
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Secure, Distributed Financial
Exchanges: Design and

Implementation

Chan Nam Ngo

Advisor

Prof. Fabio Massacci

Università degli Studi di Trento

External Reviewers

Prof. Ian Goldberg

University of Waterloo

Prof. Ivan Visconti

Università degli Studi di Salerno

Thesis Commitee

Prof. Ian Goldberg

University of Waterloo

Prof. Florian Kerschbaum

University of Waterloo

Prof. Ivan Visconti

Università degli Studi di Salerno

October 2019

Abstract

Blockchains and Byzantine Fault Tolerance form the basis of decentralized currencies and

ledgers, such as Bitcoin, Ripple, ZeroCash, and Ethereum. Several studies have focused

on the currency aspects (e.g. authenticity, integrity, anonymity, and independence from

central banks). In this thesis, we start by exploring to understand the security challenges

and practical solutions for building simple payment networks. Then, we leverage such un-

derstanding in identifying the security challenges of more advanced and complex systems,

in particular Futures Exchanges. The decentralization of a Futures Exchange poses new

security challenges: i) the interplay between the security and economic viability, i.e. using

the Price Discrimination Attack one can strategically force a trader out of the market when

the trader’s anonymity is broken; ii) the non-monotonic security behavior of an Exchange,

i.e. an honest action may invalidate security evidence; and iii) the proportional burden

requirement in the presence of high-frequency participants. Our goal is to enucleate the

non-trivial design principles to resolve these challenges for building secure and distributed

financial exchanges. We demonstrate the application of the distilled design principles

by building a cryptographic reference for a futures exchange called FuturesMEX. We also

simulate the performance of a FuturesMEX Proof-of-Concept with the Lean Hog market

data obtained from the Thomson Reuters Ticks History DB. The results show that the

obtained protocol is feasible for a low-frequency market such as Lean Hog. Furthermore,

we investigate an extension of public markets, i.e. dark pools (private markets), in which

the order book information is conditionally visible to some (financially) suitable parties.

We propose a new cryptographic scheme called Witness Key Agreement that makes dark

trading possible by probing prices and volumes based on committed financial information

Finally, we evaluate the theoretical and practical performance of the new scheme; using

a simulation of the dark pool data collected from the aggressive Bloomberg Tradebook, we

obtain positive results.

Keywords security challenges; design principles; distributed ledgers; zero-knowledge;

financial exchanges; dark trading

Acknowledgment

First and foremost I would like to thank Prof. Fabio Massacci for being such a great

supervisor and colleague over these past four years.

I am grateful to my co-authors of Chapter 4 of my thesis (Jing Nie and Julian Williams

contributed to the business domain knowledge, i.e. the description of the Futures Market,

the Price Discrimination Attack and the TRTH Lean Hog data set; Fabio Massacci and

Daniele Venturi set the general framework and direction of the protocol construction and

the security proof; I coordinated the co-authors in all aspects and contributed to the

protocol design, optimization and implementation); and Prof. Florian Kerschbaum, my

advisor during my visit to the University of Waterloo, without whom Chapter 5 of my

thesis would not be possible (I discussed thoroughly with Florian Kerschbaum to construct

the Witness Key Agreement scheme; then Fabio Massacci helped me adapt the scheme

into the dark trading scenario; finally Julian Williams contributed to the business domain,

i.e. the description of the Dark Pool and the Bloomberg Tradebook data set). I am very

glad that I had the chance to work with you and learn from your expertise.

I would like to thank Prof. Ian Goldberg and Prof. Ivan Visconti for agreeing to be my

thesis’s external reviewers, without whom my thesis would not arrive in its better form

today (Ian Goldberg pointed out many weaknesses, both technical and presentation, in

Chapter 2, 3 and 5 and helped me clarify unclear points in Chapter 4 and 5; Ivan Visconti

suggested some clarifications, especially to put a comparison between the Witness Key

Agreement scheme and the Hash Proof System in Chapter 5).

I would like to thank the Department of Information Engineering and Computer Sci-

ence of the University of Trento for offering me the chance to pursue my PhD.

Thank you to my friends (especially Andrea Mariello) and colleagues in Trento and

Waterloo. Without you, working in Trento and Waterloo would not be what it was.

Especially I want to thank Pierantonia Sterlini, Irma Carolina Fung Escalante, and Andrea

Stenico for your great support in administration.

I am grateful to Mai Trang, my dearest wife, as well as my parents, brothers and other

relatives for their support and encouragements during these past four years.

Contents

1 Introduction 1

1.1 Motivation and objectives . 1

1.1.1 Understanding the Security Challenges and Solutions for Distributed

Financial Exchanges . 1

1.1.2 Cryptographic Implementations of Secure, Distributed Financial

Exchanges . 3

1.2 Research Contribution . 5

1.3 Structure of the Thesis . 6

2 Payment Transaction Networks 9

2.1 A Primer on Payment Transaction Networks 9

2.1.1 Traditional Digital Payment Transaction Networks 11

2.1.2 Crypto-based Payment Transaction Networks 11

2.2 Security Challenges and Solutions for Payment Transaction Networks . . . 16

2.2.1 Integrity and Availability . 17

2.2.2 Confidentiality and Anonymity . 20

2.3 Beyond Payment Transaction Networks . 22

2.4 Summary . 24

3 Security Challenges and Design Principles for Distributed Financial Ex-

changes 25

3.1 An Introduction to Futures Markets . 25

3.1.1 Informal Security Requirements . 29

3.2 Security Challenges and Design Principles 30

3.2.1 Protect against Discrimination . 30

3.2.2 Ensure Responsible behavior . 33

3.2.3 Manage Non-Monotonic (Honest) Evolution 34

3.2.4 Account for a Large Number of Parties 36

3.2.5 Guarantee Proportional Burden . 37

i

3.2.6 Ensure Drop-Out Tolerance . 38

3.3 Summary . 39

4 FuturesMEX: A Secure, Distributed Futures Market Exchange 41

4.1 Formal Futures Market Definition . 41

4.2 The Ideal Reactive Functionality . 44

4.3 Assumptions and Crypto Building Blocks Overview 49

4.4 Solution Overview . 51

4.5 FuturesMEX Crypto Building Blocks . 54

4.5.1 Futures Market Relations . 56

4.6 Protocol Construction . 59

4.7 Security Analysis . 67

4.7.1 Proof sketch . 67

4.7.2 Security Proof . 68

4.8 Protocol Optimization . 74

4.8.1 Optimized Building Blocks . 75

4.9 Beyond Security-With-Abort . 76

4.10 Implementation . 77

4.10.1 Evaluation . 78

4.11 Related Work . 84

4.12 Summary . 85

5 Dark Financial Intermediation with Witness Key Agreement 87

5.1 Possible Solutions for Dark Financial Intermediation 87

5.2 Dark Financial Intermediation with Witness Key Agreement 90

5.2.1 Limitations of our WKA construction 91

5.3 Recap of Technical Background . 91

5.3.1 Summary of NIZK, SoK, AKE, WE and MPC 91

5.3.2 Formal Definitions for NILP and QAP 94

5.4 Witness Key Agreement . 100

5.4.1 Witness Key Agreement Definition 100

5.4.2 Split Designated-Verifier Non-Interactive Linear Proof 101

5.4.3 Construction of WKA . 104

5.4.4 Security Analysis . 106

5.5 Witness Key Agreement for Quadratic Arithmetic Program 108

5.6 Instantiation . 108

5.7 Performance Evaluation . 110

5.7.1 Theoretical Performance Evaluation 111

ii

5.7.2 Practical Performance Evaluation 112

5.8 Summary . 114

6 Conclusion 115

6.1 Research Contribution . 115

6.2 Future Work . 117

Bibliography 119

iii

List of Tables

2.1 Loss of value . 17

2.2 Loss of value countermeasures . 21

2.3 Information disclosure countermeasure examples 21

3.1 Key Compositions and Characteristics of Futures Market 26

3.2 Samples of Market Activity . 28

3.3 Informal Security Requirements . 29

4.1 Market Indicators for the current round t of the Futures Market 43

4.2 Value cash(v) to liquidate an inventory of volume v 43

4.3 Formal Security Requirements . 44

4.4 FuturesMEX Notation . 51

4.5 Futures Market Relations . 52

4.6 Merkle Tree’s supported operations . 53

4.7 Standard NP relations for commitment schemes 56

4.8 zk-SNARK Simple and Opt. Circuits Performance 79

4.9 MPC Performance . 79

4.10 Runtime of Individual Market Operations with Merkle Tree of depth 10 . . 81

4.11 Runtime of Individual Market Operations with Merkle Tree of depth higher

than 10 . 81

5.1 Dark Pool Example Relations . 89

5.2 Theoretical Performance evaluation (non-deterministic case) 112

5.3 Specific circuit evaluation . 112

5.4 Market data samples for low and high days of Bloomberg Tradebook . . . 113

v

List of Figures

2.1 Banking models . 10

2.2 The simplified Bitcoin Transactions . 13

2.3 The Ripple Network Components and Gateways with the External World . 15

2.4 The Systemic Risk of Blockchains: Forked and Orphaned Transactions . . 19

3.1 Order Book . 27

3.2 The Order Pathway . 28

3.3 Forcing Alice out of the market . 32

4.1 Market State Transition Diagram . 45

4.2 The operations of the ideal functionality FCFM for posting, cancelling and

marking to market . 46

4.3 The operations of the ideal functionality FCFM for margin settlement and

order fulfillment . 47

4.4 Inventory flags state transition diagram . 53

4.5 Sub-protocols Πput and Πget . 55

4.6 Hybrid Implementation of the Ideal Functionality 59

4.7 Sub-protocols Πvalid, Πnet, Πmatch, and Πbackup 61

4.8 The Initialize phase of protocol ΠDFM . 63

4.9 The Post Order and Cancel Order phase of protocol ΠDFM 64

4.10 The Margin Settlement phase of protocol ΠDFM 65

4.11 The Mark To Market phase of protocol ΠDFM 66

4.12 An evaluation of the memory requirements of different MPC functionalities

over time . 80

4.13 Crypto Protocol Evaluation on Q1 of Lean-Hog 84

4.14 Total Burden of Computation by Retail Traders 85

5.1 Non-interactive linear proof [102] . 96

5.2 NILP for QAP [102]) . 99

5.3 Witness key agreement definition . 101

vii

5.4 Security of Witness Key Agreement Scheme 102

5.5 Split designated-verifier NILP . 103

5.6 Split DV NILP for QAP . 104

5.7 Construction of Witness Key Agreement 105

5.8 Witness key agreement for QAP . 109

5.9 The Scheme 3 of the Paillier cryptosystem [148] 110

5.10 WKA Evaluation on Bloomberg Tradebook 113

viii

Chapter 1

Introduction

In this thesis, we seek to understand the security challenges and develop de-

sign principles for building distributed financial intermediation. We start by

investigating the existing (both traditional and crypto-based) simple financial

intermediaries, i.e. Payment Transaction Networks (PTNs). Then, we ex-

plore the general financial intermediation such as financial exchanges owing

to the interesting aspects of these concepts. In particular, the thesis chooses

Futures Exchange as an example because it is one of the landmark financial

institutions. Following the distilled design principles, this thesis constructs a

concrete cryptographic and distributed implementation securely replicated the

ideal functionality of a centralized Futures Market Exchange (with rigorous se-

curity proof). This thesis also investigates distributed dark trading (private

markets) where the previously public information is now conditionally visible.

1.1 Motivation and objectives

1.1.1 Understanding the Security Challenges and Solutions for Distributed

Financial Exchanges

A traditional PTNs classification distinguishes between token-based and account-based

systems [3]. A good example of the token-based systems is E-cash [53], where parties

exchange electronic tokens that represent value, whereas Visa [178] and MasterCard [135]

exemplify account-based systems in which money is stored only as numbers in bank ac-

counts.

Token-based systems, compared with the account-based ones, offer potentially stronger

anonymity as it is hard to identify the payer of the token in a transaction. For example, the

original owner of an E-cash coin is untraceable [56] unless the coin is spent twice in off-line

1

1.1. MOTIVATION AND OBJECTIVES CHAPTER 1. INTRODUCTION

transactions.1 Many previous works focused on the security aspects of the token-based

payment systems, which include authenticity, integrity, anonymity, etc. [44, 53, 56, 163].

However, operational electronic token-based systems are centralized as both payer and

payee must open an account in the same E-cash bank to initiate a funds transfer.

New decentralized payment systems, e.g. Bitcoin [144], ZeroCoin [139], ZeroCash [164],

Ethereum [77], Ripple [157] or RSCoin [94], have been widely adopted as the systems are not

simply managed by a single financial institution but a distributed set of nodes world-wide.2

The decentralization of these payment networks relies on the consensus protocols, such

as Proof-of-Work [80,144,167] or the practical Byzantine fault tolerant algorithm [49].

Research Question 1. (RQ1) What are the basic security challenges and possible so-

lutions for building a secure, distributed payment network?

Compared with simple payment, general financial intermediation such as futures trad-

ing is more complex. A futures contract is a standardized agreement between two parties

to buy or sell an underlying asset, at a price agreed upon today with the settlement at

some future date [169]. The parties “promise” to buy or sell an underlying asset, and this

“promise” can itself be traded. Such trading is carried out in a double auction market

operated by a centralized clearinghouse called Futures Exchange [5], such as the Chicago

Mercantile Exchange (CME) [59].

Futures trading poses advanced security challenges compared with simple payment,

and it is non-trivial to address these challenges. In a preliminary observation, the first

challenge is the interplay between security and economic viability [133]. Whereas, integrity

is obviously needed for payments (see the Ethereum DAO mishaps [63] 3), confidentiality

seemed less critical for exchanges [57]; one can trace all transactions to a Bitcoin’s ID

using public information in the blockchain, yet this hardly stopped Bitcoin from thriv-

ing [164]. In a futures market, disclosing a trader’s account allows attacks based on Price

Discrimination. A market vulnerable to those price discrimination attacks will collapse

as safe trading is not possible in such market and traders will just flock away.

