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Academic year 2018/2019



Ringraziamenti

Vorrei ringraziare:

• il mio advisor Nicola per i tuoi consigli e supporto, tecnico e umano. Sono
stati quasi 4 anni di tanti alti e alcuni bassi, ma, come dici tu, il dottorato
(e la vita) sono come una sinusoidale e quando si arriva in basso si tornerà
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Introduction
Context
Crowds of people are gathering at multiple venues, such as concerts, political rallies,
as well as in commercial malls, or just simply walking on the streets. More and
more people are flocking to live in urban areas, thus generating a lot of scenarios of
crowds. As a consequence, there is an increasing demand for automatic tools that
can analyze and predict the behavior of crowds to ensure safety.

Crowd motion analysis is a key feature in surveillance and monitoring applications,
providing useful hints about potential threats to safety and security in urban and
public spaces. It is well known that people gatherings are generally difficult to model,
due to the diversity of the agents composing the crowd. Each individual is unique,
being driven not only by the destination but also by personality traits and attitude.

The domain of crowd analysis has been widely investigated in the literature [39].
However, crowd gatherings have sometimes resulted in dangerous scenarios in recent
years, such as stampedes or during dangerous situations as shown in Fig. 1.

To take a step toward ensuring the safety of crowds, in this work we investigate
two main research problems: we try to predict each person future position and we
try to understand which are the key factors for simulating crowds. Predicting in
advance how a mass of people will fare in a given space would help in ensuring the
safety of public gatherings.

(a) (b) (c)

Figure 1: Examples of crowded situations: (a) Recent rallies of the Sardine movement
in Italy (credits: Ansa); (b) People gathering in a mall for the Black Friday (credits:
Repubblica); (c) A snapshot from the terrorist’s attack during the Boston marathon
in 2013 (credits: Reuters)

Problems and solutions
This thesis focuses the attention on two specific problems related to the crowd analysis:
trajectory prediction and crowd simulation. It also shows possible applications of
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crowd simulation for surveillance. Finally, we describe a possible approach to use
neural networks for anomaly detection.

Trajectory prediction in crowded scenarios
Understanding the future state of a crowd of people is key for multiple applications
like security and retail planning. The prediction of the future state of a crowd can
be carried on at two different levels:

• global prediction, where a crowd is seen and its movements are forecast as a
unique entity

• local prediction, where we focus on predicting the individual trajectory and
future position of a single pedestrian in the crowd

In recent years, the research focused on predicting each individual trajectory
because it allows for better analysis and it is more applicable for different sparsity of
the crowd.

Figure 2: Example of a pedestrian trajectory prediction problem in Grand Central
Station, New York. In green, we highlight the trajectory that we have observed so
far. In red, some of the possible future paths of the pedestrian of interest. Which
path will he take among all the available ones? In blue, groups of socially related
pedestrians are highlighted. How different is the interaction between socially related
and unrelated pedestrians walking in a crowded scene?

In the literature [117, 3], solving the trajectory prediction task means determining
which will be the future positions of a pedestrian in the next time frame, given the
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observation of the previous time frame. This observation describes the pedestrian’s
previous positions as well as its relative position with respect to other pedestrians and
the presence of obstacles in the environment. However existing approaches, exploit
neither the existing social relationships (e.g. couples walking together) between
pedestrians nor the interactions with obstacles in the environment to improve the
prediction task.

To improve the prediction of pedestrian’s trajectory on a local level, we model
and exploit the social relationship between pedestrians and the interactions between
each pedestrian and the environment. We propose two approaches:

• a Group-LSTM [24] and an Obstacle-LSTM, which are based on Long
Short Term Memory (LSTM) networks. On the one hand, the Group LSTM ex-
plicitly models the different interactions between socially related and unrelated
pedestrians. On the other hand, the Obstacle LSTM focuses on modeling the
interaction between each pedestrian and the environment. When combined, Ob-
stacle and Group LSTM show an improvement in prediction accuracy and they
provide a realistic model in which each pedestrian navigates an environment
depending on the status of obstacles and other pedestrians in its surroundings.

• a Group-GAN. This approach is based on Generative Adversarial Networks
(GAN). It exploits both social relationships and it uses an attention module
to focus on the most relevant parts of observed trajectories to improve the
accuracy of the prediction.

Crowd simulation
In the domain of crowd analysis, there is a lack of a common framework for testing,
evaluating and comparing algorithms. This is due to the fact that annotating and
collecting crowded scene’s footages present several issues such as privacy of the
recorded subjects, videos’ quality, cameras’ positions, and the annotation of the
ground truth, which has to be done manually. A realistic simulator of crowds must
provide the following features:

• Realistic high-level behavior. The simulation should be able to consistently
reproduce the behavior of the crowd in a variety of situations and environments,
like in scenes populated with different densities or in emergency situations.

• Realistic, smooth and adaptable motion. Agents in the simulation should be
able to fluently move and change the motion behavior, like going from walking
to running or to stopping, depending on the situation.

• Appearance modeling. The simulated crowd should be rendered in a photore-
alistic way, such that algorithms applied to real and synthetic images would
produce consistent results.

About modeling the realistic high-level behavior, previous works [64, 146, 147, 148]
usually focused on managing the crowd either on a micro (single pedestrian in a
small neighborhood) or on a macro scale (the crowd of people). Moreover, these
models relied on empirically defined functions to define the movement of pedestrians.
To improve these approaches we propose:
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• a data-driven crowd simulation approach [22], which combines an empirical
model for local pedestrian simulation and it learns general tendencies over
time to reproduce the macro scale behavior of a crowd. Combining these two
approaches allows us to better represent the crowd both on a micro and on a
macro level.

• Virtual Crowds: an LSTM-based framework for crowd simulation
[23], which relies on an LSTM network to model pedestrian movement instead
of an empirically defined function. Using neural networks to model pedestrian
behavior and tendencies would allow for a better-refined problem without
hard-coded rules.

Appearance modeling of the output of the simulator is one of the key components
which would allow using synthetic images for real-world applications. A recent trend
in research is to leverage advanced simulation frameworks for the implementation
and validation of video surveillance and ambient intelligence algorithms. However,
in order to guarantee a seamless transferability between the virtual and real worlds,
the simulator is required to represent the real-world target scenario in the best way
possible. To tackle this issue, we propose

• Virtual camera modeling for multi-view simulation of surveillance
scenes[20]. A solution for the problem related to camera modeling and control,
which discusses how noise and distortions can be handled, and implements
an engine for camera motion control in terms of pan, tilt, and zoom, with
particular attention to the video surveillance scenario.

Crowd Simulation Applications

Simulation environments carry a few advantages with respect to real scenes such as:

• replicability of the scene: the same experiments with different camera configu-
rations can be run multiple times in a controlled environment.

• low cost of scene annotation: the ground truth of images does not need to be
manually annotated, but it is provided natively by the 3D engine instead.

• no privacy issues, which are a key issue when it comes to using and sharing
dataset with footages of real pedestrians

We leverage on the features of our simulation environment to tackle the problem
of crowd surveillance. When dealing with crowded scenes, a reconfigurable camera
system can be deployed to provide a better understanding of the scene to prevent
dangerous scenarios. The goal of such a system is to maximize the scene coverage
while focusing on the most crowded areas. Such camera networks aim to focus the
attention on critical areas of the crowd while ensuring an acceptable level of attention
also on less critical areas. About crowd surveillance, we propose

• Dynamic Camera Network Reconfiguration for Crowd Surveillance
[21] which uses a novel network control approach to explore the trade-off between
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target resolution and coverage in heterogeneous networks consisting of fixed,
PTZ (Pan Tilt and Zoom cameras), and UAV-based cameras. In our approach,
we model the scene and the camera network in a simulated environment, where
we estimate the state of the crowd by merging the contributions of the individual
cameras and we let cameras locally decide on their next position parameters.
Leveraging on the simulator, the replicability of crowd movements allows to
test different camera reconfiguration policies to achieve the best coverage.

Toward anomaly detection in the wild: out of distribution
detection
One of the most difficult challenges that arise when dealing with trajectory predictions
as well as with simulation is the presence of anomalies. According to the Oxford
Dictionary, an anomaly is defined as ”something that deviates from what is standard,
normal, or expected”. Due to their nature, anomalies occur rarely and are thus
difficult to predict or to be captured in a model. Empirically defined models and
especially neural networks rely on examples to learn a pattern, but anomalies are
rare events thus not providing enough samples for common algorithms.

Such kind of problem can be present in crowded scenarios (e.g. identify an
anomaly in a crowd, like an unattended object or a person running), as well as in real-
world deep learning applications, such as autonomous driving or object identification,
the trained network will often encounter out-of-distribution (OOD) samples.

OOD has been a focus of research in the image classification domain [13, 101].
The research problem focuses on how to detect and identify samples at test time,
which have never been seen by the network at training time as shown in Fig. 3.

Figure 3: Example of an Out of Distribution scenario in the wild: a network has
been trained to classify images of cats and cows. What will happen when an image
of a dog is presented at test time? Common classification networks will classify the
’dog’ image either as ’cow’ or ’cat’. Our goal is to enable the network to understand
that the ’dog’ image is something that has never been seen before.

In this work, we propose
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• Detecting Out-of-Distribution (OOD) via Spectral Structure, which
is a hyperparameter-free framework that can efficiently detect OOD samples,
without having access to them during training or validation. Our network
relies on an enforced structure in the latent space which aims at maximizing
the angular distance between known (in distribution) and unknown (out of
distribution) samples.

Structure of the thesis
The rest of the dissertation is organised as follows:

• Chapter 1 is devoted to the trajectory prediction problem. we show our
proposed solution along with conducted experiments, the results achieved, and
their description and comparisons against the state-of-the-art

• Chapter 2 introduce the the simulation of crowded scenario. We present
our point of view on the applications of simulation for crowded scenarios
with advantages and drawbacks. We then present our purposed approach for
modeling the high-level behavior and the appearance of the crowded scenarios.

• Chapter 3 shows a possible use case of our simulation environment in a crowd
surveillance scenario.

• Chapter 4 discusses anomalies detection in crowded scenarios. We show how
the challenge can be viewed as an out of distribution problem and we describe
our approach for detecting unknown samples.

• Chapter 5 draws the conclusions of this research work and discusses possible
future directions.
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1 Trajectory Prediction in Crowded
Scenarios

1.1 Introduction
Crowd motion analysis is a key feature in surveillance and monitoring applications,
providing useful hints about potential threats to safety and security in urban and
public spaces. It is well known that crowds are generally difficult to model, due to the
diversity of the agents composing the crowd. Each individual is unique, being driven
not only by the destination but also by personality traits and attitude. In fact, when
choosing their paths, pedestrians are influenced by multiple social and environmental
factors, which include, for example, the distance from neighbors, the local crowd
density, the rules regulating specific environments (e.g. crossroads, streetlights), as
well as social rules regulating public indoor or outdoor spaces (e.g., standing in line
at a ticket counter), different relationships with pedestrians they are walking with
(e.g., couples, friends).

Trajectory prediction in crowded scenarios is a key component of a modern
surveillance system [160, 93, 4, 73]. In crowded scenes, forecasting both short and long
term scenarios allows for better planning in many contexts, such as security, retail and
crowd management. Existing approaches predict each individual trajectory, without
explicitly modeling both the environment and interactions with other pedestrians.
Interactions with other pedestrians are treated as similar, without differentiation
between socially related people (e.g. couples, families) and people who do not know
each other.

The literature has demonstrated that some general principles can be defined, to
model the human motion within a social context. In particular, the Social Force
Model (SFM) [64], the Reciprocal Velocity Obstacle [148], and the more recent
Social-LSTM [3], exploit the presence and velocity of subjects in the neighborhood
to improve the trajectory prediction of each pedestrian. These approaches, however,
neither exploit the existing social relationships (e.g. couples walking together)
between pedestrians, nor the interactions with obstacles in the environment. We
show how social relationships can be exploited to improve the prediction. Moreover,
we extend our model with the study of obstacles influences and we demonstrate
how combining obstacles and social relationship features can further improve the
prediction task.

Differently from crowd behavior recognition, the prediction task has some dis-
tinguishing characteristics, which are generally addressed by observing the motion
histories of the subjects moving in the scene. In some specific applications (i.e.,
early warning, abnormal event detection, collision avoidance), prediction plays a
more relevant role as compared to activity recognition, since potentially dangerous
behaviors should be warned in advance.
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Deep Neural Networks have allowed considerable improvements in most Computer
Vision areas, including image classification [126], image segmentation [61], image
captioning [6], and image generation [169]. They have also made it through the
domain of pedestrian trajectories prediction demonstrating outstanding performances
[3, 150, 86], in particular when using Recurrent Neural Networks (RNN) and Long-
Short Term Memory (LSTM) cells. While traditional methods can merely make
one-step forecasting (e.g., Kalman filter, particle filters, Markov chains), deep learning
has shown the capability of enabling longer-term prediction.

When navigating in a crowded space, pedestrians tend to follow non-linear
trajectories to avoid collisions with other pedestrians and obstacles. This non-
linearity makes it difficult to predict their trajectories.

In fact, although each agent is attracted by its destination, it is worth noting
that the scene evolution over time plays an important role in driving human be-
haviors, through macroscopic features like, for example, people exhibiting coherent
motion patterns when moving in groups. Such coarse-level information may help to
characterize the populated areas, providing useful details in terms of the direction of
motion and other flow characteristics, motivating the need to also include the group
activities in the motion model.

It is known in the literature that people moving in the crowd tend to follow a
series of implicit social rules [129]. For instance, individuals tend to speed up or
slow down their paces in order to avoid collisions; people prefer to preserve personal
space, thus keeping a certain distance from their neighbors.

Although existing methods have achieved very good results, they still suffer from
three main limitations:

• Interactions between socially-related pedestrians. Human-to-human
interactions play a key role in determining what will be the future states
of a given pedestrian. These interactions must be taken into account when
predicting future paths. Pioneering work proposes several pooling modules for
LSTM to capture global interactions [58], i.e., interactions with all other people
in the scenario, or capture local interactions [3], i.e., interactions with only
nearby pedestrians. However, these approaches do not exploit the different
behavioral cues between socially-related and socially-unrelated pedestrians; as
an example, people walking together in a group display a different behavior
with respect to people who do not know each other [24, 111].

• Interactions between obstacles and pedestrians. We notice that pedestri-
ans navigating in the environment are highly influenced by the presence/absence
of obstacles in the scene. Existing models, like the SFM [64], provide repulsive
forces with respect to obstacles to model the avoidance behavior. To this
aim, we exploit obstacle annotation to refine and improve the results of the
prediction task.

• Attentive exploitation of past trajectories. State-of-the-art models [58,
133] utilize the information of history paths by applying an LSTM-based
encoder to obtain the hidden states of all the observed pedestrians, then pass
them to an LSTM-based decoder to compute the prediction for all the observed
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trajectories. Nevertheless, the analysis does not consider the relevance of each
portion of the past trajectories, like the presence of sharp turns.

• Overall evaluation metrics for predicted paths. Most every trajectory
prediction framework followed the convention of adopting the Average Displace-
ment Error (ADE) in [87], used as the quantitative evaluation metric. The
assessment by a point-to-point displacement error may not be comprehensive;
other elements like trajectory similarity or collision rate are also worth being
considered.

1.2 Contribution
In our opinion, to further enhance the results of the prediction of future paths and
behavior of people, we must focus on modeling not only the relationships between
vehicles and pedestrians but also the relations between pedestrians themselves. For
this purpose we propose two novel approaches:

• a Group LSTM [24] which explicitly model pedestrian relationship. We
detect wherever they belong to the same social group or not based on their
motion coherency. The prediction is performed in a one-to-many manner, so
each individual trajectory is predicted with respect to the current relationship
of the pedestrian of interest with others. Moreover we also explicitly model
the relationship between the pedestrian and fixed obstacles in the environment
(Obstacle LSTM), which allows us to further improve the prediction task.

• a Group GAN which uses a similar module to exploit relationships between
pedestrians moving coherently. Moreover, we employ an attention module that
allows focusing on the most important part of each observed trajectories (e.g.
a sudden turn or a stop) to improve the prediction task.

• Dynamic Time Warping (DTW) [18] is introduced in the trajectory fore-
casting model to evaluate the similarity of two predictions. Together with the
collision rate and the common ADE/FDE measurements, we believe this leads
to a more comprehensive assessment of different trajectory prediction models.

1.3 Problem Statement
Predicting pedestrian trajectories implies the observation of the past motion history
and interactions of pedestrians in the scene. The position pti of pedestrian i at
time t can be expressed in terms of his coordinates pti = (xit, y

i
t). The trajectory

P i of pedestrian i can be defined by the time sequence of past, present, and future
positions:

P i = {pi0, pi1, . . . , pitobs−1, p
i
tobs
, pitobs+1, . . . , p

i
tpred
} (1.1)

.
Let N denote the number of pedestrians in the scene, then the total trajectory

set can be presented as:
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SN = {P 1, P 2, . . . , PN} (1.2)

In our forecasting problem, we observe trajectories of pedestrians SNobs from time
0 to tobs and we predict future trajectories SNpred for a certain time interval, namely
from tobs+1 to tpred.

1.4 Related Work
Detailed literature on the recent works in crowd analysis, especially regarding the
topics of crowd dynamics modeling, social activity forecasting, and group segmenta-
tion, can be found in some recent surveys [90, 55, 78]. In the next paragraphs, we
will concentrate on behavior forecasting, group analysis and interactions between
fixed obstacles.

1.4.1 Human behavior prediction
Forecasting social activities has lately gained significant attention, especially in
the domain of crowd analysis. As far as the interaction modeling is concerned,
Helbing et al. [64] propose the well known SFM, which relies on Newtonian forces to
model the interactions between pedestrians, and guide each agent towards his goal.
Other models, such as the continuum crowds model [146], are capable to reproduce
human interactions using priors. The crowd is modeled as a fluid, and agents are
influenced by their goal, position, preferred speed, and a discomfort factor. In [4], the
Social Affinity Maps (SAM) features and the Origin and Destination (OD) priors are
proposed to forecast pedestrians destinations using multi-view surveillance cameras.
In robotics, the Reciprocal Velocity Obstacle (RVO) [147] is widely used to model
the collision avoidance between agents.

The models mentioned above require though the estimation or computation
of parameters, in order to accurately predict the interaction among agents. The
literature has tackled this issue relying on common optimization methods [154], like
the Gradient-based Newton method [135] and Genetic Algorithms [117]. Crowd
modeling has also been developed using discrete choice models [7] and Gaussian
functions [141]. Groups in crowds, either stationary or moving, have also been a
subject of study, usually as an extension of already developed models [111]. In
[12, 104], contextual information is taken into account as well, to model the static
configuration and the dynamic evolution of the scene.

All these methods are able to describe crowd behaviors assuming the availability
of a strong prior associated with the model. They are based on energy potentials,
relative distances, and hand-crafted rules.

1.4.2 RNN-based Trajectory Forecasting Network
From machine translation [37, 34] to speech recognition [35, 57], Recurrent Neural
Networks (RNN), including Long Short Term Memory (LSTM) [66] and Gated
Recurrent Unit (GRU) [36] have achieved good results in sequence prediction tasks.
Trajectories can be viewed as 2D time-series with no seasonality, which facilitates
the adoption of RNN-based approaches. Recently lots of RNN-based trajectory
prediction networks have been proposed thanks to their ability to effectively learn
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long-term dependency in sequences [3, 58, 133, 85, 134].

Jain et al. [71] adopt a structural RNN that combines spatio-temporal graphs and
recurrent neural networks to model motion and interactions in the scene. Fernando
et al. [149] apply both the soft attention and the hard-wired attention on the Social-
LSTM, significantly promoting the trajectory prediction performance. Varshneya
et al. [149] present a soft attention mechanism to forecast an individual’s paths,
exploiting the spatially-aware deep attention model. Vemula et al. [150] propose a
novel social attention model that can capture the relative importance of each person
when navigating in the scene. Alahi et al. [3] propose the Social-LSTM to model the
interactions among people in a neighborhood by adding a new social pooling layer;
in [86], Lee et al. present a deep stochastic IOC RNN encoder-decoder framework
to predict the future paths of multiple interacting agents in dynamic scenes. Hug
et al. [68] present an experiment-based study to evaluate the effectiveness of some
RNN models in the context of socially-aware trajectory prediction. Lee et al. [85]
introduce an RNN Encoder-Decoder framework, which uses Variational AutoEncoder
(VAE) for trajectory prediction. Ballan et al. [11] consider both the dynamics of
moving agents and the scene semantics to predict scene-specific motion patterns.
In [58], generative adversarial neural networks (GANs) are employed to predict
socially-plausible trajectories in a crowded environment.

Recent approaches have focused on improving the modeling of social interaction via
the application of adversarial networks and attention mechanisms. Gupta et al. [58]
applied generative setting on the LSTM network to model many-to-many interaction.
Sadeghian et al. [133] generated socially-plausible trajectories by adopting a soft
attention mechanism [155] on social and physical constraints.

1.4.3 Group analysis in crowds

Social interactions among pedestrians play a crucial role in determining their future
trajectory. By clustering trajectories with similar motion trends, pedestrians can
be segmented into groups. In [167], traditional k-means clustering is exploited to
learn different motion modalities in the scene. In [83], support vector clustering is
adopted to define groups among pedestrians. In [168], coherent filtering is used to
detect coherent motion patterns in a crowded environment [156].

As far as the representation of collective activities is concerned, Ge et al. [52] work
on the automatic detection of small individual groups traveling together. Ryoo et
al. [132] introduce a probabilistic representation of group activities, for the purpose of
recognizing different types of high-level group behaviors. Yi et al. [159] investigate the
interactions between stationary crowd groups and pedestrians to analyze pedestrian
behaviors, including walking path prediction, destination prediction, personality
classification, and abnormal event detection. In [24], the authors detect and exploit
pedestrians moving coherently to improve the prediction task. Shao et al. [138]
propose a series of scene-independent descriptors to quantitatively describe group
properties, such as collectiveness, stability, uniformity, and conflict. Bagautdinov et
al. [9] present a unified end-to-end framework for multi-person action localization and
collective activity recognition using deep recurrent networks. Moussad et al. [111]
model the reciprocal interactions between socially-related and socially-unrelated
pedestrians.
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1.4.4 Obstacle avoidance
In the literature obstacles are generally bounded to moving agents through forces
[64] [115], or as boundaries to a fluid [146].

Data-driven approaches have recently been employed to capture and model
interactions among people in a crowd and obstacles. The overall idea consists of
trying to learn and reproduce either local or global features related to the crowd
collective behavior. Vector fields are applied in multiple works to learn the velocity
and navigation features of real scenes. Patil et al. [114] use vector fields, either
learned or manually sketched, to guide the crowd flow in the environment. Goal-
dependent velocity fields are also used to guide the simulation at a global level [22].
Hu et al.[67] propose a solution to deal with the global and local crowd flow, as
a feature to be transferred from real to simulated scenes, learning crowd motion
patterns on the basis of the instantaneous motion field.

1.4.5 A baseline approach: the Social LSTM
Modeling human behaviors in crowded scenarios has been addressed in the literature
mostly using empirically-defined functions [64, 147, 146].

Parametric functions are generally good in reproducing the global motion proper-
ties of the crowd, but they tend to fail when capturing the personality that leads each
human to react differently when facing the presence of other subjects or obstacles.

In the domain of path prediction, LSTM networks [66] have shown good capabili-
ties in predicting the behavior of pedestrians. The Social-LSTM model [3] is able
to capture the status of the neighbourhood of each agent (namely, the number of
agents in the surroundings and the corresponding positions) to refine the trajectory
prediction. The state of the neighbourhood of each pedestrian is represented by
a social hidden-state tensor, as proposed by [3]. The social pooling layer allows
pedestrians to share their hidden states, thus enabling each network to predict the
next position of the agent by reasoning about its hidden state and the neighbourhood
state.

