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The important thing is not to stop questioning.
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ABSTRACT

This thesis is concerned with effects of spin polarization in neutron stars. In par-

ticular, we focus on static and dynamic properties of dense neutron matter. We

use two different kind of potential to perform our studies: the phenomenological

two-body Argonne V8’ potential plus the three-body Urbana IX force and a mod-

ern local version of chiral effective potential up to next-to-next-to-leading order

(N2LO).

Estimates are calculated for the neutrino mean free path in partially spin-

polarized neutron matter starting from Quantum Monte Carlo (QMC) simula-

tions and using mean-field approaches to compute the response function in the

longitudinal and transverse channel. We also compute magnetic susceptibility of

dense neutron matter from accurate QMC calculations of partially spin-polarized

systems. Twist-averaged boundary conditions (TABC) have been implemented to

reduce finite-size effects. In the results, we also account for the theoretical uncer-

tainty coming from the chiral expansion scheme.

These results may play a role in studying high-energy phenomena such as neu-

tron star mergers and supernova explosions, although they have been computed

only at T= 0 K.





INTRODUCTION

M atter under extreme conditions has always been a challenge to test theo-

ries in physics. To this extent, neutron stars are unique laboratories to

test physics from gravitational to nuclear theories, but also weak processes. Neu-

tron stars (NS) have a radius of ∼ 10− 13 km, and masses varying from 1.2− 2.2

solar masses (M�).

The equation of state (EOS) is the relation between pressure and density, and it

is the key ingredient to describe neutron stars. In fact, for a given EOS, Tolman-

Oppenheimer-Volkov (TOV) equations, describing the structure of a non-rotating

star, can be solved. The results are mass-radius (M-R) relations, which can be

directly compared to neutron stars observations. Different models of nuclear in-

teractions and theoretical approaches give different EOS. One strict constraint on

the EOS is that they need to reproduce the maximum measured mass of NS. The

maximum measured mass is 2.14+0.10
−0.09 M� [1]. Direct and indirect mass measure-

ments are quite accurate, while radii can not be precisely measured (both directly

and indirectly). Only some interactions are ruled out in this analysis.

New interest in the field was sparkled by the first detection of gravitational waves

(GW) on September 14, 2015 (GW) from a black-hole merger event [2]. A. Einstein

already predicted gravitational waves in the formulation of general relativity in

1916 [3], but he already understood that they would have been weak. The weak-

ness of the signal required ∼ 100 years to detect and measure GW signals. Not

only black holes but also NS mergers generate sufficiently strong gravitational

waves that could be detected. Indeed one binary neutron star merger has been de-

tected on August 17, 2017 (GW170817) [4], and a second a NS merger observation

has recently been announced [5]. Gravitational waves detection of NS mergers

might put new constraints on the equation of state (EOS), especially at densi-

ties beyond saturation. New observations are expected, and some candidates of
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binary NS have been announced in the third run of LIGO-Virgo collaboration ob-

servation, and details of one observation have recently been released.

The possibility of describing matter at densities up to ∼ 5− 10 times the satura-

tion density ρ0 = 0.16 fm−3 by means of non relativistic interacting hadrons is

still questionable. Nuclear interactions employed in conventional nuclear physics

are based on reliable experimental data on atomic nuclei and nucleon scattering.

No experimental data are available as such high densities and can not be obtained

from terrestrial experiments. The description of matter at such high densities is

still an open question, and only different models can be proposed. Some theories

hypothesize the transition to quark matter, other the onset of pion or kaon con-

densates or after some critical densities, the onset of strange baryons.

A last aspect is the huge surface magnetic fields that have been measured in some

neutron stars. Due to their nature of neutron stars with high magnetic fields, they

have been called magnetars. Magnetic effects on matter in magnetars interiors are

mostly unknown, since a precise determination of the magnetic field is extremely

difficult. This even more exotic state of matter is the main topic of this work.

The present work is organized as follows:

In Chapter 1 we briefly present the structure of neutron stars, we give an

overview of theoretical efforts to describe NS and the state-of-the-art experimen-

tal observations. In the last part we introduce magnetars.

In Chapter 2 nucleon-nucleon interactions are presented. In particular phe-

nomenological Argonne V8′ (AV8′) with Urbana IX (UIX) three-body force and

local chiral effective field theory potentials (EFT) up to next-to-next-to-leading-

order (N2LO) are discussed.

In Chapter 3 quantum Monte Carlo (QMC) methods used to compute ground

state properties are introduced. Modeling of infinite matter is discussed, focusing

on the problem of boundary conditions. We introduce mean-field approximation,

namely time-dependent local spin density approximation (TDLSDA), to study ex-

cited states since at the moment we can only partially treat excited states within

QMC.

In Chapter 4 we present the results of partially spin-polarized neutron mat-
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ter. We computed EOS, magnetic susceptibility, and compressibility using QMC

methods. The calculations of the response functions and the evaluation of the

neutrino mean free path (NMFP) are performed within TDLSDA.

In Chapter 5 the conclusions and future developments of our work are dis-

cussed.
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1
NEUTRON STARS AND MAGNETARS

I n the first part of this chapter, we give a brief overview of the history of

neutrons stars, from prediction to discovery. Neutron stars were first hy-

pothesized theoretically by W. Baade and F. Zwicky in 1933 [6, 7] to explain the

energy release in the observations of supernova explosions. As the name suggests,

neutron stars are mainly made by neutrons. Neutron was discovered just a year

earlier by J. Chadwick [8, 9]. Another important step towards the understanding

of these theoretical objects was independently made by R.C. Tolman [10], and J.R.

Oppenheimer, and G.M. Volkov [11] in 1939. They derived general relativistic

equations of hydrostatic equilibrium for a spherically symmetric distribution of

matter. In the simple model of non-interacting strongly degenerate relativistic

neutrons, they obtained a maximum (gravitational) mass of 0.71 M� for a static

neutron star. Theorists developed different models over the years to describe neu-

tron stars, including the equation of state (EOS) for dense matter, superfluidity

in neutron star crust, and neutrino emissions from neutron stars. The inclusion

of nuclear forces gave rise to stiffer EOS, and the new predicted maximum mass

increased up to ∼ 2.0 M�.

The first empirical observation of NS was due to J. Bell, a graduate student super-

vised by A. Hewish, who discovered a weak variable radio source in 1967. The

measure of the period of the periodic pulses led to the idea of an artificial signal.

Indeed their first denomination was LGM (Little Green Men) due to the incredi-

ble stability of their period. After this first discovery of rapidly pulsating source,

the pulsar, many other pulsars were discovered and observed. In 1968 Gold de-

scribed the origin of pulsars as rotating magnetized neutron stars, ruling out the
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neutron stars and magnetars

previous models of stellar oscillations (either neutron stars or white dwarfs). We

now describe the current theoretical models of the structure of neutron stars and

their relations to observations.

1.1 neutron stars structure

Neutron stars are the densest stars in the universe. They have a radius of

∼ 10− 13 km, and masses varying from 1.2− 2.2 solar masses (M�). Neutron

stars can be divided into four main internal regions: outer crust, inner crust,

outer core, and inner core, as shown in Figure 1.1.

Each region has its specific composition and properties. From the outer layer to

the interior the density increases up to ∼ 5− 10 times nuclear saturation density

(ρ0 = 2.67× 1014 g/cm3 = 0.16 fm−3).

Atmosphere. An external thin hot plasma layer where thermal radiation is

emitted. Surface temperature, magnetic field, and chemical composition are fun-

damental ingredients that can be extracted from the thermal radiation. Reliable

theoretical models of the thermal radiation are needed to interpret observation of

the thermal component and infer radius and mass of the neutron star.

Outer crust. This layer is a few hundred meters thick, and it is composed

of ionized atoms and free electrons. It extends from the atmosphere up to the

neutron-drip density (ρ = ρND ≈ 4× 1011 g/cm3). Beta captures are favored in-

creasing density, and neutron-rich nuclei are formed in the deeper layers.

Inner crust. It is a 1-2 km deep and very dense layer of neutron-rich nuclei and

free electrons. The densities ranges from ρND up to ∼ 0.5ρ0. At these densities,

we have a transition to lower dimensionality of matter from three-dimensional

(3D) to one-dimensional (1D) before an eventual transition to uniform nucleonic

matter. This series of transitions is known as nuclear pasta. The neutron fluid of

the crust could probably form a superfluid.

Outer core. The core (inner and outer) constitutes the main part of the neutron

star. It is ∼ 9 km deep and constitutes up to 99% of the mass of the star. The den-

sity range of the outer part is from 0.5ρ0 to 2ρ0, and this layer is several kilometers

6



1.1 neutron stars structure

[22], many-body perturbation theory [23], the coupled-cluster method [24], and Quantum
Monte Carlo methods [25, 26]. In this paper, we will focus on recent results obtained with the
Auxiliary Field Diffusion Monte Carlo (AFDMC) method, which was originally introduced
by Schmidt and Fantoni [27], and is ideally suited to study neutron matter [28, 29].

The main idea of QMCmethods is to evolve a many-body wave function in imaginary-time:

( ) [ ] ( )U U: � � :Hexp , 2v

where Ψv is a variational ansatz of the many-body wave function and H is the Hamiltonian
describing the system. In the limit of U l d, Ψ approaches the ground-state of H. The
evolution in imaginary-time is performed by sampling configurations of the system using
Monte Carlo techniques, and expectation values are evaluated over the sampled
configurations. For more details see for example [29–34].

Figure 2. A summary of the microphysics of neutron stars. In the upper left of the
figure, the observational limits on rotation frequency [15, 16] and the magnetic field
[17, 18] are given. The upper right panel shows the composition of the various layers.
The lower left shows a schematic representation of the crust, where the dark blue color
represents nuclei and the light blue color represents free neutrons. The limits on radius
from x-ray observations are shown near the center [19]. Limits on the tidal
deformability, moment of inertia, energy density in the core, and baryon density in
the core [20] are shown in the lower right panel. This figure was inspired by a previous
version by Dany Page available at http://astroscu.unam.mx/neutrones/NS-Picture/
NStar/NStar.html.

J. Phys. G: Nucl. Part. Phys. 46 (2019) 103001 Topical Review

4

Figure 1.1: A summary of the microphysics of neutron stars. In the upper left of the

figure, the observational limits on rotation frequency [12, 13] and the magnetic

field [14, 15] are given. The upper right panel shows the composition of the

various layers. The lower left shows a schematic representation of the crust,

where the dark blue color represents nuclei, and the light blue color represents

free neutrons. The limits on the radius from x-ray observations are shown near

the center [16]. Limits on the tidal deformability, moment of inertia, energy

density in the core, and baryon density in the core [17] are shown in the lower

right panel (from Ref. [18]).

thick. Matter is composed of nucleons, electrons, and muons (the so-called npeµ

composition). The fraction of protons in this region is small compared to that of

neutrons (. 10%).

Inner core. This region is still an open question. Central densities can reach
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∼ 5− 10 times nuclear saturation density. Different hypothesis have been formu-

lated for matter at such high densities: onset of hyperons (starting with Σ− and

Λ), pion (π) or kaon (K) condensation, or a phase transition to quark matter.

Another hypothetical class of compact stars is strange quark matter (SQM) stars.

In this model, quark matter has just up, down, strange quarks, since charm, top,

and bottom quarks are too massive to appear. Their existence relies on the con-

jecture that the absolute ground state of hadronic matter is quark matter.

1.2 neutron stars: observations and phe-

nomenology

In the first part of this section, we review state-of-the-art mass and radii obser-

vations, while the second part is devoted to the connection between gravitational

waves observations and the equation of state.

Mass measurements. Currently, precise measurements of NS masses rely on

the tracking of the orbital motions. Although around 2500 pulsars are known [19],

only 10% are in binary systems that can be measured, while isolated neutron

stars can not. The arrival times of the pulsation are measured to precisely infer

the mass of the neutron star. Within Newtonian gravity, the orbital motion is

described by five Keplerian parameters. They can be obtained by fitting some

models to observations of spin periods. The five Keplerian parameters, which de-

scribe orbital motion in Newtonian gravity, are not sufficient to derive the mass of

the NS. Since binary pulsars are compact systems, general relativistic effects can

be observed. The measure of at least two relativistic effects is needed to determine

the measure of the NS mass. Only for a few systems these effects can be precisely

measured. In other cases, empirical relations between binary period and mass

of the companion or optical detection of the companion or other approaches to

restrict the physical parameters of the pulsar are used to derive the NS mass. Fig-

ure 1.2 is a summary of NS observation up to 2012. New observations regarding

the maximum measured mass of NS are discussed below.
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Figure 1.2: Measured neutron star masses with 1-σ errors (from Ref. [20]). References in

parentheses following source names refer to the bibliography of Ref. [20].

Radius measurements. The most reliable estimates of NS radii are derived

from observations of thermal emissions from the surface of the star (either spec-

troscopic or timing approaches). The extracted value is the so-called radiation

radius R∞ = R(1− 2GM/Rc)−1/2. Despite many efforts, uncertainties coming

from these methods are quite significant.
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neutron stars and magnetars

There are no precise simultaneous measurements of mass and radius for any neu-

tron star from experiments.

One recent result of the NICER mission provides the most precise measure of the

radius of a neutron star so far. The pulsar PSR J0030+0451 has an inferred mass

of 1.34+0.15
−0.16M� and an equatorial radius of 12.71+1.14

−1.19 km [21, 22, 23]. These un-

certainties on the radius measurement are still quite significant to provide useful

constraints of the EOS and on the nuclear microphysics. As we will see below,

more precise measurements on the radius of the NS would provide a significant

improvement on the different nuclear EOS (see Figure 1.4).

The theoretical nuclear key ingredient is the equation of state (EOS). The mi-

crophysics described in the EOS is directly linked to the macroscopic observation

of mass and radius of NS via the Tolman-Oppenheimer-Volkoff (TOV) equations

(Figure 1.3). The EOS can be written either in terms of energy per particle or

pressure as a function of the density. The relation between pressure and energy

per particle comes from the standard thermodynamical definition of pressure:

P = −
(
∂E

∂V

)

N

, (1.1)

where P is the pressure, E is the total energy, and N indicates the total number

of particles. The TOV equations for a spherically symmetric star [10, 11] are:

dP

dr
= −G

[
m(r) + 4πr3P/c2

] [
ε+ P/c2

]

r [r− 2Gm(r)/c2]
,

dm(r)

dr
= 4πεr2 , (1.2)

where G is the gravitational constant, c is the speed of light, ε is the energy-

density (ε = ρ(E +mN), where mN and ρ are the neutron mass and the number

density respectively), m(r) is the enclosed mass, and r is the radius; the particle

density ρ is related to energy density ε and the pressure P by P = ρ2(∂E/∂ρ).

These equations have to be integrated with proper boundary conditions to obtain

the M-R relations. Illustrative results for schematic EOS and correspondence to

M-R relation are reported in Figure 1.3, while results for realistic EOS within

different theoretical approaches and choices of nuclear interactions are shown in

Figure 1.4.

As discussed in the previous section, we have different models describing the

inner core of NS. Here we report the main different interactions and approaches,
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corresponding (M, R) points. The numbers labeling hadronic arrows denote central baryon densities nc /ns ,
and those labeling strange quark matter arrows indicate εc /εs . The uppermost arrows in each case mark the
maximum mass configurations.

For the case in which γ ∼ 4/3, valid for hadronic matter at densities below ρs /3 (where the
pressure is dominated by relativistic degenerate electrons), M ∝ K 3/2 R0, which is independent
of radius. At extremely large radii (R ! 300 km), the mass starts to increase as configurations
approach the white dwarf (WD) range (such configurations have much larger proton concentra-
tions). Thus, there is a minimum stable mass for neutron stars, which is approximately 0.09 M $

(11), when R ∼ 200–300 km.
For higher densities, in the range εs − 3εs , the typical behavior of hadronic EOSs is γ ∼ 2

(Figure 2). In this case, the scaling becomes R ∝ K 1/2 M 0, and the radii are nearly independent
of mass.

In the hadronic case, both asymptotic behaviors are apparent in Figure 1, and the transition
between them occurs near nc ∼ ns . At high densities, general relativity becomes dominant and
causes the formation of a maximum mass. In the case of SQM stars at low densities, the large value
of B essentially results in γ → ∞ so that R ∝ K 0 M 1/3, a behavior also shown in Figure 1.

An interesting feature of Figure 1 is that the SQM and hadronic EOSs predict very similar
M−R trajectories in the range 1.5 < M /M $ < 2. It would clearly be difficult, on the basis of
observational M−R data alone, to distinguish these trajectories. This observation suggests that
other data, such as neutron star cooling information (12), will be necessary to confirm the existence
of SQM stars.

It is useful to display M−R curves for various realistic EOSs, as demonstrated in Figure 3 for
several of the EOSs plotted in Figure 2. Those hadronic EOSs with extreme softening (due to
a kaon or pion condensate, high abundances of hyperons, or a low-density quark-hadron phase
transition) do not have pronounced vertical segments, but they also do not allow the existence of a
2-M $ neutron star (see Section 3) and, therefore, cannot be physical. The M−R curves that have
attained sufficient mass have vertical segments with radii varying from 10 to 16 km (the extreme
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Figure 1.3: (a) Schematic hadronic (solid curves) and pure strange quark matter (dashed

curves) equations of state. (b) The corresponding M−R relations. Arrows

connect specific central energy density and pressure values with their corre-

sponding (M, R) points. The numbers labeling hadronic arrows denote central

baryon densities ρc/ρ0, and those labeling strange quark matter arrows indi-

cate εc/ε0. The uppermost arrows in each case mark the maximum mass

configurations (from Ref [20]).

some examples of which are summarized in Table 1.1.

For plain npeµ nuclear matter:

• potential-method EOSs (PAL1-6 [24] and SLy [25]);

• variational-method EOSs (AP1-4, aka APR1-4 [26] and WFF1-3 [27]);

• relativistic Brueckner-Hartree-Fock EOSs (ENG [28] and MPA1 [29]);

• relativistic mean-field theory EOSs (FSU [30] and MS0-2 aka MS1-2 and

MS1b, which is identical to MS1 except with low symmetry energy [31].).

For models with hyperons, kaon condensation, and quarks:

• relativistic mean-field theory EOSs with hyperons (H1-7 [32] and GM1-

3 [33]);

11



neutron stars and magnetars

• relativistic mean-field theory EOSs with kaons (GS1-2 [34]);

• quark matter (SQM1-3 [35]).

For easier reading of the labeled EOS, we summarize the approaches and the

compositions in Table 1.1.

Symbol Approach Composition

PAL1-6 Potential-method np

SLy Potential-method np

AP1-4 (aka APR1-4) Variational-method np

WFF1-3 Variational-method np

ENG Relativistic Brueckner-Hartree-Fock np

MPA1 Relativistic Brueckner-Hartree-Fock np

FSU Relativistic mean-field np

MS0-2 (aka MS1-2/MS1b) Relativistic mean-field np

H1-7 Relativistic mean-field npH

GM1-3 Relativistic mean-field npH

GS1-2 Relativistic mean-field npK

SQM1-3 Quark matter Q(u, d, s)

Table 1.1: Symbol is the label for the EOS reported in Figure 1.4 and Figure 1.8 and ap-

proach refers to the underlying theoretical technique. Only the hadronic com-

position is reported with the following labels: n for neutron, p for proton, H for

hyperon, K for kaon, Q for quarks) ; all models include leptonic contributions.

Readapted from Ref. [36].

In Figure 1.4, we present the M-R relation obtained solving the TOV equa-

tions for the collection of different interactions and approaches summarized in

Table 1.1.

An interesting quantity that allows discriminating between different interac-

tions and approaches is the maximum mass of a NS. EOSs, which not support

maximum observed NS mass, are directly ruled out. In 2010 the highest value of

a well-measured mass was for PSR J1614− 2230, and it has been determined by
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1.2 neutron stars: observations and phenomenology

NS62CH19-Lattimer ARI 18 September 2012 8:10
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Figure 3
Typical M−R curves for hadronic equations of state (EOSs) (black curves) and strange quark matter (SQM)
EOSs ( green curves). The EOS names are given in Reference 13, and their P−n relations are displayed in
Figure 2. Regions of the M−R plane excluded by general relativity (GR), finite pressure, and causality are
indicated. The orange curves show contours of R∞ = R(1 − 2 GM /Rc 2)−1/2. The region marked rotation is
bounded by the realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz, for PSR
J1748-2446J (14). Figure adapted from Reference 15.

energies. The pressure is

p(u, x) = u2ns

(
∂e
∂u

)

x
# u2ns

[
Ko

9
(u − 1) + K ′

o

54
(u − 1)2 + d S2

du
(1 − 2x)2

]
+ p" + · · · , 5.

where p" is the lepton pressure. In the vicinity of u # 1, with x % 1, p" is small and the pressure is
almost completely determined by dS2/du. Laboratory constraints on the nuclear symmetry energy
are discussed in Section 6.

2.2. The Maximally Compact Equation of State
Koranda et al. (16) suggested that absolute limits to neutron star structure could be found by
considering a soft low-density EOS coupled with a stiff high-density EOS, which would maximize
the compactness M/R. The limiting case of a soft EOS is p = 0. The limiting case of a stiff EOS is
d p/dε = (c s /c )2 = 1, where cs is the adiabatic speed of sound that should not exceed the speed of
light; otherwise, causality would be violated. The maximally compact EOS is therefore defined by

p = 0 for ε < ε0; p = ε − ε0 for ε > ε0. 6.
This EOS has a single parameter, ε0, and therefore the structure equations (Equation 2) can be
expressed in a scale-free way:

dw

d x
= − (y + 4πx3w)(2w − 1)

x(x − 2y)
;

d y
d x

= 4πx2w. 7.

Here, w = ε/ε0, x = r
√

Gε0/c 2, and y = m
√

G3ε0/c 4. Varying the value of w at the origin
(w0) gives rise to a family of solutions described by dimensionless radius X and total mass Y. The
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Figure 1.4: Typical M−R curves for hadronic equations of state (EOSs) (black curves) and

strange quark matter (SQM) EOSs (green curves). The EOS names are given

in Table 1.1. Regions of the M−R plane excluded by general relativity (GR),

finite pressure, and causality are indicated. The orange curves show contours

of the radiation radius R∞. The region marked rotation is bounded by the

realistic mass-shedding limit for the highest-known pulsar frequency, 716 Hz,

for PSR J1748− 2446J [13]. Figure taken from Ref. [20].

detection of the Shapiro time delay. The reported value was initially 1.97± 0.04

M� [37]. Recent more accurate analysis (2016) updated this value to 1.928+0.017
−0.017

M� (68.3% credibility interval [38]) and then to 1.908+0.016
−0.016 M� in 2018 [39].

Within the same confidence level, the measured mass of PSR J0740 + 6620 is

2.14+0.10
−0.09 M� (2019) [1], and another massive NS is PSR J0348 + 0432 with a

measured mass of 2.01 ± 0.04 M� [40]. These recent observations confirm the

prediction of the maximum mass of a NS to be ∼ 2.1− 2.2 M�.

Our approach. Within this framework of different interactions and models, we

use ab initio quantum Monte Carlo (QMC) methods as a comparison to previous

results. This approach is discussed in detail in Chapter 3. QMC, in its standard

formulation, requires the use of local potentials. To date, the most popular lo-

cal interactions are the AVX family [41, 42, 43] and the recently developed local

chiral effective field theory potentials [44, 45, 46, 47]. While three body forces
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neutron stars and magnetars

arise spontaneously in the diagrammatically expansion of chiral effective field

theory, for phenomenological potentials they need to be artificially introduced.

For the three-body sector either density-dependent interactions (like the DD6′,

fitted to reproduce experimental values of the saturation density ρ0 = 0.16 fm−3,

the binding energy per particle E0 = −16 MeV and the compressibility K ≈ 240

MeV) or explicit three-body forces, as the ones of the Urbana group (UIX), have

been used [48]. Argonne and Urbana potentials are presented in Chapter 2.

At the present stage, some technical issues still prevent to produce controlled re-

sults on symmetric nuclear matter with the potentials, including spin-orbit and

three-body forces with full operatorial dependence. For this reason, most cal-

culations are limited to pure neutron matter (PNM). The use of DD interactions

instead provides a way to address the full composition of a NS interior. As an

example, in Figure 1.5 we report some results obtained with DD6’ potential for

pneµ model [48].Microscopic calculation of the equation of state of nuclear matter and neutron star structure 3

Table 1. The AFDMC results for the free parameters of the DD6′

interaction as compared with the original values of the LP model
calculated within the FHNC/SOC approximation.

parameter FHNC/SOC AFDMC

γ1 0.15 fm3 0.10 fm3

γ2 -700 fm6 -750 fm6

γ3 13.6 fm3 13.9 fm3

more attraction, and exp(γ1ρ)−1 is ∼ 30% smaller over the
whole range (ρ0, 5ρ0), giving less repulsion.

We find that the AFDMC results for the binding energy
per nucleon of SNM at densities larger than ∼ 0.08 fm−3 can
be very well described by:

ESNM (ρ) = E0 + a(ρ − ρ0)
2 + b(ρ − ρ0)

3eγ(ρ−ρ0) , (2)

where E0 = −16.0 MeV, ρ0 = 0.16 fm−3, a = 520.0 MeV
fm6, b = −1297.4 MeV fm9 and γ = −2.213 fm3. This
parametrization was chosen to represent the EOS of nuclear
matter, reproducing properties constrained by terrestrial ex-
periments on nuclei (Danielewicz et al. 2002).

The DD6′ Hamiltonian was then used to compute the
EOS of PNM, by making a simulation with 66 neutrons in
a periodic box. The EOS for nuclear matter as a function of
the proton fraction xp = ρp/ρ is then parametrized as

E(ρ, xp) = ESNM (ρ) + Cs

(
ρ

ρ0

)γs

(1 − 2xp)
2 . (3)

The two extra parameters of the symmetry energy term, Cs

and γs, were obtained by fitting E(ρ, xp = 0) to the AFDMC
result for PNM. This gives Cs = 31.3 MeV and γs = 0.64.
Typical values for these parameters have been quoted as
Cs ≈ 31 − 33 MeV and γs ≈ 0.55 − 0.69 by Shetty et al.
(2007) and as Cs = 31.6 MeV and γs ≈ 0.69 − 1.05 by
Worley et al. (2008). It should be noted that usually the
symmetry energy is constrained over a range of densities
typical of nuclei, whereas we have here fitted the parame-
ters over a very wide density range. This means that the
parametrization of eq. (3) should be accurate up to very
high densities.

