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Abstract: In this work, the semi-distributed hydrological modeling system GEOframe-NewAge
was integrated with a web-based decision support system implemented for the Civil Protection
Agency of the Basilicata region, Italy. The aim of this research was to forecast in near real-time the
most important hydrological variables at 160 control points distributed over the entire region. The
major challenge was to make the system operational in a data-scarce region characterized by a high
hydraulic complexity, with several dams and infrastructures. In fact, only six streamflow gauges
were available for the calibration of the model parameters. Reliable parameter sets were obtained
by simulating the hydrological budget and then calibrating the rainfall-runoff parameters. After the
extraction of the flow-rating curves, six sets of parameters were obtained considering the different
streamflow components (i.e., the baseflow and surface runoff) and using a multi-site calibration
approach. The results show a good agreement between the measured and modeled discharges,
with a better agreement in the sections located upstream of the dams. Moreover, the results were
validated using the inflows measured at the most important dams (Pertusillo, San Giuliano and
Monte Cotugno). For rivers without monitoring points, parameters were assigned using a principle
of hydrological similarity in terms of their geology, lithology, and climate.

Keywords: GEOframe-NewAge; data scarcity; hydrological modeling

1. Introduction

Improvements in information technology in the last couple of decades have permitted the early
warning of disasters and flood control at different spatial scales [1,2]. Integrated real-time hydraulic
and hydrological modeling can mitigate the consequences of flooding and landslides by facilitating
the rapid diffusion of information throughout threatened areas [3]. Furthermore, the adoption of
Decision Support Systems (DSSs) helps decision-makers, such as civil protection agencies, to choose
and prioritize actions by exploring alternatives. Thus, any decision should be made on the basis of
accurate and reliable predictions. In this respect, much can be still done to provide better models, more
customizable informatics, and more tools to fill gaps in data.

Notwithstanding their differences, predictive hydrological tools, such as empirical models,
distributed models, and lumped models, are essentially data-driven, depending on atmospheric
forcings and their parameters are estimated from hydrometric data at basin scales [4,5]. Therefore,
considerable difficulties and uncertainties arise when models need to be implemented where there are
no gauge stations to calibrate them and in presence of ungauged dams.
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River basin discharges are poorly gauged in many parts of the world: while rain gauges are
relatively dense, few monitoring points are available for discharge, and they are often declining.
However, scarce efforts are made to extract data that are required for robust predictions. Therefore,
under these conditions, estimates of extreme values of discharge in ungauged or poorly gauged basins
are highly uncertain [4].

Several authors have proposed different strategies to overcome uncertainties due to data scarcity.
For example, in Blöschl et al. [6] and Blöschl [7], the best practice recommendations for predicting
runoff in ungauged and poorly gauged basins were summarized in (1) collecting all possible data
during field surveys of a catchment, (2) deeply analysing the hydrograph to obtain the maximum
information, and (3) using regionalization for parameters from similar catchments. Others have
suggested (4) the integration of additional data, such as Remote Sensing (RS) measurements, to obtain
a more consistent description of hydrological processes [8–11]. For example, as reported in [12],
using RS to construct and verify a groundwater model can reduce the uncertainty of calibrations
and increase the predictive value of a model. Predictions can be further improved by (5) performing
multiple calibration strategies, such as multi-site calibrations, as proposed in [13]. Multiple parameter
sets are obtained from the decomposition of time series to reduce parameter identificability in a
semi-distributed model, which could also be helpful in ungauged locations.

One critical aspect of these poorly gauged situation is that it is difficult even to prioritize policy
actions that progressively enhance data availability. The implementation of traditional models can be
discouraging because they have to be completely rebuilt any time new data come in. Therefore, a new
type of modelling infrastructure that can accept changes, without requiring a complete refactoring
when new information is acquired, is deemed necessary.

The Basilicata region can be identified as poorly monitored. A limited number of water level
gauges (about 10) are available over the region and discharge measurements are not carried out
systematically in each cross section. Only few sporadic measurements are available that do not
allow the derivation of reliable flow rating curves. Therefore, the modelling application becomes
a challenging exercise that imposes to use all the available information in order to overcome
such limitations.

Considering all the regional complexities, such as dams and derivations, new strategies needed
to be implemented in the DSS, operative in near-real time for the functional center of the Civil
Protection of the region, for (i) getting reasonable discharges estimation with the available measurement
networks; (ii) implementing a modelling infrastructure easy to be modified when new measurements
become available.

To this aim, the hydrological modeling system GEOframe-NewAge [14,15] was chosen and, in the
present work, was made operational at a regional scale for the forecasts over 160 monitoring points, as
shown in Appendix A.

We present (a) the new features developed and integrated in GEOframe-NewAge to enhance
the hydrological predictions in the Basilicata region and (b) the various strategies implemented to
overcome the uncertainty of calibrations due to data-scarcity. Besides, all the previous aspects are
treated to make it possible the replicability of the adopted modelling solutions to future similar systems.

The present work is organized as follows: Section 2 describes the case study of the Basilicata
region; Section 3 presents GEOframe-NewAge, its components, and the NET3 graph (Section 3.1),
the calibration strategies in a data-scarce environment (Section 3.2) and the model setup (Section 3.3).
Section 4 discusses the results of the application and finally, the conclusions of the study are given in
Section 5.

2. Case Study

To Basilicata region, in Southern Italy, is one of the most vulnerable in the national territory, with
nearly 50% of the towns classified as high risk for landslides or floods [16–18], and a dense drainage
network that supplies around 90% of the water resources for public use to the Puglia region [19]. The
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Basilicata region covers an area of 9992 km2 in Southern Italy. It is mostly mountainous, with up to
47% of the territory located in areas between 700 and 2250 m a.s.l. (Figure 1a).

The climate is typically Mediterranean and characterized by hot, dry summers and mild, wet
winters. The yearly average rainfall ranges between 950 and 1050 mm, while the average temperature
is around 14 ◦C, with an average daily maximum of around 21.5 ◦C during summer and an average
daily minimum of around 4.5 ◦C during winter.

