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Abstract. The longitudinal and transverse density- and spin-density response

functions in pure neutron matter (PNM) are derived over a wide range of densities

within the Time Dependent Local Spin Density Approximation (TDLSDA). The

underlying density functional was derived from an Auxiliary Field Diffusion Monte

Carlo (AFDMC) computation of the equation of state of unpolarized and fully spin

polarized pure neutron matter. In order to assess the dependence of the results on the

specific underlying nucleon-nucleon Hamiltonian, we used both the phenomenological

Argonne AV8′+UIX force, and local chiral forces up to next-to-next-to-leading-order

(N2LO). The resulting response function has then been applied to the study of the

neutrino mean free path in PNM.

PACS numbers: 21.60.Jz,21.65.Cd,24.10.Cn

1. Introduction

As shown many years ago, the Weinberg-Salam Lagrangian [1] describing the interaction

of neutrinos with baryonic matter can be translated, after a non relativistic reduction,

into the calculation of a set of response functions to density and spin/isospin density

operators [2]. Several non relativistic many-body calculations have been carried out over
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time [3], in particular via a direct evaluation of the propagator in the context of the use

of Skyrme-like forces [4, 5, 6], or by extending the Tamm-Dancoff approximation to the

inclusion of dynamical correlations [7, 8, 9].

At present, computing response functions in a many-body system within an ab-

initio scheme is technically possible, but still quite expensive from the computational

point of view. In a previous paper [10] a fair compromise was devised between including

the microphysics described by realistic nuclear potentials, that is usually addressable

in ground state calculations, and a purely mean field treatment. This was achieved

following the standard prescription suggested by the Hohenberg-Kohn theorem in order

to obtain a realistic, though simplified, density functional, and employing it within

the Time Dependent Local Density Approximation (TDLDA, see e.g. [11]). The first

application was the study of the contribution of the longitudinal [10] isospin channel

to the neutrino cross section in nuclear matter with an arbitrary value of the isospin

asymmetry parameter. The TDLDA approximation has been also applied to the study of

the transverse [12] isospin channel response functions for an arbitrary isospin asymmetry

parameter.

In this paper we extend the TDLDA approach to the study of the density and

spin-density response functions in pure neutron matter (PNM), both in the longitudinal

and in the transverse channels. Since the functional used will depend on the density

and magnetization of the neutron medium, the underlying ground state theory will

be denoted as Local Spin Density Approximation (LSDA), and the dynamical version

the Time Dependent Local Spin Density Approximation (TDLSDA). We do not limit

our study to the unpolarized and fully-polarized cases, but we consider arbitrary spin

polarization.

The key ingredient of any mean field calculation based on the Local Density

Approximation (LDA) is an accurate density functional based on a pre-existing equation

of state (EoS) E[ρ]. Following the Hohenberg-Kohn prescription, E[ρ] can be extracted

for a homogeneous system by simply fitting the exact energy as a function of the

(spin/isospin-)density. By subtracting the energy of the free Fermi gas (FG) at the

same density it is then possible to obtain the non-trivial part of the energy density

functional. The LDA then allows to address problems for inhomogeneous systems and

can be extended to study excited states.

In this paper we also want to check the robustness of the TDLSDA predictions

against the underlying functional. In order to do that, we use two different Hamiltonians.

The first includes a phenomenological two- plus three-neutron interaction (namely

AV8′+UIX). The second employs modern local chiral effective field theory (EFT)

potentials up to N2LO [13, 14, 15, 16, 17], and estimating the systematic error due

to the uncertainty on the model potential.

The paper is organized as follows. In Sec. 2 we describe in some details the

procedures and the results concerning the computation of the EoS for the Hamiltonians

considered. In Sec. 3 we briefly review the formalism for computing the TDLSDA

response function in both the longitudinal and transverse channels. Sec. 4 shows
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the numerical results for the response functions, the neutrino mean free path and

compressibility. Sec. 5 is devoted to conclusions. In App. Appendix A we present

the calculation of the effective mass.

2. Equation of state

The first step in this analysis is the computation of the equation of state. This is

achieved by means of Auxiliary Field Diffusion Monte Carlo Methods [18, 19]. As

previously mentioned, two different nucleon-nucleon interaction schemes have been

used. The first EoS (EOS-A thereafter) is derived from the well known Argonne AV8′

potential for the two-body interaction, plus the Urbana UIX interaction for the three

body channel. This interaction has been widely used to study homogeneous neutron

matter and nuclear matter properties (see [20, 21] and references therein). The second

EoS (EOSχ thereafter) is based on potentials derived within chiral effective field theory

(χ − EFT ). Among different implementations of the effective chiral potential which

have been recently developed, we chose a local formulation up to N2LO which have

been derived by A. Gezerlis et al. [13, 14].

In Fig. 1 we report the results obtained from our calculations of fully spin polarized

pure neutron matter (SPPNM) for densities ranging from ρ0/4 up to 2ρ0, where

ρ0 = 0.16 fm−3 is the nuclear saturation density. The results for pure neutron

matter (PNM) are those obtained by Gandolfi et al. [22] and Tews et al. [16] for the

phenomenological and the chiral interaction respectively. For the chiral potential we

used the N2LO(D2,E1) cutoff R0 = 1.0 fm, cE = 0.62 cD = 0.5 as described in [15]. The

specific choice of the operatorial parametrization is due to the fact that it provides an

EoS close to that of AVX potentials. In addition, between the two cuftoffs presented in

Ref. [15], the shorter cutoff value in coordinate space provides a stiffer EoS. This allows

to analyze the sensitivity on the systematic uncertainties of the observables derived in

the following analysis that includes somehow AVX case as a limiting case, maintaining a

potential which gives realistic mass-radius relation for neutron stars. SPPNM energies

were computed for N = 33 neutrons all with the same spin in a periodic box. We should

remind that in QMC calculations the energy is projected starting from a state of given

symmetry (in this case equivalent to a fully polarized liquid), and the projected values

will not acquire components along orthogonal states. This, together with the constraints

introduced to cope with the Fermion sign problem, provide the mechanism allowing for

the simulation of the polarized phase, though this is not the ground state at any density.