In high-density matter, neutrons can produce protons
and electrons by β decay and so the equilibrium configura-
tion can have a non-zero proton/neutron ratio, modifying
the EOS away from that for PNM. The equilibrium concen-
tration of protons xp can be computed by imposing

µn = µp + µe , (4)

where µi is the chemical potential (for neutrons, protons
and electrons respectively). For doing this, we consider the
electrons as comprising a relativistic Fermi-gas:

µe = [m2
e + h̄2(3πρe)

2/3]1/2 , (5)

and charge neutrality imposes that ρe = xpρ, where ρ is
the total nucleon density. The chemical potentials of the
neutrons and protons are derived from equation (3), and
equation (4) is then solved to give xp as a function of ρ.
Another consideration is that when µe becomes larger than
the muon mass, the production of muons is favoured, and
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Figure 1. The equation of state for symmetric nuclear mat-
ter (dashed line), pure neutron matter (dot-dashed line) and β-
equilibrium nuclear matter with both electrons and muons (full
line) and with electrons only (dotted line). The points show the
AFDMC results for symmetric nuclear matter (SNM, squares)
and pure neutron matter (PNM, circles) which have been used to
fit the EOS. In the inset, we show the proton fraction xp plotted
as a function of the total nucleon density, computed consider-
ing the presence of just electrons as negatively-charged particles
(dotted line) and with both electrons and muons (full line).

their contribution must then also be considered. For our
EOS, muons begin to appear at ρ ≈ 0.133 fm−3.

The EOSs calculated for SNM, PNM and β-equilibrium
matter are shown in Fig. 1, with the energy per nucleon
being plotted against the nucleon number density ρ; in the
inset, we show the proton fraction xp plotted as a function
of ρ, computed considering both electrons and muons (full
line) and only electrons (dotted line). The EOS for PNM is
softer than that calculated with the AV8′+UIX potential by
Gandolfi et al. (2009) using the same AFDMC many-body
method and this then produces a similar behaviour for the
β-equilibrium matter. The main reason for this comes from
the different treatment of many-body effects.

At very high densities, the chemical potential of the
nucleonic matter becomes larger than the threshold for cre-
ation of heavier particles. Such states are due to the up and
down quarks transforming to strange quarks, so that parti-
cles with strangeness (hyperons) start to appear. A realistic
EOS should include these when they appear and this can
seriously modify the structure of the star. We do not in-
clude this in our present calculations (although we make
some comment about its likely effects in the next section);
we leave inclusion of this until a subsequent paper.

4 RESULTING NEUTRON STAR MODELS

When the EOS of the neutron-star matter has been speci-
fied, the structure of an idealized spherically-symmetric neu-
tron star model can be calculated by integrating the Tolman-
Oppenheimer-Volkoff (TOV) equations:

c© 0000 RAS, MNRAS 000, 000–000
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dP

dr
= −G[m(r) + 4πr3P/c2][ε + P/c2]

r[r − 2Gm(r)/c2]
, (6)

dm(r)

dr
= 4πεr2 , (7)

where P = ρ2(∂E/∂ρ) and ε = ρ(E + mN ) are the pressure
and the energy density, mN is the average nucleon mass,
m(r) is the gravitational mass enclosed within a radius r,
and G is the gravitational constant. The solution of the TOV
equations for a given central density gives the profiles of ρ,
ε and P as functions of radius r, and also the total radius
R and mass M = m(R). A sequence of models can be gen-
erated by specifying a succession of values for the central
density. In Fig. 2 we plot the mass M (measured in so-
lar masses M!) as a function of the radius R (measured in
km), as obtained from calculations with four different pre-
scriptions for the EOS: the β-equilibrium and PNM EOSs
discussed in Sections 2 and 3, the equivalent one for PNM
with just two-body interactions (using AV6′), and a previous
one from Gandolfi et al. (2009), for PNM with three-body
interactions (using AV8′+UIX). Models to the right of the
maximum of each curve are stable to radial perturbations
and these are the ones of interest for astrophysical neutron
stars. The maximum mass obtained with the two-body in-
teraction AV8′ is very similar to that for AV6′.

It is interesting to make a comparison between these
curves so as to see the changes caused by introduction of the
various different features. The solid curve (β-equilibrium) is
our best proposal for the neutron-star EOS but it can be seen
that it differs only very little from the pure neutron matter
EOS (where the radii for a given mass are just slightly larger
within the main range of interest). There is a considerable
difference, however, with respect to the previous AV8′+UIX
curve for pure neutron matter, with the maximum mass be-
ing reduced from ∼ 2.5 M! to ∼ 2.2 M! and the radii in
the main region of interest also being substantially reduced.
This reflects the effective softening of the EOS caused by
the different treatment of many-body effects.

An objective of this type of work is to attempt to
constrain microphysical models for neutron-star matter by
making comparison with astronomical observations (see
Lattimer & Prakash 2007). This is just starting to be pos-
sible now and further progress is anticipated within the
next few years. At present, the only neutron stars for which
masses are accurately known are the components of the best-
observed binary pulsars, for which timing measurements give
results correct to many significant figures. The maximum
mass for any of these is the 1.441 M! for the Hulse/Taylor
binary pulsar PSR 1913+16 (see Weisberg & Taylor 2005).
However, there is accumulating evidence for higher masses,
particularly for neutron stars in binary systems together
with white dwarfs (see Ransom et al. 2005) and there is now
a widespread belief that the maximum should probably be
in the range 1.8 M! − 2.1 M! (at least when the rotation
is sufficiently slow, as is the case for almost all pulsars so
far observed). At high enough densities, it is expected that
the composition of the matter would change because of the
appearance of either hyperons or deconfined quarks, both
of which are likely to decrease the maximum mass (see, for
example, Schulze et al. 2006 for the case of hyperons, and
Akmal et al. 1998 for an example of the inclusion of quark
matter). The central density corresponding to our maximum
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Figure 2. Predicted neutron-star masses (in units of M!) plot-
ted as a function of stellar radius (in km). Four different equa-
tions of state are considered: those discussed in this paper for
β-equilibrium matter (full line) and pure neutron matter (PNM,
DD6′, dashed line), the equivalent one for PNM with just two-
body interactions (PNM, AV6′, dot-dash-dashed line), and a pre-
vious one from Gandolfi et al. (2009), for PNM with three-body
interactions (PNM, AV8′+UIX, dot-dashed line).

mass for β-equilibrium matter is ρc ≈ 1.2 fm−3 which is well
within the range where these changes are likely to have oc-
curred, and so we expect that the maximum mass would be
slightly lower than that shown in Fig. 2. This brings us well
within the expected range.

Observational constraints for the radius are more prob-
lematic, but one of the best of these seems to be the indi-
rect constraint suggested by Podsiadlowski et al. (2005) in
the case of the less massive component of the double pulsar
PSR J0737-3059. If, as seems likely, this neutron star was
the product of an electron-capture supernova, then the to-
tal pre-collapse baryon number of the stellar core is rather
precisely known from model calculations and, since only a
very small loss of material is expected to have occurred in
the subsequent collapse, the baryon number of the neutron
star is itself also well-known. Together with the very accu-
rate value for the gravitational mass (calculated from pulsar
timing), this can be used to place a quite stringent constraint
on the EOS. The baryon number A of a neutron-star model
can be readily calculated from

dA(r)

dr
= 4πρ r2

(
1 − 2Gm

rc2

)− 1
2

, (8)

which needs to be solved together with equations (6) and
(7) (we recall that ρ is here the baryon number density).
In practice, it is convenient to talk in terms of the baryonic
mass, defined as M0 = mNA(R), rather than A(R) itself:
the difference between the baryonic mass and the gravita-
tional mass depends on the compactness of the neutron star,
and hence indirectly on the radius. If M is plotted against
M0 for a given EOS, then the curve needs to pass through
a certain error box in order to be consistent with the ob-
servations for PSR J0737-3059, subject to the assumptions
being made in the analysis. This plot is shown in Fig. 3 for

c© 0000 RAS, MNRAS 000, 000–000

Figure 1.5: (left) The EOS for SNM (dashed line), PNM (dot–dashed line) and β-

equilibrium nuclear matter with both electrons and muons (full line) and with

electrons only (dotted line). In the inset the proton fraction xp is shown. (right)

M-R relation for different interactions (from Ref. [48]).

The possible onset of hyperons after some critical density has also been studied

within QMC, within the PNM approximation. The presence of hyperons softens

the EOS and makes it harder to reproduce observed NS masses of ∼ 2.1 M�, as

shown in Figure 1.6. The main message is that information on the interaction

between hyperons and nucleons, especially in the three-body sector, is scarce and

not sufficient to establish the presence of hyperons in the core.
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1.2 neutron stars: observations and phenomenology

ρΛ ¼ xρ are the neutron and hyperon densities, respec-
tively. The energy per particle can be written as

EHNMðρ; xÞ ¼ ½EPNMðð1 − xÞρÞ þmn&ð1 − xÞ

þ ½EPΛMðxρÞ þmΛ&xþ fðρ; xÞ: ð2Þ

To deal with the mass difference Δm≃ 176 MeV between
neutrons and lambdas the rest energy is explicitly taken into
account. The energy per particle of PNM EPNM has been
calculated using the AFDMC method [42,43] and it reads

EPNMðρnÞ ¼ a
!
ρn
ρ0

"
α
þ b

!
ρn
ρ0

"
β
; ð3Þ

where the parameters a, α, b, and β are reported in Table I.
We parametrized the energy of pure lambda matter EPΛM

with the Fermi gas energy of noninteracting Λ particles.
Such a formulation is suggested by the fact that in the
Hamiltonian of Eq. (1) there is no ΛΛ potential. The reason
for parametrizing the energy per particle of hyperneutron
matter as in Eq. (2) lies in the fact that, within AFDMC
calculations, EHNMðρ; xÞ can be easily evaluated only for a
discrete set of x values. They correspond to a different
number of neutrons (Nn ¼ 66; 54; 38) and hyperons
(NΛ ¼ 1; 2; 14) in the simulation box giving momentum
closed shells. Hence, the function fðρ; xÞ provides an
analytical parametrization for the difference between
Monte Carlo energies of hyperneutron matter and pure
neutron matter in the (ρ; x) domain that we have consid-
ered. Corrections for the finite-size effects due to the
interaction are included as described in Ref. [60] for both
nucleon-nucleon and hyperon-nucleon forces. Finite-size
effects on the neutron kinetic energy arising when using
different number of neutrons have been corrected adopting
the same technique described in Ref. [61]. Possible addi-
tional finite-size effects for the hypernuclear systems have
been reduced by considering energy differences between
HNM and PNM calculated in the same simulation box, and
by correcting for the (small) change of neutron density.
As can be inferred by Eq. (2), both hyperon-nucleon

potential and correlations contribute to fðρ; xÞ, whose
dependence on ρ and x can be conveniently exploited
within a cluster expansion scheme. Our parametrization is

fðρ; xÞ ¼ c1
xð1 − xÞρ

ρ0
þ c2

xð1 − xÞ2ρ2

ρ20
: ð4Þ

Because the ΛΛ potential has not been included in the
model, we have only considered clusters with at most one

Λ. We checked that contributions coming from clusters of
two or more hyperons and three or more neutrons give
negligible contributions in the fitting procedure. We have
also tried other functional forms for fðx; ρÞ, including
polytropes inspired by those of Ref. [20]. Moreover, we
have fitted the Monte Carlo results using different x data
sets. The final results weakly depend on the choice of
parametrization and on the fit range, in particular for the
hyperon threshold density. The resulting EOSs and mass-
radius relations are represented by the shaded bands in
Fig. 1 and Fig. 2. The parameters c1 and c2 corresponding
to the centroids of the figures are listed in Table II.
Once fðρ; xÞ has been fitted, the chemical potentials for

neutrons and lambdas are evaluated via

μnðρ; xÞ ¼
∂EHNM

∂ρn ; μΛðρ; xÞ ¼
∂EHNM

∂ρΛ ; ð5Þ

where EHNM ¼ ρEHNM is the energy density. The hyperon
fraction as a function of the baryon density, xðρÞ, is
obtained by imposing the condition μΛ ¼ μn. The Λ
threshold density ρthΛ is determined where xðρÞ starts being
different from zero.
In Fig. 1 the EOS for PNM (green solid curve) and HNM

using the two-body ΛN interaction alone (red dotted curve)
and two- plus three-body hyperon-nucleon force in the
original parametrization (I) (blue dashed curve) are dis-
played. As expected, the presence of hyperons makes the
EOS softer. In particular, ρthΛ ¼ 0.24ð1Þ fm−3 if hyperons

TABLE I. Fitting parameters for the neutron matter EOS of
Eq. (3) [42].

a½MeV& α b½MeV& β

13.4(1) 0.514(3) 5.62(5) 2.436(5)
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FIG. 1 (color online). Equations of state. Green solid curve
refers to the PNM EOS calculated with the AV8’þ UIX
potential. The red dotted curve represents the EOS of hypermatter
with hyperons interacting via the two-body ΛN force alone. The
blue dashed curve is obtained including the three-body hyperon-
nucleon potential in the parametrization (I). Shaded regions
represent the uncertainties on the results as reported in the text.
The vertical dotted lines indicate the Λ threshold densities ρthΛ . In
the inset, neutron and lambda fractions corresponding to the two
HNM EOSs.
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only interact via the two-body ΛN potential. As a matter of
fact, within the AFDMC framework hypernuclei turn out to
be strongly overbound when only the ΛN interaction is
employed [34,35]. The inclusion of the repulsive three-
body force [model (I)], stiffens the EOS and pushes the
threshold density to 0.34ð1Þ fm−3. In the inset of Fig. 1 the
neutron and lambda fractions are shown for the two
HNM EOSs.
Remarkably, we find that using the model (II) for ΛNN

the appearance of Λ particles in neutron matter is ener-
getically unfavored at least up to ρ ¼ 0.56 fm−3, the largest
density for which Monte Carlo calculations have been
performed. In this case the additional repulsion provided by
the model (II) pushes ρthΛ towards a density region where
the contribution coming from the hyperon-nucleon poten-
tial cannot be compensated by the gain in kinetic energy. It
has to be stressed that (I) and (II) give qualitatively similar
results for hypernuclei. This clearly shows that an EOS
constrained on the available binding energies of light
hypernuclei is not sufficient to draw any definite conclusion
about the composition of the neutron star core.
The mass-radius relations for PNM and HNM obtained

by solving the Tolman-Oppenheimer-Volkoff equations
[62] with the EOSs of Fig. 1 are shown in Fig. 2. The

onset of Λ particles in neutron matter sizably reduces the
predicted maximum mass with respect to the PNM case.
The attractive feature of the two-body ΛN interaction leads
to the very low maximum mass of 0.66ð2ÞM⊙, while the
repulsive ΛNN potential increases the predicted maximum
mass to 1.36ð5ÞM⊙. The latter result is compatible with
Hartree-Fock and Brueckner-Hartree-Fock calculations
(see for instance Refs. [2–5]).
The repulsion introduced by the three-body force plays a

crucial role, substantially increasing the value of the Λ
threshold density. In particular, when model (II) for the
ΛNN force is used, the energy balance never favors the
onset of hyperons within the density domain that has been
studied in the present work (ρ ≤ 0.56 fm−3). It is interest-
ing to observe that the mass-radius relation for PNM up to
ρ ¼ 3.5ρ0 already predicts a NS mass of 2.09ð1ÞM⊙ (black
dot-dashed curve in Fig. 2). Even if Λ particles appear at
higher baryon densities, the predicted maximum mass will
be consistent with present astrophysical observations.
In this Letter we have reported on the first quantum

MonteCarlo calculations for hyperneutronmatter, including
neutrons andΛ particles. As already verified in hypernuclei,
we found that the three-body hyperon-nucleon interaction
dramatically affects the onset of hyperons in neutron matter.
When using a three-body ΛNN force that overbinds hyper-
nuclei, hyperons appear at around twice the saturation
density and the predicted maximum mass is 1.36ð5ÞM⊙.
By employing a hyperon-nucleon-nucleon interaction
that better reproduces the experimental separation energies
of medium-light hypernuclei, the presence of hyperons is
disfavored in the neutron bulk at least up to ρ ¼ 0.56 fm−3

and the lower limit for the predicted maximum mass is
2.09ð1ÞM⊙. Therefore, within the ΛN model that we have
considered, the presence of hyperons in the core of the
neutron stars cannot be satisfactorily established and thus
there is no clear incompatibility with astrophysical obser-
vations when lambdas are included. We conclude that in
order to discuss the role of hyperons—at least lambdas—in
neutron stars, the ΛNN interaction cannot be completely
determined by fitting the available experimental energies in
Λ hypernuclei. In other words, the Λ-neutron-neutron
component of the ΛNN force will need both additional
theoretical investigation, possibly within different frame-
works such as chiral perturbation theory [63,64], and a
substantial additional amount of experimental data, in
particular for highly asymmetric hypernuclei and excited
states of the hyperon.
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TABLE II. Fitting parameters for the function f defined in
Eq. (4) for different hyperon-nucleon potentials.

Hyperon-nucleon potential c1½MeV& c2½MeV&
ΛN −71.0ð5Þ 3.7(3)
ΛN þ ΛNN (I) −77ð2Þ 31.3(8)
ΛN þ ΛNN (II) −70ð2Þ 45.3(8)

PRL 114, 092301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

092301-4

Figure 1.6: (left) The EOS for PNM (green) and two and three body hyperon potential

(red and blue respectively). In the inset the Λ hyperon fraction is shown.

(right) M-R relation for different interactions (from Ref. [49]).

With the detection of binary NS gravitational waves (GW170817), a new era

began. Information coming from the post-merger signals also gives useful and

complementary insights. On the one hand, constraints on the nuclear parameters

(such as incompressibility, symmetry energy, and their slopes) can be extracted

from the GW signals; on the other hand, realistic nuclear interaction can be used

to infer the tidal deformability. The radius of the NS can also be derived from GW

observations within some modeling. From the nuclear prospective, symmetry en-

ergy Esym(ρ) is defined as the difference between pure neutron matter (PNM) and

the energy of symmetric nuclear matter (SNM). The energy per particle E(ρ,x)

of nuclear matter is usually expressed as a Taylor expansion in terms of isospin

asymmetry x = ρp/ρ, where ρp and ρ are the proton number and baryon number

densities respectively:

E(ρ,x) = E0(ρ) +E
(2)
sym(ρ)(1− 2x)2 +E

(4)
sym(1− 2x)4 + . . . , (1.3)

where E0(ρ) is the EOS of symmetric nuclear matter (E0(ρ) = E(ρ,x = 0.5)).

E
(4)
sym and higher order terms in the expansion are usually ignored. The symmetry

energy Esym(ρ) is given by:

Esym(ρ) = E(ρ, 0)−E0(ρ) , (1.4)

where E(ρ, 0) is the EOS for PNM. Note that Esym(ρ) is the same term which

enters Equation (1.3) at quadratic order (E(2)
sym(ρ)). Around saturation density the
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symmetry energy can be expanded as a function of saturation density (since the

pressure is zero):

Esym(ρ)|ρ0
= Esym +

L0

3

ρ− ρ0
ρ0

+ . . . , (1.5)

where Esym is the symmetry energy at saturation and L0 is a parameter related

to its slope. As an example, we report in Figure 1.7 the EOS for PNM and results

of Esym and L0 for different models of the three-body Urbana potential.
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Figure 8
The equation of state of neutron matter obtained by using various models of three-neutron force. For each
model, we require that the energy at saturation be 17.7(1) MeV (blue band ) or 16.0(1) MeV ( green band ).
The results are compared with the equations of state obtained with the AV8′ and AV8′+UIX Hamiltonians.
The legend indicates the corresponding symmetry energy at saturation. Modified from Reference 94.

strong short-range repulsion to make the EOS stiff enough to support astrophysical observations.
The EOS calculated using QMC can be conveniently parameterized with the following functional
form:

E(ρn) = a
(

ρn

ρ0

)α

+ b
(

ρn

ρ0

)β

, 19.

where E(ρn) is the energy per neutron as a function of the neutron density ρn, and the parameters
a, α, b, and β are obtained by fitting the QMC results. Reference 94 reports the parameterization
of the EOSs obtained with the AV8′ and AV8′+UIX Hamiltonians.

Using Equation 16, one can easily extract the value of Esym and L from the calculated EOS.
Figure 9 compares the results obtained using the AV8′ and AV8′+UIX Hamiltonians, the various
EOSs providing the indicated Esym obtained by changing the three-neutron force model, and
results obtained using the Illinois model of three-neutron force that includes three-pion rings
(where we have independently changed the cutoff of the intermediate- and short-range part).
Clearly, within this model the correlation between L and Esym is very strong.

5.2. Neutron Star Mass–Radius Relation
Neutron star matter is composed mainly of neutrons and a few protons. When the EOS of neutron
star matter has been specified, one can calculate the structure of an idealized spherically symmetric
neutron star model by integrating the Tolman–Oppenheimer–Volkoff (TOV) equations:

dP
dr

= −G[m(r) + 4πr3 P/c 2][ε + P/c 2]
r[r − 2Gm(r)/c 2]

,
dm(r)

dr
= 4πεr2, 20.

where m(r) is the gravitational mass enclosed within a radius r, and G is the gravitational constant.
The above equations are solved by obtaining the energy density ε and pressure P from the EOS
and by specifying an initial point in the integration that is given by the central density of the star.
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The value of L as a function of Esym obtained from various equations of state (EOSs). The green and blue
points with error bars correspond to the various EOSs indicated by blue and green bands in Figure 8. The
red and black points show the results obtained using a two-body force alone and combined with the UIX
model. The square symbols correspond to results obtained by independently changing the cutoff parameters
entering in V R and in the three-pion rings of the three-neutron force. Modified from Reference 94.

For the EOS with the form of Equation 19, we have

ε = ρ0

[

a
(

ρ

ρ0

)1+α

+ b
(

ρ

ρ0

)1+β

+ mn

(
ρ

ρ0

)]

, 21.

and

P = ρ0

[

aα

(
ρ

ρ0

)1+α

+ bβ
(

ρ

ρ0

)1+β
]

. 22.

The solution of the TOV equations yields, for a specified central density ρc , the profiles of
ρ, ε, and P as functions of radius r, as well as the total radius R and mass M = m(R). The
total radius R is defined as the point where the pressure vanishes. The solution of the TOV
equations is modified only slightly (by less than 10%) by magnetic fields, finite temperatures,
and rotation for the kinds of mass–radius curves presented here. The speed of sound, c s , in the
neutron star interior is dP/dε, and ensuring that this value is less than the speed of light (so the
EOS is said to be causal) constrains the set of possible EOSs. Also, the pressure must increase with
increasing energy density, dP/dε > 0, in order to ensure that the neutron star is hydrodynamically
stable.

In practice, the crust of neutron stars cannot be modeled with a pure neutron matter EOS.
Several approaches to describing the EOS of neutron star matter exist, including the combination
of microscopic calculations based on chiral EFT with polytropes put forward in References 95
and 96. All the results presented in this section were obtained by use of QMC calculations (shown
above) for densities ρ ≥ ρcrust = 0.08 fm −3. At lower densities, the neutron star matter is modeled
by using the EOS of the crust given in References 97 and 98. When the EOS violates causality
(as is very often the case with EOSs obtained from nonrelativistic nuclear Hamiltonians), it is
switched to the maximally stiff EOS. The TOV equations are solved for several values of ρc , and
the solution providing the maximum mass is considered.
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Figure 1.7: (left) The equation of state of neutron matter obtained by using various mod-

els of three-neutron force. The legend indicates the corresponding symmetry

energy at saturation. (right) The value of slope L0 (labeled as L in this plot) as

a function of the symmetry energy Esym obtained from various equations of

state (EOSs). The square symbols correspond to results obtained by indepen-

dently changing the cutoff parameters entering in VR and in the three-pion

rings of the three-neutron force (from Ref. [50]).

In general around saturation both symmetric nuclear matter and symmetry

energy can be expanded in terms of y = (ρ− ρ0)/3ρ0 as:

E(ρ, 0) = E0 +
K0

2
y2 +

Q0

6
y3 +O

(
y4
)

,

Esym(ρ) = Esym + L0y +
Ksym,0

2
y2 +O

(
y3
)

,

(1.6)

where E0 is the binding energy of symmetric nuclear matter at saturation, K0 is

the incompressibility coefficient, Q0 is the third derivative of symmetric matter.

We already introduced Esym and L0 as the symmetry energy at saturation and the

slope respectively and the final coefficient is the curvature at saturation density

Ksym,0. The binding energy of symmetric nuclear matter at saturation E0 can be

16



1.2 neutron stars: observations and phenomenology

extrapolated from the binding energy of heavy nuclei to the thermodynamic limit.

The value is E0 = −16.0± 0.1 MeV [51]. A new coefficient is usually introduced,

the derivative of the incompressibility, which is defined as M0 = Q0 + 12K0.

From gravitational waves detection of binary neutron stars, the parameters which

can be extracted are the chirp mass M and the mass-weighted average tidal de-

formability Λ̃. The chirp massM is defined as:

M =
(m1m2)

3/5

(m1 +m2)
1/5 , (1.7)

where m1 and m2 are the two masses of the NS. Each NS has its tidal deformabil-

ity (Λ1 and Λ2), but since they are strongly correlated, it is challenging to extract

them independently. The mass-weighted average tidal deformability is defined

as:

Λ̃ =
16(1 + 12q)Λ1 + (12 + q)q4Λ2

(1 + q)5
, (1.8)

where q = m2/m1(q < 1) is the mass ratio between the two stars. The chirp

mass M of GW170817 has been measured with great accuracy 1.188+0.004
−0.002 M�,

but the mass ratio q varies between 0.73 and 1.00 [4]. The extraction of the tidal

deformability is hard and model-dependent, but an upper bound has been pro-

vided (Λ̃ ≤ 800).

From the nuclear EOS, tidal deformability Λ̃ can be predicted as shown in Fig-

ure 1.8.

From the observation of the tidal deformability Λ̃, it is possible to constrain

nuclear parameters (within some modeling and some prior on the slope L0 from

experiments and astrophysical observations), as shown in Table 1.2.

