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Abstract

Precise quantification of how spatio-temporal structures in neural activity are consequential

for behavior, remains challenging. In this work I introduced a novel mathematical method

to investigate behavioral readout. The method is based on the embedding of neural activity

patterns into a metric space and on the definition of perceptual distances, that describe the

internal representation of percepts. While being rigorously and mathematically well defined,

the method is very general and flexible in the definition of perceptual distances. This makes it

ideally suitable to the study of various systems, starting from single cells to neural populations.

As a proof of principle, I applied the presented method to experimental data provided by

Edmund Chong and Dmitry Rinberg at the Neuroscience Institute at New York University

(NYU). We combined the novel method with an interventional approach to investigate the

neural code used in the mice olfactory bulb (OB) to generate behavior. We trained animals to

recognize artificial stimulation patterns on the OB and we systematically varied the stimulus

features in order to thoroughly investigate the neural activity space. We were able to show

some basic elements of OB coding: both spatial and temporal features of OB activity patterns

are read out by animals, the readout favors early activity (primacy effect), spatial features are

combined in an almost linear fashion, while temporal features are used in a more complex way.

Our findings were replicated using logistic regression, a classical method, but our approach was

advantageous in terms of model complexity and interpretability.
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Chapter 1

Introduction

Animals and humans are continuously interacting with the external world. In everyday life, they

face different stimuli, record them through sensory organs, interpret the collected information

and make choices according to this interpretation. For example, in the animal world, a prey

must be able not only to see, hear or smell a predator that is approaching, but also to classify

its presence as a potential danger and implement the best strategies in order to guarantee

its own survival. This cognitive process of collecting, identifying, classifying and interpreting

external stimuli is called perception and understanding its underlying mechanisms is one of the

fundamental questions of neuroscience.

In order to be successful in perception, a system must be endowed with two fundamental

properties: discrimination and generalization. Discrimination is the ability to distinguish

different stimuli and lies at the core of perception. Recalling the previous example, this means

that an animal must be able to distinguish a predator from any harmless animal. Given the

importance of such property, a classical strategy to investigate perception consists in training

subjects in discrimination tasks, where they have to report the match (or mismatch) between

different stimuli, in order to understand which stimuli they can (or cannot) discriminate. On the

other side, also the generalization property [61] is fundamental for perception. Such property

consists in the ability to build abstract categories starting from single experiences. Again,

going back to the previous example, a pray must run away from all the predators, not just

1



2 Chapter 1. Introduction

from a specific predator that it already met. The importance of the generalization property

stems from the variability of the external world and of the internal representation of stimuli.

Indeed, even in controlled experimental paradigms in research laboratories the same stimulus

is rarely presented in exactly the same manner and it is well known that neural activity in

response to stimuli is modulated from the current brain state, therefore producing different

responses to the same stimulus. A system must be able to discard (or consider properly) these

sources of variability when evaluating stimuli. A useful concept to build a bridge between the

properties of discrimination and generalization is similarity (or dissimilarity). Similarity can

be defined at different levels and therefore represents a tool to switch between discrimination

and generalization. Among the many possible definitions of similarity, we want to highlight the

concepts of physical similarity of a pair of stimuli and perceptual similarity of the same pair

of stimuli. Given a set of physical measurable properties, physical similarity is defined as the

overall quantitative difference in all the stimulus properties. It is fixed and neither depends

on the observer nor on the kind of task. On the other side there is perceptual similarity,

which is how different two stimuli are perceived. This depends on the physical properties

of the stimuli, but is also influenced by the kind of task, by the context and by the subject

experience, thus involving the generalization ability. For example, if two visual stimuli differ

in shape and color and a subject is asked to rate their similarity based on shape, the effect

of colors on perceptual distance will be small. Perceptual illusions (for example the Mcgurck

effect [42]) provide an example that this distinction between physical and perceptual similarity

is not an artifact, but effectively has some consequences on perception. While providing a

unifying concept between discrimination and generalization, perceptual similarity is complex

to investigate because it is an intrinsic measure of the subject percept and we can use only the

subject reports to evaluate it. Usually, in order to address these issues, experimental paradigms

attempt to control very precisely the stimulus and make the link between sensation and subject

report as straightforward and transparent as possible.

The study of perception has been carried at different levels. Following a classification provided

by Marr, analyses in neural systems can be studied at three levels: the computational (what

problem does the system solve), the representational (what algorithms does it use to solve the
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problem) and the physical level (what neuronal structures implement it) [52]. Historically, the

first approach to the study of perception is psychophysics. Psychophysics was defined as ”the

analysis of perceptual processes by studying the effect on a subjects experience or behavior of

systematically varying the properties of a stimulus along one or more physical dimension”[8].

Through psychophysics we can directly link stimuli to behavior and try to get insight into which

physical features are important for discrimination and how sensitive subjects are to changes

in those features. It has been shown that many different species perform discrimination of

stimuli based on proportional differences insted of absolute magnitude. The law describing this

proportional processing of stimuli magnitude is called Weber’s law and is described formally as

∆I = kI (1.1)

where I is the stimulus magnitude, ∆I is the minimum perceivable difference in stimulus

magnitude and k is a constant value, called Weber fraction. Discrimination based on the

Weber’s law presents three features:

• the difference threshold in magnitude necessary to discriminate between stimuli depends

on the magnitude of stimuli;

• the minimum perceivable difference increases when the stimulus magnitude gets larger;

• the error in stimuli discrimination is asymmetric. This means that if a subject is asked to

detect a target stimulus and is presented with two non-target stimuli that have the same

absolute difference in magnitude from the target, but in different direction, the error in

the detection will be larger for the non-target stimulus with larger magnitude.

These findings are informative about the relevance of physical features of the stimuli and the

way they inform behavior, but do not shed light into the mechanisms that neural systems

implement to generate perception. In other words, the study of perception using psychophysics

stops at the computational level (as defined by Marr). In order to go from the first level to the

representational level, researchers integrated the investigation of perception with approaches

complementary to psychophysics. One of these approaches, that will be described more in detail
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in the next chapter, is computational modelling. In computational modelling, perception is the

result of two main serial processes, that can be broadly described as ’sensation’ of an external

stimulus and ’decision making’ or ’action’ [22]. From an information processing point of view,

these two main processes correspond to the following steps: stimulus encoding and behavioral

readout of neural activity [50]. The separate study of these two processes started to unveil the

brain mechanisms used to represent stimuli in the brain and to map neural activity to behavior.

Recently, however, two main issues arose regarding the study of perceptual discrimination: the

role of causality and correlation, and the need of a unifying framework for the investigation of

stimulus encoding and behavioral readout. The first problem is due to our limits in the study

of a complex system like the brain. When we study some functions, we focus our attention only

on the recorded neural activity but this is highly modulated and correlated with the activity

of not observed brain areas. It could happen that a feature is involved in stimulus processing

according to observations and analyses, but this is due to its correlation with other not observed

features which are causally linked to stimulus processing or behaviour. One possible way to

overcome this issue became available with the development of interventional tools. Through

silencing or artificially writing neural activity we can test not only correlational but also causal

relationships, thus revealing the real components of neural codes. The need of a unifying

framework, on the other side, stems from the observation that we are not guaranteed that the

brain is an optimal observer and reader of neural activity. For example, information that is

encoded with millisecond temporal precision or locked to some temporal onset can be used only

if the brain is able to read neural activity with the same temporal resolution or has available

information about the time the activity is locked to. For this reason, it is fundamental to look

for neural features that simultaneously carry information about both stimulus and behaviour.

The development of proper mathematical tools that measure the information at the intersection

between encoding and readout will allow to unveil the neural code used for perception.

In this general framework of the study of perception, the work of this thesis fits in the study

of behavioral readout. I will present a new approach to investigate the neural readout, that

is based on a formal definition of the concept of perceptual similarity. First, I will present

a review of the methods currently used to investigate perceptual judgments and behavioral
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readout (Chapter 2). I will then introduce the mathematical concept of metric space, review

its application in neuroscience and build a metric that maps the stimulus space to a perceptual

space, representing the perceptual similarity between each possible pair of stimuli (Chapter

3). The metric can be then used to predict the discriminability between stimuli or the degree

of generalization of the system across variation of stimuli. I will then show an application

of this approach to artificially generated spatio-temporal patterns of neural activity, thought

as artificial stimuli (Chapter 4). Using this approach we can investigate the sensitivity and

specificity of neural readout, thus providing limits to the neural code used for perception. In

the last part of this work, I will discuss the strength and the limits of the presented approach

and present some possible future directions of the project (Chapter 5).



Chapter 2

Behavioral readout

As briefly illustrated in Chapter 1, perception is the result of many complex processes, starting

from the reception and encoding of stimuli and resulting in some behavioral responses. A

simplified view of perception describes it as a two-stage process. When a stimulus is presented,

it elicits a response in the neural system, first in sensory receptors and later in downstream

neural circuits. This is the first step and is called stimulus encoding. Information encoded

about the stimulus is then processed, integrated and used in order to guide behavior. The

process of converting neural activity into behavior is the second stage of perception and is

called behavioral readout. In order to deepen the understanding of the processes that give rise

to perception, researchers focused separately on these two steps generating perception.

2.1 Stimulus encoding

Stimulus encoding refers to the process of collecting and processing information about some

features of the presented stimuli. Studying the encoding translates in asking which kind of

information about stimuli is translated into neural activity and to which extent. The way in

which the brain represents stimuli is called neural coding. Since neural activity consists of

spatio-temporal patterns of activation of neurons, possible coding strategies can be based on

neurons identity, timing of activation, synchronicity among neurons and other single neuron or

6
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population features. Unveiling which of this coding mechanisms is implemented to represent

stimuli features is the final aim of the study of the encoding process. This approach could

be very helpful in setting an upper limit to the coding capacity of a neural system and in

understanding which physical features are encoded by the brain. Lot of work has been done in

the study of stimulus encoding and it has been shown, in different systems, that the brain is

using both spatial and temporal features to encode stimuli, that the neural code is a population

code, meaning that the joint activity of multiple neurons carries more information about stimuli

than the activity of single neurons. At the same time some redundancy is present and also

correlations play a role in the neural code. While providing important insights into brain

mechanisms used to represent sensory information, the study of only the encoding process

does not fully answer the question about the mechanisms underlying perception. Indeed, the

encoding process is completely uncorrelated from behavior: only stimuli and neural activity are

used for this kind of investigation and a behavioral report from the subject is neither necessary

nor required. Rephrasing the concept, we could say that studying the encoding process answers

the question of what an observer could say about the stimulus just looking at the neural activity.

Furthermore, there are two main limits of the study of stimulus encoding by itself: first of all,

we are not guaranteed that the brain has an optimal downstream readout of neural activity. For

this reason, if some stimulus features are encoded in a way that cannot be read out, they cannot

play a role in perception. In second place, it is known that perception is modulated by other

variables (on the top of the stimulus), such as attention, learning, motivation, reward/failure

rate feedback and so on. Therefore, studying the encoding of stimuli without a behavioral task

might lead to inaccurate conclusions about perception.

2.2 Behavioral readout

Behavioral readout refers to the process of translating neural activity into a choice or a

behavioral response. This is a fundamental part of the perception process and the study of this

second stage of perception, as we have seen in the previous section, cannot be ignored. Studying

the behavioral readout consists in investigating which neural features carry information about
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the choice and aims at answering questions about which neural features are relevant for behavior

and how sensitive systems are to variations of those features. In contrast to stimulus encoding,

this process is not independent from behavior, and researchers need data that contain both

the neural activity (that is read out by the system to produce behavior) and a behavioral

outcome. From an experimental point of view this is more complex than recording activity

without a behavioral response, because subjects must be awake and trained to perform the

designed tasks. For this reason, behavioral readout has been studied less and still needs further

investigation. Obviously, the study of the single readout process is not sufficient to investigate

perception: this process is independent from the stimulus and we don’t know whether the same

features that are read out contain information about the stimulus. In other words, investigating

the readout answers the question of what an observer could say about behavior just looking

at neural activity (without any information about the stimuli). In the following part of this

chapter, I will provide an overview of some commonly used methods to investigate the role of

neural variables in perceptual readout.

2.2.1 Choice Probabilities (CPs)

A classical approach for studying percept formation in brain regions consists is the computation

of choice probabilities (CPs), introduced by Britten et al in [7] and reviewed in [14]. CP is

a measure of the relation between trial-to-trial fluctuations in the firing rate of a neuron and

subject’s behavior and can be interpreted as the accuracy of an observer of neural activity in

predicting the animal choice. Given neural responses and behavioral choices, CP uses ROC

(Receiver Operating Characteristic) analyses to compute the discriminability of the neural

responses distribution for the different choices for a fixed stimulus. The stimulus is usually

selected such that it is close to the threshold for discriminability. If CPs do not strongly vary

as a stimulus function, some authors compute a grand CP by standardizing responses across

stimuli and computing a single value for CP. A value of CP close to 1 indicates that neural

activity is different for different choices, therefore neurons represent an internal percept. A

value of CP close to 0.5 indicates that there is no detectable relation between neural activity
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and behavior. Since CP is not related to the stimulus but only to behavior, it can be considered

as an internal track of percept. Since its introduction, CP has been widely used in order to

investigate the role of neurons in forming percepts in different brain areas [7, 15, 26, 46, 72, 76].