Another challenge, w.r.t other crypto applications such as auctions [162], is the simul-

taneous needs to i) make publicly available offers by all parties, ii) withhold information

on who made the quote and iii) trace honest consequences of an anonymous public action

1In online E-cash; the double-spent coin will be rejected immediately.
2Bitcoin, ZeroCash and Ripple are operational, whereas RSCoin is still a laboratory experiment.
3In the DAO (Decentralized Autonomous Organization) framework 1.0, there existed a generic vulnerability

called “recursive call vulnerability”, which allowed a malicious recipient contract to call executeProposal() recur-
sively for money to be transferred multiple times out of the DAO. This vulnerability affects the reward account
mechanism of the existing DAOs based on the framework 1.0. The issue provoked the DAO hack incident, in which
the attacker managed to drain more than 3.6 million ETH from the DAO on 18th June 2016, by a race attack
using a recursive call in the DAO’s implementation. Such incident was clearly an integrity violation. In economic
term, the DAO suffered from money pumps as it proceeded with account clearance prior to ledger update.

2

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION AND OBJECTIVES

to the responsible actor. The prototypical example is posting a public, anonymous buy

order while accruing the revenues from the sale (without even the seller knowing the actual

buyer and vice-versa). The Futures Exchange must also guarantee that iv) actors do not

offer beyond their means, an issue related to double spending [11], double-voting [24], or

groundless reputation rating [186]. E-voting offers traceability for one’s own vote but not

the ensemble of agents. Applications of e-cash and privacy-preserving reputation systems

guarantee anonymity for honest actions but traceability only in case of malfeasance and

dishonest behavior.

Popular security protocols in the past were authentication protocols. A protocol could

have various degrees of complexity (e.g. Kerberos [140] vs TLS [72] vs IKE [105]), but

essentially two parties wanted to authenticate each other, possibly with the help of a

trusted third party. The common design principles for such authentication protocols

were: each party’s main goal was to receive the other party’s security evidence and they

participate equally in the protocol.4 With an emergence of financial protocols [139, 144,

164] and practical deployment of secure multi-party-computation (MPC) [38], the number

of parties participating in the protocol has massively increased. The parties do not talk

to each other, but to an ensemble of agents. Furthermore, some parties might be more

active than others in communication. Yet, they potentially share the same burden in

generic MPC computational effort [156]. This leads to some interesting questions: Is

security evidence always monotonic as the number of honest parties increases? ; What

type of failures can materialize if this is not the case? If some application requires non-

monotonic security, are there design implications if some parties are more active than

others?

Research Question 2. (RQ2) What are the advanced security challenges for building

distributed financial exchanges and how can we address them through new design princi-

ples?

1.1.2 Cryptographic Implementations of Secure, Distributed Financial Ex-

changes

To fully decentralize a futures exchange, the main technical difficulty we need to face is

the fact that futures markets are fully stateful systems where the functionality changes

the internal state at each round due to a valid move performed by an agent that updates

the public information and her own private information. The global constraint is that an

agent’s legitimate move can unpredictably make another agent’s state invalid owing to a

4Obviously the server would have had more load than a client, but this only happens because the server
participates in several authentications with several clients at once.

3

1.1. MOTIVATION AND OBJECTIVES CHAPTER 1. INTRODUCTION

change in the public information. As a whole, the market must transit to a new state

where the legitimate move is accepted, and the invalid state is fixed.

This intrinsic non-monotonic feature prevents the protocol designers from improving

the communication complexity by replacing interactive MPC [156] steps with independent

non-interactive proofs [21]. While the satisfaction of individual constraints could be solved

using a standard “commit-and-prove” approach between the concerned individuals [164],

this is inapplicable for the global constraints. The alternative is to implement the entire

functionality via general-purpose MPC [156]. However, this solution is unacceptable given

a large variance in trading activity. For example, some traders only make a few large

orders, others make several trades every millisecond [130]. This leads to an efficiency

requirement, informally stating, each computation should be mainly a burden on the

trader who benefit from it, which cannot be met by a näıve MPC implementation.

Research Question 3. (RQ3) How can we apply the new design principles to build a

viable secure, distributed futures exchange?

In many public markets (e.g. the CME), prices and volumes, which allow buyers and

sellers to buy and sell assets, are published in the limit order book [169]. In these mar-

kets, information on individual traders’ positions and quotes however must be private (see

Chapter 3 on the importance of a trader’s confidentiality of financial protocols). Other

financial arrangements, such as over-the-counter (OTC) markets, used by institutional

investors and market makers, e.g. Dark Pools [107], have tighter confidentiality require-

ments as minimal legitimate information leakage can be costly [141], For example, some

institutional investors make large quotes that might shift the market in an unfavorable

direction. 5

One of the purposes of dark (but legitimate) markets is to remove most of the available

public information [70]. Since some information is required for trades to exist, some public

variables (e.g. committed on a ledger in a distributed setting) may describe the trigger for

a transaction from a potential counterparty. However, each member of the trading venue

may refuse to broadcast their back-stop willingness to pay. They would rather do peer-

to-peer adjustments in quotes in an OTC bond or derivatives market, such as MTS [143]

or the OTC Foreign Exchange Options (FXO) market, the world fourth largest financial

market by volume.

5Suppose a high-frequency trader has placed a large order specifying that a price and volume are only executed
when those conditions are satisfied with the public order book. When a large investment firm, such as a pension
company, submits a large market buy-order at the prevailing prices, the high-frequency trader can quickly cancel
his sell orders. So as the large order walks up the limit book, the buyer is paying a much higher price than the
expected market price. The high-frequency trader receives more money than expected from their initial standing
sell limit orders. Hence, the market appears to ‘retreat’ from large market orders.

4

CHAPTER 1. INTRODUCTION 1.2. RESEARCH CONTRIBUTION

As trades are bilateral6 an investor may send an offer whose particulars are only

available to the traders who have available (e.g. committed on the ledger) a suitable

combination of financial instruments (e.g. the sum of the cash available and the evaluation

of the holding contracts at the market price are above a cash threshold and in general an

arithmetic or boolean combination thereof) while traders cannot disclose that they hold

these instruments as this information might be strategically used against them (see the

Price Discrimination Attack in §3.2.1). In addition, succinct communication is needed in

practice. For instance, zcash [185], the production version of ZeroCash, relies on blockchain

[144] to reach consensus, where the block size is limited to only 2 MB. Besides, the

committed information is frequently updated, e.g. a trading account in FuturesMEX gets

updated with a new quote, while the condition of interest is persistent. This requires a

scheme that works efficiently with different instances of the same relation.

Research Question 4. (RQ4) How can we design a cryptographic scheme that can

support the dark pool scenario?

Non-goals. The focus of our protocols design is to protect against digital attacks on

integrity, anonymity and confidentiality. Physical, economic and social attacks are, and

always will be, possible similarly to centralized systems (e.g. insider trading, cartels manip-

ulating the underlying assets or the availability glitches such as the NASDAQ ones [174])

and they are typically dealt with by ex-post law enforcement [131].

1.2 Research Contribution

To address RQ1, we conduct a brief overview of the traditional PTNs, such as the tiered

banking versus the correspondent banking model, and a high-level description of the

crypto-based PTNs, e.g. E-cash [56], Bitcoin [144], ZeroCoin [139] and ZeroCash [164]. The

crypto-based PTNs’ new feature, compared with the traditional systems, is the removal

of the trusted central bank in a clearing and settlement. Then, we describe the security

challenges to build such simple PTNs and demonstrate various systems to address these

security challenges using different cryptographic techniques. Such discussions are useful

for understanding more complex system designs.

For RQ2, to extend simple payment to futures trading, we first summarize the high-

level functionalities of a Futures Market [169]. Then, the new security challenges to build

a distributed financial exchange and required principles to address these challenges are

developed. Noticeably, among the security challenges, we present an economic attack

6In an OTC swap market, government-to-government, government-to-bank, bank-to-bank, and bank-to-
corporate, all have different average volume sizes.

5

1.3. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

when a trader loses anonymity, in which other traders can strategically force some traders

out of the market.

The distilled design principles are used to build a reference implementation of a futures

exchange. To address RQ3, this thesis provides the first secure, distributed Futures Ex-

change called FuturesMEX, which replicates the functionalities of the Chicago Mercantile

Exchange Globex specifications manual. This includes each of the main quote types (limit

and market orders) to build more complex quotes and standard margin accounting, and

market features [62].

To support dark trading (RQ4,) we define and construct a new cryptographic scheme

called Witness Key Agreement (WKA) that allows a party to securely agree on a secret

key with other parties if they own a witness (the secret financial information with the

desired properties) to the problem instance (the committed information).

We provide a performance simulation for both cryptographic implementations of public

and private trading. For FuturesMEX, we use the CME Lean Hog data (a low-frequency

public market). For WKA, we use the Bloomberg Tradebook (an aggressive dark pool).

1.3 Structure of the Thesis

Chapter 2 is dedicated to RQ1, consisting of the simple Payment Transaction Networks

(PTNs), their security challenges, and practical solutions. For answering RQ2, we iden-

tify new security challenges and the design principles for more complex systems, such as

a Futures Market Exchange in Chapter 3. Chapter 4 addresses RQ3, showing how to

incorporate the distilled design principles to build our reference implementation called Fu-

turesMEX. We answer RQ4 using Chapter 5 where we describe an extension of the public

markets, i.e. dark trading, with a new cryptographic primitive called Witness Key Agree-

ment (WKA). Finally, chapter 6 concludes the thesis with a summary of contributions,

limitations, and future research directions.

We provide a detailed structure for each chapter.

• Chapter 2 starts with the high-level PTNs description in §2.1. We describe the

security challenges in building PTNs and possible solutions in §2.2. Finally, we

briefly introduce the futures trading scenario as an extension of simple PTNs (§2.3),

and we provide a summary of the chapter (§2.4).

• In chapter 3, we introduce the key aspects of futures markets (§3.1). We explore

the new security challenges to be addressed when building a distributed futures

exchange, and we show how these challenges affect the new design principles in §3.2.

Among these challenges, we present an interesting price discrimination attack due

6

CHAPTER 1. INTRODUCTION 1.3. STRUCTURE OF THE THESIS

to loss of confidentiality and anonymity (in §3.2.1). Finally, we conclude the chapter

in §3.3.

• Chapter 4 starts with a formal centralized futures market model (§4.1). This is

followed by the description of the ideal functionality of its secure, distributed version

in §4.2. Next, we describe our crypto building blocks (briefly in §4.3, formally in

§4.5), the non-monotonic security state of the functionality (§4.4) and in our protocol

(§4.6). We provide a proof of its security (§4.7). We also discuss some optimizations

(in §4.8) and how to go beyond security-with-abort (§4.9). Our proof of concept and

its performance evaluation are presented in §4.10 and §4.10.1. Finally, we survey

related work (§4.11) and conclude the chapter (§4.12).

• In chapter 5, we discuss the possible but unsuitable solutions to the dark pool sce-

nario in §5.1 followed by our solution in §5.2. Then, some technical background is

covered in §5.3. In §5.4, we provide the main intuition and the generic WKA scheme

construction. A security proof also appears in this section (§5.4.4). A WKA con-

struction of quadratic arithmetic programs (QAPs) is provided in §5.5. An instan-

tiation based on a variant of the Paillier cryptosystem and our scheme’s evaluation

are found in §5.6 and §5.7. Finally, we conclude the chapter in §5.8.

7

1.3. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

8

Chapter 2

Payment Transaction Networks

In this chapter, we start with a primer on PTNs. We provide a brief overview

of the traditional PTNs and a high-level description of the crypto-based PTNs.

Compared with the old centralized E-cash scheme, a new feature of the recently

developed cryptocurrency networks such as Bitcoin, ZeroCoin and ZeroCash is

the elimination of the trusted central authority, i.e. the central bank, in clearing

and settlement, albeit some systems, e.g. Ripple and RSCoin, still rely on the

bank for value creation. We then describe the security challenges in building

PTNs and the strategy to overcome them. The chapter covers the most ba-

sic security challenges and the possible solutions to implement simple financial

intermediation such as a PTN. Compared with a simple PTN, our main objec-

tive, a financial exchange, poses more complex challenges and it is not trivial

to address them using those basic solutions applicable to PTNs.

2.1 A Primer on Payment Transaction Networks

In physical payments without physical cash transfers, the payer gives the payee a cheque,1

with which the payee can withdraw cash from the payer’s bank or lodge the cheque at the

payee’s bank so that the funds eventually are transferred to the payee’s account from the

payer’s. When a payee lodges the cheque, the funds will be credited after some time, and

the cheque is sent to a clearinghouse where the payer’s bank will validate the cheque. If

the cheque is valid, e.g. funds available and the signature matched, the payer’s bank will

debit the amount written on the cheque to the payer’s account once the two banks have

settled the amount by crediting and debiting the respective accounts at their central bank.

An invalid cheque will be returned and the payee will not acquire the funds. In cheque

1We use the Anglo-French spelling to avoid confusion with the word “check”.

9

2.1. A PRIMER ON PTNS CHAPTER 2. PAYMENT NETWORKS

The transactions between X and Y only need Bank
C. In the case of the transactions between X and Z,
Bank A needs to settle the account A.C and A.D
to transfer money from Bank C to Bank D, and
Bank C will deduct the account C.X, whereas Bank
D will credit the account D.Z. More sophisticated
transactions between Y and V will involve more
banks, including the Central Bank, and this accrues
more transaction fees.

Central Bank

Bank A

Bank C

X Y

Bank D

Z

Bank B

Bank E

U V W

Acc. A.C
Acc. A.D

Acc. C.X
Acc. C.Y

Acc. D.Z Acc. E.U
Acc. E.V

Acc. CB.A
Acc. CB.B

Acc. B.E
Acc. B.W

(a) The tiered-banking model

Bank A and Bank B hold an account of each other
in their ledger, i.e, A.B and B.A, respectively. The
transactions between X and V requires a coopera-
tion of both Bank A and B to settle the amount.
Obviously, the settlement also needs to be propa-
gated down to Bank C, B, and E. The transactions
could also involve currency exchange. In this case,
Bank A and Bank B will go through the Bid/Ask
orders to sort out the exchange.

Exchange

Bank A

Bank C

X Y

Bank D

Z

Bank B

Bank E

U V W

=

=

Acc. A.B
Acc. A.C
Acc. A.D

Acc. C.X
Acc. C.Y

Acc. D.Z Acc. E.U
Acc. E.V

Bids
Asks

Acc. B.A
Acc. B.E
Acc. B.W

Correspondent Agreement

(b) The correspondent-banking model

Figure 2.1: Banking models

payment, the payee suffers from such reversible payment and usually is on a disadvantage

side (e.g. if the payee, usually a merchant, has shipped the goods upon receiving the

cheque). Essentially, electronic transfer eliminates the physical transfer of cash and their

risk of delayed authentication, e.g. signature matched, and delayed authorization, e.g.

funds available.