17



neutron stars and magnetars

Figure 4: Mass-weighted average tidal deformability [Eq. (12)] of a binary system as a func-
tion of the radius of the primary NS. The tidal deformability is calculated for various primary
masses (corresponding to the di↵erent symbols) using several proposed EoSs (corresponding
to the di↵erent clusters of radii). The mass of the secondary NS is computed assuming
the chirp mass. The horizontal dotted line indicates the observed 90% confidence upper
limit on the e↵ective tidal deformability (from the original LIGO-Virgo analysis [1]). The
narrow solid band (which is indistinguishable from a single curve) is some quasi-Newtonian
expression for the binary tidal deformability [423] for 0.7 < q < 1.0. (From Ref. [423])

is approximately independent of the component masses for a BNS merger [423]. This empirical result
was obtained by calculating the tidal deformabilities for several EoSs after choosing various values for
one of the component masses in such a way that they lie within the mass range inferred for GW170817.
The corresponding values for the mass of the other component star were calculated from the chirp
mass measured for GW170817. The results of Ref. [423] are summarized in Fig. 4, where one sees, for
example, that the upper limit25 of ⇤̃ < 800 [1] immediately excludes radii above ⇡ 13 km at the 90%
confidence level, without requiring detailed knowledge of the component masses (m1 in Fig. 4).

This idea of Ref. [423] came from using the I-Love-Q relations between stellar compactness and
tidal deformability [333, 334, 335] (see Sect. 2.6) to express the mass-weighted tidal deformability of
the binary as a function of component masses and stellar radii.

Let me conclude this introductory Subsection by mentioning that, in addition to measurements based
on the tidal deformability, other ways to gain information on the interiors of NSs from GW observations
have been proposed, even if they require higher sensitivities and thus may be applicable only when third-
generation detectors [234, 235, 233]) become operational. Some of these studies involve tidal excitations
of resonant modes [424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434], gravitomagnetic excitations of
resonant modes [435], resonant shattering of the NS crust by tides [436, 437] and non-linear tidal e↵ects

25Note that the value ⇤̃ < 800 was incorrectly reported in the detection article of GW170817 [1]: The corrected value
in the case of the low-spin prior was ⇤̃  900, but the analysis of Ref. [423] and others made before the publication
of the correction [220] could not but use the mistaken value. See also Sect. 7.1. Ref. [423] and others also used the
original value given for the chirp mass Mchirp = 1.188+0.004

�0.002M� in Ref. [1], which was later revised in Ref. [220] to
Mchirp = 1.186 ± 0.001M�.

18

Figure 1.8: Effective tidal deformability of the binary system as a function of the radius

of the primary neutron star. The tidal deformability is calculated for various

primary masses (corresponding to the different symbols) using several pro-

posed equations of state (corresponding to the different colors). The mass of

the secondary neutron star is found assuming the chirp mass,M = 1.188 M�
from GW170817. The observed 90% confidence upper limit on Λ̃ ≤ 800 is

shown as the dotted line. The narrow band (which is indistinguishable from

a single curve) shows the range for q = 0.7− 1.0. Λ̃ is relatively insensitive to

m1 but scales strongly with radius. Note that the upper limit for GW170817

implies R ≤ 13 km (from Ref. [52]).
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An alternative approach to determine the tidal polarizability Λ̃ assumes a poly-

tropic equation of state:

P (ρ) =
aL0ρ0

3

(
ρ

ρ0

)Γ

. (1.9)

The tidal deformability has been estimated from the central values of the chirp

massM = 1.186 M� and the mass ratio q = 0.87 from the GW170817 as reported

in Figure 1.9.
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Fig. 4.— The e↵ective tidal deformability of the binary system, as a function of S0 and L0. We calculate e⇤ using the polytropic
approximation of the nuclear EOS, shown in eq. (10). From left to right, the polytropic index is fixed to � = 3, 3.5, or 4. In all panels, we

fix the chirp mass and mass ratio to their central values of q = 0.87 and Mc = 1.186 M� for GW170817. We find that e⇤ is only weakly

dependent on S0, but that it is quite sensitive to L0. The constraints on e⇤ = 300 (+420/ � 230) from GW170817 (Abbott et al. 2019)
point to relatively small values of L0.

corresponding radii.3 Within the polytropic approxi-
mation of eq. (10), the EOS depends only on S0, L0,
and �, where � is narrowly constrained to be ⇠ 3 � 4
for a wide range of realistic EOS. We can, therefore,
summarize the dependences of the tidal deformability as
e⇤ = e⇤(Mc, q, S0, L0,�).

We have already shown that e⇤ depends sensitively on
L0 for fixed S0 and �. In order to explore the full, more

general dependences of e⇤, we perform a grid search across
the range S0 2 (26, 38) MeV and L0 2 (10, 120) MeV.
For each set of values, we construct an EOS according to
eq. (10), fixing the mass ratio to q = 0.7, 0.87, or 1.0 and
fixing � to 3, 3.5, or 4. In all cases, we fix the chirp mass
to the central value from GW170817 of 1.186 M�. For
each combination of parameters, we compute the mass,
radius, and tidal apsidal constant by numerically inte-
grating the augmented TOV equations and then compute
e⇤ using eqs. (11-13). We show the resulting contours of
e⇤ as a function of S0 and L0 in Fig. 4. The three pan-
els correspond to three di↵erent choices of �, with fixed
q = 0.87. We find that the particular choice of q does
not significantly a↵ect these or our later results, so we
fix q to the central value of 0.87 from GW170817 for the
remainder of this analysis.

We find that e⇤ is only weakly dependent on S0, es-

pecially for smaller values of e⇤, as are preferred by the

current gravitational wave data. In contrast, e⇤ depends
quite sensitively on L0. We, therefore, focus on L0 in the
following analysis and fix S0 to a characteristic value of
32 MeV (Li & Han 2013; Oertel et al. 2017).

This final simplification renders e⇤ as a function only
of L0, for fixed �. We can, therefore, transform the mea-

sured posterior on e⇤ to a posterior on L0, according to

P(L0) = P(e⇤)

 
@e⇤
@L0

!
, (14)

3 While there do exist some EOS for which the mass-to-radius
mapping is not unique (notably, the so-called “twin-stars,” which
can have identical masses and di↵erent radii; see, e.g., Glendenning
& Kettner 2000), these EOS have complex structure that cannot
be represented with single polytropes. We, therefore, neglect these
special cases for the present study.

where we calculate the Jacobian term numerically.

Fig. 5.— One-dimensional posterior in L0, from GW170817 for
q = 0.87 and S0=32 MeV, for three choices of �. The dark and
light green bands show the combined constraints on L0 from previ-
ous neutron star observations, nuclear experiments, and theory, as
calculated in Lattimer & Lim (2013) and Oertel et al. (2017), re-
spectively. We find that the gravitational wave data point towards
smaller values of L0 than these previous studies have found.

We show the resulting one-dimensional posteriors on
L0 in Fig. 5. Figure 5 also shows two current sets of
constraints on L0, in dark and light green from Lat-
timer & Lim (2013) and Oertel et al. (2017), respec-
tively, which are based on a combination of astrophys-
ical observations of neutron stars, nuclear experiments,
and theory. Earlier constraints on 43 < L0 < 52 MeV
(68% confidence) were calculated using neutron star radii
alone (Steiner & Gandolfi 2012). On the other hand,
theoretical calculations of the neutron matter EOS using
quantum Monte Carlo methods (Gandolfi et al. 2012)
or chiral e↵ective field theory (Hebeler et al. 2013) pro-
duce comparable constraints, of L0 = 31.3 � 63.6 MeV
and L0 = 32.4 � 57.0 MeV, respectively. We use the
summary results from Lattimer & Lim (2013) and Oer-
tel et al. (2017) to encompass these theoretical, observa-
tional, and experimental constraints.

We find that the gravitational wave data imply smaller
values of L0 than these previous studies have found. In
particular, for � = 3.5, we find a 90% highest-posterior

Figure 1.9: Effective tidal deformability of the binary system, as a function of Esym (de-

noted as S0) and L0. Λ̃ has been calculated using the polytropic approxima-

tion of the nuclear EOS for different values of the parameter Γ. Λ̃ is only

weakly dependent on the symmetry energy S0, but that it is quite sensitive to

L0. The constraints on Λ̃ = 300(+420/− 230) from GW170817 [53] point to

relatively small values of L0. (from Ref. [60]).

The GW observation of GW170817 put new insights into the physics of NS.

The main issue is still to determine the radius of the NS accurately. A precise

measure of the radius is the most robust constraint that can discriminate between

the different choices of nuclear interactions and theoretical methods, as shown in

Figure 1.4 and Figure 1.8. In Table 1.3 we report a summary of the current radius

inferred from GW170817 (and some other constraints).

All the approaches point to a radius of a typical NS of ∼ 10− 13 km.

This review is certainly not complete and exhaustive. More observation from

gravitational waves might enforce actual constraints and give even more insights

on the equation of state of nuclear matter, especially at nuclear densities beyond

saturation.
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1.3 magnetars

Reference Ri [km]

Without a phase transition

Bauswein et al. [61] 10.68+0.15
−0.03 ≤ R1.6

Fattoyev et al. [62] R1.4 ≤ 13.76

Most et al. [63] 12.00 ≤ R1.4 ≤ 13.45

Lim Holt [64] 10.36 ≤ R1.4 ≤ 12.87

De et al. [65] 8.9 ≤ R1.4 ≤ 13.2

Malik et al. [66] 11.82 ≤ R1.4 ≤ 13.72

LIGO/Virgo [67] 10.5 ≤ RGW170817 ≤ 13.3

Tews et al. [68] 11.3 ≤ R1.4 ≤ 12.1

Köppel et al. [69] 10.92 ≤ R1.4

Raithel [70] 9.8 ≤ RGW170817 ≤ 13.2

With a phase transition

Annala et al. [71] 9.9 ≤ R1.4 ≤ 13.6

Most et al. [63] 8.53 ≤ R1.4 ≤ 13.74

Tews et al. [68] 9.2 ≤ R1.4 ≤ 12.5

Montana et al. [72] 10.1 ≤ RGW170817 ≤ 13.11

From multimessenger analyses

Radice Dai [73] 11.4 ≤ R1.4 ≤ 13.2

Coughlin et al. [54] 11.1 ≤ R1.4 ≤ 13.4

Kumar Landry [74] 9.4 ≤ R1.4 ≤ 12.8

Table 1.3: Constraints on the radius of NSs from GW170817 (and some other observa-

tions) from works that report in their text estimates for the radius R1.4 of a

1.4 M� star or the radius of the NSs in GW170817, considering EOSs without

and with a phase transition and from multimessenger analyses (from Ref. [75]).

Further notes on each estimate are provided in the reference.

1.3 magnetars

Magnetars are a class of young neutron stars with strong measured superficial

magnetic fields. This name was given in 1992 by Duncan and Thompson after
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their emission powered by the decay of huge internal magnetic fields. Magne-

tars exhibit a strong variability on the X-ray, and soft γ-ray energies, and they

are accordingly classified into anomalous X-ray pulsars (AXPs) and soft gamma

repeaters (SGRs). The first observation was in 1979 by Mazets et al. [76, 77, 78],

though it had not been identified as a magnetar. Currently there are informa-

tions on 29 magnetars: 15 SGRs (11 confirmed, 4 candidates), and 14 AXPs (12

confirmed, 2 candidates). Updated information can be found in the online cata-

log [79]. In Figure 1.10 we report the population distribution of magnetars as a

function of the magnetic field B. The maximum superficial magnetic field can be

as high as ∼ 1014− 1015 G. The internal composition and strength of the magnetic

The Astrophysical Journal Supplement Series, 212:6 (22pp), 2014 May Olausen & Kaspi

Figure 6. Histogram showing the distribution in pulse period of all known radio pulsars (colors as in Figure 3), XINSs (yellow) and magnetars (red). Inset: zoom-in
on P > 1 s, where the magnetars are all located.

Figure 7. Histogram showing the distribution in magnetic field B, of all known radio pulsars, XINSs, and magnetars for which Ṗ has been measured (colors as in
Figure 6). Inset: zoom-in on B > 5 × 1012 G to better show the distribution of the magnetars.

Figure 8. Same as Figure 7 but for the spin-down luminosity, Ė.

13

Figure 1.10: Histogram showing the distribution in magnetic field B, of all known radio

pulsars (PSRs), X-ray isolated neutron stars (XINSs), and magnetars. Inset:

zoom-in on B > 5× 1012 G to better show the distribution of the magnetars

(from Ref. [79]).

fields are poorly known and only models can be made. Recent observation of PSR

J0030+0451 [21, 23, 80] showed that the simple magnetic dipole model could not

describe the measured hot spots. This indicates that the pulsar magnetic fields are

more complex and are not understood as well as the shape and arrangements of
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1.3 magnetars

the hot spots. Some different models of the possible configurations of the internal

magnetic fields are shown in Figure 1.11. The intensity of the toroidal magnetic

field within the different models is shown in Figure 1.12.Magnetic fields throughout magnetar 2779
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ẑ

R̂

model IV

Figure 1. The contours of !̂ in each analytical model (see Appendix D). The inner curve is the core–crust boundary and the outer curve is the stellar surface.
Model I: this model has purely crustal open magnetic fields. There is a negative current sheet on the core–crust boundary in order to exclude the core magnetic
fields. Model II: this model has a purely crustal toroidal current. The core magnetic field is an inner vacuum solution of the crustal toroidal current. Model
III: this model has both crustal and core toroidal currents. The configuration of the core magnetic field is different from Model II. Model IV: this model has
opposite flowing toroidal current density. The core magnetic fields are stronger than crustal magnetic fields. The ẑ and R̂ denote dimensionless forms of z and
R. We will define the dimensionless forms in Section 2.4.

The Hall equilibrium state within the crust is described by the Hall
equilibrium equation (Gourgouliatos et al. 2013 and Appendix A):

∇ ×
[

c

4πene
B × (∇ × B)

]
= 0. (6)

This equation results in the following functional form of toroidal
current density:

4π
jϕ

c
= I (!)I ′(!)

r sin θ
+ 4πner sin θS(!), (7)

where I(!) and S(!) are arbitrary functions of !, and I ′ = dI
d!

.
The crustal toroidal current density is described by this equation.

As Gourgouliatos et al. (2013) pointed out, the toroidal cur-
rent density in the Hall equilibrium system is similar to that of a
barotropic MHD equilibrium system. The stationary MHD Euler
equation without rotation and meridional flow is described as

1
ρ

∇p = −∇φg + 1
ρ

(
j
c

× B
)

, (8)

where ρ, p, and φg are the mass density, pressure, and gravitational
potential, respectively. From the integrability condition of the Euler
equation, we can obtain the relation

4π
jϕ

c
= I (!)I ′(!)

r sin θ
+ 4πρr sin θF (!), (9)

where F(!) is an another arbitrary function of !. This equation
expresses the core toroidal current density.

The twisted magnetosphere without rotation satisfies the force-
free condition as
j
c

× B = 0. (10)

Using this condition, we derived the functional form of toroidal
current density as follows:

4π
jϕ

c
= I (!)I ′(!)

r sin θ
. (11)

The toroidal current density in the magnetosphere is only described
by the arbitrary function I(!).

We can calculate the magnetized equilibria using these functional
forms of jϕ throughout the star. In order to easily include the bound-
ary conditions, we calculated the integrated form of equation (5)

using the Green function (see Appendix B),

!(r)
r sin θ

sin ϕ = 1
c

∫

V

jϕ(r ′)
|r − r ′|

sin ϕ′dV ′ + h.ts, (12)

where h.ts denotes the homogeneous terms of the Laplacian as
shown below:

h.ts =
∞∑

n=1

(
anr

nP 1
n (cos θ ) + bnr

−n−1P 1
n (cos θ )

)
sin ϕ, (13)

where P 1
n (cos θ ) are associated Legendre functions. The coefficients

an and bn are determined by the boundary conditions of !. These
homogeneous terms come from current sheets on the boundaries
(see Fujisawa & Eriguchi 2013 and Appendix D).

The physical dimension of F(!) is different from S(!) because
the dimensions of ρ and ne differ (Gourgouliatos et al. 2013). There-
fore, the functional form of F(!) can differ from S(!). On the other
hand, the physical dimension of I(!) in each region is the same be-
cause this conserved quantity is only obtained from the axisymmetry
condition (see Appendix A). We used the same functional form of
I(!) in the core and crust regions.

2.2 Models of the internal magnetic field

We produced four models of the internal magnetic field according
to the core–crust toroidal current density and boundary conditions.
We must fix the functional forms of I(!), F(!), and S(!), and the
current sheet on the core–crust boundary in order to achieve these
models. The magnetic field configuration of each model is displayed
in Fig. 1. Each model is described as follows.

(i) Model I is a purely crustal open magnetic field in a Hall equi-
librium. Both poloidal and toroidal magnetic fields satisfy the Hall
equilibrium state. This model is equivalent to the configurations
used by Gourgouliatos et al. (2013). This model requires the oppo-
site current sheet on the core–crust boundary to prevent the poloidal
magnetic fields from entering the core (see Appendix D). The in-
ner boundary conditions in this case are ! = 0 and I = 0 on the
core–crust interface.

(ii) Model II is a purely crustal current model. The poloidal mag-
netic fields can penetrate the core region, but in this model, the
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Figure 1.11: The contours of the magnetic field in different analytical models (solid ma-

genta lines). The inner curve is the core–crust boundary, and the outer curve

is the stellar surface (black). Model I: this model has purely crustal open

magnetic fields. There is a negative current sheet on the core–crust bound-

ary in order to exclude the core magnetic fields. Model II: this model has

a purely crustal toroidal current. The core magnetic field is an inner vac-

uum solution of the crustal toroidal current. Model III: this model has both

crustal and core toroidal currents. The configuration of the core magnetic

field is different from Model II. Model IV: this model has opposite flowing

toroidal current density. The core magnetic fields are stronger than crustal

magnetic fields. The ẑ and R̂ denote normalized forms of radius R and

cartesian coordinate z with respect to the stellar radius (from Ref. [81]).

Depending on the model, the intensity of the magnetic field can increase up to

∼ 10− 20 times with respect to the superficial intensity in the outer core.

We think that in this region, spin polarization might play a non-negligible role

in the description of the neutron star. We discuss the effect of spin polarization

on the compressibility and neutrino mean free path in Chapter 4 within a mean-

field approximation. In the same chapter, we will present updated results for the

magnetic susceptibility from QMC calculations.
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Table 1. Parameters and numerical solutions of the models. ĵ0 denotes the strength of the current sheet on the
core–crust interface. B̂d is the dimensionless strength of the dipole magnetic field.

Î0 Ŝ0 F̂0 Model Ecrt/Ecr Ecot/Eco Ecr/E Eco/E Ê B̂d ĵ0

(a) 800 1 0 I 1.23E−4 0.0 0.98 0.00 5.99E−5 3.55E−3 –
(b) 250 1 0 II 1.40E−2 0.0 0.08 0.67 3.27E−3 1.06E−1 –
(c) 30 1 1 III 1.14E−1 2.41E−2 0.07 0.74 3.27E−1 8.75E−1 0.0
(d) 10 −1 0.1 IV 4.09E−3 6.11E−2 0.08 0.83 1.88E−3 4.71E−2 0.1
(e) 10 −1 0.1 IV 7.73E−3 2.68E−1 0.02 0.95 9.83E−3 4.75E−2 0.0
(f) 10 −1 0.1 IV 1.62E−2 3.37E−1 0.02 0.96 8.81E−1 3.01E−1 −1.0
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Figure 3. The contours of !̂ of each model (solid magenta lines). The black inner curve and the outer curve denote the core–crust boundary and the stellar
surface, respectively. The colour maps denote the magnitude of the toroidal magnetic field B̂ϕ normalized by the strength of the dipole component at the North
Pole (B̂d). The arrows denote the directions of magnetic stress due to the current sheet.

The energy ratio Ecrt/Ecr for each of the models is smaller than
0.5, such that the energy of poloidal components is dominant. How-
ever, the energy ratio changes according to the models. As seen
in Table 1 and Fig. 3, the region of the toroidal magnetic field of
solution (a) is very small, as is the energy ratio (Ecrt/Ecr ∼ 10−4).
This value is much smaller than in the solution by Gourgouliatos
et al. (2013) because the width of the crust derived from a realistic
EOS is smaller (see fig. 9 in their paper). The energy ratio Ecrt/Ecr
of solution (b) is larger than that of solution (a). The toroidal mag-
netic field region also becomes slightly larger. Since the poloidal
magnetic field lines penetrate the core region in this model, the

!̂ ≥ !̂max region within the crust becomes large (compare the an-
alytical profiles of model I with model II in Fig. D1).

Solution (c) is a model III type solution with core toroidal
current density. The energy ratio of the core (Eco/E) of so-
lution (c) is larger than that of solution (b). The energy ratio
(Ecrt/Ecr) of solution (c) reaches 0.11 and is larger than those
of solutions (a) and (b). On the other hand, the core toroidal
magnetic fields are almost zero in solution (c). This numeri-
cal result shows that the core magnetic field structure is impor-
tant when considering Ecrt/Ecr in Hall equilibrium within the
crust.
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Figure 1.12: Same structure of Figure 1.11. The color maps denote the magnitude of the

toroidal magnetic field normalized by the strength of the dipole component

at the North Pole. (a) solution for model I type, (b) solution for model II

type, (c) solution for model III type, (d), (e), (f) solutions for model IV type

with different current sheets (positive, zero and negative respectively) (from

Ref. [81]).
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2
NUCLEON-NUCLEON INTERACTION

M odern nuclear interactions can be essentially divided into two main

groups: on the one hand, the phenomenological potentials; on the

other hand, the interactions developed from chiral effective field theory.

The general non-relativistic nuclear Hamiltonian can be written as:

H = T +
∑

i<j

V NN
ij +

∑

i<j<k

V 3N
ijk + · · · , (2.1)

where T is the non-relativistic kinetic energy, V NN
ij and V 3N

ijk are the two- and

three-nucleon potentials, while the ellipsis stands for contributions coming from

interactions involving more than three nucleons. Many-body contribution to the

potential can be neglected, as suggested by nuclear matter studies [82], since they

are small compared to the current level of precision.

The approach of phenomenological interactions is to fit the two-body part of

the interaction to Nijmegen nucleon-nucleon (in particular pp and np, where p

and n stand for proton and neutron respectively) scattering data [83], to the nn

scattering length, and to the deuteron binding energy. Potentials with χ2 per

datum of order 1 are called realistic interactions. Two-body interactions are not

sufficient to describe binding energies of 3H and 3He. Three-nucleon forces need

to be introduced. They describe processes such as two-pion exchange in S-wave

and P-wave and three-pion rings with one or two ∆ intermediate states. Un-

fortunately, there is no consistent description of light nuclei and nuclear matter

simultaneously. The choice of the three-body force is crucial, especially in nu-

clear matter calculations. Different three-body interactions lead to very different

results of the EOS of pure neutron matter at high densities [84, 85, 86].
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nucleon-nucleon interaction

A new approach to derive nuclear interactions, which in principle gives a con-

sistent approach to the description of both nuclei and nuclear matter, has been

recently proposed. Chiral effective field theory (EFT) interactions rely on a sep-

aration of scales (between pion mass and vector meson masses) and exploit the

symmetries of quantum chromo-dynamics (QCD). The separation of scales comes

from the energy separation of the relevant degrees of freedom and permits to

integrate out the contribution from higher energy scales. Chiral EFT can be con-

structed in a systematic way as an expansion in terms of p/Λb, where p is the

typical momentum scale of the system and Λb the breakdown scale of the theory,

according to a power counting scheme. Order by order, the theory is improved,

and many-body interactions arise naturally from the diagrammatical expansion.

The unresolved physics is encoded in the so-called low energy constants (LECs),

which are fitted to experimental data. Chiral EFT interactions provide a consistent

way to derive electroweak currents, and the predicted theoretical uncertainties

are a reliable way to compare theoretical results to experiments. On the contrary,

phenomenological models do not provide ways to estimate theoretical errors, and

they miss a consistent derivation of electroweak currents.

2.1 phenomenological potential

Realistic phenomenological potentials, and in particular the Argonne fam-

ily [41], have been able to accurately describe light nuclei binding energies as

well as nuclear matter using quantum Monte Carlo (QMC) methods (for a re-

view [87]). The strong interaction part of the NN potential is written as a sum

of a one-pion exchange and a short-range phenomenological part. The one-pion

exchange (OPE) part of the potential is given by:

V NN,π
ij =

f2π
4π

mπ

3
[Y (mπr)σi ·σj + T (mπr) Y (mπr)Sij ] τ i · τ j , (2.2)

where fπ is the nucleon-pion (Nπ) coupling constant (f2π/4π = 0.075± 0.002 [88])

and mπ is the average pion mass. Y (x) = exp(−x)/x · fR(x) is the Yukawa

function and T (x) = (1 + 3/x+ 3/x2) · fR(x) the tensor function, where fR(x)
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2.1 phenomenological potential

is a regulator function with a short range cutoff (fR(x) = 1− exp(−cx2), with

cutoff parameter c = 2.1 fm−2). Sij is the tensor operator in coordinate space

Sij = 3(σi · r̂)(σj · r̂)− σi · σj , and σ and τ are the Pauli matrix acting respec-

tively on the spin and isospin of the nucleon.

The remaining phenomenological part V NN,R
ij describes the intermediate and

short-range part with tunable parameters. It is written as a sum of central,

quadratic relative angular momentum, tensor, spin-orbit, and quadratic spin-orbit

terms in different channels multiplied by radial functions. The radial functions

are written as a sum of a two-pion exchange (T 2(x)) term and a quadratic radial

expansion multiplied by a Wood-Saxon potential ((1 + r+ r2)W (r)). Each term is

multiplied by a coefficient, and it is determined from fitting to experimental data.

This potential has been fitted to Nijmegen NN scattering database up to 350 MeV,

to nn scattering length, and deuteron binding energies. The phase shifts in terms

of partial waves are reported in Figure 2.1. The potential can be also written as aPhase shifts, AV8’
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Figure 2.1: Phase shifts of AV8’ nucleon-nucleon potential. Experimental phase shifts are

from the SAID Partial-Wave Analysis Facility (gwdac.phys.gwu.edu).
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sum of 18 operators:

V NN
ij = V NN,π

ij + V NN,R
ij =

∑

p=1,18

vp (r)Opij , (2.3)

where V NN,R
ij is the phenomenological part. The 18 operators Opij are:

O1−8
ij = {1,σi ·σj ,Sij ,L · S} × {1, τ i · τ j}

O9−14
ij =

{
L2,L2σi ·σj , (L · S)2

}
× {1, τ i · τ j}

O15−18
ij =

{
Tij ,σi ·σjTij ,SijTij , τ zi + τ zj

}
,

(2.4)

where L is the relative angular momentum of the pair (L = −ir× (∇i −∇j)/2),

S is the total spin, and Tij = 3τ zi τ
z
j − τ i · τ j is the isotensor operator.