A common result is that CP increases from early sensory areas to higher order areas, while

the stimulus representation decreases along the same pathway. This is in accordance with the

idea that the brain processes progressively transform the identity of the stimulus into a more

abstract percept, that is then used to generate behavior. However, while being significantly

different from chance, mean values of CP in many brain areas are usually low (CP ∼ 0.55 in

[7], CP ∼ 0.54 in [46]). This could be expected when using stimuli that are not encoded from

the analysed neurons, but is at odd with the fact that some neurons contain high values of

information about stimuli. A possible explanation for this observation is that CP is variable

across neurons and mean values might not be representative [7]. Another reason for low values

of CP might be the temporal window used to compute this quantity [76]. It is possible that the

generation of percept follows the stimulus onset with some delay and averaging CP in a longer

temporal window might not be very informative. Indeed, it has been shown that peak values of

CP can be much higher than the mean value. A third possible explanation could derive from

the downstream steps of neural processing [60]. If the activity of many independent neurons is

pooled together, than low values of CP might combine to generate a reliable percept. However,

this is at odd with results showing that the activity of neurons is correlated and information

from many neurons is redundant. While some works claim that CP is a measure that shows

which neural features affect behavior, there is evidence that it is not a causal measure and that

also neurons which are not used for the readout can have CP values larger than chance level.

In particular, using a model based on pools of neurons to simulate the mechanisms generating

CP, Shadlen et al. showed in [60] that CP is affected by noise correlations among neurons and

by the correlations structure. Indeed, if any neuron is correlated with another neuron causally

involved in perception, due to correlations its value of CP will be larger than 0.5.

It is evident, therefore, that CP presents lots of caveats that should be considered when

performing analyses. A first limit is due to the need of a sufficient number of trials (at least

100 trials from [7]) in order to have a reliable estimate of CP and, on top of this, the trials
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should contain both choices, making impossible to compute CP for strongly tuned stimuli.

Another caveat of CP, maybe among the most relevant for its interpretation, is that it is a

correlational and not a causal measure. For this reason, neurons with CP larger than chance

might not causally intervene in the percept formation, but they might be simply correlated

with causally relevant neurons. Indeed, from modelling approaches correlations appear to have

the strongest impact on CP. Based on the same model of [60], in [25] Hefner et al. derived

a mathematical formulation for CP starting from neurons correlations and readout weights.

It emerged that CP is a function of both readout weights and correlations and it cannot be

therefore used to assess the causal role of neurons for behaviour. Another caveat of CP is that

we do not know with certainty whether it derives from feedforward mechanisms or if it reflects

a top-down modulation of neural activity. Some authors [7] suggest that the time course of CP

provides evidence of its generation from a feedforward mechanism, while others suggest that

other mechanisms might be involved. For example, Hernandez et al show in [26] that CP in

higher order brain areas is not significantly delayed with respect to CP in earlier areas which is

in contrast with a feedforward mechanism, while Nienborg and Cumming in [46] claim that CP

comes from a top-down modulation, by showing that sensory relevant cues and decision-related

neural activity time course are not correlated. Since it is well known that neural code is a

population code and noise correlations appear to be very important in computing CP, different

approaches have been applied to investigate the role of correlations in behavioral readout.

More in details, some authors suggested a correlation between decreased noise correlations and

improved behavioral readout [13], but the directionality of the relationship was not investigated.

In some cases it was proposed that the temporal structure of non-causal measures such as CP

was a hint for the exclusion of top-down mechanisms [45]. More complex approaches, based

on single-trial measures, have been proposed as well [45]. Opposite evidence was provided

in different studies [21] showing that decorrelation in neural activity, even though correlated

to improvement in performance, does not play a relevant role in the readout. The existence

of controversial interpretation of CP and similar methods pushes for the application of new

experimental or analytical tools that might allow to unveil the causal role of neural features.
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2.2.2 Generalized Linear Models (GLMs)

A different approach to the study of behavioral readout consists in applying generalized linear

models (GLM) to predict behavior. In ”canonical” linear models, a response variable Y is

modelled as a weighted linear combination of some predictors X1, X2, ..., XN (or regressors).

Y ∼ β0 +
N∑
j=1

βj ∗Xj = β0 + βTX (2.1)

If we denote with {y1, y2, ..., yn} the realizations of the variable Y and with {x1j , x2j , ..., xnj } the

realizations of the regressor Xj, the formulation of the linear model is the following:

yi = β0 +
N∑
j=1

βj ∗ xij + εi = β0 + βTxi + εi (2.2)

where β0 is the bias term, βj are the weights of the predictors and εi is the error term, usually

drawn from a normal distribution.

Such models are very powerful in describing data, but there are some cases where they cannot

be applied, for example when the response variable takes values only in a limited range. GLMs

have been introduced to overcome some of the limitations of the linear regression models. In

GLMs each observation of the dependent variable Y is assumed to be generated by a distribution

in the exponential family (yi ∼ Y i). The mean value of such distribution µi = E[Y i] depends

on a linear combination of the predictor variables through a link function g in the following

way:

E[Y i] = µi = g−1(β0 +
N∑
j=1

βj ∗X i
j) = g−1(β0 + βTXi) (2.3)

When the response variable Y is a binary variable (assuming only value in [0, 1]), a common

choice for the distribution for Y is the Bernoulli distribution. The mean value of Y i can then

be interpreted as the probability p of Y i to assume a value of 1. A typical link function in this

case is the logit link (or logistic function):

g(p) = ln(
p

1− p
) (2.4)
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Logistic regression is very suitable to behavioral data, which often consider as response variable

the outcome of a binary choice. For this reason, in the following, I will focus on logistic

regression. The parameters βi of logistic regression models can be fitted using maximum

likelihood estimation, that consists in maximizing the so-called maximum likelihood function

or minimizing the negative log-likelihood function:

min
β0,β

l(β0,β,x,y) = min
β0,β

[−log(L(β0,β,x,y))] = min
β0,β
{−

n∑
i=1

[log(P (yi|xi, β0,β))]} (2.5)

where P (yi|xi, β0,β) is the probability of observing the realization yi conditioned on the

observations xi and the parameters β0 and β . Unlike for linear logistic regression, the maximum

likelihood estimate is not guaranteed to converge to a solution. This happens especially when

a large number of selected predictors have null weights or the predictors variables are highly

correlated (multicollinearity) and fitting strategies are not able to assign uniquely to each

predictor its effects. A solution to this problem was introduced by penalized logistic regression.

In penalized logistic regression a penalty term is incorporated into the maximum likelihood

function in order to have a more stable and accurate estimate of the model parameters,

especially in case of high dimensional or correlated data. The penalty term can assume different

forms. In the following I present the minimization problem for elastic net regression:

min
β0,β
{l(β0,β,x,y) + λ[(1− α)‖β‖22/2 + α‖β‖1]} (2.6)

where the function l(β0,β,x,y) is defined in Equation 2.5. The parameter λ is a regularization

parameter that defines the strength of the regularization. When λ → 0 the method converges

to the maximum likelihood estimation, while for large values of λ the penalty strongly affects

the parameters estimate. The parameter α controls the elastic net penalty and determines the

type of contraints on the predictors coefficients. For α = 1 the approach is equivalent to the

Lasso regularization [70], which reduces the number of predictors of the model setting their

weights to 0. For α = 0 the model becomes a ridge regularization model [27], which reduces

the complexity of a model by shrinking the values of the predictors weights.
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Application of GLM models to neuroscience is becoming more and more widespread. These

models allow to consider the effect on behavior of many different features and to discount

for the effect of those features researchers are not interested in, such as non-neural variables

(running speed and similar), therefore providing a tool to understand which neural features

can explain the animal behavior [9]. Considering more than a single neural feature to predict

behavior is a significant enhancement with respect to CPs. Using GLMs to model the data, Katz

et al. replicated the finding (obtained using CPs) that information about behavior increases

progressively from sensory areas to higher order areas [44]. Other studies used GLMs to show

that posterior parietal cortex (PPC) has a functional role in sensory perception (both visual

[39] and auditory [1]). This was not possible using CP, that allows to investigate only a single

feature at a time.

2.2.3 Discussion

It is evident that the question about how perceptual representation is constructed and

processed in neural systems is still open. Past research mostly focused on characterizing the

perceptual information contained in single neurons. This provided a useful tool to link neural

activity to behavior and to start understanding the neurophysiology underlying perception.

However, it is well known that the neural system uses spatio-temporal patterns of activity to

represent information. Studying single neurons properties, even though very helpful in getting

insights about neural mechanisms, is not sufficient to characterize the neural code. Only

recent studies focused their attention on population properties, such as correlations or global

modulation [47], and on their role in perception, but at this moment results are inconsistent

across studies. A second, maybe even more important limit of past studies is the lack of

causality measurements. The methods presented in the previous sections, CPs and GLMs,

provide a measure of the correlations between neural features and behavioral responses. They

have been applied to describe behavioral responses to external stimuli as a function of the

available neural measurements. However, in the last years, a criticality of these approaches

has emerged: statistical results are very useful in revealing correlational links between neural
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activity and behavior, but cannot be used to infer a causal (or functional) role of neural activity

for perception [50]. Indeed, actvity in the brain is highly correlated and a simple description

of behavior as function of some features does not support evidence for the active role of those

features in perception. In order to infer something about causality, an interventional approach

is necessary.

Thanks to the continuous development of new experimental and interventional techniques,

researchers have now at their disposal a number of tools that open the way for alternative

approaches to the study of behavioral readout. The manipulation of neural activity can now be

done in many different ways. A first technique is pharmacological intervention, that can be used

to block or enhance neural activity. Combining pharmacological inactivation of neural activity

and the use of GLMs, Katz et al. in [36] provided evidence that neurons in LIP, while being

correlated with behavior, are not causally involved in the decision-making process. However,

pharmacological treatments do not have neither a good spatial nor a good temporal resolution

and neural circuits might be able to reorganize in order to face the changes induced by this kind

of intervention. For this reason, results obtained through pharmacological intervention must be

interpreted very carefully. A second approach consists in electrical stimulation [69, 78, 57, 79].

Electrical stimulation can be very precise in time, but even this approach suffers from the lack

of spatial resolution.

A revolutionary contribution to neural systems perturbation was provided by the development

of chemogenetic and optogenetic tools to manipulate neural activity. Chemogenetic manipulate

type-specific neurons through the interactions with small molecules injected in tissues. While

lacking the single cell resolution, chemogenetics is suitable for long timescale experiments

because its effects persist for several hours [68]. Optogenetic uses light to selectively control

the activity of neurons. The spatial specificity of optogenetics ranges from controlling full

populations of specific neuron classes to selectively controlling identified neurons with near

millisecond precision [48]. Optogenetic intervention can be both excitatory, triggering target

neurons firing, or inhibitory, silencing target neurons [17]. Furthermore, optogenetic is robust

and can be used to manipulate neurons even in experimental sessions that take place in

different days. A disadvantage of optogenetic is that it is power consuming and can not be
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used for very long experiments, because continuous stimulation could damage neurons. Using

optogenetic disruption of neural activity, Licata et al. in [39] claimed that posterior parietal

cortex (PPC) has a causal role in the processing of visual stimuli and not auditory stimuli.

Recent developments and improvements in the use of optogenetics allow to think about new

approaches, where external stimuli are replaced by artificial generation of neural activity. Given

the complexity of both spontaneous and stimulus-evoked neural activity, this approach could be

helpful in disentangling the role of different neural features for behavioral readout. Indeed, the

chance of stimulating directly specific neurons with single cell and single spike precision would

make it possible to decorrelate neural features that are strongly correlated in the naturally

evoked neural activity patterns and to study their role separately. An obvious drawback of

such approach is the fact that artificially generated neural activity patterns are not necessary

similar to the ones evoked by stimuli. Depending on the experimental question, such limit could

be overcome by building up a ”library” of neural responses to naturalistic stimuli (recording

neural activity during the stimuli presentation) and selecting the articifial patterns from this

library.



Chapter 3

Metric on neural space

In this chapter, I introduce and develop the idea of defining metrics on the space of neural

activity to study perception. First of all, I provide the mathematical definition of metric space.

Then, I give an overview of the main results obtained defining neural metrics for the study of

stimulus encoding. Finally, I describe a possible application of metric spaces in the study of

behavioral readout.

3.1 Mathematical definition of metric space

Before describing the use of metrics in neuroscience and discussing the advantages of such an

approach, I present a formal mathematical definition of the concept of metric space. Given a

set of elements S = {S1, S2, ...}, which later could be the set of stimuli or the set of neural

activity patterns, a metric D is a mapping function (commonly called distance) that assigns to

each pair of elements (Si, Sj) in S a real number satisfying the following conditions:

• Non-negativity: D(Si, Sj) ≥ 0, ∀Si, Sj ∈ S. The distance between two elements must

always be non-negative.

• Identity of indiscernibles: D(Si, Sj) = 0 ⇐⇒ Si = Sj, ∀Si, Sj ∈ S. The distance

between two elements is zero only in the trivial case where the elements are the same.

16
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• Symmetry: D(Si, Sj) = D(Sj, Si), ∀Si, Sj ∈ S. Changing the order of the terms the

distance does not change.

• Triangle inequality: D(Si, Sk) ≤ D(Si, Sj) + D(Sj, Sk), ∀Si, Sj, Sk ∈ S. The distance

between two points in the space cannot be larger than the sum of the distance between

the first point and any other third point and the distance between the same third point

and the second point.

The set S equipped with the metric D is called metric space. In case the second condition

is not satisfied, the space is defined pseudometric space. It is always possible to transform a

pseudometric space into a metric space by defining equivalence classes of elements as the sets

of elements with null distance. The space of the equivalence classes of elements equipped with

the original distance is a proper metric space. If the metric defined on a space is the classical

Euclidean distance, then the space is called Euclidean space.