The j-th pedestrian, referred to as pedj at time t in the scene, is represented by
the hidden-state hjt of a LSTM network. Let the hidden-state dimension be D, and
the neighbourhood size be N0.

The neighbourhood of the agent pedi is described by the social pooling layer
defined as the tensor H i

t , with dimensions N0 ×N0 ×D:

H i
t(m,n, :) =

∑
j∈Ni

1mn[xjt − xit, y
j
t − yit]h

j
t−1 (1.3)

where hjt−1 represents the hidden-state of the LSTM for pedj (∀j 6= i) at t− 1,
Ni represents the set of neighbours of pedestrian pedi, and 1mn[x, y] is an indicator
of presence at location (m,n) defined as:

1mn[x, y] =

{
0 if [x, y] /∈ cell mn

1 if [x, y] ∈ cell mn
(1.4)

A graphical representation of the pooling operation is shown in Fig. 1.3. Once
computed, the social hidden-state tensor is embedded into a vector ait. The output
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coordinates are embedded in vector eit.

The resulting recurrence is then defined by the following equations:

eit = Φ(xit, y
i
t;Wr) (1.5)

ait = Φ(H i
t ;We) (1.6)

hit = LSTM(hit−1, e
i
t, a

i
t;Wl) (1.7)

where Φ is a ReLU (Rectified Linear Unit) embedding function, Wr and We represent
the embedding weights, and Wl represents the LSTM weights.

The next position (xit+1, y
i
t+1) in the prediction depends on the hidden-state at

the previous time-step hit. Inspired by [56], and as performed in [3], the following
parameters are predicted, which characterize a bi-variate Gaussian distribution:
the mean µit+1 = (µx, µy)

i
t+1, the standard deviation σit+1 = (σx, σy)

i
t+1 and the

correlation coefficient ρit+1. The original model uses a 5×D weight matrix Wp to
estimate the parameters. Thus, the coordinates at the next time-step t + 1 are
computed as:

(xit+1, y
i
t+1) ∼ N(µit, σ

i
t, ρ

i
t) (1.8)

In order to estimate the parameters of the LSTM model, the negative log-likelihood
loss Li for agent pedi is minimized for the current time t:

[µit, σ
i
t, ρ

i
t] = Wph

i
t−1 (1.9)

Li(We,Wl,Wp) = −
Tstep∑

t=Tcur+1

log(P(xit, y
i
t|µit, σit, ρit)) (1.10)

The model is trained minimizing the log-likelihood loss for all the trajectories
belonging to the dataset.

Pedestrians moving in a crowded scene adapt their motion according to the motion
and position of other pedestrians and the position of obstacles in their neighbourhood.
Thus, the prediction of the trajectory of an individual necessarily requires taking
into consideration also the environment where the agent moves. In [3], the state
of the neighbourhood is modeled considering the interaction of the pedestrian with
the neighbours. Compared to the original formulation of the Social-LSTM (briefly
recapped in Section 1.4.5), we propose the use of a more comprehensive model,
called Group-LSTM, which includes the social relationships between pedestrians in
the crowd, thus improving the prediction performance. Furthermore, we propose a
system module, called Obstacle-LSTM, whose goal is to extend the description of
the current state of the agent with the information related to fixed obstacles in the
environment.
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1.5 Group-LSTM
As mentioned in the previous paragraphs, the motion of pedestrians in crowded
scenes is highly influenced by the behavior of other people in the surroundings
and their mutual relationships. Stationary groups, groups of pedestrians walking
together, people coming from opposite directions, will exert different effects on the
action that one pedestrian takes. Thus, we propose a framework, which is able to
consider whether the subject of interest is walking coherently with the pedestrians
in his surroundings or not. By exploiting the coherent filtering approach [168], we
first detect people moving coherently in a crowd, and then adopt the Social-LSTM
to predict future trajectories. In this way, we are able to improve the prediction
performance, accounting for the interactions between socially-related and unrelated
pedestrians in the scene.

1.5.1 Pedestrian trajectory clustering
Coherent motion describes the collective movements of particles in a crowd. Coherent
filtering [168] introduces a prior, meant to describe the coherent neighbour invariance,
namely the local spatio-temporal relation between particles moving coherently. The
algorithm is based on two steps. First, it detects the coherent motion of pedestrians in
the scene. Then, points moving coherently are associated to the same cluster. Point
clusters will continue to evolve, and new clusters will emerge over time. Eventually,
each pedestrian i is assigned to a cluster si. The output of the coherent filtering
consists of sets si (i = 1, 2, · · · , n) of people moving in a coherent manner.

The original implementation of the coherent filtering relies on the KLT tracker
[144], aiming at detecting candidate points for tracking and generating trajectories,
which are then used as the input of the algorithm. However, the KLT tracker may
detect multiple key points for each pedestrian, thus there is no clear correspondence
between the number of key points and the number of pedestrians. Our objective is
to cluster pedestrians into groups, where each individual in a group is represented
using a single point, as shown in Fig. 1.1. For this purpose, and without loss of
generality, we apply the coherent filtering algorithm directly on the ground truth of
pedestrians’ trajectories.

1.5.2 Group trajectory prediction
In the Social-LSTM model, each pedestrian is modeled using a LSTM network as
displayed in Fig. 1.2. Each pedestrian is then linked with the other people in his
neighbourhood via a so-called social pooling layer. The social pooling layer allows
pedestrians to share their hidden states, thus enabling each network to predict the
future positions of an individual based on his own hidden state and the hidden states
in the neighbourhood.

The ith pedestrian at time t in the scene is represented by the hidden state hit in
an LSTM network. We set the hidden-state dimension to D and the neighbourhood
size to N0, respectively. The neighbourhood of the ith agent pedi is described using
a tensor H i

t as in Eq. 1, with dimensions equal to N0 ×N0 ×D:

H i
t(m,n, :) =

∑
j∈Ni

1mn[xjt − xit, y
j
t − yit]Gij[s

i 6= sj]hjt−1 (1.11)
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Figure 1.1: Each pedestrian is represented by a single keypoint. Pedestrians walking
in the same direction are clustered into one group si. In this example, two sets of
pedestrians going in opposite directions are identified.

Figure 1.2: The figure represents the chain structure of the LSTM network between
two consecutive time steps, t and t+ 1. At each time step, the inputs of the LSTM
cell are the previous position (xit−1, y

i
t−1) and the Social pooling tensor H i

t . The
output of the LSTM cell is the current position (xit, y

i
t).
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where 1mn[x, y] is an indicator function to select pedestrians in the neighbourhood
defined as in Eq. 1.4.

If two pedestrians i and j belong to the same coherent set si, they will not be
considered when computing the social pooling layer for each of them. The function
Gij[i ∈ si, j ∈ si] is an indicator function defined as in Eq. 1.12:

Gij[s
i 6= sj] =

{
0 if i ∈ si, j ∈ si

1 if i ∈ si, j /∈ si
(1.12)

Doing so, the social pooling layer of each pedestrian contains information only
about pedestrians that are not moving coherently with him. The intuition behind this
operation is that the network usually learns the repulsive forces between pedestrians
avoiding collisions. If pedestrians are socially-related, they will tend to stay closer
to each other, thus the repulsive forces are much smaller (almost neglected) and
they have a smaller influence on the future trajectory with respect to pedestrians
not moving coherently. If socially-related pedestrians were considered in the social
pooling, this would cause social groups to spread around instead of staying closer
together as shown in Sec. 3.4.

Once computed, the social hidden-state tensor is embedded into a vector ait. The
output coordinates are embedded in the vector eit. Following the recurrence defined
in Sec. 1.4.5, we can predict our trajectories gradually.

1.6 Obstacle-LSTM
Fixed obstacles in an environment have a non-negligible impact in shaping and
determining the flow of a crowd. Depending on the nature of the obstacles, pedes-
trians actuate different strategies to prevent collisions, taking subjective decisions.
We want to embed this piece of information in the proposed model, in order to
consider the presence of an obstacle in the agent’s neighbourhood. Since automatic
obstacle detection is out of the scope of this paper, in the present work we manually
annotate fixed obstacles in the scene, being a one-time operation. We exploit this
additional annotation to improve the prediction performance by taking into account
the interactions between pedestrians and obstacles in the scene.

1.6.1 Obstacle Sampling
To embed the scene layout into the network, we label physical obstacles in the scene
in two main classes:

• obstacle, which has to be avoided, and that the pedestrian can not traverse
(e.g., trees or light poles, walls);

• semi-obstacle, which is preferably avoided by a walking pedestrian (e.g., the
flower bed around a tree, a meadow or a snowy part of the street).

Once these classes have been annotated, two different obstacle maps (one with
obstacles only, and one with obstacles and semi-obstacles) are generated for each
investigated scenario taken from [117] and [87]. Similarly to the process of trajectory
annotation, obstacles are annotated on the image plane and their coordinates are
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Figure 1.3: Representation of the Social hidden-state tensor H i
t . The black dot

represents the pedestrian of interest P i. Other pedestrians P j (∀j 6= i) are shown
in different color codes. The state of the neighbourhood of P i is described by
N0×N0 cells, which pooling together spatially-close neighbours preserves the spatial
information.

Figure 1.4: Other pedestrians P j (∀j 6= i) are shown in different color codes,
namely green for pedestrians belonging to the same set, and red for pedestrians
belonging to a different set. The neighbourhood of P i is described by N0 ×N0 cells,
which preserves the spatial information by pooling spatially adjacent neighbours.
Pedestrians belonging to the same set are not used for the final computation of the
pooling layer H i

t .
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Figure 1.5: The figure represents the chain structure of the LSTM network between
two consecutive time steps, t and t+ 1. At each time step, the inputs of the LSTM
cell are the previous position (xit−1, y

i
t−1), the Obstacle tensor Oi

t and the Social
pooling tensor H i

t . The output of the LSTM cell is the current position (xit, y
i
t).

then projected on the ground plane in meters using the available homography for
each dataset.

Figure 1.6 reports the obstacle and semi-obstacle map of the 5 scenes of interest.
From now, if not explicitly mentioned, we will use the term obstacles including both
obstacles and semi-obstacles. After obtaining the obstacle maps, the correspond-
ing coordinates have been annotated by equally sampling points on each external
boundary area.

1.6.2 Obstacle Tensor
The obstacle pooling layer allows pedestrians to understand the state of obstacles
in their neighbourhood, thus improving their knowledge about the surrounding
environment.

The configuration of obstacles is represented by the Obstacle Tensor. We set the
neighbourhood size to N0. The obstacles in the neighbourhood of the ith agent pedi

are described using a tensor Oi
t, with dimensions N0 ×N0 ×D.

We define two versions of the obstacle tensor:

• the Obstacle Presence (OP) tensor, where a constant value indicates the
presence or absence of an obstacle in a given cell;

• the Obstacle Distance (OD) tensor, where the distance between the obstacle
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(a) Eth-Univ Scene (b) Eth-Univ Obstacle (c) Eth-Univ Semi-Obstacle

(d) Eth-Hotel Scene (e) Eth-Hotel Obstacle (f) Eth-Hotel Semi-Obstacle

(g) Zara01 Scene (h) Zara01 Obstacle (i) Zara01 Semi-Obstacle

(j) Zara02 Scene (k) Zara02 Obstacle (l) Zara02 Semi-Obstacle

(m) Ucy-Univ Scene (n) Ucy-Univ Obstacle (o) Ucy-Univ Semi-Obstacle

Figure 1.6: Obstacle(black) and Semi-Obstacle(gray) classes.
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and the pedestrian of interest indicates the presence or absence of an obstacle
in a given cell.

The OP tensor for pedestrian i at time t is represented as:

OP i
t (m,n) =

∑
j∈No

1mn[xit − xj, yit − yj] (1.13)

where 1mn is the presence function at location (m,n) of the pedestrian i w.r.t. each
obstacle j in the scene obstacle set No. The OP tensor allows the model to learn
whether a cell (m,n) in the neighbourhood of the pedestrian i is occupied or not.

Instead of representing just the occupancy, the OD Tensor takes into account the
Euclidean Norm D(i, j), between the observed pedestrian i and the obstacle j, such
that:

D(i, j) =
√

(xit − xj)2 + (yit − yj)2. (1.14)

The ODi
t tensor for pedestrian i at time t is represented as:

ODi
t(m,n) =

∑
j∈No

1mn[xit − xj, yit − yj]D(i, j) (1.15)

where 1mn is the presence function in position (m,n) of the pedestrian i w.r.t.
each obstacle j in the scene obstacle set No and D(i, j) is the Euclidean Norm
between i and j.

1.6.3 Pedestrian trajectory prediction with obstacles

Like in [3], the Obstacle Tensor and the social hidden-state tensor are embedded into
vectors bit and ait, respectively. The output coordinates are embedded in vector eit.

The resulting recurrence is then defined by the following equations:

eit = Φ(xit, y
i
t;Wr) (1.16)

ait = Φ(H i
t ;We) (1.17)

bit = Φ(Oi
t;Wo) (1.18)

hit = LSTM(hit−1, e
i
t, a

i
t, b

i
t;Wl) (1.19)

Thus, in the Obstacle-LSTM, the input tensor to the LSTM cell is composed by
three embedded tensors with the same size (as shown in Fig. 1.5): the Social Tensor,
the actual pedestrian position, and the Obstacle Tensor. At deploying time, we can
have 4 different Obstacle-LSTM configuration, depending on whether we are using
OP or OD, coupled with either obstacles or semi-obstacles maps.
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1.7 Group-GAN

1.7.1 Overall model

Pedestrians walking in a crowd possess the innate ability to interact with others.
Their chosen paths depend on past trajectories, and also take into account the motion
of neighboring people. Past trajectories directly reveal future motion trend of the
pedestrians. Depending on the relevance, certain portions of trajectory can be more
informative than others. Moreover, the social relationship between pedestrians can
be of great interest, as pedestrians who are socially-related tend to stay closer to
each other and move coherently. Our Group-GAN aims at improving path prediction
exploiting the motion history as well as the social relationship.

As shown in Fig. 1.7, Group-GAN consists of two key modules: the Generator
G and the Discriminator D. The Generator G is based on an encoder-decoder
framework, which contains the group pooling module and the attention mechanism.
It takes as input the positions of pedestrians in the scene between time 0 and
tobs. Each pedestrian is modeled with an LSTM cell, which represents the hidden
state. Hidden states pass through the group pooling and then the attention module.
The group pooling module models the selective neighborhood interaction between
socially-related and unrelated pedestrians. The attention module focuses on the most
informative segments of past trajectories and improves the modeling of neighborhood
interaction.

Given the trajectories generated by the encoder, the LSTM decoder of Generator
G computes the hidden state of each pedestrian and it is able to generate socially-
plausible future trajectories. The Discriminator D also uses an encoder to distinguish
whether the trajectory is plausible or not.

1.7.2 LSTM-based Generative Adversarial Networks

Generative Adversarial Networks (GANs) proposed by Goodfellow et al. [54] offer a
distinct and successful approach that focuses on a game-theoretic formulation for
training a synthesis model. GANs are composed of a generator and a discriminator
that are trained iteratively with competing goals. In particular, our generator is
trained to generate a set of future trajectory predictions. The predicted set SNpred
consists of N trajectories P i = {pitobs+1 . . . p

i
tpred
}. The discriminator is trained to

minimize the distance between the set of trajectories generated and the ground truth.

Generator. The location of each pedestrian pit is embedded by a linear layer to
get a fixed-length representation eit. The LSTM encoder takes the embedding vector
eit as input and attains the hidden states at time t by recurrence:

yet , h
ei
t = LSTM en(heit−1, e

i
t) (1.20)

where yet is the output of encoder, which will be utilized in the attention module.
In order to capture human-to-human interaction in the neighborhood, the hidden
states until time tobs are pooled together in tensor T i (of each person) in our group
pooling module (PM). We define the context vector cit for each pedestrian as:

cit = MLP (T i, heit ) (1.21)
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where MLP (·) is a Multi-layer Perception with ReLU activation. Note that the
context vector cit in our model is only provided once to the decoder, which results
in increased speed when compared against S-LSTM [3] and makes the deployment
of our global attention mechanism feasible. The hidden states for the decoder are
computed by concatenating context vector cit and white noise vector z sampled from
a multivariate normal distribution, in line with [58]. This initialization process can
be denoted as:

hdit = [cit, z] (1.22)

Then the prediction path is obtained recurrently by the decoder as:

at = attn(eit, h
di
t , y

e
t )

T i = PM(hd1t−1, . . . , h
di
t )

hdit = LSTMde(MLP (T i, hdit ), at)
ŷit = MLP (hdit )

(1.23)

where eit is the embedding representation of the relative position of pedestrian i at
time t. Another Multi-Layer Perception is also used to obtain the predicted location
ŷi.

Discriminator. Inspired by [58], the Discriminator D in our model is comprised
of a LSTM encoder, the hidden pooling module proposed in [58], and the MLP
classifier. According to Qi et al. [119], the hidden pooling module based on MLP
and followed by a symmetric function, is able to capture the global social interaction
context, i.e. the interaction between the pedestrian of interest and all the others
in the scene. Different with group pooling in the Generator G, we adopt hidden
pooling module [58] here, in order to improve the discrimination capability of D.
Given the set SNobs of observed trajectories, we feed D with the ground truth set of
N trajectories SNgt and a set of N predicted trajectories SNpred as in Eq. 1.24:

Lit = LSTM en([SNobs, SN ], hit) =

{
1 if SN = SNgt
0 if SN = SNpred

(1.24)

where Lit is the label of input trajectories, namely 1 (True) for a socially-acceptable
trajectory and 0 (False) for a non-acceptable trajectory.

Losses. The adversarial loss is a standard training procedure of a GAN, in a
two-player min-max game and it is expressed as follows:

LGAN(Lit, L̂
i
t) = min

G
max
D

ESNgt
[Lit log(L̂it)]+

ESNpred
[(1− Lit) log(1− L̂it)]

(1.25)

in line with the prior work [58, 133, 134], we also use L2 loss to train the GAN,
as shown in Eq. 1.26. By using L2 loss, the GAN can intuitively learn to predict the
future path for each agent. Furthermore, variety loss is also applied to encourage
diverse generation. For each scene we generate k possible predictions by randomly
sampling white noise z from multivariate normal distribution, and choosing the best
generation in L2 sense, as our prediction.
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LL2(SNgt , SNpred) = min
k
‖SNgt − SNpred‖2 (1.26)

According to the controlled experiments of trajectory prediction in [80], only
combined adversarial and L2 losses are able to render realistic trajectories in a GAN
framework. Hence, the loss function in our Group-GAN consists of the original GAN
loss LGAN and the L2 loss LL2, which can be defined as:

L = LGAN + λLL2 (1.27)

where λ is a regularization weight of the L2 loss.

Figure 1.7: The architecture of the proposed Group-GAN. The Generator G takes
past trajectories and encodes them into hidden states. The hidden states are pooled
by a group pooling module with the information of selected neighborhood interaction.
The attention mechanism helps the decoder focusing on relevant segments of the
trajectories for future path generation. The Discriminator D is fed with both
prediction path and ground truth.

1.7.3 Group Pooling
The motion of pedestrians in crowded scenes is highly affected by the interactions with
other people in the neighborhood, which are influenced by their mutual relationship.
Similar to the work in [24], we propose a pooling module for the generator G, which
takes into account only the interaction of pedestrians who are not moving coherently
in the neighborhood. The idea behind this design choice is that pedestrians walking
in the same direction (thus coherently) share some interests such as the same goal,
or willingness to talk and interact. We can exploit this behavioral cue to improve
the performance in terms of path prediction. To this aim, we first use coherent
filtering [168] to detect people walking coherently in crowds, and then adopt the
social pooling method proposed by Alahi et al. [3] to model the interaction between
socially-unrelated pedestrians only.

Group Clustering. Coherent motion reveals the collective movements of par-
ticles in a crowd. The coherent filtering is able to infer the coherent neighbor
invariance, which measures the local spatio-temporal relation between pedestrians
moving coherently. The coherent filtering is used to first detect the coherent motion
of pedestrians in the scene. Then, clusters of points moving coherently are created.
For our purposes, each point represents a single pedestrian, using, without loss of
generality, the ground truth coordinates provided. Clusters can evolve, be deleted
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and new clusters can emerge over time, with the goal of assigning each pedestrian i to
a cluster si. The output of the coherent filtering consists of the sets si(i = 1, 2, ..., n)
of people moving coherently. A pedestrian standing still or walking on their own is
considered as belonging to his own set.

Pooling Module. We extend the social pooling module applied in S-LSTM [3]
and S-GAN [58]. In the generator G of our Group-GAN, the pooling module
allows pedestrians to share their hidden states, thus enabling the network to model
interaction of people in the neighborhood.

The hidden state hit in the pooling module represents the ith pedestrian at frame
t in the scene. The hidden-state dimension is set to D and the neighborhood size
to N0, respectively. A tensor H i

t represents the neighborhood of agent i and it is
described as in Eq. 1.28, with dimensions of N0 ×N0 ×D:

H i
t(m,n, :) =

∑
j∈N

lmn[xjt − xit, y
j
t − yit]lij[si 6= sj]h

j
t−1 (1.28)

where lmn[x, y] is an indicator function to select pedestrians in the neighborhood
defined as:

lmn[x, y] =

{
0 if [x, y] ∈ cell mn
1 if [x, y] /∈ cell mn

(1.29)

Two pedestrians i and j belonging to the same coherent set si will not be
considered when computing the pooling module for each of them; this is modeled
through the indicator function lij in Eq. 1.30:

lij[si 6= sj] =

{
0 if i ∈ si, j ∈ si
1 if i ∈ si, j /∈ si

(1.30)

The hidden state of pedestrian i will represent information about pedestrians,
who are not moving coherently with i. Then the attention mechanism will take them
as input of the hidden states.

1.7.4 Attention Mechanism
When a pedestrian changes direction, this observed piece of trajectory conveys
more information than other parts. The network should be aware of such subtle
variation and focus on that specific part of the input sequence. Moreover, as
an additional element, the attention mechanism can help improve neighborhood
interaction modelling. When hidden states arrive at the attention mechanism, they
have already passed through the group pooling module and contain interaction
information.

Inspired by the so-called global attention mechanism proposed by Luong et
al. [103], we design our global attention mechanism and adopt it in the encoder-
decoder framework of our Generator G. The concept of global attention is to consider
all the hidden states of the encoder when deriving the context vector Ct, namely, in
our case, involving all past trajectories. The context vector Ct is passed from encoder
to decoder and carries the information needed for path prediction. The+ attention
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Figure 1.8: Each pedestrian is represented by a single keypoint. Pedestrians walking
coherently are clustered into one group si. In this frame, two sets of pedestrians
going in opposite directions are identified.

vector at is calculated as the product of the encoder output ye and attention weights
Wattn as indicated in Eq. 1.31:

at = ye ∗Wattn, (1.31)

where ∗ is the matrix product. In RNN-based encoder-decoder frameworks, the
encoder mainly fulfills the task of encoding the input into the hidden states hte and
encoder outputs ye are often not used. However, the encoder output ye contains raw
scores of the input, which can be utilized for labeling or attention as in [82, 98]. We
use the encoder outputs to help the decoder have specific attention on the hidden
states, based on the history of past trajectories. The attention weights is derived by
the decoder input ei and the current hidden states htdi as:

Wattn = softmax(align(ei, hdit )). (1.32)

We use a softmax layer to get the attention weight after alignment. The decoder
will take the attention vector at and hidden states as input, then predict future
trajectories. Fig. 1.9 illustrates the attention module between encoder and decoder.
The hidden states, encoder output, and decoder input, are all used for the decoder
attention.
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Figure 1.9: The attentive decoder in the Generator G of Group-GAN. Both decoder
input and hidden states are squeezed into attention weights. The output is computed
multiplying the encoder outputs with the weights to build the final attention vector.