Similar calculation have been performed for the electron gas [23] and atomic 3He [24]

several years ago. In order to reduce the impact of finite size effects, the potential was

computed by a sum over the first neighbors of a given simulation cell. The statistical

errors of the data reported in Fig. 1 are of the size of the symbols. The bands relative

to the chiral potential results have been obtained using the prescription of Epelbaum et

al. [25]. According to Ref. [25] the estimate of the theoretical error on an observable X
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Figure 1: Equation of state for PNM (lower set) and for SPPNM (upper set) with

AV8′+UIX (blue curves) and with chiral potential up to N2LO (green bands). More

details on the potentials are described in the text. Errorbars for the chiral effective

interaction have been computed according to Epelbaum et al. [25]. For the sake

of comparison, we also report the corresponding curves for a free Fermi gas at the

thermodynamic limit (red dotted curves).

is given by the following relation:

∆XNLO = max
(
Q3 ×

∣∣XLO
∣∣ , Q× ∣∣XLO −XNLO

∣∣)
∆XN2LO = max

(
Q4 ×

∣∣XLO
∣∣ , Q2 ×

∣∣XLO −XNLO
∣∣ ,

Q×
∣∣∣XNLO −XN2LO

∣∣∣) ,

(1)

where Q = max(p/Λ,mπ/Λ), with Λ (normally ' 1GeV) defining the breakdown scale,

mπ is the pion mass, and p is the typical exchanged momentum. In addition there is a

further constraint for theoretical uncertainties at NLO and N2LO, i.e. they must have

at least the size of the actual higher order contribution. Higher order contributions

are Q2 × XLO and Q3 × XNLO for the NLO and N2LO respectively. The latter is the

dominant term. Instead of calculating the equation of state order by order we can

estimate the theoretical error as Q3×XN2LO. This is an approximation, but it provides
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a reasonable estimate (within 5 − 10%) compared to the full analysis. As an example

we report in Fig. 2 the full analysis of the order by order expansion for the fully spin

polarized case. We chose a breakdown scale Λ = 600 MeV (in accordance to Ref. [26] )

and we computed the typical exchanged momentum as:

p ∼

√
2m

3

5

k+2

F

2m
, (2)

where k+
F is the Fermi momentum of the polarized system at a given density and m is

the neutron mass. While at saturation density the theoretical uncertainties decrease,

as predicted by the perturbative expansion, at ρ = 2ρ0 the theoretical uncertainties

remain of the same order between NLO and N2LO. This signals that we are still within

(though close to) the limit of applicability of the perturbative approach, and the chiral

effective field theory is well-defined. The EoS for the polarized system and obtained
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Figure 2: The histograms show the AFDMC calculation, with the local chiral potential

described in the text, at saturation and twice saturation density for the fully spin

polarized system. Order by order estimate of the theoretical uncertainties ad LO (red),

NLO (green) and N2LO (blue) are provided. Statistical uncertainties from AFDMC are

smaller than the size of the points.

from chiral potentials is in reasonable agreement with the one obtained by Krüger at

al. [27], at least up to saturation density. For as concerns the EoS derived using the

AV8’+UIX interaction, our results are in very good agreement with those obtained in

previous work with other potentials of the AVX + Urbana family (see e.g. Refs. [28, 29]

for Brueckner-Hartree-Fock calculation with AV18+UIX). In our discussion we will only

consider the density range 0.5ρ0 ≤ ρ ≤ 2ρ0. Another interesting feature to be noticed

in the comparison is that the spin symmetry energy, given by the difference between
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the energy per neutron of the spin polarized and spin unpolarized systems tends to be

substantially larger in EOSA than in EOSχ.

The Monte Carlo results are fitted in order to derive the energy density functional

to be used in the TDLSDA response function. We recall that in the Local Density (mean

field) Approximation, the energy as a function of the density ρ and the spin polarization

ξ can be generically written as:

E(ρ, ξ) = T0(ρ, ξ) +

∫
εV (ρ, ξ)ρdr. (3)

The kinetic energy T0 as been computed using the bare neutron mass. The quantities ρ

and ξ are related to the density of particles with spin up ρ↑ and the density of particle

with spin down ρ↓ in the following way:

ρ = ρ↑ + ρ↓; ξ =
ρ↑ − ρ↓
ρ

. (4)

We define the function ε(ρ, ξ) using the common assumption of a quadratic dependence

on the spin polarization:

εV (ρ, ξ) = ε0(ρ) + ξ2 [ε1(ρ)− ε0(ρ)] , (5)

where the functions εi are defined as polynomials in the neutron density:

εi(ρ) = ε0i + ai

(
ρ−ρ0

ρ0

)
+ bi

(
ρ−ρ0

ρ0

)2

+ ci

(
ρ−ρ0

ρ0

)3

. (6)

Such functions will contain the whole information about the interaction, i.e. all the

terms that in ordinary LDA theory for Coulombic systems are separately referred to as

”direct”, ”exchange”, and ”correlation” terms [30]. The index i = 0, 1 will indicate the

spin unpolarized and polarized neutron matter (ξ = 0, 1) respectively. The expression of

the energy density functional in integer powers of the density is connected to the presence

of some external field (first power) that in this case stabilizes the asymmetric and/or

spin polarized matter, a two-body interaction, a three-body interaction, and so on. In

this paper we do not consider explicit dependence on the momentum (i.e. derivatives of

the density), nor the possibility of having non-integer exponents. As usual, we assume

the value of the saturation density to be ρ0 = 0.16 fm−3. Despite there is no implicit or

explicit expectation of a hierarchical ordering in our expansion of the density functional,

the coefficients fitted on the numerical AFDMC results for EOS-A and EOS-χ, reported

in Tab. 1, show some prevalence of the first and second order expansion terms (apart

for EOS-χl for SPPNM, which has bi and ci of the same order).