3.2 Metric space to study stimulus encoding

The introduction of metric spaces in studying neural activity dates back to the activity of Victor

and Purpura ([74, 75]). The aim of their work was to investigate the nature of temporal coding

by finding a relationship between natural stimuli and temporal patterns of neural activity.

Classical ways of investigating stimulus encoding consisted in binning spike trains in bins of

a given width and comparing the binned activity in response to different stimuli. However,

such an approach presents the drawback that the dimension of the space becomes very high

when the temporal resolution is very fine (short time bins) and it relies on the assumption that

spike trains can be embedded in a vector-space, which was called into question in other works

[28]. For this reason, Victor and Purpura suggested to build a minimal structure to describe

spike trains (dis-)similarity, without using a vector space with Euclidean properties. They

considered spike trains as points in an abstract space and introduced a definition of distance

between pairs of points on this space. The main advantage of such an approach is that it is

formally well defined, but at the same time allows for great flexibility, because the distance
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Figure 3.1: Victor-Purpura and van Rossum distance. A) The Victor-Purpura metric.
Top. Two example spike trains Sa and Sb. The distance between spike trains is given by the
minimum cost necessary to transform Sa in Sb using few allowed transformations. Bottom:
the path with the elementary steps necessary to the transformation (from [74]). B) The van
Rossum distance. The spike trains are transformed into continuous signals (one flipped) through
convolution with an exponential kernel and their squared distance is the area under the squared
difference (from [53]).

can be defined in an arbitrary way, provided that metric properties are satisfied. Indeed, the

authors presented two different definitions of distance, based on two different intuitions about

the possible biological mechanisms underlying neural coding. The first measure, Dspike, shown

in Figure 3.1(A), is sensitive to the exact timing of spikes and relies on the idea of neurons as

coincidence detectors. The second measure, Dinterval, is sensitive to changes in the inter-spike

interval and is related to the idea that the relevance of a spike can depend on the time interval

from the preceding spike (because of mechanisms as long-term potentiation/depression). Both

measures depend on a parameter, q, that represents the temporal resolution of the metric.

For q = 0 the two metrics converge to the spike count metric Dcount, where only the number

of spikes is used to evaluate the similarity between spike trains. The two distances provide

two different geometries in the spike trains space: two spike trains can be closer in the space

equipped with one distance than in the space equipped with the other. If the features used

to define a metric correspond to the features used to encode information about stimuli, we

expect spike trains corresponding to the same stimulus to be close in the metric space. The

authors implemented a clustering approach to test, for different values of the parameter q,
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which metric better corresponds to the stimulus space and they measured the goodness of the

stimulus-dependent clustering using an information-theoretical measure. They observed that

both spike timing and inter-spike interval contain more information about stimuli than the

simple spike count and, by tuning the parameter q, they were able to estimate the temporal

sensitivity of the code used to represent stimuli.

Starting from the Victor-Purpura spike train distance, other metrics have been developed to

measure the dissimilarity of spike trains. One of the most common is the van Rossum metric

[53], shown in Figure 3.1(B). The main difference from the Victor-Purpura metric is that

spike trains are transformed into continuous signals, before computing their difference, through

convolution with an exponential kernel. The choice of the exponential kernel (instead of other

kernels such as a Gaussian kernel or a square pulse) is due to its causal properties and to its

biological plausibility. The distance between two spike trains is then defined as the Euclidean

distance between the continuous signals corresponding to the spike trains. While reintroducing

Euclidean properties to the metric space, such definition is easier to compute and less prone to

ambiguities in case, for example, of different number of spikes in two spike trains.

Both the Victor-Purpura distance and the van Rossum distance are defined on single spike

trains. However, with the development of more advanced recording techniques and the

availability of multineuron data, the need for more sophisticated tools, which describe activity

at a population level, emerged. The notion of metric was therefore extended in order to include

both spatial and temporal features [3]. The new metric was characterized by two parameters:

q, that represents the temporal sensitivity of the system as in the original Victor-Purpura

distance and k, that represents the sensitivity of the code to neurons identity. The parameter

k ranges between 0 and 2 and provides a gradual shift from a labelled line code (LL, k = 2),

where each neuron activity is considered independently and cannot be interchanged with the

activity of other neurons, and a summed population code (SP, k = 0), where only spike timing

is used without regards for the identity of spiking neurons. The authors applied this metric

approach to experimental data and observed, repeating the same analyses as [74], that both

temporal and spatial coding is used to encode stimuli. In a similar way, also the van Rossum

metric was extended to the multineuron case [29].
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3.3 Metric space to study behavioral readout

In the previous paragraph, we showed that the introduction of metric spaces in the investigation

of stimulus encoding contributed to important progresses in the understanding of the neural

code. In particular, it revealed possible biologically plausible coding strategies and allowed

to make some inference about the temporal and spatial sensitivity of the neural code. Given

the success in applying such approach to the investigation of stimulus encoding, we queried

whether the same or a similar approach would be successful also in the study of perceptual

readout. The general idea consists in defining a metric on the neural activity space that maps

each pair of neural activity patterns into a non-negative quantity that represents the perceptual

distance between the considered neural patterns. This means that the perceptual metric should

reflect similarities in the elicited perceptual reports and not similarities in the neural patterns

structure. In other words, we want to build a function such that distances between patterns are

small when subjects are not able to discriminate between them and increase as patterns get more

and more distinguishable. Since we do not have a measure of the internal percept, we must rely

on perceptual reports (a binary choice in many task designs) in order to evaluate how precisely

the metric reflects perceptual readout. We suggest to use a link function, such as the logistic

function (see Eq. 2.4), to map the computed distances into behavioral reports and then to

compare the behavioral data with the obtained predictions. We expect that predicted behavior

will match behavioral data in case the neural features used to build the metric function are the

same that are read out by the system to inform behavior. We will call the space we consider,

endowed with the metric, perceptual space. As for spike train distances, we will try to define the

metric making assumptions on plausible underlying computational mechanisms. However, we

do not claim that the computations used to define the metric are those biologically implemented

by the brain. From an experimental point of view, in order to implement this approach we

need experiments where we both record neural activity and track perceptual outcome. Thanks

to the development of techniques to record neural population activity in awake animals, such

data are now available and allow the test of the suggested approach.

Given the countless ways of defining metrics, the presented approach is generalizable to
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Figure 3.2: General illustration of the perceptual metric model. A. General illustration
of the metric approach to study behavioral readout. Patterns of neural activity (represented
as colored dots) are first embedded into a metric space and then mapped into behavior using
a link function (in this example a logistic function). B. An example of two simple metrics on
the space composed by spike trains of two neurons. The metric definined at the top is based on
the summed spikes count, while the metric defined at the bottom is based on the spikes count
of the single neurons. As shown in the logistic curves on the right, different metrics lead to
different behavioral outcomes. In the metric defined at the top, the probability of reporting a
match with pattern C is higher for pattern B than for pattern A. In the metric defined at the
bottom, instead, the opposite prediction holds.

the study of almost any neural system. Theoretically, we can define distances using any

computational process we might think is implemented by the neural system, under the

constraints that the metric properties are fullfilled. As GLMs, this approach allows to consider

on a trial-to-trial basis the effect of many features on behavior but metrics are more general

than GLMs because they could model also non linear relationships.

To our knowledge such an approach has been poorly investigated and applied to the study of

perceptual representation [58]. An example of a perceptual metric can be found in [71], where

the authors derive a retinal metric to quantify the perceptual similarity of visual stimuli. While

providing a way to define metrics on neural space, our approach is intrinsically different from
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the approach in [71], due to how the metric is built. Indeed, we propose to process neural

patterns using biologically plausible computations in order to build a metric. The predictions

of the metric are then compared to behavioral outcomes to evaluate whether the metric reflects

coding mechanisms. The authors in [71] adopt a reverse approach: they define the metric using

behavioral outcomes and then infer brain computation processes and neural coding mechanisms

from how neural patterns are distributed accordingly to the obtained metric.



Chapter 4

A perceptual metric on olfactory bulb

spatio-temporal neural patterns

4.1 Introduction

A familiar object evokes a complex pattern of activity in the brain, but it is possible that only

a structured subset of this activity, representing critical combinations of sensory attributes, is

essential for recognition. A key challenge is to identify the subspace of neural activity that

induces the percept. This activity may consist of multiple spatial or temporal features, such

as which cells respond and when they respond, relative to stimulus onset or each other. Do

individual features contribute differentially to the formation of the percept? For example, the

activity of some cells in a pattern may be more important than others. Does the formation of

the percept depend on how features are combined? The sequential activation of multiple cells

or the latency of their activation relative to brain rhythms are examples of feature combinations

that may be perceptually meaningful [10, 54].

The difficulty in addressing these questions is two-fold. First, multiple features co-vary with

perceptual responses, making it difficult to disentangle their independent contributions to

perception. Previous studies have mainly focused on correlating neural activity with perception,

where the contributions of individual features are entangled. Second, we lack a single framework

23
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for quantitatively comparing the perceptual contributions of individual and combined features.

For example, we know from causal manipulation studies that single neurons [30] or small timing

differences [65, 64, 78] can affect perception, but not their relative importance and how they

come together in larger patterns to produce perception.

Here we developed a novel framework for finding the perceptually-meaningful spatiotemporal

subspace of neural activity. We optogenetically manipulated individual activity features

independently of other features, manipulated combinations of features, and compared the

effects of all manipulations under a common metric.

We used mouse olfaction as our model system to study these questions, as odor perception

is correlated with complex spatio-temporal activity patterns, and these patterns can be

optogenetically manipulated in mice while measuring their perceptual responses. We chose

such system for two main reasons. First, it is simple, which means that contains few processing

stages of sensory information. Second, it is manipulable, which means that experimenters have

tools to intervene directly on neural activity. These two features, combined together, make

such system suitable for a causal investigation of behavioral readout.

When an odor is presented to a mouse, chemicals composing the odors enter the animal’s nose

and activate olfactory sensory neurons (OSNs) collocated in the olfactory epithelium. Each

OSN is responsive to specific chemicals and multiple OSNs responding to the same chemical

maps to a glomerulus in the olfactory bulb (OB) [6]. From the OB the activity is transmitted

to mitral/tufted (M/T) cells and from there relayed to the olfactory cortex. On the top of this

forward circuit, there is interglomerular inhibition and a feedback inhibitory signal coming back

from the cortex to the OB. Since different chemicals activate different OSNs, different odors

result in the activation of different glomeruli in the OB producing characteristic spatio-temporal

patterns of neural activity.

Different hypotheses have been formulated about odor coding. A first hypothesis claims that

mice use a spatial (or identity) coding to represent odors identity and concentration [37]. A

spatial code would be quite simple to implement but, at the same time, very powerful. Indeed,

in mice each OB contains ∼ 1800 glomeruli [43]. If different combinations of activated glomeruli
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can be read out and discriminated, the coding capacity of the system becomes extremely large

and, in principle, such a combinatorial code would be sufficient for odor coding. However,

it has been shown that chemicals concentration affects not only the identity of the activated

glomeruli, but also the latency of neural responses [67]. If the brain is capable of reading

out also activation timing, temporal coding would be another plausible candidate for odors

concentration encoding. A few studies already focused on the readout of OB activity, that is

the mapping of OB spatio-temporal patterns to behavior. Applying mathematical models to

simulated data or odor evoked responses, it has been shown that both spatial and temporal

features are used to inform behavior [66, 41]. However, studying the neural code using natural

stimuli can be difficult because naturally evoked neural activity patterns present correlated

spatial and temporal features and do not allow to investigate spatial and temporal coding

independently. This could lead to spurious or ambiguous conclusions about coding mechanisms.

A way to avoid correlated data, probe causal relationships in neural systems and disentangle

between ambiguous conclusions consists in applying of an interventional approach [50, 33].

Optogenetics studies already revealed that the mouse olfactory readout is sentitive to single

glomerulus changes in activation timing and intensity [64] and lead to the hypothesis of a

primacy code for odor discriminations, which means that only OB activity at the beginning of

a sniff cycle is functionally relevant for behavior [77].

Leveraging on such interventional approach, we wanted to extend the study of behavioral

readout from the single glomerulus level to the population level. To achieve this, we

generated synthetic odors by directly activating multiple OB spots through optogenetics and

manipulating independently the identity of the activated spots and their activation timing.

In this way we aimed at systematically exploring the space of OB neural activity in order

to understand the distinct role of identity and timing in the neural code and to characterize

the sensitivity of the system to perturbation of single features. Hence, by performing precise

and parametric manipulation of glomerular activity and quantifying effects under a common

metric, we derived a unifying model that explains how odor perception arises from structured

glomerular activation.
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4.2 Methods

4.2.1 Experimental design

We chronically implanted OMP-ChR2-YFP mice (n=6) [65] with cranial windows to expose

dorsal OB, and performed optogenetic stimulation using a digital micromirror device system.

Spatio-temporal stimulation patterns were projected onto the OB of the head-fixed mice in

front of lick spouts and a pressure sensor for respiration monitoring (Figure 4.1A). We first

characterized single spot stimulations: similar to previous reports [24, 16] and consistent with

known anatomy, single spot stimulation (120x120 µm2, 80 ms duration, 15 mW/mm2) activated

mitral/tufted (MT) cells, leading to instantaneous MT cell firing rates up to ∼100 Hz, with

excitatory responses lasting around ∼80 ms, comparable to odor-evoked responses [63]. We

verified that spots at the same stimulation parameters were perceptually detectable, but only

for ChR2-positive mice, and without systematic spatial biases. We then used the same basic

stimulation parameters for the main experiments.