The vegetation is strongly influenced by climatic conditions. The Western part, along the
Apennine, is characterized by highly vegetated soils, with many woods and fields under cultivation of
vines and olives. The Eastern part of the region, in contrast, is characterized by bare and arid soils,
with poor vegetation and few irrigated zones, [16,20,21].

As shown in the left part of Figure 1b, the region is characterized by a complex drainage network,
in which it is possible to recognize nine main rivers: Agri (1702 km2), Basento (1526 km2), Bradano
(2776 km2), Cavone (632 km2), Lao (421 km2), Noce (356 km2), Ofanto (2659 km2), Sele (2369 km2),
and Sinni (1294 km2). Agri, Basento, Bradano, Cavone, and Sinni Rivers flow into the Ionian Sea,
while the Ofanto river flows into the Adriatic Sea, and the Sele, Noce, and Lao Rivers flow into the
Tyrrhenian Sea. The region is characterized by high water resource availability—around 1 billion m3

per year—which is mostly used for the water supply of the Puglia Region, the Calabria Region, and
the Basilicata region itself. A complex scheme of hydraulic infrastructures, such as dams, reservoirs,
and canals, are realized on the Agri, Bradano, Basento, Ofanto, and Sinni Rivers. In particular, the
most important reservoirs are

• San Giuliano, Acerenza, Genzano, and Basentello on the Bradano River;
• Pertusillo and Marsico Nuovo on the Agri River;
• Monte Cotugno on the Sinni River;
• Rendina on the Ofanto River;
• Camastra on the Basento River.

Figure 1. (a) Hydrometers (blue stars) and weather stations (red circles); (b) basin partitions in HRUs.
Each of the nine major rivers is highlighted with a different color.

Figure 1a shows the network of measuring stations: the red dots represent the meteorological
stations, while the blue stars are the hydrometers. The network is composed of 54 meteorological
stations, with a density of 0.5/100 km2, which provide hourly temperature and precipitation, and 10
hydrometers, only 6 of which are active. The dataset of meteorological inputs, i.e., temperature and
precipitation, and of stage measurements covers two years (from 15 December 2013 to 15 December
2015) at an hourly timescale. The region can be described as poorly gauged with respect to the
hydrometric stage measurements since there are only six active hydrometers over a 9992 km2 territory.
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Figure 1b shows the regional discretization in 160 Hydrological Response Units (HRUs), whose
area varies from around 10 to around 150 km2, according to the geomorphology and monitoring points.
The DEM used for the derivation of the HRUs has a resolution of 240 × 240 m.

3. Methodology

In this section we describe the hydrological modelling system GEOframe-NewAge and its
enhancements introduced in this work by the integration of a new NET3 version. Then, the calibration
strategies proposed to overcome the problems related to the data-scarcity in the Basilicata region, i.e.,
the extraction of the flow-rating curves, the multi-component and multi-site calibrations, are reported.
Eventually, the model setups both at HRU scale and at catchment scale are described.

3.1. GEoframe-NewAGE and the NET3 Graph

GEOframe-NewAge is an open-source, semi-distributed, component-based hydrological
modeling system [14,15]. It was developed in Java and based on the environmental modeling
framework Object Modeling System V3 (OMS3) [22]. Each part of the hydrological cycle is implemented
as a component, i.e., a self-contained building block, module, or unit of code (e.g., [23,24]). Components
can be joined together to obtain a modeling solution that can accomplish a complicated task
(e.g., [25,26]). GEOframe-NewAge was chosen for its flexibility, its solid informatic structure, and its
good performance in several applications (e.g., [14,15,26–31]).

More than 50 components are available, and they can be grouped into nine categories, as follows:

• Geomorphic and DEM analyses;
• Spatial extrapolation/interpolation of meteorological variables;
• Estimation of the radiation budget;
• Estimation of evapotranspiration;
• Estimation of runoff production;
• Simulation of infiltration;
• Channel routing;
• Travel time analysis;
• Calibration algorithms.

The basin can be discretized into Hydrological Response Units (HRUs), i.e., hydrologically similar
parts, such as a catchment or a hillslope or one of its parts, using the components for geomorphic
and DEM analyses introduced in [32] and reviewed in [33]. The meteorological forcing data in
the centroid of each HRU can be spatially interpolated using a geostatistical approach, such as the
Kriging technique [26,34]. The radiation budget includes both shortwave and longwave radiation
components [25,29]. Evapotranspiration (ET) can be estimated using three different formulations: the
FAO Evapotranspiration model [35], the Priestley–Taylor model [35], and the GEOframe ET model
based on [36]. Snow melting and the snow water equivalent are treated using a component that
includes three models, as described in [28]. Runoff production is performed using the Embedded
Reservoir Model (ERM) [15], which schematizes each HRU as a group of storages (reservoirs) and
solves the water budget for each one. Travel time analysis can be performed using the approach
proposed in [37,38]. Two calibration algorithms are presented: Let Us CAlibrate (LUCA) [39] and
Particle Swarm Optimization (PSO) [40].

The discharge generated at each hillslope is finally routed to the outlet using the
Muskingum–Cunge method [41,42].

Any of these components can be used or removed at run time without disrupting the system, but
obviously, requiring a re-calibration of the appropriate parameters. A part for this flexibility, the core
modelling part are non linear reservoir models, which can be connected in multiple ways at run time.

A graph-based structure called NET3 [43,44] is employed for the management of process
simulations. NET3 is designed using a river network/graph structure analogy, where each HRU
is a node of the graph, and the channel links are the connections between the nodes. In any NET3 node,
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a different modeling solution can be implemented and nodes (HRUs or channels) can be connected
or disconnected at run time through scripting. Independent nodes are run in parallel, making the
simulations faster and facilitating the implementation of additional features. NET3 also enables a
further layer of modeling adaptability that allows for seamless insertion into natural river network
hydraulic infrastructures [44].