In our approach the kinetic energy T0 does not include an effective mass. On the

other hand different many methods use the effective mass and claim inconsistent results

in the response functions and in neutrino mean free paths either using the effective or

the bare mass. On one hand we have to remind that response functions are not physical

observables and therefore might differ between the two approaches. On the other hand

neutrino mean free paths are physical observables and thus should not be incompatible..
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EOSA ε0i ai bi ci
(SPPNM) i=1 9.411 21.997 13.032 0.262

(PNM) i=0 -15.97 -2.689 12.435 0.521

EOSχ ε0i ai bi ci
(SPPNM) i=1 3.85 10.975 6.433 -1.506

(PNM) i=0 -17.81 -7.865 7.746 -0.934

EOSχu ε0 ai bi ci
(SPPNM) i=1 13.87 29.206 14.573 -1.502

(PNM) i=0 -16.36 -5.117 9.367 -0.565

EOSχl ε0i ai bi ci
(SPPNM) i=1 -6.18 -7.256 -1.707 -1.510

(PNM) i=0 -19.26 -10.614 6.126 -1.303

Table 1: Coefficient fitting the density functional of Eq. (6) to the EoS computed by

means of the AFDMC method. EOSA refers to the EoS from the AV8′+UIX potential,

while the EOSχ are relative to the Hamiltonian with the local N2LO(D2,E1) chiral

interaction. The three tables refer to the center, upper limit and lower limit of the

uncertainty band respectively.

It is possible to predict the effective mass emerging from the Monte Carlo calculations

from the diffusion of a neutron during the simulation. For instance, a quick estimate

of the effective mass ratio at saturation density obtained using a potential of the form

AV6′ (inclusive of tensor) gives a value m∗ ∼ 0.92 (See Appendix A for details). This

result is in agreement with the results obtained from the study of excited states of

the system [31]. However, in this approach the equation of state is inclusive of all the

correlation effects leading, among the others, to the correction to the kinetic energy

accounted by the effective mass itself, even if our convention is to assume the neutron

mass equal to the bare mass. To look at the difference between using the bare mass

or the effective mass we evaluated response functions and neutrino mean free paths at

saturation energy with the effective mass. We assumed a constant effective mass over

the density range ρ0/4 ≤ ρ ≤ 2ρ0. We refit the constants of the energy-density function

of Eq. (5) to our AFDMC calculations to get a new effective potential consistent with

the effective mass. While the response in the longitudinal and transverse channel might

be different between the two cases, reshuffling contributions from particle holes and

collective modes (see Figs. 3-5), the neutrino mean free path results are qualitatively

independent on the choice of either the effective mass or the bare mass (see Figs. 6

and 8).
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3. Time Dependent Local Spin Density Approximation

The density functional of Eq. (3) can be used to describe the density and spin

density excitations by means of the Time Dependent Local Spin Density Approximation

(TDLSDA). In the spirit of the mean field theory, the solution of the many-body

Schroedinger equation for N neutrons in a volume V such that ρ = N/V is assumed to

be the product of two Slater determinants, one for the N↑ spin-up neutrons and one for

the N↓ spin-down neutrons:

Ψ(r1 . . . rN) = det[φ↑i (rj)]det[φ↓i (rj)], (7)

where the indices i, j run from 1 to N↑ and N↓ respectively. The spin-up and spin-down

neutron densities are defined as:

ρσ =
∑
i

|ϕσi (r)|2 , (8)

where σ = ↑(↓) stands for spin-up and spin-down neutrons, respectively, and the sum

runs over all the occupied states. By minimizing the energy functional of Eq. (3) with

respect to the single particle wavefunction ϕσi , one obtains the set of self-consistent,

stationary Kohn-Sham equations for spin-up and spin-down neutrons wave functions

(h̄ = c = 1 hereafter):[
− 1

2m
∇2

r + v(ρ(r), ξ(r)) + w(ρ(r)), ξ(r))σz +
1

2
ωcσz

]
ϕσi (r) = εi,σϕ

σ
i (r). (9)

The term containing ωc is needed to induce a partial (or total) magnetization of neutrons,

mimicking the presence of an external (magnetic) field. The value of ωc is related to the

desired asymmetry ξ̄ of the system by requiring that the variation of the expectation

energy with respect to ξ at ξ̄ be zero [11, 32]. The result of the minimization yields:

ωc = ξ̄
1 + 3

2εF

∂w
∂ξ

∣∣∣
ξ̄

3N
4εF

, (10)

where εF = k2
F/2m is the Fermi energy, with the Fermi momentum kF and the spin-up

and spin-down neutron momenta given by k↑F = kF (1 + ξ)1/3 and k↓F = kF (1 − ξ)1/3,

respectively. The effective potentials are defined as the derivatives of the functional with

respect to the total density and the magnetization:

v(r) =
∂ρεV [ρ(r), ξ]

∂ρ(r)
, w(r) =

∂εV [ρ(r), ξ]

∂ξ(r)
. (11)

We will briefly review the derivation of the TDLSDA in the longitudinal and in the

transverse channels.
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3.1. Longitudinal channel

The longitudinal channel describes the response to a time-dependent field along the r

direction:

F z =
N∑
k=1

f(rk)λ
k
σ, (12)

where:

f(r) = exp [i(q · r− ωt)] + exp [−i(q · r− ωt)] ,

and λkσ = λ for a density excitation and λkσ = λησ, ησ is the eigenvalue of the σz operator

(η = 1 for spin-up and η = −1 for spin down neutrons) for vector-density excitations, q

is the momentum and ω is the energy. The corresponding time dependent Kohn-Sham

equations reads:

i
∂

∂t
ϕσi (r, t) =

{
− 1

2m
∇2

r + v [ρ↑(r, t), ρ↓(r, t)] + w [ρ↑(r, t), ρ↓(r, t)] ησ

+ λσ
[
ei(q·r−ωt) + e−i(q·r−ωt)

]}
ϕσi (r, t).

(13)

For this case we use ωc = 0, since longitudinal excitations are not directly coupled to

the neutron spin. The solutions linearized in the neutron density oscillations induced

by external fields are given by:

ρ↑(r, t) = ρ↑ + δρ↑(r, t),

ρ↓(r, t) = ρ↓ + δρ↓(r, t),
(14)

where the time dependent density is assumed to be proportional to the external

perturbation:

δρ↑(r, t) = δρ↑(e
i(q·r−ωt) + e−i(q·r−ωt)),

δρ↓(r, t) = δρ↓(e
i(q·r−ωt) + e−i(q·r−ωt)).