Fig. 2.1a illustrates the tiered-banking model. A central bank is at the top, whereas

multiple dependent banks and the clients are at the lower levels. The central bank may

also control the monetary supply, and its dependent banks must hold an account in its

ledger. The clients are at the leaves of the hierarchy. In the correspondent-banking model

of Fig. 2.1b, Bank A and Bank B form a direct relationship with each other, possibly

through an exchange to settle the transactions without a third party. In an exchange

transaction, a single bank may have accounts in two currencies. The clients may incur

some fees for currency conversion. Alternatively, both the payer and payee’s banks may

have a correspondence account with a multinational bank, and the exchange is carried out

as an internal transfer by the multinational bank.2 Thus, the transaction may pass through

multiple levels and two central banks that have correspondent agreements (Fig. 2.1a and

Fig. 2.1b). The more third parties the money flows through, the more transaction fees

the final clients pay.

2A correspondence account is held by a banking institution to receive deposits from, make payments on behalf
of, or handle other financial transactions for another financial institution, usually overseas, referred as “Nostro”
and “Vostro” accounts in international finance. A “Nostro” (ours) account is an account of our money, held by
the other bank. A “Vostro” (yours) is an account of the other bank money, held by us.

10

CHAPTER 2. PAYMENT NETWORKS 2.1. CRYPTO-BASED PTNS

2.1.1 Traditional Digital Payment Transaction Networks

As discussed by Abrazhevich [3], traditional electronic payment systems typically either

replace the direct transfer from payer to payee, i.e. token-based systems, e.g. E-cash [56],

and electronic cheque [7], or the indirect form of transfer, i.e. account-based systems,

e.g. Debit Cards and Credit Cards.

PayPal [150] processes payments via the Internet using the client’s cards detail. Re-

cently, innovations in payment technologies offer some wrappers to the existing payment

infrastructures, e.g. Google Wallet [100] and Apple Pay [8] allow users to pay with their

authenticated phone.

Payments across intermediaries are unnecessarily instantaneous. In a Differed Net-

Settlement System, the bank intermediaries may settle the outstanding differences at

the end of the day [12]. A Real-Time Gross-Settlement System (RTGS) provides the

function of both “real-time” and “gross-settlement”, meaning low-volume, high-value,

and immediate payments. Due to the securely authenticated parties, RTGS is a low-risk

transaction environment as payments are final and irreversible at the execution point [26].

An example of RTGS is CHAPS [51] in the UK where its counterpart is BACS [10] that

handles Net-Settlement. Other examples include FedWire [84] and CHIPS [173] in the US.

The Eurosystem is in the process of implementing the Target2 [78] system, which provides

RTGS for banks across the European Union.

For international payments, financial institutions around the globe make use of SWIFT [170]

(Society for Worldwide Interbank Financial Telecommunication) to send the payment or-

ders in a secure and standard environment. Then, the payments are settled using their

correspondent accounts. SWIFT identifies the financial institutions via a Business Identi-

fier Code (the SWIFT code).

The proposal of “programming languages for financial contracts” (e.g. the Ethereum

smart contract [77]) is far from new. It was first proposed by J. M. Eber and was marketed

by the company LexiFi for the management of traditional financial contracts where the

contracts were expressed and automated (centrally) using Modeling Language for Finance

(MLFi) [113].

2.1.2 Crypto-based Payment Transaction Networks

The concept of a digital currency dated back to 1982 when David Chaum introduced the

E-cash scheme [56].

The E-cash Scheme E-cash takes a “central bank” approach with a completely flat hierar-

chy where no intermediary institution exists. The scheme provides such strong anonymity

11

2.1. CRYPTO-BASED PTNS CHAPTER 2. PAYMENT NETWORKS

that the E-cash coin issuing bank and the merchant cannot identify the spender of the

coin, even if they cooperate. The scheme allows both online and offline verification of the

coin. In the case of offline verification, the payer’s identity could be revealed if the coin

is spent twice [56].

At the core of E-cash it lies the Blind Signature scheme [53], which allows the bank

to sign a serial number (Serial#) without knowing its content. However, with the basic

E-cash scheme one can only create fixed value coins. To allow different value coins, the

bank can introduce various coin signing keys; upon signing, the coin will have the specific

pre-defined value.

In E-cash, a client needs to out-of-band deposit some fiat currency into the bank to

open a E-cash bank account. Then, the client can withdraw the E-cash coins from the

bank by sending a blinded Serial# to let the bank blind sign the Serial# using the Blind

Signature scheme [53]. This prevents the bank from seeing the original Serial#. Then,

the blind signature on the Serial# can be unblinded by the client to get the signature

on the original Serial#. The original Serial# and the unblinded signature on it form an

E-cash coin, later used in an E-cash transaction.

To initiate an E-cash transaction, the Payer obtains the Payee ID from the Payee.

Then, the Payer creates a transaction with some E-cash coins and the Payee ID. The

transaction is sent to the Payee. However, it is first encrypted with the E-cash bank’s

public key to prevent the Payee from seeing the coins’ Serial#. This requires the orig-

inal minting bank to perform the consolidation of the transaction. Upon receiving the

encrypted transaction from the Payer, the Payee forwards the encrypted transaction to

the minting bank. The bank will decrypt the transaction with its private key. The Se-

rial# will be checked against the spent Serial# database to prevent double-spending, i.e.

a Payer might attempt to use the same coin in multiple transactions. If everything is cor-

rect, the bank will accept the coins and credit the Payee’s account with the corresponding

amount.3 The deposited coins’ Serial# will be added into the spent Serial# database.

In parallel to this “mostly monolithic” architecture, the new architectures aim to

transfer cash quantities without centralized clearing and settlement.

The Bitcoin Network Subsequent attempts at a purely digital currency were B-Money [67],

hashcash [81], and BitGold [171], which were the first to use “Proof-of-Work” (PoW) [112],

a hard cryptographic computational puzzle, as a mean of mitigating Sybil attacks [74] and

eventually determining the inherent value for the medium of exchange. These conceptual

ideas later matured into the Bitcoin-esque approach, which is free from a trusted central

bank. The idea of a public ledger predates Bitcoin. However, the original idea was not

3The Payee can now act as a Payer to withdraw some E-cash coins and to spend in another transaction later.

12

CHAPTER 2. PAYMENT NETWORKS 2.1. CRYPTO-BASED PTNS

Transaction 0

(Coinbase)

FROMs = []

TOs =

coin 0 : 10 belongs to Apub

coin 1 : 8 belongs to Bpub

coin 2 : 7 belongs to Cpub

Transaction N

FROMs =

T0, coin 0 : signed with Apri

T0, coin 1 : signed with Bpri

TOs =

coin 0 : 5 belongs to Dpub

coin 1 : 7 belongs to Epub

coin 2 : 4 belongs to Fpub

Transaction M

FROMs =

TN , coin 0 : signed with Dpri

TN , coin 1 : signed with Epri

TOs =

coin 0 : 6 belongs to Ipub

coin 1 : 4 belongs to Jpub

.

The transaction that creates the value is the coinbase transaction T0, which send 10 BTC to the public
key address Apub, 8 BTC to Bpub and 7 BTC to Cpub. To spend those coins, in transaction TN , the
owners must sign with the private keys Apri and Bpri for the output index 0 and 1 of the transaction
T0, respectively. This also applies to the transaction TM with Dpub, Dpri and Epub, Epri.

Figure 2.2: The simplified Bitcoin Transactions

decentralized [163]. The Bitcoin protocol introduces a decentralized transaction database,

namely blockchain [144], shared by all nodes participating in the Bitcoin system. Every

executed transaction is included in the blockchain so that any node can track the balance

of each address at any point in the system and later validate a transaction in the network.

In the Bitcoin network, upon solving a PoW [32], the solver is rewarded with some

bitcoin (BTC). The PoW puzzle is hard to solve but easy to check. It is also a progress-

free puzzle, in which the chance of solving does not increase with effort. This process is

referred to as “mining”, and the individual nodes are commonly referred as “miners” [30].

Once they successfully solve a block puzzle, they will receive a reward and all transaction

fees [34] included in the block. The BTC is bound to the owner of an address, i.e. a

public key (or its hash) whose private key is only known to the owner.

Fig. 2.2 outlines the simplified process of conducting transactions in the Bitcoin net-

work. Two types of transaction are Coinbase [29] and Regular [33]. While the regular

transaction indicates BTCs are transferred from an address [28] to another address; the

Coinbase is used for the introduction of new coins into the system circulation (value cre-

ation). As such, it is a Coinbase transaction that distributes a miner’s reward. For the

Bitcoin system, this reward is 50 BTC in the first instance. Then, it will be halved every

210.000 blocks. By the year 2140, the reward will be reduced to 10−8 BTC.

A blockchain is a sequence of applications of a hash function [115] to a sequence of

transaction blocks. Every block contains the information of the current transactions and

a reference to its previous block header’s hash. Each block in the blockchain is included

with a set of transactions. Each transaction consists of a vector of inputs [35] and a vector

of outputs [36].4 Each input of a transaction T spends a certain amount of BTCs from

a previous unspent output of a concluded transaction T0. To spend the previous output,

4These new outputs are called unspent transaction outpus (UTXOs). When they are used as inputs to a new
transactions, they become spent and cannot be used again as inputs to another transactions.

13

2.1. CRYPTO-BASED PTNS CHAPTER 2. PAYMENT NETWORKS

the input references a tuple of (hash, n). A double-SHA256 is performed on the T0’s raw

data for the hash, whereas the n is the index of the output in T0. Each output of a

transaction T specifies an amount that will be transferred to a Bitcoin address. A block

also hashes all its transactions into a Merkle Tree [134] to maintain integrity.

A payment in Bitcoin starts with the Payer creating a transaction signed with the

private key to unlock the funds associated with the public address. The transaction will

be broadcast to the entire Bitcoin network to notify all miners to verify the correctness

of the transactions, i.e. inputs are UTXOs, input amounts are greater than or equal

to output amounts and the signature is correct, before adding them into blocks. After

solving the PoW and creating a block that includes the transactions, the miners will

broadcast the block into the entire network. Other nodes, upon receiving it, will perform

the validation for the signature, the PoW, the transactions’ correctness, and the integrity

of the block before adding it into their blockchain and broadcast their acceptance.

Bitcoin’s variants Since the launch of Bitcoin in 2009, many cryptocurrencies have been

developed. Some use different hash functions than Bitcoin. Dogecoin [132], Litecoin [127],

and PotCoin [154] uses the hash function of Scrypt [152] which is more memory costly

to deter the use of hardware-based mining devices. Dash [75] uses X11, consisting of 11

different hashing algorithms in a chain, whereas Primecoin [118] require finding a prime

chain composed of Cunningham chain and Bi-twin chain. Nxt [146] applies the Proof-of-

Stake mechanism [31] where the miners must prove the ownership of a certain amount of

cryptocurrency. Many new cryptocurrencies offer extended functionality. At an extreme,

this is represented by Ethereum [77] that uses “programming languages for financial con-

tracts.”

“A built-in fully fledged Turing-complete programming language that can be used to create

“contracts” that can be used to encode arbitrary state transition functions, allowing users to create

any of the systems described above, and as well as many others that we have not yet imagined,

simply by writing up the logic in a few lines of code.”

Interestingly, cryptocurrencies can also be used to incentivize correct behavior and

fairness in MPC [121] by holding crypto tokens in escrow in the claim-and-refund trans-

action flavor where each party makes “conditional” public transactions with each other.

The parties that finalize the computation can claim the fund; otherwise, it is refunded

to the original payer [122,123]. An alternative solution is to commit and lock the crypto

tokens in safe deposits before the computation, only released at the end [119].

Among the variants, Ripple takes a relatively different approach from Bitcoin. Rip-

ple [157] provides the functions of an RTGS and currency exchange of a traditional PTN.

Fig. 2.3 shows the components of the network of the gateways A and B, usually carried out

14

CHAPTER 2. PAYMENT NETWORKS 2.1. CRYPTO-BASED PTNS

Gateway A

1000 USD.A

1000 EUR.A

USER X

200 USD.A

523XRP

USER Y

280 USD.A

100 EUR.A

523XRP

Gateway B

2000 USD.B

800 EUR.B

USER U

250 USD.B

200 EUR.B

523XRP

USER V

100 EUR.A

200 EUR.B

523XRP

will
accept

300

will
accept

600
will

accept
200

will
accept

400
will

accept
550

will
accept

520

will
accept

310

Gateways A and B correspond to financial institutions and provide liquidity, i.e. creating issuances
that represent the external tokens transferred in the network. The clients X, Y, U, and V declare their
trust-line to the gateways A and B. For instance, user X accepts at most 1000 USD.A. The actual
deposit of external values at the various gateways is external to the system as in the E-cash protocol.

Figure 2.3: The Ripple Network Components and Gateways with the External World

by financial institutions such as banks that introduce liquidity into the systems. They

create “issuances” that represent the external tokens transferred in the network. The

gateway A issues USD.A and EUR.A, whereas the gateway B issues USD.B and EUR.B.

For the integrity of the issuances, the gateways will sign the issuances with their private

keys. Out-of-band, other nodes of the network (the clients) deposit some “real world”

money at the gateways to declare a trust-line with a gateway and to accept a maximum

value of their digital currency for transactions with other parties.

An interesting direction stems from a Bank of England report [13] in 2015, which

covers several salient questions for the financial industry, regarding the development of

the technology. One of the primary concerns that central banks may have is losing control

of money-supply as an instrument of policy. This specific question is tackled directly by

RSCoin [94]. This network delegates the monetary supply to a central authority, such as

a bank; however, it utilizes a distributed network of other parties to perform transaction

validation.

RSCoin simply delegates the value creation to a Central Bank since the Central Bank

is a Central Authority assumed to be honest. To generate value, the Central Bank signs

a transaction to allocate the value to an address. The RSCoin network provides strong

15

2.2. PTNS CHALLENGES AND SOLUTIONS CHAPTER 2. PAYMENT NETWORKS

transparency and audit capacity of a central monetary provider and the attractive features

of a distributed transaction system (chiefly decentralized ownership). However, it suffers

from relying on the Central Bank to merge the high-level blocks, creating a central point

of failure let alone a computational bottleneck.5

RSCoin can be considered as a traditional digital PTN with cryptography extension

borrowed from Bitcoin. The Central Bank is still on the top of the hierarchy and maintains

the ultimate ledger.

Privacy preserving cryptocurrency Bitcoin and its previous variants only provide

pseudonymity, i.e. identity in disguise, but not full anonymity, since the transactions

can still be linked by analyzing the transaction graph [25,136].