GEOframe-NewAge is open source and helps the reproducibility and replicability of research [45]
by providing an ordered modality to run simulations and preserving their parameters. The model
source code and projects are managed in the Git [46–48] repository Github, which developers use
to keep track of code and project evolution. A continuous integration service is also provided by
the repository, i.e., Travis CI [49], which ensures the building and testing of the source code at
each commit on Git. Dependencies from external classes and/or libraries within components are
automatically solved using the Gradle building system [50]. Finally, developers and users collaborate,
share documentation, and archive examples and data using the Open Science Framework project [51],
which was specifically created for the GEOframe community [52].

The enhancement of GEOframe-NewAge, with the integration of NET3 version done in the
present work, makes the model particularly suitable in the case of poorly gauged basins, since it is
possible to build the infrastructure and expand it, as soon as new measurements (or components) are
available. For example, in the case a new gauge station is operative, it is not necessary to re-build the
whole system but it is possible to calibrate only the model parameters specific to the HRUs pertaining
the new insertion (and eventually those downstream). This is particularly convenient in operational
cases, not only to avoid waste of time in system refactoring, but also to help the decision-makers to
define prioritizing actions to improve the measurement network. Thus, in a poorly gauged region,
such as the Basilicata, the system allows to easily define the operational investments to improve the
hydrological monitoring with the minimum effort.

Simplified Embedded Reservoir Model

In this work, a simplified form of the Embedded Reservoir Model (ERM) presented in [15] was
used, albeit the number and scheme of reservoir connections were the same as those in the original
model. Therefore, hereinafter, the ERM model version used in this work is referred to as the simplified
Embedded Reservoir Model (sERM).

Simplification was actually driven by the idea that in data scarce environment, using less
complicate models is the first reccomendation to follow.

In the almost-infinite panorama of hydrological models, the sERM doesn’t aim to represent
the perfect model but rather a modular system. Flexible and extensible, the model allows to take
into account a broad range of modeling strategies. Other worth mentioning models that allow such
flexibility are FLEX model, [53,54], and SUMMA model [55,56]. These frameworks are based on a
general set of conservation equations for mass and energy, with the capability to incorporate multiple
choices for spatial discretization and flux parameterizations [55]. The rationale behind the sERM, FLEX
and SUMMA modeling systems is the same:

• the possibility to consider several representations of spatial variability and hydrologic connectivity;
• the possibility to simulate a broad range of hydrologic processes, with multiple options for

individual processes.

However, GEOframe-NewAge system has the further ambition to offer a system to facilitate the
production of tools and models to obtain the goal just presented.

The sERM is represented by extended Petri nets (EPNs) [57] in Figure 2. The model is composed
of four integrated reservoirs: canopy (green reservoir), root zone (orange reservoir), runoff (purple
reservoir), and groundwater (yellow reservoir). The symbols in the figure are reported in the list of
sERM definitions in Table 1.
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Figure 2. Representation of the simplified embedded reservoir model. The four components—canopy,
root zone, surface flow, and groundwater—are represented by Extended Petri net using circles with
different colors and specifications.

Table 1. List of symbols, names, and units used in the sERM representation. P indicates a calibrated
parameter, P* indicates a parameter to be set from the literature, P• indicates a measured parameter, SV
indicates a state variable, and F indicates flux. The definitions also include the symbols defined in the
expression table below.

Symbol Name Type Unit

a coefficient of the RZ non-linear reservoir model P (T−1)
b exponent of the RZ non-linear reservoir model P (−)
bc drainage coefficient P* (T−1)
c coefficient of GW the non-linear reservoir model P (T−1)
d exponent of GW the non-linear reservoir model P (−)
k runoff coefficient P (TL−2β)
kc LAI coefficient P* (L3)
p free throughfall coefficient P* (−)
A HRU area P• (L2)
D(t) drainage from the canopy F (L3T−1)
ETc(t) evapotranspiration from the canopy F (L3T−1)
ETp(t) potential evapotranspiration F (L3T−1)
ETrz(t) evapotranspiration from the root zone F (L3T−1)
LAI leaf area index P• (L2L−2)
Md(t) melting discharge/rain F (L3T−1)
QGW(t) groundwater discharge F (L3T−1)
QR(t) runoff discharge F (L3T−1)
Re(t) recharge term of groundwater F (L3T−1)
Sc(t) canopy storage P (L3)
Scmax (t) canopy maximum retention storage P (L3)
SGW(t) groundwater storage SV (L3)
SGWmax (t) maximum groundwater storage P (L3)
SR(t) runoff storage SV (L3)
Srz(t) root zone storage SV (L3)
Srzmax (t) maximum root zone storage SV (L3)
Tr(t) throughfall F (L3T−1)
α(t) partitioning coefficient between root zone and surface runoff SV (−)
β runoff exponent P* (−)

From Figure 2, the ruling equations can be easily established:
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dSc(t)
dt

= Md(t)− Tr(t)− ETc(t) (1)

for the canopy storage,

dSrz(t)
dt

= (1− α(t))Tr(t)− Re(t)− ETrz(t) (2)

for the root zone storage,

dSR(t)
dt

= αTr(t)−QR(t) (3)

for the runoff storage, and

dSGW(t)
dt

= Re(t)−QGW(t) (4)

for the groundwater storage.
Table 2, the so-called expressions table, provides mathematical completeness to the fluxes.

Table 2. Table of associations between fluxes and expressions related to the sERM.

Symbol Name Expression

D(t) drainage from the canopy max(0, bc(Sc(t)− Scmax (t)))

ETc(t) evapotranspiration from the canopy max
[

0, ETp(t) ·min
(

1, Sc(t)
Scmax (t)

)]
ETrz(t) evapotranspiration from the root zone min

(
1, 4

3
Srz(t)
Srzmax

)
·(ETp(t)− ETc(t))

QGW(t) groundwater discharge c
(

SGW (t)
SGWmax (t)

)d

QR(t) runoff discharge 1
kAβ SR(t)

Re(t) recharge term of groundwater aSrz(t)b

Scmax (t) canopy storage kcLAI(t)

Tr(t) throughfall D(t) + p ·Md(t)

Following Figure 2, after the detection of the snowmelt and/or the rainfall, the throughfall and
the evaporation from the wet canopy are computed. The wet canopy is modeled through a slightly
modified version of the Rutter model [58] (last line of Table 2): the original drainage function was
omitted to eliminate some calibration parameters. Throughfall is partitioned into the infiltration in
the root zone and the direct surface flow according to the saturation conditions of the root zone. The
canopy maximum retention storage, Scmax , is modeled as a function of the time-varying Leaf Area
Index (LAI) [m2/m2], as in [59]. If there is no canopy, the melting/rain is partitioned between the
root zone and the runoff according to a partition coefficient, and a variable in time, α(t), is modeled
according to [60].