There are simplified versions of this potential, i.e. with fewer operators. They

are denoted with the prime symbol. Instead of just truncating the number of

operators, the contributions coming from the omitted operators are reprojected

into the available operators. We adopt AV8’ (see [42] for AV8’, and [43] for a

general AVX’ interaction) for the nn interaction for pure neutron matter, where

the number 8 indicates that the potential is written in terms of only the first

eight operators. It has been shown that the difference in energies per nucleon

between the full Argonne potential (AV18) and AV8’ is less than 0.25% in neutron

drops [89] and small for pure neutron matter (see Figure 2.3) [90]. Two body

potentials are not able to reproduce binding energies of A = 3 nuclei and also the

maximum mass of neutron stars, so we need to introduce three-body forces.

2.1.1 Three-body forces

In addition to two-body Argonne potential, two different families of three-body

forces have been developed: Illinois and Urbana. The Urbana potentials give a

three-body force which is a sum of a two-pion exchange term in P -wave and

a short-range phenomenological term, while Illinois series also includes a two

pion-exchange term in S-wave and a term which describes the most important

diagrams of the three-pion rings with one or two ∆ intermediate states diagrams

(The diagrams showing the different terms are reported in Figure 2.2).

The most recent version of the Illinois potential series is the IL7 potential [91]. The
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IL7 three-body force in combination with AV18 two-body potential gives a good

the description of ground- and excited states energies, while it fails to describe

pure neutron matter [92] (see Figure 2.3).

For pure neutron matter, UIX [93, 94] potential in addition to AV18 provides

sufficient repulsion and consequently reasonable properties of nuclear matter (see

Figure 2.3), but fails to give an accurate description of energies spectra of light

nuclei.

Since we want to describe dense neutron matter, we adopt the phenomenological

potential AV8’+UIX.

and np scattering in the 1S0 channel. The CSB term is short
ranged and constrained by the difference in pp and nn
scattering lengths and is necessary to obtain the correct
3He-3H mass difference.
Direct GFMC and AFDMC calculations with the full AV18

potential are not practical because the spin-isospin-dependent
terms which involve the square of the orbital momentum
operator have very large statistical errors. However, these
terms in AV18 are fairly weak and can be treated as a first-
order perturbation. Hence it is useful to define a simpler
isoscalar AV80 potential with only the first eight (central, spin,
isospin, tensor, and spin-orbit) operators of Eq. (11); details
are given in Pudliner et al. (1997) and Wiringa and Pieper
(2002). The AV80 is not a simple truncation of AV18, but a
reprojection that preserves the isoscalar average of the strong
interaction in all S and P partial waves as well as the deuteron.
It has been used in benchmark calculations of 4He by seven
different many-body methods, including GFMC (Kamada
et al., 2001).
It has proved useful pedagogically to define even simpler

reprojections of AV80, particularly an AV60 potential without
spin-orbit terms that is adjusted to preserve deuteron binding.
The AV60 has the same CI OPE potential as AV80 and
preserves deuteron binding and S-wave and 1P1 partial wave
phase shifts, but 3P0;1;2 partial waves are no longer properly
differentiated. Details are given in Wiringa and Pieper (2002),
where the evolution of nuclear spectra with increasing realism
of the potentials was investigated.

B. Three-body forces

TheUrbana series of 3N potentials (Carlson, Pandharipande,
and Wiringa, 1983) is written as a sum of two-pion-exchange
P-wave and remaining shorter-range phenomenological terms,

Vijk ¼ V2π;P
ijk þ VR

ijk: ð14Þ

The structure of the two-pion P-wave exchange term with an
intermediate Δ excitation [Fig. 1(a)] was originally written
down by Fujita and Miyazawa (1957); it can be expressed
simply as

V2π;P
ijk ¼

X

cyc

AP
2πfXπ

ij; X
π
jkgfτi · τj; τj · τkg

þ CP
2π½Xπ

ij; X
π
jk&½τi · τj; τj · τk&; ð15Þ

where Xπ
ij is constructed with the average pion mass and

P
cyc

is a sum over the three cyclic exchanges of nucleons i; j; k.
For the Urbana models CP

2π ¼ ð1=4ÞAP
2π , as in the original

Fujita-Miyazawa model, while other potentials like the
Tucson-Melbourne (Coon et al., 1979) and Brazil (Coelho,
Das, and Robilotta, 1983) models have a ratio slightly larger
than 1=4. The shorter-range phenomenological term is
given by

VR
ijk ¼

X

cyc

ART2ðμrijÞT2ðμrjkÞ: ð16Þ

For the Urbana IX (UIX) model (Pudliner et al., 1995), the two
parameters AP

2π and AR were determined by fitting the binding
energy of 3H and the density of nuclear matter in conjunction
with AV18.
While the combined AV18þ UIX Hamiltonian reproduces

the binding energies of s-shell nuclei, it somewhat underbinds
light p-shell nuclei. A particular problem is that the two-
parameter Urbana form is not flexible enough to fit both 8He
and 8Be at the same time. A new class of 3N potentials, called
the Illinois models, has been developed to address this
problem (Pieper et al., 2001). These potentials contain the
Urbana terms and two additional terms, resulting in a total of
four strength parameters that can be adjusted to fit the data.
The general form of the Illinois models is

Vijk ¼ V2π;P
ijk þ V2π;S

ijk þ V3π;ΔR
ijk þ VR

ijk: ð17Þ

The term V2π;S
ijk is due to πNS-wave scattering as illustrated in

Fig. 1(b) and is parametrized with a strength AS
2π . It has been

included in a number of 3N potentials such as the Tucson-
Melbourne and Brazil models. The Illinois models use the
form recommended in the latest Texas model (Friar, Hüber,
and van Kolck, 1999), where chiral symmetry is used to
constrain the structure of the interaction. However, in practice,
this term is much smaller than the V2π;P

ijk contribution and
behaves similarly in light nuclei, so it is difficult to establish
its strength independently just from calculations of energy
levels.
A more important addition is a simplified form for three-

pion rings containing one or two Δs [Figs. 1(c) and 1(d)]. As
discussed by Pieper et al. (2001), these diagrams result in a
large number of terms, the most important of which are used to
construct the Illinois models:

V3π;ΔR
ijk ¼ AΔR

3π ½503 S
I
τSIσ þ 26

3A
I
τAI

σ&: ð18Þ

Here the SIx and AI
x are operators that are symmetric or

antisymmetric under any exchange of the three nucleons, and
the subscripts σ and τ indicate that the operators act on,
respectively, spin or isospin degrees of freedom.
The SIτ is a projector onto isospin-3=2 triples:

SIτ ¼ 2þ 2
3ðτi · τj þ τj · τk þ τk · τiÞ ¼ 4PT¼3=2: ð19Þ

To the extent isospin is conserved, there are no such triples in
the s-shell nuclei, and so this term does not affect them. It is
also zero for Nd scattering. However, the SIτSIσ term is
attractive in all the p-shell nuclei studied. The AI

τ has the
same structure as the isospin part of the anticommutator part
of V2π;P, but the AI

τAI
σ term is repulsive in all nuclei studied so

(b) (c)

∆
∆ ∆

∆

(d)(a)

π

π

π

π
π

π π
π

ππ

FIG. 1 (color online). Three-nucleon force diagrams for (a) two-
pion P-wave, (b) two-pion S-wave, and (c), (d) three-pion ring
terms.

J. Carlson et al.: Quantum Monte Carlo methods for nuclear physics 1071

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015

(a) (b) (c) (d)

Figure 2.2: Three-body force Feynman diagrams: (a) is the Fujita-Miyazawa or two-pion

P -wave, (b) is the two-pion in S-wave and (c), (d) are three-pion ring terms

(From Ref. [87]).

The UIX potential can be written as:

V 3N
ijk = V 2π,P

ijk + V R
ijk , (2.5)

where V 2π,P
ijk and V R

ijk stand for the two-pion exchange term in P -wave and the

short-range phenomenological term, respectively. The two pion-exchange term

was first written by Fujita-Miyazawa [95] and it describes the two-pion exchange

in P -wave as:

V 2π,P
ijk =

∑

cyc

AP2π
{
Xπ
ij ,X

π
jk

}
{τ i · τ j , τ j · τ k}+CP2π

[
Xπ
ij ,X

π
jk

]
[τ i · τ j , τ j · τ k] ,

(2.6)

where the sum is over the three cycling exchanges of nucleons i, j, k and Xπ
ij is

defined from the AV18 model as:

Xπ
ij = [Y (mπr)σi ·σj + T (mπr)Sij ] , (2.7)
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where Y (x) and T (x) are the Yukawa and tensor functions respectively, as de-

scribed above. In UIX model CP2π = (1/4)AP2π as in the original Fujita-Miyazawa

model.

The phenomenological part is given by:

V R
ijk =

∑

cyc

ART
2 (mπrij) T

2 (mπrjk) , (2.8)

where T (x) is the tensor function and the sum runs on the nucleon indices i, j, k

cyclically exchanging them.

The parameters of the UIX model were determined by fitting the binding energy

of 3H and the density of nuclear matter in conjunction with AV18. In Figure 2.3,

we report results for PNM with different kinds of phenomenological potentials.
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FIG. 10. (Color online) Radial density distributions for (a) 8
neutrons and (b) 14 neutrons in different HO traps with JISP16 and
with AV8′ + UIX.

the density seems to fall off monotonically from a central
value of about 0.11 to 0.12 fm−3 with JISP16. However, the
densities obtained with the AV8′ + UIX Hamiltonian for 14
neutrons seem to be slightly enhanced in the central region: In
the 10-MeV trap the central density with with the AV8′ + UIX
is about 20% higher than with JISP16.

This difference between the density profiles of 14 neutrons
in a HO trap with JISP16 and AV8′ + UIX could well be
related to the presence (JISP16) and absence (AV8′ + UIX)
of subshell closure for 16 neutrons, and both are likely to
be related to differences in spin-orbit splittings. It would be
interesting to compare these densities with those obtained with
other realistic potentials, and in particular to investigate the
effect of different three-body forces on the density profiles, as
well as on the spin-orbit splittings and subshell closures.

VI. NEUTRON MATTER

The equation of state of neutron matter is important to
properly fix the bulk term of Skyrme-type EDFs. We report
the AFDMC results for the energy per neutron as a function
of the density in Table IV and display them in Fig. 11. For the
AFDMC QMC calculations, the results are for a system of 66
neutrons with periodic boundary conditions. The calculation

TABLE IV. Equation of state of neutron matter as a function of
the density for various Hamiltonians.

ρ (fm−3) AV8′ AV8′ + UIX AV8′ + IL7

0.04 6.55(1) 6.79(1) 6.42(1)
0.05 7.36(1) 7.73(1) 7.11(1)
0.06 8.11(1) 8.65(1) 7.77(1)
0.07 8.80(1) 9.57(1) 8.26(1)
0.08 9.47(1) 10.49(1) 8.75(2)
0.09 10.12(1) 11.40(1) 9.14(2)
0.10 10.75(1) 12.39(1) 9.50(2)
0.11 11.37(1) 13.39(1) 9.78(2)
0.12 12.00(1) 14.42(1) 10.03(2)
0.13 12.64(1) 15.52(1) 10.27(2)
0.14 13.21(1) 16.66(1) 10.41(2)
0.15 13.84(2) 17.87(2) 10.54(3)
0.16 14.47(2) 19.10(2) 10.62(3)

is very similar to those of the neutron drops, except the
single-particle orbitals in the trial wave function are replaced
by plane waves that respect the periodic boundary condition,
as described in Sec. III C. More details can be found in
Refs. [20,25]. The energy corrections owing to finite-size
effects arising from such a simulation are expected to be ex-
tremely small compared to the bulk energies considered here.

The effect of TNI is important in the equation of state of
neutron matter beyond half nuclear matter saturation density
(ρ = 0.08 fm−3), as is clear in Fig. 11. The two different TNIs
added to AV8′ have opposite effects: UIX is repulsive, while
IL7 is attractive. This is in agreement with the trend in neutron
drops shown in Fig. 4. Our earlier discussion of the effects
of the different terms in UIX and IL7 apply equally to the
differences observed here. Furthermore, in moderately large
neutron drops (N > 12) we have seen that the trend with
JISP16 is similar to the trend with AV8′ without TNI. We
therefore expect that the equation of state with JISP16 will be
similar to that of AV8′ without TNIs.
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FIG. 11. (Color online) Equation of state of neutron matter as a
function of the density for different Hamiltonians.
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FIG. 1. (Color online) Convergence of the computed energy at
ρ = 0.32 fm−3 as a function of neutrons in a box within the grid twist-
averaging method (TABC) described in the text with ten twists: the
Argonne v′

8+Urbana-IX Hamiltonian were considered. The equation
of state is compared with the fixed-phase AFDMC calculations with
periodic boundary conditions (PBC) shown by solid lines.

As can be seen, both the Argonne v′
8 and v18 give an equation of

state showing essentially the same behavior, with a difference
in the energy that is similar throughout the considered range
of densities. The addition of the three-nucleon interaction
increases the differences between the AFDMC and the Akmal
et al., in particular at higher densities, implying a strong
difference in pressure and compressibility.

The Argonne v′
8 interaction should be more attractive than

Argonne v18 as shown in light nuclei and in neutron-drop
calculations [13]. The plots shown in Fig. 2, however, where we
compare Argonne v′

8 results with the v18 values of Akmal et al.,
do not show this. We believe this is indicative of systematic
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FIG. 2. (Color online) Fixed-phase AFDMC equation of state
evaluated by simulating 66 neutrons in a periodic box; the Argonne v′

8
(AV8′) and Argonne v′

8+Urbana-IX (AV8′+UIX) Hamiltonians were
considered. The equation of states are compared with the variational
calculations of Ref. [50] using the Argonne v18 (AV18) and the
Argonne v18+Urbana-IX (AV18-UIX) Hamiltonians. See the legend
for details.

errors in the FHNC/SOC calculations. The fixed-phase
AFDMC has proved to be in very good agreement with
the GFMC results for light nuclei [11] and also with the
GFMC results for 14 neutrons. On the other hand, the
fixed-phase AFDMC calculation of nuclear matter suggests
that the FHNC/SOC approximation could miss important
contributions, in particular those coming from the neglected
elementary diagrams in the FHNC summation [12]. In the
Akmal et al. calculations, the energy is computed by means of
a cluster expansion for which no evidence of convergence can
be provided. The addition of the Urbana-IX three-body inter-
action to the Hamiltonian increases the differences between
the AFDMC results and those of Akmal et al., and, again, this
confirms that the variational technique based on the cluster
expansion gives a lower energy because it neglects important
contributions. However, we stress the fact that in the case of
neutron matter, the contribution of the tensor-τ force is small
compared to the other channels of the interaction. For this rea-
son, the calculation of the energy within traditional variational
techniques based on FHNC/SOC or cluster expansion could be
more accurate for pure neutron matter without protons. This is
not true when dealing with nuclear matter in which the effect
of tensor-τ is most important, as confirmed in Ref. [12].

The AFDMC results have been fitted with the following
functional form:

E

N
(ρ) = aρβ + cργ , (68)

where E/N is the energy per neutron in MeV as a function of
density in fm−3. The parameters of the fit for both Argonne v′

8
and the full Argonne v′

8+Urbana-IX Hamiltonian are reported
in Table V. We also tried to use the functional form of Ref. [51],
where β = 1. We had a worse χ2, but the equation of state and
the pressure as a function of the density does not change in a
significant way.

C. Argonne v′
8 and v18 interactions

As described in the above sections, in most cases the
Argonne v18 result is evaluated as a perturbation of the Argonne
v′

8 [13]. The assumption is reasonable, since the Argonne v′
8

potential contains most of the contributions of v18 potential
and was obtained with a reprojection by keeping only the
most important terms. However, the operators appearing in
Argonne v18 and not in Argonne v′

8 are not exactly included in
the GFMC calculations. The imaginary-time GFMC evolution
is performed using Argonne v′

8, and the energy is calculated
perturbatively in the difference between v′

8 and v18, which for
nuclei is a fraction of an MeV.

TABLE V. Parameters of Eq. (68) fitting the equation of
state computed with the full Argonne v′

8+Urbana-IX (AV8′+UIX)
Hamiltonian and with the nucleon-nucleon interaction only (AV8′).
The parameters a and c are expressed in MeV/fm−3.

Hamiltonian a c β γ

AV8′ 23.0 115.7 0.37 1.87
AV8′+UIX 32.6 507.8 0.48 2.375

054005-10

Figure 2.3: PNM EOS for the phenomenological potentials described in the text. (left

panel - from Ref. [92]) AFDMC results for PNM with phenomenological AV8’,

AV8’+UIX and AV8’+IL7. (right panel - from Ref. [90]) AFDMC results for

AV8’ and AV8’+UIX compared to variational calculations using the full AV18

and AV18+UIX potentials of Ref [26].)

2.2 local chiral effective field theory po-

tential

As introduced in the first part of this chapter, another approach to describe

nucleon-nucleon interaction is chiral effective field theory (EFT). This approach
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relies on a separation of scales between the energy of the physics of the relevant

degrees of freedom and contribution from higher energy scales. The chiral EFT

potential can be written as an expansion in terms of:

V =
∞∑

ν=0

V ν (cνi )

(
p

Λb

)ν
, (2.9)

where p is the typical momentum scale of the system and Λb is the breakdown

scale of the theory. V ν (cνi ) is the contribution at order ν and depends on the low-

energy constants cνi (LECs). Clearly the expansion is valid only when p� Λb.

Feynman diagrams can be systematically evaluated and classified according to

Weinberg power counting, as shown in Figure 2.4. This naturally leads to con-

sistent three- and many-body forces. The orders of the expansion are classified

as leading order (LO), next-to-leading order (NLO), next-to-next-to-leading order

(N2LO), and so on. The infinite series can be truncated since the expansion is

perturbative, and the contributions coming from higher-order terms decrease.

The natural formulation of the theory is in momentum space, but, as we previ-

ously mentioned, QMC methods work best with local interactions in coordinate

space. Denoting p and p′ the relative incoming and outgoing momenta of the two

nucleons, and with q = p′ − p and k = (p′ + p)/2 the momentum transfer and

the momentum transfer in the exchange channel, the local terms are the terms

depending on q, while those depending on k are nonlocal. We briefly review

the formulation of the EFT potential in momentum space and how to work out

a local version [44, 45]. We use a local version of the chiral EFT potential up to

N2LO. Note that at this order, three-nucleon forces arise, and contribution from

more than three-body terms appear only at higher orders. No local version of

the EFT potentials up to N3LO can be obtained since the non-locality can not be

eliminated completely.

The long-range part of the NN potential is described by one- and two-pion ex-

change. One-pion exchange appears as the LO term, and in momentum space is

written as:

V mom
1π,LO = W

(0)
T (q) (τ 1 · τ 2) (σ1 · q) (σ2 · q) = −

(
gA
2fπ

)2 (σ1 · q) (σ2 · q)

q2 +m2
π

τ 1 · τ 2 ,

(2.10)
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NN 3N 4N 

(2011) (2006)

derived in  (1994/2002) 

LO O
Q0

Λ0( )

NLO O
Q2

Λ2( )

N2LO O
Q3

Λ3( )

N3LO O
Q4

Λ4( )

Figure 1
Chiral effective field theory for nuclear forces. The different contributions at successive orders are shown
diagrammatically. Nucleons and pions are represented by solid and dashed lines, respectively. Many-body
forces, including the year they were derived [3N forces at N2LO (3, 4) and N3LO (5, 6); 4N forces at N3LO
(7)], are highlighted in gold. All N3LO 3N and 4N forces are predicted parameter free. Modified from
References 1 and 2.

(1, 2). In chiral EFT, nucleons interact via pion exchanges and shorter-range contact interactions.
The resulting nuclear forces and consistent electroweak operators are organized in a systematic
expansion in powers of Q/!b (where !b ∼ 500 MeV denotes the breakdown scale), leading
to a typical expansion parameter of Q/!b ∼ 1/3. Chiral EFT enables controlled calculations
with theoretical error estimates, which are especially important for exotic nuclei and neutron-rich
matter under extreme conditions in astrophysics. Moreover, chiral EFT connects nuclear forces
to the underlying theory through lattice QCD (8, 9).

Generally, nuclear forces are not observable and depend on a resolution scale !, so the nuclear
Hamiltonian is given by H (!) = T (!) + V NN(!) + V 3N(!) + V 4N(!) . . . . As shown in
Figure 1, at a given order, nuclear forces include contributions from one- or multipion exchanges
that govern the long- and intermediate-range parts and from short-range contact interactions.
For each !, the scale-dependent short-range couplings are fit to low-energy data and thus cap-
ture all the short-range effects that are relevant at low energies. Although 3N forces are not
observable, there are natural sizes to many-body force contributions that are made manifest in
the EFT power counting and that explain the phenomenological hierarchy of many-body forces:
V NN(!) > V 3N(!) > V 4N(!) (1, 2). The effects discussed in this review are dominated by the
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Figure 2.4: Chiral effective field theory for nuclear forces. The different contributions at

successive orders are shown diagrammatically. Solid and dashed lines indicate

nucleons and pions, respectively. 3N forces at N2LO, including the year they

were derived, are highlighted in gold. Modified from Ref. [96].

and the two-body part of the two-pion contribution exchanges at NLO and N2LO

as:

V mom
2π,NLO = W

(2)
C (q) (τ 1 · τ 2) + V

(2)
S (q) (σ1 ·σ2) + V

(2)
T (q) (σ1 · q) (σ2 · q)

V mom
2π,N2LO = V

(3)
C (q) +W

(3)
S (q) (τ 1 · τ 2) (σ1 ·σ2) +W

(3)
T (q) (τ 1 · τ 2) (σ1 · q) (σ2 · q) ,

(2.11)
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where the subscripts C, S and T stand for the central, spin-spin and tensor contri-

butions and the superscripts (0), (2) and (3) indicates the order of the expansion

in ν. The functions V (2,3) and W (2,3) are spectral function representations (SFRs)

with different spectral functions and ultraviolet cutoff Λ̃. In the local formulation

the potential is not much sensitive to the cutoff Λ̃ and it usually varied in the

range Λ̃ = 1.0− 1.4 GeV. In the SFRs three LECs (c1, c3 and c4) appear to describe

subleading pion-nucleon vertices [97].

The short-range physics is described by contact interactions, which at LO are

momentum independent and are written as:

V mom
cont,LO = α11 + α2σ1 ·σ2 + α3τ 1 · τ 2 + α4σ1 ·σ2τ 1 · τ 2 ., (2.12)

where αi are LECs. Among the four contact terms at LO, only two are linearly

independent. The conventional choice is [98]:

V mom
cont,LO = CS +CTσ1 ·σ2 , (2.13)

where CS and CT are combination of αi. The "contact" definition comes from the

fact that in coordinate space, these terms lead to Dirac deltas δ(r). At NLO, 14

different contact interactions are allowed by symmetries, but only seven couplings

are independent. It is possible to rearrange the terms to obtain a local interaction

(eliminating the terms depending on k) as:

V
(2)
cont =C1q

2 +C2q
2τ 1 · τ 2 +

(
C3q

2 +C4q
2τ 1 · τ 2

)
σ1 ·σ2

+ i
C5

2
(σ1 + σ2) · q× k +C6 (σ1 · q) (σ2 · q) +C7 (σ1 · q) (σ2 · q) τ 1 · τ 2 ,

(2.14)

where the only non-local term is the spin orbit (C5). Both the long- and the short-

range parts of the potential need to be regularized. The long-range part is Fourier

transformed and then a local regulator of the form [44]:

f longR (r) =
(

1− e−(r/R0)4
)

(2.15)

is applied. This assures the convergence of the long-range part at distances

smaller than R0. On the other hand the δ(r) functions which appear from the

contact interactions are written as Dirac representation as:

f shortR (r) = αe−(r/R0)4

, (2.16)
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nucleon-nucleon interaction

where α is the normalization constant. R0 is usually taken ∼ 1 fm, which corre-

sponds to momentum-space cutoffs of the order of ∼ 500 MeV.

The local chiral potential V (r) can be decomposed into the central, central-

isospin, spin, spin-isospin, spin-orbit, tensor, and tensor-isospin components as:

V (r) =V C(r) + V Cτ (r)τ 1 · τ 2 + [V σ(r) + V στ (r)τ 1 · τ 2]σ1 ·σ2

+ V LS(r)L · S +
[
V T (r) + V Tτ (r)τ 1 · τ 2

]
S12(r) ,

(2.17)

where the operators have similar structures of the ones of the Argonne series.

The obtained phase shifts for different partial waves are shown in Figure 2.5.

The three-nucleon interactions can also be written in coordinate space as a sum

of three terms: a two-pion-exchange part (TPE, denoted by VC), a one-pion-

exchange-contact interaction (VD), and a 3N contact interaction (VE). While VC

is determined from LECs c1, c3 and c4, two new LECs, namely cD and cE , need

to be fit to describe VD and VE respectively. The local version of VC is given

in Ref. [46], while local expression for VD and VE are given in Ref. [47]. When

working in momentum space, different operatorial structures of VD and VE are

allowed. The ambiguity on the operatorial expression for the contact interactions

comes from the regulator artifacts in coordinate space. Some possible choices are

described in detail in Ref. [47] with the corresponding values for LECs cE and

cD. From the same Reference, we report results for PNM with different choices

of VE in Figure 2.6. The two couplings are fitted to the 4He binding energy and

low-energy n− α scattering P -wave phase shifts.

A comparison between PNM matter results with phenomenological and local

chiral EFT potentials described in this chapter are reported in Figure 2.7. Among

the different operatorial choices, we choose the one which gives closer results for

PNM to the phenomenological potential, i.e. VE1 with a cutoff of R0 = 1.0 fm.
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FIG. 3. (Color online) Phase shifts for the 1S0 and 3S1 -3D1 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen PWA
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larger than 50 MeV. In addition, also the description of the
J = 1 mixing angle is poor at all orders, a fact that is clearly
reflected in the size of the cutoff bands.

In Fig. 4 we show the phase shifts for the P waves and the
J = 2 coupled channel. In the 1P1 channel the LO band starts
to deviate from the data already at low energies. Including
additional spin-orbit and tensor contributions at NLO improves

the description of the 1P1 channel only little. However, the
situation highly improves when going to N2LO.

In the 3P waves the phase shifts improve considerably
going from LO to higher orders and the description of
the 3P waves at N2LO is substantially better than in our
previous fits [15]. Furthermore, the description of the J = 2
coupled channel is considerably better than for the J = 1
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PWA [46]. The bands are obtained as in Fig. 3.
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In Fig. 4 we show the phase shifts for the P waves and the
J = 2 coupled channel. In the 1P1 channel the LO band starts
to deviate from the data already at low energies. Including
additional spin-orbit and tensor contributions at NLO improves

the description of the 1P1 channel only little. However, the
situation highly improves when going to N2LO.
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reflected in the size of the cutoff bands.