In contrast to the preceding types, Monero offers Payer and Payee stronger privacy by

hiding the connection between the Payer and the Payee’s addresses and applies Cryptonote [160]

that utilizes a traceable link signature [86] to confirm the validity of the transactions.

ZeroCoin [139] is a combination of the E-cash scheme and Bitcoin. ZeroCoin is based on

the Bitcoin protocol; however, its protocol provides additional anonymity for the network

users by allowing the user to “mint” the basecoin (BTC) into a ZeroCoin to hide the

origin of the Payer in a subsequent transaction.

ZeroCash [164], a protocol that succeeded ZeroCoin, offers stronger anonymity and

privacy. ZeroCoin is only a “coin washing service” where the origin of the Payer is hidden;

but, the Payee and the transacted value are still open, whereas ZeroCash is an actual

privacy-preserving payment scheme, in which both Payer, Payee, and the transacted value

are shielded. ZeroCash was deployed as zcash [185]; however, the system (Sapling) required

an initial setup to generate an almost 800 MB data to store the proving key and to verify

the key for zero-knowledge proof [19]. Such setup ceremony is costly but achievable [20,40].

2.2 Security Challenges and Solutions for Payment Transaction

Networks

Integrity and Availability are obvious needs.6 However we should also consider two addi-

tional security properties: Confidentiality and Anonymity.7

5In Europe only German and Italy’s central banks have the computational horsepower to perform the task.
6Integrity in a PTN is preserved if the correct transaction validation rules are followed. In the DAO’s code

(Chapter 1), the validation rule was wrong: it proceeded with account clearance prior to ledger update, therefore
integrity was broken. Availability refers to the degree to which the PTN is in an operable and committable state
when handling a transaction.

7With Confidentiality, the value is unknown. With Anonymity, the owner is unknown.

16

CHAPTER 2. PAYMENT NETWORKS 2.2. PTNS CHALLENGES AND SOLUTIONS

Table 2.1: Loss of value

Notes: The first threat to PTN integrity and availability is the possibility of a party to lose money. A key
distinction is whether such losses are systemic failures or due to individual actions, either by a victim’s lack
of care or by malicious activities of other parties. From the table, decentralization of PTNs make individual
thefts harder as it requires changing the value of the global ledger. However, the Payee can still incur a
loss in the transaction owing to lack of care. Technological failures to achieve consensus (e.g. Bitcoin forks)
introduce the systemic risk parallel to the failure of a central bank.

Threats Others
Benefit

Victim
Actively
Involved

Examples

Systemic Loss - - CA fails and all values are lost; Blockchain forks.

Individual Loss - yes Lose the Serial#, private keys.

Fraud yes yes Over-drafting; Over-spending.

Theft yes - Unauthorized-spending.

We categorize the actors of a PTN into Payer, Payee, Central Authority (CA), and

Broker.

Payer and Payee A typical PTN transaction must involve at least the main actors: a

Payer (who pays) and a Payee (who is paid).

Central Authority A step in a payment system is an individual responsibility if we need

a specific trusted party, e.g. a CA, to perform a particular action (e.g. the central

bank signs the coin-base transactions and broadcasts it to the miners in RSCoin).

Without the CA’s actions, the step is invalid, no matter what the others do (e.g.

the miners cannot generate a coin-base transaction without the CA’s signature in

RSCoin). In a PTN, there might be more than one CA, e.g. in Ripple, each (issuing)

gateway is a CA. However, they are independent and have ultimate authority in

their related transactions. In Fig. 2.3, the gateway A that issues USD.A can only

sign the issuance transactions in USD.A, whereas the gateway B that issues USD.B

can only sign the issuance transactions in USD.B [158].

Brokers A step in a payment system is collective responsibility if the authority is shared

among multiple untrusted but verifiable actors, i.e. the Brokers, who converge on a

decision using a pre-defined rule. For example, Bitcoin transactions are aggregated

as a new block into the blockchain by the miners using the longest chain rule [144].

2.2.1 Integrity and Availability

The criteria for integrity and availability threats classification are whether others benefit

from the victim’s loss and whether the victim is actively involved in one’s loss. We identify

three high-level integrity and availability threats: loss (systemic and individual), fraud,

and theft as revealed in Table 2.1.

17

2.2. PTNS CHALLENGES AND SOLUTIONS CHAPTER 2. PAYMENT NETWORKS

Systemic Loss Systemic Loss in a PTN is not caused by an individual but rather by

some intrinsic fragility of some of the system’s components. In the presence of CAs, the

obvious sources of fragility are the (un)trustworthiness of the CAs. An example is the

failure of Central Banks. By design, CAs can violate integrity by arbitrarily printing

money into the system; thus, protection against their failure must be dealt with outside

the protocol.

While all token-based payment systems suffer from systemic risk such as attacks on

crypto, e.g. quantum computing, collective responsibility PTNs are amenable to an ad-

ditional different type of systemic risk, namely the failure to reach consensus [126]8: the

blockchain forks and some legitimate transactions are excluded from the main chain. This

threat is not present in traditional PTN.

We illustrate this in Fig. 2.4 for the case of Bitcoin. At some point, several nodes

are generating new blocks or proposing transactions at the same time. The members of

the PTN closer to the promising payers may create different blockchains. In that case,

the blockchain is forked and every node will maintain the fork until conflict resolution

mechanisms kick in. In Bitcoin, the consensus mechanism is based on the presence of a

“longer” chain. The longer chain becomes the main chain, and the other tentative chains

are considered invalid. The blocks in the invalid chain are “orphaned” blocks. From the

PTN’s perspective, they are all potentially valid but not consolidated payment promises.

Every transaction in the orphaned blocks should be returned to the transaction queue to

be added in the new block. As shown in Fig. 2.4, the transactions in blocks 1a, 2a, 2b, 3a,

and 3b are orphaned transactions because of previous fork resolutions. At block n − 1,

the chain suffers from three forks (blocks na, nb, and nc) and must wait for the next fork

resolution.

The classic distributed consensus problem is described as a set of n participants, out

of which t are possibly faulty, try to agree on a single value v drawn from a set of values

V proposed by the participants. The most trivial solution is majority voting. The classic

paper on Byzantine agreement on synchronous system [126] focuses on three properties

that an agreement protocol must hold: (i) Validity: The single value v must be initially

proposed by non-faulty participants. (ii) Agreement: Every non-faulty participant must

agree on the same value v. (iii) Termination: The agreement must be reached in finite

time. The robustness of a Byzantine protocol is measured in terms of the number of faulty

participants that it can tolerate. It is proven that Byzantine agreement is only possible

with n ≥ (3t+ 1) [126].

8We do not consider the scenario of dishonest majority here since the notion of “correct” evolution may be
open to debate. When Ethereum changed its rules to retroactively undo the DAO issue [63], many networks
were acting “dishonestly” according to the original rules; this did not result in the complete breakdown of the
distributed system. The dissenting party just divided the community. The same could happen here.

18

CHAPTER 2. PAYMENT NETWORKS 2.2. PTNS CHALLENGES AND SOLUTIONS

Genesis Block

Block 1b

Block 1 Block 2

Block 2b

Block 2a

Block 3b

Block 3a

. . . Block n− 1

Block nc

Block nb

Block na

Notes: After n−1-blocks, three blocks (na, nb, nc) have been proposed concurrently. The global chain
is forked until some miners append a new block to one of the three alternatives. Some previous forks
in the past at block 2 resulted in orphaned transactions (in grey). In most blockchains (e.g. Bitcoin,
ZeroCash), those transactions are not consolidated in the system, no matter whether they are valid
from the perspective of a “normal” payment system. The situation is particularly dire for those in the
forked chain 3b : 2b : 1: they have added transactions along what they thought was an eventually legal
chain. The payers must re-play some transactions along the entire subchain (both 2b and 3b) if they
want the transactions to be inserted in the final ledger. Some new blockchains (e.g. IOTA [110]) are
more flexible since they allow smaller branches to merge with the bigger ones.

Figure 2.4: The Systemic Risk of Blockchains: Forked and Orphaned Transactions

A further FLP impossibility result, applicable to deterministic and asynchronous sys-

tem [82] has proven that even with a single faulty-participant, the distributed consensus

cannot be achieved in asynchronous settings because the nodes fail to differentiate a failure

from a delay. To circumvent the impossibility results, researchers introduced techniques

such as randomization [155], failure detectors [50] or assume partial synchrony [76]. In

such systems, safety is always prioritized over liveness.

The Bitcoin network offered a solution to a variant of the Byzantine agreement problem.

The Bitcoin network’s consensus problem is different from classic ones as the number of

nodes in the network is exceptionally large and dynamic. The consequence is that nodes

cannot decide on the value of the majority. The nodes will vote for the “chain with

most work” according to the blockchain by referencing to the last block of that chain in

the new block. Additionally, the block generation rate is technically maintained at 10

minutes for the propagation of block across the entire network so that every node shares

the same blockchain. This solution practically allows the tolerance of faulty-nodes up to

50%. However, a consequence is that the transaction clearing speed is unacceptably slow

for any financial implementation (e.g. the Chicago Mercantile Exchange marks to market

millions of trades in less than a minute), even though several variants of the protocol are

introduced to improve the transaction clearing speed [79,167].

Individual Loss, Fraud and Theft Individual Loss happens when the E-cash or Zero-

Coin owner loses the serial numbers. Another possibility is when the Bitcoin or RSCoin

network users lose their private keys. The threat of losses due to individual sloppiness

or misfeasance (Fraud and Theft) that are present in traditional and decentralized PTNs

can be broadly characterized in the following classes:

19

2.2. PTNS CHALLENGES AND SOLUTIONS CHAPTER 2. PAYMENT NETWORKS

Over-Drafting When the Payer sends a transaction whose value exceeds one’s available

funds. An example would be the E-cash Payer withdraws a 10$ coin from the bank

when the balance is less than 10. Another example is that a transaction in Bitcoin,

ZeroCoin, or RSCoin network consists of outputs whose value is larger than the total

inputs. In the Ripple network, it is a transaction that pays 1000 USD.A when the

payer only has 800 USD.A of credit available.

Double-Spending When the Payer can spend a token twice. The simplest double-

spending case in E-cash where Payer uses the same Serial# twice.

Unauthorized-Spending A Payer spends another one’s money or changes the value in

another’s account.

In Table 2.2 we present the basic categorical countermeasures for the mentioned fraud

and theft threats as well as the example of countermeasures from some existing PTNs.

2.2.2 Confidentiality and Anonymity

Threats to confidentiality and anonymity, i.e. information disclosure, involves answering

three questions below. The example countermeasures against loss of either confidentiality

or anonymity are summarized in Table 2.3.

Instantaneous Networth At the time t, can an attacker identify the total value v of a

nominal identity I?9

Transient Value At the time t, can an attacker know about a transaction of total value

v between two nominal identities I1 and I2?

Persistent Identity Can an attacker link two nominal identities I1 at time t and I2 at

time t′ > t?

E-cash relies on the trusted bank to preserve Instantaneous Networth and Transient

Value. The Persistent Identity of the Payer in a transaction is guaranteed because the

bank cannot trace back the original owner of the coin from the Serial# owing to the Blind

Signature scheme [53].

Bitcoin, ZeroCoin and RSCoin do not address Transient Value as every transaction is

recorded publicly in the blockchain, making their Instantaneous Networth dependent on

Persistent Identity.

9For the avoidance of doubt, in this scenario we do not consider the “physical” identity of the entity behind
the nominal identity in the PTN. Taken on its own, a Bitcoin address has no less (and no more) anonymity than
a traditional bank account number. It is only the information held by the bank in its enterprise information
system, usually outside the interbank payment network, that allows to associate a 27 alphanumeric international
bank account number to a human or a legal entity.

20

CHAPTER 2. PAYMENT NETWORKS 2.2. PTNS CHALLENGES AND SOLUTIONS

Table 2.2: Loss of value countermeasures

To mitigate Over-Drafting, Double-Spending, and Unauthorized-Spending, validation rules are needed while
Individual Loss is usually prevented by multiple (and partial) backups of the authentication secrets. In E-
cash, if a client loses the signatures but still keeps the serial numbers and the blinding factors, E-cash bank
can resend the blind signatures for the client to recover the lost coins. If the system itself fails to provide a
countermeasure the clients may rely on some external mechanisms to counter the threat, e.g. a Bitcoin user
may back up his private keys storage to prevent the loss of the private keys.

Threats Over-Drafting Double-Spending Individual Loss Unauthorized-
Spending

Counters CA or Brokers
must check the
balance of the
Payer or the to-
tal amount of the
spending coins.

CA or Brokers must check
the status (spent/unspent)
of the token.

Backup mechanisms. CA or Brokers
must authenti-
cate the Payer
or the payment
token.

E-cash CA checks
Payer ’s balance
before signing
the blinded
Serial#. CA
checks coins
value in a trans-
action.

CA verifies the Serial#
against the spent Serial#
DB.

CA stores the last n batches
of blinded Serial# and the
corresponding blind signa-
tures, send back to Payer.
Payer unblinds the blinded
Serial# and the blind signa-
tures to recover the coins.

CA checks the
signature on the
Serial#.

Bitcoin Brokers check
that input ≥
output.

Brokers check the inputs of
outputs of previous transac-
tions are unspent.

Not Provided Brokers check
the signature.

ZeroCoin Same as Bitcoin. Brokers check the Serial#
are unspent and belong to
the set of minted ZeroCoins.

Not Provided Same as Bitcoin.

Ripple Brokers ver-
ify balance ≥
output.

Not Present Not Provided Same as Bitcoin.

RSCoin Same as Bitcoin. Same as Bitcoin. Not Provided Same as Bitcoin.

Table 2.3: Information disclosure countermeasure examples

System Instantaneous Networth Transient Value Persistent Identity

E-cash The trusted CA keeps the
balance DB private.

The trusted CA keeps the
transaction private.

Guaranteed for Payer. CA can
link the Payee but it is trusted.

Bitcoin Dependent of Persistent
Identity due to lack of
Transient Value.

Not Provided Payer and Payee use a different
key pair per transaction but only
obtain Pseudonymity.

ZeroCoin Only applicable for Payer.
For Payee, it is dependent of
Persistent Identity owing to
lack of Transient Value.

Not Provided Only applicable for Payer as s/he
applies minting and redeeming.
Payee uses a different key pair
per transaction but only obtain
Pseudonymity.