Evapotranspiration is modeled using the formulation proposed by [61], as shown in the third line
of the expression table (Table 2). The root zone storage accounts for the evaporation from the base soils,
the transpiration of the plants, and the recharge term of the groundwater.

Precipitation that exceeds the root zone capacity is sent directly to the volume available for surface
runoff. The surface runoff QR(t) is modeled with a linear reservoir, in which the coefficient, kAβ, i.e.,
the mean residence time of the basin, is computed as a power law of the area. This approach was
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originally proposed in [62], with β obtained after fitting the discharges of the Basilicata rivers. Values
reported in that study were 0.458 for the Agri River and 0.5 for all the others. In the present study, the β

value was chosen as 0.5 for all the investigated rivers, while the k parameter was calibrated. This was
made to add a further simplification to the model, diminishing of one order the degrees of freedom of
the calibrations. The baseflow from the groundwater is modeled using a non-linear reservoir. Finally,
the total runoff is the sum of the direct runoff and the baseflow.

3.2. Calibration Strategies in a Data-Scarce Environment

Besides the sERM simplifications introduced in Section 3.3.1, several calibration strategies to
address data scarcity were adopted.

First, the Flow-Rating Curves (FRCs) were extracted, exploiting at the best the available stage
measurements, using two different approaches. In the first approach, which follows the methodology
proposed in [63], the curves were obtained directly as the product of the relations of (i) the mean flow
velocity (V) with the river stage (H) and (ii) the wetted area (A) with the river stage. These relations
were obtained using available observations on flow velocities and cross-section surveys. In the second
approach, the FRCs were extracted using observations of the river stage and discharge (Q). Then,
for each monitoring point, the best flow-rating curve was chosen by comparing the mean annual
discharge volumes calculated with the first approach (VA), the standard approach (QH), and a simple
water balance model, i.e., the Budyko model [64]. The equations of the Budyko model are reported in
Appendix B.

Then, different calibrations were carried out to obtain reliable model parameters estimates against
the extracted FRCs.

Thanks to the GEOframe-NewAge component-based infrastructure, it was possible to detect
each input and output of a single component and calibrate multiple sets of parameters, with each
set associated with different hydrological processes, e.g., surface runoff and baseflow, as shown in
Figure 3. The calibration versus the different components of the discharge allows to drive the final
parameters estimates toward more reliable values. As proposed in [10], the following calibration
procedure was performed:

1. from the hourly total discharge, the baseflow was extracted using a mathematical filter, which
connected the local minima (Figure 3a, red line);

2. the runoff was extracted by subtracting the baseflow from the hourly total discharge (Figure 3a,
blue line);

3. the parameters of the root zone and runoff reservoirs were calibrated against the extracted runoff
(Figure 3b);

4. with the root zone and runoff reservoir maintaining fixed calibrated parameters, the parameters
of the groundwater reservoir were calibrated against the extracted baseflow (Figure 3c);

5. finally, the calibrated parameters previously obtained were further optimized against the hourly
total discharge (Figure 3d).

When different discharge measuring points were available for the same river, the NET3 graph
structure was used to perform multi-site calibrations. The first calibration followed the procedure
described above and was performed for the uppermost point. Then, moving toward the outlet, the
best uphill parameters remained fixed, and the downhill calibrations were performed. In this way, it
was possible to consider different parameter sets according to local features and climatic forcings.
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Figure 3. Flowchart of the calibration strategy: first, the discharge components, baseflow (blue
line) and runoff (red line), were extracted from the total discharge (a); then, the parameters were
calibrated against the runoff series (b) and against the baseflow series (c); finally, all the parameters
were recalibrated against the total discharge to further improve the results (d). If multiple monitoring
points were available (red stars), then the procedure was repeated for each one.

Finally, for rivers that lacked measures, the model parameters were set equal to those of
hydrologically similar calibrated rivers, in terms of climatic conditions (i.e., precipitation and
evapotranspiration), lithology, geology, and soil use.

3.3. Model Setup

Customized modeling solutions, i.e., schemes of connections of the components to perform
specific modeling tasks, were created to solve the hydrological budget at the HRU scale, to model the
dams and then connect all the nodes of the network to the outlet. In the following sections, the model
setups at the HRU scale and basin scale are described.

3.3.1. HRU Scale

Figure 4 shows the workflow of the components used and their connections for each HRU centroid.
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Figure 4. The modeling solution adopted in this work allows for the simulation of the entire
hydrological budget: from the spatialization of the temperature data (SIK-K component [26]) to
the runoff production (Embedded reservoirs component).

The meteorological input forcings are spatially interpolated using Kriging techniques (the SIK-K
component). Its parameters were obtained following the procedure reported in [26]. First, the
semivariance was analyzed, and experimental semivariograms were fitted using the best theoretical
models of the 10 available ones. The semivariogram parameters—sill, nugget, and range—were
optimized using the particle swarm calibrator. Then, the best model was used for the interpolation
of the temperature and precipitation using the ordinary Kriging. Finally, Kriging performances were
assessed using leave-one-out cross-validation.