In Fig. 4 we show the phase shifts for the P waves and the
J = 2 coupled channel. In the 1P1 channel the LO band starts
to deviate from the data already at low energies. Including
additional spin-orbit and tensor contributions at NLO improves

the description of the 1P1 channel only little. However, the
situation highly improves when going to N2LO.

In the 3P waves the phase shifts improve considerably
going from LO to higher orders and the description of
the 3P waves at N2LO is substantially better than in our
previous fits [15]. Furthermore, the description of the J = 2
coupled channel is considerably better than for the J = 1
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coupled channel and improves when going from LO to
N2LO.

In Fig. 5 we show the phase shifts for the remaining
uncoupled partial waves up to J = 4. The description of the
individual channels is good even at high energies except for
the D waves. This can also be seen in Fig. 6, where we show
the J = 3 and J = 4 coupled channels.

In general, the description of all D wave channels is poor
up to N2LO and does not improve when going from NLO
to N2LO. This results from the truncation of the contact
interactions at N2LO because in partial waves with orbital
angular momentum L > 1 no contact interactions contribute
at this order except for regulator effects. Thus, the D wave
phase shifts are described almost solely by pion-exchange
interactions and are parameter free. This can be improved
by going to N3LO. The higher L > 2 partial waves instead are
mostly described by long-range pion-exchange interactions
and already the OPE interaction at LO describes the data well
at low energies. Thus, the higher partial waves can be well
described already at N2LO.

Comparing our phase shift results to the results ob-
tained with the nonlocal N2LO momentum-space potential
of Ref. [3], we find that the local potentials describe all
partial waves up to J = 4 better except for the D waves. In

addition, the cutoff variation is smaller for the local chiral
potentials.

IV. DEUTERON

In this section, we calculate deuteron properties using the
local chiral potentials presented in the previous sections at LO,
NLO, and N2LO. We calculate the deuteron binding energy
Ed , the quadrupole moment Qd , the magnetic moment µd , the
asymptotic D/S ratio η, the root-mean-square (rms) radius rd ,
the asymptotic S-wave factor As , and the D-state probability
PD . We vary the cutoff R0 = 1.0−1.2 fm and, at NLO and
N2LO, the SFR cutoff "̃ = 1.0−1.4 GeV. The deuteron
properties are calculated as described in Ref. [3]. The results
are shown in Table III and are compared with experimental
results of Refs. [51–56] and the N2LO Epelbaum, Glöckle, and
Meißner (EGM) results of Ref. [3], where the cutoff variation
is " = 450−650 MeV and "̃ = 500−700 MeV.

At N2LO we find a deuteron binding energy of −2.208 ±
0.010 MeV, which has to be compared with the experimental
value of −2.225 MeV. Thus, the N2LO result deviates from
the experimental result by less than 1%, which is better than
2.196 ± 0.007 for the nonlocal, momentum-space N2LO EGM
potentials of Ref. [3]. However, for those potentials the range
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FIG. 4. (Color online) Phase shifts for the 1P1, 3P0, 3P1, and 3P2 -3F2 partial waves at LO, NLO, and N2LO in comparison with the Nijmegen
PWA [46]. The bands are obtained as in Fig. 3.
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Figure 2.5: Phase shifts for the partial waves at LO, NLO, and N2LO in comparison with

the Nijmegen PWA (from Ref. [83]). The bands at each order correspond to

the cutoff variation of R0 = 1.0− 1.2 fm. At NLO and N2LO, we also vary the

SFR cutoff from Λ̃ = 1.0− 1.4 GeV (from Ref. [45]).
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include results from LO, NLO, and N2LO in the analysis
using the Fermi momentum and the pion mass as the small
scales for neutron matter (discussed below) and nuclei,
respectively. The error bars presented here are comparable
to those shown in Ref. [33], although it is worth emphasiz-
ing that our calculations represent a complete estimate of
the uncertainty at N2LO since we include 3N interactions.
Other choices for 3N structures give similar results.
It is noteworthy that NN and 3N interactions derived

from chiral EFT up to N2LO have sufficient freedom such
that n-α scattering phase shifts in Fig. 1(b) and properties
of light nuclei in Fig. 2 can be simultaneously described.
The failures of the Urbana IX model in underbinding
nuclei and underpredicting the spin-orbit splitting in
neutron-rich systems, including the n-α system, were
among the factors motivating the addition of the three-
pion exchange diagrams in the Illinois 3N models [7]. Our
results show that chiral 3N forces at N2LO, including
the shorter-range parts in the pion exchanges, allow the
simultaneous fit. These interactions should be tested further
in light p-shell nuclei.
Finally, we study the full chiral N2LO forces, including

all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine
the effects of different VD and VE structures on the equation
of state of neutron matter. Although these terms vanish in
the limit of infinite cutoff, they contribute for finite cutoffs.
In Fig. 3 we show results for the neutron matter energy per
particle as a function of the density calculated with the

AFDMC method described in Refs. [3,34]. We show the
energies for R0 ¼ 1.0 fm for the NN and full 3N inter-
actions. We use VD2 and the three different VE structures:
VEτ (blue band), VE1 (red band), and VEP (green band).
The error bands are determined as in the light nuclei case.
The VEP interaction fits A ¼ 4; 5 with a vanishing cD;
hence, this choice of VE leads to an equation of state
identical to the equation of state with NN þ VC, as in
Ref. [24] (the projector P is zero for pure neutron systems),
and qualitatively similar to previous results using chiral
interactions at N2LO [35] and next-to-next-to-next-to-
leading order [36].
As discussed, the contributions of VD and VE are only

regulator effects for neutrons. However, they are sizable
and result in a larger error band. At saturation density
n0 ∼ 0.16 fm−3, the difference of the central value of the
energy per neutron after inclusion of the 3N contacts VE1 or
VEτ is ∼2 MeV, leading to a total error band with a range of
∼6.5 MeV when considering different VE structures. This
relatively large uncertainty can be qualitatively explained
when considering the following effects. Because the
expectation value h

P
i<jτi · τji has a sign opposite to that

of the expectation value h1i in 4He, cE will also have
opposite signs in the two cases to fit the binding energy.
However, in neutron matter both operators are the same,
spreading the uncertainty band. A similar argument was
made in Ref. [37].
With the regulators used here, the Fierz-rearrangement

invariance valid at infinite cutoff is only approximate at
finite cutoff, and hence the different choices of VD and VE
can lead to different results. The different local structures
can lead to finite relative P-wave contributions. These can
be eliminated by choosing VEP , which has a projection
onto even-parity waves (predominantly S waves). The
usual nonlocal regulator in momentum space does not
couple S and P waves.
In conclusion, we find for the first time that chiral

interactions can simultaneously fit light nuclei and
low-energy P-wave n-α scattering and provide reasonable
estimates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not
provide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to describe
global properties of nuclear systems.
We also find that the ambiguities associated with con-

tact-operator choices can be significant when moving from
light nuclei to neutron matter and possibly to medium-mass
nuclei, where the T ¼ 3

2 triples play a more significant role.
The reason for the sizable impact may be the regulators
used here, which break the Fierz-rearrangement invariance,
making further investigations of regulator choices a prior-
ity. The impact of these ambiguities in the contact operators
can contribute to the uncertainties and needs to be studied
further.

FIG. 3. The energy per particle in neutron matter as a function
of density for the NN and full 3N interactions at N2LO with
R0 ¼ 1.0 fm. We use VD2 and different 3N contact structures:
The blue band corresponds to VEτ, the red band to VE1, and the
green band to VEP . The green band coincides with the NN þ 2π-
exchange-only result because both VD and VE vanish in this case.
The bands are calculated as described in the text.

PRL 116, 062501 (2016) P HY S I CA L R EV I EW LE T T ER S
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Figure 2.6: The energy per particle in neutron matter as a function of density (n) for the

NN and full 3N interactions at N2LO with R0 = 1.0 fm. We use different

3N contact structures: the blue band corresponds to VEτ , the red band to

VE1, and the green band to VEP . The green band coincides with the NN

2π-exchange-only (TPE) result because both VD and VE vanish in this case.

The bands show the theoretical uncertainty, estimated through the expected

size of higher-order contributions (From Ref. [47]).
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2.2 local chiral effective field theory potential
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Figure 6

The AFDMC EOS of PNM calculated from chiral Hamiltonians at N2LO up to 2n0. The di↵erent

bands correspond to di↵erent choices of the 3N short-range operator structure and highlight the

impact of regulator artifacts. Each band depicts an uncertainty estimate for the EFT truncation
uncertainty. We also show results at LO and NLO as well as results using the phenomenological

AV80 interaction only or also including UIX 3N forces. Figure taken from Reference (8)

T is the total isospin) while the presence of protons also permits contributions from the

T = 1/2 channel. Nevertheless, the T = 3/2 isospin channel is only weakly accessible by

studying properties of nuclei.

While a complete calculation of nuclear matter with arbitrary proton fractions up to

x = 0.5 is still not possible with QMC methods, the AFDMC method has been widely used

to calculate the EOS of PNM for many di↵erent nuclear interactions in the past years. In

practice, in QMC methods the infinite system is simulated by a fixed number of neutrons in

a periodic box at a given baryon density. In particular, simulations using 66 neutrons (33

spin up and 33 spin down) give results very close to the thermodynamic limit (103, 104).

In Figure 6 we present results for PNM using the AFDMC method with local chiral

interactions up to N2LO. The three di↵erent bands correspond to using di↵erent short-range

operator structures for the 3N contact interaction VE at N2LO as described in Reference (47)

and discussed in Section 2; the di↵erences are due to finite-cuto↵ e↵ects and vanish in

the limit of large (momentum-space) cuto↵s. Each band depicts a truncation uncertainty

estimate based on the order-by-order results at LO, NLO (both also shown in the figure),

and N2LO. The results are compared to calculations for the phenomenological AV80 NN

interactions and when additionally including the UIX 3N forces. Note, that the blue (lower)

band produces an EOS that is very soft and leads to negative pressure at ⇡ 1.5n0, which

is unphysical. The other two bands, instead, lead to an EOS that is compatible with

calculations using phenomenological Hamiltonians, but provide uncertainty estimates.

To describe NS, PNM calculations have to be extended to both � equilibrium as well

as to higher densities. While nuclear Hamiltonians have been used in QMC calculations at

all densities encountered in NSs (106), it is not clear if a description in terms of nucleonic

degrees of freedom remains valid at high densities. Therefore, a more conservative approach

is to use results based on realistic Hamiltonians at small densities, where uncertainties are

18 Lynn et al.

Figure 2.7: Neutron-matter EOSs. n indicates the number density according to the astro-

physical notation. We show the AFDMC results for local chiral Hamiltonians

with three different 3N short-range operators: TPE-only (green middle band),

TPE+VE1, (red upper band), and TPE+VEτ (blue lower band), see Ref. [47]

for details. For comparison, we also show results for the phenomenologi-

cal AV8’+UIX interactions (black line), for AV8’ (dotted line), as well as LO

(dashed line) and NLO (dashed-dotted line) results for the local chiral inter-

actions of Ref. [45] with R0 = 1.0 fm (from Ref. [99]).
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3
COMPUTATIONAL METHODS

T he calculations of ground state properties have been performed using

quantum Monte Carlo (QMC) methods, which we present in Section 3.1,

and we compute the equation of state for spin unpolarized pure neutron matter

and fully spin polarized pure neutron matter Section 4.1.

In general QMC methods model infinite systems as a finite box of fixed size with

a finite number of particles, using periodic boundary conditions (PBC). Ideally,

the thermodynamical limit is reached for an infinite number of particles. In prac-

tice, a finite number of particles is used. In order to reduce finite size effects, the

potential is computed by a sum over the first neighbors of a given simulation cell.

A further extension allowing to perform calculations with an arbitrary number

of particles is to use twist-averaged boundary conditions (TABC), which are pre-

sented in Section 3.2. TABC are advantageous for two main reasons. On the one

hand, the computational time of the QMC calculations scales exponentially with

the number of particles (for Green’s function Monte Carlo - GFMC) or polynomi-

ally (for auxiliary field diffusion Monte Carlo - AFDMC). On the other hand, with

an arbitrary number of particles, we can perform calculations with an arbitrary

spin polarization.

The calculations of excited states, especially the response functions for a many-

body system, is technically possible. The main issue is the computational cost,

which is quite expensive. We chose to treat response functions within mean field

approximation, i.e., using simplified energy-density function to reproduce the

QMC results. This should be a fair compromise since all the microphysics is

included in the QMC calculations with realistic nuclear potentials. This work
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follows previous calculations of the longitudinal and transverse response in the

isospin channel [100, 101] . Following Hoenberg-Kohn theorem, it is possible to

obtain this energy-density function and employing it within the Time Dependent

Local Density Approximation (TDLDA, see e.g., [102]). The TDLDA is presented

in Section 3.3.

3.1 quantum monte carlo methods

Quantum Monte Carlo (QMC) methods have been used over the past decades

to describe properties of nuclei as well as nuclear matter [87]. QMC methods are

called ab initio, which means that for a given potential the Schrödinger equation

is solved for the many-body system with controlled approximations, which can

be, in principle, systematically improved.

Variational Monte Carlo (VMC) methods were introduced for use with nuclear in-

teractions in the early 1980s [103]. VMC provides an upper-bound of the ground

state energy by minimizing the variational parameters present in the wavefunc-

tion.

Green’s function Monte Carlo (GFMC) method was first introduced by Kalos [104]

and then adapted to nuclear physics [42]. This method projects out the ground

state with a specific set of quantum numbers. The drawback is that GFMC scales

exponentially with the number of particles and thus it has been applied to de-

scribe nuclei up to A = 12 nucleons [87].

Another projective method is auxiliary field diffusion Monte Carlo (AFDMC),

which was introduced in 1999 [105]. Instead of including the full summation of

the spin-isospin states, AFDMC uses Hubbard-Stratonovich transformations to

sample the spin/isospin degrees of freedom, providing a polynomial scaling. We

study pure neutron matter, and we use VMC to minimize first the variational

parameters and then to sample the configuration space. We project then to access

ground state properties with AFDMC.
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3.1 quantum monte carlo methods

3.1.1 Variational Monte Carlo (VMC)

In VMC we have that the variational energy can be computed as the expectation

value of a given Hamiltonian H on a trial wave function ψT as:

EV =
〈ψT|H|ψT〉
〈ψT|ψT〉

≥ E0 , (3.1)

where E0 is the true ground state energy, and the equality holds only when ψT

is the ground state wave function. The trial wave function ψT is a delicate object:

the closer it is to true ground eigenstate, the better variational results we will get.

In addition, better variational results lead to shorter imaginary time propagation

required to reach the ground state in AFDMC. The trial wave function for neutron

matter is usually written as:

ψT(R, S) = φS(R)φA(R, S) , (3.2)

where R = {r1, . . . , rN} and S = {s1, . . . , sN} stand for the Cartesian and spin

coordinates respectively. The ψT is written as a product two terms: a symmetric

part (S) and an antisymmetric part (A) under exchange of two particles. The

global wavefunction is thus antisymmetric, which is the correct symmetry for a

fermionic system. The symmetric part of ψT is also called the Jastrow factor. It

contains all the parameters which have to be optimized in VMC calculations to

obtain the lowest variational energy. The Jastrow factor can in general be written

as:

φS(R) =


S

∏

i<j<k

(1 + Fijk)




S

∏

i<j

Fij


 , (3.3)

where S is the symmetrization operator, Fij is a two-body correlation, and Fijk is

a three-body correlation. The most general symmetric two-body correlation can

be written as:

Fij = exp

(∑

p

fpijO
p
ij

)
, (3.4)

where fpij ≡ fp (rij) are the pair correlation functions and are obtained as solu-

tion of Schrödinger-like equations in the relative coordinate distance between two

particles [87]. The operators Opij are the two-body operators of the nuclear po-

tential employed. The full expression is used in GFMC, but it has an exponential
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cost with the number of particles. We approximate this expression restricting to

the first six operators of the two-body interaction and expanding the two-body

correlation part of Equation (3.3) as:

S
∏

i<j

Fij ≈
∏

i<j

f1ij


1 +

∑

j<j

6∑

p=2

fpijO
p
ij


 , (3.5)

where f1ij is the central part of the two-body correlation. The three-body corre-

lation of Equation (3.3) is usually replaced with a sum (1 +
∑

i<j<k Fijk), which

is significantly faster, while variational results are almost as good as the full ex-

pression [87]. A good correlation form for spin/isospin dependent three-body

correlation function (Uijk) is:

Fijk = Uijk =
∑

n

εnV
n
ijk (αnrij ,αnrik,αnrjk) , (3.6)

where the terms V n
ijk are the three-body interactions, εn are potential quenching

factors, and αn are coordinate scaling factors. The final form of the symmetric

part of the wavefunction reads:

φS(R) =
∏

i<j

f1ij
∏

i<j<k

f3cijk ×


1 +

∑

i<j

6∑

p=2

fpijO
p
ijf

3p
ij +

∑

i<j<k

Uijk


 , (3.7)

where the three-body spin/isospin independent correlations (f3cijk and f3pij ) are

introduced to reduce the strength of the pair correlation function of the spin- and

isospin-dependent components when other particles are nearby. They are defined

as:
f3cijk = 1 + qc1rij · rikrji · rjkrki · rkje−q

c
2(rij+rik+rjk)

f3pij =
∏

k

[
1− qp1 (1− rik · rjk) e−q

p
2 (rij+rik+rjk)

]
,

(3.8)

where qp,c1,2 are quenching parameters. We have ∼ 40 variational parameters over-

all. The antisymmetric part φA(R, S) is written as a Slater determinant of plane

waves for infinite neutron matter. The single particle orbitals are written as:

φα (ri, si) = eikα·riχs,ms (si) , (3.9)

where kα = 2π/L · (nαx,nαy,nαz) are the momentum vectors of a system of N

neutrons in a periodic box of size L. α is the quantum state, nx,ny and nz are
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3.1 quantum monte carlo methods

integer numbers describing the state and χs,ms (si) are spinors in general in the

proton-neutron-spin up-spin down base. The variational energy can be computed

as:

〈H〉 =

∫
dR P (R)

HψT(R)

ψT(R)∫
dR P (R)

, (3.10)

where P (R) = |ψT(R)|2 and the sum over the spin states is omitted. P (R) can

be interpreted as a probability distribution. The integral of Equation (3.10) is

evaluated in practice as:

〈E〉 =
1

A

A∑

i=1

〈Ri|H|ψT〉
〈Ri|ψT〉

, (3.11)

where 〈R|ψT〉 = ψT(R) and each configuration Ri is sampled using Metropolis

algorithm [106].

3.1.2 Auxiliary field diffusion Monte Carlo (AFDMC)

Diffusion Monte Carlo (DMC) methods rely on imaginary time propagation

to project out the ground state. Starting from a trial wave function |ψT〉, which

is usually the result of the VMC calculation, we can evolve and propagate in

imaginary time τ to project to the ground state as:

|ψ0〉 ∝ lim
τ→∞

e−(H−ET )τ |ψT〉 , (3.12)

where ET is a parameter which controls the normalization. AFDMC methods

express the spin/isospin part of the wavefunction in terms of single-particle rep-

resentations in terms of spinors. Spin/isospin linear operators acting the trial

wave function give just a simple rotation of the initial spinors, without generating

new amplitudes. Quadratic operators can be linearized by using the Hubbard-

Stratonovich transformation:

e−
1
2
λO2

=
1√
2π

∫
dx e−

x2

2
+
√
−λxO , (3.13)

where x are called auxiliary fields. The propagation in imaginary time (for sim-

plicity neglecting spin/isospin components) can be written as:

〈R′|ψ(τ )〉 =

∫
dR G (R′,R, τ ) 〈R|ψT (0)〉 , (3.14)
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where the propagator (or Green’s function) G is defined as the matrix element

between the two points R and R′ as:

G (R′,R, τ ) = 〈R′|e−(H−ET )τ |R〉 . (3.15)

The true ground state is approached by 〈R′|ψ(τ )〉 for large imaginary time τ .

The propagator G (R′,R, τ ) can not be directly computed for arbitrary τ . The

calculation is tractable for small imaginary time δτ = τ/N , with N large, and

the full propagation is then recovered as a product of short-time propagators

G (R′,R, δτ ). The equality holds for small values of the time step δτ , and the

exact result is obtained extrapolating for δτ → 0. The short time propagator,

using the Trotter-Suzuki expansion to order δτ3 [107], can be written as:

G (R′,R, δτ ) ≡ 〈R′|e−(H−ET )δτ |R〉

≈ 〈R′|e−(V−ET ) δτ
2 e−Tδτe−(V−ET ) δτ

2 |R〉 ,
(3.16)

where T and V are the nonrelativistic kinetic energy and the nuclear potential

respectively. A full review on how each term of the potentials can be included in

the propagator is reported in Ref. [86] for AV8’+UIX and Ref. [108] for local chiral

interactions. For the case of pure neutron systems, it is possible to include fully

in AFDMC spin-orbit interactions and three-body forces [84, 90].

The sampling of the spatial and spin/isospin configurations of the propagator is

usually not very efficient, so importance sampling techniques are implemented.

The idea is to introduce a guidance function ψG and sample the modified propa-

gator:

G (R′,R, S′(X), S, δτ )
〈ψG|R′S′(X)〉
〈ψG|RS〉 , (3.17)

where X are auxiliary fields from Gaussian distributions. The four weights corre-

sponding to the sampling of a coordinate displace ∆R, and of the auxiliary fields

X , which are given by:

wi =
〈ψG|R± ∆RS′(±X)〉

〈ψG|RS〉 exp [−VSI(R)δτ ] , (3.18)

where VSI is the spin/isospin-independent part of the interaction. The total

weight W of the new configuration is given by the average of the four weights.

The total weight W is used for branching as in the standard DMC method [87].
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The expectation values of the observables O which commute with the Hamilto-

nian are calculated from the sampled configurations RiSi as:

〈O(τ )〉 =

∑
i
〈RiSi|O|ψT 〉

W
W

〈RiSi|ψT 〉∑
i

W
〈RiSi|ψT 〉

. (3.19)

For other observables the expectation values can be computed as two times the

DMC expectation value minus the VMC one.

The denominator of Equation (3.19) quickly reaches zero for real weights W and

complex wavefunction ψT . This is yet another manifestation of the well-known

sign problem in DMC methods. To avoid it, we use a constrained path approxi-

mation with complex wavefunctions [109], although the calculated energy is not

necessarily an upper bound to the correct ground-state energy. The idea is to

limit the original propagation to regions where the propagated and trial wave

functions have a positive overlap, assigning zero weight to moves that change the

sign of the real part of the wavefunction.
10

ditional calculation with 38 neutrons in a PBC. It turns
out that EUC(⌧)�EUC(⌧0) obtained with the two simu-
lation boxes are fully compatible within statistical errors.
Our findings for the AV80 interaction are consistent with
the GFMC results of Ref. [115] and with the discrepan-
cies in the spin-orbit splitting of neutron drops between
AFDMC and GFMC calculations [108].
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FIG. 5. PNM unconstrained evolution of hv18 � v0
8i for at

⇢ = 0.16 fm�3 for 14 neutrons in PBC. The notation is the
same as in Fig. 4.

Analogously to the GFMC method, when computing
the full AV18 and NV2 two-body interactions, the prop-
agation is performed with the simplified v08 potential, de-
scribed in Section II. The expectation value hv18 � v08i is
evaluated in perturbation theory according to Eq. (41).
As shown in Fig. 5 for ⇢ = 0.16 and 14 neutrons with
PBC, the potential energy di↵erence remains fairly stable
during the unconstrained propagation. We fit its imagi-
nary time behavior with a simple inverse polynomial for-
mula with up to 1/⌧2 powers and estimate the error on
the asymptotic value accordingly.

IV. RESULTS

We compare the PNM equation of state as ob-
tained from the three independent many-body meth-
ods described in Section III, using the Argonne and
the Norfolk families of NN interactions. As for the
AFDMC, we present results corresponding to both the
constrained (AFDMC-CP) and unconstrained (AFDMC-
UC) imaginary-time propagations. To minimize finite-
size e↵ects, AFDMC-CP calculations are carried out
with 66 neutrons in a box with PBC. On the other
hand, the unconstrained energy is estimated by adding to
the AFDMC-CP values the energy di↵erence EUC(⌧) �
EUC(⌧0) computed simulating 14 neutrons with PBC.
This procedure significantly reduces the computational
cost of the calculation. Its accuracy is validated by
the successful comparison of unconstrained propagations

with 14 and 38 neutrons with PBC, discussed in the pre-
vious Section.
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FIG. 6. (Color online) Energy per particle of PNM as a func-
tion of density calculated with the BBG (green diamonds),
FHNC/SOC (red triangles), AFDMC-CP (grey squares) and
AFDMC-UC (solid blue points) many-body approaches. Re-
sults for the AV60, AV80, and AV18 potentials are shown in
the upper, middle, and lower panels, respectively. The curves
correspond to the polynomial fit of Eq. (45)
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out that EUC(⌧)�EUC(⌧0) obtained with the two simu-
lation boxes are fully compatible within statistical errors.
Our findings for the AV80 interaction are consistent with
the GFMC results of Ref. [115] and with the discrepan-
cies in the spin-orbit splitting of neutron drops between
AFDMC and GFMC calculations [108].
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Analogously to the GFMC method, when computing
the full AV18 and NV2 two-body interactions, the prop-
agation is performed with the simplified v08 potential, de-
scribed in Section II. The expectation value hv18 � v08i is
evaluated in perturbation theory according to Eq. (41).
As shown in Fig. 5 for ⇢ = 0.16 and 14 neutrons with
PBC, the potential energy di↵erence remains fairly stable
during the unconstrained propagation. We fit its imagi-
nary time behavior with a simple inverse polynomial for-
mula with up to 1/⌧2 powers and estimate the error on
the asymptotic value accordingly.