Ripple Not Provided Not Provided Not Provided

RSCoin Same as Bitcoin. Not Provided Same as Bitcoin.

ZeroCash Fully supported, using Commitment Scheme, Merkle Tree and Zero-Knowledge .

Bitcoin and RSCoin provide only pseudonymity (i.e. identity in disguise, a weaker

form of anonymity) in terms of Instantaneous Networth as this property is dependent on

21

2.3. BEYOND PTNS CHAPTER 2. PAYMENT NETWORKS

Persistent Identity for both the Payer and the Payee. The Payer and the Payee obtain

pseudonymity by using different key pairs as pseudonyms in transactions. However, those

transactions can be linked through transaction graph analysis [25,136].

ZeroCoin provides anonymity for Persistent Identity (and Instantaneous Networth)

for only the Payer. To mint a ZeroCoin, a client generates a random serial number

and encrypts it into a coin with a second random number. Particularly, ZeroCoin uses

Pedersen commitment [151] for minting. Then, miners added the coin to a cryptographic

accumulator [22]. The minting operation requires a Bitcoin transaction that spends some

BTCs to obtain some ZeroCoins. To spend a ZeroCoin, a Payer must first redeem it into

BTC using a zero-knowledge proof [165]:10 (i) the spending coins belong to the set of

minted ZeroCoins, and (ii) the Payer knows the serial number and the random number

corresponding to the spending coins.

ZeroCash fully supports confidentiality and anonymity requirements. However, Ripple

fails to provide any countermeasures for confidentiality and anonymity threats. Similar to

ZeroCoin, ZeroCash uses a Commitment Scheme [95] for confidentiality, a Merkle Tree [137]

for anonymity in conjunction with the zero-knowledge proofs [21] for integrity. To create

a transaction in ZeroCash, the Payer broadcasts the payment information and some zero-

knowledge proofs. Then, the miners create the zero-knowledge proofs: (i) the spending

coin belongs to an unspent set of coins maintained as a Merkle Tree; (ii) the Payer knows

a secret parameter to unlock the coins; and (iii) the coins’ amount is within available

funds.

2.3 Beyond Payment Transaction Networks

A futures contract is a standardized agreement between two parties to buy or sell an

underlying asset, at a price agreed upon today with the settlement occurring at some

future date [169]. A futures contracts is a “promise” to buy or sell, and this “promise”

can be traded. Such trading is carried out in a double auction market operated by a

centralized clearinghouse called Futures Exchange [5], such as the CME. On the CME,

futures contracts range from bushels of corn to Euro/US$ exchange rates. Recently, the

Chicago Board Options Exchange (CBOE) and CME launched Bitcoin futures markets.

These are ‘cash-futures’, as they are settled in cash. Eurodollars futures are the largest

world market by notional volume: in quadrillions of dollars per year [181].

From a cryptographer’s perspective, a Futures Exchange is just an instance of a reactive

ideal security functionality.11 In that manner it is very similar to a PTN except that

10Informally speaking a zero-knowledge proof is a method one party can prove to another a given statement,
without conveying any additional information apart from the statement is indeed true. For further detail see §5.3.

11A reactive functionality is a functionality that keeps states.

22

CHAPTER 2. PAYMENT NETWORKS 2.3. BEYOND PTNS

futures trading introduce advanced functionalities that are more complex than withdraw

and deposit hence it requires further investigation.

In particular, Traders can ‘quote’ futures by sending the Exchange a price and a

notional volume of assets at which they will buy or sell (a limit order), or initiate a

trade by placing an order at the best price from the standing quotes (market order). The

Exchange intermediates between buyers and sellers, advertises the orders in a Limit Order

Book (price discovery), matches their orders, and ensures that everybody deposits enough

money to pay for his promises. For the latter, the Exchange collects an initial margin

from traders and keeps enough money to keep their promises (maintenance margin) by

calling them to deposit more if needed (margin call12). If the traders fail to fulfill the

margin call, the Exchange will liquidate the open positions (contracts bought or sold) of

the Traders and nets them out.

Once traders deposit real money to the exchange, cash becomes numbers on a ledger of

the CME. Thus, digital promises to be settled by digital transfers are particularly suited to

illustrate the security challenges of building such an architecture without worrying about

crypto-tracing physical barrels of oil.

Simple PTNs however can be used to bootstrap a futures exchange. For the market

initialization, we observe in practice one cannot initialize a market with a self-claimed

account. The cash that gets deposited into the market must be backed by a verifiable

source where the debit is acknowledged by every market participant, e.g. zcash [185]. We

can assume that the initialization of the market takes such verifiable source as input, e.g.

we can use a digital cash network that supports a privacy-preserving payment scheme,

e.g. zcash, for bootstrapping the market’s initial cash.

A key question is whether general financial intermediation [5] as embodied by a Futures

Exchange [169] can be effectively replaced by distributed protocols in the same way cryp-

tocurrencies such as Bitcoin [144] or anonymous payment systems such as ZeroCash [164]

challenges traditional payment systems.

Decentralized price discovery has been proposed to be one of such differences [57];

however, we can argue that there are deeper implications for cryptographic protocol design

because security and economics interact. Thus, the preferred crypto solution might not

be economically viable, and the obvious economic solution in a centralized setting might

be a security disaster in a distributed setting. This poses several challenges other than

those we have discussed in this chapter to implement secure, distributed and economically

viable financial exchanges. For instance, confidentiality is required to avoid market failures

(and not just for ‘privacy’), security evidence behaves non-monotonically in the actions of

honest parties, and MPC may introduce more problems than it solves. Even a good old

12It in the old days of open-cry trading floors; this was a voice call. Now it is an API.

23

2.4. SUMMARY CHAPTER 2. PAYMENT NETWORKS

notion such as fail-safe needs to be revised. In the next chapter we will discuss in details

these challenges and show how to enucleate the design principles to address them.

2.4 Summary

We have reviewed the traditional payment networks and a high-level description of both

old and new crypto-based payment networks. Some interesting security challenges are

posed by such systems, and the system designers must rely on various solutions to address

these challenges. Such challenges are considered as basic challenges for more advanced

financial intermediation such as a futures exchange. To decentralize a futures exchange,

we must address more complex (and possibly specific) challenges.

24

Chapter 3

Security Challenges and Design

Principles for Distributed Financial

Exchanges

Implementing secure, distributed, and economically viable financial exchanges

radically challenges the traditional constructs, such as zero knowledge and se-

cure multi-party computation (MPC). Confidentiality is required to avoid mar-

ket failures (and not just for ‘privacy’). Security evidence behaves non-monotonically

in the actions of honest parties, and MPC may introduce more problems than

it solves. Even a good old notion such as fail-safe must be revised. To boost the

discussion of such practical challenges, we enucleate the design principles to

build a distributed Futures Exchange. This chapter starts with an introduction

to our chosen example, a Futures Market Exchange, a landmark institution of

financial intermediation. Next, we identify the security challenges and distill

the corresponding design principles to address the challenges. Noticeably among

the challenges, we introduce a new attack based on price discrimination when

traders’ anonymity is broken.

3.1 An Introduction to Futures Markets

To illustrate how markets work, we explain the key trading mechanisms and discuss

some aspects of the market microstructure of futures contracts [106, 108]. Fundamental

participants in a futures market include traders, exchanges, and regulatory bodies as

summarized in Table 3.1.

Traders post buy (bid) or sell (ask) orders for a specific futures contract in the market.

25

3.1. FUTURES MARKET CHAPTER 3. SECURITY PRINCIPLES

Table 3.1: Key Compositions and Characteristics of Futures Market

Traders Characteristics:
Possible Positions Buy-side traders holding long positions. Sell-side traders holding short positions.
Possible Actions Post (Market/Limit Orders) and Cancel (Limit) Orders.
Exchanges Main Functions:
Price discovery and
order matching

Disseminating the real-time market data to market participants by providing a
central limited order book (see Fig 3.1): an electronic list of all waiting buy and sell
quotes organized by price levels and entry time. Matching engines use algorithms
to match buy and sell quotes with a price and time priority principle.

Risk management
and clearing of
orders

Clearing house is responsible for having a daily/final settlement by the process of
“mark-to-market”, so that no pending promise (to buy or sell) and no debt remains
unfulfilled. Traders need to deposit an initial margin and maintain a minimum
funding in the margin account above the maintenance margin; otherwise, they will
receive a margin call for additional funding. Traders failing below the minimum
are forced to liquidate their open positions and netted out.

Market fairness and
absence of price dis-
criminations

For fairness, traders are anonymous as exchanges hold all info about them and
never reveal it to others. A trader only see the details of her own orders and
not even the ID of the counterparty of an order matching her own order executed
through the exchange, as this would allow for price discrimination.

Major Players
Chicago Mercantile
Exch.

The largest derivatives market with 3.53 billion of contracts traded in 2015 [87].

Eurex Exchange
(Eurex)

The largest European derivatives market with 2.27 billion of contracts traded in
2015 [87].

Regulatory
Bodies

Futures markets are regulated by independent government agencies to protect
market participants and prevent fraud and manipulation activities, such as the
CFTC [176] and the SEC [177].

The trading position characterizes a trader as a buyer or a seller: sellers take short posi-

tions by selling futures contracts; buyers take long positions by buying futures contracts.

Obviously, buyers prefer to purchase contracts at lower prices and sellers prefer to sell

contracts at higher prices. Traders can also cancel orders immediately after having posted

them to adapt to fast-changing markets (a heavily used feature). There are two types of

trader in a market: the hedger and the speculator. Hedgers take a position in the market

opposite of their physical position as they want to guarantee physical delivery, e.g. an

airline company participates in oil futures to guarantee they have the budget to buy oil

at a future point. Unlike hedgers, speculators have no interest in taking delivery, but

instead try to profit by assuming market risk, i.e. speculators make a profit by predicting

the price fluctuation to buy low and sell high. Cancellations come from those speculators

if they think that the position is not profitable any longer but a market exchange cannot

predict in advance whether an order will be canceled.

The Exchange is a centralized intermediary between buyers and sellers that guarantees

price discovery, matching, and clearing. It manages risks and guarantees the fairness of

the market (see Table 3.1 for the economic perspective).

26

CHAPTER 3. SECURITY PRINCIPLES 3.1. FUTURES MARKET

Sell
Limit
Orders

Price = 6.2, Volume = 100
Sell level 3

Price = 5.5, Volume = 120
Sell level 2

Price = 5, Volume = 260
Sell level 1

Mid price = 3.5

Buy
Limit
Orders

Price = 2, Volume = 320
Buy level 1

Price = 1.5, Volume = 170
Buy level 2

Price = 0.5, Volume = 90
Buy level 3

An order book with limit orders. The dashed line is the average mid-price calculated by the CME as
the (unweighted) average of the best sell and the best buy price. Traders’ holdings are offset against
the mid-price.

Figure 3.1: Order Book

Price Discovery An exchange disseminates the real-time status of market information

to traders through an electronic list of all waiting buy and sell orders. This list, called the

central limited order book, includes (at least) the volume of contracts being bid or offered

at each price point, or market depth while keeping anonymous the traders’ identities.

This list is illustrated in Fig. 3.1.

Matching and Clearing Traders can post new orders (and cancel their pending orders)

through the exchange trading platform. Fig. 3.2 illustrates the basic order pathway

[65,101] and the two basic order types: market orders and limit orders [159].1

Market orders are buy or sell orders with a specific amount to be executed immediately

at current market prices. As long as there are sufficient sellers or buyers in the market,

market orders will be matched at the best prices (best bid or best ask) available at the

relevant time. Limit orders are orders to buy contracts at no more than specific prices or

to sell contracts at no less than specific prices. They may not be executed immediately or

even never be executed. Since each order has a unique timestamp, quotes with the same

prices entered earliest must be matched first. If the opposite order already exists in the

order book, market orders are given the highest priority in the matching process. Buy

and sell orders at the same prices are matched by the Exchange until the required volume

of contracts is reached. Matched orders will go through a clearing and settlement process

to complete a transaction [153]. The exchange usually operates its own clearing house

responsible for a daily settlement for each futures contract by the process of “mark-to-

1The limit order is the most basic order type of a market where both price and volume are explicitly specified.
A market order is a special case of the limit order where the trader only needs to specify the volume and the price
is implicitly the current best (buy or sell) price. For the exposition, these two are sufficient. Other types of order,
e.g. a stop-loss order where setting a stop-loss order for 10% below the price at which you bought the asset will
limit your loss to 10%, or a trailing stop order to buy or sell a security if it moves in an unfavorable direction,
can be considered as limit orders with additional conditions, which can be checked with an additional MPC in
protocol construction in Chapter 4. They are indeed also interesting for consideration (e.g. we can replace the
MPC with a tailor-made hybrid protocol) but we do not consider them in this thesis and leave them to future
work.

27

3.1. FUTURES MARKET CHAPTER 3. SECURITY PRINCIPLES

Post Order

Market Order
at market price

Limit Order
at specific price

Cancel OrderMatch Order

Fill Completely Fill Partially

Leave the remaining
as a Limit Order at
the old market price

with-
out
price

with
price

Figure 3.2: The Order Pathway

Table 3.2: Samples of Market Activity

The table shows the maximum number of active traders (#T), number of posted orders (#PO), and
matching orders (#MO) for some futures contracts (Eurodollar being world’s largest). Cancelled
orders’ number is close to that of posted orders so they are not reported. Data are obtained from the
CME tapes via the Thomson Reuters Tick History database [175].

Contract Lean Hog LHZ7 Eurodollar GEH0
Trading Day #T #PO #MO #T #PO #MO

Low 15 1067 46 14 23469 85
Normal 17 3580 146 199 267089 7907
High 33 6709 536 520 376075 8402

market”, which values the assets in futures contracts at the end of each trading day, i.e.

all traders offset current position to 0 (the long traders who have bought some contracts

must sell all of their holding volume while the short traders who have sold some contracts

must buy back all their owed volume) using the current mid-price. The profit and loss

are settled between long positions and short positions.

Table 3.2 illustrates the variability of the markets by comparing some days for the

Eurodollar, the largest market in the world, together with Lean Hog, a less frequently

traded futures.

Risk Management The exchange plays an important role as the counterparty of each

transaction to minimize the credit risks and to provide transactional integrity. A key

functionality of the exchange is helping traders to settle their obligations (i.e. their

matched orders). To this extent, the exchange uses a margin system: traders deposit

a certain amount of good faith funding into their margin account to initiate their daily

trading activities (the initial margin). Furthermore, traders must maintain a minimum

28

CHAPTER 3. SECURITY PRINCIPLES 3.1. FUTURES MARKET

Table 3.3: Informal Security Requirements

Property Description
Availability of Order Book
with Confidentiality of
Trader Inventory

The exchange holds all trading information including prices, volumes, mar-
gins, and traders ownership of orders, etc. It has to protect a trader’s
inventory without leaking it to other traders.

