically achievable.
Therefore, the equation ρm = 0 is particularized for all the considered non-
holonomic constraints and loading conditions at the initial end. In particular,
no buckling conditions can be achieved for the ‘violin bow’ constraint when
subject to the loading condition B (dead load) even in the case β0 6= 0, while
critical loads seem to be theoretically achievable for all the remaining systems.

Buckling for the loading condition A: elastic device. According to
Eq.(7.30), the term ∂2 Ξ(q)/∂X2 = K is different from zero; the expressions
of the stiffness matrices (7.30) and (7.32) and the condition (C.15) can be used
to rewrite equation ρm = 0 for the the two cases of ‘skate’ and ‘violin bow’ types
of constraint as follows.
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• ‘Skate’ constraint: Eqs.(7.32) and (7.38) lead to the following expression
for the buckling condition

Kw(N)ᵀ
(
K(N) + pQSG(N)

)−1

w(N) + wN+1

(
wN+1+

− g
(
K(N) + pQSG(N)

)−1

w(N)
)

= 0,

(C.17)

where vector g 6= 0 denotes the presence of the ‘skate’ constraint.

• ‘Violin bow’ constraint: Eqs.(7.33) show that the analytical expression
for the buckling condition can be simply obtained by setting g = 0 to yield

Kw(N)ᵀ
(
K(N) + pQSG(N)

)−1

w(N) + w2
N+1 = 0. (C.18)

Buckling for the loading condition B: dead load. NowK = 0, so that the
equation governing buckling can be obtained as a particular case of Eqs.(C.17)
and (C.18).

• ‘Skate’ constraint: setting K = 0 in Eq.(C.17) one obtains

w2
N+1 − wN+1g

(
K(N) + pQSG(N)

)−1

w(N) = 0. (C.19)

• ‘Violin bow’ type constraint: the condition g = 0 in the Eq.(C.19),
or alternatively K = 0 in Eq.(C.18), leads to the following solution for
buckling

w2
N+1 = 0 → β0 = π/2 + kπ, k = 1, 2, 3, ... (C.20)

proving the absence of buckling loads for the ‘violin bow’ constraint even in
the case β0 6= 0. In fact, the case β0 = π/2 + kπ represents a pathological
condition providing a null bucking load, as the system undergoes a lability
along the horizontal direction.

C.5 Determinant of the sum of 2× 2 matrices
The Cayley-Hamilton theorem writes for a square 2× 2 matrix as

p(A) = A2 − trAA + detAI2 = 0. (C.21)
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C.6. Exact solution for a quartic polynomial

Applying the trace operator to Eq.(C.21), the following equation for the deter-
minant of A is obtained

detA =
(trA)2 − trA2

2
, (C.22)

which can be extended to the case when the determinant is the sum of a generic
number of 2× 2 matrices

det

(
M∑
i=1

Ai

)
=

M∑
i=1

detAi +

M∑
j=i+1

(trAi trAj − tr [AiAj ])

 , (C.23)

where M ≥ 1 is the number of matrices. For M = 3 Eq.(C.23) particularizes to

det
[
A1ζ

2 + A2ζ + A3

]
= detA1ζ

4 + (trA1 trA2 − tr [A1 A2]) ζ3 + detA3+

+ (detA2 + (trA1 trA3 − tr [A1 A3])) ζ2 + (trA2 trA3 − tr [A2 A3]) ζ

(C.24)

where ζ ∈ C is a generic scalar quantity.

C.6 Exact solution for a quartic polynomial
The exact solutions for a quartic in the form:

p0 x
4 + p1 x

3 + p2 x
2 + p3 x+ p4 = 0

can be expressed in the following form

x = − p1

4 p0
±1 H ±2

1

2

√
−4H2 − 2 ξ ∓1

ζ

H

where

ξ =
8 p0 p2 − 3 p2

1

8 p2
0

, ζ =
p3

1 − 4 p0 p1 p2 + 8 p2
0 p3

8 p3
0

,

H =
1

2

√
−2

3
ξ +

1

3 p0

(
J +

∆0

J

)
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and where

J =
3

√
∆1 +

√
∆2

1 − 4 ∆3
0

2
, ∆0 = p2

2 − 3 p1 p3 + 12 p0 p4,

∆1 = 27
(
p2

1 p4 + p0 p
2
3

)
− 9 p2 (8 p0 p4 + p1 p3) + 2 p3

2

and bifurcations in the real part of the roots x occur when ∆2
1 − 4 ∆3

0 = 0, a
condition leading to Eq.(7.64).

