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Abstract. We study the ground-state phases of the S = 1/2 Heisenberg
quantum antiferromagnet on the spatially anisotropic triangular lattice (SATL)
and on the square lattice with up to next-next-nearest-neighbor coupling (the
J1 J2 J3 model), making use of Takahashi’s modified spin-wave (MSW) theory
supplemented by ordering vector optimization. We compare the MSW results
with exact diagonalization and projected-entangled-pair-states calculations,
demonstrating their qualitative and quantitative reliability. We find that the MSW
theory correctly accounts for strong quantum effects on the ordering vector of
the magnetic phases of the models under investigation: in particular, collinear
magnetic order is promoted at the expense of non-collinear (spiral) order, and
several spiral states that are stable at the classical level disappear from the
quantum phase diagram. Moreover, collinear states and non-collinear ones are
never connected continuously, but they are separated by parameter regions in
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which the MSW theory breaks down, signaling the possible appearance of a non-
magnetic ground state. In the case of the SATL, a large breakdown region appears
also for weak couplings between the chains composing the lattice, suggesting the
possible occurrence of a large non-magnetic region continuously connected with
the spin-liquid state of the uncoupled chains. This shows that the MSW theory
is—despite its apparent simplicity—a versatile tool for finding candidate regions
in the case of spin-liquid phases, which are among prime targets for relevant
quantum simulations.
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1. Introduction

Low-dimensional frustrated quantum spin systems can display an intriguing interplay between
order and disorder: classical order has been shown to be quite resilient in two or three
dimensions [1–4]; frustration, however, can lead to the melting of magnetic long-range order
(LRO) and the emergence of quantum-disordered states like valence-bond solids or resonating
valence-bond states [5, 6]. Understanding such magnetically disordered quantum phases is
important for the search for fractionalized excitations in two dimensions [5], as well as for
the understanding of the behavior of layered magnetic insulators/metals in which magnetism is
disrupted by charge doping, leading to dramatic phenomena such as superconductivity at high
critical temperature [7–9]. It is hoped that quantum simulators, i.e. well-controlled quantum
devices specifically constructed to behave as a given model system, can help to further our
understanding of magnetic quantum phases.

A large variety of magnetic materials can be described by the Heisenberg Hamiltonian

HS =

∑
i, j

Ji j Si · S j , (1)

where Si is a quantum spin-S operator at site i . In this paper, we will focus on
the antiferromagnetic case for S = 1/2, and on two-dimensional (2D) frustrated lattices.
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Quasi-2D frustrated antiferromagnetism is relevant to a variety of S = 1/2 compounds, realizing
the spatially anisotropic triangular lattice (e.g. in Cs2CuCl4 [10] and κ-(BEDT-TTF)2Cu2(CN)3
[11, 12], etc), or the frustrated (J1 J2) square lattice (e.g. in Li2VOSi(Ge)O4, VOMoO4 [13],
BaCdVO(PO4)2 [14], etc). For both lattice geometries, the Heisenberg model is expected to
display spin-liquid phases for particular values of the frustrated couplings, although the extent
and nature of these spin-liquid phases is still under theoretical debate, both for the spatially
anisotropic triangular lattice (SATL) [15–21] and for the frustrated square lattice [22–28].

In this work, we investigate the S = 1/2 Heisenberg antiferromagnetic Hamiltonian on
2D frustrated lattices making use of Takahashi’s modified spin-wave (MSW) theory [29],
supplemented with the optimization of the ordering vector [30]. In a previous paper [31], we
have shown that (for the SATL with XY interactions) this approach provides a significant
improvement over conventional spin-wave theory (as well as over the conventional MSW
theory), as it allows one to correctly account for the dramatic quantum effects occurring to
the form of order that appears in frustrated quantum antiferromagnets, and for the quantum
corrections to the stiffness of the ordered phase. In particular, a very low stiffness, or the
complete breakdown of the theory, provide strong signals that the true ground state might be
quantum disordered; hence, this method serves as a viable approach to finding candidate models
potentially displaying spin-liquid behavior. For a more detailed description of the formalism, we
refer the reader to [31].

Here, we apply this MSW theory with ordering vector optimization to the Heisenberg
SATL, as well as to the square lattice with nearest, next-to-nearest (NNN) and next-to-next-
to-nearest-neighbor (NNNN) couplings (the J1 J2 J3 model [27], [32–34]). Both models feature
a very complex T = 0 phase diagram, with spirally and collinearly ordered regions, whose
ordering vector is subject to strong quantum corrections with respect to the classical (S → ∞)
limit. They also feature extended breakdown regions for the MSW theory, pointing at the
possible spin-liquid nature of the true ground state of the system. Comparison with numerical
results coming from exact diagonalization (ED) and projected-entangled-pair-state (PEPS)
calculations show that the MSW theory correctly accounts for some of the most salient features
of the quantum phase diagram of these systems, and that it hence represents a very versatile tool
to probe the robustness (or the breakdown) of a semi-classical description of the ground state
of frustrated quantum magnets. As such, it requires a relatively low effort to find parameter
regions that might harbor exotic quantum phases, and that are therefore good candidates for
useful application of a quantum simulator.

The remainder of this paper is organized as follows: section 2 presents the ground-state
phase diagram of the SATL with nearest-neighbor Heisenberg interactions; in section 3, we
calculate the ground-state phase diagram of the J1 J2 J3 model; finally, in section 4 we present our
conclusions. The technical aspects of the MSW theory applied to Heisenberg antiferromagnets
are presented in the appendix.

2. Modified spin-wave theory on the spatially anisotropic triangular lattice with
nearest-neighbor Heisenberg bonds

The triangular lattice with Heisenberg interactions has been considered as one of the first
candidate systems for quantum-disordered behavior in the ground state [5]. Recently, the phase
diagram of the SATL up to values of α ≡ J ′/J = 1 (where J is associated with bonds along
the ex coordinate vector, and J ′ with bonds along the 1/2ex ±

√
3/2ey vectors; see figure 1(a))
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Figure 1. (a) Classical ground-state phase diagram of the SATL with a sketch
of the 1D state at α ≡ J ′/J = 0, the spiral state at α = 1 and the 2D-Néel
state for α > 2. (The horizontal black bonds have strength J , and the diagonal
red bonds have strength J ′.) (b) The quantum mechanical phase diagram
changes considerably due to order-by-disorder effects and the appearance of spin
liquids [15, 16].

has been studied by Yunoki and Sorella using variational quantum Monte Carlo (VMC)
methods [16]. They find that the gapless spin-liquid phase of the isolated chains (J ′