Mice were trained in a 2-alternative forced choice task, in which ’left lick’ and ’right lick’

were randomly assigned to Target and Non-target patterns for each animal. Target patterns

comprised of six spots, initialized randomly but fixed across subsequent sessions, activated in an

ordered sequence defined in time where t = 0 marks inhalation onset. Non-target patterns were

six off-Target spots, randomly chosen from trial to trial, with randomized timing within 300

ms from inhalation (∼ single sniff) (Figure 4.1B). Each animal was first trained to discriminate

between one Target and one Non-target. When the animal reached criterion performance

of 80%, it was trained to discriminate between one Target and many randomly initialized

Non-target patterns. In test sessions, probe trials were introduced. Probe trials accounted for

10% of the trials in each session, while Target and Non-target were 45% of the total number

of trials each. Probe trials consisted in perturbations of the Target pattern were the identity

and/or the timing of activation of the Target spots were changed. We considered four types of

Probe trials:

• Spatial perturbations : in these trials one or more Target spots were replaced with
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Figure 4.1: Illustration of the experimental paradigm. A. Schematic of the experimental
setup. Dorsal olfactory bulb (OB) was exposed by a chronically-implanted 3 mm window.
Spatio-temporal stimulation patterns, created by a digital micromirror device, were projected
onto the OB of a head-fixed mouse in front of lick spouts and a pressure sensor for respiration
monitoring. B. Schematics for pattern discrimination task. Animals were trained to recognize
Target versus Non-target patterns defined on a stimulation grid. Target patterns comprised
of six spots activated in an ordered sequence defined in time where 0 marks inhalation
onset. Non-target patterns were six off-Target spots, randomly chosen from trial to trial,
with randomized timing. C. Schematic of spatial perturbations. The identity of one or more
Target spots was replaced with off-Target spots. The activation timing was the same of Target
pattern. D. Schematic of temporal ’random’ perturbations. The activation timing of one or
more Target spots was randomly shifted in time, while the spots identity was preserved. E.
Schematic of temporal ’synchronous’ perturbations. The activation timing of all the Target
spots was shifted in time by the same amount, while the spots identity was preserved. F.
Schematic of spatio-temporal perturbations. The identity of one or more Target spots was
replaced with off-Target spots and the timing of one or more Target spots (the ones that were
not replaced) was randomly shifted in time.
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randomly selected Non-Target spots, while the activation timing of all the spots was

fixed and equal to the Target pattern activation timing (Figure 4.1C);

• Temporal ”random” perturbations : in these trials the stimulated spots were the same as

Target pattern, but the activation onset of one or more spots was changed. The shift

in time from the Target activation onset could be positive (towards the end of the sniff

cycle) or negative (towards the onset of the sniff cycle) and was randomly chosen in steps

of 10 ms. All the activation timing were restrained to the interval from 0 to 300 ms after

the inhalation onset (∼ single sniff) (Figure 4.1D);

• Temporal ”synchronous” perturbations : in these trials the stimulated spots were the same

as Target pattern, but the activation onset of all the spots was shifted by the same amount

(in steps of 10 ms) (Figure 4.1E);

• Spatio-temporal perturbations : in these trials one or more spots were either replaced or

shifted in time according to the same rules of the temporal ”independent” perturbation

trials. No spots were simultaneously replaced and shifted in time (Figure 4.1F).

For any set of perturbations, we measured the fraction of trials where the mouse made a

lick choice towards the water spout associated with the Target (’Like-Target’ response), as

opposed to the Non-target spout. This measurement reflects perceptual distances: the perceived

differences between the perturbed and original Target pattern. The larger the perceptual

distance, the lower the fraction of choices made to the Target spout.

4.2.2 Model fitting

For the modelling of the data, the full dataset (all sessions from all animals pooled together)

was splitted in a training set (75% of the total number of trials) and a test set (25% of the

total number of trials). The proportion of each type of trials (Target, Non-Target and each

type of Probe trial) was preserved when the full dataset was splitted. To fit each model, we

performed 5-fold cross-validation on the training set. The training set, the test set and the
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folds for the cross-validation procedure were kept fixed across all the models we considered, in

order to avoid that the variability in the results of the fitting could be due to the different trials

used to fit the models. We selected as best-fitting parameters those parameters that returned

the lowest cross-validated prediction error (measured as percentage of non-correctly predicted

trials) averaged across folds. We then evaluated the goodness of fit of each model computing

the Brier Score (BS) on the test set. For a binary variable C, the Brier score is defined as

BS =
1

N

N∑
i=1

(pi − ci)2 (4.1)

where N is the number of samples, pi is the predicted probability of a positive outcome in the

i-th sample and ci is the observed outcome in the i-th sample. The Brier score ranges between

0 (perfect prediction of the variable outcome) and 1 (totally wrong predictions). To perform

statistical comparison of different models, the Brier score was computed on N = 500 bootstrap

versions obtained from the test set. The bootstrap samples are balanced in the different type of

trials and each trial is sampled with repetition from the test set. The Brier score was computed

separately for each trial type and for all the trials pooled together.

4.2.3 Logistic regression

We described the data using logistic regression. We set different sets of predictors and compared

the goodness of fit of the models in order to find the best fitting model. We used the glmnet

package in R to fit different logistic regression models. The glmnet package implements elastic

net regression, which allows to progressively go from Lasso penalty to ridge penalty by setting a

parameter: we empirically set the value of this parameter to 0.5. We compared the goodness of

fit (Brier Score computed on the test set and on N=500 bootstrap version of the test set) of all

the models versus a null model (only a bias term is used to predict choice) and between them

using Anova with correction for multiple comparison (Tukey’s Honestly Significant Difference

Procedure). Statistical comparisons were performed in Matlab. In the following we report the

logistic models we used to fit the data.
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Spatial perturbation

To model spatial replacement trials, each activated spot was described by a binary variable,

which takes value 1 if the spot has been replaced (in other words it is an off-Target spot), value

0 otherwise. We considered the two following logistic regression models.

(1S) Linear model. The first model we considered was

logit(p) = β0 +
N∑
i=1

(βi ∗ xi) (4.2)

Where p is the probability of reporting a Target pattern, xi is the binary variable

corresponding to the i-th spot and β0 is the bias term and βi are the weights relative

to each variable.

(2S) Quadratic model. We also considered a quadratic model, where the effect of replacing

multiple spots does not sum up linearly.

logit(p) = β0 +
N∑
i=1

(βi ∗ xi) +
N−1∑
i=1

N∑
j=i+1

(βij ∗ xi ∗ xj) (4.3)

Where the notation is as in model (1S).

Temporal perturbations

Temporal perturbation trials were characterized by changes in the activation timing of Target

spots. Given a trial T, we denoted with dti the shift in time (with respect to the Target

activation time) of the i-th spot of the Target pattern. In the logistic regression models we

considered separately shifts towards the end of the sniff cycle and shifts toward the beginning of

the sniff cycle, denoted with dt+i and dt−i respectively. We considered the two following logistic

regression models.
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(1T) Signed time shift. The first model we considered was

logit(p) = β0 +
N∑
i=1

(β+
i ∗ |dt+i |+ β−i ∗ |dt−i |) (4.4)

Where p is the probability of reporting a Target pattern, dt+i and dt−i are as described

above, β0 is the bias term and β+
i and β−i are the weights relative to each regressor.

(2T) Rank order. We considered a model where the rank order of the spots is used to predict

behavior, without any information about the exact timing of activation. Let’s denote with

Ri, for i = 1, ..., 6, the ranking of the Target spots and with Zi, for i = 1, ..., 6 the ranking

of the same spots in the considered trial T. In case of ties we consider the average of the

Zi of the spots with the same activation timing. We built a model where the predictor

relative to each spot is its change in the rank order, computed as dri = (Ri − Zi)2. The

resulting model was:

logit(p) = β0 +
N∑
i=1

(βi ∗ dri) (4.5)

Where p, β0 and βi are defined as in model (1T).

(3T) Signed time shifts with additive interactions. In order to check for more complex models

containing the relative timing between spots activation, we added to the model (1T)

additive interactions terms:

logit(p) = β0 +
N∑
i=1

(β+
i ∗ |dt+i |+ β−i ∗ |dt−i |) +

N−1∑
i=1

N∑
j=i+1

(βij ∗ |dtj − dti|) (4.6)

Where p, β0, β
+
i , β−i and βij are defined as in model (1T). We considered both the

complete model, with all the pairwise interactions, and a reduced model with only the

differences in time relative to the first spot.

(4T) Center of activity with relative shifts. Another model we considered is the following:

logit(p) = β0 + βSNIFF ∗ dtSNIFF +
N∑
i=1

(β+
i ∗ |δt+i |+ β−i ∗ |δt−i |) (4.7)
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Where dtSNIFF denotes the difference between the global position within the sniff cycle

of the considered trial with respect to the global position in the sniff cycle of the Target

pattern. We defined the global position of a pattern in the sniff cycle using the temporal

center of activity of a pattern (CA =
∑N

i=1 ti , i.e. the temporal average of the activation

onset ti of all its spots). The quantities δt+i and δt−i represent the forward and backward

difference in the relative timing (discounting for the effect of differences in the global

postion in the sniff cycle) of the considered pattern T with respect to the Target pattern

δti = (tTi − CAT ) − (ttargeti − CAtarget). The quantities p, β0, βSNIFF , β+
i and β−i are

defined as in model (1T).

(5T) Center of activity with relative shifts and additive interactions. As we did for model (1T),

we added to model (4T) additive interactions in the form:

logit(p) = β0 +βSNIFF ∗ dtSNIFF +
N∑
i=1

(β+
i ∗ |δt+i |+β−i ∗ |δt−i |) +

N−1∑
i=1

N∑
j=i+1

(βij ∗ |δtj − δti|)

(4.8)

Where p, β0, βSNIFF , β+
i , β−i and βij are defined as in model (1T)

(6T) Multiplicative interactions. We considered a last model with quadratic terms. Given the

asymmetry in the data, we considered four kinds of quadratic terms: coherent shift of

two spots activation timing towards the end of the sniff cycle, coherent shift of two spots

activation timing towards the beginning of the sniff cycle, non-coherent shifts that bring

two spots closer in time, non-coherent shifts that bring two spots far in time.

logit(p) = β0 +
N∑
i=1

(β+
i ∗ |dt+i |+ β−i ∗ |dt−i |) +

N−1∑
i=1

N∑
j=i+1

[
(β++

ij ∗ |dt+i | ∗ |dt+j |)+

+(β−−ij ∗ |dt−i | ∗ |dt−j |) + (β+−
ij ∗ |dt+i | ∗ |dt−j |) + (β−+ij ∗ |dt−i | ∗ |dt+j |)

] (4.9)

Where p, β0, β
+
i , β−i , β++

ij , β−−ij , β+−
ij and β−+ij are defined as in model (1T)



4.2. Methods 33

Spatio-temporal perturbations

Non-target trials and spatio-temporal perturbed trials contained both spatial replacement and

temporal shift of the activation onset. The effect of performing both kinds of manipulations

could be additive, meaning that we simply need to sum the predictors contained in the best

spatial model with the predictors of the best temporal model, or there could be some non-linear

effect. For example the effect of replacing a spot and shifting its onset could be less than the

sum of the effects of replacing it plus shifting its onset. To test for this, we considered a

regression model obtained by combining the spatial and temporal model with a simple sum

and another model that accounts for interactions of replacing and shifting the same spot in the

same trial. In ’sniff’ time coordinates this happens only for non-target trials, but in relative

time coordinates this happens also for spatio-temporal perturbation. In case of relative time

coordinates, the two models we considered are the following:

(1ST) Additive model.

logit(p) = β0 + βTSNIFF ∗ dtSNIFF +
N∑
i=1

(βT,+i ∗ |δt+i |+ βT,−i ∗ |δt−i |+ βSi ∗ xi) (4.10)

Where the variables notation is the same as in model (1S) and (4T). The weights βTSNIFF ,

βT,+i and βT,−i are relative to tempora predictors, while the coefficients βSi are relative to

spatial regressors.

(2ST) Interactions model.

logit(p) = β0 + [βSTSNIFF ∗ dtSNIFF ∗ (1−
N∏
i=1

(1− xi)) + βTSNIFF ∗ dtSNIFF ∗
N∏
i=1

(1− xi)]+

+
N∑
i=1

[(βT,+i ∗ |δt+i |+ βT,−i |δt−i |) ∗ (1− xi) + (βST,+i ∗ |δt+i |+ βST,−i |δt−i |) ∗ xi + βSi ∗ xi]

(4.11)

Where the notation is the same as in model (1S) and (4T). The interaction model allows

to have a non-additive effect of simultaneously replacing and shifting the same spot. It
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does not account for spatio-temporal interactions deriving from manipulations of different

spots.

4.2.4 Perceptual metric

We built a model that maps OB activity patterns to choice through the definition of a perceptual

metric on the OB activity space. Given any two OB activity patterns, the model computes

the perceptual distance between them and passes this quantity through a logistic function in

order to estimate the probability of reporting a match between the two patterns. We started

from the well formulated van Rossum distance for spike trains in order to build the metric

that maps neural activity patterns to olfactory perceptual representation. In order to fully

describe animal perception, the metric needs to account for differences in activation timing and

spot identity. Furthermore, the representation of activation timing needs to contain both the

position of the pattern within the sniff cycle and the exact of single spots within the pattern.