1.8 Implementation details
For both training and validation, in line with the relevant works in the literature,
we observe and predict trajectories using a time interval of 0.4 seconds. We observe
trajectories for 8 time steps and predict for the next 12 time steps, meaning that
we observe trajectories for tobs = 3.2 seconds and predict for the next tpred = 4.8
seconds. In the training phase, only trajectories that remain in the scene for at least
8 seconds are considered.

1.8.1 Group and Obstacle LSTM
For the implementation, we relied on the PyTorch framework, and the RMSprop is
used to optimize the objective function. Our network is trained using the following
hyper-parameters: 200 epochs, 0.0015 learning rate, 0.95 decay rate. The final model
has 3 embedding input layers one for each input: the position pt at time t, the Social
Tensor and the Obstacle Tensor. In line with the state-of-the-art, our method is also
evaluated on the UCY [87] and ETH [117] benchmark datasets. The UCY datasets
consists of 3 videos of two different scenes with 786 people. The ETH dataset consists
of two videos of different scenes containing 750 pedestrians in total. The training
and test procedure is performed using a leave-one-out approach, namely, training on
4 sets of trajectories and testing on the remaining one.

In the first place, we need to configure the coherent filtering to cluster pedes-
trians. To this aim, we use K = 10, d = 1 and λ = 0.2 according to the original
implementation.

For our LSTM network, we adopt the following configuration. The embedding
dimension for the spatial coordinates is set to 64. The spatial pooling size, which
corresponds to an area of 4×4 m2, is set to 32. The pooling operation is performed
using a sum pooling window of size 8 × 8 with no overlaps. The hidden state
dimension is 128. The learning rate is set to 0.003, and RMS-prop [42] is used as the
optimizer. The model is trained on a single GPU using a PyTorch1 implementation.

1http://pytorch.org
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1.8.2 Group GAN
We trained iteratively the generator and discriminator using Adam optimizer [76] with
batch size 64, 200 epochs and learning rate 0.001. The hyperparameters generation
times k is set to 20 and L2 loss regularization weight λ is set to 1. The embedding
dimension of input coordinates is 16. For Generator G, the hidden states dimension
of both encoder and decoder is set to 32, while the hidden states of the encoder
in D is set as a 48 dimensional vector intuitively. This is because only observation
trajectories SNobs are provided as input to the Generator G whilst the Discriminator
D takes as input the entire sequences [SNobs, S

N
pred], therefore the Discriminator should

have higher embedding dimensions.

1.9 Results

1.9.1 Quantitative Results

Metrics

Similarly to other works in the literature [117, 87], we evaluate our approaches using
the following two metrics:

• Average Displacement Error (ADE), namely the average displacement error (in
meters) between each point of the predicted path with respect to the ground
truth path.

• Final Displacement Error (FDE), namely the distance (in meters) between the
final point of the predicted trajectory and the final point of the ground truth
trajectory.

Prior works [3, 58, 133] analyze trajectory matching using the ADE/FDE
approach. However, ADE/FDE is a point-to-point comparison, which lacks of
a global assessment on the trajectory similarity. For our Group-GAN, we adopt
Dynamic Time Warping (DTW) [18] to calculate the distance between predicted
trajectories SNpred(t : t+ τ) and ground truth SNobs(t : t+ τ). It can be formally defined
as the minimization of the cumulative distance between two time series:

DTW (SNpred(t : t+ τ), SNgt (t : t+ τ)) =

=
t+τ∑
i=t+1

t+τ∑
j=t+1

min(‖SNpred(i)− SNgt (j)‖)
(1.33)

where ‖ ·‖ is the Euclidean norm distance. As shown in Fig. 1.10, the DTW approach
compares two trajectories at the positions where their relative distance is minimum.
DTW has the benefit that the similarity of two trajectories can be assessed even if
each trajectory is of different length or contains accelerations.

Baselines

In line with the existing works, we compare our results against some existing baselines:
(i) a linear regressor that estimates linear parameters by minimizing the least square
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error (Linear); (ii) a simple LSTM network (LSTM); (iii) S-LSTM, a model which
combines the LSTM network with a social pooling layer [3]; (iv) S-GAN & S-GAN-P,
social LSTM-based GAN that uses social pooling and hidden pooling, respectively [58];
(v) Sophie, a GAN-based framework leveraging on both social and physical context
information [133].

Group and Obstacle LSTM

The proposed Group-LSTM (G-LSTM) performs on average better or equal than
both Social-LSTM and Social-GAN, especially on the UCY dataset. This is due
to the characteristics of crowd flows in the scene, which usually consist of easily
identifiable groups walking in opposite directions. For the ETH dataset, the motion
patterns are instead more varied and chaotic.

The achieved results show that the prediction performance can be improved
when considering pedestrians that are not moving coherently. In fact, the change of
motion and the evolution of trajectories are mainly influenced by pedestrians moving
in different directions with respect to the pedestrian of interest. People walking
together, instead, loosely influence each other, as they behave as a group.

The performance of our Obstacle-LSTM varies depending on whether we are
using a combination of obstacles or semi-obstacles with either the Presence Tensor or
Distance Tensor. The Obstacle-LSTM performs better than the other methods on the
ETH dataset, thanks to the strong influence determined by obstacles in both scenes.
In the Zara scene, instead, moving obstacles (e.g., car) have not been annotated and
this causes a decrease of the network performance in the prediction task.

When combined together, Obstacle and Group-LSTM outperform other methods.
The best results are obtained using a combination of the Group-LSTM with the
Distance Tensor.
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Table 1.1: Legend: G-LSTM (Group LSTM), OP-LSTM (Obstacle Presence LSTM),
OD-LSTM (Obstacle Distance LSTM), SOP-LSTM (Semi-obstacle Presence LSTM),
SOD-LSTM(Semi-obstacle Distance LSTM)). Quantitative results using the Group-
LSTM and the Obstacle LSTM and the mentioned baseline approaches on the UCY
and ETH datasets, respectively.

Metric Dataset G-LSTM OP-LSTM OD-LSTM SOP-LSTM SOD-LSTM

ADE

ETH [117] 0.48 0.40 0.40 0.46 0.44
HOTEL [117] 0.47 0.44 0.43 0.46 0.40
ZARA1 [87] 0.23 0.42 0.38 0.37 0.36
ZARA2 [87] 0.34 0.40 0.40 0.34 0.37

UCY [87] 0.56 0.39 0.40 0.38 0.37
AVERAGE 0.42 0.41 0.40 0.40 0.39

FDE

ETH [117] 1.12 0.87 0.85 1.19 1.20
HOTEL [117] 0.89 1.10 0.83 0.86 0.88
ZARA1 [87] 0.91 1.01 0.81 0.86 0.81
ZARA2 [87] 1.49 1.68 1.57 1.35 1.57

UCY [87] 1.48 1.89 1.67 1.74 1.67
AVERAGE 1.18 1.31 1.14 1.20 1.23

Table 1.2: Legend: G/OP-LSTM (Group Obstacle Presence LSTM), G/OD-LSTM
(Group Obstacle Distance LSTM), G/SOP-LSTM (Group Semi-obstacle Presence
LSTM), G/SOD-LSTM(Group Semi-obstacle Distance LSTM)). Quantitative results
using our Group-LSTM combined with the Obstacle-LSTM and the mentioned
baseline approaches on the UCY and ETH datasets, respectively. Two error metrics,
namely, the Our model outperforms other approaches, especially in terms of average
error.

Metric Dataset G/SOP-LSTM G/SOD-LSTM G/OP-LSTM G/OD-LSTM

ADE

ETH [117] 0.36 0.40 0.38 0.36
HOTEL [117] 0.34 0.31 0.33 0.33
ZARA1 [87] 0.18 0.17 0.20 0.21
ZARA2 [87] 0.26 0.20 0.26 0.22

UCY [87] 0.73 0.81 0.75 0.64
AVERAGE 0.37 0.38 0.38 0.35

FDE

ETH [117] 0.78 0.92 0.79 0.75
HOTEL [117] 1.08 0.83 1.06 0.93
ZARA1 [87] 0.80 0.69 0.90 0.92
ZARA2 [87] 1.15 0.91 1.12 0.95

UCY [87] 1.75 2.04 1.95 1.96
AVERAGE 1.11 1.08 1.16 1.10
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Group-GAN

Table 1.3 shows the evaluation of our Group-GAN model using ADE and FDE,
comparing with the other baselines. For all datasets, we present the results in the
ablative setting of our model where G refers to the model with only group pooling
mechanism, A indicates the model with attention mechanism, and G+ A includes
both group-aware pooling and attention mechanism.

As can be seen, the group pooling module G and attention mechanism A individ-
ually lead to raised performance, and combined solution G+ A gives a better result.
It shows that the two modules work on different aspects of trajectory prediction,
namely interaction modeling for G and motion history exploitation for A. The
proposed combined model G+A outperforms other state-of-the-art methods in ETH,
HOTEL, ZARA2 sequences, as well as in terms of average results.

Table 1.3: Comparison of our model with other baselines trained by observing 8 time
steps and predicting subsequent 12 time steps. Each time step corresponds to a 0.4
seconds shift. ADE/FDE are reported in meters. Our model achieves better results
in ETH, HOTEL, ZARA2 datasets as well as in terms of average scores.

Other baselines Group-GAN
Datasets Lin LSTM S-LSTM [3] S-GAN [58] S-GAN-P [58] Sophie [133] G A G+A

ADE

ETH 1.33 1.09 1.09 0.81 0.87 0.70 0.72 0.67 0.67
HOTEL 0.39 0.86 0.79 0.72 0.67 0.76 0.43 0.47 0.33

UCY 0.82 0.61 0.67 0.60 0.76 0.54 0.63 0.62 0.61
ZARA1 0.62 0.41 0.47 0.34 0.35 0.30 0.35 0.35 0.36
ZARA2 0.77 0.52 0.56 0.42 0.42 0.38 0.32 0.37 0.31

AVG 0.79 0.70 0.72 0.59 0.61 0.54 0.49 0.50 0.46

FDE

ETH 2.94 2.41 2.35 1.52 1.62 1.43 1.28 1.27 1.21
HOTEL 0.72 1.91 1.76 1.61 1.37 1.67 0.87 0.95 0.67

UCY 1.59 1.31 1.40 1.26 1.52 1.24 1.30 1.31 1.28
ZARA1 1.21 0.88 1.00 0.69 0.68 0.64 0.70 0.72 0.73
ZARA2 1.48 1.11 1.17 0.84 0.84 0.78 0.65 0.76 0.64

AVG 1.59 1.52 1.54 1.18 1.21 1.15 0.96 1.00 0.90

Table 1.4 presents the mean DTW between predicted trajectories and ground
truth of each model. Based on the motion history and interaction modeling, a
trajectory prediction framework should be able to give not only precise prediction,
but also trajectories similar in shape when compared to the ground truth. Our
solution consistently outperforms other models, indicating that our model generates
trajectories that are more similar to the ground truth.

Pedestrian Collision Rate. As people have the instinct to avoid collision with
others in real scenarios, the collision rate can somehow reflect the effectiveness of
interaction modeling. We assess our approach also by computing the collision rate,
namely when the distance of two pedestrians is smaller than 0.1m; the metric is
computed at each frame as presented in Table 1.5. Thanks to group-aware pooling
and attention mechanism, our model is able to offer better collision avoidance for
pedestrians. ETH dataset displays a relatively sparse corridor where pedestrians
mainly walk oppositely to each end, and the motion direction is therefore more
predictable. Accordingly, no collision is observed for all models. For the sequence
HOTEL, people tend to walk straight to their destination and almost no interaction
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Figure 1.10: Using ADE/FDE vs DTW in comparing two trajectories. ADE/FDE
takes two locations at the same timestamp while DTW compares two timestamps
with minimum distance.

Table 1.4: Comparison of mean DTW of each trajectory for each model. For each
model, the mean DTW is calculated between the prediction SNpred and ground truth
SNgt . The lower the value, the higher the similarity of the generated trajectories.

mean DTW ETH HOTEL UNIV ZARA1 ZARA2 AVG

LIN 2.08 0.76 5.80 1.60 1.93 2.43
S-LSTM [3] 1.72 1.33 2.78 0.72 0.94 1.50
S-GAN [58] 1.53 1.08 2.71 0.63 0.84 1.36
Group-GAN 1.43 0.73 2.82 0.67 0.78 1.29

Table 1.5: Comparison of the average collision rate % of the prediction trajectories
SNpred per frame for each model.

% ETH HOTEL UNIV ZARA1 ZARA2 AVG

LIN 0 0.06 4.57 0.15 1.09 1.17
S-LSTM [3] 0 0.18 7.21 0.11 0.52 1.60
S-GAN [58] 0 0.22 7.40 0.11 0.46 1.64
Group-GAN 0 0.13 4.45 0.14 0.40 1.02
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Table 1.6: Legend: Lin. (Linear [3]), S-LSTM (social LSTM [3], S-GAN (social GAN
[58]). The Average Displacement Error (ADE) and the Final Displacement Error
(FDE) are reported (in meters) for an observation interval tobs = 3.2 seconds and a
prediction of subsequent tpred = 4.8 seconds.

Metric Dataset Lin. [3] S-LSTM [3] S-GAN [58]

ADE

ETH [117] 1.33 1.09 0.81
HOTEL [117] 0.39 0.67 0.72
ZARA1 [87] 0.62 0.41 0.34
ZARA2 [87] 0.77 0.52 0.42

UCY [87] 0.82 0.61 0.60
AVERAGE 0.79 0.70 0.58

FDE

ETH [117] 2.94 2.41 1.52
HOTEL [117] 0.72 1.91 1.61
ZARA1 [87] 1.21 1.11 0.84
ZARA2 [87] 1.48 1.31 1.26

UCY [87] 1.59 0.88 0.69
AVERAGE 1.59 1.52 1.18

can be captured, thus interpreting, why the linear model outperforms others baselines
in terms of collision rate. The UNIV sequence, which is part of the UCY dataset,
covers a variety of complex human behavior with high crowd density. If solely social
pooling is applied as in S-LSTM [3] and S-GAN [58], the pedestrian of interest
will tend to ”push” others away from his neighborhood, which is likely to generate
collisions.

In summary, the presented results indicate our model is able to generate socially-
acceptable trajectories, which are in many cases more realistic than other state-of-art
methods. This is also confirmed when adopting different metrics.

1.9.2 Qualitative Results

Group and Obstacle LSTM

In Section 1.9.1 we have shown that considering only pedestrians not moving coher-
ently can improve the prediction precision. In this section we will further evaluate
the consistency of the predicted trajectories.

As a general rule, the LSTM-based approaches for trajectory prediction follow a
data-driven strategy. Furthermore, the future planning of pedestrians in a crowd are
highly influenced by their goals, their surroundings, and their past motion history.
Pooling the correct data in the social layer can promote the prediction performance
in a significant way.

In order to guarantee a reliable prediction, we not only need to account for spatio-
temporal relationships, but also need to preserve the social nature of behaviors.
According to the studies in interpersonal distances [60, 39], socially-related people
tend to stay closer in their personal space and walk together in crowded environments
as compared to pacing with unknown pedestrians. Pooling only unrelated pedestrians
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(a) Frame 2425 (b) G-LSTM prediction (c) S-LSTM prediction

Figure 1.11: ETH dataset Frame 2425: the prediction is improved when pooling in
the social tensor of each pedestrian only pedestrians not belonging to his group. The
green dots represent the ground truth trajectories; the blue crosses represent the
predicted paths. Using the grouping module allows the predictor to keep pedestrians
belonging to the same group closer than in the case of S-LSTM.

(a) (b) (c) (d)

Figure 1.12: Sequences taken from the UCY dataset. An interaction example between
two groups is shown. An in-depth analysis is further presented in Figure 1.13.

(a) Frame 1025 (b) G-LSTM prediction (c) S-LSTM prediction

Figure 1.13: UCY univ Frame 1025. We display how the prediction is improved
for two groups walking in opposite directions. The green dots represent the ground
truth trajectories, while the blue crosses represent the predicted paths. The G-LSTM
predicts socially-related people to stay closer together than in the S-LSTM approach.
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will focus more on macroscopic inter-group interactions rather than intra-group
dynamics, thus allowing the LSTM network to improve the trajectory prediction
performance. Collision avoidance influences the future motion of pedestrians in a
similar manner if two pedestrians are walking together as in a group.

In Figure 1.11, Figure 1.13 and Figure 1.12, we show some examples of predicted
trajectories, which highlight how the Group-LSTM is able to predict pedestrian
trajectories with better precision, demonstrating how the prediction is improved
when we pool in the social tensor of each pedestrian only pedestrians not belonging
to the group.

In Figure 1.11, we show how the prediction of two pedestrians walking together in
the crowd improves, when they are not pooled in each other’s pooling layer. When the
two pedestrians are pooled together, the network applies the typical repulsion force
to avoid collisions. However, since they belong to the same group, each pedestrian
allows the other to remain closer.

In Figure 1.12, we display the sequences of two groups walking toward each other.
In Figure 1.13, we show how the prediction for the two groups is improved with
respect to the Social-LSTM, demonstrating the ability to forecast how pedestrians
belonging to the same group stay together when moving in the environment.

Figure 1.14: Two groups are walking in opposite direction at frame 2425 of ETH
dataset (top row) and one group is moving coherently in the same direction at frame
986 of UCY dataset (bottom row). The pedestrians stay in the personal space of
each other. Our model preserves the coherent group motion, therefore displaying a
behavior closer to ground truth.

Group GAN

In this section we present some qualitative results comparing our Group-GAN
with the existing literature. We have seen how the coherence of motion among
pedestrians in a group is an important property; preserving this property by pooling
only unrelated surrounding pedestrians can promote the prediction performance
significantly. As the existing GAN framework in trajectory forecasting [58] use
diverse sample generation and chooses the one with minimum ADE, the prediction

37



Figure 1.15: 20 generated trajectories for a pedestrian in ETH dataset (top row)
and ZARA2 dataset (bottom row). The blue crosses represent the ground truth and
the green crosses represent the predicted paths. Thanks to the use of Group-Aware
pooling and attention mechanism, generation convergence is improved, getting closer
to the ground truth.

quality is somehow concealed by generation times. The dispersion degree or, in other
words, generation convergence, is able to reveal this aspect only in part.

Coherent motion. As mentioned above, and to guarantee a reliable prediction,
not only spatio-temporal relationships, but also the social nature of behaviors need
to be taken into consideration. According to interpersonal space study [60], socially-
related people tend to stay closer in their personal space and walk together in
crowded environments, as compared to pacing with unknown pedestrians. Pooling
only unrelated pedestrians will focus more on macroscopic inter-group interactions
rather than intra-group dynamics, which allows the model to improve trajectory
prediction performance.

Fig. 1.14 presents two cases, in which our model improves trajectory forecasting
when compared against S-GAN. Two groups are walking in opposite directions in
ETH sequence (bottom row). Our model preserves the coherent group motion, thus
predicting better future states. One group of two pedestrians is walking together in
the same direction as shown in UCY sequence (top row). They keep staying in their
personal space and walk coherently in our model, while a repulsive behavior can be
observed in S-GAN.

Prediction Convergence.
As discussed in Sec. 1.7.2, we adopt variety loss, then we generate k samples

once and we choose the one with minimum ADE. The dispersion degree indicates
the prediction quality. Therefore it is crucial for the model to make the trajectory
prediction converge as close to ground truth as possible. Fig. 1.15 provides two
examples of 20 generated trajectories for one pedestrian in ETH and ZARA2 sequences
respectively. We apply both G and G+ A settings of Group-GAN to validate the
convergence. The generation convergence improves, being closer to the ground truth.

In Section 1.9.1 we have shown that considering only pedestrians not moving
coherently can improve the prediction precision. In this section we will further
evaluate the consistency of the predicted trajectories.

As a general rule, the LSTM-based approaches for trajectory prediction follow a
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data-driven strategy. Furthermore, the future planning of pedestrians in a crowd are
highly influenced by their goals, their surroundings, and their past motion history.
Pooling the correct data in the social layer can promote the prediction performance
in a significant way.

In order to guarantee a reliable prediction, we not only need to account for spatio-
temporal relationships, but also need to preserve the social nature of behaviors.
According to the studies in interpersonal distances [60, 39], socially-related people
tend to stay closer in their personal space and walk together in crowded environments
as compared to pacing with unknown pedestrians. Pooling only unrelated pedestrians
will focus more on macroscopic inter-group interactions rather than intra-group
dynamics, thus allowing the LSTM network to improve the trajectory prediction
performance. Collision avoidance influences the future motion of pedestrians in a
similar manner if two pedestrians are walking together as in a group.

1.10 Conclusions and future work
In this chapter, we tackled the problem of pedestrian trajectory prediction in crowded
scenes. We propose a novel approach, which combines group detection and obstacle
annotation to refine the prediction. With the Group-LSTM, coherent filtering is
used to identify pedestrians walking together in a crowd, while the LSTM network is
used to predict the future trajectories by exploiting inter and intra group dynamics.
The Obstacle-LSTM displays how obstacles and non-trespassing areas can strongly
influence future trajectories of pedestrian. Moreover we present a novel LSTM-based
Attentive Group-Aware GAN framework for trajectory forecasting. Both coherent
group clustering and attention on the hidden states are exploited, yielding to social
plausible trajectory prediction. Experimental results show that the proposed LSTM
framework, which embeds group and obstacle information, outperforms the Social-
LSTM in the prediction task on two public benchmarks (the UCY and the ETH
datasets). In future work, we expect to improve the model, making it possible to
predict longer time ranges, a limitation currently imposed by the available annotated
datasets.
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2 Crowd Simulation
2.1 Introduction
Although a considerable amount of research has been carried out in the domain
of behavior prediction and crowd motion analysis, there is still a lack of a unified
framework for validation. This is due to the fragmentation and heterogeneity of
datasets used for testing and benchmarking, which often suffer from the scarcity
of training and testing data. Furthermore, the quality of videos, size of datasets,
duration of sequences, content, the density of the crowd, quality of the annotation, are
only a few variables that make it difficult to critically evaluate different methods. To
address this problem one of the possibilities is to rely on simulators, which, although
they may not report scenes as natural as the real videos, provide a considerable
number of advantages. On the other hand, a simulation framework allows the quick
generation of large sets of crowd configurations.

The integration of simulators in the processing pipeline has initially been ruled
by purely agent-based models [46] thus conducting the analysis of their ground-truth
position. Only recently we have observed a trend that leverages the idea of generating
virtual videos instead of virtual agents’ behavior [33]. The substantial difference
between the two consists of carrying out the analysis with standard computer vision
techniques, using for test the videos generated by the simulator. This allows taking
into account potentially all the challenges of a real video, including the presence
of occlusions, obstacles, changes in the illumination conditions, the similarity of
objects in the appearance model, etc. The use of simulators in computer vision is
not new and has been subject of research for object tracking and camera control
[120, 121]. However, the quality of the rendering and the simulation tools are still
not providing an acceptable visual fidelity [153], i.e. a reliable representation of a
realistic scenario. Visual fidelity refers in our case to both the pleasantness of the
video sequence when presented to a human observer, and, mostly, the reliability
when processed by a computer vision algorithm. There is a high demand for more
realistic and autonomous crowds, also driven in part by the movie industry and the
virtual reality domain [143].