IV. RESULTS

We compare the PNM equation of state as ob-
tained from the three independent many-body meth-
ods described in Section III, using the Argonne and
the Norfolk families of NN interactions. As for the
AFDMC, we present results corresponding to both the
constrained (AFDMC-CP) and unconstrained (AFDMC-
UC) imaginary-time propagations. To minimize finite-
size e↵ects, AFDMC-CP calculations are carried out
with 66 neutrons in a box with PBC. On the other
hand, the unconstrained energy is estimated by adding to
the AFDMC-CP values the energy di↵erence EUC(⌧) �
EUC(⌧0) computed simulating 14 neutrons with PBC.
This procedure significantly reduces the computational
cost of the calculation. Its accuracy is validated by
the successful comparison of unconstrained propagations

with 14 and 38 neutrons with PBC, discussed in the pre-
vious Section.
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FIG. 6. (Color online) Energy per particle of PNM as a func-
tion of density calculated with the BBG (green diamonds),
FHNC/SOC (red triangles), AFDMC-CP (grey squares) and
AFDMC-UC (solid blue points) many-body approaches. Re-
sults for the AV60, AV80, and AV18 potentials are shown in
the upper, middle, and lower panels, respectively. The curves
correspond to the polynomial fit of Eq. (45)

Figure 3.1: Energy per particle of PNM as a function of density for the AV6’ (left) and

AV8’ (right) calculated with the Brueckner-Bethe-Goldstone (BBG, green di-

amonds), Fermi hypernetted chain/single-operator chain (FHNC/SOC, red

triangles), AFDMC with constrained (AFDMC-CP, grey squares) and uncon-

strained evolution (AFDMC-UC, solid blue points) many-body approaches

(from Ref. [110]). Results for AFDMC-CP in yellow squares refer to results of

Ref. [111].

The correct ground state might still be achieved by removing the constraint

on the evolution and extracting information on the unconstraint evolution before
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the signal-to-noise ratio goes to zero. This procedure is quite computational time

expensive, and we did not implement it in our calculations. The corrections are

expected to be small in pure neutron matter, but recent findings [110] showed the

importance of also doing the unconstrained evolution, as reported in Figure 3.1.

The calculations have been performed only with two-body interactions for pure

neutron matter for 14 and 38 neutrons with periodic boundary conditions (PBC).

However, the systematic error coming from the constrained imaginary-time prop-

agation seems to be related to the spin-orbit part of the potentials.

3.2 infinite matter and boundary conditions

Infinite neutron matter is modeled as N neutrons in a box of fixed size L,

and periodic boundary conditions (PBC) are applied at the borders. With PBC,

a particle that exits the box on a given direction is reintroduced in the same box

from the other side. Wavefunctions are chosen accordingly to describe such a

symmetry:

ψ (r1 + Lx̂, r2, . . .) = ψ (r1, r2, . . .) (3.20)

As explained in Section 3.1 our wavefunction is a Jastrow factor, where all the

information on the nuclear interacting part are encoded, multiplied by a Slater

determinant of plane waves. Plane waves are the solutions of the Schrödinger

equation for the system of non-interacting fermions (free Fermi gas). In general

we can allow particles to pick up a phase θ when they wrap around the bound-

aries as:

ψ (r1 + Lx̂, r2, . . .) = eiθxψ (r1, r2, . . .) . (3.21)

For a twist angle θ = 0 this expression reduces to the PBC, while taking general

twist angle θ 6= 0 is called twisted boundary condition. Twist-averaged boundary

conditions (TABC) were introduced for QMC methods by Lin et al. in 2001 [112].

With this trick, we reduce finite-size shell effects, averaging over the twist angle.

Each dimension can have an independent twits angle, so instead of a single twist,

we have a twist vector. The equilibrium properties have to be periodic in the twist
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3.2 infinite matter and boundary conditions

angle (F (θi + 2π) = F (θi)). Due to this symmetry, the values on each component

of the twist angle θi restrict to:

− π � θi ≤ π . (3.22)

In the first part of this section, we present the 2D case for non-interacting

fermions, to better visualize the effects of the twist angles. To respect the twisted

boundary conditions, the wave vectors kn of the plane waves have to satisfy:

kn = (2πn + θ)/L , (3.23)

where n is an integer vector.

The energy of each state is En = ( h̄2/2m)k2
n, and the ground state of the system

is obtained by filling the lowest energy states. The effect of the spin for spin 1/2

fermions is to double the degeneracy of each energy level. In Figure 3.2 we report

the momentum distribution of 13 spinless particles in a 2D square of size L = 2π.
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Figure 3.2: Momentum distribution for 13 spinless fermions in a 2D square with side

L = 2π. The occupied states (closed symbols) and empty states (open sym-

bols) with zero twist are shown with circles for PBC and for a twist equal to

2π(0.3, 0.15) with triangles. The circle shows the infinite system Fermi surface

(readapted and modified from Ref. [112]).

The difference between the energy value of a given twist and the exact value of

the free infinite system is plotted in Figure 3.3 for each twist in a non-interacting
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system of spin-1/2 fermions. Even averaging over all possible twist angles, we

can see that the energy contribution patterns are an intrinsic property of the sys-

tem. They depend on the number of particles, the spin degeneracy, and the

dimensionality of the system.
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Figure 3.3: Difference between the energy of each twist and the energy of the infinite sys-

tem for a 2D spin 1/2 non-interacting fermionic system at saturation density

ρ0 = 0.16 fm−3. The colorbar indicates the contribution of each 2D twist vec-

tor plotted in the xy plane. The number of particles is 10, 16, 30, 50 in top-left,

bottom-left, top-right, and bottom-right panels respectively.

The contributions of the twist angles to the energy decrease rapidly when in-

creasing the number of particles, indicating that the finite-size effects are less and

less important, and we are approaching the thermodynamical limit. The same

behavior can also be seen for the 3D case in Figure 3.4, where we plot the energy

of the free Fermi gas for spin 1/2 particles at saturation density in function of the

total number of particles.
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Figure 3.4: Energy per particle in function of the number of particles for the spin 1/2 non

interacting 3D system at saturation ρ = 0.16. The dashed lines indicates the

closed shell configurations, which are at N = 14, 38, 54, 66, 114, . . . . Blue and

red solid lines indicate the results using PBC and TABC respectively.

The bumps present in the calculation of the energy with the PBC indicate the

presence of a closed-shell configuration, i.e., a state that has degenerate energy

levels either all filled or all empty. In contrast, the convergence to the infinite sys-

tem result using TABC is much smoother, and good results are already obtained

for N ≥ 30. TABC results were computed averaging over 2× 106 twist vectors ran-

domly generated in the region defined by Equation (3.22). QMC calculations with

PBC are performed with closed-shell states (i.e., with a good symmetry). Usually,

66 particles are taken to calculate PNM properties because this is the closed shell

configuration giving the value closest to the infinite system, still with a reason-

able number of particles in terms of required computational time. Using TABC,

we can reduce the number of particles at the cost of sampling the twist angles.

The convergence to the infinite system as a function of the number of particles is

much faster and smoother. Also, an arbitrary number of spin-up and spin-down

particles can be used. In principle, one would like to reach the thermodynamic

limit, but the computational time required for a QMC calculation with nuclear
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interaction limits the number of particles to N ∼ 100. For pure neutron matter

within the AFDMC method, TABC were already introduced in Ref. [90]. We im-

plemented the TABC in the new code to study partially spin-polarized systems

and compute the magnetic susceptibility directly, as reported in Section 4.5. For

now, we report the results for the case of pure neutron matter at saturation density

with the phenomenological potential AV8’+UIX in Figure 3.5.
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Figure 3.5: The energy per particle for a fixed number of neutrons (e(N)) minus the en-

ergy of system with 66 neutrons (e(66), which is assumed to be the result for

the infinite system) is plotted in function of the neutron number N . We per-

formed the AFDMC calculations at saturation density for pure neutron matter

interacting with the AV8’+UIX potential. More details on the calculation are

given in the text.

We use 50 arbitrary twist vectors and perform independent AFDMC calcula-

tions. The results are the average on the different runs. To check the robustness of

our simulation, in some cases, we perform more simulation, sampling new twist

vectors for each run. The results for the same particle number but different sets of

twist vectors are plotted slightly shifted with respect to the correct particle num-

ber for clarity. We performed calculations for N = 14, 20, 26, 30, 34, 38, 42, 46, 66.

In contrast to the non-interacting system, the exact result for infinite matter is not

known. We assumed that for 66 neutrons, the thermodynamical limit is already

reached. We also report the results for kinetic and potential energy separately.
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3.3 time dependent local spin density approximation

Since these two quantities are not observables, they depend on the specific choice

of the optimized parameters of the Jastrow factor of the wavefunction. This can

be seen for the different calculations performed at N = 30. While the total en-

ergy per particle is clearly in agreement, the kinetic and potential energy are

barely within errorbars. In fact, we used the optimized parameters computed for

the closed shell configurations at 14 and 38 neutrons when 14 ≤ N ≤ 30 and

30 ≤ N ≤ 46 respectively. For N = 66, the parameters are optimized for this

closed-shell configuration instead.

3.3 time dependent local spin density ap-

proximation

In this section, we present the derivation of the Time Dependent Local Spin

Density Approximation (TDLSDA). Within this scheme, we compute the response

functions to density and spin density excitations. The results are reported in Sec-

tion 4.2. The solution of the many-body Schrödinger equation for N neutrons

in a volume V , in the mean field approximation, is assumed to be the product

of two Slater determinants, one for the N↑ spin-up neutrons and one for the N↓

spin-down neutrons:

ψ(r1 . . . rN ) = det[φ↑i (rj)]det[φ↓i (rj)] , (3.24)

where the indices i, j run from 1 to N↑ and N↓ respectively. The spin-up and

spin-down neutron densities are defined as:

ρσ =
∑

i

|ϕσi (r)|2 , (3.25)

where σ = ↑(↓) stands for spin-up (spin-down) neutrons, and the sum runs over

all the occupied states. We recall that in the local density (mean field) approxi-

mation, the energy as a function of the density ρ and the spin polarization ξ can

be generically written as:

E(ρ, ξ) = T0(ρ, ξ) +

∫
εV (ρ, ξ)ρ dr , (3.26)
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where T0 is the non-relativistic kinetic energy. By minimizing the energy func-

tional with respect to the single particle wavefunction ϕσi , one obtains the set of

self-consistent, stationary Kohn-Sham equations for spin-up and spin-down neu-

trons wave functions ( h̄ = c = 1 hereafter):
[
− 1

2m
∇2

r + v(ρ(r), ξ(r)) +w(ρ(r)), ξ(r))σz +
1

2
ωcσz

]
ϕσi (r) = εi,σϕ

σ
i (r) . (3.27)

The effective potentials are defined as the derivatives of the functional with re-

spect to the total density and the magnetization:

v(r) =
∂ρεV [ρ(r), ξ]

∂ρ(r)
, w(r) =

∂εV [ρ(r), ξ]

∂ξ(r)
. (3.28)

The term containing ωc is needed to induce a partial (or total) magnetization

of neutrons, mimicking the presence of an external (magnetic) field. The value

of ωc is related to the desired asymmetry ξ̄ of the system by requiring that the

variation of the expectation energy with respect to ξ at ξ̄ be zero. The result of

the minimization yields:

ωc = ξ̄
1 + 3

2εF
∂w
∂ξ

∣∣∣
ξ̄

3N
4εF

, (3.29)

where εF = k2F/2m is the Fermi energy, with the Fermi momentum kF and

the spin-up and spin-down neutron momenta given by k↑F = kF (1 + ξ)1/3 and

k↓F = kF (1− ξ)1/3, respectively. We briefly review the derivation of the TDLSDA

in the longitudinal and in the transverse channels.

3.3.1 Longitudinal channel

The longitudinal channel describes the response to a time-dependent field

along the r direction:

F z =
N∑

k=1

f(rk)λ
k
σ , (3.30)

where:

f(r) = exp [i(q · r− ωt)] + exp [−i(q · r− ωt)] ,

and λkσ = λ for a density excitation and λkσ = λησ, ησ is the eigenvalue of the

σz operator (η = 1 for spin-up and η = −1 for spin down neutrons) for vector-
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3.3 time dependent local spin density approximation

density excitations, q is the momentum and ω is the energy. The corresponding

time dependent Kohn-Sham equations reads:

i
∂

∂t
ϕσi (r, t) =

{
− 1

2m
∇2

r + v [ρ↑(r, t), ρ↓(r, t)] +w [ρ↑(r, t), ρ↓(r, t)] ησ

+ λσ

[
ei(q·r−ωt) + e−i(q·r−ωt)

]}
ϕσi (r, t) .

(3.31)

For this case we use ωc = 0, since longitudinal excitations are not directly coupled

to the neutron spin. The solutions linearized in the neutron density oscillations

induced by external fields are given by:

ρ↑(r, t) = ρ↑ + δρ↑(r, t),

ρ↓(r, t) = ρ↓ + δρ↓(r, t),
(3.32)

where the time dependent density is assumed to be proportional to the external

perturbation:

δρ↑(r, t) = δρ↑(ei(q·r−ωt) + e−i(q·r−ωt)),

δρ↓(r, t) = δρ↓(ei(q·r−ωt) + e−i(q·r−ωt)) .
(3.33)

Following the derivation in Ref. [100], the density-density response (per unit vol-

ume) is then given by:

χs(q,ω)

V
=

(δρ↑ + δρ↓)
λ

≡ χ↑(q,ω) + χ↓(q,ω)

V
, (3.34)

and the vector density-vector density response is:

χv(q,ω)

V
=

(δρ↑ − δρ↓)
λ

≡ χ↑(q,ω)− χ↓(q,ω)

V
. (3.35)

In order to determine the expression of the response function, we can explicitly

compute the total self-consistent potentials in the Kohn-Sham equations. At first

order in δρσ this is given by:

VKS [ρ↑(r, t), ρ↓(r, t)] ≡ v[ρ↑, ρ↓] +w[ρ↑, ρ↓] =

= VKS(ρ↑, ρ↓) +
∂VKS
∂ρ(r, t)

∣∣∣∣
ρ↑,ρ↓

δρ↑(r, t) +
∂VKS
∂ρ(r, t)

∣∣∣∣
ρ↑,ρ↓

δρ↓(r, t) ,
(3.36)
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which gives the following expression for the Kohn-Sham equations:

i
∂

∂t
ϕ↑i (r, t) =

{
− 1

2m∇2
r + const. + [δρ↑V↑,↑ + δρ↓V↑,↓ + λ]

×(ei(q·r−ωt) + e−i(q·r−ωt))
}
ϕ↑i (r, t),

(3.37)

i
∂

∂t
ϕ↓i (r, t) =

{
− 1

2m∇2
r + const. + [δρ↑V↑,↓ + δρ↓V↑,↑ ± λ]

×(ei(q·r−ωt) + e−i(q·r−ωt))
}
ϕ↓i (r, t) ,

where the constant term is the Kohn-Sham potential evaluated at the density and

magnetization of the homogeneous neutron matter under consideration. Note

that the ± in the second equation of Equation (3.37) comes from the different

channels: plus for density excitations, while minus for vector-density excitations.

This fact makes the solutions of the linearized dynamic equations formally equal

to those of the free Fermi gas. As a consequence, the response function of the

system will be the one for the free system χ0(q,ω) = χ↑0(q,ω) + χ↓0(q,ω), where:

χ↑0(q,ω) =
V δρ↑
λ′↑

,

χ↓0(q,ω) =
V δρ↓
λ′↓

.

(3.38)

The effective strength λ′σ, defined as:

λ′↑ = δρ↑V↑,↑ + δρ↑V↑,↓ + λ ,

λ′↓ = δρ↑V↓,↑ + δρ↑V↓,↓ ± λ
(3.39)

includes terms depending on the interaction. The mean field potentials Vσ,σ′ are

obtained through the derivatives of v + ησw with respect to ρσ:

V↑,↑ = ∂(v+w)
∂ρ↑(r,t)

∣∣∣
ρ↑,ρ↓

=
(
∂
∂ρ + 1

ρ
∂
∂ξ

)
(v +w)

∣∣∣
ρ,ξ

,

V↑,↓ = ∂(v+w)
∂ρ↓(r,t)

∣∣∣
ρ↑,ρ↓

=
(
∂
∂ρ − 1

ρ
∂
∂ξ

)
(v +w)

∣∣∣
ρ,ξ

,

V↓,↑ = ∂(v−w)
∂ρ↑(r,t)

∣∣∣
ρ↑,ρ↓

=
(
∂
∂ρ + 1

ρ
∂
∂ξ

)
(v−w)

∣∣∣
ρ,ξ

,

V↓,↓ = ∂(v−w)
∂ρ↓(r,t)

∣∣∣
ρ↑,ρ↓

=
(
∂
∂ρ − 1

ρ
∂
∂ξ

)
(v−w)

∣∣∣
ρ,ξ

.

54



3.3 time dependent local spin density approximation

Comparing Equations (3.34) and (3.35), and Equation (3.38) we see that:

λχ↑(q,ω) = λ′↑χ
↑
0(q,ω) = V δρ↑ ,

λχ↓(q,ω) = λ′↓χ
↓
0(q,ω) = V δρ↓ .

(3.40)

The solution of these equations, finally gives the TDLSDA response functions in

the longitudinal channel:

χs(q,ω) = V
χ↑0[V − (V↓↓ − V↑↓)χ↓0] + χ↓0[V − (V↑↑ − V↓↑)χ↑0]

(V − V↓↓χ↓0)(V − V↑↑χ↑0)− V↑↓χ↑0V↓↑χ↓0
,

χv(q,ω) = V
χ↑0[V − (V↓↓ + V↑↓)χ

↓
0] + χ↓0[V − (V↑↑ + V↓↑)χ

↑
0]

(V − V↓↓χ↓0)(V − V↑↑χ↑0)− V↑↓χ↑0V↓↑χ↓0
.

(3.41)

We should keep in mind that the TDLSDA is valid only in the low-q, low-ω

limits. For consistency, we use the expressions of the free response functions

χ↑0 and χ↓0 in the same regime. Their explicit form, which holds for q → 0 and

s = ω/(qvF ) fixed, is:

χ↑,↓0 (q,ω) = −V ν↑,↓
[
1 +

s

2(1± ξ)1/3 ln
s− (1± ξ)1/3

s+ (1± ξ)1/3

]
, (3.42)

where ↑ (↓) reads with + (−), ν↑,↓ = mk↑,↓F /(2π2) = mkF (1± ξ)1/3/(2π2), kF =

(3π2ρ)1/3 and s = ω/(qvF ). By defining:

Ω↑,↓ =

[
1 +

s

2(1± ξ)1/3 ln
s− (1± ξ)1/3

s+ (1± ξ)1/3

]
, (3.43)

we can rewrite the density-density and vector-density/vector-density response

functions as:

χs,v

Nm/(2k2
F )

= −3
(1+ξ)1/3Ω↑[1+(G↓∓( 1−ξ

1+ξ
)1/6G↑↓)Ω↓]+(1−ξ)1/3Ω↓[1+(G↑∓( 1+ξ

1−ξ )1/6G↓↑)Ω↑]
(1+G↓Ω↓)(1+G↑Ω↑)−G2

↑,↓Ω↑Ω↓ , (3.44)

where G↑ = ν↑V↑,↑, G↓ = ν↓V↓,↓ and G↑↓ =
√
ν↑ν↓V↑,↓. The G parameters can

be related to the F0 Landau parameters, since they share the same derivation, but

considering the fact that multiple excitation channels are now possible. Simplify-

ing Equation (3.44) in the fully polarized and unpolarized neutron matter limits,
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this link is even more evident. The response functions for the unpolarized system

(χ↑0 = χ↓0 = χ0) read:

χs(q,ω) =
χ0(q,ω)

1− ∂v
∂ρ

∣∣∣
ρ,ξ=0

χ0(q,ω)
V

χv(q,ω) =
χ0(q,ω)

1− 1
ρ
∂w
∂ξ

∣∣∣
ρ,ξ=0

χ0(q,ω)
V

, (3.45)

while for the fully polarized system, where χ↓0 = 0, we obtain:

χs(q,ω) = χv(q,ω) =
χ↑0(q,ω)

1− V↑,↑ χ
↑
0(q,ω)
V

, (3.46)

The resulting expressions of Equations (3.45) and (3.46) are equivalent to those

that could be derived by the Landau Fermi liquids theory considering as quasi-

particles spin and density elementary excitations (as combinations of δρ↑ and

δρ↓). The expressions for the response functions obtained in Equations (3.45)

and (3.46) are also analogous to the ones derived within the Random Phase Ap-

proximation (RPA). The difference is the nature of the potential term entering in

these equations. Within TDLSDA the potential is obtained in an effective way

from an energy-density functional fitted to the EOS, while in the RPA approach

it is obtained as the Fourier transform of the bare potential.

An additional comment regarding the choice of potential form is needed. While

in approximations such as RPA and Landau Fermi liquid theory, the potential

reflects the standard terms present in the nuclear interaction, these features are

mainly captured by the density functional in an effective way within TDLSDA. As

an example, the tensor term is not explicitly expressed in TDLSDA. However, its

nature is still partially captured by the simple choice of the energy-density func-

tional, since it is fitted to EOSs obtained from ab initio calculations with realistic

nuclear interactions (including the tensor force).

The imaginary part of Equation (3.44) provides the strength of the single parti-

cle excitations:

S(q,ω) = − 1

π
Im[χs,v(q,ω)]. (3.47)
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3.3 time dependent local spin density approximation

3.3.2 Transverse channel

The derivation of the response function in the transverse channel was first done

by Rajagopal [113]. It is similar to that used in the longitudinal channel, and it

has also been applied to quantum dots [114, 115]. The excitation operator has the

same structure as that of Equation (3.30), but the constraint now is that ∆Sz = ±1,

thereby defining:

F± =
∑

k

f(rk)σ±k . (3.48)

In the ∆Sz = ±1 channel, given the magnetization m of the system (ξ = m/ρ),

the static local spin density approximation (LSDA) equations (3.27) can be rewrit-

ten as: [
− 1

2
∇2

r +
1

2
ωcσz + v(r) +Wm ·σ

]
ϕσi (r) = εi,σ ϕ

σ
i (r) , (3.49)

where m is the spin polarization vector. The interaction/correlation energy only

depends on ρ and |m|, i.e. εV = εV [ρ, |m|] so that the spin-dependent interac-

tion/correlation potential w in equation (3.28) can be written as:

Wm = w[ρ, |m|]m/|m| , (3.50)

where:

w[ρ, |m|] = ∂εV [ρ, |m|] /∂|m| , (3.51)

and W [ρ, |m|] ≡ w[ρ, |m|]/|m|. Defining the spherical components ± of the vec-

tors m and σ, it is possible to express the z component of the magnetization

dependent potential as:

wσz →W [ρ, |m|] [mzσz + 2(m+σ− +m−σ+)] . (3.52)

In the static case, the inclusion of the densities m+ and m− makes no difference

since they vanish identically. The situation is different when the system interacts

with a time-dependent field that couples to the nucleon spin through the general

term:

F ·σ = Fzσz + 2(F+σ− + F−σ+) . (3.53)

As a consequence, the interaction Hamiltonian causing transverse spin excita-

tions, may be written as:

Hint ∼ σ−f e−ıωt + σ+
f e

ıωt . (3.54)
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computational methods

Hint causes non-vanishing variations in the magnetization components δm+ and

δm− which, in turn, generate at first-order perturbation theory a variation in the

mean field potential. Following the steps described in Ref. [101] the TDLSDA

response function is given by (once again V is the volume):

χt(q,ω) =
χ0
t (q,ω)

1− 2
VW(ρ,m)χ0

t (q,ω)
, (3.55)

where χ0
t (q,ω) is the free transverse linear response. In the qvF � εF limit, where

vF = kF/m is the Fermi velocity, it is given by:

χ0
t (q,ω)

V
= −3

4

ρ

εF

(
1 +

ω

2qvF
ln
ω− ωa − qvF
ω− ωa + qvF

)
, (3.56)

where:

ωa =
ωc(

1 + 3ρW(ρ,m)
2εF

) =
2

3

k2F
m
ξ ,

and the last step has been obtained by using relation (3.29).

The imaginary part of Equation (3.55) provides the excitations strengths

S±(q,ω) =
∑

n |〈n|τ±f |0〉|2δ(ω − ωno) corresponding to the ∆Sz = ±1 channels,

respectively, through the relation:

S−(q,ω)− S+(q,−ω) = − 1

π
Im(χt) . (3.57)

As we did for Equations (3.42) and (3.43), Equations (3.55) and (3.56) can then be

recast in the following way using the dimensionless variables s = ω/(qvF ) and

z = 3q/(2kF ξ):
χ0
t (q,ω)

V ν
≡ χ0

t (s, z)

V ν
= Ω±(s, z) , (3.58)

with
ν = mkF/π2,

Ω±(s, z) = −
(

1 + s
2 ln s−1−1/z

s+1−1/z

)
,

and
χt(q,ω)

V ν
≡ χt(s, z)

V ν
=

Ω±(s, z)

1− 2νW(ρ,m)Ω±(s, z)
. (3.59)

The ± sign in the definition of Ω indicates that it includes both the ∆S = +1 and

∆S = −1 channels.

58



4
RESULTS

W e now present the main results of our research. First, the calculations for

the equation of state (EOS) computed employing auxiliary field diffu-

sion Monte Carlo (AFDMC) methods are reported. From the EOS, we compute

the response functions within the time-dependent local spin density approxima-

tion (TDLSDA) in Section 4.2 and the evaluation of the neutrino mean free path

in partially spin-polarized neutron matter in Section 4.3. The compressibility and

the magnetic susceptibility of pure neutron matter are computed in the last two

sections.

4.1 equation of state

The key ingredient of any calculation of pure neutron matter properties is the

computation of the equation of state. This is achieved by means of Auxiliary

Field Diffusion Monte Carlo Methods [90, 105]. Two different nucleon-nucleon

interaction schemes, which have been presented in Chapter 2, have been used.

The first EOS is derived from the phenomenological potential presented in Sec-

tion 2.1, i.e., the Argonne AV8
′ potential for the two-body interaction, plus the

Urbana UIX interaction for the three-body channel. The second EOS is based

on potentials derived within chiral effective field theory (EFT). Among different

implementations of the effective chiral potential which have been recently devel-

oped, we chose a local formulation up to N2LO, which have been derived by A.

Gezerlis et al. [44, 45] as explained in Section 2.2.
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Figure 4.1: Equation of state for pure neutron matter (PNM - lower set) and for fully spin-

polarized pure neutron matter (SPPNM - upper set). The blue curves are the

AFDMC calculations with AV8
′+UIX, while the green bands are the results

with the chiral local potential up to N2LO. Errorbars for the chiral effective

interaction have been computed according to Epelbaum et al. [116]. We also

report the corresponding curves for a free Fermi gas at the thermodynamic

limit (red dotted curves), from Ref. [117].