On the top of this, the differences in patterns spatial and temporal features must be modulated

by primacy. The mathematical function describing a metric that satisfies such requirements

is described in Appendix A. We describe here the main features of this metric. A neural

pattern T is represented as a set of signals coming from N different channels, where N is

the total number of spots (or glomeruli). When a spot is activated, it generates a transient

response in the corresponding channel. Such response is modelled with an exponential decaying

kernel with exponential time constant τact. The amplitude of the signal is modulated by an

exponential decaying function with exponential time constant τprimacy and onset corresponding

to the earliest activation timing of the pattern spots. The amplitude modulation of the single

channel responses models the primacy effect. Given two neural patterns T and S, their distance

is given by the sum of two components. The first component is a function of the difference of

their position in the sniff cycle. We tested different ways of representing the position of the

patterns in the sniff cycle:

• an average of all the activation onsets;
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• a primacy-weighted average of the activation onsets (center of activity of the function

given by the summation of the waveform of all channels);

• the earliest activation timing of the pattern;

• the center of activity of the cross-correlogram function (obtained computing

cross-correlation for single channels and then summing up the cross-correlograms

before computing the center of mass).

If not specified, we used the primacy-weighted average of the activation onsets to define the

pattern position in the sniff cycle. This component is passed through a saturation function

whose temporal course is modulated by τglob and whose upper bound is given by λglob. The

second component of the distance represents the total difference in the activation timing of the

different channels, after discounting for the effect of changes in the global position in the sniff

cycle. This quantity is computed by first aligning the pattern representations to their center

of activity and then computing, for each channel, the difference in the area covered by the two

pattern waveforms (within-channel difference). The sum of the within-channel differences is

the second component of the perceptual distance. A further extension of the metric definition

allows to account for the role of spots identity in perception. By introducing a parameter θ, that

regulates the contamination across channels, it is possible to switch from a summed population

code to a labelled line code, as in [29].

Overall, the metric depends on five parameters:

• τprimacy: exponential time constant of the primacy curve. Small values of this parameter

result in a large primacy effect, where the effect on perception of changing later spots

is negligible. Large values of this parameter tend to reduce the primacy effect, which is

absent when the primacy curve becomes flat.

• τact: exponential time constant of the activation kernel. Large values of this parameter

result in a gradual effect of temporal shift, with perceptual distance slowly increasing for

increasing shifts. Small values of this parameter result in an abrupt effect of temporal
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shifts, with perceptual distance suddenly increasing for small shifts and then remaining

constant from further deviations from a Target.

• τglob: time course of the saturation of the effect of global shift. Small values of this

parameter result in an early saturation of the effect.

• λglob: upper bound of the global distance component. This parameter modulates the

trade-off between the two components of the perceptual distance (difference in the center

of activity and within-channel differences).

• θ: this parameter models the relevance of spot identity in the code. It ranges from 0 (all

the channels are collapsed together before comparing activation timing) to π
2

(separate

channels activation timing are compared independently and then summed up).

We show in Appendix A that all the metric properties are preserved.

To fit the perceptual metric we used the same training and test sets as for logistic regression.

We defined a grid in the 5-dimensional parameter space and, for each grid point, we computed

perceptual distances on the training set trials. We than mapped perceptual distances to

behavioral choice using logistic regression and a 5-fold cross-validation procedure. The

parameters for the logistic regression were obtained using the glmnet package in R (elastic net

penalty parameter = 0.5). We considered as best fitting parameters for the perceptual distance

those parameters in the grid that returned the lowest prediction error averaged across folds.

For these parameters we ran again logistic regression on the total training set to estimate the

logistic regression weights. We evaluated the goodness of fit of the perceptual metric model

and the comparison across different models using the test set in the same way we did for

logistic regression. We want to underline here that the grid-search procedure is a brute-force

approach and does not guarantee the convergence to the optimal solution. However, the

prediction accuracy we got with the grid-search procedure is very close to the one of the

logistic regression fit, which uses optimized algorithms to estimate the best fitting coefficients.

This made us confident that our approach lead us close to an optimal solution.
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Figure 4.2: Logistic regression accuracy in behavioral outcomes prediction for spatial
perturbations trials. A. Coefficients of logistic regression models. Left. Coefficients of
linear terms for both the linear (red) and the quadratic model (blue). The larger magnitude
of coefficients related to early activated spots suggests a primacy effect in behavioral readout.
Right. Distribution of the coefficients of quadratic terms. The concentration of coefficients
around zero suggests that the behavioral readout of spatial features is linear. B. Effect on
animal behavior of the replacement of a different number of spots. In (B) and (C) behavioral
data (black) are plotted together with the predictions of the linear regression model (red).
The dashed gray line shows the behavioral performance for Non-target trials. C. Effect on
animal behavior of the replaced spot identity for single spot replacement trials (Inset. Same
for multiple spots replacement trials).

4.3 Results

4.3.1 Spatial coding

We first analysed trials with spatial perturbations in order to investigate the role of spot identity

in odor coding. From behavioral plots (Figure 4.2C), we observed that the replacement of earlier

activated spots has a stronger effect on behavior than the replacement of later activated spots,

resulting in a higher probability of reporting a match with the Target pattern of trials where

latest spots were replaced. When replacing multiple spots, furthermore, the discriminability of

patterns from the Target decreases almost linearly as the number of replaced spots increases,

independently from spot identity (Figure 4.2B). The observed decrease in discriminability can

be explained either by integration of the signal across spots or by an increased probability of

replacing earlier activated spots as the number of replaced spots increased. We ruled out the

second possibility by observing that replacing more spots in the same pattern, after having

conditioned on the replacement of a given spot, increases the perceptual discriminability from

the Target (inset in Figure 4.2C). This suggests that the animal is integrating information in a
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Figure 4.3: Logistic regression accuracy in behavioral outcomes prediction for
temporal ”random” trials. A. Coefficients of linear logistic regression model for shifts
towards the end (continuous line) or the beginning (dashed line) of the sniff cycle. The larger
magnitude of coefficients related to early activated spots and, in general, of coefficients related to
shifts towards the beginning of the sniff cycle suggests a primacy effect in behavioral readout.
B. Effect on animal behavior of the shift of each spot (only trials with single spot shift).
Behavioral data (black) are plotted together with the predictions of the linear regression model
(red) and of the center-of-activity regression model (blue). The dashed gray line shows the
behavioral performance for Non-target trials.

window of time comprising more than a single spot and that information about the first spots is

not sufficient to describe behavior. Such qualitative observation were quantitatively described

through logistic regression: a linear model is as good in explaining behaviour as a quadratic

model (Brier score linear = 0.1574±0.0002, Brier score quadratic = 0.1597±0.0003, p-value

= 9.56e-10, detailed results in Supplementary Figure B.1), the coefficients of the quadratic

terms have small magnitudes and are centered around 0. Furthermore, the magnitude of the

coefficients is larger for earlier activated spots (Figure 4.2A), in agreement with their stronger

effect on behavior. We can therefore conclude that the readout of spatial features is linear and

weighted by primacy.

4.3.2 Temporal coding

We then analysed the readout of temporal features of neural activity (Figure 4.3). Behavioral

plots of single spot shift trials revealed two main features: i) changing the activation timing of

earlier spots has a stronger impact on perception, resulting in a lower discriminability threshold;

and ii) the effect of moving the activation onset toward the onset or the end of the sniff cycle
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is not symmetric. We quantified such observations with a simple logistic regression model,

that contained as predictors the shifts in time from the Target pattern, considered separately

according to their direction (toward the beginning or the end of the sniff cycle). In agreement

with qualitative observations, we obtained coefficients with larger magnitude for perturbations

of earlier spots and for shifts toward the first part of the sniff cycle (Figure 4.3A). From this

we concluded that, as for spatial features, the relevance of temporal features is weighted by

primacy.

However, the model we used fails in explaining the results of global shift trials (Figure 4.4A).

The main difference between the two types of perturbations is that in the second type the

internal temporal structure of the pattern is preserved, in the sense that the relative timing

between each pair of spots is constant. In order to check whether this internal structure could

be a candidate to play a role in perception, we splitted the perturbed trials in trials where the

ordering of spots was preserved and trials where the order of spots was changed. This is a rough

approximation of trials with small and large changes in the internal temporal structure. As

we had hypothesized, we observed that the discriminability from the Target pattern was larger

when the order of spots was changed (Figure 4.4B), suggesting that changes in the relative

position within the sniff cycle are read out and are sufficient to drive behavior.

Therefore, we formulated different logistic regression models in order to explain all the observed

data (details of the model fits in Appendix B). We considered a rank model, that discarded

any information about activation timing considering only changes in the activation order of

spots. Such model failed in explaining the global shift trials and was less accurate than the

linear timing model in predicting the behavior for temporal ’random’ perturbations (Brier score

linear = 0.2175±0.0005, Brier score rank order = 0.2346±0.0006, p-value = 6e-08, detailed

results in Supplementary Figure B.2 and Supplementary Figure B.3). This provides evidence

for a read out that takes into account both absolute timing in the sniff cycle and relative

timing between spots. We therefore tried to fit a logistic regression model that included

relative shifts in the form of relative differences between pairs of spots. Such model was

able to improve the description of behavioral data for ’synchronous’ shift trials (Brier score

linear = 0,2079±0.0004, Brier score difference = 0.1990±0.0004, p-value = 6e-08, detailed
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Figure 4.4: Logistic regression accuracy in behavioral outcomes prediction for
temporal synchronous trials. A. Effect on animal behavior of the simultaneous shift of all
spots. Behavioral data (black) are plotted together with the predictions of the linear regression
model (red) and of the center-of-activity regression model (blue). The dashed gray line shows
the behavioral performance for Non-target trials. B. Effect on animal behavior of multiple
spots shift as a function of the total euclidean shift from Target pattern timing for trials where
the order of the spots is preserved (orange) or not preserved (green). The lower probability
of Target detection for trials where the order is not preserved suggests a role of the internal
pattern structure for behavioral readout

results in Supplementary Figure B.2 and Figure B.3), but not for temporal ’random’ trials

(Brier score linear = 0.2174±0.0005, Brier score difference = 0.2179±0.0005, p-value = 0.99,

detailed results in Supplementary Figure B.2 and Figure B.3). We then formulated a simpler

model, including one term that represents the position of the pattern in the sniff cycle and

other terms representing the internal temporal structure of the pattern. Such a model was

better in describing the data (Brier score linear = 0.1720±0.0003, Brier score difference =

0.1576±0.0003, p-value = 6e-08, blue lines in Figure 4.3 and Figure 4.4 ), suggesting that

the readout of activation patterns uses two separate features: the first is the broad position

of neural activation locked to the sniff cycle and the second is the precise internal temporal

structure of neural activity. From this, we concluded that temporal features of neural activity

are read out in two different temporal reference frames, a sniff-locked one and an internal one.

4.3.3 Perceptual metric: a unifying model

After having characterized the readout using logistic regression, we tried to build a metric that

could lead to such readout (Figure 4.5). We considered the spots on the OB as distinct channels.
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Figure 4.5: Illustration of perceptual metric model for OB readout. A. Each odor input
is defined by the activation of different channels with a precise timing (blue and red squares). In
order to evaluate the difference between patterns, each pattern is transformed into its waveform
representation through convolution of each channel with an exponential decaying kernel. The
amplitude of the kernel is modulated by an exponential decaying function starting at the pattern
onset. The decay time of the kernel and of the primacy curve are two model parameters. B.
For each pattern, its center of activity is computed. The center of activity represents the
broad position of the pattern in the sniff cycle. Each pattern is aligned to its center of activity
and the non-overlapping area between the ”centered” patterns is computed channel-by-channel
and then summed up. The distance between the two patterns is a weighted sum of the total
area under the waveforms and the absolute difference between the centers of activity, filtered
through an exponential function in order to model a saturation effect. C. Example of the
metric computation for patterns where all the spots are synchronously shifted in time. In this
case the difference in the center of activity is larger than zero, while the channel-by-channel
difference is zero. D. Example of metric computation for trials with spot replacement. In this
case the difference in the center of activity is zero, while the channel-by-channel difference is
larger than zero.
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The activation of a channel generates a transient response, represented by an exponential

decaying kernel, whose exponential time constant is fixed across channels and across time

and whose strength is modulated by primacy. Each pattern is therefore characterized by the

waveforms it generates in each channel. From such a representation, animals extract two

quantities: a global positioning of the pattern in the sniff cycle and a centered representation

of the pattern, meaning that such representation discounts for the global positioning in the

sniff cycle. A measure for the discriminability between two patterns is given from a weighted

combination of the difference in global position in the sniff cycle and the difference in the

centered pattern representation integrated across all channels. Fitting this model to the data, we

observed that, after the centering step, there is no contamination across channels (represented

by the parameter θ = π
2
), suggesting an independent readout of each channel. The exponential

time constant of the activation kernel was ca. 70 ms, which is in line with the activation

time of M/T cells, obtained from electrophysiological recordings [4]. The primacy kernel is not

flat, suggesting that primacy coding is effectively implemented by the brain. The exponential

time constant of the primacy kernel is around 200 ms. We showed in Figure 4.5 that this

model is capable of predicting animal behavior with a performance comparable to the best

logistic regression model we considered (Brier score metric = 0.1592±0.0002, Brier score logistic

regression = 0.1601±0.0002, p-value = 7e-87) (Figure 4.6), with a lower number of parameters:

for the perpetual metric we had to fit n=7 parameters (five parameters for the metric and two for

the logistic mapping to behavior), while for the best spatio-temporal logistic regression model

we had to fit n=20 parameters (the bias term, the weight of the center of activity predictor, six

coefficients for the spatial predictors and twelve coefficients for the signed temporal coefficients).

Furthermore, the number of parameters of the metric is fixed and independent from the number

of spots, while the number of regressors of the logistic regression model (and therefore the

complexity of the model) is a function of the number of spots (nparams = 2 + 3 ∗ nspots).