= 0)
persists also at finite coupling up to a critical value α ≈ 0.65, followed by a gapped spin
liquid; for α ≈ 0.8 the gap closes and the system undergoes an ordering transition to spiral
order, continuously connected with the three-sublattice order of the isotropic Heisenberg
antiferromagnet (α = 1). This scenario is still controversial, however: studies based on low-
energy effective field theory for the description of the coupled chains in the case α < 1 indicate
that the system might still exhibit long-range antiferromagnetic order even for very weak
coupling among the chains. This form of order results from high-order perturbation theory
in the inter-chain coupling, and it is necessarily very weak, given that numerical methods
cannot detect it. Its observation is clearly beyond the capabilities of our MSW approach.
Coming from the large-α limit, series expansions by Weihong et al indicate that 2D-Néel
order—appearing on the square lattice defined by the dominant J ′-couplings—persists down
to α ' 1.43, followed by a phase without magnetic order in the interval 1.1. α . 1.43 [15].
Below this region the authors find incommensurate spiral order connecting continuously to
the isotropic point α = 1. In [35], qualitative similar results have been obtained using the
Schwinger-boson approach. The resulting phase diagram differs strongly from the classical
one, which is characterized by spiral order for 0< α < 2, and by Néel order for α > 2.
The classical phase diagram is contrasted with the quantum mechanical one (composed from
[15] and [16]) in figure 1. It is interesting to notice that a qualitatively similar phase diagram
has been obtained recently by some of us for the XY model on the SATL [31, 36].

A variety of experiments have been performed on magnetic compounds described by the
Heisenberg model on the SATL, with results that are still controversial. For instance, neutron
scattering experiments of Coldea et al [10] on Cs2CuCl4, where α ≈ 1/3, claimed evidence that
the low-energy physics is governed by spinons, fractionalized excitations with S = 1/2, which
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Figure 2. Cluster of 30 spins for which we carried out ED. The 24-spin system
is equivalent, only with the top and bottom rows removed. Black dots denote
sites, the horizontal black bonds have strength J , and the diagonal red bonds
have strength J ′.

represent the elementary excitations in the case of uncoupled chains. Yet, Kohno et al [19]
showed that, for finite inter-chain coupling, spinons tunnel between chains in bound pairs
with S = 1 (the so-called triplons), so that the fractionalization in two dimensions is, strictly
speaking, not present. Kohno et al [19] argue that the spinons in Cs2CuCl4 are descendants of
the excitations of the individual 1D chains and not characteristic of any exotic 2D state. This
further reinforces the idea of quasi-1D behavior up to relatively high inter-chain interactions
mentioned in the previous paragraph.

2.1. MSW predictions for the ground-state phase diagram

In this section, we discuss the ground-state phase diagram resulting from the predictions of
MSW theory for the S = 1/2 SATL with nearest-neighbor (NN) Heisenberg interactions (see
the appendix for technical details).

In order to assess the validity of MSW results, we compare them with EDs. Using the
Lanczos method, we compute the ground state of small clusters of 14, 24 and 30 spins. The
considered geometry for the 30-spin system can be found in figure 2. The 24-spin system can
be obtained from it by removing the top and bottom rows. The 14-spin cluster is an equivalent
system with rows of 2, 3, 4, 3 and 2 spins. The clusters are chosen for their symmetry with
respect to reflection along the coordinate axis, and for their ratio of the number of J ′-bonds
(red) to the number of J -bonds (black), which lies close to the bulk value of 2. We use
open boundary conditions to allow for the accommodation of spiral order with arbitrary wave
vector.

We find that, due to the peculiar geometries chosen, there exist parameter ranges where the
ground state falls into the threefold degenerate triplet with total spin equal to unity. Nonetheless,
we restrict our calculations to the M total

z = 0 subspace (with M total
z being the z-component of the

total spin), and the M total
z = ±1 states are excluded. This results in an apparent breaking of

the x–z symmetry (the x–y symmetry is preserved). This symmetry would be recovered by
averaging over the whole triplet subspace. The reason for such an apparent symmetry breaking
resides in the particular geometry of the cluster considered, which complicates the comparison
between different system sizes. This triplet physics might play an important role in the case of
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bigger systems, although one cannot draw conclusions about the thermodynamic limit from
the small clusters considered. A non-trivial triplet physics could especially be an issue for
variational methods restricting their focus to the singlet subspace.

The MSW results are computed in the infinite lattice limit, which is achieved by
transforming in equations (A.6) and (A.7) the sums over the first Brillouin zone into integrals.

2.1.1. Parameter regions where MSW theory fails to converge. Convergence in the self-
consistent equations of MSW theory with ordering vector optimization, equations (A.3)–(A.7),
(A.9), cannot be achieved in selected regions of the ground-state phase diagram, namely for
α . 0.65 and for 1.14. α . 1.3. (Interestingly, convergence is restored in the pure 1D limit,
α = 0, for which the theory formulates surprisingly good predictions.) This breakdown of
convergence corresponds to the appearance of an imaginary part in the spin-wave frequencies,
equation (A.5), signaling an instability of the ordered ground state. The breakdown of a self-
consistent description of the system in terms of an ordered ground state is strongly suggestive
of the presence of a quantum-disordered ground state in the exact behavior of the system.
Hence, one can interpret these parameter regions as candidates for the spin liquids predicted
from [15, 16] (compare figure 1(b)). Both for α < 1 and α > 1, we find that the breakdown
region of MSW appears to be fully contained within the region of SL behavior (either gapped
or gapless) estimated in [15, 16]. Hence MSW theory is seen to possibly underestimate the
width of the quantum-disordered regions in the phase diagram, which is to be expected due to
the partial account of quantum fluctuations given by the MSW theory.

2.1.2. MSW ground-state energy in comparison with previous results. Table 1 demonstrates
that the energy from the MSW theory compares very well with results that were obtained
recently by Yunoki and Sorella by VMC methods [16], also plotted in figure 3. For comparison,
we also show the curve that they obtain with a projected-BCS (p-BCS) wave function.

In the isotropic triangular lattice, the MSW energy compares also favorably to the data
from the Green’s function Monte Carlo method with stochastic reconfiguration (GFMCSR)
from [40], but both energy and order parameter (see section 2.1.3) lie closest to the VMC
calculation from Weber et al [38], who used a mixture of a BCS wave function and a wave
function with spiral order as their starting point (BCS+spiral). The MSW theory predicts a
smaller energy than the LSW theory as well as 1/S expansion [44, 45], but since neither of these
methods is variational this does not rigorously mean that the MSW ground state is better.

At α = 0, the MSW value E0(α = 0)= −0.4647 is relatively close to the exact result of
the 1D case, −(ln 2 − 1/4)= −0.443 15. However, it is located below the exact value. Again,
this apparent puzzle is resolved by noting that the MSW method is not variational due to the
incomplete inclusion of the kinematic constraint (see the appendix). We also note that the
ground-state energies derived from ED of the 30-site system lie very close to the values from
the other methods except in the 1D phase. This could be attributed to the small system size:
if the interpretation is correct that for small α the Heisenberg SATL is in a 1D-like phase with
algebraic correlations, it is natural that finite-size effects play a very important role in the critical
1D phase. This would explain the strong deviation of the ED energy in that parameter region.