In Figure 4.1 we report the results obtained from our calculations of fully spin-

polarized pure neutron matter (SPPNM) for densities ranging from ρ0/4 up to

2ρ0, where ρ0 = 0.16 fm−3 is the nuclear saturation density. The results for

pure neutron matter (PNM) are those obtained by Gandolfi et al. [111] and Tews

et al. [46] for the phenomenological and the chiral interaction, respectively. As

indicated in Section 2.2 we chose a local formulation of the chiral potential at

N2LO (D2,E1) with cutoff R0 = 1.0 fm, cE = 0.62, and cD = 0.5. This spe-

cific choice of the parameterization provides a realistic EOS, and it is similar to

that of AVX potentials. Comparing the two different choices of the potentials

allows us to analyze the sensitivity of the systematic uncertainties of the observ-

60



4.1 equation of state

ables. The calculations for the SPPNM EOS were performed for N = 33 neutrons

(closed-shell configuration), all with the same spin in a periodic box. Although

the fully spin-polarized system is never the ground state of the system, we can

use QMC calculations to compute the energy of such a state. The energy is pro-

jected starting from a state of given symmetry (in this case equivalent to a fully

polarized liquid), and no orthogonal components are acquired during the projec-

tion to the ground state. In this way, we can simulate the polarized phase. As

discussed in Section 3.1, the fermion sign problem is taken under control with the

constrained-path approximation. The calculations for fully spin-polarized phases

are not a novelty in the field. In fact, they have been performed for the electron

gas [118] and atomic 3He [119] several years ago. The potential was computed

by a sum over the first neighbors of a given simulation cell, to reduce the impact

of finite size effects. The statistical errors of the AFDMC calculations, reported

in Figure 4.1, are of the size of the symbols. The bands relative to the chiral

potential results refer to the theoretical error coming from the truncation in the

chiral expansion. They have been obtained using the prescription of Epelbaum

et al. [116]. According to Ref. [116] the theoretical uncertainties bands for on an

observable X can estimated as:

∆XNLO = max
(
Q3 ×

∣∣XLO
∣∣ , Q×

∣∣XLO −XNLO
∣∣)

∆XN2LO = max
(
Q4 ×

∣∣XLO
∣∣ , Q2 ×

∣∣XLO −XNLO
∣∣ ,

Q×
∣∣XNLO −XN2LO

∣∣) ,

(4.1)

where Q = max(p/Λ,mπ/Λ), with Λ (normally ' 1 GeV) defining the break-

down scale, mπ is the pion mass, and p is the typical exchanged momentum.

Besides, there is a further constraint for theoretical uncertainties at NLO and

N2LO, i.e., they must have at least the size of the actual higher-order contribu-

tion. Higher-order contributions can be estimated as Q2 ×XLO and Q3 ×XNLO

for the NLO and N2LO respectively. The dominant terms for PNM and SPPNM

are the higher-order contribution. In principle, all orders of the expansion need to

be calculated to estimate the uncertainty, but we can estimate the theoretical error

as Q3 ×XN2LO. This approach is an approximation, but it provides a reasonable

estimate (within 5− 10%) compared to the full analysis. As an example, we re-

port in Figure 4.2 the full analysis of the order by order expansion for the fully
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spin-polarized case. We chose a breakdown scale Λ = 600 MeV (in accordance to

Ref. [108]) and we computed the typical exchanged momentum as:

p ∼

√√√√
2m

3

5

k+2

F

2m
, (4.2)

where k+
F is the Fermi momentum of the polarized system at a given density

ρ and m is the neutron mass. While at saturation density, the theoretical un-

certainties decrease, as predicted by the perturbative expansion, at ρ = 2ρ0 the

theoretical uncertainties remain of the same order between NLO and N2LO. This

feature indicates that we are close to the limit of applicability of the perturba-

tive approach, and the chiral effective field theory is well-defined. The EOS for
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Figure 4.2: The histograms show the AFDMC calculation, with the local chiral potential

described in the text, at saturation and twice saturation density for the fully

spin-polarized system. Order by order estimate of the theoretical uncertainties

ad LO (red), NLO (green), and N2LO (blue) are provided. Statistical uncer-

tainties from AFDMC are smaller than the size of the points (adapted from

Ref. [117]).

the polarized system obtained from chiral potential is in reasonable agreement

with the one obtained by Krüger at al. [120], at least up to saturation density.

The EOS derived using the AV8’+UIX interaction is in very good agreement with
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4.1 equation of state

those obtained in previous works for Brueckner-Hartree-Fock calculations with

AV18+UIX [121, 122]. To remove the bias of the constrained-path approximation,

we should do an unconstrained evolution. The effects have just been recently

explored, though, for the two-body part of the interaction only [110]. We think

that including the three-body forces, the relative effects of performing the uncon-

strained evolution are even smaller, at least for PNM. The reason might just be

that the three-body forces are much stronger than the spin-orbit term, and thus

the error becomes relatively small. The AFDMC results are fitted in order to de-

rive the energy density functional to be used in the TDLSDA response function.

In the local density (mean field) approximation, as explained in Section 3.3, the

energy as a function of the density ρ and the spin polarization ξ can be generically

written as:

E(ρ, ξ) = T0(ρ, ξ) +

∫
εV (ρ, ξ)ρ dr. (4.3)

The kinetic energy T0 as been computed using the bare neutron mass. The quan-

tities ρ and ξ are related to the density of particles with spin up ρ↑ and the density

of particle with spin down ρ↓ in the following way:

ρ = ρ↑ + ρ↓; ξ =
ρ↑ − ρ↓
ρ

. (4.4)

We define the function εV (ρ, ξ) using the common assumption of a quadratic

dependence on the spin polarization:

εV (ρ, ξ) = ε0(ρ) + ξ2 [ε1(ρ)− ε0(ρ)] , (4.5)

where the functions εi are defined as polynomials in the neutron density:

εi(ρ) = ε0i + ai

(
ρ−ρ0

ρ0

)
+ bi

(
ρ−ρ0

ρ0

)2
+ ci

(
ρ−ρ0

ρ0

)3
. (4.6)

Such functions contain the whole information about the interaction, i.e. all the

terms that in ordinary local density approximation theory for Coulombic systems

are separately referred to as "direct", "exchange", and "correlation" terms [123].

The index i = 0, 1 indicates the spin unpolarized and polarized neutron matter

(ξ = 0, 1) respectively. The expansions of the energy density functional in integer

powers of the density can be directly related to the presence of some external field

(first power) that stabilizes the asymmetric spin and/or isospin phase of matter, a
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two-body interaction, a three-body interaction, and so on. Another choice for the

energy-density functional would be to consider non-integer exponents, but we are

not going to consider it in this work. In addition, we do not consider the explicit

dependence on the momentum (i.e., derivatives of the density). These terms are

usually related to the tensor parts of the interaction. We think that the features are

still captured by our simpler choice, even not including them explicitly, since we

fit AFDMC calculations with realistic potential, which also includes tensor terms.

As usual, we assume the value of the saturation density to be ρ0 = 0.16 fm−3.

Despite there is no implicit or explicit expectation of a hierarchical ordering in

our expansion of the density functional, the coefficients fitted on the numerical

AFDMC results for EOS-A (AV8+UIX) and EOS-χ (EFT), reported in Table 4.1,

show some prevalence of the first and second-order expansion terms (apart for

EOS-χl for SPPNM, which has bi and ci of the same order).

EOSA ε0i ai bi ci

(SPPNM) i=1 9.411 21.997 13.032 0.262

(PNM) i=0 -15.97 -2.689 12.435 0.521

EOSχ ε0i ai bi ci

(SPPNM) i=1 3.85 10.975 6.433 -1.506

(PNM) i=0 -17.81 -7.865 7.746 -0.934

EOSχu ε0 ai bi ci

(SPPNM) i=1 13.87 29.206 14.573 -1.502

(PNM) i=0 -16.36 -5.117 9.367 -0.565

EOSχl ε0i ai bi ci

(SPPNM) i=1 -6.18 -7.256 -1.707 -1.510

(PNM) i=0 -19.26 -10.614 6.126 -1.303

Table 4.1: Coefficient fitting the density functional of Equation (4.6) to the EOS com-

puted by means of the AFDMC method. EOSA refers to the EOS from the

AV8
′+UIX potential, while the EOSχ are relative to the Hamiltonian with the

local N2LO(D2,E1) chiral interaction. The three tables refer to the center, upper

limit and lower limit of the uncertainty band respectively.
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4.1 equation of state

4.1.1 Effective mass

In our approach, the kinetic energy term T0 of the energy density function

of Equation (4.3) does not include an effective mass. On the other hand, different

many-body methods use an effective mass. They claim inconsistent results in the

response functions, and neutrino mean free paths, either using the effective or

the bare mass. Within our approach, we have the constraint that the total energy

of the bulk always has to reproduce the AFDMC results. Since we are working

within a mean field approach, multipair contributions are neglected. This reflects

in the fact that the collective modes should not change their energy, while the

strengths of the particle-hole excitations might differ. In principle, this is not

true, but one has to include all multipair contributions. In some systems, these

contributions are not negligible and can dramatically change the prediction of

the model [124]. In our case, we limit our analysis to the low-q, and low-ω plane,

where our mean field approximation holds and multipair excitations give a really

small contribution.

It is possible to predict the effective mass emerging from the quantum Monte

Carlo calculations from the diffusion of a neutron during the simulation. For

instance, a quick estimate of the effective mass ratio at saturation density obtained

using a potential of the form AV6
′ gives a value of m∗ ∼ 0.92. This result is

in agreement with the results obtained from the study of excited states of the

system [125]. The effective mass ratio can be directly estimated from the self-

diffusion coefficient of a particle in a DMC calculation. We computed the effective

mass for a system of 14 neutrons in which periodic boundary conditions have

been turned off. The diffusion coefficient was computed for the Fermi gas and for

an interacting system of neutrons interacting with the two-body AV6’ potential,

which includes the tensor term, at saturation density. First, we computed the

averaged squared distance 〈r2〉 traveled by a neutron in a random walk as a
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function of the diffusion time as shown in Figure 4.3. This quantity is strictly

related to the kinetic part of the imaginary time propagator:

G0(R
′,R) = 〈R′|e−Tδτ |R〉.

=


 m

2π h̄2δτ




3N
2

e−
m(R−R′)2

2 h̄2δτ ,

(4.7)

which is formally equivalent to the Green’s function of a diffusion equation in

which the diffusion constant D̃ ∝ h̄2(mn/m̃), where mn is the bare neutron mass.

To estimate the effective mass ratio m∗ one just needs to compute the ratios:

m∗ =
m̃

m
=
D

D̃
, (4.8)

where D and m are the diffusion coefficient and the mass respectively in the case

of the FG.
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Figure 4.3: Calculation of the diffusion coefficient for the case of the Fermi gas (FG) and

for a system interacting with the two-body potential AV6′ at saturation density

ρ0 = 0.16 fm−3. The dashed line represents the fit to the two data-sets (see

text for details), from Ref. [117].

In order to estimate D and D̃, we performed two fits on two different time win-

dows on each data set to check the accuracy of our fit. The first fit has been per-

formed in the time interval (0.1− 0.3) fm−1 and the other in the range (0.1− 0.2)
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4.2 response functions

fm−1. The two fits give essentially the same effective mass ratios (m∗1 = 0.918

and m∗2 = 0.923). Only the larger time interval fit is plotted in Figure 4.3. Com-

paring our result to the one obtained with the calculation of the effective mass

ratio derived from non-perturbative calculations of the single-particle excitation

spectrum of Ref. [125], we see a good agreement. The results are consistent even

if we only employed the two-body potential AV6′ rather than the full two- plus

three-body interaction AV8′+UIX.

However, in this approach, the equation of state is inclusive of all the correlation

effects leading, among the others, to the correction to the kinetic energy accounted

by the effective mass itself, even if our convention is to assume the neutron mass

equal to the bare mass. In order to compare the difference between using the bare

mass or the effective mass, we evaluated response functions, and neutrino mean

free paths at saturation energy with the effective mass. We assumed the effective

mass to be constant over the density range ρ0/4 ≤ ρ ≤ 2ρ0. To build a new ef-

fective potential consistent with the effective mass, we refit the constants of the

energy-density function of Equation (4.5) to our AFDMC calculations. While the

response in the longitudinal and transverse channel might be different between

the two cases, due to the reshuffling contributions from particle-hole and collec-

tive modes (see Figure 4.4, Figure 4.5 and Figure 4.6), the neutrino mean free path

results are qualitatively independent on the choice of either the effective mass or

the bare mass (see Figure 4.8).

4.2 response functions

The numerical evaluation of the longitudinal and transverse response functions

gives access to information about the neutron dynamics. The derivation of the re-

sponse functions within the TDLSDA has been presented in Section 3.3. The sin-

gle particle excitations strengths are computed using Equations (3.47) and (3.57).

On the other hand, the poles of Equations (3.44) and (3.59) are the energies of the

collective modes of the system. Naming N(s) and D(s) the numerators and the
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denominators of Equations (3.44) and (3.59), respectively, we expand around the

poles at s = s̄ to evaluate the strength as:

S(s)

V ν
=

N(s)

∂D/∂s
δ(s− s̄) , and

S(s)

Nm/(2k2F)
=

N(s)

∂D/∂s
δ(s− s̄) (4.9)

for the longitudinal and the transverse channel respectively. The collective modes

are indicated by arrows in Figures 4.4−4.6. In the longitudinal channel the

strength of the collective modes have been rescaled: longer arrows correspond

to dominant scalar or vector contribution (their strength would be too small com-

pared to the particle-hole contribution). In the transverse channel the correct

strength has been plotted instead.

We report in Figure 4.4 the results obtained from the calculation of the lon-

gitudinal response functions for the two different potentials used, i.e., the phe-

nomenological AV8′+UIX interaction and the local chiral potential at N2LO. The

plots are made as functions of the dimensionless quantity s = ω/(qvF ) for a fixed

value of the spin polarization ξ = 0.2 and for three different values of the density

which are characteristic of the outer core of a neutron star (ρ = 0.08, 0.16, and

0.32 fm−3).

In Figure 4.5 the same quantity is reported for spin unpolarized neutron mat-

ter. The percentages reported in the graphs show the fraction of the total strength

relative to the particle-hole contribution. Arrows represent the presence of collec-

tive modes (the size is not proportional to the strength). For the response com-

puted using the N2LO potential, we propagated the theoretical uncertainty. As

expected, at the lowest density considered, the results are qualitatively and quan-

titatively very insensitive to the specific interaction used. At saturation density

and above, the theoretical uncertainty on the pressure is reflected in a more pro-

nounced difference in the characterization of the single-particle spectrum. In par-

ticular, this can be observed in the scalar channel in the region around ω = qvF .

At least qualitatively, the vector channel is somewhat less affected by the theoret-

ical uncertainty.

A similar behavior is visible in the collective modes. The energy of the collective

modes strongly depends on the stiffness of the equation of state. A consequence

is that the energy of the collective modes, at larger densities, becomes signifi-

68



4.2 response functions

0.00

0.50

1.00

1.50

0.0 0.5 1.0 1.5 2.0

ρ=0.32 fm-3

4.4%
23.4%

s= ω/(qvF)

0.00
1.00
2.00
3.00
4.00

ρ=0.16 fm-378.9%
40.2%80.2%

48.8%

S
(s

) 
2k

F
2 /(

N
m

)

0.00

1.00

2.00
ρ=0.08 fm-392.0% 54.2%

0.00
1.00
2.00
3.00
4.00

0.0 0.5 1.0 1.5 2.0

ρ=0.32 fm-3
100%-66.9%-58.2%

100%-48.8%-33.9%

s= ω/(qvF)

0.00
1.00
2.00
3.00
4.00

ρ=0.16 fm-3

99.3%-88.2%-84.3%
97.9%-50.1%-28.3%

S
(s

) 
2k

F
2 /(

N
m

)

0.00

1.00

2.00

3.00

ρ=0.08 fm-3

98.9%-94.1%-91.5%
94.5%-66.6%-45.2%

Figure 4.4: Longitudinal response function at spin polarization ξ = 0.2 for AV8
′+UIX (up-

per) and chiral potential at N2LO (lower). The solid red lines and blue dashed

lines stand for density and spin density Dynamical Structure Factors (DSFs),

respectively. Arrows indicate the presence of a collective mode. The percent-

ages in the plot show the fraction of the total strength pertinent to the particle-

hole excitations. The black lines at saturation density for the phenomenolog-

ical potential (upper) show the results using the effective mass instead of the

bare mass. Note that the effective mass enters in the definition of the variable

s. On the lower panel, the three lines for each DSF keep track of the theoreti-

cal uncertainties obtained using chiral effective interaction. Lighter to darker

curves stand for lower-central-higher EOSχ of Figure 4.1 and Table 4.1. The

same color scheme holds for Figure 4.5 (from Ref. [117]).
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Figure 4.5: Longitudinal response function for AV8
′+UIX (upper) and chiral potential at

N2LO (lower) at spin polarization ξ = 0.0, i.e. PNM. The color scheme is

described in Figure 4.4 (from Ref. [117]).
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Figure 4.6: Transverse response function at low spin polarization (z = 6) for AV8
′+UIX

(upper) and for chiral potential at N2LO (lower). Recall that z = 3q
2kF ξ

, so

z > 1 means small ξ. The full and dashed lines indicate the particle/hole and

collective strengths in the ∆Sz = −1 (s > 0 - red) and ∆Sz = +1 (s < 0 - blue,

which has been plotted flipped and in the s > 0 region) channels respectively.

The black lines at saturation density for the phenomenological potential (up-

per) show the results using the effective mass instead of the bare mass. Note

that the effective mass enters in the definition of the variable s. On the lower

panel the three lines for each DSF keep track of the theoretical uncertainties

obtained using chiral effective interaction. Lighter to darker curves stand for

lower-central-higher EOSχ of Figure 4.1 and Table 4.1 (from Ref. [117]).
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cantly higher in the AV8′+UIX case. It should be noticed that in pure neutron

matter, collective modes are not present for the lowest density considered in the

scalar channel. On the contrary, at ξ = 0.2 one always sees the presence of a

collective mode. There are some further systematics to be noticed in the behavior

of the collective modes. At ξ = 0, the spin mode appears with a dispersion for

q ∼ 0 more or less independent of the density, whose strength is only slightly

increasing with ρ. This is in contrast with the density mode that begins to have

significant strength only at densities around saturation and quickly increases its

dispersion coefficient. This fact points to a substantially different nature of these

excitations. In particular, the spin mode appears to be similar to a spin-density

wave in neutron matter. The polarization of the medium induces a coupling be-

tween the spin and the density modes due to the spin imbalance. This translates

into the appearance of a low strength density mode at the same energy of the spin

one for low densities. At higher densities, the two collective excitations separate

in energy mostly in the same way as in the ξ = 0 case, although the mixing is still

visible in the presence of a second, low strength peak for both modes.

For the transverse response, positive values of s describe the excited states in

the ∆Sz = −1 channel, while for negative values of s, the excited states in the

∆Sz = +1 channel. In Figure 4.6, we show the results for the transverse response

function.

In this case, instead of fixing the polarization, we fixed the value z =

3q/(2kF ξ) = 6, still corresponding to a case of low magnetization. The results

are qualitatively very close to those obtained for the longitudinal channel. In

contrast, the dependence on the specific choice of the interaction is weaker, both

for the particle-hole and the collective part of the spectrum. Contrary to what

happens in the longitudinal channel, both collective modes do not show a signifi-

cant variation of the linear dispersion coefficient with the density. It is interesting

to observe, however, that the coefficient is very different between the ∆Sz = −1

and the ∆Sz = 1 excitations. This means that the two modes have a gap that is

proportional to the neutron matter polarization.
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4.3 neutrino mean free path

The neutrino processes considered in order to determine the neutrino mean free

path (NMFP) are the neutral-current scattering n+ ν → n+ ν, since TDLSDA in-

cludes only single-pair excitations. Neutron bremsstrahlung n + n → n + n +

ν + ν̄ processes and its inverse n + n + ν + ν̄ → n + n, as well as the inelastic

scattering process ν + n + n → n + n + ν, are intrinsically two-pair excitations

and are not included in this calculation [126, 127]. Note that we are working with

PNM, so we are not considering β-decay processes or any other process involving

protons.

Another important remark is that we are computing response functions and neu-

trino mean free paths at zero temperature. In principle, temperature effects are

not negligible, since in proto-neutron stars temperatures are around a few tens

of MeV. At finite temperature also negative values of the transferred energies are

accessible, and the dynamic structure factors are damped increasing with tem-

perature. The corresponding neutrino mean free paths should scale as T−2 [128],

where T is temperature, but this is the case only at very low temperature [129].

In addition, at high temperatures the neutrino mean free paths approach the free

Fermi gas results.

The NMFP can be computed by integrating the total excitation strength S(q,ω) (in

both the longitudinal and transverse channels), to first obtain the total neutrino

cross section σ [130, 131]:

σ =
G2
F

2

1

E

∫
dq

∫
dω(E − ω)q

[
1 +

E2 + (E − ω)2 − q2
2E(E − ω)

]
S(q,ω) , (4.10)

where E is the incident neutrino energy, and GF = 1.166× 10−5 GeV−2. The

integration must be performed on the kinematically accessible region of q and ω

compatible with the scattering kinematics, as discussed in Ref. [130]. By defin-

ing kµ = (k0,~k) and k′µ = (k′0,~k′) as the incoming and outgoing 4-momenta

of the neutrino and qµ = (ω, ~q) is the transferred 4-momentum. We assume

that neutrinos are ultra-relativistic. The limits on ω and q are obtained from the

form the region in which the factors S(q,ω) are non zero, i.e., −qvF < ω < qvF
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corresponding to the continuum of single-particle excitations and ω = ±csq for

collective mode. For the single-pair continuum we can rewrite the condition in

terms of initial neutrino momentum as |ω| < cq < |ω − 2ck| and this implies

ω < c(2k− q). The accessible region is shown in Figure 4.7, and this region has to

be intersected with the region allowed by the dynamical structure factor S(q,ω)

to get the in integration domain.

ω

Figure 4.7: Integration region of q and ω for ultra-relativistic and non-degenerate neutri-

nos.

This holds for non-degenerate neutrinos.

We will assume neutrinos to be ultra-relativistic and non-degenerate. The

NMFP λ can be derived from the total neutrino cross section σ from the rela-

tion λ = 1/(σρ).

From existing estimates of neutron spin susceptibility [132], we expect the in-

duced spin polarization to be low even in the presence of strong magnetic fields.

We could estimate the order of magnitude of the spin polarization ξ as:

2ξ∆E = µnB , (4.11)
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4.3 neutrino mean free path

where µn is analogous of the Bohr magneton for the neutron, and B is the exter-

nal magnetic field. ∆E is the energy difference between the fully spin-polarized

and the spin unpolarized system. The maximum superficial magnetic field ob-

served for a magnetar is Bsurf ∼ 1010 − 1011 T. This would lead to expected spin

polarization of the order of 10−5 − 10−4 at saturation density. Internal dynamo

effects might power up the magnetic field by a factor 102− 103, which leads to an

expected spin polarization ξ ∼ 10−3 − 10−1.

In Figure 4.8, we report the results we obtained at saturation density for spin

polarization ξ = 0.0 and ξ = 0.1 and compared them with the result obtained

for PNM with a more refined method [133] using the correlated Tamm-Dancoff

approximation (CTDA). Within the CTDA [131] the states are expressed as a basis

of correlated 1p-1h excitations.
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Figure 4.8: Neutrino mean free path ratio with respect to the free Fermi gas at saturation

density ρ0 = 0.16 fm−3 for spin polarization ξ = 0.1 and for PNM (ξ = 0).

Top-middle-bottom lines for EFT refer to higher-central-lower EOSχ of Fig-

ure 4.1 and Table 4.1. The results for the phenomenological potential with the

effective mass are plotted in black full lines (from Ref. [117]).
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The correlations are then encoded into effective operators acting on 1p-1h

states. The NMFP for spin unpolarized pure neutron matter is essentially in-

dependent of the incident energy of the neutrinos. The presence of a small

spin-asymmetry shows non-trivial patterns instead, significantly increasing the

neutron matter opacity for low neutrino energies.

The estimated theoretical uncertainty on the results computed from the chiral

interaction is quite significant. Nevertheless, the prediction obtained making use

of the phenomenological interaction differ of about 20% from that of the N2LO

potential, close to the upper limit predicted by the propagated uncertainty.

In Figure 4.9, we compare our results for the NMFP ratio at saturation density

to those of Pastore et al. [134] and to those of Lovato et al. [133].
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Figure 4.9: NMFP for PNM at saturation density from the present work compared to

those obtained by Lovato et al. [133] and by Pastore et al. [134]. In the latter

case different bands correspond to different choices of the tensor term of the

Skyrme potential. Top-middle-bottom lines for EFT refer to higher-central-

lower EOSχ of Figure 4.1 and Table 4.1 (from Ref. [117]).

The first paper presents computations using a Skyrme force explicitly, including

tensor contributions, which we instead do not address with specific terms. The
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4.3 neutrino mean free path

second case also includes explicit correlations introduced via the Tamm-Dancoff

approximation. All results tend to overlap in a region around λ/λFG ∼ 2. Skyrme

results, however, tend to predict a lower value of NMFP. This might be due to the

different treatment of correlations. A similar effect is also visible in the compar-

ison of the Tamm-Dancoff results and our results for the Argonne potential. It

should be remarked, however, that all these results start from different neutron-

neutron interaction schemes, and it is not very easy to attribute the differences

either to the potential used or to the degree of approximation of the functional

employed. In Figure 4.10, we show the contribution of the different channels to

the total neutrino mean free path. As an example, we report the results for the

phenomenological potential AV8′+UIX at spin polarization ξ = 0.1.
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Figure 4.10: Neutrino mean free path ratio with respect to the free FG for spin polariza-

tion ξ = 0.1 as a function of density. Dotted lines are the contributions com-

ing from the longitudinal channels, dashed lines from the transverse part,

while solid lines show the total mean free path. The results for the effective

mass are plotted in dark green (from Ref. [117]).

Results are plotted at saturation density ρ0 = 0.16 fm−3, half, and twice satu-

ration density. We observe that at all densities, the contribution coming from the
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longitudinal part is almost constant as a function of the energy of the incident

neutrino. We observe that for both channels, NMFP increases with the density.

However, since the relative weight of the two contributions is different for each

density, the result gives a total NMFP with non-trivial density dependence.
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Figure 4.11: Neutrino mean free path for PNM and for spin polarization ξ = 0.2 as a

function of incident neutrino energy. In PNM the longitudinal and trans-

verse channel contribute equally to the total NMFP, while as soon as there

is some spin polarization we can observe an energy threshold under which

the NMFP is entirely determined by the longitudinal response (dashed lines).

The same behavior can be seen also in Figure 4.10 at various densities. Top-

middle-bottom lines for EFT refer to higher-central-lower EOSχ of Figure 4.1

and Table 4.1. The results for the phenomenological potential with effective

mass are plotted in black (from Ref. [117]).