C.7 Considerations on the transformed matrix
(7.90)

For the given 4 × 4 real matrix J̃ in the form (7.90) with two complex
conjugate eigenvalues λ1,2 = ±iω0 (ω0 > 0) and two additional eigenvalues λ3

and λ4 with negative real part, its spectral representation in dual (complex)
bases is

J̃ = ω0i er1 ⊗ el1 − ω0i er2 ⊗ el2 + λ3 e3 ⊗ e3 + λ4 e4 ⊗ e4, (C.25)

where eri and elj denote the right and left eigenvectors of J̃ related to the i-th
and j-th eigenvalue, respectively. The following property holds true〈

eri, ē
l
j

〉
= δij , (C.26)

where δij is the Kronecker delta and 〈a , b〉 = ā1b1 + ...+ ā4b4 denotes the scalar
product in C4, while ā the conjugate of a . More specifically, the particular
form (7.90) of the matrix J̃ leads to the following set of eigenvectors satisfying
the condition (C.26)

er1 = ēr2 =


1
i
0
0

 , el1 = ēl2 =
1

2


1
−i
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 .
(C.27)

The real transformation matrix A is introduced, such that the original matrix
J can be represented as

J =AJ̃A−1

=ω0 iAer1 ⊗A−ᵀel1 − ω0 iAer2 ⊗A−ᵀel2 + λ3 Ae3 ⊗A−ᵀe3 + λ4 Ae4 ⊗A−ᵀe4,
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or equivalently through eigenvectors (7.88)

J = ω0 i q ⊗ p̄ − ω0 i q̄ ⊗ p + λ3 vr3 ⊗ vl3 + λ4 vr4 ⊗ vr4. (C.28)

The above expression holds because the left eigenvector q l of J corresponding
to the eigenvalue i ω0 and the eigenvector p can be obtained as

Jᵀq l = i ω0q l, Jᵀp = −i ω0p,

so that q l = p̄. A similar expression holds for pr and q̄ .
An analysis of the eigenvectors (C.27) of matrix J̃ reveals that the conditions

q = Aer1, vr3 = Ae3, vr4 = Ae4, (C.29)

hold true if the matrix A is taken as in Eq.(7.91), thus completing the proof.
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C.8 Explicit expression for the coefficients ρi of
the characteristic polynomial for the non-
holonomic double pendulum

From Eqs.(58), the explicit expressions for the coefficients ρi (i = 0, ..., 4)
can be obtained as

ρ0 =
1

4

(
Ĩr,L M̃L +

1

16
d̃4 +

1

2
d̃2 Ĩr,L +

1

4
d̃2 M̃L −

1

4
d̃ M̃L +

1

2
Ĩr,L +

1

8
M̃L

)
,

(C.30)

ρ1 =
1

64

(
5

3
c̃e d̃

2 − c̃e d̃+
1

3
c̃e

)
+

1

16

(
1

3
c̃eM̃L + c̃t,L d̃

2 − c̃t,L d̃+
1

2
c̃t,L

)
+

+
1

8

(
c̃r,L d̃

2 + c̃r,L + 2c̃r,L M̃L + 2c̃t,L Ĩr,L + 3 c̃i d̃
2 + 2c̃i d̃+ c̃i + 10 c̃iM̃L

)
+

+ 2 c̃i Ĩr,L +
1

6
c̃e Ĩr,L,

(C.31)

ρ2 =
1

16

(
1

3
c̃e c̃t,L − d̃2p̃QS − d̃ p̃QS

)
+

1

8

(
(2 + k̃1) d̃2 + 3 c̃e c̃i + 1

)
+

1

4

(
c̃r,L c̃t,L + 5 c̃t,L c̃i + d̃− p̃QSM̃L + (4 + k̃1)M̃L

)
+

7

2304
c̃2e+

1

6
c̃e c̃r,L −

1

2
Ĩr,L p̃

QS + 2 c̃r,L c̃i + c̃2i + (1 + k̃1) Ĩr,L,

(C.32)