After the interpolation, the radiation budget, both shortwave and longwave radiations (SWRB
and LWRB components, respectively), are computed. For this project, the SWRB and LWRB component
parameters were set to the default literature values, as in [25,29,30,61,65]. Then, the potential
evapotranspiration is simulated according to the Priestley–Taylor model. The total interpolated
precipitation is separated into rainfall and snowfall, which is an input of the snow component. The
outputs are the snow water equivalent and the melting discharge (if there is snow) or rainfall (if there
is no snow). Potential evapotranspiration and melting discharge/rainfall feed into the rainfall-runoff
model sERM.

All the parameters, which were fixed for all nine rivers, are reported in Table 3.
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Table 3. Model parameter of the Kriging, shortwave radiation (SWRB), longwave radiation (LWRB), net
radiation, potential evapotranspiration (ETP), rain–snow separation, snow, and canopy components,
which were fixed for all the HRUs.

Component Parameter Value Units

Kriging on temperature
nugget 0.28 (◦C)
range 4.95 (km)

sill 2.24 (◦C)

Kriging on precipitation
nugget 0.24 (mm)
range 4.93 (km)

sill 0.15 (mm)

SWRB
vertical ozone layer thickness 0.6 (cm)

αg 0.9 (-)
visibility 80.0 (km)

LWRB X param of [66] 0.7 (-)
Y param of [66] 5.95 (-)

Net radiation soil albedo 0.26 (-)

ETP α 0.8 (-)

Rain–snow separation αr 1 (-)
αs 1

melting temperature 2 (◦C)

Snow

freezing factor 8.0 · 10−3 (mm◦C−1h−1)
liquid water retention capacity coefficient 0.69 (-)

melt factor 0.25 (mm◦C−1h−1)
melting temperature 2 (◦C)

radiation factor 8.03 · 10−5 (mm◦C−1W−1h−1)

3.3.2. Catchment Scale

The modeling solution presented in Figure 4 was solved for each of the 160 HRUs into which the
region was discretized. Then, as shown in the EPN of Figure 5, the discharge generated at the HRU
scale (represented in gray) is routed along the river network.

Figure 5. Representation of the dam reservoir connection with uphill and downhill HURs.

The dam is simulated by a simple equation:

dHD(t)
dt

=
QC1(t)−QC3(t)

A(H, t)
(5)
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while the routing is done using the Muskingum–Cunge (MC) method [41]:

SMC = K[x QsERM + (1− x)QC] (6)

Table 4 defines the symbols, names, and units used in the EPN representation, and Table 5 lists
related expressions.

Table 4. List of symbols, names, and units used in the EPN representation in Figure 5.

Symbol Name Type Unit

A(H, t) surface area of the dam P• (L2)
asur f ace coefficient in area expression P (L1)
bsur f ace known term in area expression P (L2)
g gravitational acceleration P (LT−2)
H(t) stage with respect to m a.s.l. V (L)
Hspillway(t) stage at which the spillway activates P (L)
K storage coefficient in MC P (T)
l spillway length P (L1)
QC(t) generic channel flow F (L3T−1)
QC1(t) input to the dam F (L3T−1)
QC3(t) output from the dam F (L3T−1)
Qdam(t) regulated dam’s outflow F (L3T−1)
Qs(t) spillway discharge F (L3T−1)
QsERM(t) discharge from the HRU F (L3T−1)
t time V (T)
x weighting factor in MC P (-)
µ coefficient of the spillway P• (-)

Table 5. Expression table associated with the EPN representation in Figure 5.

Symbol Name Expression

A(H, t) surface area of the dam asur f ace H(t)− bsur f ace

K storage coefficient in MC l
uc

QC3(t) output from the dam Qs(t) + Qdam(t)

Qs(t) spillway discharge µl(2g)
1
2 (H(t)− Hspillway)

3
2

In Figure 5, the sites SMC1 , SMC3 , and SMC4 (in gray) represent the routing reservoirs. The orange
site, on the other hand, is a dam located between the streams C1 and C3. The input flux is the discharge
routed from uphill from HRU 1, while the outflow is, in turn, the input of the downhill HRU 3. The
NET3 graph machinery manages the connection of each HRU to the next one in a cascade to the outlet,
i.e., HRU1→ Dam→ HRU3 and HRU4→ HRU3. The topology of the graph, i.e., the schema of the
connection of the EPN sites (reservoirs), is specified in a customized input file. NET3 launches the
simulations according to this topology and identifies independent processes that can be run in parallel.
For example, the simulations for HRU 1 and HRU 4 in Figure 5 can be run in parallel. It is also possible
to define different model parameter sets for a single HRU or a group of HRUs to enable multi-site
calibrations and optimize the management of the nodes of interest, such as the dam, as explained in
Section 3.2.

Three dams out of five were modeled in this study: Pertusillo on the Agri River, Monte Cotugno
on the Sinni River, and San Giuliano on the Bradano River, which are the most important and largest
ones in terms of volume. For the three dams, the available data at a daily timescale were the following:

• Stage;
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• Volumes;
• Inflows;
• Precipitation;
• Spillway volumes;
• Restitution downstream.

A simple water balance (calculation of the differences between the recorded daily volumes) was
performed to reconstruct the inflows to each dam when inflow data were missing, and they were used
to validate the calibration results.

4. Results and Discussion

As described in Section 3.2, the Budyko model was used to validate the flow-rating curves that
were extracted for the six monitoring points. Tables 6 and 7 report the results of comparing the mean
annual volumes obtained with the VA approach, the QH approach, and the Budyko model for the two
considered years (2012–2013) in terms of Mean Absolute Percentage Error (MAPE).

Table 6. Comparison of the mean annual volume of discharges obtained using the extracted flow-rating
curves with the two proposed approaches and the expected volumes obtained using the Budyko model
for 2012.

River Budyko Q(V,A) Q(H) MAPE (VA) MAPE (Q(H))

Agri Ponte La Marmora 513 546 541 6 6
Agri SS 106 387 330 308 15 20

Basento SS 106 245 161 245 34 0
Bradano SS 106 90 99 71 11 21
Cavone SS 106 317 560 501 76 58
Sinni Episcopia 914 318 302 65 67

Table 7. Comparison of the mean annual volume of discharges obtained using the extracted flow-rating
curves with the two proposed approaches and the expected volumes obtained using the Budyko model
for 2013.