On the square lattice (α → ∞), Takahashi showed already 20 years ago the extremely good
performance of the MSW theory [29]: its ground-state energy per spin is −0.6699, which is in
excellent agreement with the QMC result −0.669 437(5) [42].
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Figure 3. MSW results for the ground-state energy lie close to results from
previous studies. Shown are the data of [16] for their VMC ansatz with
a projected BCS wave function (p-BCS) and the improved FN effective
Hamiltonian method (FNE). We further display the value obtained in the
isotropic limit by [38] by use of a VMC method with a mixture of a BCS and
a spiral-ordered wave function (BCS+spiral), and the exact result of the 1D
limit. The numbers in the labels of the curves are the respective system sizes
considered.

2.1.3. Order parameter and spin stiffness from the MSW theory. Our next step is to determine
the regions where the presence of a finite order parameter M0 and spin stiffness ϒ reveal
magnetic LRO. Even when M0 andϒ are finite, a caveat is still in order: a finite order parameter
with a very small stiffness might suggest that taking quantum fluctuations more completely into
account than in the MSW theory could lead to a completely disordered state.

The order parameter M0, drawn in figure 4, shows that magnetic LRO is present in the
intervals 0.65< α < 1.14 and α > 1.3. This is to be contrasted with linear SW (LSW) theory,
which predicts the breakdown of magnetic order only for α . 0.3 [47].

In the isotropic case, α = 1; however, the MSW order parameter is considerably higher
than what is predicted by the LSW theory. Comparing to the best numerical estimates, which
are presented in table 1, shows that in this respect the MSW theory performs worse than
other analytical methods, such as Schwinger-boson mean-field theory (SBMFT) [46] or 1/S
expansion [44, 45]. Nonetheless, we note that, among all analytical predictions, surprisingly
LSW gives the one which is closest to the most recent numerical estimates. This strongly
suggests that an adequate account of quantum corrections to the magnetization is a hard task
for theories accounting for spin–wave interactions at a perturbative or mean-field level, and that
non-perturbative approaches or approaches beyond mean-field theory would be necessary.

In the square lattice limit, α → ∞, on the other hand, both the MSW and LSW theories
attain a staggered magnetization of 0.303, which compares favorably with the most recent
estimates M0 = 0.30743(1) from quantum Monte Carlo calculations [48]. The MSW order
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Figure 4. M0 from the MSW theory compared with the LSW values and ED
results (see section 2.1.5). The numbers in the labels of the curves are the
respective system sizes considered in the calculations.

parameter drops drastically on approaching the region 1.14. α . 1.3 and when reaching the
region α . 0.65 from above, the regions where the self-consistent description breaks down,
further corroborating the assumption that in these regions magnetic LRO disappears in the true
quantum ground state. This assumption is strongly reinforced by considering the Gaussian spin
stiffness (figure 5): it vanishes at α = 0.65 and it drops significantly when approaching α = 1.14
from below.

There are various special cases of the SATL for which the spin stiffness has been calculated
previously. In the square lattice limit, α → ∞, the MSW theory gives ρ‖/α = 0.216, somewhat
overestimating the value from QMC ρ‖/α = 0.175(2) [42]. In the isotropic triangular lattice,
α = 1, the spin stiffness from the MSW approach is ρ‖/α = 0.113. This value falls between the
LSW spin stiffness ρ‖/α = 0.122 ([49]) and the estimate obtained from ED calculations after
finite-size extrapolation, ρ‖/α = 0.075 [49]. The large-S expansion result, ρ‖/α = 0.070 [44],
is closer to the ED result than the MSW value. In the limit of decoupled chains, α = 0, the MSW
theory achieves convergence (which was lost in the interval 0< α < 0.65) and provides a spin
stiffness ρxx/α = 0.309 in the thermodynamic limit, relatively close to the exact result in the
thermodynamic limit, ρxx/α = 1/4 [50].

2.1.4. Spin and chirality correlations from the MSW theory. Now we describe the ordered
phases found by the MSW ansatz for the Heisenberg SATL in more detail. To this end, we
analyze the following quantities:

1. The ordering vector Q (figure 6; also see equation (A.9)). Three limiting values for
the ordering vector are known. For α = 0 intra-chain antiferromagnetic (Néel) order is
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Figure 5. (a) The Gaussian spin stiffness ϒ vanishes at α = 0.65 and it drops
significantly when approaching α = 1.14 from below. (b) The components of
the spin stiffness tensor. ρyy vanishes at α = 0 and when reaching α = 0.65
from above. ρxx decreases strongly when approaching α = 0.65+ and α = 1.14−,
suggesting the onset of gapped spin-liquid phases. The mixed second derivative
ρxy vanishes for symmetry reasons. The curves labeled ‘partial’ were obtained
by application of equation (A.10).

described by Q = π x̂ . For α → ∞ square-lattice Néel order is described by Q = 2π x̂ . In
the isotropic lattice (α = 1), the threefold symmetry forces the ordering vector to Q =

4π
3 x̂ ;

2. The spin–spin correlations (figure 7). We analyze the spin–spin correlations of NNs
through the two-site total spin,

Ti j ≡
1
2〈(Si + S j)

2
〉 = 〈Si · S j〉 + 3

4 . (2)

This quantity disappears if the spins are in a singlet, which is equivalent to perfect
anticorrelation, takes the value 3

4 if they are uncorrelated and the value 1 if the spins form
a triplet, which means perfect correlation;

3. The mean-chiral correlations (figure 8). Spiral phases carry not only a magnetic order
parameter, but also a chiral order parameter. In particular, a vector chirality can be
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Figure 6. (a) The ordering wave-vector, Qx , from MSW theory (equation (A.9))
shows a considerable shift with respect to the the classical and the LSW results.
The black circle marks the order vector Qx = 120◦ of the isotropic triangular
lattice that is attained at α = 1. (b) For ED, Qx depends strongly on whether
it is derived from M x or from M z. Also, the difference between the 24 and the
30 site cluster is significant. The numbers in the labels give the system sizes.

Figure 7. MSW and ED results show similar behavior of T0,τ i , with τ i = τ 1 ≡

(1, 0) (solid lines) and τ i = τ 2 ≡ (1/2,
√

3/2) (dashed lines), respectively. The
numbers in the labels give the system sizes.

defined on an upward-pointing triangle with counter-clockwise labeled corners (i, j, k)
as [51] κ1 =

2
3
√

3
[Si × S j + S j × Sk + Sk × Si ]z, and on a downwards pointing triangle

with counter-clockwise labeled corners (i, l, j) as κ∇ =
2

3
√

3
[Si × Sl + Sl × S j + S j × Si ]z.