ρ3 =− 5

96
c̃e p̃

QS +
8 + k̃1

24
c̃e +

1

4

(
(4 + k̃1) c̃t,L − c̃t,L p̃QS

)
− 1

2
c̃r,L p̃

QS+

(1 + k̃1) (c̃i + c̃r,L) ,

(C.33)

ρ4 = k̃1. (C.34)
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C.9. Critical flutter load with a single source of viscosity

C.9 Critical flutter load with a single source of
viscosity

C.9.1 Presence of internal damping c̃i

The critical load for flutter in the presence of only the internal damping
c̃i = r is given by

Pd (c̃i, ξ) = Pd
(
r,
π

2
,
π

2
, 0, ξ

)
=

2

(
d̃4(2(k̃1 − 1)k̃1 + 5) + d̃2

(
16Ĩr,L(k̃1(2k̃1 − 1) + 3) + k̃2

1 + 4(k̃1(3k̃1 − 2) + 10)M̃L + 9
)

(k̃1 + 1)
(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

+

+
4d̃
(

4Ĩr,L

(
k̃2

1 + 3
)

+ 2
(
k̃2

1 + k̃1 + 5
)
M̃L + 1

)
+ 4

[
4Ĩr,L

(
8Ĩr,L

(
k̃2

1 + 1
)
− k̃1 + 1

)]
(k̃1 + 1)

(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

+

+
2d̃3

(
k̃2

1 + 5
)

+
[
M̃L(8Ĩr,L(k̃1(3k̃1 − 1) + 6)− k̃1) + 5

(
k̃2

1 + 4
)
M̃2
L

]
+ 16M̃L + 1

(k̃1 + 1)
(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

)
+

+ c̃2i
16 (k̃1 + 1)(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

(k̃1 + 1)
(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

(C.35)

For c̃i → 0 (or equivalently r → 0) the limit critical load is given by

P∗d
(π

2
,
π

2
, 0, ξ

)
=

2

(
d̃4(2(k̃1 − 1)k̃1 + 5) + d̃2

(
16Ĩr,L(k̃1(2k̃1 − 1) + 3) + k̃2

1 + 4(k̃1(3k̃1 − 2) + 10)M̃L + 9
)

(k̃1 + 1)
(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

+

+
4d̃
(

4Ĩr,L

(
k̃2

1 + 3
)

+ 2
(
k̃2

1 + k̃1 + 5
)
M̃L + 1

)
+ 4

[
4Ĩr,L

(
8Ĩr,L

(
k̃2

1 + 1
)
− k̃1 + 1

)]
(k̃1 + 1)

(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

+

+
2d̃3

(
k̃2

1 + 5
)

+
[
M̃L(8Ĩr,L(k̃1(3k̃1 − 1) + 6)− k̃1) + 5

(
k̃2

1 + 4
)
M̃2
L

]
+ 16M̃L + 1

(k̃1 + 1)
(
d̃2 + d̃+ 8Ĩr,L + 4M̃L

)
(d̃(3d̃+ 2) + 16Ĩr,L + 10M̃L + 1)

)

(C.36)
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C.9.2 Presence of external damping c̃e

The critical load for flutter in the presence of only the external damping
c̃e = r is given by

Pd (c̃e, ξ) = Pd
(
r,
π

2
,
π

2
,
π

2
, ξ
)

=(
140 c̃2eM̃L + 35 c̃2e − (d̃(5d̃− 3) + 32Ĩr,L + 4M̃L + 1)

[
1225 c̃4e+

+ 20160 c̃2e

(
3d̃2(k̃1 − 2)− 2d̃(k̃1 + 3) + 8Ĩr,L(3k̃1 − 11) + 2(k̃1 − 12)M̃L + 5

)
+

+ 82944
(
d̃4(k̃1(9k̃1 + 64) + 36) + d̃3(4k̃1(17− 3k̃1) + 72)+

+ 2d̃2(8Ĩr,L(k̃1(9k̃1 + 79) + 66) + k̃1(6k̃1M̃L + 2k̃1 + 196M̃L − 13) + 144M̃L − 12)+