(15)

Following the derivation in Ref. [10], the density-density response (per unit volume)

is then given by:

χs(q, ω)

V
=

(δρ↑ + δρ↓)

λ
≡ χ↑(q, ω) + χ↓(q, ω), (16)

and the vector density-vector density response is:

χv(q, ω)

V
=

(δρ↑ − δρ↓)
λ

≡ χ↑(q, ω)− χ↓(q, ω). (17)

In order to determine the expression of the response function, we can explicitly compute

the total self-consistent potentials in the Kohn-Sham equations. At first order in δρσ
this is given by:

VKS [ρ↑(r, t), ρ↓(r, t)] ≡ v[ρ↑, ρ↓] + w[ρ↑, ρ↓] =

= VKS(ρ↑, ρ↓) +
∂VKS
∂ρ(r, t)

∣∣∣∣
ρ↑,ρ↓

δρ↑(r, t) +
∂VKS
∂ρ(r, t)

∣∣∣∣
ρ↑,ρ↓

δρ↓(r, t),
(18)
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which gives the following expression for the Kohn-Sham equations:

i
∂

∂t
ϕ↑i (r, t) =

{
− 1

2m
∇2

r + const. + [δρ↑V↑,↑ + δρ↓V↑,↓ + λ]

× (ei(q·r−ωt) + e−i(q·r−ωt))

}
ϕ↑i (r, t),

(19)

i
∂

∂t
ϕ↓i (r, t) =

{
− 1

2m
∇2

r + const. + [δρ↑V↑,↓ + δρ↓V↑,↑ ± λ]

× (ei(q·r−ωt) + e−i(q·r−ωt))

}
ϕ↓i (r, t),

where the constant term is the Kohn-Sham potential evaluated at the density and

magnetization of the homogeneous neutron matter under consideration. Note that

the ± in the second equation of Eq. (19) comes from the different channels: +

for density excitations, while − for vector-density excitations. This fact makes the

solutions of the linearized dynamic equations equal to those of the free Fermi gas. As

a consequence, the response function of the system will be the one for the free system

χ0(q, ω) = χ↑0(q, ω) + χ↓0(q, ω), where:

χ↑0(q, ω) =
V δρ↑
λ′↑

,

χ↓0(q, ω) =
V δρ↓
λ′↓

.

(20)

The effective strength λ′σ, defined as:

λ′↑ = δρ↑V↑,↑ + δρ↑V↑,↓ + λ,

λ′↓ = δρ↑V↓,↑ + δρ↑V↓,↓ ± λ
(21)

includes terms depending on the interaction. The mean field potentials Vσ,σ′ are obtained

through the derivatives of v + ησw with respect to ρσ:

V↑,↑ =
∂(v + w)

∂ρ↑(r, t)

∣∣∣∣
ρ↑,ρ↓

=

(
∂

∂ρ
+

1

ρ

∂

∂ξ

)
(v + w)

∣∣∣∣
ρ,ξ

,

V↑,↓ =
∂(v + w)

∂ρ↓(r, t)

∣∣∣∣
ρ↑,ρ↓

=

(
∂

∂ρ
− 1

ρ

∂

∂ξ

)
(v + w)

∣∣∣∣
ρ,ξ

,

V↓,↑ =
∂(v − w)

∂ρ↑(r, t)

∣∣∣∣
ρ↑,ρ↓

=

(
∂

∂ρ
+

1

ρ

∂

∂ξ

)
(v − w)

∣∣∣∣
ρ,ξ

,

V↓,↓ =
∂(v − w)

∂ρ↓(r, t)

∣∣∣∣
ρ↑,ρ↓

=

(
∂

∂ρ
− 1

ρ

∂

∂ξ

)
(v − w)

∣∣∣∣
ρ,ξ

.

Comparing Eq. (18) and Eq. (19) we immediately see that:

λχ↑(q, ω) = λ′↑χ
↑
0(q, ω) = V δρ↑,

λχ↓(q, ω) = λ′↓χ
↓
0(q, ω) = V δρ↓.

(22)
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The solution of these equations, finally gives the TDLSDA response functions in the

longitudinal channel:

χs(q, ω) = V
χ↑0[V − (V↓↓ − V↑↓)χ↓0] + χ↓0[V − (V↑↑ − V↓↑)χ↑0]

(V − V↓↓χ↓0)(V − V↑↑χ↑0)− V↑↓χ↑0V↓↑χ
↓
0

,

χv(q, ω) = V
χ↑0[V − (V↓↓ + V↑↓)χ

↓
0] + χ↓0[V − (V↑↑ + V↓↑)χ

↑
0]

(V − V↓↓χ↓0)(V − V↑↑χ↑0)− V↑↓χ↑0V↓↑χ
↓
0

.

(23)

We should keep in mind that the TDLSDA is valid only in the low-q, low-ω limits.

For consistency one should use the expressions of the free response functions χ↑0 and

χ↓0 appearing in the previous equations in the same regime. Their explicit form, which

holds for q → 0 and s = ω/(qvF ) fixed, is:

χ↑,↓0 (q, ω) = −V ν↑,↓
[
1 +

s

2(1± ξ)1/3
ln
s− (1± ξ)1/3

s+ (1± ξ)1/3

]
, (24)

where ↑ (↓) reads with + (−), ν↑,↓ = mk↑,↓F /(2π2) = mkF (1±ξ)1/3/(2π2), kF = (3π2ρ)1/3

and s = ω/(qvF ). By defining:

Ω↑,↓ =

[
1 +

s

2(1± ξ)1/3
ln
s− (1± ξ)1/3

s+ (1± ξ)1/3

]
, (25)

we can rewrite the density-density and vector-density/vector-density response functions

as:

χs,v

Nm/(2k2
F )

= −3
(1+ξ)1/3Ω↑[1+(G↓∓( 1−ξ

1+ξ
)1/6G↑↓)Ω

↓]+(1−ξ)1/3Ω↓[1+(G↑∓( 1+ξ
1−ξ )1/6G↓↑)Ω

↑]
(1+G↓Ω↓)(1+G↑Ω↑)−G2

↑,↓Ω
↑Ω↓

, (26)

where G↑ = ν↑V↑,↑, G↓ = ν↓V↓,↓ and G↑↓ =
√
ν↑ν↓V↑,↓. These parameters can

be easily recognized to share the same derivation with the F0 Landau parameters,

considering the fact that multiple excitation channels are now possible. This is even

more evident simplifying Eq. (26) in the fully polarized and unpolarized neutron matter

limits. The response functions for the unpolarized system (χ↑0 = χ↓0 = χ0) read:

χs(q, ω) =
χ0(q, ω)

1− ∂v
∂ρ

∣∣∣
ρ,ξ=0

χ0(q,ω)
V

χv(q, ω) =
χ0(q, ω)

1− 1
ρ
∂w
∂ξ

∣∣∣
ρ,ξ=0

χ0(q,ω)
V

, (27)

while for the fully polarized system, where χ↓0 = 0, we obtain:

χs(q, ω) = χv(q, ω) =
χ↑0(q, ω)

1− V↑,↑ χ
↑
0(q,ω)

V

, (28)

The resulting expressions of Eqs. (27) and (28) are equivalent to those that could be

derived by the Landau Fermi liquids theory considering as quasiparticles spin and density

elementary excitations (as combinations of δρ↑ and δρ↓).