Chirality correlations are defined as [52]

ψ− = 〈(κ1 − κ∇) (κ1′ − κ∇ ′)〉, (3)

where the triangle pairs (1,∇) and (1′,∇ ′) share a τ 1 ≡ (1, 0) edge. In figure 8, we
plot the average chirality correlation of the central plaquette with all other plaquettes,
normalized to the theoretical maximum 4/9. The MSW data have been obtained by
expanding the chiral correlation up to the fourth order in the boson operators, which is
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Figure 8. Comparison of the MSW and ED results for the mean chiral correlation
normalized to the theoretical maximum of 4/9. The numbers in the labels give
the system sizes.

consistent with the truncation of the bosonic Hamiltonian equation (A.1) to the same order.
Including higher orders does not change the outcome in the regions where M0 is large, but
can yield different results where M0 is small.

A comparison of these quantities shows a spiral phase at around 0.65. α . 1.14 and a
2D-Néel-ordered phase for α & 1.3. Moreover, when approaching α ≈ 0.65 from above, the
ordering vector, the spin–spin correlations and the ground-state energy approach their respective
1D values. This is an indication that below α ≈ 0.65 the true ground state of the system
may enter a 1D-like spin-liquid phase. Nonetheless, the vanishing of the spin stiffness for
α → 0.65+ is not consistent with the onset of a gapless 1D spin-liquid phase, for which the spin
stiffness should remain finite. Hence, the MSW results rather suggest that the phase appearing
below α = 0.65 is a gapped spin liquid, and that the gapless 1D spin-liquid phase, connected
continuously with the limit α = 0, is only attained for even smaller α. This seems consistent
with the prediction of [16] that a gapped spin-liquid phase separates the spirally ordered phase
from the 1D-like gapless disordered one.

2.1.5. Order parameter and correlations in comparison with exact diagonalization. In the
case of ED, the static structure factor

Sα (k)=
1

N 2

∑
i, j

〈Sαi Sαj 〉e
−ik·r i j (α = x, y, z) (4)

allows us to extract the order parameter Mα, which is defined as Mα
=

√
Sα (Q), where Q is the

ordering vector associated with a peak in Sα (k). In the thermodynamic limit, this is equivalent
to M0 from the MSW theory. A comparison of both quantities can be found in figure 4. We plot
both M x and M z due to the anisotropy caused by the triplet physics mentioned at the beginning
of this section. Discontinuous jumps in the ED magnetizations are due to the change of the spin
sector hosting the ground state, going from the singlet sector (characterized by M x

= M z) to
the triplet sector (characterized by M x

6= M z). We observe very severe deviations between the
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ED data on the one side and the predictions from LSW and MSW theories on the other side:
in particular, apart from the deviations between M x and M z, the ED data appear to be almost
constant over a large α interval. The strong difference between ED results on the one hand
and MSW/LSW predictions on the other can also be attributed to very significant finite-size
corrections to the ED data—finite-size effects are particularly pronounced here, due to the open
boundary conditions of ED clusters. Nonetheless, for α = 1 the magnetization of the 30-site
cluster gives M x

= M z
≈ 0.13, lying close to recent Monte Carlo estimates [21].

From the location of the peak of the structure factor one can extract the vector of
predominant ordering, Q, the x-component of which is plotted in figure 6. For MSW theory,
we observe a significant shift with respect to the classical and LSW results (figure 6(a)).
Remarkably, for the ED of the 30-site cluster, the Q corresponding to M x (labeled as Qx in the
figure) indicates a transition from spiral to Néel order at around α ≈ 1.4, which lies well below
the classical threshold α = 2 (figure 6(b)). In contrast, the Q corresponding to M z (labeled
as Qz) increases smoothly up to α ≈ 2, where it undergoes a discontinuous transition to the
square-lattice Néel value as well. However, increasing the system size from 24 to 30 spins shifts
significantly the curves of Qx and Qz to the left, suggesting that for even larger sizes both
curves might exhibit a discontinuous transition to the Néel-ordering vector for a value of α
close to the transition indicated by MSW theory, α ≈ 1.3. Finally, we note that at α = 1 the ED
results deviate from the isotropic value Qx = 120◦ because the required threefold symmetry is
broken by the shape of the simulation cluster, figure 2.

The NN spin–spin correlations Ti j , equation (2),7 are in qualitative agreement with the
MSW results as well (figure 7). In particular, they exhibit 1D-like behavior at small α, a
spiral phase in an intermediate parameter range around the isotropic limit α = 1 and a 2D-Néel
structure at large α.

Finally, we focus on the chirality correlations. Comparing such correlations for the 14, 24
and 30 spin clusters shows that they are strongly suppressed for α . 0.5 and for α & 1.4, when
going to larger lattice sites. This indicates that a non-spiral phase appears in this region in the
thermodynamic limit, in agreement with our MSW calculations. The persistence of significant
correlations in the region 0.5. α . 1.4 indicates that spiral order in the ground state might
persist in a portion of this parameter range.

In summary, despite the significant deviations in the magnitude of the order parameter,
both ED and MSW theories give a coherent picture, both qualitatively and quantitatively, of
the evolution of the nature of spin–spin correlations on increasing the α parameter, going from
quasi-1D to spiral to Néel.

2.2. Discussion

Despite its limitations, the MSW approach with ordering vector optimization reproduces
faithfully the main characteristics of the phase diagram as sketched in figure 1(b), and
thus remarkably improves on the results that were previously obtained for this model with
conventional spin-wave theories. A breakdown of magnetic order—along with a variety of
observables such as the ordering vector or NN spin–spin correlations—indicates that a 1D-like
spin liquid might be attained below α ≈ 0.65. Due to the partial account of quantum fluctuations
provided by MSW theory, we can safely take this as a lower bound for a spin liquid in the
true ground state. Furthermore, we find a relatively small region with spiral LRO between

7 For ED we report the values of Ti j averaged over the central spins, where boundary effects are minimal.
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Figure 9. (a) A detail of the geometry of the J1 J2 J3 model on a square lattice.
NNs are coupled with bonds of strength J1 (black), NNNs (along the diagonals)
with J2 (blue) and NNNNs with J3 (red). (b) The classical phase diagram of the
J1 J2 J3 model shows four ordered phases. Phase I is characterized by Néel order
on the square lattice. In phase II, the system decouples into two independently
Néel-ordered sublattices with a doubled unit cell each. Phases III and IV are
spirally ordered with Q = (q, π) and Q = (q, q), respectively.

0.65. α . 1.14. For α & 1.30 the system is ordered at the 2D-Néel wave-vector. Between
1.14. α . 1.30 the breakdown of convergence suggests another candidate region for spin-
liquid behavior.

3. The modified spin-wave theory on the J1 J2 J3 model

In this section, we investigate another paradigmatic frustrated spin model, the J1 J2 J3 model
on the square lattice. It involves couplings between nearest neighbors (NN), J1, next-nearest
neighbours (NNN), J2, and next-next-nearest neighbours (NNNN), J3. A sketch of the geometry
of the system may be found in figure 9(a). This model allows us to continuously tune the
Hamiltonian from an unfrustrated antiferromagnetic square lattice to a highly frustrated magnet.