2.1.1 Properties of a good crowd simulator
A real video sequence of a crowd and its virtual counterpart should return the
comparable quantitative and qualitative results when processed by an automatic
analysis algorithm. Strong similarities should then be achieved not only on the visual
appearance side but also on the human motion models. Such features refer to model
validation. Three different layers of the modeling task can be identified:

• Appearance modeling. The simulated crowd should be rendered in a realistic
way, and with different levels of details depending on their distance from the
camera.
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• Realistic, smooth and adaptable motion. Agents in the simulation should
be able to fluently move and change the motion behavior, like going from walking
to running or to stopping, depending on the situation.

• Realistic high-level behavior (dynamics). This is the most difficult chal-
lenge to achieve. The simulation should be able to consistently reproduce the
behavior of the crowd in a variety of situations and environments, like in scenes
populated with different densities or in emergency situations.

2.1.2 The advantages of a crowd simulator
The main advantages of crowd simulation frameworks are the implicit knowledge of
the ground truth, crowd behavior customization, environment modeling, and virtual
camera layout.

In fact, the task of manually annotating test sequences is time-consuming and, in
densely populated environments, due on the one hand to the high number of objects
and the rapid evolution of the scene, and on the other hand, to the uncertainty
in determining the ground truth coordinates of these objects because of persistent
occlusions, it is challenging to annotate the video because a person can be completely
occluded and pedestrians far away from the camera may be indistinguishable from
each other. One of the main benefits is, therefore, the implicit knowledge of the
ground truth.

Simulators can generate an arbitrary number of video sequences, where any sort of
behavior can be repeated by changing the configuration of the environment, altering
the density of people in the scene, their appearance models, the lighting setup. In
addition, simulators can help to reproduce anomalies (e.g. dangers and threats) that
are rare in the existing datasets [77]. Simulating crowds also allows us to completely
customize the scenes in terms of both the crowd’s behavior and features. One of
the focal points of research in crowd behavior analysis is the detection of anomalies
[105], such as spotting a pedestrian moving in the opposite direction with respect to
the crowd main flow or identifying an abandoned item in a crowded environment.

Recreating the needed sequences to test and validate algorithms for anomalies
detection is an important feature of crowd simulators. Other areas of interest in the
crowd behavior analysis field are the behavior of the crowd in specific cases, like in
emergency situations.

Simulation can also be exploited to improve the robustness of available analysis
algorithms replicating the same events with different settings. In particular, how the
density of the crowd can affect its reaction to a specific event.

Moreover, a real scene can be replicated in the simulation environment in order
to record it from a different viewpoint with respect to the original one. The same
local event can also be reproduced in different crowd density levels to understand
how the crowd reacts in different conditions in the same environment.

Moreover, environment modeling can also be used to simulate yet-to-be-built
buildings to make sure they can safely function in crowded situations.

Developing a virtual vision paradigm to simulate a CCTV camera circuit and
perform an action like surveillance and tracking in a simulated environment has
been subjected to researches [122]. The simulator provides intrinsic and extrinsic
parameters of all the virtual cameras used to record a synthetic test sequence in
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the virtual environment, thus allowing to replicate the setup in the real world after
the model has been tested in the simulated environment. Many kinds of cameras,
like PTZ (Pan, Tilt, and Zoom) cameras and wide field of view cameras, have been
recreated and deployed in the synthetic environment.

Another advantage of the simulator is the possibility to triangulate the information
deriving from different cameras since the ground truth not only indicates the position
in pixel of each pedestrian from each viewpoint, but also the 3D position and the
identity of the person.

2.1.3 Simulation-driven analysis
As discussed in section 2.1.2, one of the main advantages of a simulator is the implicit
knowledge of the ground truth, which is the information of how many and which
agents are present in the test sequence at a given time. In really crowded scenes,
where one agent is represented by just few pixel in an image, if he is not completely
occluded, the simulator precision outperforms even the manual counting. Precisely
annotated synthetic test sequences can be used to validate crowd analysis algorithms
[97], like people counting or density estimation. In the case of tracking multiple
people in crowded environments, the ground truth data requires the labeling of
people in the environment across time and, if needed, across multiple points of view.
This task is really time-expensive if done manually, can be automatically performed
by simulators. In [70], they validate a tracking and classification algorithm for groups
of people on synthetic data. In [142, 122], simulation is used to test and validate
surveillance systems, where cameras are placed in the environment to perform specific
surveillance tasks.

Despite all the progress in both social interaction models and computer graphics,
using simulators to validate and improve crowd analysis algorithms still presents
some open issues. Social interaction models are mathematical models developed
to replicate the average behavior of a human in crowds but are not capable of
reproducing unpredictable behaviors. Moreover, collision avoidance models have
been developed approximating agents as either circles or dots. Although this can
be acceptable in low-density scenarios, it is not feasible for high-density ones like in
[140], where people are subject to actual collisions and does not have enough space to
walk normally. Moreover, the quality of the output video of some simulator still has
to be optimized, since multiple input parameters can be modified and ad-hoc created
scenes can differ form real scenarios both in terms of video quality and actual scene.
For instance, a tracking algorithm can perform really well when all the agents are
dressed in different colors and can fail when agents are too similar in real scenarios.

2.1.4 From real to synthetic crowds: data-driven crowd sim-
ulation

Crowd analysis algorithms can be used to extract data from real scenes. This data
can be used as the input of a simulator, thus improving the realism of simulated
scenes. Data-driven crowd simulation protocol has been applied in the development
of multiple simulators.

Optical-flow based methods to learn the main motion pattern in a given environ-
ment are often used [67, 41]. The extracted information is usually used to generate
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velocity fields that carry the information of the usual crowd behavior in a specific
environment. Other methods such as [15, 112], use information derived from tracking
pedestrians in both crowded and non-crowded environments to improve the realism
of the simulation. The main issue in this field is the lack of a recognized evaluation
metric to asses the realism of a crowd simulation result. If the simulation is related to
an existing, real-life scenario, it can be compared using tools discussed in the previous
section. Transfer learning and validation of new simulating scenarios remains an
open issue.

2.2 Data-driven crowd simulation
In this section, we propose a framework for data-driven crowd simulation starting
from a small set of trajectories [22]. To model the high-level behavior, our method
extracts pedestrian trajectories from real videos, clusters all trajectories of pedestrians
who intend to reach the same goal and computes the velocity field associated with
each exit region in the scene to guide virtual agents toward their destinations, namely,
the goal-dependent path selection. While at the microscopic level, the simulation is
performed using, on the one hand, the Social Force Model to handle the collision-
avoidance among agents and on the other hand the computed velocity fields to model
the macroscopic behavior. The experimental results demonstrate that the velocity
field can be exploited to effectively reproduce crowd behaviors.

2.2.1 Introduction
The development of crowd simulators using agent-based techniques (such as the SFM
[64] and the RVO [148]) has been the research focus [112, 167, 114, 166] in the past
years. However, for the data-driven crowd simulation, some important issues have
not been solved completely. First of all, the behavior parameters (for instance the
parameters in the SFM and RVO model) should be learned and fine-tuned carefully
to match the data extracted from the real case scenario. How to learn the model
parameter from a realistic scenario is usually not a straightforward problem since the
behavior of the crowd in a scene is strongly influenced by the density of the agents.

The RVO and the SFM have been developed to model collision avoidance behaviors
among agents at the local level. At the local level, both of them have shown the
capability of displaying the desired collective behavior in the crowd, such as lines
of people moving in the same direction within the crowd. However, at the global
level, the above two models are not able to simulate complex behaviors, such as
path-planning and goal-selection. These behaviors are always present in crowded
environments such as train stations, airports, and shopping malls. To model these
scenarios, different algorithms have been proposed. The most common approaches
are based on the continuum model [146] and on velocity fields [114, 167, 112].

Zhong et al. [167] propose a data-driven crowd simulation framework, which uses
a dual-layer agent-based model to navigate in the scene. The lower layer deals with
modeling the local collision avoidance behaviors based on the SFM. The upper layer
deals with the global behavior of agents, which involves a deeper understanding of
the scene to perform goal-selection and path-planning. Moreover, we also improve
the way that the presence of stationary groups affects the crowd. The upper layer
in the reference method uses trajectories extracted from realistic scenes to compute
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the velocity fields, which guides agents at the global level. Their algorithm is
evaluated on the New York Grand Central Terminal dataset, which consists of 40,000
trajectories around. Our proposed approach can make the algorithm suitable for
small-scale datasets as well (containing about 1,000 trajectories), by integrating more
sophisticated priors of the environment and behavioral models in the processing
pipeline.

2.2.2 Related work

Recently, many approaches to automatize the processing of real-world crowd data
have been developed. Data-driven crowd simulation techniques have been proposed
to simulate crowd behaviors as close/natural as possible with respect to the realistic
ones. Common protocols to evaluate the similarities are the density-based metric
[88] and entropy-based metric [59]. In [154], the authors propose a method to
optimize the parameters for different motion models. Pellegrini et al. [117] and
Scovanner et al. [135] also use optimization methods (i.e. the Gradient-based Newton
method, and the Genetic Algorithm) to obtain proper parameters for motion model
learning. Musse et al. [112] propose a method to compute the velocity field using
trajectories extracted in low-density scenarios. Patil et al. [114] propose a method
for guiding crowds using the velocity and navigation fields either extracted from
realistic scenarios or sketched manually. In [92], Li et al. use a copy and paste
technique to populate the simulation environment, pasting together crowd features
and trajectories extracted from real-world data. In a similar way, Zhao et al. [166]
use examples extracted from real videos and reproduce crowd states over time using
a neural network. Rodriguez et al. [130] propose a method to learn motion priors to
help crowd analysis by transfer learning across scenes. In the computer vision field,
many works have been proposed on learning global and local crowd motion features
from real scenarios. Lin et al. [95, 96] use an algebraic approach to learn crowd
flows from videos using the geometric flow estimation instead of the motion flow.
Ali et al. [5] use a Lagrangian particle system approach to segment crowd motion
and detect motion instabilities in dense environments. Mehran et al. [107] use a
streak-line representation to improve the accuracy in understanding spatiotemporal
changing behaviors of the crowd. Although the aforementioned works focus on
extracting and understanding collective motion patterns from the scenes, they have
not integrated common agent-based models into the simulation procedure. The most
used agent-based models are the Social Force Model (SFM) proposed by Helbing et
al. [64] and RVO (Reciprocal Velocity Obstacle) proposed by van Berg et al. [148].
In many recent works, the above two models are used to handle the so-called collision
avoidance behaviors, while approaches using the velocity fields [114, 167, 112] or
continuum approaches [146] are used to model the global behaviors such as path
planning. In [114], the velocity and guidance fields are coupled with RVO and SFM,
alternatively, to model the desired crowd motion patterns. In the work proposed
by Zhong et al. [167], trajectories are extracted to compute velocity fields. The
velocity fields are then used to perform the simulation at the macroscopic level, while
the SFM is used for collision avoidance at the microscopic level. Their method has
some limitations due to the high number of trajectories used for training, and the
difficulties in describing crowd motion in the presence of social rules, like behaviors
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at crossings and roundabouts.

2.2.3 Methods

In this work, we adopt the Stanford Drone dataset [129], which consists of annotated
scenes with different agent types (i.e., pedestrians and bikers). We choose this
dataset due to the positions of recording cameras in the top-view, which allows for an
accurate mapping of the environment. The top-view position also allows projecting
the velocity field from the camera plane to the ground plane without introducing too
much uncertainty. Trajectories are clustered with respect to their final destinations,
and the clustering results are then used to compute the velocity fields.

Velocity field computation

(a) (b) (c)

Figure 2.1: Examples: a real scenario from the top view, with the entry/exit region
highlighted in the red boxes (a), the mask to describe the obstacles in the environment
(b), and the mask to describe both real obstacles and virtual obstacles imposed by
social/external rules (c).

The trajectory clustering algorithm adopted in our approach is a modified version
of the one presented in [167]. The original algorithm is designed to work with
thousands of trajectories that are not available in our dataset. In the initial step, we
do not take obstacles into consideration in the scenario. This situation is handled in
the refinement stage.

The velocity field is defined as a vector field, where each vector determines the
motion status (i.e. velocity and orientation) of a pedestrian in his neighborhood. Each
exit region (ER) in the scene is associated with a specific velocity field. Pedestrians
in the same local region can move in different directions, depending on their goals.
In order to compute the velocity fields for each ER, the whole space is divided into
H ∗W discrete grids evenly, where each grid has the size of ∆∗∆. The i− th velocity
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field corresponding to the i− th exit region is defined as in Eq. 2.1:

Vi =

vi,1,1 vi,1,2 . . . vi,1,W
...

...
...

...
vi,H,1 vi,H,2 . . . vi,H,W

 (2.1)

where vi,h,w represents the orientation vector that guides pedestrians when they are
located in cell (h,w). The value of each cell can be learned from realistic scenarios.
The center of each cell (h,w) is defined as Ch,w = (xh,w, yh,w). In the initialization step,
every cell in the velocity field Vi is initialized with a vector that points towards the
corresponding ERi, as demonstrated in Eq. 2.2, where Λ represents a normalization
function:

vi,h,w = Λ(ERi − Ch,w) (2.2)

At this point, we apply a modified version of the K-means algorithm described
in [167], to segment and cluster different trajectories in order to obtain the velocity
field with respect to each ER. In the beginning, the velocity fields are sparse since
only grids that trajectories have passed through are initialized. For other grids
without obstacles inside, we still need to assign them some specific values. In order
to distinguish areas with obstacles from non-obstacle areas, we adopt a binary mask
of M as shown in Fig. 2.1. The mask is discretized in the same way as the velocity
field, which is initialized as in Eq. 2.3:

mh,w =

{
0, if the cell does not contain any obstacle
1, if the cell contains an obstacle

(2.3)

For the grids that do not contain any obstacle, we set the empty cells of the
velocity field as a least-effort field, instead of initializing every vector pointing directly
towards the destination. This allows for smoother navigation in the environment
since people are implicitly aware of fixed obstacles in the least-effort hypothesis. To
compute the least-effort path, a heat-map is proposed to determine the path-distance
between the destination and every cell. The computed value is stored in the cell
for every possible goal. The path-distance is the minimum number of non-obstacle
cells to be traversed to reach the goal. An example of the heat-map is shown in Fig.
2.2. The cells of the velocity field are then initialized in the descent direction of the
heat-map gradient.

The clustering results are a little bit noisy due to the small number of trajectories.
The results are then refined using the following procedure. First, the neighbors of a
given cell are selected with the kernel (as shown in Eq. 2.4 centered on a non-obstacle
cell vi,h,w which has the orientation ∠vi,h,w.1 1 1

1 0 1
1 1 1

 (2.4)

Then, the average orientation ∠vavg of the neighbors is computed. The orientation
∠vi,h,w is finally updated using Eq. 2.5.
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Figure 2.2: The heat-map shows the distance of each point from the top exit. The
darker the color, the closer the point is to the goal. One heat-map is computed for
each possible goal.

∠vi,h,w =

{
∠vi,h,w, if ∠vi,h,w ∈ {∠vavg ± 90◦}
∠vavg, if ∠vi,h,w /∈ {∠vavg ± 90◦} (2.5)

Next, the computed velocity field is used to model macroscopic behaviors, such
as path planning.

Social Force Model

The Social Force model exploits a Newtonian approach to avoid collisions. The Social
Force Model (SFM) [64] is frequently used to model the collision avoidance behavior
in the crowd. The model describes pedestrian motion dynamics taking into account
personal goals and environmental constraints.

The SFM equation of the total force imposed on each agent at a given time consists
of three main parts: the fatt(ai) is the attractive force that drives a pedestrian towards
his destination, the repulsive force F ped(ai) reflects the psychological tendency to
maintain a social distance between individuals, and the environmental force F obj(ai)
allows an agent to wander in the surroundings avoiding colliding with obstacles
(walls, trees, etc.). Let A indicate the set of agents, where aj ∈ A is a specific agent.
Let O indicate the set of obstacles, where ok ∈ O is a specific obstacle. So, the social
force imposed on a pedestrian ai at a given time can be modeled as in Eq. 2.6:

Fa(ai) = fatt(ai) +
∑

aj∈A,j 6=i

fpedj (ai) +
∑
ok∈O

f objok
(ai) (2.6)

The attractive force fatt(ai) depends on the preferred velocity vpai of each agent
and is defined as in Eq. 2.7, where mi is the mass of the agent, τ represents the
reaction time, and vai is the current velocity of the agent.

fatt(ai) = mi
1

τ
(vpai − vai) (2.7)
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The preferred speed of each agent vpai depends on its motion parameters, while the
direction depends on the velocity field. The preferred velocity vpai can be expressed
as in Eq. 2.8, where P is a constant, which depends on the personal characteristics
and tendencies of each agent, |vp| is the absolute value of the speed at which people
usually move in the environment, and v̂ is the orientation stored in the nearest cell
of the velocity field corresponding to the agent’s destination.

vpai = P |vp|v̂ (2.8)

Moreover, the basic social force model can be updated by introducing the behavior
of multiple people walking coherently as suggested in [111]. If an agent belongs to
a socially bounded group, a social group force factor f groupi is added to Eq. 2.6, as
shown in Eq. 2.9, where f visi allows the agent to keep all the members within his
group and enhance their communication, fatti keeps agents within the same group
moving in a tight way, and f repi is a repulsion force that avoids pedestrian colliding
with each other.

f groupi = f visi + fatti + f repi (2.9)

2.2.4 Experimental results
We evaluate our crowd simulation framework using the deathCircle video in the
dataset presented in[129]. The scene (shown in Fig. 2.1(a)), consists of 4 entry and
4 exit regions, which is recorded from the top-view. The ground truth attached to
this video consists of 870 trajectories within a short period.

The Velocity Field Computation

The velocity fields are computed using all the trajectories extracted from the death-
Circle video. The maximum iteration of the clustering algorithm is set to 10. The
image of 1400∗1900 pixels is sampled in cells of 10∗10 pixels. Therefore, the velocity
field consists of a grid of 140 ∗ 190 cells. Fig. 2.3 shows the computation of the
velocity field at different stages.

From Fig. 2.3 (d) and (h), it can be observed that the velocity field navigates
agents towards their destinations as we expect. Comparing to the baseline method
(Fig. 2.3 (b) and (f)), the new velocity field can provide a more sophisticated
path-planning schedule, which allows smoother navigation in the environment.

Crowd Simulation

The validation of the crowd simulation is performed by comparing the density
distribution between the realistic scenarios and the corresponding simulated videos.
The density distribution of a realistic crowd is estimated using 870 trajectories.
Considering the computational burden, the distribution of the simulated video is
computed from around 200 sampled trajectories. The discrete points from where
the distribution value is computed are chosen every 100 pixels in the image space,
thus resulting in a grid of (I, J) = 14 ∗ 19 points. The density of the distribution
is computed using the equation suggested by Helbing et al. [63], as shown in Eq.
2.10, where n represents the total number of points of all trajectories; d(i, j, k) is the
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(h) Smoothed field

Figure 2.3: Different stages of the velocity field computation for the top exit (a,b,c,d)
and the exit on the left side of the image (e,f,g,h). Exit points are represented
by the orange stars. First, the velocity field is initialized only in the points where
trajectories are extracted (a,e). The implementation in [167] fulfill the empty cells
with vector pointing directly toward the exit (b,f). We initialize the empty cells
using a least effort hypothesis(c,g) and in the refinement stage the field is smoothed
(d,h).

euclidean distance between the k− th point along a trajectory and the (i, j) point of
the grid; and R is a scaling factor:

ρi,j =
1

2πR2

n∑
k=1

exp(−d(i, j, k)2

R2
) (2.10)

The results are shown in Fig. 2.4, where 2.4(b) represents the baseline method
[167]; 2.4(c) represents the normal mask method; and 2.4(d) indicates the social
mask method when people moving to the left exit of the scene. The smaller number
of simulated trajectories results in smaller values of the densities. The normal mask
method outperforms the baseline method in restoring the spatial density distribution,
where the shape of the distribution and the locations of the peaks are consistent
with the realistic distribution. In 2.4(d), our method shows more promising results
when using a social mask.

2.2.5 Future work
The proposed framework can be further improved by taking into account different
natures of agents since pedestrians and bikers should be treated in a different way.
Moreover, using a different mask for each goal would also improve the distribution
densities. The future work would focus on transferring learning from the typical
velocity fields of common scenarios (like crossroads or roundabouts) to new environ-
ments. The main limitation of this work is that it still relies on empirically defined
parameters to describe the high level behavior of the crowd.
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(a) Real video (b) Original method

(c) Normal mask (d) Social mask: left exit

Figure 2.4: Crowd density distribution of the different simulations. In (a), the
distribution of a crowd in a realistic video is represented. It can be noted the normal
mask method (c) is able to better reproduce the densities distribution compared to
the original method (b). Moreover, the social mask method shows promising results
in modeling the density distribution of a single exit within the whole crowd (d).
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2.3 Virtual Crowds: a simulation framework to

model and observe crowded scenes
Social modeling of pedestrian dynamics is a key element to understand the behavior
of crowded scenes. Existing crowd models like the Social Force Model and the
Reciprocal Velocity Obstacle, traditionally rely on empirically-defined functions to
characterize the dynamics of a crowd. On the other hand, frameworks based on
deep learning, like the Social LSTM and the Social GAN, have proven their ability to
predict pedestrians’ trajectories without requiring a predefined mathematical model.
In this work [23], we propose a new paradigm for crowd simulation based on a pool
of LSTM networks. Each pedestrian is able to move independently and interact with
the surrounding environment, given a starting point and a destination goal.

2.3.1 Introduction

The use of simulators in computer vision is not new per se, in particular for object
tracking and camera control [122], and, in computer vision, we have recently observed
an increasing interest in the generation of virtual videos instead of virtual agents
behaviors. The substantial difference between the two consists of carrying out the
analysis with standard computer vision techniques, using the videos generated by
the simulator for testing purposes. This allows taking into account potentially all
the challenges of a real video, including the presence of occlusions, obstacles, changes
in the illumination conditions, the similarity of objects in the appearance model, etc.

In pedestrian dynamics, researchers have focused in the past on the study of
trajectories and social interactions between agents. The Social Force Model (SFM)
[64], the Reciprocal Velocity Obstacle model [147], and the continuum crowds model
[146] are among the best existing empirical models for crowd simulation derived from
observation of the real world.

Recently, deep learning has been applied to the prediction and forecasting of
agents in a video. Recurrent Neural Networks (RNNs), and in particular Long-Short
Term Memory (LSTM) networks, have successfully been adopted to predict the scene
evolution over time [3]. This kind of network has shown the ability to learn the
relation between spatially distributed data and its evolution. LSTMs has also proven
to be capable of generating video sequences complying with predefined patterns
[56]. Starting from the work in [3], we extend the use of LSTM networks from path
prediction to a simulation of crowded video sequences. The proposed method is
implemented via a recurrent deep neural network based on LSTM cells. Each agent
in the simulation is driven by its own LSTM network, which is aware of the hidden
state of neighboring agents. We train the LSTM on our synthetic dataset, showing
how the network is effectively able to learn and replicate the simulated motion model.
This demonstrates that gathering person-specific datasets of real subjects would
open to the opportunity to learn person-specific behaviors, allowing for the inclusion
of personal inclinations in the virtual crowd model for a more realistic simulation.

To prove the feasibility of our approach in simulating end-to-end trajectories,
we validate our model using a synthetic dataset where agents move according to
the SFM [64], demonstrating how the proposed framework can effectively learn the
typical features of the SFM and reproduce them on different agents. The compliance
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of the predicted paths against the SFM is measured using the spatial distribution
metric introduced in [63].

2.3.2 Related work

The so-called Social Force Model relies on Newtonian forces to model the interaction
between pedestrians and to guide each agent towards its goal. Similarly, in robotics,
the Reciprocal Velocity Obstacle (RVO) [147] is widely used to model the collision
avoidance behavior between agents.