We further tested the model we built by progressively modifying or removing processing

components. We first compared different techniques for the computation of the positioning in

the sniff cycle and the centering of the patterns (detailed results in Supplementary Figure B.4,

Supplementary Figure B.5 and Supplementary Figure B.6). The best fitting techniques used
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Figure 4.6: Perceptual metric accuracy in behavioral outcomes prediction. A.
Illustration of spatial replacement trials. B. Effect on animal behavior of the replacement
of a different number of spots. In (B), (C), (E), (F) and (H) behavioral data (black) are
plotted together with the predictions of the metric model (red). The dashed gray line shows
the behavioral performance for Non-target trials. C. Effect on animal behavior of the replaced
spot identity for single spot replacement trials (Inset. Same for multiple spots replacement
trials). D. Illustration of temporal ’random’ trials. E. Effect on animal behavior of the shift
of each spot (only trials with single spot shift). F. Effect on animal behavior of multiple spots
shift as a function of the total euclidean shift from Target pattern timing. G. Illustration of
temporal ’synchronous’ trials. H. Effect on animal behavior of the simultaneous shift of all
spots.
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the activity pooled across channels to define a center of activity of the neural pattern. The

center of activity was then used to discount the position in the sniff cycle from the temporal

information. Alternative techniques, that take into account only the earliest activation timing

or the non-weighted activity of the channels in order to implement a centering procedure,

led to a loss in the predictive power of the model. We also tried to remove the centering

procedure or to perform it without considering the difference in the global activation timing

as a component of the perceptual distance. Both methods impaired the model performance.

This suggests that the centering procedure plays a key role in perceptual discrimination. We

therefore selected the weighted center of activity technique for patterns centering and removed

or modified single components of the metric definition (detailed results in Supplementary

Figure B.7, Supplementary Figure B.8 and Supplementary Figure B.9). First, we changed the

activation kernel by imposing a fast decay and a slow decay (exponential time constant =

10 ms and 200 ms, respectively). Then, we removed the primacy effect by considering a flat

primacy curve. Finally, we investigated the effect of spots identity on neural coding by setting

the parameter θ to 0 (summed population code) or by fitting it as an additional parameter

of the model. We observed that modifying any of the model components led to a statistically

significant loss in model accuracy in predicting behavior. The largest loss was caused by

setting the parameter θ to 0. This provides further evidence that the code used for perceptual

readout is not a summed population code, but uses the identity of the activated glomeruli.

Also shortening the decay of the activation kernel led to a strong impairment in prediction

accuracy: in details, effects of spatial perturbations were underestimated, while the predicted

sensitivity to temporal perturbations was larger than the observed one.

4.4 Discussion

In this work we introduced a novel approach to study the neural code: the combination of an

innovative intervential technique, such as optogenetics, and mathematical tools allowed us to

investigate the role of spatial and temporal neural features in perceptual representation in a

systematic and independent manner. Optogenetic intervention in awake trained animals allowed
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us to build a large dataset with controlled perturbations of neural features and behavioral data.

In order to unveil the mechanisms of olfactory code in the mouse olfactory bulb we built a

computational model that maps neural activity patterns into a perceptual space. The distance

between two patterns in the perceptual space can be used to predict the animal behavior

and can be considered as a proxy of the animal internal representation of the stimulus. In

the definition of the perceptual space we tried to use biologically plausible computations, but

we do not claim that they are carried out by the brain, neither we try to find the biological

mechanisms underlying such computations. On the analytical side, we showed that the function

we introduced to map neural patterns to perception satisfies the mathematical conditions that

define metrics and, at least theoretically, allows comparing any neural activity pattern. On the

experimental side, modelling perception with this approach resulted in a prediction accuracy

similar to a classical method such as logistic regression, but provided the advantage of being

characterized through a smaller number of parameters that is independent from the number

of considered channels (spots or glomeruli). This makes our method less prone to overfitting

problems in the parameters estimate. Furthermore, the mechanisms used to define the metric

are more interpretable than the logistic regression equations and provide some clues about

possible processing and readout mechanisms.

We grounded our work on the neural metrics defined for the study on neural encoding in

[74, 75, 53] and extended in [3, 29]. As in those works, we represented neural activity using

exponential decaying kernels, that could be considered a first approximation of post-synaptic

responses and, more important, lead to changes in the neural activity representation only in

the time window following a stimulus, thus preserving causality.

The STM model resolves several open issues in olfactory coding. Confirming results already

present in literature, our approach provided evidence for a primacy effect in neural code where

earlier-activated glomeruli have larger effects on perceptual responses. Primacy has been

suggested as a strategy for animals to recognize the same odor across varying concentrations,

as early-activated glomeruli remain stable across different concentrations. Animals trained

to recognize odors across varying concentrations were impaired during coarse optogenetic

disruption, but only when the disruption occurred in the initial 100ms of inhalation [77].
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In the present study, animals were trained to recognize a single Target synthetic odor,

and displayed a primacy effect without explicit training to ”concentration-variants” of the

Target. Hence, the preferential weighting of early inputs occurs under different task demands,

suggesting that primacy is a fundamental property of the olfactory system. We found evidence

for a readout of both spatial and temporal features of neural activity. The readout of spatial

features can be modelled as a linear summation of independent channels. It has been proposed

that odors are encoded in unique spatial combinations of glomeruli [40], but there are multiple

possible combinatorial coding schemes which have not been tested. For example, one extreme

possibility is a barcode representation, where any slight change to the combination leads to

a completely un-related odor, maximizing the systems representational capacity for odors.

Instead, we found a perceptual readout of spatial patterns that is linear. This is consistent

with other studies in the literature [41, 66, 23]. A linear readout implies that two patterns will

generate odors that are perceptually similar depending on the degree of glomerular overlap.

While a linear readout has lower representational capacity, it may explain the generalization of

odor percepts across varying concentrations or backgrounds, where activated glomeruli differ

slightly.

Our work causally establishes the role of temporal sequences in odor perception, which has long

been hypothesized [11, 63] but not directly tested: temporal codes are not theoretically required

to support odor perception [37]. We presently demonstrated that mice trained to recognize a

synthetic odor pattern, use temporal sequences in odor recognition even though other (spatial)

cues are sufficient to solve the task. Surprisingly, we further found that these sequences were

defined with relative latencies within a pattern [35], as opposed to latencies with respect to

sniff as previously proposed [65, 11, 63, 62]. Pattern-referenced timing may reflect how inputs

compete or are integrated downstream, as competition or integration can depend on temporal

proximity between inputs [24, 18, 2]. We found a weak perceptual effect for changing the overall

position (center-of-activity) of the pattern within sniff, possibly arising from weak modulation

of glomerular activity by sniff-coupled mechanosensory responses [32]. Alternatively, mice may

be using the overall position of the pattern in sniff as a weak cue to solve the task, as the

average randomly-generated Non-target pattern has a different position within sniff compared
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to the Target pattern. Leveraging the flexibility allowed in the metric definition, we tried to

deepen the understanding of how the system extracts the information about the position of

neural activity in the sniff cycle. A possibility is that the earliest activated channel generates

a feedback inhibition process and mice use this mechanism to ”center” neural activity. This

would require knowledge only of the earliest activation time to reference a pattern to the sniff

cycle. A second hypothesis is that mice integrate the signals of multiple channels to compute the

position of neural activity relative to sniff. We found that a model that integrates information

across channels is more successful in predicting behavioral performance, providing evidence for

the latest hypothesis. However, how such infromation is integrated across channels remains an

open question: the information might be pooled after the pairwise comparison of single channels

(like in a template-matching approach based on cross-correlations) or alternatively the activity

of all the channels might be pooled together before the computation of the positioning in

the sniff cycle. Disambiguating between such hypotheses requires further investigations of the

system.

We cannot rule out the possibility that fibers of passage were activated during our spot

stimulation. However, this effect is likely to be weakMT cells were activated by few

localized spots at the laser intensity chosen for our experiments. Another study also using

OMP-ChR2 mice, with similar stimulation size, duration and intensity have also found

negligible effects of fibers of passage[24]. Increasing the stimulation intensity led to more

apparent recruitment of fibers of passage, reflected in increased number of active spots located

anteriorly (unpublished). Furthermore, we observed negligible non-linear interactions between

spots during spatial replacements, which is not expected if there is widespread co-activation of

glomeruli from fibres of passage.

Another limitation of the study is that, in order to test our mathematical model, we have

used synthetic stimuli, that may not capture the full complexity of glomerular activity evoked

by natural or naturalistic odors. Our claim is not that these synthetic stimuli are direct

proxies for naturalistic stimuli, rather they afford well-controlled experiments with precise

parameterization, that can be used to test basic principles of the neural code. We instead

view the synthetic approach as complementary to approaches using more naturalistic stimuli,
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that are necessary for the validation of the hypotheses formulated about readout mechanisms.

In other well-studied sensory systems, foundational understanding of sensory processing has

been built upon synthetic, reduced stimuli [31], while naturalistic stimuli have been used to

test and refine foundational models [55]. In principle, the metric we constructed would be a

valuable tool to predict the discriminability between different odorants, but such a statement

needs to be tested through experiments.

Future directions of the project aim at describing the neural response to natural stimuli, for

example by building up a dictionary of OB responses to different odorants, and then mapping

these responses to behavior using the perceptual metric we presented. One possibility to achieve

this goal consists in testing the accuracy of our method in an indirect way. First, we run a series

of experiments where we build a map from a set of natural stimuli to neural activity patterns.

Then, we use the perceptual metric to predict behavior and we check whether the predicted

discriminability is in accordance with the behavioral outcomes we get in a separate series of

experiments, where we measure the behavioral response of animals to the set of same stimuli.

A second chance, more challenging from the experimental point of view, would be to build

an experiment where we simultaneously record neural responses and the behavioral reports.

This would allow to test the accuracy of the model on data with a trial-to-trial correspondence

between neural response and behevioral response, which would theoretically allow to uncover

also the role of noise correlations in the neural code. In case the model is effective in describing

the animal internal representation of perceptual similarity, than we could use such a tool to

build future experiments, where we can a priori control and manipulate the difficulty of the

discrimination task.
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Conclusion

5.1 Summary of the work

In this work we introduced a novel approach for the investigation of behavioral readout, based

on the mathematical concept of metric. Given a set of elements (for example a set of stimuli

or of neural responses), a metric defines a relationship between each pair of elements, allowing

for a rigorous comparison and classification. The only constraints for the definition of a metric

are few mathematical conditions that must be satisfied. For this reason, the metric approach

is very flexible and, in principle, allows to capture also complex relationships.

The application of metrics to neuroscience is not a novelty. Thanks to the definition of spike

train metrics, interesting insights have been gained in the understanding of stimulus encoding

([74, 3]). However, the same approach has been rarely applied to the investigation of behavioral

readout. To our knowledge, the only example of application of such approach can be found in

[71]. For this reason, we wanted to formally define the application of metric spaces to the study

of behavioral readout and show an example of application.

Our method consists in the embedding of neural activity patterns into a metric space, through

the definition of a distance function that assigns to each pair of neural activity patterns a

positive quantity. We called this quantity perceptual distance, because it should reflect how

49
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different neural patterns are perceived by subjects. The approach of defining metrics to study

behavioral readout, besides being formally well defined, also presents the important advantage

of being general and flexible (it depends on the way the metric is defined) and therefore could

be applied to the study of different systems without any a priori limitation. Another important

feature of this method is that it is based on single trial measurements. This allows to model

also trial-to-trial variability and to take into account the role of noise correlations in the neural

code.

We showed an application of the presented approach to the study of perceptual readout of

OB activity in mice. Combining optogenetic intervention with this new mathematical method,

we were able to investigate the causal role of spatial and temporal features of OB activity on

behavior. We modelled the effect of perturbing such features and showed that both spatial

and temporal features are read out by the system to guide behavior and that neural activity

readout is modulated by primacy, which means that early activity has a stronger impact on

behavioral outcome. We also found that spatial and temporal features are processed differently

by the neural system. For spatial features a linear model is capable of predicting animals

behavior, while a more complex model was necessary to explain the readout of temporal

features. Temporal patterns of neural activity are compared using two reference systems:

the first reference is realtive to the sniff cycle and we obtained it by computing, for a given

neural pattern, an overall center of the activity and extracting its position with respect to

the sniff cycle onset. The second reference system is internal to the pattern and reflects the

activation timing of each channel (spot or glomerulus) relative to the others. We found evidence

that mismatch between patterns in both reference systems were necessary to predict correctly

behavioral outcomes, with a stronger weighting for differences in the patterns internal structure.

We tested the robustness of the results obtained using the perceptual metric approach by

applying logistic regression to the same data. In order to achieve a prediction accuracy similar

to perceptual metric, we needed a logistic regression model with a number of parameter at

least three times larger than the metric model we introduced. Therefore, we concluded that

perceptual metric definition can be considered as a valid alternative to classical approaches for

the study of behavioral readout, presenting the advantages of a lower complexity (in terms of
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number of parameters) and a better interpretability (paper in preparation, abstract in Appendix

C). Future developments of this work consist in investigating the temporal sensitivity of the

readout. It has been show that different brain areas are characterized by different temporal

sensitivity, from few milliseconds to tens of milliseconds [79, 49]. In this work we have not

investigated the temporal precision of the readout in a systematic manner, but the causal

approach and the choice of perturbation patterns would be very suitable for this kind of study,

that we want to carry out in the future.