+ 4d̃(−24Ĩr,L((k̃1 − 4)k̃1 − 11) + k̃1(−2k̃1M̃L + 38M̃L + 5) + 72M̃L − 15)+

+ 64Ĩ2
r,L(k̃1(9k̃1 + 94) + 121) + 16Ĩr,L(k̃1(6k̃1M̃L)+

+ 206M̃L − 15) + 264M̃L − 55 + 4M̃L((k̃1(k̃1 + 136) + 144)M̃L − 5(k̃1 + 12)) + 25
)] 1

2

+

+ 175 c̃2ed̃
2 − 105 c̃2ed̃+ 1120 c̃2e Ĩr,L + 7200d̃4k̃1 + 14400d̃4 − 3168d̃3k̃1 + 14976d̃3+

+ 122112d̃2Ĩr,Lk̃1 + 297216d̃2Ĩr,L + 22464d̃2k̃1M̃L + 288d̃2k̃1 + 87552d̃2M̃L − 7776d̃2+

− 29952d̃Ĩr,Lk̃1 + 94464d̃Ĩr,L − 1728d̃k̃1M̃L + 576d̃k̃1 + 32256d̃M̃L+

+ 3168d̃+ 516096Ĩ2
r,Lk̃1 + 1548288Ĩ2

r,L + 184320Ĩr,Lk̃1M̃L − 6912Ĩr,Lk̃1+

+ 783360Ĩr,LM̃L − 89856Ĩr,L + 20736k̃1M̃
2
L − 576k̃1M̃L + 119808M̃2

L+

− 10368M̃L + 1440

)
/

(
720
(

5d̃4 + 4d̃3 + 4d̃2(26Ĩr,L + 7M̃L − 1)+

+ 2d̃(8Ĩr,L + 2M̃L + 1) + 8
(

30Ĩr,LM̃L + Ĩr,L(64Ĩr,L − 3) + 4M̃2
L

)
− 2M̃L

))
(C.37)
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C.9. Critical flutter load with a single source of viscosity

For c̃e → 0 (or equivalently r → 0), the limit critical load is given by

P∗d
(π

2
,
π

2
,
π

2
, ξ
)

=

2

[
d̃3(52− 11k̃1) + d̃2(8Ĩr,L(53k̃1 + 129) + 78k̃1M̃L + k̃1 + 304M̃L − 27)+

+ 25d̃4(k̃1 + 2) + +d̃(8Ĩr,L(41− 13k̃1)− 6k̃1M̃L + 2k̃1 + 112M̃L + 11) + 1792Ĩ2
r,L(k̃1 + 3)+

+ 8Ĩr,L(80k̃1M̃L − 3k̃1 + 340M̃L − 39) + 8(9k̃1 + 52)M̃2
L − 2(k̃1 + 18)M̃L + 5+

−
(

5d̃2 − 3d̃+ 32Ĩr,L + 4M̃L + 1
){

d̃4
(

9k̃2
1 + 64k̃1 + 36

)
+ d̃3

(
−12k̃2

1 + 68k̃1 + 72
)

+

+ 2d̃2
(

8Ĩr,L

(
9k̃2

1 + 79k̃1 + 66
)

+ k̃2
1(6M̃L + 2) + k̃1(196M̃L − 13) + 144M̃L − 12

)
+

− 4d̃
(

24Ĩr,L

(
k̃2

1 − 4k̃1 − 11
)

+ 2k̃2
1M̃L − k̃1(38M̃L + 5)− 72M̃L + 15

)
+

+ 64Ĩ2
r,L

(
9k̃2

1 + 94k̃1 + 121
)

+ 16Ĩr,L

(
6k̃2

1M̃L + k̃1(206M̃L − 15) + 264M̃L − 55
)