In the work by Treuille et al. [146], the crowd is modeled as a fluid, where agents
are influenced by their goal, position, their preferred speed, and a discomfort factor.
However, the models mentioned above require the estimation or computation of
parameters, in order to replicate the interaction among agents. The literature has
tackled this issue relying on common optimization methods, like the Gradient-based
Newton method [135] and Genetic Algorithms [117]. All these methods are able to
describe crowd behaviors assuming the availability of a strong prior to the model.
While they are good at describing the movements of the whole crowd, they often fail
in correctly representing the agent’s personality, which is a key feature to enrich the
model and make the simulation closer to the behavior of real subjects. Data-driven
approaches have recently been employed to capture and model interactions among
people in a crowd. Patil et al. [114] use vector fields, either learned or manually
sketched, to guide the crowd flow in the environment. Goal-dependent velocity fields
have also been used to guide the simulation at a global level [22]. Lerner et al. [87]
guide the agents using learned trajectories, choosing the one that best matches the
situation that the agent is facing. Empirically-defined models can only tweak the
behavior of different agents by varying parameters such as personal distances and
preferred velocities; data-driven simulations allow instead learning and simulating
common social rules, such as the behavior at a roundabout, but local descriptors
for each agent personality cannot be handled directly. Cognitive models have been
employed to allow agents performing high-levels tasks such as path planning [53].
Various approaches have been employed to vary the pedestrian behavior in the same
situation, such as the OCEAN model [46] and the general adaptation syndrome [17].
These models focus on the local shaping of the motion, based on personality traits,
rather than long-term tasks.

As far as path prediction and activity forecasting is concerned, the literature
reports a good amount of relevant works. The Social Force Model has shown good
results in predicting pedestrian trajectories in the environment. Pellegrini et al. have
proposed the Linear Trajectory Avoidance model [117], which predicts the short
term path of a pedestrian. Interactive Gaussian processes have shown the ability to
effectively improve the capability of a robot to predict pedestrian trajectories and
navigate a crowded environment [145]. More recently, Recurrent Neural Networks, in
particular, LSTMs, have proven good capabilities in describing spatially distributed
data, also providing a temporal link in sequences. LSTMs have been applied to
crowd trajectory prediction by Alahi et. al [3]. However, as mentioned above, one
important issue in crowd simulation is the lack of a recognized evaluation metric to
assess the quality of the simulation. If the simulation refers to an existing, real-life
scenario, it can be evaluated using common tools, by measuring global features, such
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as density and distribution of the elements in the scene. Density-based [88] and
entropy-based metrics [59] are often used to compare real and synthetic data.

In [63], Helbing et al. present a metric based on the density distribution between
two sets of trajectories. As detailed later, we will adopt this metric to evaluate the
performances of our simulator in a quantitative manner.

2.3.3 The proposed model
Empirically-defined parametric functions are generally good in reproducing the global
motion properties of the crowd, but they tend to fail when capturing the complexity
that leads each human to react differently when facing the presence of other subjects
or obstacles.

In the domain of path prediction, LSTM networks [66] have shown good capa-
bilities in predicting the behavior of pedestrians, if properly trained. In particular,
the Social LSTM model [3] is able to capture the status of the neighborhood around
each agent (number and position of other agents), which is then used to refine the
trajectory prediction. In our work, we propose a model able to perform a simulation
of a crowded scene by learning the motion properties of the agents from a set of train-
ing video sequences. Each agent in the simulation is provided with an autonomous
network, based on LSTM cells. Each pedestrian tries to reach its target destination
given a starting point, a goal and the status of his neighborhood.

Depending on the set of trajectories used to train the specific network, each
LSTM network can react in a different way to the same scenario. For example,
if an LSTM network is trained with a set of trajectories belonging to a specific
person, it will then be able to learn that model, thus replicating the subject reactions
(personality traits) to specific situations occurring in the simulation. The possibility
of reproducing different personality traits makes it possible to simulate semantically
rich realistic situations, which do not rely on purely deterministic models. To the
best of our knowledge, such paradigm has not been explored in the state-of-the-art
and no dataset in this form has been made available to the research community.

Virtual Crowds

Extending the LSTM paradigm to crowd simulation, each agent’s movements are
controlled by an LSTM network, able to guide it through the environment.

Agents (pedestrians in our scenario) moving in the crowd are influenced by their
goal, their personality, and the state of their neighborhood. All the necessary details
are provided in the next paragraphs.

Goal modeling

At the beginning of the simulation each agent/pedestrian pedi, whose position is
defined as (xit, y

i
t), is initialized at a starting position (xi0, y

i
0). The goal of the i-th

pedestrian pedi is defined as

gi = (xig, y
i
g) (2.11)

where xig and yig are coordinates defined in meters in the simulator.
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Figure 2.5: The figure represents the chain structure of the LSTM network between
two consecutive time steps, t and t+ 1. At each time step, the inputs of the LSTM
cell representing a pedestrian are the previous position (xit−1, y

i
t−1), the goal gi and

the Social pooling tensor H i
t . The output of the LSTM cell is the current position

(xit, y
i
t).

The chain structure of a cell of the neural network is shown in Fig. 2.5. At each
time step, the inputs of the LSTM cell representing a pedestrian are (i) the previous
position (xit−1, y

i
t−1), (ii) the goal gi, and (iii) the Social pooling tensor H i

t . The
output of the LSTM cell is the agent position (xit, y

i
t).

When the Euclidean distance between the current position (xit, y
i
t) and the goal

gi is less than one meter, the simulation of that pedestrian is terminated.

Neighborhood modeling

The state of the neighborhood of each pedestrian is represented by a ”Social” hidden-
state tensor, as proposed by [3]. The Social pooling layer allows pedestrians to
share their hidden states, thus enabling each network to predict the next position,
reasoning about its hidden state and the neighboring state.

The pedestrian pedj at time t in the scene is represented by the hidden-state hjt
of a LSTM network. We choose the hidden-state dimension D and the neighborhood
size N0. The neighborhood of the agent pedi is handled by a ”Social” pooling layer.
This layer has the aim of pooling information received from the LSTM cells of
its neighbors while preserving also their spatial mapping. This spatial mapping
is preserved through a grid pooling as explained in Equation 2.13. The pooled
information is used to build a tensor, called ”Social” hidden-state tensor H i

t , with
dimensions N0 ×N0 ×D:

H i
t(m,n, :) =

∑
j∈Ni

1mn[xjt − xit, y
j
t − yit]h

j
t−1 (2.12)

where hjt−1 represents the hidden-state of the LSTM of pedj (∀j 6= i) at t − 1,
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Figure 2.6: Representation of the Social pooling layer. The black dot represents the
pedestrian of interest pedi. Other pedestrians pedj (∀j 6= i) are shown in different
color codes. The state of the neighborhood of pedi is described by N0 × N0 cells,
which pooling together spatially-close neighbors preserves the spatial information.
This will later be used to construct the hidden-state tensor H i

t .

N i represents the set of neighbors of pedestrian pedi and 1mn[x, y] is an indicator
function defined as:

1mn[x, y] =

{
0 if [x, y] /∈ cell mn

1 if [x, y] ∈ cell mn
(2.13)

A graphical representation of the pooling operation is shown in Fig. 2.6.

Once computed, the Social hidden-state tensor is embedded into a vector ait. The
output coordinates are embedded in the vector eit. The resulting recurrence is then
defined by the following equations:

rit = Φ(xit, y
i
t;Wr) (2.14)

eit = Φ(ait, H
i
t ; g

i,We) (2.15)

hit = LSTM(hit−1, e
i
t;Wl) (2.16)

where Φ is an embedding function with ReLU activation; Wr and We represent
the embedding weights, and Wl represents the LSTM weights.

The next position (xit+1, y
i
t+1) in the simulation depends on the hidden-state at

the previous time-step hit. Inspired by [56], and as performed in [3], we predict the
following parameters, which characterize a bivariate Gaussian distribution: the mean
µit+1 = (µx, µy)

i
t+1, the standard deviation σit+1 = (σx, σy)

i
t+1 and the correlation

coefficient ρit+1. We use a 5×D weight matrix Wp to estimate the parameters. Thus,
the coordinates at the next time-step t+ 1 are computed as:

(xit+1, y
i
t+1) ∼ N(µit, σ

i
t, ρ

i
t) (2.17)

In order to estimate the parameters of the LSTM model, the negative log-
Likelihood loss Li for agent pedi is minimized for the current time instant t:
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[µit, σ
i
t, ρ

i
t] = Wph

i
t−1 (2.18)

Li(We,Wl,Wp) = −
Tstep∑

t=Tcur+1

log
(
P(xit, y

i
t | µit, σit, ρit)

)
(2.19)

Our model is trained minimizing the log-Likelihood loss for all the trajectories
belonging to the dataset.

Personality

As far as the personality and decision making is concerned, the motion of the
pedestrian in the crowd has been modeled in existing simulators by empirically varying
parameters, such as pedestrian velocities and personal distances. Although this could
actually increase the diversity of the agents’ motion, it is still not sufficient for a
realistic modeling of the personality traits, which in general lead to non-deterministic
and non-linear motion models. Providing a ”personal” set of trajectories to each
agent in the scene would allow for much more complex and diverse simulation.

Let us consider two pedestrians in the real world, where one exhibits an aggressive
behavior, while the other exhibits a shy behavior [17]. Let us assume that we are
able to collect a significant set of trajectories for each of the two pedestrians. During
the simulation, we associate pedi as the aggressive subject, and pedj as the shy one.
In this way, if we introduce both of them in the same simulated scenario, such that
the social pooling tensor is H i

t(m,n, :) = Hj
t (m,n, :), and goals are gi = gj, the two

pedestrians will make different decisions, depending on the specific features.

2.3.4 Implementation details
To achieve our results, we have used the following configuration. The embedding
dimension for the spatial coordinates is set to 64. The spatial pooling size, which
corresponds to an area of 4×4 m2, is set to 32. The pooling operation is performed
using a sum pooling window of size 8 × 8 with no overlaps. The hidden state
dimension is 128. The learning rate parameter is set to 0.003 and RMS-prop [42]
is used as the optimizer. The model is trained on a single GPU using a PyTorch1

implementation.

At the input of the LSTM, each trajectory consists of a set of coordinates
(Xreal, Yreal) in meters, which needs to be normalized. Each pair (xreal, yreal) in the
set is normalized between [−1, 1] using the following conversion:

(xnorm, ynorm) =
(

2 ∗ xreal −min(Xreal)

Norm
− 1, 2 ∗ yreal −min(Yreal)

Norm
− 1
)

(2.20)

where Norm represents the maximum range (in meters) of the biggest scene. This
normalization is in line with the experiments conducted in previous works in this
area [66].

1http://pytorch.org
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2.3.5 Results

Dataset

To test our approach, we created a dataset composed of 5 fully annotated scenes,
which visually match other known real datasets, namely the ETH [117] and UCY
dataset [87], used in the experiments in [3]. An example is shown in Fig. 2.7. The
choice of using real datasets as reference is to confront the agents’ motion to scenes
known to the community, rather than reproducing all the very fine details in terms
of appearance, which is in this work not relevant.

The average density of pedestrians per frame is 10. The five different scenes
include 204, 177, 194, 210, and 174 trajectories, respectively. The videos have been
recorded at a rate of 15fps. The preferred velocity in the Social Forces model is set
to 4.7km/h, which corresponds to the average speed of a walking pedestrian.

(a) Real dataset (b) Synthetic dataset

Figure 2.7: A comparison of two frames of the real and synthetic datasets. The scene
of interest is the so-called Hotel scene of the ETH dataset [117].

Experiments

To demonstrate the learning capabilities of the proposed framework, we rely on the
simulated sequences based on SFM. Each LSTM network is trained for 100 epochs.
Both training and test are conducted according to the leave-one-out strategy. This
corresponds to training on 4 sets of trajectories and simulates a scene, which is
similar to the fifth one. The prediction is updated at steps of 0.4 seconds. In other
words, the agent will re-consider its next displacement according to its surroundings
after 6 frames.

For each agent, the simulation starts in the time instant it appears in the scene.
Each pedestrian is assigned a goal, namely the last known position in the scene. Our
model computes the trajectories for each pedestrian and returns the set of positions
for all of them at each time step, for a complete and exhaustive representation of
the scene content.
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n i j
ETH Univ 356 4 25
ETH Hotel 383 4 18
UCY Zara1 455 25 14
UCY Zara2 654 25 15
UCY Univ 3006 30 18

Table 2.1: For each video sequence, the table reports the number of points available
in the simulated video, and the number of grid cells in the horizontal (i) and vertical
(j) dimensions.

Validation

To evaluate the simulation of the model with the dataset trajectories, we compare
the density distribution ρi,j. The density of the distribution is computed using the
equation suggested by Helbing et al. [63], as shown in Eq. 2.21, where n represents
the total number of points of all trajectories; d(i, j, k) is the Euclidean distance
between the k − th point along a trajectory and the (i, j) point of the grid; and R is
a scaling factor:

ρi,j =
1

2πR2

n∑
k=1

exp
(
− d(i, j, k)2

R2

)
(2.21)

The accumulation points (i, j) are displaced in a grid that covers the whole image
with a distance of 1 meter between them. The real dimensions of each scene, grid
size (i, j), and the number of total points n are shown in Table 2.1. The scaling
factor is equal to 10. The plot of the density distribution of a set of trajectories for
each dataset is shown in Table 2.2.

2.3.6 Future work
In future works, we plan to incorporate an Ego-Vision framework such that each
pedestrian navigates the environment according to the information gathered from a
first-person perspective. This would also allow us to better extract personality traits
since the first person view contains many more fine-grained details about the person
wearing the camera.

2.4 Virtual camera modeling for multi-view sim-

ulation of surveillance scenes
A recent trend in research is to leverage on advanced simulation frameworks for
the implementation and validation of video surveillance and ambient intelligence
algorithms. However, in order to guarantee a seamless transferability between the
virtual and real worlds, the simulator is required to represent the real-world target
scenario in the best way possible. This includes, on the one hand, the appearance
modeling of the scene and the motion of objects, and, on the other hand, it should
be accurate with respect to the sensing equipment that will be used in the acquisition
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Name Scene Original Density Simulated Density

ETH Hotel
1 1.5 2 2.5 3 3.5 4

area width

5

10

15

20

25

a
re

a
 h

e
ig

h
t

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 1.5 2 2.5 3 3.5 4

area width

5

10

15

20

25

a
re

a
 h

e
ig

h
t

0.15

0.2

0.25

0.3

0.35

ETH Univ
1 1.5 2 2.5 3 3.5 4

area width

2

4

6

8

10

12

14

16

18

a
re

a
 h

e
ig

h
t

0.05

0.1

0.15

0.2

0.25

1 1.5 2 2.5 3 3.5 4

area width

2

4

6

8

10

12

14

16

18

a
re

a
 h

e
ig

h
t

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

UCY Univ
5 10 15 20 25

area width

2

4

6

8

10

12

14

a
re

a
 h

e
ig

h
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 15 20 25

area width

2

4

6

8

10

12

14

a
re

a
 h

e
ig

h
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

UCY Zara1
5 10 15 20 25

area width

2

4

6

8

10

12

14

a
re

a
 h

e
ig

h
t

0.1

0.2

0.3

0.4

0.5

0.6

5 10 15 20 25

area width

2

4

6

8

10

12

14

a
re

a
 h

e
ig

h
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

UCY Zara2
5 10 15 20 25 30

area width

2

4

6

8

10

12

14

16

18

a
re

a
 h

e
ig

h
t

0.5

1

1.5

2

2.5

5 10 15 20 25 30

area width

2

4

6

8

10

12

14

16

18

a
re

a
 h

e
ig

h
t

0.5

1

1.5

2

2.5

3

3.5

4

Table 2.2: Simulation of the five different video scenes that mimic real datasets, as
used in our experiments. The left column reports an overview of the scene, while
the central and right columns report an example of the original video density and
a sample of the one simulated using our framework. The value of ρ is color-coded:
warmer colors represent higher densities, while colder colors represent lower values.
Numerical values are reported on the right column at the right of each plot.
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phase. Originally published in [20], this work focuses on the latter problem related to
camera modeling and control, discussing how noise and distortions can be handled,
and implementing an engine for camera motion control in terms of pan, tilt, and
zoom, with particular attention to the video surveillance scenario.

2.4.1 Introduction
Video surveillance has been a matter of study for the past three decades, and
researchers have investigated many different facets of the subject, ranging from
simple motion detection and segmentation algorithm [8, 19], to object tracking [2],
person re-identification [109], and analysis of complex crowded scenes [73]. Although
most video surveillance networks rely on the use of ordinary static cameras, there is
an increasing trend in updating the existing infrastructures with smart cooperative
networks of cameras. In such a scenario, cameras are required to share relevant
information over the network, in order to improve the tracking of objects and provide
the best possible coverage [79]. To guarantee flexibility and dynamic reconfiguration
of the camera network, a viable option is to adopt PTZ (Pan-Tilt and Zoom) cameras,
which allow tracking and focus on specific objects of interest in the scene thanks to
the possibility of dynamically repositioning the sensor [74].

However, researchers in this domain keep facing two common problems: (i) the
lack of labeled data, especially for those rare events, i.e., anomalies, that should be
detected by the monitoring infrastructure, and (ii) the incapability of reproducing
the same type of event when dealing with reconfigurable camera networks. One
possible solution to tackle such limitations is to deploy virtual environments and
simulation frameworks. Virtualization has been subject of research in the camera
networks community [123, 142] and crowd analysis [73].

Most papers in the state of the art adopting simulation, have focused on the
deployment and assessment of different network configurations to guarantee good
coverage of the scene thus improving the chances of detecting critical events. However,
there is no sufficient literature that demonstrated the transferability of the lessons
learned from the simulated environment into the real world. In fact, it is to be
noted that when a sequence is recorded using a virtual framework, we must also
capture the peculiarities of the specific sensor used for the acquisition. Besides the
actual modeling of the simulated environment, also the camera modeling has to be
representative of the real equipment, being able to model multiple features, as for
example the noise sources and distortions of real cameras and lenses.

In the computer vision field, advanced graphical simulation frameworks are being
exploited to perform data augmentation [127]. To our knowledge, the rendering
and visual appearance of the scenes has been studied and developed rather thor-
oughly, while the peculiarities of the virtual recording system have not been deeply
investigated. Camera models implemented in modern computer graphics engines
aim at producing contents that enhances user quality of experience [28], rather than
producing realistic (noisy) images.

To correctly model a camera network in a virtual environment we need to deal
with the camera intrinsic and extrinsic parameters. We also need to model different
kinds of noise sources and distortions, which are typical of real cameras.

Extending the model to include PTZ cameras, also requires to model the camera

60



motion, which significantly impacts the types of algorithms that can be used for
the analysis, in terms of object detection and tracking, since common background
subtraction techniques would be impaired by the apparent motion of the background.

In the next sections, we present a framework for modeling set of parameters and
distortions related to lenses and camera sensors. We then focus on the specific case
of a PTZ camera, showing how to deal with the challenges posed by the camera
motion. Eventually, we present a use case scenario for the developed camera model,
deployed in a simulated camera network.

2.4.2 Camera model description
As mentioned above, modeling an acquisition system requires taking into account
two main components, namely the lens and the image sensor. In the real world,
these elements are sources of noise and distortion, making the acquisition process
significantly different from the theoretical ideal model. In this section we propose
a virtual camera model able to deal with the noise and distortions existing in real
devices, and also handling the needs in terms of camera motion and control.

Lenses

In optics, a lens is a refractive device, which either focuses or disperses light beams.
In order to capture an image, an ideal lens focuses all the captured light on a single
point and is characterized by a certain numbers of parameters, as:

• focal length

• field of view (FOV)

• depth of field

• aperture

In our simulation framework we focus on modeling the following distortions:

• chromatic aberration

• radial distortion

Focal length and Field of View

The focal length of a lens is a measure of how the incoming light is either diverted
or converged. The bigger the focal length, the higher will be the magnification of an
object. The relation between the focal length and the magnification of the object is
ruled by the thin lens equation:

1

f
=

1

u
+

1

v
(2.22)

where f is the focal length, u is the distance between the lens and the object and v
is the distance between the focal length and the image plane.
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The angular field of view (AFOV) is defined as the maximum angular size of an
object of interest that can be captured by the camera. The object under inspection
is supposed to be at an infinite distance from the lens:

AFOV (◦) = 2 ∗ tan−1( h
2f

) (2.23)

where h is the horizontal sensor size and f is the focal length in millimeters. Common
simulation tools natively offer the FOV as a parameter to be set.

The described model is embedded in our simulation framework to re-project the
acquired environment onto the image plane.

Aperture

the aperture of a camera regulates the amount of light reaching the image sensor.
The aperture size is usually regulated by a device called the diaphragm, which
increases or decreases the aperture size at a factor of two aperture area per stop. The
f -number (N) of a camera lens corresponds to the ratio between the focal length f
and the diameter D of the aperture:

N =
f

D
(2.24)

When modeling the aperture in synthetic images, we need to take into account
that a smaller value of N causes a wider aperture size (we are allowing more lights
to reach the sensor). A higher value of f causes the camera aperture to become
narrower, thus allowing less light to reach the sensor.

Depth of Field

The depth of field is defined as the distance between the nearest and the further
object, located in the zone of acceptable sharpness in a photo. The depth of field is
determined by three main factors: the focal length, the distance of the object from
the camera, and the aperture.

The f -number controls how wide the depth of field will be around the subject
that the camera is capturing. The lower the value, the shallower the total depth of
field being captured; the higher the value, the wider the total depth of field.

To model the depth of field, we use the full derivation of formulas presented in
[124].

Chromatic aberration

Chromatic aberration is the effect caused by the inability of the lens to focus all the
different colors in the same point, as shown in Fig. 2.8.

In order to simulate the chromatic aberration effect, we then need to slightly
separate the color spectrum at the edges and corners of the image.
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Figure 2.8: Chromatic aberration depends on the lens inability to focus the entire
color range in the same spot.

Lens radial distortion

Common lens distortions present or can be approximated as having symmetries along
the radial axis. They are usually classified in three different classes: barrel distortion,
pincushion distortion, and a combination of the previous two, the so-called mustache
distortion.

Barrel distortion, as shown in Fig. 2.9.a, is characterized by the decrease of the
object magnification as the distance from the optical axis increases. This distortion
is sometimes intentionally used to obtain the so-called fish-eye effect.

Pincushion distortion, as shown in Fig. 2.9.b, is characterized by the increase of
the object magnification as the distance from the optical axis decreases.

Mustache distortion, as shown in Fig. 2.9.c, presents a mixture of the two previous
distortions. A barrel-like distortion is present toward the center of the image and it
becomes a pincushion-like distortion as the distance from the radial axis increases.

The mathematical formulation to correct those distortions is the Brown-Conrady
model [40, 30], which has been used in our implementation to test and correct the
simulation model we have implemented.

Camera sensor

The sensor is the element in a camera, which transforms the incoming light rays into
an electrical signal. The signal is represented in our case by an image. Since we
are trying to reproduce a digital image, we have to understand how to reproduce
the characteristics and distortions of a digital sensor. In a camera, the lens and the
sensor influence parameters such as the field of view. If the sensor is too small to
capture all the light conveyed by the lens, the effective field of view is determined
by the sensor. If the captured light does not fill the whole senor area, the effective
field of view is determined by the lens. The image sensor format of a digital camera
determines the angle of view of a particular lens when used with a particular sensor.
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(a) Barrel distortion (b) Pincushion distortion (c) Mustache distortion

Figure 2.9: Common radial distortions patterns in real lenses.