5.2 Link to other works and future directions

In this work we have introduced a new approach to the study of perceptual readout. In order to

validate the presented approach, we applied it to model mice responses to artificial optogenetics

stimulation of the OB. The synthetic stimuli we used did not resemble OB activity patterns

evoked by natural or naturalistic odors, but were designed in order to explore in a systematic

way the space of neural patterns and to question independently the causal role of spatial and

temporal features in behavioral readout. This approach is very powerful in investigating the

sensitivity of the system to neural features, but cannot be used to infer conclusions about

the readout of neural activity generated by natural stimuli. For this reason, a complementary

approach for an ethological validation of the perceptual metric approach requires the application

of such method to experiments with natural stimuli. We propose here two possible experimental

designs that complement the work presented in Chapter 4. A first approach consists in:

i) recording OB activity in response to odors without tracking behavior, and separately ii)

recording the behavioral outcome of an odor discrimination task with the same odors as in i)

without monitoring the neural activity. This approach allows for an indirect validation of the

perceptual metric model and does not leverage the full potentialities of this method, because

it does not provide a way to model trial-to-trial variability neither to conclude anything about

causal relationships. An alternative approach, the ideal one, consists in recording OB activity in

response to real odors, while animals are performing an odor discrimination task. In this way we

would be able to model, in a trial-to-trial fashion, causal relationships between stimuli, neural
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activity and behavioral outcomes. Introducing perturbations of the stimulus-evoked neural

activity (in other terms ”biasing” sensation), we might draw conclusions about which neural

features are causally relevant to perception. Our collaborators in New York are equipped with

experimental setups that allow to continue the investigation of perception in both the suggested

directions. We are already collecting data to study the encoding of naturalistic odors in the

olfactory bulb (with high spatial and temporal resolution) and we are able to manipulate neural

activity in awake animals with single neuron resolution [38]. We are currently developing an

experimental approach that could allow to bias sensation in a reasoned way, by activating or

silencing putative perceptually relevant neurons.

Another important aspect to consider about the experimental paradigm we used to validate our

model is the task performed by the animal [34]. We modeled animal behavior in a 2AFC task

and we chose to use logistic regression to link the metric measurements to behavioral outcomes.

In future, to assign an ecological validity to the proposed approach, we would need to apply

the metric model to other behavioral paradigms. Indeed, in a more naturalistic environment,

animals might face multiple alternative choices (instead of binary ones). A few mathematical

approaches already exist to predict multiple choice, like multinomial logistic regression, nested

logistic regression, multinomial probit regression or other multiclass classification methods.

Such methods can be easily combined with the metric definition and, depending on the kind of

task, one or more of these approaches might be implemented.

The suggested experiments, with natural stimuli and naturalistic-like behavioral outcomes, a

part providing a way to validate the metric approach, are suitable to thoroughly investigate the

perceptual process from stimulus to behavior. As pointed out many times, perceptual readout

is only a single step of this complete process and its understanding is not sufficient to unveil the

full mechanisms underlying perception. As Panzeri et al. highlighted in [50] what really matters

to understand neural codes is the information about stimuli that is encoded in neural activity

and simultaneously read out to drive behaviour at single trial level. Only experiments with

simultaneous behavioral report and neural recordings allow to study this link on a trial-to-trial

basis.
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One of the main challenges to conduct experiments with simultaneous neural recordings and

behavior is the necessity of recording neural activity in awake subjects. Developments and

advancements in neural recording techniques are pointing to this direction, providing tools to

record neural data with always higher quality. Among all the develeped recording techniques, in

the last years two-photon calcium imaging has become one of the most promising tools to record

neural activity [20]. Two-photon calcium imaging records calcium activity of neurons expressing

calcium indicators, that are molecules that change their fluorescence in response to calcium

binding. A class of calcium indicators are the GECIs (genetically encoded calcium indicators),

that are expressed only from specific types of cells (selected by researchers) and present the

advantage of being suitable for long-term studies. Two-photon calcium imaging measures the

changes in the fluorescence of neurons expressing GECIs and uses such measurements as a

proxy of the spiking activity. It has been shown [12] that the latest developed families of

GECIs provide single spike resolution in the calcium signal deconvolution (that is the inverse

process of reconstructing the spiking activity that generates a given calcium signal). One

of the main strengths of two-photon calcium imaging is the possibility of recording up to

hundreds or even thousands of neurons with single-cell resolution. This makes two-photon

calcium imaging an appealing tools for neural population studies. The drawback of such a high

spatial resolution is the limited temporal resolution of classical two-photon calcium imaging.

Furthermore, as most imaging techniques, calcium imaging is limited to superficial brain areas

because of the scattering caused by brain tissues. In collaboration with Andrea Sattin and

Marco Brondi from the Optical Approaches to Brain Function Laboratory at IIT in Genova,

under the joint supervision of Tommaso Fellin, we worked on the development of technicques

to improve the quality of two-photon calcium imaging recordings, in order to overcome the

presented limitations and fully exploit the potentialities of this technique.

The first strong limit of two-photon calcium imaging, the low temporal resolution, is due to

the way the signal is acquired. Classical two-photon calcium imaging collect signals scanning

the entire field of view (FOV) pixel-by-pixel in a raster mode. This approach is highly

time-consuming and implies always lower temporal resolution with increasing FOV size (and

consequently of the number of imaged neurons). Furthermore, with such a low temporal
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resolution, the single spike accuracy potentially provided by the latest developed GECIs could

never be obtained. In order to overcome this limit, a number of techniques have been proposed

(see [59] for a review), for example the use of resonant galvos, of acousto-optic deflectors (AODs)

[19], parallel scanning methods [51], holographic excitation [5] and heuristically optical path

scanning (HOPS) [56, 73]. We further developed the HOPS approach to perform recordings in

brain areas where neurons are sparsely distributed. Based on the assumption that most FOV

pixels do not carry relevant signals (because of the sparseness of neurons), we introduced a

software (developed in Matlab) that allows to extract a trajectory for a linescan acquisition

of two-photon calcium imaging data. The trajectory covers and connects only the FOV areas

where neurons are present (eventually, with a surround selected by the user), allowing to reduce

the number of imaged pixels. We showed that switching from a raster scan acquisition to a

linescan acquisition mode leads to improvements both in the temporal resolution and in the

signal quality (measured using SNR) and allows to record data with single spike resolution.

We validated in the LIII/IV of the somatosensory cortex of anesthetized and awake animals

(abstract in Appendix C, paper under revision).

Given the great advantages provided by two-photon calcium imaging, we worked also on the

second strong limit of this technique: imaging in deep brain areas. Two approaches are currently

used for deep two-photon calcium imaging: optical windows or imaging with endoscopes.

These approaches allows recording in deep brain areas, but present important drawbacks:

optical windows are invasive and might destroy the neural circuits under investigation, while

endoscopes preserve neural circuits but allow for imaging of small FOVs with a reduced number

of neurons. We introduced and characterized a new class of aberration-corrected GRIN lens

based microendoscopes, that combine small invasiveness with the chance of imaging a FOV of

up to 500 µm * 500 µm. We showed through simulations the optical properties of this technique

(larger FOV and better spatial resolution) and validated the use of the microendoscopes for the

investigation of neural circuits by recording neural activity in the VPM nucleus of the thalamus

of awake freely behaving mice (paper in preparation).

Application of these and similar techniques in experiments where animals perform a perceptual

discrimination task, would allow to study with high spatial and temporal resolution the neural
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code used for perception. Instead of splitting the investigation of perception in two stages,

researchers might understand on a trial-to-trial basis the neural processes that lead from stimuli

to behavior. An approach like the one presented in this work, that is the embedding of neural

activity in a metric space, could theoretically be applied also to this kind of data and to the

study of the code used to process the so-called intersection information, that is the information

contained in neural activity about stimuli that is also used to inform behavior. In a very general

way, a metric that reflects the mechanisms used to process intersection information, should be

mapped both to stimuli (as in [74]) and to behavior (as in the current work) simultaneously.

A further step in the understanding of the neural code is provided by the combination af

this approach with interventional techniques. In this way, researcher would be able to draw

conclusions not only about the correlation between stimuli, neural activity and behavior, but

also on the causality of the relationships between these three elements.

Another future direction of this work that we are considering consists in the application of

the metric framework to different (non-neural) signals. In particular, in collaboration with

the group of Cristina Becchio at IIT in Genova, we would like to investigate the perceptual

relevance of movement kinematics. In this case, we would build a metric based on different

kinematic features and we would fit it to behavioral responses in order to investigate which

features are more informative for behavior. This would provide an alternative approach to

classical psychophysics techniques to study the link between sensory stimuli and behavior.



Appendix A

OB perceptual metric

In this Appendix, I describe the mathematical formulation of the metric used in Chapter 4

to describe the animal perceptual readout. In the first section, I describe the construction of

the metric step-by-step. In the following section, I provide the proof of the properties that

characterize a metric.

A.1 Metric definition

Let’s assume that the neural space is a N -dimensional space, where N is the number of

channels conveying neural signals (neurons, or glomeruli, or activated spots). We represent

a spatio-temporal pattern of neural activity P as a (N ∗ 2)-dimensional array:

P = {(x1, t1), (x2, t2), ..., (xN , tN)} (A.1)

Where xi is a binary variable indicating whether the i-th channel is active and ti is the activation

time of the i-th channel. If the i-th channel is not active, then we set ti to 0 (without any loss

of generality).

Given two patterns P and Q, we want to define a metric function, that is a function that maps

56
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each pair of patterns P and Q into a non-negative value

d : (P,Q) ∈ IRN ∗ IRN → IR+ (A.2)

and satisfies the following conditions:

1. Non-negativity: d(P,Q) ≥ 0, ∀P,Q

2. Identity of indiscernibles: d(P,Q) = 0 ⇐⇒ P = Q, ∀P,Q

3. Symmetry: d(P,Q) = d(Q,P ), ∀P,Q

4. Triangular inequality: d(P,Q) ≤ d(P,R) + d(R,Q), ∀P,Q,R

A.1.1 From discrete signals to continuous waveforms

Given a spatio-temporal pattern, that is defined as a discrete object, we map it into a set of

continous waveforms, applying the convolution with an exponential decaying kernel h(t; τact)

defined as:

h(t; τact) =


e
− t
τact , if t > 0

0, otherwise

(A.3)

with τact > 0.

The mapping to continuous functions through convolution is defined as:

P = {(x1, t1), (x2, t2), ..., (xN , tN)} 7→ φP (t; τprimacy, τact) =



φP1 (t; τprimacy, τact)

φP2 (t; τprimacy, τact)

...

φPN(t; τprimacy, τact)

(A.4)
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where

φPi (t; τprimacy, τact) =


e
− ti−t1
τprimacy ∗ h(t− ti), if xi = 1

0, otherwise

(A.5)

and τprimacy > 0.

Given an angle θ ∈ [0, π
2
], we consider in the N-dimensional space N axes rotated by an angle θ.

We denote with ei(θ) the direction of the i-th axis and project the components of the function

φP on these axes:

P 7→ fP (t; τprimacy, τact, θ) =
N∑
i=1

φPi (t; τprimacy, τact)ei(θ) (A.6)

The angle θ can be interpreted as a parameter that represents the relevance of the channel

identity in the readout. If θ = 0, than the signals from all the channels are summed up ”before

patterns comparison” and channel identity is not relevant for behavioral readout. If θ = π
2
,

then each channel is considered separately during patterns comparisons.

A.1.2 Definition of a center of activity

Once the patterns are represented through continuous functions, we we assign to each pattern

P its center of activity (CA), which can be defined in different ways:

1. Timing of earliest activated spot: CAP = mini ti

2. Average of all spots activation: CAP = 1∑N
i=1 xi

∑
xi 6=0 ti

3. Center of mass of the summed population activity:

CAP =

∫ +∞
−∞ tfP1 (t; τprim, τact, θ = 0)dt∫ +∞
−∞ fP1 (t; τprim, τact, θ = 0)dt

(A.7)

4. Center of mass of the summed single channels cross-correlograms:

CAP =

∫ +∞
−∞ τ

∑N
i=1CCi(τ ; τprim, τact, θ)dτ∫ +∞

−∞
∑N

i=1CCi(τ ; τprim, τact, θ)dτ
(A.8)
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where CCi denotes the cross-correlogram of the i-th channel signal:

CCi(τ ; τprim, τact, θ) =

∫ +∞

−∞
[φPi (t; τprimacy, τact)ei(θ)][φ

P
i (t+ τ ; τprimacy, τact)ei(θ)]dt

(A.9)

We use the center of activity to account for the position of a pattern in the sniff cycle. The

choice of the center of activity depends on the properties of the system we are studying, for

example on feedback inhibition processes or effects such as primacy.

A.1.3 Perceptual metric

Given two patterns P and Q, we define the perceptual metric function in the following steps:

1. Associate to each pattern its center of activity;

2. Compute the difference in global positioning within the sniff cycle, which is a function of

the difference between the centers of activity of the two patterns: dCA = |CAP − CAQ|.

3. Align the patterns to their center of activity. I denote with P ′ and Q′ the shifted patterns.

P ′ = {(x1, t1 − CAP ), (x2, t2 − CAP ), ..., (xN , tN − CAP )} (A.10)

4. The distance between the two patterns is given by:

d(P,Q; τprimacy, τact, λglob, τglob, θ) =

= drel(P
′, Q′; τprimacy, τact, θ) + λglob(1− e

−
|CAP−CAQ|

τglob ) =

= drel(P
′, Q′; τprimacy, τact, θ) + dglob(CAP , CAQ;λglob, τglob)

(A.11)
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where

drel(P,Q; τprimacy, τact, θ) =

= ‖fP (t; τprimacy, τact, θ)− fQ(t; τprimacy, τact, θ)‖2

=

√√√√ N∑
1

∫ ∞
−∞
|fPi (t; τprimacy, τact, θ)− fQi (t; τprimacy, τact, θ)|2dt

(A.12)

with λglob, τglob > 0. We denote the first distance component as drel(P,Q; τprimacy, τact, θ)

because it provides a measure of the difference of the ”relative” timing structure of the

activation patterns, after having removed the pattern position in the sniff cycle.