The imaginary part of Eq. (26) provides the strength of the single particle

excitations:

S(q, ω) = − 1

π
χs,v(q, ω). (29)
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3.2. Transverse channel

The derivation of the response function in the transverse channel, first done by

Rajagopal [33], and later applied to quantum dots in Refs. [34, 35], is similar to that

used in the longitudinal channel. The excitation operator has the same structure as

that of Eq. (12), but the constraint now is that ∆Sz = ±1, thereby defining:

F± =
∑
k

f(rk)σ±k . (30)

In the ∆Sz = ±1 channel, given the magnetization m of the system (ξ = m/ρ), the

static LSDA equations (9) can be rewritten as:[
− 1

2
∇2

r +
1

2
ωcσz + v(r) +Wm · σ

]
ϕσi (r) = εi,σ ϕ

σ
i (r) , (31)

where m is the spin polarization vector. The interaction/correlation energy only depends

on ρ and |m|, i.e. εV = εV [ρ, |m|] so that the spin-dependent interaction/correlation

potential w in equation (11) can be written as:

Wm = w[ρ, |m|] m/|m| , (32)

where:

w[ρ, |m|] = ∂εV [ρ, |m|] /∂|m| , (33)

and W [ρ, |m|] ≡ w[ρ, |m|]/|m|. Defining the spherical components ± of the vectors

m and σ, it is possible to express the z component of the magnetization dependent

potential as:

wσz →W [ρ, |m|] [mzσz + 2(m+σ− +m−σ+)] . (34)

In the static case, the inclusion of the densities m+ and m− makes no difference since

they vanish identically. The situation is different when the system interacts with a

time-dependent field that couples to the nucleon spin through the general term:

F · σ = Fzσz + 2(F+σ− + F−σ+) . (35)

As a consequence, the interaction Hamiltonian causing transverse spin excitations may

be written as:

Hint ∼ σ−f e
−ıωt + σ+

f e
ıωt . (36)

Hint causes non-vanishing variations in the magnetization components δm+ and δm−
which, in turn, generate at first-order perturbation theory a variation in the mean field

potential.

Following the steps described in Ref. [12] the TDLSDA response function is given

by (once again V is the volume):

χt(q, ω) =
χ0
t (q, ω)

1− 2
V
W(ρ,m)χ0

t (q, ω)
, (37)
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where χ0
t (q, ω) is the free transverse linear response. In the qvF � εF limit, where

vF = kF/m is the Fermi velocity, it is given by:

χ0
t (q, ω)

V
= −3

4

ρ

εF

(
1 +

ω

2qvF
ln
ω − ωa − qvF
ω − ωa + qvF

)
, (38)

where:

ωa =
ωc(

1 + 3ρW(ρ,m)
2εF

) =
2

3

k2
F

m
ξ ,

and the last step has been obtained by using relation (10).

The imaginary part of Eq. (37) provides the excitations strengths S±(q, ω) =∑
n |〈n|τ

±
f |0〉|2δ(ω−ωno) corresponding to the ∆Sz = ±1 channels, respectively, through

the relation:

S−(q, ω)− S+(q,−ω) = − 1

π
Im(χt) . (39)

As we did for Eqs. (24) and (25), Eqs. (37) and (38) can then be recast in the following

way using the dimensionless variables s = ω/(qvF ) and z = 3q/(2kF ξ):

χ0
t (q, ω)

V ν
≡ χ0

t (s, z)

V ν
= Ω±(s, z) , (40)

with
ν = mkF/π

2,

Ω±(s, z) = −
(

1 + s
2

ln s−1−1/z
s+1−1/z

)
,

and
χt(q, ω)

V ν
≡ χt(s, z)

V ν
=

Ω±(s, z)

1− 2νW(ρ,m)Ω±(s, z)
. (41)

The ± in the definition in Ω indicates that it includes both the ∆S = +1 and ∆S = −1

channels.

4. Numerical results

4.1. Response and excitation strengths

The numerical evaluation of the longitudinal and transverse response functions gives

access to information about the neutron dynamics. The single particle excitations

strengths are computed using Eqs. (29) and (39). On the other hand, the poles of

Eqs. (26) and (41) are the energies of the collective modes of the system. Naming N(s)

and D(s) the numerators and the denominators of Eqs. (26) and (41), respectively, we

expand around the poles at s = s̄ to evaluate the strength as:

S(s)

V ν
=

N(s)

∂D/∂s
δ(s− s̄) , and

S(s)

Nm/(2k2
F)

=
N(s)

∂D/∂s
δ(s− s̄) (42)
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for the longitudinal and the transverse channel respectively. The collective modes

are indicated by arrows in Figs. 3-5. In the longitudinal channel the strength of the

collective modes have been rescaled: longer arrows correspond to dominant scalar or

vector contribution (their strength would be too small compared to the particle-hole

contribution). In the transverse channel the correct strength has been plotted instead.

We report in Fig. 3 the results obtained from the calculation of the longitudinal

response functions for the two different potentials used, i.e. the phenomenological

AV8′+UIX interaction and the local chiral potential at N2LO. The plots are made

as functions of the dimensionless quantity s = ω/(qvF ) for a fixed value of the spin

polarization ξ = 0.2, and for three different values of the density which are characteristic

of the outer core of a neutron star (ρ = 0.08, 0.16, and 0.32 fm−3).
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Figure 3: Longitudinal response function at spin polarization ξ = 0.2 for AV8′+UIX

(left) and chiral potential at N2LO (right). The red solid lines and blue dashed lines

stand for density and spin density Dynamical Structure Factors (DSFs) respectively.