The fundamental elements that characterize a sensor are:

• sensor size (format)

• resolution

• dynamic range

• camera sensor noise

Sensor size

The sensor size (or sensor format) indicates the shape and the size of the sensor
capturing the light. It determines how much light will be used to produce the final
image. It determines the final size and format of image that can be captured with
a camera device. The size of sensor ultimately determines how much light it uses
to create an image. Increasing the sensor size causes the depth of field to decrease,
aperture being fixed.

Resolution

Resolution of a camera is the ability to distinguish details in the image. It is usually
limited by the lens diffraction and by the sensor resolution.

Optical resolution describes the ability of an imaging system to resolve detail in
the object that is being imaged. Resolution is usually measured in pixels.

In the simulation framework we are able to manually set the resolution and resize
the image as needed.

Dynamic Range

The dynamic range is defined as

DR = log
Nmax

Nf

(2.25)

where Nmax represents the maximum signal level that the sensor can output, and Nf

represents the noise floor at minimum amplification. The noise floor is calculated
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as the root mean square of the noise level in a black image. The dynamic range
measures the capability of a sensor to capture the brightest and darkest spot in an
image and the number of levels in between.

Modeling the dynamic range of a sensor in a simulated environment is achieved
starting from the color distribution of an object in a scene and applying some contrast
stretch techniques, as also commonly used in photography. Contrast stretching is a
technique, which aims at improving/modifying the quality of an image by stretching
or compressing the intensity value of the different colors, such that it fits the desired
interval of values. In our methodology we are able to set the lower and the upper
limit of the stretched histogram, in order to fit the color values of our virtual camera
to the one of a real device. Contrast stretch adaptation speed also allows reproducing
common camera effects in videos when there is a sudden change in lighting.

Camera sensor noise

Ideally, the camera sensor should produce exactly one electron for each photon
striking one of his pixels. In practice, the process, which allows the camera sensor to
convert light into a proper image is affected by noise. In captured images, noise can
be seen as a granular color variation on surfaces, which look uniform at a distance.

In [69], noise is segmented into spatio-temporal categories to be measured. The
final noisy image Ncap is defined as

Ncap = (I ∗ PRNU + SNph(I) + FPN+

+SNdark +Nread) ∗ND ∗Nfilt +NQ

(2.26)

where I is the sensor irradiance, PRNU is the photo response non-uniformity, SNph

is the photon shot noise, FPN is the offset fixed-pattern noise, SNdark is the dark-
current shot noise, Nread is the readout noise, ND is the demosaicing noise, Nfilt is
the post image capture effect, and NQ is the quantization noise.

The distribution of all sources at a given CCD-sampling frequency is measured
as an additive Gaussian distribution.

For the simulation, we are interested in reproducing the noise intensity and overall
distribution rather than exactly calibrating the model to reproduce a specific camera
brand or type. This is achieved by adding a white Gaussian noise, which can be
modified in terms of mean value and standard deviation to fit the requirements at
hand. It allows the simulation of typical scenarios, such as the noise in low light
conditions and bloom borders.

2.4.3 Pan-Tilt-Zoom Camera
In visual surveillance, the use of PTZ (Pan-Tilt and Zoom) camera has been thor-
oughly investigated [123, 142, 8]. PTZ cameras provide an effective way to increase
the coverage of a certain area thanks to their ability to move, either by progressively
scanning the environment or zooming in to specific locations in presence of events
of interest. In a cooperative camera network, PTZ cameras have to be able to dy-
namically detect and track the objects of interest [8, 74, 19], guaranteeing a smooth
handover across cameras.

Therefore, when modeling such cameras, we must deal with the motion parametriza-
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tion of each camera in the network, thus acting on both the intrinsic and extrinsic
camera parameters.

PTZ motion model

In this section we describe the model used to replicate the movement of a PTZ camera
in a virtual environment. Different types of cameras are available on the market, like
mechanical PTZ and virtual PTZ. The term virtual implies that no physical sensor
movement occurs; the captured images, instead, are obtained by cropping from the
full resolution picture obtained by a high-resolution image. Generally, to model the
motion of a PTZ camera we need to replicate its three extrinsic parameters (pan,
tilt and zoom), assuming that the camera is anchored to a fixed location.

Also, pan and tilt are subject to constraints, and the step size for the variation
must be defined to control the velocity response of the camera at each time step.
Dynamically changing the Field of View of the virtual PTZ allows for zoom modeling,
along with providing a maximum and minimum range for the FOV to vary.

PTZ tracking algorithms

The development of a real-time object tracking algorithm to be applied on a PTZ
camera must tackle a variety of problems, such as camera movement, complex object
motion, presence of other moving objects in the video scene, and real-time processing
requirements.

Algorithms satisfying these constraints can be divided into two main classes: the
ones relying on background segmentation [8, 74], and the ones that allow to track
only specific objects classes [19].

Algorithms exploiting the background segmentation have to cope with the constant
camera movement, requiring re-initialization every time a camera displacement is
triggered.

Other algorithms can track even in the presence of camera motion, relying on
common vision [118], and machine learning [2] tools. However, the main drawback is
the difficulty in dealing with the real-time constraints and the related computational
costs, which is addressed in literature by either tracking only a category of objects
[2] or by developing customized hardware [19].

In our test application, we exploit a simple background segmentation application
to detect the object, which is then tracked using a state of the art appearance-based
tracking, namely the cam-shift algorithm [29], as shown in Fig. 2.10.

2.4.4 Results
To validate the simulation of the focal length, we use the Camera Calibration Toolbox
[27]. From the conducted experiments we noticed that the simulated focal length
differs from the ground truth in millimeters of an average error of 4%.

We provide samples of computer-generated images which have been recorded
using our camera model. In Fig. 2.11 we show an example of the variation of the
focal length on a sample virtual image, without moving the camera. As can be seen,
the field of view angle decreases as the focal length increases.
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(a) (b)

Figure 2.10: On the original image we perform the background subtraction (a) and
blob detection (b). The histogram computed on the blob is then provided as input to
the cam-shift algorithm, which is able to track the target even in presence of camera
motion.

In Fig. 2.12, we show a noise pattern that increases as a multiplication factor.
It is also possible to vary the noise pattern depending on the channel of interest.
As can be seen, the noise pattern looks comparable with the noise generated by
camera sensors in the presence of low illumination, introducing artifacts and color
aberrations.

In Fig. 2.13, we show different examples of distortions. To validate the distortions
applied, we applied rectification to restore the undistorted images according to [165].

In Fig. 2.14, we show the effect of different values of contrast stretching in the
images.

Similarly to all the other elements that characterize a camera, the developed
model also takes into account the depth of field, which is a crucial parameter that
can alter the perception of objects in a visual scene, in terms of sharpness and level
of detail. A sample view to show the capabilities of handling the depth of field is
shown in Fig. 2.15.

2.4.5 Future work
We presented a framework for modeling camera modeling in a simulation framework,
highlighting the need of properly handling the issues of noise and distortions. Future
work will focus on the development of a full framework to allow the testing and
evaluation of smart camera networks algorithm, allowing researchers to test their
own solutions, for tracking, layout optimization, and cooperation among cameras.

2.5 Conclusions
In this chapter, we proposed two frameworks for modeling the crowd dynamics and
an approach to the appearance modeling of rendered scenes.

First, we described our data-driven crowd simulation framework, where only a
small number of trajectories are available in realistic scenarios. Based on the least-
effort hypothesis and by manually selecting the walkable areas, the crowd dynamics
extracted from the realistic scenarios are integrated to compute the so-called velocity
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(a) FL: 25 mm, FOV: 48.1◦ (b) FL: 40 mm, FOV: 31.2◦

Figure 2.11: Example of images taken by a fixed camera (virtual) with an increasing
focal length. FL corresponds to the focal length and FOV is the field of view angle.

(a) (b)

Figure 2.12: Detail of a noiseless (a) and noisy (b) image affected by the camera
sensor noise.

(a) Barrel distortion (b) Pincushion distortion (c) Mustache distortion

Figure 2.13: Example of radial distortions applied in the simulation framework.

fields, which can be used to navigate the macroscopic crowd behaviors.
Second, we presented a deep-learning based method to model crowd dynamics.

The model assigns a neural network to each agent in the simulation. The pedestrians
are connected by a social-pooling layer, which allows them to be aware of the status of
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(a) (b) (c)

Figure 2.14: Modifying the minimum and maximum value of color stretch it is
possible to change the appearance of the scene.

(a) f/22 (b) f/1.4

Figure 2.15: Examples of synthetic depth of field effect. The images are captured
using a fixed camera and varying the aperture. The f -number is reported for each
image. The setting consists of a fixed camera with 3 checkerboards at a distance of
1, 1.5, and 2 meters from the camera.

their neighborhood. Compared to empirically-defined functions used in the literature
to model crowds, the proposed solution allows simulating a more complex and
enriched variety of behaviors. Training the network with different datasets allows in
fact to reproduce the behavior of agents with different personalities. As stated in the
beginning, the proposed method does not have the goal of improving the state of the
art but proposing a novel approach based on a simulator. Due to this reason, there is
no comparison with any state of the art method for trajectories, since, to the best of
our knowledge, there are no other simulators in literature which we can compare to.

Finally, we showed how smart camera networks and PTZ cameras research would
benefit from the application of the virtual vision paradigm, relying on sophisticated
3D engines to replicated real challenges in the synthetic domain.
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2.5.1 Open Issues

How similar is the virtual scene compared to the original one? How close
should they be?

The development of simulators has been carried out by researchers in both computer
vision [77, 91] and 3D graphics fields [116] with different purposes. In computer
vision, the focus is to reproduce the main features of the crowd that are subject
to analysis, such as trajectories, optical flow, density, the behavior changes in an
emergency scenario, and emergent behavior. To achieve this purpose, it is not
necessary to model and render pedestrians in a realistic fashion in the simulation
environment, and pedestrians are often represented as points or cylinders, while the
environment can be rendered using uniform surfaces. In computer graphics, the main
focus is on reproducing the realistic visual appearance of the crowd. To reach this
goal, pedestrians are modeled and animated in 3D in a realistic way, but the social
interaction model is usually less sophisticated with respect to the Computer Vision
field. Thus, if the interest it to carry on a research on crowd features, such as the
crowd main flow or collision avoidance behavior, it is not strictly necessary that the
simulator is able to reproduce the crowd appearance, since the output of the simulator
is compared on a feature-level with the real results. For example, if one wants to
estimate the crowd density in a video in which every pedestrian occupies just few
pixels, there is no need to model that pedestrians in an accurate way in the simulated
environment, but the most important thing is the modeling of characteristics such as
occlusions and trajectories rather then the realistic appearance of each individual. On
the other side, if the simulator is meant to output test sequences for video analysis,
the visual appearance of the video is of a great importance. The synthetic video
should be as similar as possible to real ones, even reproducing the typical distortion
of a video recorded in a real environment, such as poor or variable light condition,
camera’s poor resolution/frame-rate and partial occlusions of the scene. The ideal
output would be an indistinguishable synthetic video with respect to a real one, but
a good output would be a video which, although it does not seem ”real” to human
observer, it shows similar features to be analyzed by crowd analysis algorithm, such
as trackers, crowd segmentation algorithms, and crowd counting.

Validation of the simulation model.

The validation of the social interaction model has to be performed before using the
output of the simulator as reliable test sequences. The task consists of checking
how well the model is able to reproduce behaviors seen in real-world crowds, such
as well-known emergent behaviors and pattern flows. In general, validation is done
comparing the synthetic results to hand-processed video sequences. Low-level feature
comparison, such as path by path or position, does not carry much information since
it would only lead to a simulation perfectly fitting a real scene. A common instrument
of validation is the comparison between the global path patterns of real and simulated
scenes, which also carries information about the distribution of the agent in the scenes.
The validation of local flow patterns has to be accurately monitored over time since
there could be a high variation of common flow patterns related to particular events
over time (e.g. a train station has high changes of distribution over time depending
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on which platform a train is arriving/leaving). In general, analysis algorithms have to
be run both on real and simulated videos. Depending on the specific crowd behavior,
such as tracking individuals in the crowd, density estimation or pattern flow studies,
the proper analysis algorithm has to be tested on the videos. If the results are similar,
the simulator is validated. If the simulator is validated, it can be assumed that
videos of different scenes of the same crowd behavior from multiple viewpoints are
representative of how real videos would look like. This would allow the researcher to
create a diverse and complete dataset for testing for each specific crowd behavior,
with the possibility to record the simulation from every required viewpoint.
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3 Crowd Simulation Application:
Surveillance

Automatic crowd surveillance will play a fundamental role in the coming generation
of video surveillance systems, in particular for improving public safety and security.
However, traditional camera networks are mostly not able to closely survey the entire
monitoring area due to limitations in coverage, resolution and analytics performance.
A smart camera network, on the other hand, offers the ability to reconfigure the
sensing infrastructure by incorporating active devices such as pan-tilt-zoom (PTZ)
cameras and UAV-based cameras.

In camera network research, virtual vision for testing and deploying network
has long been a subject of research [123, 142]. Recent improvements in computer
graphics have expanded the possibilities of using game engines to tackle computer
vision tasks [127]. Deploying a network of cameras in a virtual environment would
provide researchers with a valid testbed for validation and benchmarking purposes.
Tracking algorithms can benefit from the ground truth knowledge, which does not
need to be manually annotated, and different tracking algorithms can be tested on
the very same scene. Also, re-identification and tracking of subjects across cameras
is another area in which the data recorded in the simulated environment can be
effectively exploited. Besides effectively tracking an object, a network should be able
to optimize the coverage of the environment. Optimization of camera deployment
is the first step to guarantee the best camera displacement [79]. In the case of
PTZ cameras, at running time cameras must be able to correctly perform hand-offs.
While a camera is focused on tracking a target, the other cameras should be able
to reconfigure, so as to guarantee the maximum coverage of the space of interest.
We focus on the development of such validation frameworks, tackling the problem
of camera modeling in terms of distortions, noise, and PTZ control, through the
parametrization of such artifacts within the simulation environment.

In this chapter, originally published in [21], we propose a novel decentralized
approach for dynamic network reconfiguration, where cameras locally control their
PTZ parameters and position, to optimally cover the entire scene. For crowded scenes,
cameras must deal with a trade-off among global coverage and target resolution
to effectively perform crowd analysis. We evaluate our approach in a simulated
environment surveyed with fixed, PTZ, and UAV-based cameras.

3.1 Introduction
Surveillance of crowded scenes is a key issue for public safety in indoor and outdoor
environments. Various factors influence the development of a critical situation of
crowds, hence a camera network must be able to capture local events as well as
guarantee a global coverage of the whole area. Covering the entire monitoring
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area while maintaining a sufficient resolution of the (moving) individuals might be
challenging with fixed cameras. A costly camera infrastructure is necessary to provide
a sufficient target resolution in every part of the monitoring area to perform common
tasks such as personal identification. Consequently, video footage of potentially
empty parts would also be captured with such a static camera network.

An alternative approach is to deploy reconfigurable cameras, which can dynami-
cally adapt their field of view (FoV), resolution and position. In this case, the goal
is to optimize coverage and target resolution depending on the current state of the
crowded scene. Such camera networks aim to focus the attention on critical areas of
the crowd but ensuring an acceptable level of attention also on less critical areas. In
this chapter, we propose a novel network control approach to explore the trade-off
between target resolution and coverage in heterogeneous networks consisting of fixed,
PTZ, and UAV-based cameras. In our approach, we model the crowd scene and the
camera network in a simulation environment, we estimate the state of the crowd
by merging the contributions of the individual cameras’ FOVs and we let cameras
locally decide on their next PTZ or position parameters.

Our contribution can be summarized as (1) a policy to trade-off between global
coverage and crowd coverage, (2) a new metric to evaluate the performances of the
surveillance task, (3) a framework to track the crowd flow based on the coverage
maps, and (4) a 3D simulator of crowd behaviors based on [64] and heterogeneous
camera networks.1

The remainder of this chapter is organized as follows: Section 3.2 briefly discusses
related work. Section 3.3 describes the key components of the proposed approach
along with the evaluation metric. Section 3.4 presents the results of our simulation
study, and Section 3.5 provides some concluding remarks together with a discussion
about potential future work.

3.2 Related Work
Automated video surveillance systems have been studied with the goal of reducing
human intervention while operating a control room [110, 49, 136]. In such frame-
works, cameras need to be aware of the network configuration sharing the necessary
information to improve events capturing and global coverage of the scene [79, 89, 125].
Due to the dynamic nature of the events and the corresponding need for reconfiguring
the camera network layout, research in the field has to deal with a limited amount
of annotated data. This also makes each event unique and difficult to reproduce.

Relying on virtual environments and simulation tools can help to partially ad-
dress these issues. Virtualization has been widely adopted in research, both in the
community of camera networks [123, 142] and crowd analysis [73].

Pan, tilt, and zoom (PTZ) cameras have been deployed to survey crowded
scenes [123, 142, 8]. PTZ cameras can be reconfigured to increase coverage of certain
areas, either by progressively scanning the environment, or zooming in to specific
locations in presence of events of interest. In a cooperative camera network, PTZ
cameras can be effectively used to track targets of interest [8, 74, 19, 128].

Unmanned Aerial Vehicles (UAVs), or drones, have been adopted for different

1Simulator available at https://github.com/nick1392/HeterogenousCameraNetwork

73



services and purposes, both in civil and military applications including environmental
pollution monitoring, agriculture monitoring, and management of natural disaster
rescue operations [131, 157, 75].

Yao et al. [158] identify the key features of a distributed network for crowd
surveillance, i.e., to (1) locate and re-identify a person across the network, (2) track
persons, (3) recognize and detect local and global crowd behavior, (4) cluster and
recognize actions, and (5) detect abnormal behaviors. To achieve these goals, issues
like how to fuse information coming from multiple cameras performing crowd behavior
analysis tasks, how to learn crowd behavior patterns, and how to cover an area with
particular focus on key events, are among a variety of challenges to be tackled.

3.3 Dynamic Camera Network Reconfiguration
Our approach is based on a set of fixed, PTZ, and UAV-based cameras with different
characteristics and capabilities for the surveillance of crowded scenes. Multiple
cameras provide diversity by observing and sensing an area of interest from different
points of view, which further increases the reliability of the sensed data. Our
framework for camera network reconfiguration is suitable for both static and dynamic
scenarios.

In this section, we introduce the key components of our proposal. In particular,
we first introduce the observation model for the environment, which describes the
relationship between the observation and its confidence. We then describe, how
each type of camera is modeled in the simulation environment, and formalize the
reconfiguration objective. Next, we describe our reconfiguration policy that allows
the network focus to be tuned in order to achieve a suitable trade-off between global
coverage and crowd resolution.

3.3.1 Observation Model
The region of interest C, which has to be surveyed is divided in a uniform grid of
I × J cells where the indexes i ∈ {1, 2, . . . , I − 1} and j ∈ {1, 2, . . . , J − 1} of each
cell ci,j ∈ C represent the position of the cell in the grid. We assume a scenario
evolving at discrete time steps t = 0, 1, 2, · · · , tend. At each time step, the network is
able to gather the observation over the scene to be monitored, process it, and share
it with the other camera nodes in order to plan the next set of actions to be taken.
For this purpose we define

• an observations vector Oi,j , which represents the number of pedestrians detected
for each cell ci,j ∈ C;

• a spatial confidence vector Si,j , which describes the confidence of the measures
for each cell ci,j ∈ C. The value only depends on the relative geometric position
between the observing camera and the observed cell;

• a time confidence vector Lti,j, which depends on the time passed since the cell
has last been observed;

• an overall confidence vector F t
i,j, which depends on the temporal and spatial

confidences.
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The observations vector is defined as

Oi,j = {o1,1, o1,2, · · · , oi,j, · · · , oI,J} (3.1)

The value oi,j for each cell ci,j is given as

oi,j =

{
ped

pedmax
if ped ≤ pedmax

1 if ped > pedmax
(3.2)

where ped is the number of pedestrians detected within the cell by a given camera,
and pedmax is the maximum number of pedestrian for a cell to be considered as
crowded. Crowded cells should be monitored with a higher resolution.

The occlusion of targets is one of the main challenges in crowded scenarios. We
assume that our camera network is able to robustly detect a pedestrian when its
head is captured with a resolution of at least 24× 24 pixels, in line with the smaller
bound for common face detection algorithms [72].

For each cell a spatial confidence vector is defined as

Si,j = {s1,1, s1,2, · · · , si,j, · · · , sI,J} (3.3)

where the value 0 < si,j ≤ 1 is bounded, and decreases as the distance between the
observing camera and the cell of interest ci,j increases. The actual value of a cell
depends on the type of observing camera and is described in Section 3.3.2.

Similarly, a time confidence vector is defined as

Li,j = {lt1,1, lt1,2, · · · , lti,j, · · · , ltI,J}. (3.4)

Each value lti,j is defined as

lti,j =

{
1− t−t0i,j

TMAX
if t− t0i,j ≤ TMAX

0 if t− t0i,j > TMAX

(3.5)

where t0i,j is the most recent time instant, in which cell ci,j was observed, and TMAX

represents the time instant, after which the confidence drops to zero. The value lti,j
decays over time if no new observation oi,j on cell ci,j become available.

Given the spatial and temporal confidence metrics, the overall confidence vector
is defined as

F t = {f t1,1, f t1,2, · · · , f ti,j, · · · , f tI,J} (3.6)

with
f ti,j = si,j ∗ lti,j. (3.7)

Thus, for each cell ci,j we have an observation oi,j with an overall confidence
f ti,j. The confidence value varies between 0 and 1, where 1 represents the highest
possible confidence. If a sufficient number of cameras is available for covering all
cells concurrently, the overall confidence vector is given as F I = {1, · · · , 1}.
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Figure 3.1: A fixed camera observes the environment without varying the spatial
confidence for each cell at each time step.

3.3.2 Camera Models
We briefly describe the models adopted for the three different camera types: fixed
cameras, PTZ cameras, and UAV-based cameras. We assume that all fixed and PTZ
cameras are mounted at a fixed height, such that their spatial confidence metric
depends only on the distance from the cell. All UAV-based cameras fly at a fixed
altitude.

Fixed Cameras

Fixed cameras (see Fig. 3.1) provide a confidence matrix, which gradually decreases
as the distance from the camera increases. Being (x, y) a point in the space at a
distance d from a fixed camera, the value of the spatial confidence s(x, y) is defined
as

s(x, y) =

{
− 1
dmax
∗ d+ 1 if d < dmax

0 if d ≥ dmax
(3.8)

with dmax being the distance from the camera, over which the spatial confidence is
zero. Thus, the confidence value si,j of cell ci,j is defined as

si,j = max{s(x, y)}∀(x,y)∈ci,j . (3.9)

PTZ Cameras

PTZ cameras are modeled similarly to fixed cameras, with the additional capability
to dynamically change the field of view (see Fig. 3.2).

UAV-based Cameras

For UAV-based cameras the FOV projection on the ground plane is different with
respect to the previous models, as shown in Fig. 3.3. The spatial confidence of point

76



(a)

Figure 3.2: At each time step, a PTZ camera can pan its FOV in the range of 180◦

given a fixed initial position.

Figure 3.3: Example of the distribution of the spatial confidence in the area surveyed
by an UAV.
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(x, y) at a distance d from the UAV is computed as

s(x, y) =

{
− 1
duav
∗ d+ 1 if d < duav

0 if d ≥ duav.
(3.10)

3.3.3 Reconfiguration Objective
The objective of the heterogeneous camera network is to guarantee the coverage
of the scene while focusing on more densely populated areas. The priority metric
defines the importance of each cell to be observed. A high value indicates that the
cell is crowded or that we have low confidence in its current state, thus requiring an
action.