3.1. Classical and quantum mechanical phase diagram of the J1 J2 J3 model at T = 0

The classical phase diagram of the J1 J2 J3 model [34], [53–55] is sketched in figure 9(b). One
identifies:

(I) A 2D-Néel phase with Q = (π, π) just as in the unfrustrated square lattice. It is delimited
by the classical critical line (J2 + 2J3)/J1 = 1/2;

(II) A phase where the system decouples into two independent J2-sublattices with a doubled
unit cell. Both are Néel-ordered individually. This phase is infinitely degenerate because
the two sublattices can be rotated one with respect to the other without affecting the energy;

(III) A spiral phase with ordering vector Q = (q, π), where q varies continuously over the
phase diagram;

(IV) A second spiral phase, this time with ordering vector Q = (q, q); q → π/2 for J3 → ∞,
attaining the limit of two decoupled and Néel-ordered J3-sublattices.
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This phase diagram is believed to change considerably in the quantum limit [27], [32–34]:
in phase II, quantum fluctuations select the columnar-ordered states with Q = (π, 0) or Q =

(0, π) from all the possible classical states. Furthermore, the Néel phase I increases in size
considerably and Néel order persists up to the vicinity of the line (J2 + J3)/J1 = 1/2. In the
vicinity of this line, the classical order is believed to be destabilized and to be replaced by a
non-magnetic state. The controversy about the exact nature of the ground state in this highly
frustrated region, however, is still not settled. In particular, it has been suggested that it could
have the nature of a columnar valence bond crystal [56] with both translational and rotational
broken symmetries, of a plaquette state with no broken rotational symmetry [27] or of a spin
liquid with all symmetries restored [57–61].

In the following, we investigate the quantum model using the MSW formalism, and
compare it with recent results from PEPSs calculations. The MSW lattice size is N = 32 × 32.
In most of the J1 J2 J3 parameter space, a lattice of this size is essentially already converged to
the infinite lattice, except close to a quantum critical point.

In [62], some of us reported numerical calculations of the J1 J2 J3 model based on the PEPS
variational ansatz for varying lattice sizes. In the following, we will focus on the extrapolations
to the thermodynamic limit, except if stated otherwise.

We first discuss in more detail the special cases of the J1 J2 model (i.e. J3 = 0) and the J1 J3

model (i.e. J2 = 0). Both models have been studied before within the MSW formalism [30],
[63–68]. On the one hand, we confirm existing results on the J1 J2 case, for which the
optimization of the ordering wave-vector returns only two possible values (corresponding to
Néel order [ Q = (π, π)] or columnar order [ Q = (π, 0) or Q = (0, π)]), and we give further
insight into the spin stiffness and the dimer–dimer correlation functions. On the other hand, we
analyze the J1 J3 model with optimization of the ordering wave-vector, which proves crucial
to correctly capture the quantum effects on the classical spiraling phases appearing in this
case [30]. Finally, we give an overview of the entire quantum ground-state phase diagram of
the J1 J2 J3 model.

3.2. Ground-state properties of the J1 J2 model

Figures 10 and 11 report the results for the J1 J2 model from the MSW method as well as from
PEPS calculations. For comparison, we also plot the values for the energy and magnetization
that were obtained in [37] from diagonalization of small clusters. In agreement with other
methods, e.g. exact diagonalization (ED) [37, 69, 70] or Schwinger-bosons [71], the MSW
theory finds Néel order with Q = (π, π) at small J2/J1 and columnar order with Q = (π, 0) or
Q = (0, π) at large J2/J1 (see figure 10). As it is well known from previous studies, there is a
region between 0.56. J2/J1 . 0.62 where the 2D-Néel-ordered and the columnar state are both
stable solutions within the MSW theory. The starting point of the self-consistent calculations
determines which type of order is returned as the solution. However, the solutions differ in
energy and therefore one of them is only a local free energy minimum of the self-consistent
equations. The transition from 2D-Néel order to columnar order takes place at J2/J1 ' 0.6.
For the PEPS results, we extract the wave-vector of dominant spin correlations QPEPS from the
location of the peak of the static structure factor,

M(k)=

√√√√ 1

N 2

∑
i j

〈Si · S j〉e−ik·r i j . (5)
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Figure 10. For the J1 J2 model, the y-component of the ordering vector shows a
considerable shift in the quantum model with respect to the classical value.

In agreement with the MSW prediction, QPEPS is located at the Néel value (π, π) up to
J2/J1 = 0.6, while above this it lies at the value of columnar order (π, 0).

We find a remarkable correspondence of the ground-state energy per spin between the
MSW prediction and ED results extrapolated to the infinite lattice from [37] (figure 11(a)).
Moreover, the noticeable kink associated with the Néel-to-columnar transition of MSW theory
at J2/J1 = 0.6 is exhibited as well by the 40-sites system from [37]. Therefore, ED confirms that
J2/J1 = 0.6 marks a transition point, although in the true ground state such a transition might
connect the columnar state to a quantum-disordered state. Similarly good agreement is found
with the PEPS results extrapolated to the infinite-size limit.

As shown in figure 11(b), at small J2/J1, i.e. deep in the Néel phase, the finite-size
extrapolation of the ED-staggered magnetization from [37] lies very close to the MSW results.
As is well known [29], in the unfrustrated square lattice limit (J2 = 0) the MSW value
M0 = 0.303 is only slightly smaller than QMC results, for which the most recent estimates
give M0 = 0.307 43(1) [48]. For the PEPS calculations an analogous quantity can—similar
to section 2.1.5—be derived from the peak height of the static structure factor, equation (5).
We show its finite-size extrapolation in figure 11(b). In the Néel phase PEPS agrees very well
with the MSW theory, considerably better than ED, which decreases faster toward the strongly
frustrated region. In the entire columnar phase, however, PEPS and ED data lie closer together,
while MSW overestimates the order parameter. Around the transition, however, agreement
between PEPS and MSW theory is very good. The PEPS data suggest that the magnetically
disordered region, predicted by ED to occur in the range 0.35. J2/J1 . 0.66, is either much
smaller or does not occur at all.

The MSW spin stiffness ρ‖ ≡ (ρxx + ρyy)/2, however, while being finite for any considered
value of the ratio J2/J1, is strongly suppressed in the region 0.3. J2/J1 . 0.6 (figures 11(c)
and (d)), suggesting as usual that accounting for quantum fluctuations beyond the MSW
approximation could lead to the disappearance of magnetic order. A suppression of spin
stiffness is also observed in previous results coming from ED of finite clusters [69] or from the
Schwinger-boson approach [71, 72]. As a consequence, even though the MSW admits a stable
solution with magnetic order for any J2/J1 value, for J2/J1 = 0.6 it exhibits a clear transition
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Figure 11. Comparison, for the J1 J2 model, of MSW data to PEPS results
extrapolated to the thermodynamic limit and ED from [37] [for the 40-spin
cluster (labeled ‘exact 40’) and extrapolated to the thermodynamic limit (‘exact
∞’)]. For the MSW method, the curves obtained when starting the self-
consistent iteration from a Néel state (thick red line) and from a columnar-
ordered state (thick dot-dashed green line) are both included. The figures show
(a) the ground-state energy of the central spin; (b) the MSW order parameter
M0 compared to M(π, π) (Néel) and M(π, 0) (columnar) derived from PEPS
calculations; (c) the Gaussian spin stiffness and (d) components of the spin
stiffness tensor. In the Néel phase ρxx = ρyy by symmetry. The partial spin
stiffnesses ρpartial

αβ are found to equal the total ones, ραβ .

from soft Néel order to a stiff columnar order, suggesting that this transition could actually
separate the columnar state from a quantum-disordered phase.