River Budyko Q(V,A) Q(H) MAPE (VA) MAPE (Q(H))

Agri Ponte La Marmora 750 510 508 32 32
Agri SS 106 841 332 310 61 63

Basento SS 106 348 157 250 55 28
Bradano SS 106 90 64 55 29 39
Cavone SS 106 436 520 459 19 5
Sinni Episcopia 1053 516 472 51 55

As is clear from the results, because of the data scarcity, which affects the extraction of the curves,
both approaches overestimated or underestimated the mean annual volumes. This also affected the
results of the calibration procedure, as discussed later. In general, the VA FRCs perform better than
the QH FRCs, except for the Basento SS106 and Cavone SS106 monitoring points, for which the QH
FRCs yield better estimates. Therefore, according to the previous results, the QH FRCs were chosen for
Basento SS106 and Cavone SS106, while the VA FRCs were used for the remaining points. The FRCs
used for each of the six monitoring points are reported in Appendix C.

The final parameter sets of the sERM were obtained using the LUCA calibration algorithm to
optimize the Nash–Sutcliffe Efficiency (NSE), whose equation is reported in Appendix D.

For the Agri river, it was possible to calibrate using two measuring stations: (i) upstream of the
Pertusillo Dam (Agri (Up)) at the station Grumento-Ponte La Marmora and (ii) downstream (Agri
(Down)) at State Road 106 (SS106).
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For the Bradano River, the parameters were calibrated only considering the HRUs downstream of
the dam because of its strong influence on the measured discharge at the State Road 106 monitoring
point. In particular, the upstream HRUs were disconnected from the topography of the river, and the
downstream restitution, which was extracted from the data from the San Giuliano dam management
office, was considered to be the only upstream contributor to the total discharge at the closing section
on State Road 106.

For the Sinni River, on the contrary, the parameters were calibrated only for the HRUs upstream
of the dam since there were no active monitoring points on State Road 106.

For the Ofanto, Lao, Noce, and Sele rivers, the parameterizations used were the same as those
used for the Basento, Sinni, Sinni, and Agri up-dam, respectively.

Figure 6 shows the Flow Duration Curves (FDCs) obtained for each of the six stations. The FDCs
were used to verify the goodness of the calibration results since they enable the interpretation of the
discharge components (e.g., the surface, subsurface, and groundwater), which are better described
by the sERM model, wherein they are distinguished in terms of the frequency of discharge. It is clear
that the model is able to well represent both high- and low-frequency discharges for the Cavone, Agri,
and Sinni Rivers. On the contrary, Basento and Bradano show problems related to the subsurface
contribution (6 and 10 m3/s, respectively) because of the lack of a subsurface component of the runoff,
resulting in all the baseflow being attributed to the groundwater component. The Bradano river, in
particular, shows a very constant measured baseflow (1 m3/s): it is almost zero in summer because of
a wide floodplain and because of a subsurface component, and it is difficult to simulate by the model.

Figure 6. Flow duration curves obtained for each of the six investigated stream gauges: measured
discharge (red line) versus modeled discharge obtained using the embedded reservoir model (black
line). The model was calibrated against two years of discharge to maximize the exploitation of
available data.

Figure 7 shows the differences between the measured and the simulated discharges for the six
measuring stations. There is clearly a general underestimation of peak flow for the flood event in
January 2014, with a maximum difference of around 600 m3/s for the Agri SS106 closure section.
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This is mainly because of the initial conditions for the maximum storages in the root zone and
groundwater, which were still affecting the simulations, given an insufficient warm-up period of the
model before the event (less than a month). Basento SS106 and Agri SS106 also show large differences
in January–February 2015, for which the model mostly overestimates by around 50 m3/s. In these
cases, the problem lies in the hydraulic complexities, i.e., dams and derivation channels, which are not
fully captured by the model. The best fit is obtained for the sections located upstream of the dams, i.e.,
Agri Ponte La Marmora and Sinni Episcopia; this result is confirmed by the results obtained from a
Goodness-of-Fit (GOF) analysis.

Figure 7. Idrograph obtained for each of the six investigated points: red lines represent measured
discharges, while black lines represent simulated discharge.

Tables 8 and 9 show the values of the sERM calibrated parameters and the GOF indices,
respectively. GOF formulations are reported in Appendix D.

Analyzing the values of the calibrated parameters for the root zone reservoir, we can see that
the Sinni River has the greatest value of maximum storage of 233.05 mm, which is expected since it
is characterized by a higher amount of mean annual precipitation—around 1500 mm/year—relative
to the other rivers, whose mean annual precipitation is around 1000 mm/year. Some of the model
parameters, such as the B parameter of the formulation from [60] and the runoff coefficient, have small
variations in the different sets. This means that the model is less sensible to those parameters compared
with the others. However, these values are in line with previous studies, such as [62].

It is also interesting that the optimized values of the Basento and Cavone Rivers are similar, which
is also expected since they are both semi-arid basins, with around 700 mm/year of precipitation and
around 600 mm/year of potential evapotranspiration. The coefficient of the non-linear reservoir for
the groundwater is high for both cases: 25.89 h−1 for Basento and 29.88 h−1 for Cavone.

Much of the variability in the groundwater values is due to the presence of
hydraulic infrastructures.

The overall model performances in reproducing the discharge are good, with the best fit obtained
for the Sinni River, with a Kling–Gupta Efficiency (KGE) of 0.82, NSE of 0.76, Root-Mean-Square Error
(RMSE) of 5.42 m3/s, and Percent Bias (PBIAS) of −0.1%. In general, better GOFs were obtained for
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the calibrated sections upstream of the dams (i.e., Agri (Up) and Sinni) since, downstream, the natural
hydrology of the region is strongly affected by the complex hydraulic scheme.

Table 8. Final calibrated parameter sets: for the Agri basin, it was possible to perform multi-site
calibration up-dam (Up) and down-dam (Down). Ofanto, Lao, Noce, and Sele are missing since
calibration was not carried out.