In order to formalize the reconfiguration objective, a priority vector P is defined
as

P t = {pt1,1, pt1,2, · · · , pti,j, · · · , ptI,J}. (3.11)

The priority for each cell is defined as

pti,j = α ∗ oti,j + (1− α)f Ii,j (3.12)

where 0 ≤ α ≤ 1 represents a weighting factor to tune the configuration and f Ii,j
represents the pre-defined ideal confidence for the cell.

The objective G of each camera, given its possible set of action, is to minimize
the distance between the confidence vector and the priority vector

G = min{||F t+1 − P t||} (3.13)

{
min{F t+1 − F I} if α = 0

min{F t+1 −Ot} if α = 1
(3.14)

Setting α = 1 causes the network to focus on observing more densely populated
areas with no incentive to explore unknown cells. In contrast, α = 0 causes the
network to focus on global coverage only without distinguishing the crowd density of
the cells.

3.3.4 Update Function
At each time step t, the network has knowledge about the current observation vector
Ot, the spatial confidence vector St, the time confidence vector Lt, and the overall
confidence vector F t. In order to progress to the next time step t + 1, an update
function for these vectors is required.

The temporary spatial confidence vector St+1
temp is determined by the geometry

of cameras at time t + 1. For each cell, the value st+1
tempi,j

is the maximum spatial

confidence value of all cameras observing the cell (i, j). Cells that are not covered by
any camera will have a spatial confidence value of 0.

We estimate the time confidence vector as follows. Lt+1
time is computed by applying

Eq. 3.5 to each element of Lt. Another temporary time confidence vector Lt+1
new is

computed setting to 1 the value of all cells currently observed, and setting to 0 all
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other cells.

With the estimated vectors we compute two estimations of the overall confidence
vector such that:

F t+1
time = St ∗ Lt+1

time (3.15)

F t+1
new = St+1

temp ∗ Lt+1
new (3.16)

The new overall confidence vector is then computed as

F t+1 = max{F t+1
new, F

t+1
time}∀(i,j). (3.17)

For each cell (i, j) in which f t+1
new > f t+1

time, we also need to update the last time
the cell has been observed t0(i, j) = t+ 1, and the observation vector ot(i, j).

3.3.5 Local Camera Decision

In our approach, all the information vectors described in Section 3.3.1 are shared
and known to all cameras. Each camera locally decides its next position using a
greedy approach to minimize the cost defined in Eq. 3.13 in its neighborhood.

At each time step, each mobile, PTZ, and UAV-mounted camera select a neigh-
borhood that can be explored. The UAV’s neighborhood is defined as a square
centered at the cell where the drone is currently placed (see Fig. 3.3). The PTZ
neighborhood is a rectangle that covers the space in front of the camera as shown in
Fig. 3.2.

For each cell in the neighborhood, we center a window W of size Nw ×Nw on
each cell cW ∈ W and we store in the cell the value

cW =
∑
||f t+1

i,j − pti,j||. (3.18)

The UAV will then move toward the cell in its neighborhood with the largest cW ,
and the PTZ steers its FOV to be centered on that cell. If two or more cells have
the same value of cW , the camera selects one of them randomly.

3.3.6 Evaluation Metrics

We define the Global Coverage Metric (GCM) for evaluating the network coverage
capability as

GCM(t) =

∑
∀ci,j |f ti,j>g

1

I ∗ J
(3.19)

with g being the threshold above which we consider the cell covered. We then average
the results for the whole duration of the observation as follows:

GCMavg =
∑

t=0,··· ,tend

GCM(t)

t+ 1
(3.20)

We define the People Coverage Metric (PCM) for evaluating the network capability
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to cover pedestrian in the scene as

PCMtot =

∑
∀person∈ci,j |f ti,j>p

1

totalPeople
(3.21)

with p being the threshold above which we consider the cell covered.

3.4 Experimental Results
For the experiments we define an environment of size 60 × 60 meters. The scene
is square-shaped exhibiting people passing by, cars, and vegetation. Pedestrians
can enter and exit the scene from any point around the square. Each cell ci,j is a
square of 1 × 1 meter. In this environment 2 fixed cameras, 2 UAVs and 2 PTZs
are positioned as shown in Fig. 3.4(a). Sample images of the environment from a
PTZ and a UAV-based camera are shown in Figures 3.4(b) and 3.4(c), respectively.
For our experiments we simulate the movement of 400 pedestrians crossing the scene
with the following parameters :

• Tmax = 3 seconds

• pedmax = 2

• dmax = 10 meters

• fixed and PTZ cameras height = 5 meters

• UAV cameras height = 7 meters

(a) (b) (c)

Figure 3.4: (a) Top view of the simulation environment including the camera positions.
(b) Sample image from a UAV-based camera. (c) Sample image from a PTZ camera.

3.4.1 Quantitative Results
In this section, we present the quantitative results obtained with our model in the
simulated environment. The goal is to evaluate the capabilities of the system to
survey a crowded scene using the metrics defined in Sec. 3.3.6. We run 9 different
simulation experiments with varying values of g, p, and α.
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ID g and p α GCM PCM
1 0.2 0 12.4 % 17.4 %
2 0.2 0.5 14.3 % 20.5 %
3 0.2 1 10.4 % 13.5 %
4 0.01 0 42.9 % 47.6 %
5 0.01 0.5 30.3 % 33.1 %
6 0.01 1 22.9 % 28.2 %
7 0.01 0 43.1 % 45.6 %
8 0.01 0.5 28.7 % 54.4 %
9 0.01 1 26.1 % 61.2 %

Table 3.1: Simulation experiments. Legend: ID–experiment; g,p–cell coverage
thresholds; GCM–global coverage metric; PCM–people coverage metric. Experiments
1-6 refer to a uniformly distributed crowd, experiments 7-9 refer to a crowd with
directional motion properties.

The values for g and p indicate how reliable the information is about the position in
space and pedestrians, respectively. A threshold of 0.2 indicates that our observation
is at most 2.4 seconds old when taken with spatial confidence equal to 1. A threshold
of 0.01 represents the cells and pedestrians about which we have a minimum level of
information.

As a reference if all 6 cameras remain fixed, they are able to cover 6 % of the
entire area with g = 0.2 and 12 % with g = 0.01. In experiments (3) and (6),
α is set to 1, causing our camera network to focus only on observing pedestrians
with no incentive to explore new areas in the environment. In experiments (1) and
(4), α is set to 0 resulting in maximizing the coverage regardless of the position of
pedestrians. In experiments (2) and (5), α is set to 0.5 aiming for balancing coverage
and pedestrian tracking in crowded areas. We can observe that in experiments (1)
and (4) we obtain the lowest values of GCM, which is expected since we are focusing
on pedestrians. We also achieve the lowest scores in terms of PCM because cameras
have no incentive in exploring new areas.

Experiments (7), (8), and (9) are conducted using a directional crowd (Fig. 3.4(b)).
When the network focuses only on observation in (9), it obtains the best results in
terms of PCM and the worst one in terms of global coverage GCM. As expected, we
obtain the best results in terms of coverage of the environment (GCM) in experiments
(3) and (6). Since the crowd is uniformly distributed in the space, we also obtain
the best results in terms of PCM. In experiments (2) and (5), the network combines
global coverage and crowd monitoring, the system underperforms compared with the
scenes where α = 0 and α = 1.

3.4.2 Qualitative Results
In this section, we present the qualitative results obtained with our model in the
simulated environment. The goal is to demonstrate, how our system is able to follow
the crowd.

For this purpose, we simulate a single group of five pedestrians crossing the
scene from the bottom left to the top right as shown in the sequence depicted in
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(a) (b) (c) (d) (e)

Figure 3.5: Image sequence of a group of pedestrian moving from the bottom left
of the environment (a) to the top right (c). The image is captured by a top view
camera during the simulation to demonstrate the tracking behavior of our network.

(a) (b) (c) (d) (e)

Figure 3.6: Image sequence of a group of pedestrian moving from the bottom left of
the environment (a) to the top right (e) captured by a UAV surveying the scene.

Fig. 3.5. The UAV is able to closely follow the pedestrians in the environment,
scoring a PCM = 70.4 % and GCM = 3.2 %, as shown in Fig. 3.6. Fig. 3.7 shows
how observation, priority and confidences maps are updated over time in order to
guide the UAV in the tracking scenario.

Scenario Priority P t Observation Ot Time confidence Lt Spatial confidence St Overall confidence F t

(1)

(2)

(3)

Figure 3.7: Graphical representation of priority P t, observation Ot, time confidence
Lt, spatial confidence St and overall confidence F t for 3 different scenarios: (1)
Camera Network Sample, (2) Tracking sample at time t = 0, (3) Tracking sample at
time t = 10. In (2) and (3) the UAV focuses on the observation matrix, such that
the next priority map depends only on previous observations. Red represent the
value 0, and green represents value 1.
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3.5 Conclusions
In this chapter, we have presented a novel camera reconfiguration approach for crowd
monitoring. Our approach allows heterogeneous camera networks to focus on high
target resolution or on wide coverage. Although based on simplified assumptions for
camera modeling and control, our approach is able to trade-off coverage and resolution
of the network in a resource-effective way. In future research, network coordination
will be improved relying on cooperative decision-making between cameras and
assigning different policies (e.g., values of α) to different camera types.

We have shown how we can leverage the features provided by a crowd simulator for
testing and developing a surveillance network, which is part of many infrastructures
in our cities.
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4 Toward anomaly detection in the
wild: out of distribution detec-
tion

More recently, the trend in crowd analysis has shifted towards the characterization
of the emerging behaviors resulting from motion. It is though worth noting in order
to be defined as such, a behavior although referred to a collective event rather than
to a single person, should still preserve the fundamental properties of responding
to internal, external, conscious, or unconscious stimuli [106]. In fact, although
considerably more complex compared to the case of a single moving person, also
the crowd has to relate to the surrounding context, which is constrained on the one
hand by the environment, including the presence of objects, obstacles, entry/exit
gates [26] and on the other hand is ruled by the perception and motivation of the
single subjects composing the crowd. In fact, when dealing with a mass of subjects
the internals and externals stimuli are even more pronounced due to the mutual
influence that the different elements composing the crowd receive and transmit to
their neighbors [111]. This makes the separation between an action and a behavior
less marked, as, for example, an action of a member of the crowd (e.g., running,
shouting) might trigger a stimulus to one or more neighbors, generating a collective
behavior (e.g. panic).

For example anomalies fall into this category of events, and can be broadly defined
as the deviation from what has been observed beforehand, or, in other words, what is
normal ; due to their nature, anomalies are rarely occurring in real test video sequences
and are often staged. An exhaustive work in the area of crowd behavior analysis
is presented by Solmaz et al. [139]. The authors propose a method to recognize
five different types of behaviors, namely lane, circle, bottleneck, fountainhead, and
blocking. The algorithm, is based on the detection of accumulation points, which
are then used to trace back the motion of the crowd.

Analyzing the optical flow properties, Feng and Bhanu [48] follow a hierarchical
approach that progressively and dynamically merges the tracklet information collected
from the visual scene, so as to construct an interaction graph that defines the existence
of a group. What makes a group a particularly interesting social configuration, is
that it represents an intermediate structure in between the individuals and the crowd
as a whole. In the group the contribution of each member is usually distinguishable
and the interactions among the entities in the group is the discriminating feature
to not only detect the class of behavior [32] but also to improve the detection and
tracking [117].

As far as the detection of anomalies is concerned, the literature has mostly
focused on the deviations on the motion properties of the crowd [108]. Relying on
the indirect approach, the authors treat particles as humans and track their motion
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over time. The interaction forces among the particles are used to define a so-called
force flow, which is used as background information to model the regular flow of
the crowd. Latent Dirichlet Allocation [25] is then use to train the model and thus
detect the presence of anomalies. Bera et al. [16] propose a real-time framework to
detect anomalies in low to medium-crowded scenes. Thanks to an efficient tracking
algorithm and relying on the RVO motion model, the authors derive the global
motion properties of the crowd. Analyzing then the local features of the moving
agents, and highlighting when the value of the feature exceeds a threshold, anomalies
can be identified and signaled.

In the area of deep learning, Shao et al. [137] propose to extend the use of CNNs
also to the temporal domain, learning the crowd attributes by also leverages on the
temporal information.

In the context of deep learning, a network is usually trained on a fixed number of
classes. At test time the network is able to recognise only the classes for which it
was trained. Since there is a scarcity of samples, common deep learning frameworks
cannot be trained to perform anomaly detection. The goal of out-of-distribution
(OOD) detection is to handle novel situations where the test samples are drawn from
a different distribution than the training data. If a network is trained with multiple
scenes of common behaviors, an anomalies can e defined as an out distribution
sample, which has not been seen by network before test time.

4.1 Introduction
Many conventional machine learning techniques are being designed and deployed
under closed-set assumptions, meaning that training data contains samples from all
the possible classes that the classifier will encounter. Of course, such assumption
does not hold in many applications such as anomalies detection in crowded scenes;
as it may not be possible to cover every potential input class in the training dataset.
Thus, the goal of open-set classifiers is to detect out-of-distribution (OOD) samples;
the input instances that do not belong to any of the training classes. In general, many
of the OOD detection techniques try to either use the class membership probabilities
as a measure of uncertainty [65, 94, 151], or define a measure of similarity between
the input samples and the training dataset in a feature space [14, 161, 84].

As discussed in [84], the features extracted from a conventional softmax classifier
follow a class-conditional Gaussian distribution. Such structure has been exploited in
[14, 161, 84] to detect the outliers/OOD samples. However, general class-conditional
Gaussian structures are not particularly appropriate for outlier rejection. That is
due to the fact that the statistics of such distribution are not robust to perturbations,
noisy samples, and outliers [45]. Furthermore, such structure is not particularly
easily distinguishable in the feature space.

In this work, we claim that we can significantly improve the OOD detection
performance by imposing the structure of in-distribution samples in the feature space.
Particularly, if we embed the training samples, employing deep neural networks,
such that the feature vectors belonging to each known class lie on a 1-dimensional
subspace, OOD samples can be detected more robustly with higher probability. Such
a union of 1-dimensional subspaces structure provides us with two main advantages.
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First, due to compact representation in the feature space, OOD samples are less likely
to occupy the same region as the known classes. In other words, a random vector
in a high-dimensional space lies on a specific 1-dimensional line with probability
0. Second, we show that the first spectral component (first singular vector) of a
1-dimensional subspace is a robust representative of the its samples. We exploit
these two desirable features and reject samples as OOD if they occupy the region
corresponding to the training samples with probability 0. This region is identified by
the set of the first singular vectors of the training classes. Furthermore, to estimate
the probability, we use Monte Carlo sampling techniques used in Bayesian deep
learning.

Our proposed method, unlike [113, 161], does not require any sample generation
or reconstruction. Furthermore, we do not need extra information or a subset of
OOD examples for hyperparameter tuning or validation. This is in contrast with
many existing methods that use some subset of the OOD samples either during
validation [94, 151, 84], or even during training [162]. Despite improving the results,
the availability of such extra information is questionable in real applications. In
summary, this work makes the following contributions:

• We show that if deep feature vectors lie on a union of 1-dimensional subspaces,
the OOD samples can be detected with higher probabilities and more robustly;

• We demonstrate how we can impose such spectral structure onto the fea-
ture space, by incorporating the absolute cosine similarity into the softmax
activation;

• We propose a technique to exploit the first singular vector of the feature vectors
extracted from the training set to detect the out-of-distribution (OOD) samples;

The rest of the manuscript is organized as follows. Section 4.2 summarizes the
related work and formally define the problem at hand. In Section 4.3 we present our
motivation behind enforcing the feature vectors to lie on a union of 1-dimensional
subspaces and how we can achieve it. Then, in Section 4.4, we explain how such
structure can be used to distinguish between in- and out-of-distribution samples.
Finally, Section 4.5 deals with the experimental results and Section 4.6 concludes
the chapter.

4.2 Problem Statement and Related Work
Given a training dataset consisting of N sample-label pairs belonging to L known
classes, our goal is to train a neural network such that at the test time it can be
determined if an unlabeled sample is an out-of-distribution sample (not belonging to
any of the L known classes) or not. It is known that conventional neural networks that
are trained under closed-set assumption do not operate well under such conditions
and may even have high confidence in regions in feature space far away from the
training set [62, 44].

Existing approaches either allow the network to access the OOD datasets during
training/validation steps [162, 94, 151, 84], or the OOD datasets are seen during the
test phase [14, 65, 161].
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In [162], the network is fine-tuned during the training to increase the distance
between known and OOD distributions. Other methods [94, 151, 84] apply a
perturbation on each sample at test time to exploit the robustness of their network
in detecting in-distribution samples. However, they use part of the OOD samples
to fine-tune the perturbation parameters, thus obtaining the maximum distance
between in and out of distribution samples. We argue that OOD detectors should be
completely agnostic of unknown distributions, which is a more realistic scenario in
the wild.

Few existing approaches, such as [65, 14, 161], do not require the OOD samples
neither during traing or validation. Hendricks and Gimpel [65] provide a baseline
for the open set detection, showing how the Softmax layer can be used to detect
OOD samples, when its prediction score is below a threshold. In [14], the activation
vectors at the penultimate layer of the network are employed to determine in and out
of distribution samples. The standard Softmax layer is replaced with an OpenMax
layer which is able to predict the probability of a sample belonging to the known
distribution or not. In [161], the authors exploit open set classification in the latent
space instead of working directly on the last layer of the network. Following this
line of works, we assume that neither we have access to the OOD samples during
training nor during validation.

In the face recognition domain [100, 152], they introduced angular losses to
improve the deep face recognition task. In [100], the authors propose a new loss
which enforces an angular (spectral) structure between training features. Doing so,
the angular distance between known classes and test samples is exploited as a reliable
metric for classification. In [152], cosine similarity score between training and test
samples is employed to perform face identification and verification.

Inspired by [100, 152], we exploit a loss function based on cosine similarity. Thus,
we are able to enforce a spectral structure in the latent space using only in-distribution
classes at training and validation phases. At test time, the enforced structure allows
us to distinguish between OOD and known samples, given how they are represented
in the latent space by the enforced spectral structure.

4.3 Union of 1-dimensional subspaces as the in-

distribution structure
In this section, we present our framework for detecting the out-of-distribution
samples. First, we describe the motivation by discussing the advantages of enforcing
our proposed structure onto the deep feature vectors. Then, motivated by our
theoretical analysis, we propose techniques to enforce this structure.

We argue that OOD detection performance can be improved if the feature vectors
from the known classes lie on a union of 1-dimensional subspaces. In short, such
structure has two main properties that we can take advantage of for OOD detection:

1. Due to the compactness of samples in the feature space of a known class, OOD
samples can be detected with higher probability and

2. First singular vector of the samples in each class can be used as a robust
representative of that class and be employed to effectively distinguish between
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Enforce spectral structure
in the latent space

Input sample
from training set

Softmax

Cosine 
Similarity

Label l

CNN Backbone Feature
Vector

Last FC
Layer

Feature vectors
belonging to class l

.....

Freeze weights
orthogonally 

First eigenvector
for each class l

SVD

Figure 4.1: Overall architecture of the proposed framework at training time. A convolu-
tional neural network (CNN) is used to map the input sample onto a feature space. Then,
the cosine similarities between the extracted feature xn and the class vectors (rows of
the last fully connected layer) wl are used to compute the class membership probabilities.
wls are set to predefined orthonormal vectors and are not updated during training. This
enforces the desired structure, union of uncorrelated 1-dimensional subspaces, on the
feature vectors.

Input sample
from test/OOD set

Trained
CNN Backbone 

Feature
Vector

Add perturbation using
different dropout values

Compute spectral discrepancy Check if threshold is met
w.r.t. all first eigenvectors

OOD sample
or

Label l

Figure 4.2: Overall architecture of the proposed framework at test time. At test time, we
extract multiple times the features of each test sample, each time with a different dropout
setting. The spectral discrepancy between the test samples and the first singular vector
corresponding to each class are used to distinguish between the in- and out-of-distribution
samples.
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the in- and out-of-distributions samples.

Below, we discuss each of these advantages in more details.

Distribution-agnostic minimization of error probability: Calculating the
error probability for OOD detection is a difficult task to carry out. This is due
to the fact that, by definition, we do not have any information on the probability
distribution of the OOD samples. However, it can be shown that the probability of
error can be minimized by making the distribution of the known classes as compact
as possible. Specifically, consider a binary classification problem, where both of the
classes follow multivariate Gaussian distributions with different means and covariance
matrices N (µ1,Σ1) and N (µ2,Σ2). It has been shown that the classification error
probability pe can be upper bounded as [47]:

pe ≤
√
p1p2e

−B,

where p1 and p2 are the probability of samples belonging to each class and B is the
Bhattacharyya distance:

B =
1

8
∆T (

Σ1 + Σ2

2
)−1∆

+
1

2
ln(

det(Σ1+Σ2

2
)√

det(Σ1) det(Σ2)
),

where ∆ = µ1 −µ2 is the distance between the means of the two distributions. The
first term in B represents the Mahalanobis distance between µ1 and µ2, using Σ1+Σ2

2

as the covariance matrix. On the other hand, the second term is a measure of com-
pactness of the distributions. The larger the det(Σ1) is, the more its corresponding
samples are spread out. In the extreme case of det(Σ1)→ 0, the samples lie on a low
dimensional subspace and B goes to infinity. Thus, even without any knowledge on
µ2, Σ2, p1, and p2, one can increase B by making N (µ1,Σ1) as compact as possible.
A compact N (µ1,Σ1) means less variation along the direction of ∆, which increases
the first term, and a small det(Σ1), which increases the second term. This leads to
an increase in B, and therefore an exponential reduction in pe.

Intuitively, if we make feature vectors belonging to the known classes to occupy
a tiny region in the space, we can detect any small deviations from this structure far
more easily. Union of 1-dimensional subspaces has this property, as each class only
covers a very tiny region, with no volume det(Σ1) ≈ 0, in the space.

First singular vector as robust representative: Union of 1-dimensional sub-
spaces provides us with the additional benefit of robust outlier rejection. In the
context of robust statistics, the first singular vector has been shown to be a great tool
to define robust mean and covariance estimators [45]. In addition, it is well-known
that the first singular vector of data points belonging to the same class represent
the class very well [163]. It can be shown that the first singular vector is robust to
perturbations and outliers as discussed in the following.

Let X l denote an M ×N matrix containing N M -dimensional feature vectors
belonging to class l. These feature vectors are extracted from the penultimate layer
of the neural network and are the input to the fully connected layer. Furthermore,
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Figure 4.3: 3-dimensional representation of the features belonging to the first 3 classes of
CIFAR10 training set, extracted from WideResNet with and without the proposed structure:
(a) features extracted from a plain WideResnet, (b) features extracted WideResnet after
enforcing the proposed structure, and (c) `2-normalized features extracted WideResnet after
enforcing the proposed structure. This shows that the classes have compact representation
in terms of angular distance, which does not depend on the norm of the feature vectors.
The lines represent the direction of the first singular vector corresponding to each class.

consider the autocorrelation matrix of the class l defined asC l = X lX
T
l . Eigenvectors

and eigenvalues of C l are the left singular vectors and the square of singular values
of X l, respectively. Adding noise or adding a new noisy entry in X l perturbs C l,
without changing its dimensions. To quantify the sensitivity of eigenvectors of C l

against perturbations, we use the following remark.

Lemma 1 (from [163]) Assume square matrix C and its spectrum [λi,vi]. Then,
the following inequality holds,

‖∂vi‖2 ≤
√∑

j 6=i

1

(λi − λj)2
‖∂C‖F .