3.2.1. Dimer correlations in the J1 J2 model. The nature of the state in the transition region
between Néel and columnar order, where magnetic order is strongly reduced, can be further
investigated through the study of the dimer–dimer correlations

Ci jkl = 〈(Si · S j) (Sk · Sl)〉, (6)

where (i, j) and (k, l) are pairs of neighboring spins. Figure 12 sketches the expectation for the
dimer–dimer correlations in (a) a columnar valence-bond crystal and (b) a columnar magnetic
state.

In figure 13, we show the spatially resolved dimer–dimer correlations from MSW theory.
Below J2/J1 = 0.6 the dimer–dimer correlations have a structure compatible with a Néel state
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(a) (b)

Figure 12. Sketch of dimer–dimer correlations in (a) a valence bond crystal and
(b) a columnar state. Black dots are lattice sites. Blue solid (red dashed) lines are
dimers correlated (anti-correlated) with the central dimer (thick black line).

0.4

0

0.135

0.5

0

0.136

0.6

0

0.071

0.083

0.7

0

0.076

0.05

0.8

0

0.071

0.05

0.9

0

0.076

0.05

Figure 13. MSW correlations of the black central dimer with the other dimers
of a 32 × 32 lattice (zoom on central region). The thickness of the lines is a
nonlinear function of the absolute strength of the dimer correlations. Note the
change of the maximum of the linear color scales for different values of J2/J1.
Below J2/J1 = 0.4 and above J2/J1 = 0.9, the qualitative changes are minimal.

New Journal of Physics 13 (2011) 075017 (http://www.njp.org/)

http://www.njp.org/


19

Figure 14. Position (Qx , Q y) of the peak of the structure factor for PEPS and the
ordering vector Qx = Q y of the MSW theory for the J1 J3 model. A comparison
with the classical ordering vector Qcl

x = Qcl
y shows that quantum fluctuations

stabilize Néel order.

(namely they are positive and nearly equal for all bond pairs), while above J2/J1 = 0.6 the
dimer–dimer correlations acquire the expected structure in a columnar state, with opposite signs
for the correlations between dimers of the same spatial orientation (both horizontal and both
vertical) and between dimers of opposite orientations. Nonetheless, for J2/J1 . 0.7, remarkably
the MSW theory shows a short-range modulation in the strength of the dimer correlations whose
structure is compatible with that of a valence-bond crystal. Although the MSW theory is not
appropriate to characterize non-magnetic states such as a valence-bond crystal, it is remarkable
to observe that it identifies a columnar valence-bond structure as the dominant form of dimer
correlations at short range; this indication is consistent with, e.g. the results of PEPS [62], which
also point toward columnar valence-bond order in the non-magnetic region of the J1 J2 model.

3.3. Ground-state properties of the J1 J3 model

We now turn to the J1 J3 model. Classically, this model has a transition from Néel to spiral
order at J3 = 0.25J1. Recent PEPS calculations show that for S = 1/2 Néel order persists up to
approximately J3/J1 = 0.3 [62]. Above this point, the peak of the structure factor is still at the
Néel-ordering vector (π, π) but its height vanishes in the thermodynamic limit, which suggests
a complete loss of magnetic LRO. A different type of LRO arises anew at approximately
J3/J1 = 0.6 with an ordering vector Q = (q, q) that tends to (π/2, π/2) in the limit of large J3

(see figure 14). For large-enough J3 the nature of the ordered phase becomes similar to that of
the classical limit.

The optimization of the ordering wave vector within MSW calculations shows that, for
small J3/J1, Néel order persists up to J3/J1 = 0.39 (see figure 14), confirming the assumption
that quantum fluctuations stabilize Néel order against spiral order with respect to the classical
limit. Coming from the opposite limit of J3 ∼ J1, we observe a spiral phase with continuously
varying pitch vector Q = (q, q), where q approaches π/2 for J3/J1 → ∞, and increases up
to q ≈ 0.7π for J3/J1 → 0.52+. In the region 0.39< J3/J1 < 0.52, convergence of the MSW
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Figure 15. MSW and PEPS results on the J1 J3 model. Shown is (a) the energy
per spin; (b) the order parameter M0 for MSW theory and for PEPS the peak
height of the structure factor at Q = (π, π) (Néel) and Q = (q, q) (spiral);
(c) the Gaussian spin stiffness; (d) the components of the spin-stiffness tensor
(where ρxx = ρyy by symmetry, and ρpartial

xy ≡ 0).

calculations breaks down, which points at a possible spin-liquid phase, in agreement with the
predictions from PEPS calculations.

Figure 15 (a) shows the PEPS energy extrapolated to the thermodynamic limit. Agreement
with the MSW results is again found to be extremely good.

The indication of a disordered phase drawn from the breakdown of the MSW theory is
further corroborated by the order parameter M0 (figure 15(b)), which decreases strongly for
J3/J1 → 0.39− and for J3/J1 → 0.52+, and by the spin stiffness (figure 15(c) and (d)), which
is drastically reduced when approaching the above two limits. In particular, the Gaussian spin
stiffness ϒ is already strongly reduced for J3/J1 & 0.3. These results are consistent with the
vanishing of the spin stiffness at J3/J1 = 0.35 that was found by ED of a system of 20 sites
in [73].

A destabilization of magnetic order at around J3/J1 & 0.3 seems to be confirmed by the
PEPS order parameter, figure 15(b), which vanishes in the range 0.3. J3/J1 . 0.5. Note that,
again, we find that the PEPS order parameter deep in the Néel phase is similar to the MSW data,
but that in the spiral phase MSW data for the order parameter lie well above the PEPS ones.

In our calculations, despite using the same equations as in [30], we find a considerably
larger breakdown region. However, the region where our calculations do not yield a result is
very stable, i.e. it does not depend much on system size nor on the exact algorithm for solving
the self-consistent MSW equations.
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Figure 16. (a) Ground-state energy per spin E0, (b) order parameter M0,
(c) Gaussian spin stiffnessϒ and (d) Gaussian spin stiffnessϒpartial calculated via
equation (A.10). Note that ϒ and ϒpartial rise beyond the linear scale in the upper
half of the plot. In the gray areas, convergence of the self-consistent equations
could not be reached. The blue lines are the classical phase boundaries.