Arrows indicate the presence of a collective mode. The percentages in the plot show the

fraction of the total strength pertinent to the particle-hole excitations. The black lines

at saturation density for the phenomenological potential (left) show the results using

the effective mass instead of the bare mass. Note that the effective mass enters in the

definition of the variable s. On the right panel the three lines for each DSF keep track

of the theoretical uncertainties obtained using chiral effective interaction. Lighter to

darker curves stand for lower-central-higher EOSχ of Fig. 1 and Tab. 1. The same color

scheme holds for Fig. 4.

In Fig. 4 the same quantity is reported for spin unpolarized neutron matter. The

percentages reported in the graphs show the fraction of the total strength relative to

the particle-hole contribution. Arrows represent the presence of collective modes (the

size is not proportional to the strength). For the response computed using the N2LO

potential we propagated the theoretical uncertainty. As expected, at the lowest density

considered the results are qualitatively and quantitatively very insensitive to the specific

interaction used. At saturation density and above, the theoretical uncertainty on the

pressure reflects in a more pronounced difference in the characterization of the single
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particle spectrum, in particular for as concerns the scalar channel in the region around

ω = qvF . The vector channel is somewhat less affected, at least qualitatively, by the

theoretical uncertainty.
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Figure 4: Longitudinal response function for AV8′+UIX (left) and chiral potential at

N2LO (right) at spin polarization ξ = 0.0, i.e. PNM. The color scheme is described in

Fig. 3.

A similar behavior concerns the collective modes. The energy of the collective modes

strongly depends on the stiffness of the equation of state. A consequence is that the

energy of the collective modes when increasing the density results significantly higher in

the AV8′+UIX case. It should be noticed that in pure neutron matter collective modes

are not present for the lowest density considered in the scalar channel. On the contrary,

the results at ξ = 0.2 always show the presence of a collective mode. There is some

further systematics to be noticed in the behavior of the collective modes. At ξ = 0 the

spin mode appears with a dispersion for q ∼ 0 more or less independent of the density,

whose strength is only slightly increasing with ρ. This is in contrast with the density

mode that begins to have significant strength only at densities around saturation, and

quickly increases its dispersion coefficient. This fact points to a substantially different

nature of these excitations. In particular the spin mode appears to be similar to a spin-

density wave in neutron matter. The polarization of the medium induces a coupling

between the spin and the density modes due to the spin imbalance. This translates

into the appearance of a low strength density mode at the same energy of the spin one

for low densities. At higher densities the two collective excitations separate in energy

essentially in the same way as in the ξ = 0 case, although the mixing is still visible in

the presence of a second, low strength peak for both modes.

For the transverse response, positive values of s describe the excited states in the

∆Sz = −1 channel, while for negative values of s the excited states in the ∆Sz = +1

channel. In Fig. 5 we show the results for the transverse response function. In this

case, instead of fixing the polarization we fixed the value z = 3q/(2kF ξ) = 6, still

corresponding to a case of low magnetization. The results are qualitatively very close

to those obtained for the longitudinal channel, although the dependence on the specific
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choice of the interaction results weaker, both for the particle-hole and the collective part

of the spectrum. Contrary to what happens in the longitudinal channel, both collective

modes do not show a significant variation of the linear dispersion coefficient with the

density. It is interesting to observe, however, that the coefficient is very different between

the ∆Sz = −1 and the ∆Sz = 1 excitations. This means that the two modes have a

gap that is proportional to the neutron matter polarization.
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Figure 5: Transverse response function at low spin polarization (z = 6) for AV8′+UIX

(left) and for chiral potential at N2LO (right). Recall that z = 3q
2kF ξ

, so z > 1 means

small ξ. The full and dashed lines indicate the particle/hole and collective strengths

in the ∆Sz = −1 (s > 0 - red) and ∆Sz = +1 (s < 0 - blue, which has been plotted

flipped and in the s > 0 region) channels respectively. The black lines at saturation

density for the phenomenological potential (left) show the results using the effective

mass instead of the bare mass. Note that the effective mass enters in the definition

of the variable s. On the right panel the three lines for each DSF keep track of the

theoretical uncertainties obtained using chiral effective interaction. Lighter to darker

curves stand for lower-central-higher EOSχ of Fig. 1 and Tab. 1.

4.2. Neutrino mean free path

The neutrino processes considered are the neutral-current scattering n + ν → n + ν,

neutron bremsstrahlung n+ n→ n+ n+ ν + ν̄ and its inverse n+ n+ ν + ν̄ → n+ n.

Also the inelastic scattering process ν + n+ n→ n+ n+ ν is included [36]. Note that

we are working with PNM, so we are not considering β-decay processes or any other

process involving protons. The neutrino mean free path (NMFP) can be computed by

integrating the total excitation strength S(q, ω) (in both the longitudinal and transverse

channels), to first obtain the total neutrino cross section σ [37, 38]:

σ =
G2
F

2

1

E

∫
dq

∫
dω(E − ω)q

[
1 +

E2 + (E − ω)2 − q2

2E(E − ω)

]
S(q, ω) , (43)

where E is the incident neutrino energy, and GF = 1.166×10−5 GeV−2. Integration

must be performed on a region of q and ω compatible with the scattering, as discussed
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for instance in Ref. [37]. We will assume neutrinos to be ultra-relativistic and non-

degenerate. The NMFP λ can be derived from the total neutrino cross section σ from

the relation λ = 1/(σρ).

From existing estimates of neutron spin susceptibility [39], we expect the induced

spin polarization to be low even in presence of strong magnetic fields. We could estimate

the order of magnitude of the spin polarization as

2m∆E = µnB , (44)

where m is the neutron mass, µn is the Bohr magneton and B is the magnetic external

field. ∆E is the energy difference between the fully spin polarized and the spin

unpolarized system. The maximum superficial magnetic field observed for a magnetar

is Bsurf ∼ 1010−1011 T. This would lead to an expected spin polarization of the order of

10−5−10−4 at saturation density. Internal dynamo effects might power up the magnetic

field by a factor 102−103, which leads to an expected spin polarization ξ ∼ 10−3−10−1.

In Fig. 6 we report the results we obtained at saturation density for spin polarization

ξ = 0.0 and ξ = 0.1 and compared them with the result obtained for PNM with a more

refined method [40] using the correlated Tamm-Dancoff approximation (CTDA). Within

the CTDA [38] the states are expressed as a basis of correlated 1p-1h excitations. The

correlations are then encoded in effective operators acting on 1p-1h states. The NMFP

for spin unpolarized pure neutron matter is essentially independent of the incident

energy of the neutrinos. The presence of a small spin-asymmetry shows instead non

trivial patterns, significantly increasing the neutron matter opacity for low neutrino

energies.