Market Integrity and Loss
Avoidance

The exchange implements trading (execute matching orders), and guar-
antee final settlements (traders’ margin meets posted orders) after each
event for the integrity of the marketplace.

Trader’s Anonymity The exchange must prevent the other traders from linking the orders of the
same trader. This is done by managing an anonymous central limit order
book where only bid and ask prices are publicly available. In this way,
traders will be unable to identify and forecast others’ trading strategies.

Trader’s Precedence Trace-
ability

The exchange must link the limit orders to the individual traders so that
matching orders are accrued to the traders who made them in the exact
order in which they where posted.

amount of guaranteed funding (the maintenance margin). If traders’ margin balance

falls below the maintenance margin due to volatile prices, they will receive a “margin

call” asking them to deposit additional funds into the account. The margin system also

provides leverage to traders as they can control a large value of futures contracts with a

relatively small amount of capital.

Minimizing Price Discrimination The exchange must guarantee that traders cannot

exploit the information on the cash (or lack thereof) and leverage of other traders [124].

When traders open a trading account in the exchange, they must submit personal identi-

fication documents to verify their credentials, and the exchange will provide an operator

ID to each trader. Yet, not even their IDs would be visible to the other traders. A trader

only sees the details of her own orders but not the IDs and orders of the third parties

matching her own executed orders through the undisclosed exchange. Anonymous trading

allows traders to execute transactions without the scrutiny and estimation of the market.

3.1.1 Informal Security Requirements

From a security perspective, an exchange is clearly an instance of a multi-party reactive

security functionality [46]: every agent must satisfy individual constraints (monotonic),

and the system as a whole must satisfy global constraints (possibly non-monotonic).

The economic requirements in Table 3.1 can be directly transformed into the (informal)

security requirements in Table 3.3.

29

3.2. CHALLENGES AND PRINCIPLES CHAPTER 3. SECURITY PRINCIPLES

3.2 Security Challenges and Design Principles

We borrow the style of Abadi and Needham [1] to enucleate the novel design principles and

to illustrate our points. Some of them are just an improvement of existing constructions,

others are new ones specific to financial exchanges.

3.2.1 Protect against Discrimination

While integrity is an obvious need, confidentiality and anonymity seem less critical for

financial intermediation.

Indeed, a widely held belief is that people want confidentiality and anonymity to

avoid snooping governments, or for doing dodgy transactions, but do not need it for the

functioning of a market. After all, it is possible to see the transacted value and trace all

transactions to a Bitcoin’s ID using public information in the blockchain. Yet, this hardly

stopped Bitcoin from thriving [164].2 The similar broken anonymity issue might happen

to Prediction Market [57], which applies to the design principles of Bitcoin to decentralize

the functionality and governance of a market.

Unfortunately, this belief is wrong in our scenario. If confidentiality and anonymity

fail, traders can strategically post or cancel limit orders so that other traders will be

maliciously forced out of the market. A market vulnerable to those price discrimination

attacks may collapse as traders will just flock away to avoid the risk of being “squeezed”.3

Principle 1 (Protect against Discrimination). If the knowledge of actors’ attributes can be

used against them for discriminatory practices, it is prudent to protect the confidentiality

of those attributes for the actors to bid anonymously (at least for what concerns those

attributes).

We illustrate such an attack scenario in Fig. 3.3. Assume Alice, Bob, Carol, and Eve

are in a market. Alice starts with 1400 available cash while the other traders start with

1200. Alice accumulates 90 promises to sell (short positions) at $10 each. Each trader

buys 30 contracts from Alice at this price. To estimate a trader’s exposure, the Exchange

assumes that all contracts are bought and sold instantaneously at the current mid-price

of $10.4 To fulfill her promise to sell 90 contracts, Alice must first buy from the current

2In fact, Bitcoin is considered as a more successful cryptocurrency compared with the fully privacy-preserving
ZeroCash [164]. According to CoinMarketCap [64], as of May 2019, the market cap of Bitcoin was over $100
billion compared with $300 million market cap of zcash, the production version of ZeroCash.

3As noted by Kyle [124], “The anonymity of futures markets tends to change the nature of the market dramat-
ically, because knowledge of who is trading what is in many cases a valuable commodity itself. Traders sometimes
go to great lengths to conceal their identities while simultaneously going to equally great lengths to figure out
what other traders in the market are doing.

4We use the unweighted mid-price for simplicify of exposition.

30

CHAPTER 3. SECURITY PRINCIPLES 3.2. CHALLENGES AND PRINCIPLES

market price. This would reduce her cash availability to 1400 − 90 · 10 = 500. This

situation is shown in Fig. 3.3 (middle left). Alice would definitely want the price to shift

towards her favorable direction (to decrease to $8) for her to reap some gains, say $192

(top right, where Alice’s position increases to 692 by wiping the order at $9).

However, if Eve knows that Alice is a small investor who is unable to pour more cash,

before Alice can wipe Bob’s order, she can post buy orders at slightly higher prices (or

convince some other traders to cancel their buy order at a lower price). In this way,

the mid-price changes and pushes the liquidation price of Alice’s position higher. Alice

could sell to Eve’s buy order, but this pushes the contracts more deeply in red and makes

the market price rises further, worsening her lack of cash. Eventually, Eve, by simply

canceling her own sell order at $11, makes the price reach $16 (Fig. 3.3, bottom right),

Alice’s net position is negative below the margin call threshold, and Alice is cashed out

of the Exchange, with a realized payout to the other traders.

Notice that these postings required traders to increase their risk position as their

orders could have been met by Alice. If they were unaware who Alice was and her

financial capacity, they would not have run the risk. Lack of confidentiality and anonymity

makes the attack risk-free. Other traders can cancel their orders to decrease the price

back to $10 or even lower (when Alice’s trades would have been profitable). However,

Alice is unable to benefit from this price as she has already been cashed out. Other

traders did not actually trade anything and still forced out Alice by adjusting their buy

quotes strategically and discriminated Alice’s price: their pricing strategy could only work

because they knew exactly the amount in Alice’s pocket and therefore how much needed

was to nudge her out. The opposite is generated from a long position when the market is

artificially deflated. Was Alice unwise? No, if Eve did not know that Alice was the cash

strapped pensioner, but rather, could have possibly been a deep-pocketed pension fund,

Eve would not have even tried to nudge her out.

We cannot create anonymity from scratch unless we assume that multiple actors are

willing to join a protocol step to hide the origin of the intended action, e.g. using an MPC

such as the Dining Cryptographer Network [54]. However, this violates another constraint

we dub ‘proportional burden’ in a later discussion. To preserve anonymity created by the

participants using an anonymous communication channel (such as Tor, like Bitcoin does)

the protocol can combine such network with some privacy-preserving mechanisms such as

Merkle Tree and Zero-Knowledge Proofs to achieve stronger anonymity as in Anonymous

E-Cash [163], ZeroCash [164, Section I-B] or FuturesMEX (§4.4). Additionally, if the

message contains the identity of a trader, e.g. in an Exchange where a limit order includes

the price, volume and the identity of the posting trader, the communicated information

must be unlinked from the posting trader’s identity. To guarantee this requirement, in the

31

3.2. CHALLENGES AND PRINCIPLES CHAPTER 3. SECURITY PRINCIPLES

Round t
Order Book

Price = ($11+$9)/2 = $10

Buy side Sell side

-10 @ $23
-15 @ $11 (by Eve)

+12 @ $9 (by Bob)
+23 @ $5

Traders

Trader Cash Contracts Position

Alice 1400 -90 500
Bob 1200 30 1500
Carol 1200 30 1500
Eve 1200 30 1500

Round t′ > t, good for Alice
Order Book

Price = ($11+$5)/2 = $8

Buy side Sell side

-10 @ $23
-15 @ $11

+12 @ $9 (Alice to Bob)
+23 @ $5

Alice gains a benefit of $192

Trader Cash Con. Pos.

Alice 1508 -102 692
Bob 1092 42 1428
Carol 1200 30 1440
Eve 1200 30 1440

Round t′ > t, bad for Alice
Order Book

Price = ($9+$23)/2 = $16

Buy side Sell side

-10 @ $23
(canceled by Eve) -15 @ $11

+12 @ $9
+23 @ $5

Alice is netted out
Bob, Carol and Eve divide Alice’s money

Trader Cash Contracts Position

Alice 1400 -90 -40
Bob 1200 30 1680
Carol 1200 30 1680
Eve 1200 30 1680

To reap some benefits, Alice would
decrease the price, e.g. to $8, Al-
ice needs to wipe the order at $9;
she can simply perform this herself.
At this price, she gains a benefit of
$192.

Alice posts
a sell order

at $9

If confidentiality and anonymity fail. Before Alice
can do anything to decrease the mid-price, Eve,
knowing that Alice is tight in cash, could run an
evil scheme to net Alice out by making the price
increase to $16, e.g. by simply canceling the sell
order at $11 which is owned by herself. At this
high price, Alice’s net position drops to -$40 and
she has to be netted out from the market. In a
distributed setting, Bob, Carol and Eve will divide
Alice’s inventory liquidation price ($900).

Eve cancels
her order

at $11

Alice accumulates 90 selling contracts currently at the price of 10 and has a cash margin of 1400. At this price
her inventory liquidation price is XAlice = −90× 10, and her net position is NAlice = 1400 +XAlice = 500.

Figure 3.3: Forcing Alice out of the market

execution of a futures exchange, one can expose the public order information, i.e. price

and volume, but the trader information, i.e. the trader ID, must be somehow encrypted.

32

CHAPTER 3. SECURITY PRINCIPLES 3.2. CHALLENGES AND PRINCIPLES

3.2.2 Ensure Responsible behavior

As soon as we warrant secrets we must make sure that actors bid within their means as

the scenario described in Figure 3.3 (where Alice’s margin drops below the threshold)

could have happened by Alice’s own volition (by mistake, mischief, or just a wrong bet

against the market). Loosely speaking, the Exchange would have intervened to use Alice’s

money to buy the 90 promises from the market and keep them ready for Bob, Carol, and

Eve when they would have shown at the end of the day to claim their 30 contracts each.

In a distributed setting, the centralized Exchange is no longer present but Alice’s net

position is still shielded by Principle 1. If the protocol allows Alice to go deeply into

the red since her position is protected, she would fail to meet her obligations against the

other three players. Bob, Carol, and Eve thought to have good contracts when in reality

they rely on a bad creditor whose real solvency was hidden. This situation will force the

market to collapse.

Principle 2 (Ensure Responsible behavior). If an action requires the actor to fulfill some

future obligations, the protocol must validate the actor’s capability to ensure a responsible

behavior.

This challenge is specific to our market scenario as there is no future obligation in

systems such as ZeroCash [164], Anonymous E-cash [163], or Reputation System [186]

where the coins are transferred directly from the sender to the receiver or the reputation

of an actor is immediately aggregated and no string attached afterward.

Implementing this principle in a futures market is almost trivial for cryptographers

using the ‘commit and prove’ paradigm: a trader first bootstraps (by committing) the

secret initial margin to make a deposit from a verifiable cash source. Such source must

acknowledge the debit of the deposited amount and the credit of output reward, e.g. in

ZeroCash [164, Section I-B] one can modify the POUR circuit to debit deposits and credit

rewards using the output of the financial protocol execution. All participants should

keep track of each other’s (secret) inventory (as a commitment) as the market evolves.

When a trader posts an order, the margin condition must be satisfied, e.g. Alice proves

in zero-knowledge5 that her position (another commitment computed from the inventory

commitment using the new order book) of the new order posted by somebody is above

the maintenance margin.

For a futures exchange protocol to be viable, Principle 1 (anonymous and shielded

actions) and 2 (responsible and controlled actions) must be satisfied even though they at

first appear to be conflicting with each other: the protocol must make sure Alice meets her

5Informally speaking a zero-knowledge proof is a method one party can prove to another a given statement,
without conveying any additional information apart from the statement is indeed true. For further detail see §5.3.

33

3.2. CHALLENGES AND PRINCIPLES CHAPTER 3. SECURITY PRINCIPLES

obligations against the other three players and at the same time protect Alice’s position

through reverse engineering of her actions. However, a protocol can resolve this issue by

using memoization to avoid the MPC when addressing the conflicting requirements of (i)

providing a public trail of events, (ii) publicly verifying a constraint on a private subset

of such events, (iii) showing that such private events are all and only applicable events.

See §4.4 for further details.

3.2.3 Manage Non-Monotonic (Honest) Evolution

Again, we explore the example in Fig. 3.3 (middle left) and assume that all parties behaved

honestly. In the beginning, Alice has proved (in zero knowledge) that her position was

within her means (she proved cash+ volume× 10 ≥ 0, where volume = −90 and cash =

1400 were secret values only known to her; however, previously committed to a public

ledger). Unfortunately, Carol just wanted to buy more futures of barrels of oil for her

factory to offset troubles in Venezuela. Carol goes ahead and wipes the order of Eve at

$11. The price has fluctuated for no fault of Alice nor because of any malicious strategic

intent by Carol (unlike Eve in Principle 1). Price has rocketed to $16 and the action by

the honest Carol had economically invalidated Alice’s original security proof.

Principle 3 (Manage Non-Monotonic (Honest) Evolution). If the attributes of some

actors might evolve in time owing to the behavior of other honest participants, it is a

good practice to assume that the security credentials certifying those attributes will evolve

in a non-monotonic way and therefore credentials must be either revoked, or the attributes

must be periodically refreshed at each point where such other parties might be acting in

the protocol.

To understand the deep design implication of this phenomenon, let us look at other

monotonic protocols such as e-voting (casting one’s vote) or simple payment protocols

(transferring one’s coins).

• In E2E voting [117], a voter will receive from the Election Authority a voting card

with authentication code and a vote code. Vote eligibility (a correct authentication

code and a well-formed vote code) cannot be changed by a vote of a different voter,

which claims another authentication code (again unless the authentication code is

used twice by the same voter but honesty reigns here) as the other votes yield no

direct effect against such vote.