Root Zone Runoff Groundwater Muskingum–Cunge
River B(-) SRZmax (mm) a(h−1) b(-) k(h/km) SGWmax (mm) c(h−1) d(-) x(-) uc(m/s)

[0.1–0.4] [100–500] [0.01–10] [1–10] [0.05–0.5] [100–2500] [0.01–40] [1–15] [0.01–0.5] [0.4–1.5]

Agri (Up) 0.10 110.22 1.80 8.96 0.23 1494.12 10.05 7.84 0.07 0.69
Agri (Down) 0.11 162.64 0.10 3.16 0.08 2039.01 0.49 13.89 0.06 1.26

Basento 0.10 143.62 0.02 8.66 0.29 137.44 25.89 9.52 0.01 0.65
Bradano 0.10 116.43 0.14 3.51 0.28 2491.35 0.01 13.43 0.10 0.68
Cavone 0.21 163.33 0.18 7.91 0.23 170.28 29.88 8.48 0.01 0.50

Sinni 0.13 233.05 0.14 3.17 0.29 204.03 0.01 14.75 0.38 0.40

Table 9. Indices of goodness of fit obtained for the six investigated points.

River KGE NSE RMSE PBIAS
(-) (-) (m3/s) (%)

Agri (Up) 0.68 0.65 3.94 26.6
Agri (Down) 0.65 0.63 28.6 12.3

Basento 0.60 0.65 23.99 −3.4
Bradano 0.57 0.63 16.37 −3
Cavone 0.65 0.65 8.94 −21.2

Sinni 0.82 0.76 5.42 −0.1

The goodness of the calibration results was validated by comparing the values of the discharge
inflows at the three modeled dams (Pertusillo on the Agri River, Monte Cotugno on the Sinni River,
and San Giuliano on the Bradano River) with the recorded daily discharges, as shown in Figure 8.
This validation is the most reliable since the recorded values are not affected by the uncertainties of
the FRC extractions. The values were compared for 2014 since we have data only for that year that
cover our dataset. Simulated discharges were coarse-grained from the hourly timescale to the daily
timescale and then compared with the recorded daily values. It is clear from Table 10 that there is a
really good agreement between the measured and modeled discharges, with correlation coefficients of
0.91, 0.86, and 0.74 for Pertusillo, Monte Cotugno, and San Giuliano, respectively. The San Giuliano
data are highly discontinuous, underlying the importance of using the hydrological model to simulate
discharges with a short timescale, i.e., one hour, to support the planning and management of a dam.

Table 10. Indices of goodness of fit obtained for the three modeled dams.

Dam Maximum Volume Drainage Area r NSE PBIAS
(m3) (km2) (-) (-) (%)

Pertusillo 1.59 × 109 530 0.91 0.84 12.20
Monte Cotugno 5.30 × 109 890 0.86 0.74 9.70

San Giuliano 1.07 × 109 1631 0.74 0.71 35.40
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Figure 8. Measured inflows (red line) vs. modeled inflows (blue line) at a daily timescale for the three
modeled dams.

5. Conclusions

The aim of the present work is to present the integration of the hydrological model
GEOframe-NewAge to simulate the most relevant hydrological and hydraulic variables involved in
flood production and landslide induction at a regional scale in a data-scarce environment.

Every hour, the entire hydrological budget is simulated. After the spatialization of the input
variables using the Kriging algorithm, the radiation budget is computed, then the evapotranspiration
and the snow processes are simulated, and finally, the discharges are produced for each of the 160
monitoring points. Moreover, a simplified model of the dam enables the simulation of the stage in the
three major dams—Pertusillo, Monte Cotugno, and San Giuliano—that were considered in this study.

Various methodology to overcome the data-scarcity are proposed:

• the extraction of the flow-rating curves using a novel approach based on the velocity and wetted
area measurements;

• the multi-calibrations versus the different components of the discharge, i.e., the runoff and the
groundwater;

• the multi-site calibration in different closure sections, when available.

The proposed methodologies proved to be robust, since the results show a good agreement
between the measured and modeled discharges for all six monitoring points. The approach for the
flow-rating curves extraction was validated using a simple annual water balance model and it shown
good performances for 4 over 6 gauge stations. The multi-calibrations, as well, gave consistent results,
with better indices of goodness for the section located upstream the dams. They were also validated
by comparing the modeled and measured inflows for each of the three dams.
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Finally, for Lao, Noce, Ofanto, Sele, were water level measurements were not available, the model
parameters were set to equal those of hydrologically similar calibrated rivers, considering the climatic
conditions (i.e., precipitation and evapotranspiration), lithology, geology, and soil use.

We claim that the procedures we presented, both for the calibrations and for the model setup, can
be easily replicated in any other poorly gauged basin, with great advantages for the early-warning of
flood and landslide events.

Moreover, the presented infrastructure allows to integrate new measurements and/or new
components as soon as they are available (i.e., new gauge stations), without the necessity of
re-implementing and calibrating the whole system. This is particularly important in poorly-gauged
locations, such as the Basilicata region, where a future expansion of the measuring network is foreseen.
This is useful not only from the modelling point of view but also from the operative point of view,
since it also enhances the immediate definition of the prioritizing actions to take to improve the
early-warning system.

Expansion of the infrastructure, such as for the near real-time calibration of the model parameters
or the data assimilation of snow or soil moisture satellite products, is foreseen and could be easily
implemented, thanks to the potentialities and great flexibility of GEOframe-NewAge.
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Appendix A. The Early Warning System of the Basilicata Region

The Italian national system for hydrological and hydraulic risk monitoring is regulated by the
Directive of 27 February 2004, which introduced regional functional centers (CFDs) and defined their
roles. In particular, on the basis of meteorological forecast bulletins, synoptic maps, and the information
on antecedent precipitations, a CFD evaluates and assigns critical levels to different alert zones, into
which the territory has been divided, to produce the corresponding Criticality Bulletin.