To understand the implication of spin-polarization to the NMFP, we show in

Figure 4.11 the NMFP as a function of the energy of the incident neutrino. The

NMFP has to be compared to the radius of the neutron star (≈ 1.0− 1.3 · 104 m):

above this value matter is substantially transparent to neutrinos. On the other
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hand, the typical energies of the neutrinos of astrophysical interest are in the

range of 0.1− 50 MeV [135, 136].

4.4 compressibility

In order to make an even more direct comparison between our approach and

other microscopical models, useful to assess its validity, we will discuss here

the compressibility of PNM. The compressibility is a parameter that directly in-

fluences NMFP and other properties of astrophysical interest, in particular, the

structure of neutron stars.

Given a fit of the equation of state as the one in Equation (4.5), it is possible to

directly extract the compressibility from the definition:

K = −
1

V

∂V

∂P
, (4.12)

by rewriting it as a function of the energy per nucleon:

1

K
= ρ2


ρ

∂2E/N

∂ρ2
+ 2

∂E/N

∂ρ


 . (4.13)

However, the quantity that is usually reported is the compression modulus or

incompressibility, which is defined as:

K∞ = k2F
d2E/A

dk2F
, (4.14)

The two quantities are directly related by the following expression:

K∞ =
9

ρ

1

K
. (4.15)

In this case we can check the consistency of our results using two independent

ways to estimate the compressibility of PNM: 1) starting from the energy-density

function using Equation (4.13), and 2) using the inverse energy weighted sum

rule m−1. As an example, in the scalar and vector longitudinal channels, m−1

reads [100]:

ms,v
−1 =

V

2

ν↑(1 +G↓) + ν↓(1 +G↑)∓ 2
√
ν↓ν↑G↑↓

(1 +G↓)(1 +G↑)−G2
↑↓

, (4.16)
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where the minus sign is for the scalar case, while the plus sign holds for the vector

case. In the case of spin-unpolarized PNM (ξ = 0.0) we have that ν↑ = ν↓ = ν

and G↑ = G↓ = G and we can write:

ms
−1

m0
−1

=
K

K0
=

1

1 +G+G2
↑↓

, (4.17)

where m0
−1 = V ν/2 and K0 = 9π2m/k5F respectively are the Fermi gas static

polarizability and compressibility. The values we estimate within our approach

using the two methods are always numerically indistinguishable.

Equation (4.17) shows once more the relationship between this approach and

the Landau theory. The parameter G can, in principle, be identified with F0. This

means, however, that the TDLSDA estimate of the compressibility also includes

an order G2 correction.
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Figure 4.12: Compressibility ratio for PNM at saturation density as a function of the spin

asymmetry. Top-middle-bottom lines for EFT refer to lower-central-higher

EOSχ of Figure 4.1 and Table 4.1 (from Ref. [117]).

The compressibility computed at saturation density as a function of the spin

asymmetry ξ for the two different potentials used in this work is shown in Fig-

ure 4.12.
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Interestingly enough, the chiral EFT potential would predict a compressibility

ratio decreasing with ξ. However, at the lower limit of the predicted theoretical

errorbar, this behavior is inverted. In this case, the Argonne-Urbana potential

gives a substantially different value at ξ = 0 but tends to close the gap with

the EFT potential for the fully spin-polarized case. In Figure 4.13 we show the

compressibility ratio as a function of the density for the spin unpolarized PNM.

As expected, the compressibility decreases as a function of the density. Chiral
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Figure 4.13: Compressibility ratio for spin unpolarized PNM in function of the density.

Top-middle-bottom lines for EFT refer to lower-central-higher EOSχ of Fig-

ure 4.1 and Table 4.1 (from Ref. [117]).

EFT potential systematically yields an higher value as a direct consequence of the

fact the EOS for PNM is softer than the one obtained using the phenomenological

AV8′+UIX potential.

We report in Table 4.2 a comparison of our prediction for the compressibility

and the compression modulus to other results available in the literature. Our re-

sults are in agreement with previous results obtained by Fantoni et al. [132] with

a similar potential within the same method. In contrast to AV8’, AV6’ has no

spin-orbit terms. Even in this case, our approach tends to emphasize the effects

of the stiffness of the EOS compared to other methods. In particular, it is in-
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ρ = 0.032 fm−3 K/K0 K/ h̄c [fm4]

AV8
′+UIX 2.38 1103

EFT 2.51 1162

BHF [137] 2.54 1176

Skyrme [137] 2.57 1191

QHD [137] 3.17 1467

ρ = 0.16 fm−3 K/K0 ( h̄c)2·K∞ [MeV]

AV8
′+UIX 0.67 526.1

EFT 1.01 348.6

AV18 (CBF) [138] 1.08 324.7

BKR ρ < 0.182 fm−3 [139] 2.83 123.8

BKR ρ > 0.182 fm−3 [139] 1.09 320.8

ρ = 0.20 fm−3 K/K0 ( h̄c)2·K∞ [MeV]

AV8
′+UIX 0.48 849.3

EFT 0.80 511.3

AV6
′+UIX (AFDMC) [132] 0.47(3) 865.8(55.3)

AV18+UIX (FHNC) [26, 138] 0.69 589.8

AV18 (CBF) [138] 0.88 462.4

Table 4.2: Compressibility in PNM. The results of this work are denoted as AV8
′+UIX and

EFT for the Argonne-Urbana and chiral EFT interactions, respectively. AV6
′ cal-

culation is the result obtained by Fantoni et al. [132] with AFDMC in previous

work. BKR is the result obtained fitting Brueckner-HF calculations employ-

ing the Bressel-Kerman-Rouben potential, as reported by J.W. Clark et al. in

Ref. [139]. AV18 (CBF) is the Correlated Basis Functions of Benhar et al. from

Ref. [138]. AV18+UIX (FHNC) is the Fermi Hyper-Netted Chain of Akmal

and Pandharipande [26]. BHF, Skyrme, and QHD are Brueckner-Hartree-Fock,

Skyrme force-based Hartree-Fock (HF) and Quantum Hydrodynamical calcu-

lations respectively as reported in the paper from Aguirre et al. in Ref. [137].

teresting to compare the values obtained by the Correlated Basis Function (CBF)

calculations of Benhar et al. [138], employing a two-body interaction only, to our

results obtained with the Argonne-Urbana potential. The latter results are higher

of about a factor of 2. However, this discrepancy is substantially reduced when
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comparing to the Fermi Hyper-Netted Chain (FHNC) results of Akmal and Pand-

haripande [26], essentially employing the same potential. Results obtained with

chiral EFT tend instead to be closer to the other values reported in the literature,

and in particular, to the results coming from HF or Brueckner-HF calculations.

All these discrepancies point to the fact that a more systematic and homogeneous

comparison between different approaches is definitely in order.

4.5 magnetic susceptibility

A quantity, which is especially relevant for supernovae explosions and neu-

tron star mergers, is the magnetic susceptibility. This quantity can be directly

computed from AFDMC calculations.
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Figure 4.14: Energy per particle for the free system as a function of the external magnetic

field b at two times saturation density ρ = 0.32 fm−3. The results for different

closed-shell configurations with a total neutron number of ∼ 60 are plotted

in solid lines. The analytic result for the free Fermi gas is plotted in full black

line. The approximation of the Pauli parabola is displayed in dashed lines.
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These kind calculations were already performed by Fantoni et al. [132]. In their

calculations PBC were implemented, and therefore only closed-shell configura-

tions could be used, as explained in Section 3.2 and reported in Figure 4.14.

For a given external magnetic field b, the intersection between the analytic so-

lution of the free Fermi gas and the solution of the closed-shell configuration

gives the ground state spin asymmetry for the free system. In principle, the same

ground-state spin asymmetry cannot be assumed for the interacting system, but

it was the best possible guess. In addition, only a very limited number of spin

asymmetries with a similar total number of particles could be analyzed. The main

difference from this previous work is that we fixed an external magnetic field and

then studied the energy per particle of the interacting system with different spin

polarization, keeping the total number of particles fixed. This is achieved using

twist-averaged boundary conditions (TABC). The Hamiltonian of the system with

an external magnetic field can be written as:

H = H0 −
∑

i

~σi ·~b , (4.18)

where ~b = µ~B is the external field, ~σi is the spin of the i-th particle, and µ =

6.030774 × 10−18 MeV/G is the Bohr magneton. H0 is the Hamiltonian of the

interacting system without the external magnetic field. Following the steps of

Ref. [132], the magnetic susceptibility is defined as:

χ = −ρµ2 ∂
2E0(b)

∂b2

∣∣∣∣
b=0

, (4.19)

where ρ is the density and E0(b) is the ground state energy for a given external

field b. To evaluate the second derivative, we use the Pauli expansion as a function

of spin polarization ξ, which is defined as:

ξ = −∂E0(b)/∂ b|b=0 , (4.20)

and we obtain:

E(ξ) = E(0)− bξ +
1

2
ξ2E′′(0). (4.21)

The magnetic susceptibility is obtained first minimizing E(ξ) with respect to ξ as:

χ = µ2ρ
1

E′′(0)
, (4.22)
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and, using the chain rule, rewriting the second derivative of the energy as:

E′′(0) =

[
∂ξ

∂Jz

]−2{∂2E0

∂J2
z

− ∂E0

∂Jz

[
∂ξ

∂Jz

]−1 ∂2ξ
∂J2

z

}
. (4.23)

This expression can be further simplified recalling that ∂E0/∂Jz = 0, since we

are looking at the ground state (i.e. the minimum of the energy), with respect to

the spin asymmetry Jz , obtaining:

E′′(0) =

[
∂ξ

∂Jz

]−2 ∂2E0

∂J2
z

(4.24)

The derivatives can be expanded and computed in terms of AFDMC energies as:

∂ξ

∂Jz
≈ E0 (Jz = Jz0, b = 0)−E0 (Jz = Jz0, b = b0)

Jz0b0
, (4.25)

where E0 (Jz = Jz0, b = 0) and E0 (Jz = Jz0, b = b0) are the ground state energies

for the system with no external magnetic field and with a fixed external magnetic

field b0 respectively. The spin asymmetry Jz0 is the spin asymmetry of the ground

state of the system for a given external magnetic field b0. The second derivative

can be written as:

∂2E0

∂J2
z

≈ 2
E0 (Jz = Jz0, b = 0)−E0 (Jz = 0, b = 0)

J2
z0

, (4.26)

where E0 (Jz = 0, b = 0) is the ground state energy of the unpolarized system

with no magnetic field. The validity of these expressions relies on the following

assumptions:

(i) for b = 0, E0(Jz, b) is quadratic in Jz (see Figure 4.15);

(ii) for a fixed Jz , E0(Jz, b) is linear in b (see Figure 4.16);

(iii) the polarization is linear in Jz .

These assumptions become exact in the limit of an infinite system with Jz and b

small. We tested the validity of these assumptions and the results are reported

in Figure 4.15 and Figure 4.16. As an example, we report the results for the

phenomenological potential AV8’+UIX.

The AFDMC calculations have been carried out with 38 neutrons in a periodic

box using TABC over seven different spin polarizations ξ.
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Figure 4.15: AFDMC results of the energy per particle for PNM E0(Jz , b) at saturation

density with seven different spin polarization ξ with no external magnetic

field. The errorbar represents the statistical errors of the AFDMC calcula-

tions. The vertical dashed line shows the polarization of the ground state

obtained from the analytic result for the free Fermi gas. The solid line is a

parabolic fit to the AFDMC results.
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Figure 4.16: Energy per particle E0(Jz , b) at saturation density at fixed spin asymmetry

Jz as a function of the external magnetic field b in two different cases: in red

21 neutrons with spin up N↑ (u in the legend) and 19 neutrons with spin

down N↓ (d in the legend) and in green 25 N↑ and 13 N↓, which corresponds

to a spin asymmetry of ξ ∼ 0.105 and ξ ∼ 0.316 respectively. Solid lines are

the linear fits to show the validity of assumption (ii).
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4.5 magnetic susceptibility

For each spin asymmetry, we choose 5 different twist vectors, and we average

on the results of the different runs.

In Figure 4.17 we report the results of the energy per particle as a function of

the spin asymmetry for a given external magnetic field at saturation density.
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Figure 4.17: AFDMC results of the energy per particle for PNM E0(Jz , b) at saturation

density with seven different spin polarization ξ with external magnetic field

b = 20 MeV. The errorbars represent the statistical errors of the AFDMC

calculations. Green squares and blue triangles indicate the AFDMC results

using twist-averaged boundary conditions (TABC) and periodic boundary

conditions (PBC), respectively. The dashed line shows the analytic result for

the free Fermi gas and the predicted ground state spin polarization. The

solid line is a parabolic fit to the AFDMC results.

As an example, we report the case of the phenomenological AV8’+UIX poten-

tial, though the chiral potentials share the same features. The AFDMC results

are fitted to a parabola in order to determine ground state spin polarization and

energy. It is interesting to point out that the ground state spin polarization is

reduced with respect to the one predicted by the non-interacting case. The same

behavior can also be seen at higher magnetic fields. It is clear from Figure 4.17
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that calculations with PBC are not sufficient to determine the correct ground state

energy and spin polarization.

We used two different approaches to derive the magnetic susceptibility:

(i) we perform a parabolic fit on the energy per particle E0(Jz, b) as a function

of the spin polarization ξ (as shown in Figures 4.15 and 4.17) for any chosen

external magnetic field. We compute the magnetic susceptibility from the

approximate expressions of Equation (4.25) and Equation (4.26). The ground

state spin asymmetry Jz0 and energies entering Equation (4.25) and Equa-

tion (4.26) are derived from the parabolic fits;

(ii) we compute the ground state Jz0 as in approach (i) and perform a linear fit

of ξ0 as a function of the external magnetic field B, relying on the fact that for

small spin polarization they are proportional. The magnetic susceptibility is

directly computed from Equation (4.19).

The results are obtained both from the phenomenological potential and the

local chiral potential.

Approach (i). For each density and for each external field we compute the spin

polarization of the ground state as shown in Figure 4.15 and Figure 4.17. For

each density, we choose five non-zero external magnetic fields in a region where

the ground state spin polarization as a function of the external magnetic field is

linear for the analytic result of the non-interacting system. An example with three

different densities is shown in Figure 4.18.

In addition, we also perform a calculation with no external magnetic field. The

results obtained from the fits are inserted in Equation (4.25) and Equation (4.26),

and for each external magnetic field, we obtain a value for the magnetic suscep-

tibility of the system. We propagate the uncertainties on the parameters from

the fitting procedures, and the final result for the magnetic susceptibility is the

average of the different values we obtain from the external magnetic fields. As an

example, we report in Figure 4.19 the results for the case of the phenomenological

potential AV8’+UIX at 0.08, 0.16 and 0.32 fm−3.

In principle, each magnetic field, unless not too high, should give the correct

value of the magnetic susceptibility. The uncertainties on the parameters from
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Figure 4.18: Ground state spin polarization ξ0 as a function of the external magnetic field

b for the free Fermi gas. Blue dashed lines are the analytic result for three

different densities. Green full lines are the results of the linear fit on the cho-

sen five external magnetic fields indicated by triangles, squares, and circles,

labeled as "mock data". Low to high densities are in light to dark colors.

the fitting procedure are not small, so we decided to average on five different

magnetic fields to obtain an accurate estimate for the magnetic susceptibility.

Within this approach, VMC and AFDMC calculations give very similar results.

In fact, in Equation (4.25) and Equation (4.26) we compute differences of ener-

gies. If we compare VMC and AFDMC results, these differences are almost the

same, because AFDMC results are systematically lower by some fixed amount

than VMC calculations. The results are similar to the ones obtained by Fantoni

et al. [132] but not always compatible. On the other hand, we are computing the

energies entering Equation (4.25) and Equation (4.26) in the correct ground state

spin polarization of the interacting system. As a consistency check, we take our

results and compute the magnetic susceptibility starting from the ground state

spin polarization predicted by the analytical result for the free Fermi gas. It is

remarkable that in this way, we recover the same results of Ref. [132]. The results

are reported in Table 4.3.
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Figure 4.19: Magnetic susceptibility ratio with respect to the free Fermi gas result at satu-

ration density for five different external magnetic fields. For a noninteracting

Fermi gas the spin susceptibility is χF = µ2mkF/( h̄2π2). The results are

obtained with the approach (i) described in the text. AFDMC results are

plotted in red. We also report the results obtained from the VMC calcula-

tions in green. Uncertainties on the parameters from the parabolic fits have

been propagated and are shown as errorbars.

ρ/ρ0 AV6
′+UIX [132] AV8

′+UIX [132] AV8
′+UIX (?) AV8

′+UIX

0.50 0.40(2) 0.45(2)

0.75 0.40(1) 0.42(3) 0.45(3)

1.00 0.39(2) 0.33(2)

1.25 0.37(1) 0.39(1) 0.36(2) 0.38(1)

2.00 0.33(1) 0.35(1) 0.34(2) 0.31(1)

2.50 0.30(1) 0.29(2) 0.30(1)

Table 4.3: Magnetic susceptibility ratio χ/χF for pure neutron matter interacting with

the phenomenological potential AV8
′+UIX. For a noninteracting Fermi gas the

spin susceptibility is χF = µ2mkF/( h̄2π2). AV8
′+UIX (?) are the results taking

as spin polarization of the ground state ξ0 the free Fermi gas prediction. We

compare our results to the results of Ref. [132].
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4.5 magnetic susceptibility

Approach (ii). Instead of using the approximate expression of approach (i)

to compute the magnetic susceptibility, we can now also directly compute it

from Equation (4.19). As an example to explain the procedure, we report in Fig-

ure 4.20 the case of the phenomenological potential AV8’+UIX at three different

densities. We perform a linear fit of the ground state spin polarization ξ0 as a

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0  10  20  30  40  50

ξ 0

b [MeV]

lin fit FG on mock data
FG
lin fit
AFDMC AV8'+UIX
ρ=0.08 fm-3

ρ=0.16 fm-3

ρ=0.32 fm-3

Figure 4.20: Ground state spin polarization ξ0 as a function of the external magnetic field

b for the free Fermi gas. Blue dashed lines are the analytic result for three

different densities. Green dashed lines are the results of the linear fit on

the chosen five external magnetic fields indicated by triangles, squares, and

circles, labeled as "mock data". Low to high densities are in light to dark

colors. This is analogous to what is reported in Figure 4.18. In addition, we

report in red the AFDMC results for the interacting system in the case of the

phenomenological potential AV8’+UIX and the respective linear fits.

function of the external magnetic field b. The values of ξ0 are obtained from the

parabolic fits explained in the approach (i). Using Equation (4.20) and inserting

it in Equation (4.19), we can directly compute the magnetic susceptibility.

In Figure 4.21 we report a summary of the results for the magnetic susceptibility

of the interacting system obtained in the case of the phenomenological AV8’+UIX

and the local chiral effective field theory potential EFT. The calculations of the

phenomenological potential are also compared between the two approaches. Al-
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Figure 4.21: Magnetic susceptibility as a function of the density ρ. Results for the phe-

nomenological potential (AV8’+UIX) and the local chiral potential (EFT) are

plotted with blue and green symbols, respectively. The results of the ap-

proach (i) are denoted with circles and labeled as "approx". Uncertainties on

the parameters from the fits have been propagated and are shown as error-

bars.

though not significantly different, the two approaches are not always compatible.

The reason might be related to the approximations of approach (i), while in ap-

proach (ii), the only source of uncertainty is directly connected to the linear fit.

The approximation of approach (ii) is investigated in Figure 4.22.

In Figure 4.22, the magnetic susceptibility of the interacting system is compared

to the analytical solution of the free Fermi gas. We also compare the linear fit re-

sults for the non-interacting case to the correct analytical result. At low densities,

the linear fit reproduces the full result correctly, while at high densities, the pre-

dicted magnetic susceptibilities slightly underestimate the correct results. There

is no reason to expect different behavior in the case of the interacting system,

although the correct result is unknown.

In Figure 4.23 we compare the magnetic susceptibility ratio with respect to the

free Fermi gas that we obtained within the approach (ii) to the results available

in the literature. The calculations have been performed with another microscop-
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Figure 4.22: Magnetic susceptibility as a function of the density ρ. Results from the ap-

proach (ii) for the phenomenological potential (AV8’+UIX) and the local chi-

ral potential (EFT) are plotted with blue and green symbols, respectively. The

analytic solution for the non-interacting system (red-dashed lines) is com-

pared to the linear fit on the "mock data" (red circles), as explained in the

text. Uncertainties on the parameters from the fits have been propagated and

are shown as errorbars.

ical method used in nuclear physics, which is Brueckner-Hartree Fock (BHF). In

black, we report the calculations by Bombaci et al. [121] for the two-body poten-

tial AV18. The results of Vidaña et al. [140] were obtained using again AV18 for

the two-body interaction, but with the addition of the UIX three-body force and

are plotted with two different bands. The results from Ref. [140] are shown as

bands to represent the uncertainty from the extrapolation procedure. The orange

band shows the result, where a new parameterization has been performed when

large values of spin polarization are considered, as explained in Ref. [140]. The

new parameterization gives results which are in agreement with the results of

Ref. [132] and the results of this work, as reported in Figure 4.23. A comparison

between the two microscopical methods was already done in Ref. [141], but only

for the case of the Nijmegen II and Reid93 potentials.
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Figure 4.23: χ/χF as a function of the density. For a noninteracting Fermi gas the spin

susceptibility is χF = µ2mkF/( h̄2π2). Results for the phenomenological

(AV8’+UIX) and local chiral effective field theory (EFT) potential obtained

with approach (ii) are plotted in blue and green, respectively. The solid black

line shows the calculations of Ref. [121] for the two-body interaction AV18.

Results from Ref. [140] with AV18 plus UIX three-body force with Brueckner

Hartree Fock (BHF) methods are plotted as bands. The original result is

plotted with a red band, while the orange band shows the calculation with

a new parameterization, which has been done in Ref. [140], when high spin

polarizations are considered.
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4.5 magnetic susceptibility

4.5.1 Spin-symmetry energy

Apart from the two approaches described up to now, we can estimate the mag-

netic susceptibility also starting from the EOS of the fully polarized and fully

unpolarized system, which we reported in Figure 4.1. In analogy to the symme-

try energy, we can introduce the spin-symmetry energy (SSE), which is defined

as the difference between the energy of the fully spin-polarized system and the

spin unpolarized system. If we employ the energy functional described in Equa-

tion (4.5), the second derivative of the energy with respect to the spin polariza-

tion in the definition of the magnetic susceptibility of Equation (4.19) reduces to

two times the spin-symmetry energy. Within this new approach, we report the

spin-symmetry energy for the phenomenological and the chiral potential in Fig-

ure 4.24. The AFDMC calculations of the EOS for the fully spin-polarized and

unpolarized system are those presented in Figure 4.1.
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Figure 4.24: AFDMC results for spin-symmetry energy (SSE). The results for the phe-

nomenological AV8’+UIX and the local chiral effective field theory (EFT) po-

tential are plotted in blue and green, respectively. The dashed lines represent

a linear fit to the AFDMC calculations.

The SSE is slightly higher for the phenomenological potential than the local

chiral potential. Although this is a very simplified approach, the results for the
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spin-symmetry energy reported in Figure 4.25 are not far from the results ob-

tained from approach (ii). The magnetic susceptibility for the free Fermi gas is

roughly a factor ∼ 3 higher than for the interacting case. In contrast, the rough

estimate from the spin-symmetry energy gives results closer to the full analysis

of approach (ii).
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Figure 4.25: Comparison of the magnetic susceptibility obtained from approach (ii)

(squares) and the spin-symmetry energy (circles). Phenomenological

(AV8’+UIX) and local chiral effective field theory (EFT) potential are plot-

ted in blue and green respectively.
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5
CONCLUSIONS

I n this thesis, we focused on the main properties of spin-polarized pure neu-

tron matter. The expected spin polarization of dense neutron matter, al-

though low, might have effects and implications in high energy phenomena such

as neutron star mergers and supernovae explosions. Starting from realistic and

modern many-body interactions, we used AFDMC to study the EOS for both

fully spin-polarized and fully spin unpolarized systems. We considered the phe-

nomenological potential AV8’+UIX and a local chiral effective field theory po-

tential up to N2LO. For the chiral potential, we evaluate theoretical uncertainties

estimates, and they have been propagated to the evaluation of the neutrino mean

free paths and the compressibilities. Since the evaluation of the response function

at the moment is not feasible within quantum Monte Carlo (QMC) methods, we

relied on a mean-field approximation, namely time-dependent local spin density

approximation (TDLSDA). We showed that this approximation is reliable, and we

computed the neutrino mean free paths in partially spin-polarized dense neu-

tron matter. The robustness of the mean-field approach has also been checked.

We compute the compressibility of partially spin-polarized PNM and compare

our results to the ones available in the literature with different approaches. In

addition, the implications of the use of effective mass have been discussed.

At the moment, the calculations have been performed only at T = 0. In prin-

ciple, temperature effects are not negligible to study supernovae explosions, and

neutron star mergers and the inclusion of these effects should be taken into ac-

count. A first attempt and straightforward extension would be to include the

temperature-dependence in the response functions of the free Fermi gas, within
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the TDLSDA. A comprehensive treatment would be starting from a temperature-

dependent EOS and thus the inclusion of the temperature in the AFDMC calcu-

lations. Up to now, only a few attempts to include temperature-effects within

QMC methods have been made. Another extension of this work would be to in-

clude also protons. Although only a small fraction of protons is present in the

outer core of neutron stars, the presence of protons allows more responses of the

system. It would be interesting to extend the formalism of the local density ap-

proximation to study responses in partially polarized systems both in spin and

isospin channels simultaneously. A future hope would be to study response func-

tions consistently, including also temperature effects, directly within the AFDMC

method.

In addition, we successfully applied the twist-averaged boundary conditions

(TABC) to reduce finite-size effects. We applied TABC to the study of partially

spin-polarized systems, and the magnetic susceptibility of PNM has been com-

puted. We showed that for a given external magnetic field, the ground state po-

larization of the interacting system is lower than the one predicted by the analytic

solution for the free system. We found good agreement with previous calculation

with AFDMC, even if, in principle, previous calculations used the as ground-state

polarization the one predicted from the free Fermi gas. The results for the phe-

nomenological potential are in agreement with previous results obtained from

different microscopical methods. The magnetic susceptibility has also been com-

puted for the recent local chiral effective field theory interactions. It would be

interesting to look at the effects and the impact of these studies on the spin polar-

ization of pure neutron matter in neutron star merger and supernovae explosions

simulations.
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