• To make a ZeroCash transaction [164, POUR circuit, Section I-B], a payer broadcasts

the payment information and some zero-knowledge proofs. The miners check the

ZK proofs: (i) the spending coin belongs to an unspent set of coins maintained as a

34

CHAPTER 3. SECURITY PRINCIPLES 3.2. CHALLENGES AND PRINCIPLES

Merkle Tree; (ii) the payer knows a secret parameter to unlock the spending coins;

and (iii) the total amount of the new coins is within the total amount of the spending

coins. Another spent coin (except for double-spending in which the same coin is paid

twice but this case should be ruled out as everyone is honest here) cannot invalidate

any of the above proofs.

The same phenomenon happens in privacy-preserving reputation systems [186], which

evaluate information quality and filter spam by providing linkage between user actions

and feedback. In such systems, Alice’s reputation, once gained, cannot be affected by

Bob’s actions to increase his own reputation. Hence, security evidence for reputation

grows monotonically over honest traders actions.

The famous Danish Sugar Beet auction [38] was an example of monotonic bidding

against fixed prices. A total of 400 fixed price levels were available, and everybody entered

the bid to signify the amount of product they would like to buy (or sell) at each price

level. Bob’s bid (cryptographically represented as three secret shares) would not make

Alice’s bid invalid, (which were three other independent shares). The three servers (each

receiving one share by each bidder) would then perform an MPC computation to add up

the quantities at each price level and determine the mid-price (where supply would equal

demand). Everybody who had bid at that price would have to sell/buy.

Consider the simple case of a single legitimate protocol run that comprises of multiple

steps and potentially never stops.6 Clearly, the security evidence in a step must be valid

at once after the step completed. In the next step, other honest parties may perform some

actions. If such actions do not invalidate the security evidence, security is monotonic in

the action of honest parties.7

In a futures market, traders take positions (accumulating contracts in inventory) by

posting buy and sell orders, which effectively changes the market price and directly affects

the validity of everybody else trading inventories. Thus, the economic constraint now in-

volves all parties after an action made by an individual party. In a centralized setting, the

Exchange maintains the invariant. In a distributed setting, the validity of the individual

security proofs may be non-monotonic as more honest parties join. To guarantee such

non-monotonic security, each time an order arrives, all parties join forces (using an MPC)

and produce a new Order Book when traders with negative positions are netted out. See

§4.4 for further details.

Unfortunately, MPC, as we will discuss in the next section §3.2.4, turns out to intro-

duce more problems than it solves.

6Security evidence created during a protocol run should not extend beyond that run. Several protocol failures
are indeed due to protocol design errors where a credential could be used across sessions [1].

7We only consider the case of one protocol. For multiple protocols, monotonicity may not hold. A simple
example is the revocation of credentials.

35

3.2. CHALLENGES AND PRINCIPLES CHAPTER 3. SECURITY PRINCIPLES

3.2.4 Account for a Large Number of Parties

A small market such as Lean Hog may includes at time 100 traders, whereas a fast and

big market, e.g. Eurodollars, consists of 500+ traders (See Table 3.2). This is far more

compared to most MPC empirical papers which are typically run with 2 or 3 parties.

The first largest claimed practical MPC is an auction of the Danish sugar beet where

1229 Danish farmers auctioned their production [38]. Yet, only three servers actually

performed MPC over the secret shares generated by the 1229 bidders. Another paper

also claimed to use MPC to perform financial trading over dark pools with high through-

put [47]; however, the actual parties used to produce a high throughput are two or three.

Principle 4 (Account for a Large Number of Parties). If a large number of participants

may join the protocol, the security mechanism must scale with such numbers. Using a

handful of centralized intermediaries will defeat the very purpose of decentralized protocols.

An MPC protocol relying on only a few trusted servers may be a reasonable security

solution until one realizes that the economic incentives are stacked against it.

Take zcash [185], the real world deployment of ZeroCash, as an example. Since it relies

on zk-SNARK [164], it requires a secure multi-party setup ceremony where the common

reference string for the zero-knowledge proof (built upon what they call the toxic waste

which, once known, allows one to counterfeit zcash) can be securely obtained without the

toxic waste leak [20]. The first ceremony (Sprout) included only six individuals, and even

though they claimed that “as long as at least one of the participants successfully deleted

their private key, the toxic waste is impossible for anyone to reconstruct;” however, until

now five out of six individuals’ identity have been revealed (except for ‘John Dobbertin’),

and it clearly makes zcash vulnerable to the toxic waste reconstruction [184]. This is

fixed with the second ceremony (Sapling) where the number of participants significantly

increased to over 87 for the first stage and 90 for the second stage of the ceremony [183].

In a futures market, the individual traders have incentives to participate in the market

as they hope to benefit from it. What about the servers? To be trusted by a trader, a

server must not financially benefit from the direction of the trade. Yet, the server must

make money to support the computational infrastructure of the trades. Some papers

envisage that a server could be run by a regulator [47]. Let alone any political comment

on the trust in regulators, very few regulator has the computational grit: in Europe, only

the Bundesbank and the Banca d’Italia who both run TARGET2 gross settlements could

perform the task. The Bank of England, the regulator of the largest exchange at the time

of writing, collected bank stress data in Excel. Thus, regulators should build and pay for

their infrastructure (or more likely charge the traders). Once a trader needs to pay his

trusted servers, one can just pay the CME.

36

CHAPTER 3. SECURITY PRINCIPLES 3.2. CHALLENGES AND PRINCIPLES

Here principles interact with dire consequences for security design. Monotonic security

allows efficient optimizations: costly MPC with n interacting parties may be replaced

by n parallelizable commitments and ZK non-interactive proofs. This replacement is

possible when a party should make changes to their old secret values based on some

public information and prove the correctness in zero-knowledge, e.g. ZeroCash [164].

This seems to be our case: a trader owning secret inventory and making public offers

must update only the secret inventory and prove correctness in zero-knowledge (see the

commit-and-prove approach §4.6).

Yet, the futures market is non-monotonic: a trader may change the market price thus

invalidating (economically) all validity proofs of other traders (see §3.2.3). We require

each trader to prove the satisfaction of the economic validity of its position each time a

new order arrives. This conflicts with Principle 1 in the case when one party alone cannot

prove the validity. Hence some MPC is needed.

3.2.5 Guarantee Proportional Burden

In most MPC protocols, every (honest) user does the same action: in auctions, every

bidder makes one bid (or bids over multiple levels once [38]); or in e-voting each voter

casts one vote.8

Principle 5 (Guarantee Proportional Burden). If some actors are more active than other

actors, the security protocol must be designed such that the cryptographic computational

effort of actors is proportional to the number of actions started by each of them.

In the e-voting example, Alice is not expected to do more crypto work when she is

casting her own vote than when Bob is casting his vote. Only at the end, all parties join

the effort to avoid risks (e.g. compute election results). All those protocols implicitly

impose a proportional burden on each actor: each computation is a burden for the party

benefiting from it and the burden is essentially fair.

This works because we only need to compute the election result once. Running MPC

for every trade has some practical implications when some traders only make a few oper-

ations while others make thousands or hundreds of thousands. Take the Bitcoin network

as an example, some clients are far more active than others (e.g. the ones who use BTC

as an investing medium and actively trade them on centralized exchanges). To address

the proportional burden, a transaction from a payer to a payee must leave some (small)

amount as a transaction fee. A miner in the Bitcoin network is compensated for their

8Obviously the auctioneers and the auditors would have had more load than a bidder or a voter; however, this
only happens because they must handle multiple bidders and voters in a single run of the protocol at once.

37

3.2. CHALLENGES AND PRINCIPLES CHAPTER 3. SECURITY PRINCIPLES

effort with those transaction fees upon finding the Proof-of-Work to extend the longest

chain [144]. As a result, the more transactions a payer makes the more fees he pays.

Using the numbers from the TSX market [130], in Feb 2012, the algorithmic traders

submitted an average 250000 messages per day, but made only around 5000 trades, re-

vealing that the algorithmic traders made 245000 vacuous bids that were never matched

into orders. When running an MPC, everybody takes part, i.e. institutional investors

stake computational resources for 250000 trades (just to benefit from 5000 trades).

Combining Principles at once means that a suitable protocol for such scenario must

be a hybrid protocol that combines MPC and non-interactive zero-knowledge proofs on

committed inputs as in FuturesMEX (Chapter 4). We replace the local constraints verifi-

cation of the MPC with non-interactive proofs for efficient generation of publicly verifiable

transactions and scalability w.r.t. the number of traders. Full MPC is only performed for

sub-tasks capturing the non-monotonicity and anonymity requirements of the market.9

The challenging part of the protocol design is to identify the minimal state of the

reactive security functionality implementing the futures market that would account for

its non-monotonic behavior in the legitimacy of traders and assets. This is the only part

where MPC needs to be applied. Fig. 4.14 (in §4.10.1) shows that using generic MPC retail

traders have to participate even if they do not make an order (and they overwhelmingly do

not made many orders [130]). They have to supply algorithmic traders with some orders

of magnitude of costly computing resources. In FuturesMEX, the burden on retail traders

is significantly smaller. This practical constraint of proportional burden is another reason

why Tor (in Principle 1) is preferable to the Dining Cryptographers Network [54].

3.2.6 Ensure Drop-Out Tolerance

From a security perspective, the above design (commitments, zero-knowledge proof, and

minimal MPC), no matter how implemented, can only be secure with abort as an adver-

sary can abort the protocol by simply not participating in a joint MPC step. The protocol

hence fails by omission. One might argue that this failure still makes the protocol fail-

safe [99] so that nothing is disclosed and the parties could restart as if nothing happened.

From the perspective of the other traders, the correct definition of this behavior would

be fail-useless. Would institutional or retail investors ever join if by mistake or mischief

an algorithmic trader could fail safe to ‘nothing done’ a day of costly MPC computation?

Principle 6 (Ensure Drop-Out Tolerance). If an actor may walk away when unhappy

with the likely outcome or fail to act upon one’s own honest failures, then the protocol

must financially penalize such actor in proportion to its stake.

9This does not violate the proportional burden requirement as each trader has the responsibility to prove the
solvency if s/he still wants to be in the game (see Table 3.3.

38

CHAPTER 3. SECURITY PRINCIPLES 3.3. SUMMARY

A preliminary observation is that in practice one cannot initialize a market with a self-

claimed account. The cash deposited into the market must be backed by a verifiable source

where a debit is acknowledged by every market participant, e.g. zcash.10 An approach is to

penalize a faulty participant upon aborting in an MPC is to make the adversary lose some

digital cash in proportion to their stakes. For instance, Kumaresan et al. [122] requires

the adversary to make deposits and forfeit them upon dropping out. Unfortunately, not

all protocols are usable in our scenario. Technically, the parties must move in a fixed

order since order of revelation is important (the See-Saw mechanism, [122, p. 7]) for

the aforementioned penalty mechanism to work. This fixed order may conflict with a

protocol’s anonymity requirement since this will reveal the identity of the trader who

made a posting. Most importantly, those protocols are not economically viable as the

baseline deposit would need to be progressively staggered in a See-Saw fashion. This

mechanism is unachievable in practice owing to the anticipated variety in the financial

capability of traders. In a low-frequency market, the last trader should deposit assets 67

times the stake of the trader. In large markets that increases to 1067 times larger (see

Table 3.2, where a single Eurodollar contract has a notional value of 1 million dollars and

margins are measured in basis points).

Hawk [119] is indeed a better solution against omission, since private deposits from the

cash source can be frozen and the identified aborting parties cannot claim the deposits

back in the withdraw phase. The protocol must provide security tokens of successful

completion and identify evidence in case of misbehavior and in case of aborts. We refer

the reader to §4.9 for additional discussion.

3.3 Summary

We have shown the example of a Futures Exchange, such as the Chicago Mercantile

Exchange, where traders buy and sell contractual promises (futures) to acquire or deliver,

at some future pre-specified date, assets ranging from wheat to crude oil and from bacon

to cash in a desired currency. In such an exchange, the interplay between security and

economic viability (as illustrated by the Price Discrimination Attack) and the exchange’s

essentially non-monotonic security behavior (a valid action by a trader can invalidate other

traders’ previously valid positions) are indeed novel challenges for security research. These

challenges have deep implications for efficient designs of security protocols for financial

intermediation, in particular, if we need to guarantee a proportional burden of computation

to the various parties.

10Indeed, such source must be able to publicly verify the validity of the transactions from the market’s operation
at the end of the day to credit each the account with the corresponding amount.

39

3.3. SUMMARY CHAPTER 3. SECURITY PRINCIPLES

In the next Chapter 4 we will show how to apply the enucleated principles to construct

a concrete cryptographic and distributed implementation called FuturesMEX that securely

replicates the ideal functionality of a centralized Futures Market Exchange such as the

CME.

40

Chapter 4

FuturesMEX: A Secure, Distributed

Futures Market Exchange

A futures contract is a standardized agreement between two parties to buy or

sell an amount of an underlying asset, at a price agreed upon today with the set-

tlement occurring at some future date. Such trading is carried out in a double

auction market operated by a centralized clearinghouse called Futures Exchange.

This chapter describes all key operations for a secure, fully distributed Futures

Exchange, hereafter referred to simply as the ‘Exchange’. Our distributed, asyn-

chronous protocol simulates the centralized functionality in the assumptions of

anonymity of the physical layer and availability of a distributed ledger. We

consider security with abort (in absence of honest majority) and extend it to

penalties. Our proof of concept implementation and its optimization (based on

zk-SNARKs and SPDZ) demonstrate that the computation of actual trading

days (along Thomson-Reuters Tick History DB) is feasible for low-frequency

markets; however, more research is needed for high-frequency trading.

4.1 Formal Futures Market Definition

A futures market consists of N traders, in which each trader is identified via an index

i ∈ [N] and a sequence of L available prices1 (for the limit orders) in ascending order

(i.e. p` < p`′ if ` < `′ for `, `′ ∈ [L]). The market evolves in rounds, where T is the

1 In the CME Globex, trading operations starts with an indicative opening price (IOP). Other prices are an
integer number of upward or downward ticks from the IOP. A price is always non-zero and each underlying asset
of a futures contract usually has a reasonable upper bound for the price. Hence we can map possible prices into
a finite list of L available prices and refer to a price only with its index `.

41

4.1. FORMAL FUTURES MARKET DEFINITION CHAPTER 4. FUTURESMEX

maximum (constant) number of rounds2. The data stored (and updated) for the current

round t ∈ [T] is a tuple (O, I).

• The setO is the limit order book, and consists of a sequence of tuples o′ = (t′, `′, i′, v′),

where o′ represents a limit order posted at round t′ ≤ t by a trader Pi′ for a desired

volume v′ 6= 0 of price p`′ . A limit order is called a “sell” order if v′ < 0, otherwise,

called a “buy” order.