A.2 Proof of metric properties

Before showing that the function d(P,Q; τprimacy, τact, λglob, τglob, θ) is a metric, we show some

results about drel(P,Q; τprimacy, τact, θ). For easiness we will denote drel(P,Q; τprimacy, τact, θ) as

drel(P,Q) considering the dependence from the parameters implicit. The same for the other

functions defined previously, unless parameters are necessary to show the results.

Lemma A.1. Given any two patterns P and Q, the function drel(P,Q; τprimacy, τact, θ) defined

in A.12 satisfies the properties in section A.1 for any τprimacy, τact ≥ 0 and θ ∈ (0, π
2
] . In other

words, drel(P,Q) is a metric.

Proof. We need to show that all the metric properties are satisfied.

1. Non-negativity: drel(P,Q) ≥ 0, ∀P,Q

drel(P,Q) = ‖fP (t)− fQ(t)‖2 ≥ 0, ∀P,Q

for the properties of the L2 norm.

2. Identity of indiscernibles: drel(P,Q) = 0 ⇐⇒ P = Q, ∀P,Q

drel(P,Q) = ‖fP (t)− fQ(t)‖2 = 0 ⇐⇒

⇐⇒ fPi (t)− fQi (t) = 0 ∀i and almost everywhere in t ⇐⇒
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⇐⇒ φPi (t) = φQi (t) ∀i and almost everywhere in t ⇐⇒ P = Q

for the definition of the L2 norm and because φPi (t) is a continuous function in t, ∀i and

∀P .

3. Symmetry: drel(P,Q) = drel(Q,P ), ∀P,Q

drel(P,Q) = ‖fP (t)− fQ(t)‖2 = ‖fQ(t)− fP (t)‖2 = drel(Q,P ), ∀P,Q

for the properties of the L2 norm.

4. Triangular inequality: drel(P,Q) ≤ drel(P,R) + drel(R,Q), ∀P,Q,R

drel(P,Q) = ‖fP (t)− fQ(t)‖2 ≤

≤ ‖fP (t)− fR(t)‖2 + ‖fR(t)− fQ(t)‖2 = drel(P,R) + drel(R,Q), ∀P,Q

for the properties of the L2 norm.

Theorem A.1. Given any two patterns P and Q, the function d(P,Q; τprimacy, τact, λglob, τglob, θ)

defined in A.11 satisfies the properties in section A.1 for any τprimacy, τact, λglob, τglob ≥ 0 and

θ ∈ (0, π
2
] . In other words, d(P,Q) is a metric.

Proof. We need to show that all the metric properties are satisfied.

1. Non-negativity: d(P,Q) ≥ 0, ∀P,Q

d(P,Q) = drel(P
′, Q′) + dglob(CAP , CAQ) =

= drel(P
′, Q′) + λglob(1− e

−
|CAP−CAQ|

τglob ) ≥ 0, ∀P,Q

for the properties of drel shown in Lemma A.1 and the properties of the exponential

function.

2. Identity of indiscernibles: d(P,Q) = 0 ⇐⇒ P = Q, ∀P,Q

d(P,Q) = drel(P
′, Q′) + λglob(1− e

−
|CAP−CAQ|

τglob ) = 0 ⇐⇒
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⇐⇒


drel(P

′, Q′) = 0

λglob(1− e
−
|CAP−CAQ|

τglob ) = 0

⇐⇒


P ′ = Q′

e
−
|CAP−CAQ|

τglob = 1

⇐⇒

⇐⇒


P − CAP = Q− CAQ

|CAP − CAQ| = 0

⇐⇒


P − CAP = Q− CAQ

CAP = CAQ

⇐⇒ P = Q

for the properties of drel shown in Lemma A.1 and the properties of the exponential

function.

3. Symmetry: d(P,Q) = d(Q,P ), ∀P,Q

d(P,Q) = drel(P
′, Q′) + λglob(1− e

−
|CAP−CAQ|

τglob ) =

= drel(Q
′, P ′) + λglob(1− e

−
|CAQ−CAP |

τglob ) = d(Q,P )

for the properties of drel shown in Lemma A.1 and the simmetry of the absolute value.

4. Triangular inequality: d(P,Q) ≤ d(P,R) + d(R,Q), ∀P,Q,R

From the monotonicity of the function f(x) = 1 − e−
x
τ and from the absolute value

properties

λglob(1− e
−
|CAP−CAQ|

τglob ) ≤ λglob(1− e
− |CAP−CAR|

τglob ) + λglob(1− e
−
|CAR−CAQ|

τglob ) (A.13)

Using Equation A.13 and Lemma A.1 we show now that the triangular inequality holds

for d(P,Q):

d(P,Q) = drel(P
′, Q′) + λglob(1− e

−
|CAP−CAQ|

τglob ) ≤

drel(P
′, R′) + drel(R

′, Q′) + λglob(1− e
− |CAP−CAR|

τglob ) + λglob(1− e
−
|CAR−CAQ|

τglob ) =

= d(P,R) + d(R,Q)
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Figure B.1: Logistic regression models for spatial perturbations. A. Left. Illustration
of spatial replacement trials. Middle and right. Effect on animal behavior of the replacement
of a different number of spots. In (A) and (B) behavioral data (black) are plotted together
with the predictions of the linear logistic regression model (red, middle) or of the quadratic
logistic regression model (red, right). The dashed gray line shows the behavioral performance
for Non-target trials. B. Left. Illustration of spatial replacement trials. Middle and right.
Effect on animal behavior of identity of the replaced spot for single spot replacement trials.
C. Prediction accuracy of the logistic regression models, measures as Brier Score on n=500
bootstrap samples of the test set. Left. Brier Score computed on all trials type (Target
trial, Non-target trials andspatial replacement trials). Right. Brier Score computed on spatial
replacement trials.
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Figure B.2: Logistic regression models for temporal perturbations. In the following,
figures in the left column illustrate the type of perturbation represented in the corresponding
row. Each of the other columns shows the predictions obtained using different logistic regression
models (from left to right: signed time shift model, rank order model, signed time shift model
with additive interactions, center of activity model with relative shifts, quadratic model). A.
Effect on animal behavior of the shift of each spot (only trials with single spot shift). B. Effect
on animal behavior of multiple spots shift as a function of the total euclidean shift from Target
pattern timing. C. Effect on animal behavior of the simultaneous shift of all spots. In (A),
(B) and (C) behavioral data (black) are plotted together with the predictions of the considered
logistic regression model (red). The dashed gray line shows the behavioral performance for
Non-target trials.
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Figure B.3: Logistic regression models for temporal perturbations. Brier score and
models comparison. A. Brier score computed for all the logistic regression models on all
trials type (Target trial, Non-Target Trials, temporal synchronous perturbations and temporal
”random” perturbations). B. Brier score computed for all the models on temporal synchronous
trials. C. Brier score computed for all the logistic regression models on temporal ”random”
perturbations trials. In (A), (B) and (C) brier scores and p-values are computed on n=500
bootstrap samples of the test set (with balanced number of trials for each trial type).
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Figure B.4: Perceptual metric. Pattern positioning in sniff cycle. Part 1. In the
following, figures in the left column illustrate the type of perturbation represented in the
corresponding row. Each of the other columns shows the predictions obtained using different
techniques to compute the pattern position in the sniff cycle (from left to right: center of
activity, earliest activation timing, average activation timing, center of activity of the summed
single-channel cross-correlograms, without positioning in the sniff cycle). Results are reported
for single spot temporal perturbation trials. Behavioral data (black) are plotted together with
the predictions of the perceptual metric with the considered sniff-positioning technique (red).
The dashed gray line shows the behavioral performance for Non-target trials.
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Figure B.5: Perceptual metric. Pattern positioning in sniff cycle. Part 2. In the
following, figures in the left column illustrate the type of perturbation represented in the
corresponding row. Each of the other columns shows the predictions obtained using different
techniques to compute the pattern position in the sniff cycle (from left to right: center of
activity, earliest activation timing, average activation timing, center of activity of the summed
single-channel cross-correlograms, without positioning in the sniff cycle). A. Effect on animal
behavior of multiple spots shift as a function of the total euclidean shift from Target pattern
timing. B. Effect on animal behavior of the simultaneous shift of all spots. C. Effect on animal
behavior of the replacement of a different number of spots. D. Effect on animal behavior of
identity of the replaced spot for single spot replacement trials. In (A), (B), (C) and (D)
behavioral data (black) are plotted together with the predictions of the perceptual metric with
the considered sniff-positioning technique (red). The dashed gray line shows the behavioral
performance for Non-target trials.
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Figure B.6: Perceptual metric: pattern position in the sniff cycle. Brier score and
models comparison. A. Brier score computed on all trials type (Target trial, Non-Target
Trials, temporal synchronous perturbations, temporal ”random” perturbations and spatial
perturbations) for the different techniques to compute the position of patterns in the sniff-cycle
for the perceptual metric definition. B. Brier score computed for all the sniff-positioning
techniques on temporal synchronous trials. C. Brier score computed for all the sniff-positioning
techniques on temporal ”random” perturbations trials. D. Brier score computed for all the
sniff-positioning techniques on spatial perturbations trials. In (A), (B), (C) and (D) brier
scores and p-values are computed on n=500 bootstrap samples of the test set (with balanced
number of trials for each trial type).
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Figure B.7: Perceptual metric: remove components. Part 1. A. In the following,
figures in the left column illustrate the type of perturbation represented in the corresponding
row. Each of the other columns shows the predictions obtained when single components were
removed from the perceptual metric definition (from left to right: full model, tauactivation = 10,
tauactivation = 200, without primacy modulation, θ = 0, fit of θ.). Results are reported for
single spot temporal perturbation trials. Behavioral data (black) are plotted together with the
predictions of the perceptual metric without the considered component (red). The dashed gray
line shows the behavioral performance for Non-target trials.
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Figure B.8: Perceptual metric: remove components. Part 2. In the following, figures in
the left column illustrate the type of perturbation represented in the corresponding row.Each of
the other columns shows the predictions obtained when single components were removed from
the perceptual metric definition (from left to right: full model, tauactivation = 10, tauactivation =
200, without primacy modulation, θ = 0, fit of θ.). A. Effect on animal behavior of multiple
spots shift as a function of the total euclidean shift from Target pattern timing. B. Effect
on animal behavior of the simultaneous shift of all spots. C. Effect on animal behavior of
the replacement of a different number of spots. D. Effect on animal behavior of identity of
the replaced spot for single spot replacement trials. In (A), (B), (C) and (D) behavioral data
(black) are plotted together with the predictions of the perceptual metric without the considered
component (red). The dashed gray line shows the behavioral performance for Non-target trials.
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Figure B.9: Perceptual metric: remove components. Brier score and models
comparison. A. Brier score computed on all trials type (Target trial, Non-Target
Trials, temporal synchronous perturbations, temporal ”random” perturbations and spatial
perturbations) for the perceptual metric definitions where single components were removed.
B. Brier score computed on temporal synchronous trials for all the component-lacking versions
of the perceptual metric. C. Brier score computed on temporal ”random” perturbations trials
for all the component-lacking versions of the perceptual metric. D. Brier score computed on
spatial perturbations trials for all the component-lacking versions of the perceptual metric. In
(A), (B), (C) and (D) brier scores and p-values are computed on n=500 bootstrap samples of
the test set (with balanced number of trials for each trial type).
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Spatio-temporal matching of neural activity explains

olfactory perception

Edmund Chong, Monica Moroni, Christopher Wilson, Shy Shoham, Stefano Panzeri, Dmitry

Rinberg

Precise quantification of how spatio-temporal structures in neural activity are consequential for

behavior, remains challenging. We developed a novel experimental approach and theoretical

framework within mouse olfaction, where odors evoke dynamic, spatio-temporal olfactory

bulb activity. We trained mice to recognize synthetic odors constructed from precise,

parametrically - defined optogenetic stimulation patterns. We then measured perceptual

changes during controlled perturbations across various spatial and temporal dimensions,

achieving manipulation breadth and precision previously prohibitive using conventional odors.

We found that animals responses could be modelled by spatio-temporal matching of bulb

activation, where spatial components combine linearly, latencies of activation are defined

relative to the entire pattern, and early activated components are preferentially weighted. Our

synthetic approach reveals the fundamental logic of the olfactory code, and provides a novel

framework for testing the link between spatio-temporal neural codes and behavior.
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High accuracy detection of neural ensemble activity

in two-photon functional microscopy using smart line

scanning

Marco Brondi, Monica Moroni, Dania Vecchia, Manuel Molano-Mazon, Stefano Panzeri,

Tommaso Fellin

Two-photon functional imaging using the genetically encoded calcium indicators (GECIs)

represents one preferred tool to map neural activity. Under optimized experimental conditions

GECIs detect single action potentials in individual cells with high accuracy. However, using

current approaches these optimized conditions are never met when imaging large ensembles

of neurons. Here, we developed a method that substantially increases the signal-to-noise

ratio (SNR) of population imaging of GECIs using standard galvanometric mirrors and fast

smart line scan trajectories. We validated our approach in anesthetized and awake mice

on deep and dense GCaMP6 staining in the mouse barrel cortex during spontaneous and

sensory-evoked activities. Compared to raster population imaging, smart line scan led to

increased SNR, higher probability of detecting calcium events, and more precise identification

of functional neural ensembles. Smart line scan provides a cheap and easily implementable tool

for high accuracy population imaging of GCaMP6s signals using standard galvanometric-based

two-photon microscopes.
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