The precise nature of the state in the candidate region for quantum-disordered behavior
cannot be determined reliably by the use of the MSW theory. From an analysis of the
dimer–dimer correlations in the convergence regions, we can find no indications of any exotic
disordered quantum state; on the contrary, PEPS results indicate a plaquette state in the region
of maximal frustration J3 ≈ J1/2 [62].

3.4. Ground-state phase diagram of the J1 J2 J3 model

3.4.1. MSW results. After having investigated the two limiting cases of the J1 J2 and the J1 J3

models, we consider, more generally, the J1 J2 J3 model over the relevant parameter range
06 J2/J1, J3/J1 6 1. As already seen in the case of the J1 J3 model, we observe a sizable
parameter range over which the convergence of MSW theory breaks down, and which is then
pointed out as a candidate region for non-magnetic behavior. We note that, while convergence is
achieved for any J2/J1 ratio at J3 = 0, a region of convergence breakdown opens up by adding
a small J3 component around J2/J1 ≈ 0.5. The energy per spin increases when approaching
this region, showing the increased influence of frustration (figure 16(a)). The indications for a
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Figure 17. Ordering vector for the J1 J2 J3 model in linear color scale. In
the gray area, convergence of the self-consistent equations could not be
reached. (a) x-component, and (b) y-component of the classical ordering vector;
(c) x-component, and (d) y-component of the quantum mechanical MSW
ordering vector. The blue lines are the classical phase boundaries, which divide
(I) a Néel-ordered phase, (II) a phase with two independently Néel-ordered
sublattices with a doubled unit cell each and spirally-ordered phases with (III)
Q = (q, π) and (IV) Q = (q, q).

quantum-disordered phase in the breakdown region is corroborated by the decrease of the order
parameter (figure 16(b)) and the spin stiffness (figures 16(c) and (d)) when approaching the
breakdown region.

The nature of the phases where MSW reaches convergence can be seen in the ordering
vector, which we display in figure 17 in comparison with the classical one. We find three
ordered phases: (1) for small J3/J1 and J2/J1, we find a Néel-ordered phase. Its boundary is
pushed upward to higher values of J3/J1 with respect to the classical limit; (2) a columnar phase
is found at small J3/J1 but larger J2/J1 & 0.6; (3) for large J3/J1 a spiral phase arises with an
ordering vector Q = (q, q) that approaches Q = (π/2, π/2) for large J3/J1. As a consequence,
a most dramatic effect of quantum fluctuations seems to be the disappearance of phase III in the
classical phase diagram, characterized by magnetic order at a pitch vector Qcl = (q, π) with
continuously varying q, in favor of the columnar phase and of a potentially quantum-disordered
phase.
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Figure 18. M(Q) (equation (5)) for a PEPS calculation on an 8 × 8 lattice with
auxiliary dimension D = 3. A low value marks the destabilization of magnetic
LRO.

3.4.2. Comparison to PEPS calculations. In figure 18, we display the peak height of the
static structure factor, equation (5), from a PEPS calculation on an 8 × 8 lattice with auxiliary
dimension D = 3. We observe a broad asymmetric v-shaped region in which the magnetic
order, quantified by the height of the peak in the structure factor, is strongly suppressed. We
note that this region is strongly reminiscent of (albeit broader than) the breakdown region of
the MSW theory. In particular, the asymmetry is due to the fact that the bottom of the ‘v’
lies at J2/J1 > 0.5, a characteristic which is shared with the MSW phase diagram. While a
thorough finite-size scaling analysis of the PEPS data would be necessary to determine the
precise boundaries of the possible magnetically disordered regions, quantitative information
can be extracted even from the finite-size PEPS data concerning the location of the pitch vector
of the dominant (long-ranged or short-ranged) magnetic correlations.

Similar to what happens in the above spin-wave calculations, a pronounced peak at the
Néel-ordering vector (π, π) appears if both J2/J1 and J3/J1 are small, while at large J2/J1

but small J3/J1 the structure factor is peaked at the columnar-ordering vector (π, 0). For large
J3/J1, finally, the peak is located at (q, q), where q tends to π/2.

4. Conclusion

In this work, we made use of Takahashi’s MSW theory with ordering vector optimization
to determine the ground-state phase diagram of two paradigmatic models of 2D frustrated
antiferromagnetism: the S = 1/2 Heisenberg model on the SATL and on the J1 J2 J3 lattice.
The optimization of the ordering vector shows dramatic quantum corrections to the ordering
vector for spiraling states present in both models: such corrections show the general trend of
promoting collinearly ordered states (either Néel or columnar states) against spiraling ones.
Both for the triangular and the J1 J2 J3 lattice, the MSW theory breaks down over a sizable
region of parameter space, showing a dramatic suppression of the order parameter and of
the spin stiffness as the breakdown region is approached: this finding is strongly suggestive
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Figure 19. Components of the ordering vector for a PEPS calculation on an 8 × 8
lattice with auxiliary dimension D = 3.

of the appearance of quantum-disordered regions in the phase diagram of the models under
investigation, an issue that is still under intense debate. The extent of the quantum-disordered
regions estimated via the MSW theory generally appears to be lower than that estimated by more
accurate numerical techniques that take into account quantum fluctuations in a more complete
fashion. Hence, one can draw two main conclusions from our results: on the one hand, MSW
might still converge to a magnetically ordered ground state even though the true ground state is
disordered—although in this case it will probably feature a small value for the order parameter,
or a small stiffness, suggesting that the magnetic order is not robust when dealing with quantum
fluctuations more accurately; on the other hand, the breakdown of MSW theory seems to be a
strong indication that the true ground state is disordered.

In particular, in the case of the SATL, MSW theory completely breaks down for sufficiently
weak couplings between the chains composing the lattice, suggesting that the system remains
in a disordered 1D-like state even when the chains are coupled, as already predicted by
recent variational approaches. Another disordered phase appears when the inter-chain couplings
exceed the intra-chain ones: this phase is sandwiched in between the spiral phase of the nearly
isotropic triangular lattice and the Néel phase appearing at large inter-chain couplings. In the
case of the J1 J2 J3 lattice, a large breakdown region separates the Néel-ordered region for
small J2 and J3, from the columnar-ordered region for J2 > J1/2 and small J3, and from the
spiral phase at large J3. Hence, a general conclusion that we can draw from the study of these
two models is that collinearly ordered phases (Néel and columnar) and spiral phases cannot
be connected adiabatically—at least at the MSW level—but they are always separated by a
breakdown region; this is a signal that in the true ground-state collinear and spiral phases might
always be divided by an intermediate quantum-disordered phase.