A DSS was implemented in support of the Basilicata CFD. The region was divided into seven
alert zones according to their geomorphological and hydrological characteristics. Three critical
levels—normal, moderate, and high—are defined daily for each zone on the basis of pluviometric
thresholds. The latter are identified for characteristic durations of foreseen rainfall events (3, 6, 12, 18,
24, 48, 72, 96, and 120 h) and for return times of 2, 5, and 20 years.

The integration of the DSS with a Web-GIS allows for the acquisition of a complete risk scenario
using all available information in near real-time, i.e., from the current hour to the next 36 h. Web-GISs
have user-friendly and lightweight interfaces, and users can easily access the geographical data and
service using a browser [67]. The objective is the near real-time monitoring of the spatial and temporal
evolution of the hydrology, which is then compared with thematic maps to determine the potential
vulnerability and exposed elements in the territory.

Both dynamic and static layers are integrated with the Web-GIS: dynamic layers are time-variant
and consist of the critical maps of hourly precipitation; static layers are thematic maps, such as landslide
susceptibility, geology and land cover (maps), population, buildings, and infrastructures. Hourly
dynamic maps are obtained from the precipitation data recorded by 54 stations and from forecasts
at the synoptic scale, which the CFD produces daily as GRidded Information in Binary (GRIB) files
(Cosmo LAMI products), with a resolution of around 5 km.

Every hour, the DSS operates as follows:
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1. The cumulative precipitation of the last 120 h (as recorded by the meteorological network) is
spatialized using the inverse distance weighting method [68];

2. The GRIB files with the forecasts are downloaded and pre-processed;
3. For each duration (3, 6, 12, 18, 24, 48, 72, 96, 120 h), from the current time to the next 36 h, the

DSS checks whether the threshold has been exceeded. Recorded precipitation and forecasts are
accumulated for a time span of 3 h and compared with the critical values. If a threshold has been
exceeded, then the area receives a critical alert level, and the related map is produced;

4. A map with the highest expected criticality is produced for the following 12 and 36 h;
5. The temperature data are downloaded from the sensor network and the LAI map is obtained

from the MODIS satellite [69];
6. GEOframe-NewAge is run to obtain the 36-h discharge and stage forecasts for each node of the

network, considering the running conditions;
7. A saturation degree map is produced for the current time;
8. The expected stages are compared with thresholds with an assigned return time to verify final

hydrological criticalities;
9. A historical dataset of discharges and stages is updated, which is required for the definition of

the running conditions for the simulation in the next hour.

Figure A1. Example of a dynamic layer extracted from the Web-GIS. The real-time map shows the alert
levels for the 36-h forecasts: green areas on the map indicate no criticality, while red represents the
highest criticality.

Appendix B. The Budyko Model

The Budyko model [64] was used to compute a simple water balance to choose the best FRC for
each monitoring point. The following equation was used:

ETa

Pa
=

[
φtanh

(
1
φ

)
(1− exp(−φ))

](0.5)

(A1)

where ETa is the annual evapotranspiration [L/T], Pa is the annual precipitation [L/T], and φ is the
aridity index, which is defined as the potential evapotranspiration divided by annual precipitation [-].
Then, the annual discharge is simply
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Qa = Pa − ETa (A2)

Appendix C. The Flow Rating Curves Adopted

Table A1 reports the method and the expression of the Flow-Rating Curves (FRCs) used in the
study for each of the six monitoring points. When the method is “VA”, the FRCs are obtained as a
product of the relations between the velocity (V) and the stage (H) and between the area (A) and H.
When the method is “QH”, the discharge (Q) is a function of H. H0 is the hydrometric zero.

Table A1. Flow-rating curves chosen for each monitoring station.

Station Method FRC Expression H0 (cm)

Agri Ponte La Marmora VA (6.5553× (H + H0)
1.5834)(0.4731× (H + H0) + 0.6192) 0.04

Agri SS 106 VA (15.687× (H + H0)
2.0653)(0.1905× (H + H0) + 0.584) 0.64

Basento SS 106 QH 1.7319× (H + H0)
2.8465 −0.60

Bradano SS 106 VA (3.7408× (H + H0)
2.369)(0.5455× (H + H0)− 0.1637) 0.28

Cavone SS 106 QH 4.0975× (H + H0)
2.3841 −0.13

Sinni Episcopia VA (8.3491× (H + H0)
1.5397)(1.63× (H + H0)− 0.3458) −0.46

Appendix D. Error Metrics Adopted

• Kling–Gupta efficiency

The Kling–Gupta Efficiency (KGE) incorporates three different statistical measures (the correlation
coefficient, r; the variability error, a = σS/σm; and the bias error, b = µS/µM) of the relation
between measured and simulated data into one objective function. µS and µM are the mean values
of measured and simulated data, while σS and σM are the standard deviations.

KGE =
√

1− (r− 1)2 + (a− 1)2 + (b− 1)2 (A3)

KGE = 1 indicates the maximum agreement between predicted and observed values.
• Nash–Sutcliffe efficiency

The Nash–Sutcliffe Efficiency (NSE) is a normalized model efficiency coefficient. It determines the
relative magnitude of the residual variance compared with the measured data variance.

NSE = 1− ∑n
i=1(Si −Mi)

2

∑n
i=1(Mi −Mi)2

(A4)

where Si and Mi are the predicted and observed values at a given time step. The NSE varies
from −∞ to 1, where 1 corresponds to the maximum agreement between predicted and observed
values.

• Root-Mean-Square Error

The Root-Mean-Square Error (RMSE) is given by

RMSE =

√√√√ 1
N

N

∑
i=1

(Mi − Si)2 (A5)

where M and S represent the measured and simulated time-series, respectively, and N is the
number of components in the series.
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• Percent Bias

The Percent Bias (PBIAS) measures the average tendency of the simulated values to overestimate
(positive values) or underestimate (negative values) the observed values. PBIAS is given by

PBIAS = 100 ∗ ∑n
i=1(Si −Mi)

∑n
i=1(Mi)

(A6)

where M and S represent the measured and simulated time-series, respectively, and N is the
number of components in the series.
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