+

+ 4k̃2
1M̃

2
L + 544k̃1M̃

2
L − 20k̃1M̃L + 576M̃2

L − 240M̃L + 25
} 1

2

]
/

[
5
(

5d̃4 + 4d̃3+

+ 4d̃2(26Ĩr,L + 7M̃L − 1) + 2d̃(8Ĩr,L + 2M̃L + 1) + 512Ĩ2
r,L+

24Ĩr,L(10M̃L − 1) + 2M̃L(16M̃L − 1)
)]

(C.38)
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C. COMPLEMENTARY EQUATIONS FOR THE NON-HOLONOMIC DICRETE SYSTEM

C.10 Critical flutter load with two sources of vis-
cosity

C.10.1 Presence of internal and external damping

For the sake of simplicity, the critical load is particularized for the case
ξ̂ = [1/2, 15, 15, 50]. By setting c̃e = r sinφ3, c̃i = r cosφ3 and r =

√
c̃2e + c̃2i

the critical load is given by

Pd
(
r,
π

2
,
π

2
, φ3, ξ̂

)
=[

25235r2 sin2 φ3 + 3554600r2 sinφ3 cosφ3 + 96
(
240r2 cos2 φ3(6284 cotφ3 + 2717)+

+ 288 cotφ3(57927483 cotφ3 + 10504342) + 120487001
)
+

− (12568 cotφ3 + 721)
{

1225r4 sin4 φ3 + 1152
(
4225r4 sin2(2φ3) + 35552208708

)
+

+ 132710400r4 cos4 φ3 + 99532800r4 sinφ3 cos3 φ3+

+ 359009280r2 sin2 φ3 − 9953280r2 cos2 φ3(294984 cotφ3 + 98747)+

+ 302400r2 sinφ3 cosφ3

(
r2 sin2 φ3 + 117036

)
+

+ 1439244288 cotφ3(11283138 cotφ3 − 711833)
} 1

2

]
/ [60(54519984 cotφ3 + 2826493)]

(C.39)

Moreover, the maximum value of the critical limit load (79) can be obtained
by taking the limit of vanishing viscosities along the particular direction

φ̄3 =

2 tan−1

(√
15690571665841035300

√
120482 + 26294588465714004524410− 52150850614− 150434475

√
120482

144389423358

)

and corresponding in this case to the critical value for the ideal case without
damping P0(ξ̂), namely

P∗d
(π

2
,
π

2
, φ̄3, ξ̂

)
=

20

723

(
3102−

√
120482

)
= P0

(
ξ̂
)

(C.40)

246 Alessandro Cazzolli



C.10. Critical flutter load with two sources of viscosity

C.10.2 Presence of translational and rotational damping
for the non-holonomic constraint

For the sake of simplicity, the critical load is particularized to the case ξ̂ =

[1/2, 15, 15, 50]. By setting c̃r,L = r sinφ1, c̃t,L = r cosφ1 and r =
√
c̃2r,L + c̃2t,L

the critical load is given by

Pd
(
r, φ1, 0, 0, ξ̂

)
=[

−4 sin(2φ1)
(
r2(732 sin(2φ1)− 259 cos(2φ1)) + 741r2 + 6641121

)
+

+ 440805 cos(2φ1)− 18295539 + 2(250 sinφ1 + 241 cosφ1)
{

64r4 sin2 φ1 cos4 φ1+

+ 2 sin(2φ1)
(
8r2 sin(2φ1)

(
2r2 sin(2φ1) + 2823

)
− 52890047

)
+ cos2 φ1

(
256r4 sin4 φ1 + 155027401

)
+ 183984r2 sinφ1 cos3 φ1 − 374592r2 sin3 φ1 cosφ1+

+ 161137636 sin2 φ1

} 1
2

]
/ [−288272 sin(2φ1) + 6534 cos(2φ1)− 234538]

(C.41)

Moreover, the maximum value of the critical flutter load at vanishing vis-
cosity, equation (81), can be obtained as

φ̄1 =

2 tan−1

(√
5012544564868560760800

√
120482 + 124334748418387567120122197− 315372600

√
120482− 7947019755154

7820974511191

)

which corresponds to the critical value for the ideal case without damping P0(ξ̂),
namely

P∗d
(
φ̄1, 0, 0, ξ̂

)
=

20

723

(
3102−

√
120482

)
= P0

(
ξ̂
)

(C.42)
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