The estimated theoretical uncertainty on the results computed from the chiral

interaction are quite significant. Nevertheless, the prediction obtained making use of

the phenomenological interaction differ by about 20% from that of the N2LO potential

(central value), and it is close to the upper limit predicted by the propagated uncertainty.

In Fig. 7 we compare our results for the NMFP ratio at saturation density to those of

Pastore et al. [4] and to those of Lovato et al. [40]. The first paper presents computations

using a Skyrme force explicitly including tensor contributions, which we instead do

not address with specific terms. The second case also includes explicit correlations

introduced via the Tamm-Dancoff approximation. All results tend to overlap in a region

around λ/λFG ∼ 2. Skyrme results, however, tend to predict a lower value of NMFP.

This might be due to the different treatment of correlations. A similar effect is also

visible in the comparison of the Tamm-Dancoff results and our results for the Argonne

potential. It should be remarked, however, that all these results start from different

neutron-neutron interaction schemes, and it is overly difficult to attribute in a clear

way the differences either to the potential used or to the degree of approximation of the

functional employed.

In Fig. 8 we show the contribution of the different channels to the total neutrino

mean free path. As an example we report the results for the phenomenological potential

AV8′+UIX at spin polarization ξ = 0.1.
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Figure 6: Neutrino mean free path ratio with respect to the free Fermi gas at saturation

density ρ0 = 0.16 fm−3 for spin polarization ξ = 0.1 and for PNM (ξ = 0). Top-middle-

bottom lines for EFT refer to higher-central-lower EOSχ of Fig. 1 and Tab. 1. The

results for the phenomenological potential with the effective mass are plotted in black

full lines. Black dashed lines show the results of Lovato et al. [40] (black solid lines)

with AV6’ using the correlated Tamm-Dancoff (CTD) approximation.
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Figure 7: NMFP for PNM at saturation density from the present work compared to

those obtained by Lovato et al. [40] (black solid lines) and by Pastore et al. [4] (dashed

and dash-dotted lines). In the latter case different bands correspond to different choices

of the tensor term of the Skyrme potential. Top-middle-bottom lines for EFT refer to

higher-central-lower EOSχ of Fig. 1 and Tab. 1.
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Figure 8: Neutrino mean free path ratio with respect to the free FG for spin polarization

ξ = 0.1 as a function of density. Dotted lines are the contributions coming from the

longitudinal channels, dashed lines from the transverse part, while solid lines show the

total mean free path. The contribution using for the effective mass are in dark green.

Results are plotted at saturation density ρ0 = 0.16 fm−3, half and twice saturation

density. We observe that at all densities the contribution coming from the longitudinal

part is almost constant as a function of the energy of the incident neutrino. We observe

that for both channels NMFP increases with the density. However, since the relative

weight of the two contributions is different for each densities the result gives a total

NMFP with non-trivial density dependence.

To understand the implication of spin-polarization to the NMFP we show in Fig. 9

the NMFP in function of the energy of the incident neutrino. The NMFP has to be

compared to the radius of the neutron star (≈ 1.2−1.5 ·104 m): above this value matter

is essentially transparent to neutrinos, while the typical energies of the neutrinos of

astrophysical interest are in the range 0.1− 50 MeV [41, 42].

4.3. Compressibility

In order to make an even more direct comparison between our approach and

other microscopical models, useful to assess its validity, we will discuss here the

compressibility of PNM, a parameter that directly influences NMFP and other properties

of astrophysical interest, in particular the structure of neutron stars.

Given a fit of the equation of state as the one in Eq. (5), it is possible to directly
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Figure 9: Neutrino mean free path for PNM and for spin polarization ξ = 0.2 as a

function of incident neutrino energy. In PNM the longitudinal and transverse channel

contribute equally to the total NMFP, while as soon as there is some spin polarization

we can observe an energy threshold under which the NMFP is entirely determined by

the longitudinal response (dashed lines). The same behavior can be seen also in Fig. 8 at

various densities. Top-middle-bottom lines for EFT refer to higher-central-lower EOSχ
of Fig. 1 and Tab. 1. The results for the phenomenological potential with effective mass

are plotted in black.

extract the compressibility from the definition:

K = −
1

V

∂V

∂P
, (45)

by rewriting it as a function of the energy per nucleon:

1

K
= ρ2

(
ρ
∂2E/N

∂ρ2
+ 2

∂E/N

∂ρ

)
. (46)

However, the quantity that is usually reported is the compression modulus or

incompressibility, which is defined as:

K∞ = k2
F

d2E/A

dk2
F

, (47)

The two quantities are directly related by the following expression:

K∞ =
9

ρ

1

K
. (48)
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In this case we can check the consistency of our results using two independent ways to

estimate the compressibility of PNM: 1) starting from the energy-density function using

equation (46), and 2) using the inverse energy weighted sum rule m−1. As an example,

in the scalar and vector longitudinal channels, m−1 reads [10]:

ms,v
−1 =

V

2

ν↑(1 +G↓) + ν↓(1 +G↑)∓ 2
√
ν↓ν↑G↑↓

(1 +G↓)(1 +G↑)−G2
↑↓

, (49)

where the minus sign is for the scalar case, while the plus sign holds for the vector

case. In the case of spin-unpolarized PNM (ξ = 0.0) we have that ν↑ = ν↓ = ν and

G↑ = G↓ = G and we can write:

ms
−1

m0
−1

=
K

K0

=
1

1 +G+G2
↑↓
, (50)

where m0
−1 = V ν/2 and K0 = 9π2m/k5

F respectively are the Fermi gas static

polarizability and compressibility. The values we estimate within our approach using

the two methods are always numerically indistinguishable.

Eq. (50) shows once more the relationship between this approach and the Landau

theory. The parameter G can in principle be identified with F0. This means, however,

that the TDLSDA estimate of the compressibility also includes an order G2 correction.
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Figure 10: Compressibility ratio for PNM at saturation density as a function of the

spin asymmetry. Top-middle-bottom lines for EFT refer to lower-central-higher EOSχ
of Fig. 1 and Tab. 1.