Quantitative comparisons with more accurate methods (ED, and variational ansatze based
on projected BCS states and PEPS) reveal that the MSW theory with ordering wave-vector
optimization goes well beyond linear spin-wave theory in dealing with quantum effects, and it
correctly accounts for the quantum correction to the ordering wave-vector of the ordered phases,
and for the strong suppression (or total cancellation) of magnetic order in correspondence with
the candidate regions for quantum-disordered behavior. Given its flexibility and its modest
numerical cost, MSW theory therefore serves as a unique tool for the identification of novel
quantum phases in strongly frustrated quantum Heisenberg antiferromagnets.
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Appendix. Modified spin-wave formalism for Heisenberg antiferromagnets

In this appendix, we shortly review the MSW formalism as applied to Heisenberg
antiferromagnets. The full description of the approach—as applied to XY models—can be found
in [31].

The Dyson–Maleev transformation [74, 75] maps the Heisenberg Hamiltonian,
equation (1), to the nonlinear bosonic Hamiltonian

H=
1

4

∑
i, j

Ji j

{
[2S(a†

i a j + aia
†
j )− a†

i a†
j a ja j − a†

i aiaia
†
j ](1 + cos(Q · r i j))

+ [2S(a†
i a†

j + aia j)− aia
†
j a ja j − a†

i aiaia j ](1 − cos(Q · r i j)) (A.1)

+ 4[S2
− S(a†

i ai + a†
j a j)+ a†

i aia
†
j a j ] cos(Q · r i j)+O

(
1

S

)}
,

where ai (a†
i ) destroys (creates) a Dyson–Maleev boson at site i , S is the length of the spin,

and Q the ordering vector. Here, we neglected the kinematic constraint which restricts the
Dyson–Maleev–boson density n to the physical subspace n < 2S, given by the length of the
spins S. Moreover, we dropped terms with six boson operators, which are of order O[n/(2S)3]
and are negligible for n/(2S) < 1. Using Wick’s theorem [76], and defining the correlators
〈a†

i a j〉 = F(r i j)−
1
2δi j and 〈aia j〉 = 〈a†

i a†
j 〉 = G(r i j), the expectation value E ≡ 〈H〉 can be

written as

E =
1

2

∑
i, j

Ji j

{ [
S +

1

2
− F (0)+ F(r i j)

]2

(1 + cos(Q · r i j))

−

[
S +

1

2
− F(0)+ G

(
r i j

)]2

(1 − cos(Q · r i j))

}
. (A.2)

After Fourier transforming, ak =
1

√
N

∑
i ai e−ik·r i , where N is the number of sites, and a

subsequent Bogoliubov transformation, αk = cosh θk ak − sinh θk a†
−k and α†

−k = − sinh θk ak +
cosh θk a†

−k, we minimize the free energy under the constraint of vanishing magnetization at each
site, 〈a†

i ai〉 = S [29]. (This guarantees that the kinematic constraint is satisfied in the mean.) This
yields a set of self-consistent equations,

tanh 2θk =
Ak

Bk
(A.3)
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with

Ak =
1

N

∑
i, j

Ji j(1 − cos(Q · r i j))G i j eik·r i j , (A.4a)

Bk =
1

N

∑
i, j

Ji j

[
(1 − cos(Q · r i j))G i j − (1 + cos(Q · r i j))Fi j(1 − eik·r i j )

]
−µ, (A.4b)

where µ is the Lagrange multiplier for the constraint. The spin-wave spectrum reads

ωk =

√
B2

k − A2
k. (A.5)

At T = 0, where nk = 0 ∀k 6= 0, one finds that µ vanishes. This also implies the disappearance
of the gap at k = 0 that may exist for finite temperature. A vanishing gap is a necessary
condition for magnetic LRO. It also enables Bose condensation in the k = 0 mode. Separating
out the contribution of the zero mode, 〈a†

k=0ak=0〉/N = 〈ak=0ak=0〉/N ≡ M0 (corresponding to
the magnetic order parameter), one arrives at the zero-temperature equations

Fi j = M0 +
1

2N

∑
k 6=0

Bk

ωk
cos(k · r i j), (A.6a)

G i j = M0 +
1

2N

∑
k 6=0

Ak

ωk
cos(k · r i j), (A.6b)

and the constraint of vanishing magnetization at each site becomes

S +
1

2
= M0 +

1

2N

∑
k 6=0

Bk

ωk
. (A.7)

It is not a priori clear that the classical ordering vector Qcl correctly describes the LRO
in the quantum system. In order to account for the competition between states with LRO at
different ordering vectors Q we extend the MSW procedure by optimizing the free-energy F
with respect to the ordering vector Q. This yields two additional equations which must be added
to the set of self-consistent equations,

∂

∂Qx
F = −

1

2

∑
i, j

Ji j sin(Q · r i j)r
x
i j [F2

i j + G2
i j ] = 0, (A.8a)

∂

∂Q y
F = −

1

2

∑
i, j

Ji j sin(Q · r i j)r
y
i j [F2

i j + G2
i j ] = 0. (A.8b)

In the SATL with NN interactions these simplify to Q y = 0 and

Qx = 2 arccos

[
−
α

2

F2
τ 2

+ G2
τ 2

F2
τ 1

+ G2
τ 1

]
, (A.9)

where τ 1 = (1, 0) and τ 2 = (1/2,
√

3/2) are the lattice vectors.
The values of Fi j and G i j can now be calculated by self-consistently solving

equations (A.4)–(A.8). Through Wick’s theorem the knowledge of the quantities Fi j and G i j

allows the computation of the expectation value of any observable.
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Spin stiffness. The optimization of the ordering vector allows a straightforward calculation
of the spin stiffness, which gives a measure of how stiff magnetic LRO order is with respect to
distortions of the ordering vector, and thus provides a fundamental self-consistency check of our
approach. In fact, finding a small spin stiffness casts doubt on the reliability of the spin-wave
approach in describing such a strongly fluctuating state, and hence suggests that the true ground
state might be quantum disordered.

The spin stiffness tensor is defined as ραβ =
1
N

d2F
dQαdQβ

|Q= Q0 , evaluated at the optimized

ordering vector Q0. From this we can extract the parallel spin stiffness ρ‖ ≡
1
2(ρxx + ρyy) and

the Gaussian spin stiffness ϒ = detρ.
Since a change in Q affects the correlators Fi j and G i j , we must compute ϒ self-

consistently. After finding the optimal Q0 by the self-consistent procedure described above, we
calculate 1

NF(Qx , Q y) self-consistently for several fixed ordering vectors Q = Q0 +1Q and
fit a quadratic form to the results. Since the minimum in the free energy can be very shallow, this
procedure can be affected by numerical noise. As an approximation to the true spin stiffness, the
partial spin stiffness ρpartial

αβ can be computed via the partial derivatives, i.e. without recalculating
the self-consistent equations. It reads as

ρ
partial
αβ ≡

1

N

∂2

∂Qα∂Qβ

F

= −
1

2N

∑
i, j

Ji j cos(Q · r i j)r
α
i jr

β

i j [F2
i j + G2

i j ]. (A.10)

We define ϒpartial analogously to ϒ as the determinant of the partial spin-stiffness tensor.
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