This means that the sensitivity of the ith spectral component, vi, to perturbations,
is inversely related to the gap between its corresponding eigenvalue λi and other
eigenvalues λj, j 6= i. Therefore, we can define the sensitivity coefficient of the ith

eigenvector of a square matrix as si ,
√∑

j 6=i
1

(λi−λj)2 . In general, the first singular

component v1 is the least sensitive direction to the perturbations. This is due to the
fact that, in many scenarios, the gap between consecutive eigenvalues is decreasing
(see [31] and references therein). Under such conditions it has been shown that
s1 < si, ∀i ≥ 2, i.e., v1 is the least sensitive direction. However, we can further
increase the robustness, by enforcing union of 1-dimensional subspaces structure
onto the space of the features extracted from the data points. Specifically, If most of
the energy of the data points in each class is concentrated along its corresponding
first singular vector, that will result in large λ1 and small λi, i ≥ 2 for all the classes.
Therefore, if the feature vectors belonging to the same class lie on a 1-dimensional
subspace, we can use the first singular vector of X l as a robust representative of the
class and to reject outliers.

4.3.1 Enforcing the Structure
In this section, motivated by out theoretical analysis, we propose a simple, yet
effective, method to enforce our desired structure:
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Intraclass Structure: As discussed earlier, we want the feature vectors of each
class to lie on a 1-dimensional subspace. We achieve this by employing cosine similarity
in classification, by modifying the softmax function to predict the membership
probability using:

pln =
e| cos(θln)|∑
l e
| cos(θln)|

, (4.1)

where pln is the probability of membership of feature vector n in class l and cos(θln) =
wT
l xn

‖wl‖‖xn‖
is the cosine similarity between the learned feature vector xn, and the weights

of the last, fully connected, layer corresponding to class l, i.e., . Note that, unlike
other methods which employ angular margin [152, 100], we use the absolute value
of the cosine similarity to compute the class memberships. This is due to the fact
that the subspace membership, and therefore the class membership, does not change
if a vector is multiplied by −1. By employing such activation function, the feature
vectors of each class are aligned to its corresponding weight vector wl. In other
words, class l forms an almost 1-dimensional subspace along the direction of wl in
the feature space. Therefore the final loss function to be minimized is:

L =
1

N

N∑
n=1

− log(
e| cos(θ

∗
n)|∑

l e
| cos(θln)|

), (4.2)

where θ∗n is angle between the nth feature vector and the weight vector corresponding
to its true label.

Interclass Structure: By using the absolute cosine similarity as the classification
criteria, we can ensure the feature vectors are angularly distributed in the space
and form a union of 1-dimensional subspaces. To boost the interclass separation of
the known classes, we need to decrease the interclass similarity, in terms of cosine
similarity. This can be done by regularizing the weights wl,∀l. As mentioned earlier,
by using the cosine similarity as the input of the softmax, the samples of class l are
distributed along the direction of wl. Thus, minimum interclass cosine similarity can
be enforced by ensuring that wls are orthogonal to each other. We can achieve this
by simply initializing the weight matrix with orthonormal vectors and freezing them
during the training. In other words, the feature extractor, i.e., the CNN backbone,
is trained such that it can map each input samples in class l onto a predefined
1-dimensional subspace represented by the direction of wl.

Figure 4.1 shows the overall architecture of the proposed framework. The CNN
backbone maps the input sample onto a low-dimensional space, where the known
classes are represented by a set of orthonormal vectors. The cosine similarity between
the extracted feature from the nth input sample, xn, and the vector corresponding
to the class subspace, wl, is used to determine the class membership probability and
therefore the label.

Figure 4.3 demonstrates the effectiveness of the proposed framework in enforcing
the desired structures. It shows a 3-dimensional embedding, obtained by PCA,
of the feature vectors belonging to the first 3 classes of CIFAR10. The CNN
backbone, WideResnet28, is trained on all the classes of CIFAR10 with and without
enforcing the structure. Figure 4.3(a) shows that the feature vectors belonging
to each class extracted from a plain WideResnet have a fairly isometric Gaussian
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structure, meaning that they are spread out in different direction farly uniformly.
On the other hand, as shown in Figure 4.3(b), the feature vectors extracted from the
same network trained using our proposed technique lie on a union of 1-dimensional
subspaces. We also show the `2-normalized feature vectors in Figure 4.3(c), since
the class membership probability exploits cosine similarity, which is independent of
the norm the feature vectors. This further shows the effectiveness of the proposed
technique in enforcing the desired structure.

4.4 Out-of-distribution Detection Test

In this section, we discuss how we can exploit the desirable features of the proposed
structure, namely compactness and robustness, to detect OOD samples. Assuming
that the feature vectors belonging to the known classes lie on a union of exactly
1-dimensional subspaces, i.e., their corresponding region in the feature space has no
volume. Therefore, OOD samples will be inside this region with probability 0. More
specifically, probability of OOD samples being in the region corresponding to any of
the known classes, which is probability of false negative pfn, is zero. This can be
seen using the Bhattacharyya bound, discussed in Section 4.3:

pfn ≤ pe ≤
√
p1p2e

−B.

Thus, if we make the known classes occupy a tiny region with no volume in
the space, we will have B →∞ and therefore pfn → 0. We use this property and
classify samples as OOD if they lie inside the region corresponding to any of the
known classes with probability 0. More specifically, given an input instance in, this
probability can be estimated in robust manner, using the singular vectors of each
class, as:

p(φn ≤ φ∗|in),

where φn is defined as:

φn = min
l

arccos(
|xTnv

(l)
1 |

‖xn‖
), (4.3)

which is the minimum angular distance of the test feature vector xn, corresponding
to in, with the first singular vector of any of the classes. We name this measure
as spectral discrepancy. φ∗ is a critical spectral discrepancy and defines the region
belonging to the known classes. Smaller values of φ∗ corresponds to more compact
regions. In the extreme case of φ∗ = 0, the input instance in will be detected as
OOD, if it does not have the exact same direction as one of the singular vectors.
v
(l)
1 can be computed using the extracted features from training samples of class l.

Time complexity order of computing the first singular vector is linear w.r.t both the
number and the dimension of the feature vectors [38, 10].
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Figure 4.4: 3-dimensional representation of the features extracted from a plain WideResNet
(top row) and the same network with our proposed structure (bottom row) trained on
CIFAR10. (left column) in-distribution samples (CIFAR10 test set) that are close to the
first 3 classes of CIFAR10 training set, and (right column) out-of-distribution samples
(TinyImagenet) that are close to the same classes. The lines in the bottom row represent
the direction of the first singular vector corresponding to each class. Our proposed structure
can distinguish between the in- and out-of-distribution samples more effectively, i.e., OOD
samples have significantly larger angular distance to their closest singular vector.

To estimate p(φn ≤ φ∗|in), we use Monte Carlo sampling:

p(φn ≤ φ∗|in) =

∫ φ∗

0

p(φn|in)dφn

≈ 1

T

T∑
t=1

I(φtn < φ∗),

(4.4)

where T is the number of the Monte Carlo samples and φtn is the spectral discrepancy
of the tth Monte Carlo sample, given input instance in. Furthermore, I(.) is the
indicator function and takes value 1 if φtn < φ∗ and 0 otherwise. To obtain the
samples we use the practical method proposed in [51, 50], which exploits dropout at
test time to draw samples. φ∗ is the decision parameter, which can be set to achieve
a problem specific precision and/or recall requirements using different methods such
as [99] or by using the training set (as will be discussed in Section 4.5).

There are some similarities between our approach and some of previous OOD
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Figure 4.5: Histogram of the spectral discrepancy of the feature vectors corresponding to
CIFAR10 test set (in-distribution) and TinyImagenet (out-of-distribution). The feature
vectors are extracted from a WideResNet CNN backbone trained by enforcing the proposed
structure.

detection frameworks, where the outlier samples are detected by computing how
much they follow the structure of the inlier training samples. However, as discussed
earlier, our enforced structure is more robust to perturbations in the training set.
Furthermore, the first singular vector is a better representative of the class structure
[163, 1], and therefore our proposed spectral discrepancy based on the first singular
vector is a more reliable measure.

Figure 4.4 demonstrates the effectiveness of employing spectral discrepancy in
distinguishing between in- and out-of-distribution samples. Similar to Figure 4.3,
this figure shows a 3-dimensional representation of the features that are close to the
first 3 classes of the CIFAR10, meaning that the classifier would classify them as one
of these classes. The top row shows the features extracted from a plain WideResNet,
without enforcing any structure. Also, comparing ID samples (Figure 4.4(a)) with
OOD samples (Figure 4.4(b)), it is clear that both ID and OOD samples follow a very
similar structure, which makes OOD detection more difficult. On the other hand, the
bottom row illustrates the `2-normalized features extracted from the WideResNet
trained using our proposed structure. We plot the `2-normalized features because
our proposed spectral discrepancy in (4.3) only depends on the normalized features,
i.e., xn

‖xn‖ . Comparing the ID (Figure 4.4(c)) and OOD (Figure 4.4(d)) samples, it
is easy to notice that most of the OOD samples have significantly larger angular
distance to their closest singular vector, compared to the ID samples, which can be
exploited to detect them more accurately.

To further demonstrate the discriminative ability of the proposed measure, Figure
4.5 compares the histogram of the spectral discrepancy of samples belonging to the
ID (CIFAR10 test set) and OOD (TinyImagenet) datasets. It is evident that the
spectral discrepancy of the ID samples are closer to 0, while it is very unlikely for
OOD samples to have a spectral discrepancy smaller than a critical value.
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Algorithm 1: Out-of-distribution detection using spectral discrepancy

Input: In-distribution training dataset, Number of classes L, OOD and
in-ditribution test dataset;

Output: OOD measure ci for each sample of in-distribution and OOD
datasets;

WideResNet and ResNet training;
while Training do

Enforce intraclass structure: energy of each class L lies on a subspace
Freeze weights in the last FC layer such that
‖WW T − IL‖ = 0;

Loss L = 1
N

∑N
n=1− log( e

| cos(θl∗nn
)|∑

l e
| cos(θln)| );

end
while Test do

Extract features for training set and compute v
(l)
1 for each class in L

Sample T feature vectors xtn, t = 1, . . . , T for the nth test sample
Compute φtn for each sample xtn
Verify if p(φn ≤ φ∗) = 0

end

4.5 Experiments
In this section, experimental settings and results are discussed. We report the
details of our setup, namely in- and out-of-distribution dataset pairs, neural network
architecture and evaluation metrics. We show how our method compares with respect
to current state-of-the-art methods.
Neural Network Architecture: We deploy Wide ResNet [164] with depth 28,
width 10, and dropout rate 0.3 as the backbone architecture for our method. All the
netwrok parameters are set as the original implementation in [164], except the last
layer which is modified as discussed in Section 4.3. Stochastic gradient descent (SGD)
is used to train the network for 200 epochs, by enforcing the structure discussed in
Section 4.3. At the beginning of the training, the learning rate is set to 0.1 and it is
then dropped by a factor of 10 at 50% and 75% of the progress. At the test time,
unless otherwise stated, we draw 50 Monte Carlo samples to estimate p(φn ≤ φ∗)
and to detect the OOD samples.
Datasets: We train the models on CIFAR-10 (contains 10 classes) and CIFAR-100
(contains 100 classes) [81] datasets, which respectively consist of 50,000 images for
training and 10,000 images for testing, with an image size of 32× 32. The testing
set is used as the in-distribution testing samples. For the out-of-distribution testing
samples, we use the following datasets:

1. TinyImagenet (TIN). The Tiny ImageNet dataset [43] consists of 10,000 test
images of size 36×36 belonging to 200 different classes, which are sampled from
the original 1,000 classes of ImageNet [43]. As in [94, 151] we construct two
datasets from TinyImagenet: TinyImagenet-crop (TINc) and TinyImagenet-
resize (TINr), by either randomly cropping or downsampling each image to a
size of 32× 32.
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Training OOD FPR at Detection AUROC AUPR In AUPR Out F1 Score
dataset dataset 95% TPR Error

↓ ↓ ↑ ↑ ↑ ↑

CIFAR10

TINc 11.1 8.0 97.2 97.7 96.5 91.7
TINr 7.0 6.0 98.3 98.6 98.0 94.0

LSUNc 10.5 7.6 97.5 98.0 97.07 92.2
LSUNr 4.2 4.1 99.0 99.2 98.8 95.8
UNFM 0.4 0.5 99.9 99.9 99.9 99.5
GSSN 0.4 0.5 99.9 99.9 99.9 99.45

CIFAR100

TINc 45.1 21.5 86.8 88.4 85.0 78.5
TINr 54.8 25.4 82.5 83.7 81.1 74.9

LSUNc 48.0 21.7 85.6 87.0 83.0 78.1
LSUNr 48.6 22.9 85.0 86.7 83.3 76.7
UNFM 8.0 6.3 98.0 98.50 97.6 93.5
GSSN 13.3 8.7 94.8 96.4 91.5 90.7

Table 4.1: Performance of the proposed framework for distinguishing in- and out-of-
distribution test set data for the image classification task, using a WideResnet with
depth 28 and width 10. ↑ indicates larger value is better and ↓ indicates lower value
is better.

2. LSUN. The Large-scale Scene Understanding dataset (LSUN) [] consists of
10,000 test images from 10 different scene categories. Like before, we randomly
crop and downsample the LSUN test set to construct two datasets LSUN-crop
(LSUNc) and LSUN-resize (LSUNr).

3. Gaussian Noise. The RGB values of every pixel in this synthetic dataset
are sampled from a Gaussian distribution with mean 0.5 and variance 1, and
then clipped into the range [0, 1]. Similar to previous datasets, this OOD set
contains 10,000 32× 32 images.

4. Uniform Noise. 10,000 32× 32 images are generated by sampling the RGB
values of every pixel from a uniform distribution on [0, 1].

Baselines: We compare the performance of the proposed method with recent
state-of-the-art techniques such as [102, 113, 161, 65]. These methods follow a similar
settings and assumptions as ours. For a fair comparison, we do not compare with
methods that use extra information, such as OOD samples, for either training or
hyper-parameter tuning (e.g., [94, 162, 151, 84]).
Evaluation Metrics: We measure the effectiveness of our method in detecting
in- and out-of-distribution samples using the same metrics as in [94, 151] . We use
TP, TN, FP, FN to indicate true positives, true negatives, false positives, and false
negatives, respectively.

1. FPR at 95% TPR indicates the false positive rate (FPR) at 95% true positive
rate (TPR). True positive rate is defined as TPR = TP / (TP+FN), and the
false positive rate (FPR) is defined as FPR = FP / (FP+TN).

2. Detection Error indicates the minimum misclassification probability. It
is computed by the minimum misclassification rate over all possible critical
spectral discrepancy values φ∗.

3. AUROC, defined as the Area Under the Receiver Operating Characteristic
curve, is computed as the area under the FPR against TPR curve.
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OOD dataset TINc TINr LSUNc LSUNr
In distribution dataset: CIFAR10
Metric: AUROC
SoftMax Pred. [65] 92.9 91.0 94.5 93.9
Ours 97.2 98.3 97.5 99.0

In distribution dataset: CIFAR10
Metric: F1 score
Counterfactual [113] 0.636 0.635 0.650 0.648
CROSR [161] 0.733 0.763 0.714 0.731
Ours 0.917 0.940 0.922 0.958

In distribution dataset: CIFAR100
Metric: Detection Error
Softmax Pred. [65] 35.8 42.1 39.5 43.6
LSLTR [102] - 29.9 - -
Ours 21.4 25.4 21.7 22.9

Table 4.2: A comparison of Out-of-Distribution detection results for different in- and
out-of-distribution datasets. Results that surpass all competing methods are bold.

Structure In Disribution OOD Detection
Accuracy (%) AUROC

No 96.0 95.2

Yes 95.4 98.3

Table 4.3: Ablation study of the proposed framework. The networks are trained on
CIFAR10 and tested on CIFAR10 (in-distribution) and TINr (out-of-distribution). Spectral
discrepancy is used in all the variants as the detection score.

4. AUPR In, defined as the Area Under the Precision-Recall curve, is computed
as the area under the precision = TP / (TP+FP) against the recall = TP /
(TP+FN) curve. For AUPR In, in-distribution images are treated as positive.

5. AUPR Out is similar to the metric AUPR-In. Opposite to AUPR In, out-of-
distribution images are treated as positive in AUPR Out.

6. F1 Score is the maximum average F1 score over all possible critical spectral
discrepancy values φ∗.

Table 4.1 summarizes the performance of the proposed technique over different
combinations of the ID and OOD datasets. As expected, the synthetic OOD samples
are easier to detect and our method consistently achieves F1 score of over 90% on
these datasets. Furthermore, it is evident that our results are consistent over different
real OOD datasets, meaning that our method can perform well for different types of
OOD samples. To put these numbers into context, Table 4.2 compares our results
with recent OOD detection techniques. Our proposed method is able to consistently
outperform the competing methods over different datasets and evaluation metrics.

Table 4.3 investigates the impact of enforcing structure the on OOD detection
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Figure 4.6: Area Under ROC curve using the proposed framework versus the number of
the Monte Carlo samples used for estimating p(φn < φ∗). The networks are trained on
CIFAR10 and CIFAR100 and tested on TINr as the OOD dataset.

using spectral discrepancy. AUROC is calculated by using spectral discrepancy for the
different variants. This table shows that while enforcing the proposed structure hurts
the in-distribution classification accuracy and does not improve the representation
ability of the network, it is an effective technique to distinguish between ID and
OOD samples. This further confirms our hypothesis that the structure of the samples
in the feature space plays an important role in OOD detection and the structure
produced by conventional models is not necessarily suitable for this task.

Figure 4.6 examines the number of Monte Carlo samples necessary for a good
estimation of p(φn < φ∗). It shows that having as low as 10 samples can improve
the results significantly. However, as expected, having more samples always leads to
better estimation and better performance. It is also worthwhile to mention that since
the samples can be drawn concurrently, drawing more samples does not increase the
running time much.

On the other hand, Figure 4.7 demonstrates the impact of the proposed training
scheme on the structure of the feature vectors. This figure shows the percentage
of the energy concentrated along each singular vector averaged over all the classes.
The energy ratio along the ith singular vector is calculated as λi∑

j λj
. As discussed

in Section 4.3, our goal is to make the feature vectors of each class to lie on a 1-
dimensional subspace and to make the gap between the first eigenvalue λ1 and other
eigenvalues λj, j > 1 as large as possible. Figure 4.7 illustrates that the proposed
training scheme can effectively achieve this by increasing the energy ratio along
the first singular vector and reducing the energy concentrated along the rest of the
singular vectors. Consequently, the first singular vector of each class will be more
robust to outliers and a better representative of the class, which in turn makes the
proposed spectral discrepancy a more reliable OOD detection measure.

Finally, as a guideline to set the value of the critical spectral discrepancy φ∗,
Figure 4.8(a) shows the histogram of the spectral discrepancy for samples belonging

98



10 0 10 1 10 2
10 -6

10 -4

10 -2

10 0

(a) CIFAR10

10 0 10 1 10 2
10 -6

10 -4

10 -2

10 0

(b) CIFAR100

Figure 4.7: Energy Ratio of the training samples along the first 100 singular vectors
of features extracted using plain WideResNet and the same network with our proposed
structure trained on (a) CIFAR10 and (a) CIFAR100. Energy ratios are averaged over all
the classes. The proposed structure increases the energy along the first singular vector
from 98.3% to 99.9% for CIFAR 10 and from 91.8% to 99.8% for CIFAR100.
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Figure 4.8: (a) Empirical probability distribution of the spectral discrepancy of samples
belonging to CIFAR10 (in-distribution) and different out-of-distribution datasets. (b)
out-of-distribution detection performance of the proposed method in terms of detection
error for different values of critical spectral discrepancy φ∗. Both the spectral discrepancy
histogram and the best φ∗ do not change much for different datasets.
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to CIFAR10, as the ID dataset, and different real OOD datasets. It is evident that
samples from both the testing and training set of the ID dataset follow a very similar
behaviour. Thus, the training set can be used to estimate the possible interval of
spectral discrepancies for the ID samples. For instance, about 98% of the samples
in CIFAR10 have a spectral discrepancy of less that 2 degrees. On the other hand,
Figure 4.8(b) demonstrates the detection error for different values of the critical
spectral discrepancy φ∗. This figure shows that best detection error is achieved by
setting φ∗ to a value in range [1.3, 2] degrees, regardless of the OOD dataset. Hence,
this figure shows that φ∗ is not sensitive to the OOD dataset and can be set using
only the training set. However, it should be mentioned that in general the best value
for φ∗ depends on the task at hand and the precision and/or recall requirements. As
mentioned earlier, φ∗ can also be set by many of the threshold estimation techniques
such as [99].

4.6 Conclusions
In this chapter, we have argued how an anomaly detection problem can be posed
as an out of distribution detection in the deep learning context. We argue that
OOD samples can be detected far more easily if the training data is embedded into
a low-dimensional space, such that the embedded training samples (or features)
lie on a union of 1-dimensional subspaces. We show that such embedding of the
in-distribution (ID) samples provides us with two main advantages. First, due to
compact representation in the feature space, OOD samples are less likely to occupy
the same region as the known classes. Second, the first singular vector of samples
belonging to a 1-dimensional subspace is a robust representative of them. Our
method does not require any extra information for hyperparameter tuning and does
not rely on sample generation or reconstruction for OOD detection. The superiority
of our proposed method is demonstrated by achieving new state-of-the-art results on
various benchmark datasets.
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5 Conclusions and Future Direc-
tions

In this work, we studied three main issues in crowd analysis, namely: (1) pedestrian
trajectory prediction, (2) crowd simulation, and (3) anomalies detection as an
out-of-distribution problem.

In the field of trajectory prediction, we proposed two approaches, a Group and
Obstacle LSTM and a Group GAN. These methods focused on modeling the rela-
tionship between socially related and unrelated pedestrians. We showed how we
can improve the results in the prediction task through better modeling of these
relationships and of the interactions between pedestrians and obstacles around them.
In the future development, we plan to extend the ability of our framework for
longer-term predictions. The biggest limitation right now is the availability of long
term footages and trajectories of pedestrians. This is due to the nature of fixed
surveillance cameras, which have a limited Field of View, which cannot capture the
trajectory of pedestrians passing by for a long period of time. We plan to collect
a dataset of pedestrian trajectories in ego-vision. Using an ego-vision perspective
would allow capturing long trajectories of the pedestrian carrying the camera while
also providing a more human-like perspective on the interactions between who carries
the camera and other pedestrians.

In the field of crowd simulation, we proposed two methods for improving the
modeling of the high-level behavior of crowds. The first proposed data-driven
approach to crowd simulation still relies on the Social Force Model for the local
dynamics and a vector field for the global dynamics. Moreover, we proposed Virtual
crowds, a deep-learning-based approach that showed how LSTM cells can be used to
learn and simulate the motion of pedestrians. Then, we discussed how the appearance
model of a virtual scene should be with respect to a real one. In order to guarantee
the transferability between the simulated scenario and the real world, we need to
account for a realistic camera capturing the scene. We presented Virtual Camera,
which discussed how image sensors and lenses should be modeled in a simulated
scenario. Finally, we showed how we can leverage on our simulated environment to
deploy and test a crowd surveillance system. We deployed a network of heterogeneous
cameras in a simulated environment, discussing different coverage policies and their
trade-off. In future work, we plan to leverage our models of crowd dynamics to
embed them in a more complex environment. A strong interest in the simulator field
comes from the automotive industry, where there is a need for creating simulated
scenarios to train and test self-driving cars. We plan to incorporate our crowd models
in such a scenario, in order to have a more realistic and semantically rich simulation.

In the field of anomalies detection, we have presented a method for Out-of-
distribution sample detection based on images. The main limitation of our approach
is that it is image-based. Anomalies detection in crowded scenes should be performed
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on videos rather than on images. Since our proposed approach directly operates in
the feature space and it is agnostic to the input of the neural network, we plan to
apply it to features extracted from video to try to detect anomalies in video footage
of crowds.
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