The compressibility computed at saturation density as a function of the spin

asymmetry ξ for the two different potentials used in this work is shown in Fig. 10.
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Interestingly enough, the chiral EFT potential would predict a compressibility ratio

decreasing with ξ. However, at the lower limit of the predicted theoretical errorbar this

behavior is inverted. In this case the Argonne-Urbana potential gives a substantially

different value at ξ = 0, but tends to close the gap with the EFT potential for the fully

spin polarized case. In Fig. 11 we show the compressibility ratio as a function of the

density for the spin unpolarized PNM. As expected, the compressibility decreases as a
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Figure 11: Compressibility ratio for spin unpolarized PNM in function of the density.

Top-middle-bottom lines for EFT refer to lower-central-higher EOSχ of Fig. 1 and Tab. 1.

function of the density. Chiral EFT potential systematically yields an higher value as

a direct consequence of the fact the EoS for PNM is softer than the one obtained using

the phenomenological AV8′+UIX potential.

We report in Table 2 a comparison of our prediction for the compressibility and

the compression modulus to other results available in literature. Also in this case

our approach tends to emphasize the effects of the stiffness of the EoS with respect

to other methods. In particular it is interesting to compare the values obtained by

the Correlated Basis Function (CBF) calculations of Benhar et al. [44], employing a

two-body interaction only, to our results obtained with the Argonne-Urbana potential.

The latter are higher of about a factor 2. However, this discrepancy is substantially

reduced when comparing to the Fermi Hyper-Netted Chain (FHNC) results of Akmal

and Pandharipande [46], essentially employing the same potential. Results obtained

with chiral EFT tend instead to be closer to the other values reported in literature, and

in particular to the results coming from HF or Brueckner-HF calculations. All these

discrepancies point to the fact that a more systematic and homogeneous comparison

between different approaches is definitely in order.
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ρ = 0.032 fm−3 K/K0 K/h̄c [fm4]

AV8′+UIX 2.38 1103

EFT 2.51 1162

BHF [43] 2.54 1176

Skyrme [43] 2.57 1191

QHD [43] 3.17 1467

ρ = 0.16 fm−3 K/K0 (h̄c)2·K∞ [MeV]

AV8′+UIX 0.67 526.1

EFT 1.01 348.6

AV18 (CBF) [44] 1.08 324.7

BKR ρ < 0.182 fm−3 [45] 2.83 123.8

BKR ρ > 0.182 fm−3 [45] 1.09 320.8

ρ = 0.20 fm−3 K/K0 (h̄c)2·K∞ [MeV]

AV8′+UIX 0.48 849.3

EFT 0.80 511.3

AV18+UIX (FHNC) [44, 46] 0.69 589.8

AV18 (CBF) [44] 0.88 462.4

Table 2: Compressibility in PNM. The results of this work are denoted as AV8′+UIX

and EFT for the Argonne-Urbana and chiral EFT interactions respectively. BKR are

the results obtained fitting Brueckner-HF calculations employing the Bressel-Kerman-

Rouben potential, as reported by J.W. Clark et al. in Ref. [45]. AV18 (CBF) are the

Correlated Basis Functions of Benhar et al. from Ref. [44]. AV18+UIX (FHNC) are

the Fermi Hyper-Netted Chain of Akmal and Pandharipande [46]. BHF, Skyrme and

QHD are Brueckner-Hartree-Fock, Skyrme force based Hartee-Fock (HF) and Quantum

Hydrodynamical calculations respectively as reported in the paper from Aguirre et al.

in Ref. [43].

5. Conclusions

We successfully extended TDLDA to study the response function of neutron matter

with arbitrary spin polarization both in the longitudinal and in the transverse channel

starting from accurate QMC calculations of the equation of state for PNM and for

SPPNM. We employed two different neutron-neutron potentials, the phenomenological

AV8′+UIX and a modern local chiral EFT potential. For the latter, we considered the

predicted theoretical uncertainties coming from the expansion scheme of the theory. We

computed estimates for the NMFP showing non trivial contribution coming from the

two different channels and also the effects of a small spin polarization, which could play a

role in high energy phenomena such as neutron star mergers and supernova explosions.

At the neutron core conditions matter is essentially transparent to neutrinos, while

relevant effects could be seen in the neutron star crust.
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Appendix A. Calculation of the effective mass

The effective mass ratio can be directly estimated from the self-diffusion coefficient

of a particle in a DMC calculation. We present the results obtained for a system of

14 neutrons in which periodic boundary conditions have been turned off. The diffusion

coefficient was computed for the FG and for an interacting system of neutrons interacting

with the two-body AV6′ potential, which includes the tensor term, at saturation density.

First we computed the averaged squared distance 〈r2〉 travelled by a neutron in a random

walk as a function of the diffusion time as shown in Fig. A1. This quantity is strictly

related to the kinetic part of the imaginary time propagator:

G0(R′, R) = 〈R′|e−Tδτ |R〉.

=

(
m

2πh̄2δτ

) 3N
2

e−
m(R−R′)2

2h̄2δτ ,
(A.1)

which is formally equivalent to the Green’s function of a diffusion equation in which the

diffusion constant D̃ ∝ h̄2(mn/m̃), where mn is the bare neutron mass. To estimate the

effective mass ratio m∗ one just needs to compute the ratios:

m∗ =
m̃

m
=
D

D̃
, (A.2)

where D and m are the diffusion coefficient and the mass respectively in the case of the

FG.

In order to estimate D and D̃, we performed two fits on two different time windows

on each data set to check the accuracy of our fit. The first fit has been performed in

the time interval (0.1− 0.3) fm−1 and the other in the range (0.1− 0.2) fm−1. The two

fits give essentially the same effective mass ratios (m∗1 = 0.918 and m∗2 = 0.923). In

Fig. A1 we plot the fit relative to the larger time interval only. Comparing our result

to the one obtained with the calculation of the effective mass ratio derived from non-

perturbative calculations of the single-particle excitation spectrum of Ref. [31] we see a

good agreement even if we only employed the two-body potential AV6′ rather than the

full two- plus three-body interaction AV8′+UIX.
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Figure A1: Calculation of the diffusion coefficient for the case of the FG and for a system

interacting with the two-body potential AV6′ at saturation density ρ0 = 0.16 fm−3. The

dashed line represents the fit to the two data-sets (see text for details).
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