• Ii = (mi, vi) is the inventory3 of a trader i ∈ [N] where:

– The value vi is the number of contracts held by the trader (for long positions

vi > 0, for short ones vi < 0);

– The value mi is the cash available to the trader.

Initially, every trader starts with no contract in the inventory and a non-negative

deposit4 (i.e. ∀i ∈ [N] : vi = 0,mi ≥ 0), and the market is initiated with an empty order

book (i.e. O = ∅).
To express the constraint that a trader can meet her obligations and make orders

within her means we introduce some auxiliary functions. The instant net position ηi is

the cash she can get (or must pay) upon liquidating all her contracts:

ηi = mi + cash(vi) (4.1)

where cash(vi) represents the liquid value of the inventory, i.e. the amount of cash a trader

Pi can get (or must pay) upon selling (or buying) all volume holding vi at the current

buy (or sell) quotes in the order book.

2At CME an open cry starts at 7:20 and ends at 13:59:00, the evolution of time is accounted for with the
number of rounds.

3For simplicity, we assume that a trader’s deposited cash is all the cash available to that trader and s/he
only trades a single kind of contract in a market. To support the trading of multiple types of contract, one can
replicate the protocol for each type of contract trading as the markets are indeed separated. For each contract, a
trader has a separate margin requirement as one may not necessarily reconcile Lean Hogs versus Eurodollars (they
have different accountability limits, different liquidity, different regulatory requirements, etc. [60]). If one has
a global trade account reconciliation mechanism for margins with some usefulness, the complexity might be too
high. Indeed, the current solution of centralized (!) markets is to let traders deal with this at their end privately,
as this is something that each trader must be able to deal with. Cash for margins could be transferred from one
account to another. Technically, this is equivalent to withdraw the cash from one trading account, transfer it
back on the ledger and deposit it in another trading account. This operation of withdrawal and deposit of more
money in the trading accounts is not new as it is simply a payment transfer (See the previous Chapter 2). Hence
it is omitted.

4As mentioned in §2.3, we can bootstrap the market with zcash [185], we can simply extend its POUR trans-
action [164] to accept one more input/output: a cash commitment. The additional output from the POUR
transaction can be used as an input for the initialization of the market for a trader to deposit some cash into the
market from the zcash network. The final cash commitment is an output of the finalization of the market used as
the input to the POUR transaction for a trader to withdraw the market’s digital cash back to the zcash network.

42

CHAPTER 4. FUTURESMEX 4.1. FORMAL FUTURES MARKET DEFINITION

Table 4.1: Market Indicators for the current round t of the Futures Market

Indicator Notation Definition Description

Best sell price
index

`sell min{`′ | (t′, `′, i′, v′ < 0) ∈ O} Index of the lowest price of all sell or-
ders in the order book.

Best buy price
index

`buy max{`′ | (t′, `′, i′, v′ > 0) ∈ O} Index of the highest price of all buy
orders in the order book.

Mid price p̄ (p`sell + p`buy)/2 The average value of the best buy
price p`buy and best sell price p`sell

Available vol-
ume at price
ph

Vh
∑

(t′≤t,h,i′,v′)∈O|v
′| The sum of absolute volumes over all

orders at price ph

Available sell
volume up to
ph

V sell
h

∑h
`=`sell

V` Aggregation of all volumes available
from the best sell price `sell to the fi-
nal maximum acceptable price p` (` ≥
`sell)

Available buy
volume down
to ph

V buy
h

∑`buy

`=h V` Aggregation of all volumes available
from the final least acceptable price h
to the best buy price `buy (` ≤ `buy)

Table 4.2: Value cash(v) to liquidate an inventory of volume v

Cases Definition Description

v > 0 (long) and V buy
1 ≥ v

∑`buy

h=`+1 ph · Vh + p` · (v − V buy
`+1) Cash a trader can get upon selling all

volume v at the current buy quotes in
the order book, where ` is the greatest
index such that V buy

` ≥ v.

v > 0 (long) and V buy
1 < v

∑`buy

h=1 ph · Vh + p1 · (v − V buy
1) The order book does not have enough

supply on the buy side.

v < 0 (short) and V sell
L ≥ |v| −

∑`−1
h=`sell

ph · Vh − p` · (V sell
`−1 − |v|) Cost a trader must pay to buy all vol-

ume v from the current sell quotes in
the order book, where ` is the least in-
dex such that V sell

` ≥ |v|
v < 0 (short) and V sell

L < |v| −
∑L
h=`sell

ph · Vh − pL · (V sell
L − |v|) The order book does not have enough

supply on the sell side.

The function ·̂ represents the estimated value of a trader’s inventory variables if the

market accepted her new order. Auxiliary definitions for the calculation of market condi-

tions are listed in Table 4.1 (mid-price, best sell price5, etc.) while cash(vi) is defined in

Table 4.2. In case of insufficient supply, our formula assumes that arbitrarily more supply

would become available at the worst possible price (pL for buy and p1 for sell). For the

estimated value of the inventory, when a trader Pi posts an order (t, `, i, v) at price p` for

5Technically, if the order book is empty on the sell side or the buy side, the respective best price can be set
to unidentified. Then, the first order will set the best price. For simplicity of exposition, we can assume that the
first buy (or sell) order will set the best buy (or sell price); then, the second order of the opposite type will set
the best sell (buy) price. In this way, we have an operable order book after the first two rounds. In practice, the
CME uses a Pre-Open phase for an operable order book before openning the market for actual trades [61]. It
is possible to incorporate this phase into our protocol as an additional MPC that computes the Pre-Open phase
before running FuturesMEX.

43

4.2. THE IDEAL REACTIVE FUNCTIONALITY CHAPTER 4. FUTURESMEX

Table 4.3: Formal Security Requirements

The two requirements of traders confidentiality and anonymity imply that m̂i and v̂i, as well as η̂i
must also be confidential (otherwise one could recover the inventory by reversing the computation
from orders).

Property Description

Confidentiality of Trader
Inventory

Only Pi knows the values of Ii = (mi, vi) as well as ηi with the exception of
time T after mark-to-market when vi = 0.

Market Integrity Barring withdrawals and deposits the amount of cash available by all traders
is constant7 (

∑N
i=1m

′
i =

∑N
i=1mi) where m′i is the margin at time t′ ≤ t),

the total volume holding is zero (
∑N
i=1 vi = 0), and the best buy price is less

than the best sell price (1 ≤ `buy < `sell ≤ L).
Loss Avoidance All traders have a positive instant net position (ηi ≥ 0) and can afford the

new limit order at posting time (η̂i ≥ 0).
Trader’s Anonymity For any order (t, `, i, v) posted at time t, the order information (t, `, v) must

be made public before time t + 1, while the value i is only known to Pi. It
is also important that i is unlinkable to an existing order o′ = (t′, `′, i, v′).

Trader’s Precedence
Traceability

Let O be the current order book, (t, `, i, v) be an order, and t′ be the smallest
round t′ < t such that (t′, `, i′,−v′) ∈ O then the order book O∗ at time
t+ 1 respects traders precedence given order (t, `, i, v) and order book O iff

1. if no such t′ exists for O, then O∗=O ∪ {(t, `, i, v)},
2. if |v|<|v′|, then O∗=O∪{(t′, `, i′, v−v′)}\{(t′, `, i′,−v′)}
3. else O∗ respects traders precedence given order (t, `, i, v − v′) and

order book O \ {(t′, `, i′,−v′)}

a volume v in round t, we have:

m̂i = mi − p` · v, v̂i = vi + v, η̂i = m̂i + cash(v̂i) (4.2)

We can now formalize in Table 4.3 the properties, which must hold at every round,6

corresponding to the security/economic requirements informally introduced in Table 3.3.

We will also discuss the proportional burden property, a practical requirement that we

introduced in Chapter 3, in the description of the futures market functionality.

4.2 The Ideal Reactive Functionality

For expository purposes, both in the functionality’s and in the protocol’s description,

we allow an adversary to abort the computation after receiving its own intermediate

6Since the order book is public and contains all orders, it is obvious that any N − 1 colluding parties could
reverse engineer the trading strategy and position of the lone honest trader. This is also true for a “normal”
centralized exchange such as the CME Globex platform. Since our target is to be as secure as the centralized
exchange, we ignore this and other unrealistic attacks that could be carried on the centralized exchanges.

7 Technically deposit and withdraw operations are not new [164] (see the possible solutions in Chapter 2). To
support such operations in FuturesMEX one can simply add new phases to such Deposit (or Withdraw) into the
protocol similar to other steps to pour money into one’s account as in Initialize (or withdraw from one’s account
but still satisfy the margin condition as in Post/Cancel Order).

44

CHAPTER 4. FUTURESMEX 4.2. THE IDEAL REACTIVE FUNCTIONALITY

Post/
Cancel
Order

Initialize
Margin

Settlement

Order
Fulfillment

MS CancelMS Offset

Mark To
Market

Order is valid

No broke traders
and there are matches

No
broke
traders
and
no
match

Order
Fulfilled

Found
broke
traders

Cancel Order

No broke traders’
pending order

Liquidate Inventory

Broke traders
netted out

End-of-day

Unfixable
broke positions

Figure 4.1: Market State Transition Diagram

outputs. This flavor of security is known as security with aborts [111]. In §4.9, we change

the protocol to avoid scot-free aborts.

The futures market evolution is captured by an ideal reactive functionality FCFM where

all traders send their private initial inventory to a trusted third party (during the so-called

Initialize phase) which makes the market evolve on their behalf. A typical evolution of

the market includes processing orders (Post/Cancel Order phases) and netting out

traders with insufficient funds (we refer to these traders hereon as “broke” traders) to

maintain their position (Margin Settlement phase), and finally offsetting all positions

(Mark to Market phase). This evolution is summarized in Fig. 4.1. and a formal

description is found in Fig. 4.2 and Fig. 4.3.

Intuitively, the matching process performed during the Post Order phase (see Fig. 4.2)

takes the new order (t, `, i, v) and matches it with all previous limit orders of the opposite

side in the order book having the same price. In other words, if the limit order is a

buy order, it will be matched with a sell order, and vice versa. The priority to match is

given to the limit order with a smaller round index. When a match is found, the trade is

reconciled, and the available cash and the volume holding of the traders are updated ac-

cordingly (i.e. on buy side: increase volume, decrease cash; on sell side: decrease volume,

increase cash). The matching process stops either when the new order is fulfilled, or no

past order that can fill the new one is available. In the latter case, the remaining volume

is left in the order book as a new limit order.

An important feature of FCFM is to guarantee payable losses by each trader (i.e. ηi ≥ 0).

45

4.2. THE IDEAL REACTIVE FUNCTIONALITY CHAPTER 4. FUTURESMEX

Futures Exchange Ideal Functionality FCFM runs in phases with a set of traders (P1, . . . , PN)
and a list of prices (p1, . . . , pL) in ascending order.

Initialization: Upon (init, Pi,mi) from all traders, accept the input iff mi ≥ 0. Hence, store
(mi, vi := 0) as the inventory of Pi. Finally, initialize t := 0 and O := ∅.

Post/Cancel Order: If t < T (otherwise go to Mark to Market), upon receiving
(post order, Pi, `, v) (resp. (cancel order, Pi, t

′)) from Pi, let t := t+ 1:

1. Check ` ≥ `buy for v < 0 (` ≤ `sell for v > 0). In case of Cancel Order, retrieve
(t′, `′, j, v′) from O and check j = i..

2. Let I∗i be an identical copy of Ii, check η̂i ≥ 0 w.r.t. to I∗i and the order book O∗ :=
O ∪ (t, `, i, v) (resp. O∗ := O \ (t′, `′, j, v′)):

3. If any check fails, send (invalid post, t, `, v) (resp. (invalid cancel, t′)) to every trader; else
send (post order, t, `, v) (resp. (cancel order, t′)) to every trader and proceed to Margin
Settlement with input I∗i and O∗ (c.f. Fig. 4.3). ; if “succeed”, let Ii = I∗i , O := O∗,
otherwise proceed to Mark to Market.

4. In case of Post Order, fulfill the order starting from the earliest opposite order of the
same price already in the order book, until the new order is filled or there is no past
order to match it with. (c.f. Order Fulfillment in Fig. 4.3).

Mark To Market: offset all positions using the mid-price, i.e. ∀Pi : mi := mi + vi · p̄, and vi := 0.

Figure 4.2: The operations of the ideal functionality FCFM for posting, cancelling and marking
to market

Hence, when the last round is reached, all traders must offset their position,8 and the data

at round T will consist of all zero volumes, non-negative balances, and an empty order

book.

Since the net position might change owing to the updates of the order book, it is

necessary to check the new instant net position η∗i of each trader Pi after the update. In

case of any negative net position (i.e. ηi < 0), the last update is rolled back and all traders

enter the Margin Settlement (MS) phase (see Fig. 4.3). This requires each new broke

trader to cancel all pending orders (becomes canceled in MS Cancel) according to the time

of submission, and buy/sell all contracts in the inventory that the trader is short/long,

at whatever price available at the moment (becomes netted in MS Offset). At the end of

the Margin Settlement phase the order fulfillment is resumed, and the update will be

committed.

Remark 4.1. Since the order of netting out broke traders affects the final positions of

such traders (the early netted out traders may wipe the best price) it is important that the

8We will use the mid-price to offset all positions in our functionality as it has the simplest formula. Our
protocol construction is unaffected even if the formula is changed since this input is public. In practice, one often
uses the volume-weighted-average-price (VWAP) of the last minute trades. The mid-price is only used when
within the last one minute there is no trade [59]. VWAP, compared to mid-price, is less but still dependent on the
last minute single order. However, shifting the VWAP or the mid-price is not trivial as one may need sufficient
cash to perform this (sometimes this can be expensive).

46

CHAPTER 4. FUTURESMEX 4.2. THE IDEAL REACTIVE FUNCTIONALITY

Margin Settlement is run with a candidate order book O∗ and a candidate inventory I∗ starting
with a set of new broke traders B := ∅.

1. Repeat the following steps until η∗i ≥ 0 for all current good traders Pi 6∈ B:

(a) Compute the new instant net position η∗i of all good traders Pi; if η∗i < 0 let B := B∪{Pi}.
(b) While there is a limit order oi := (t′, `′, i, v′) in either O∗ and O such that Pi ∈ B, then

poll Pi to remove oi from both O∗ and O, send (remove, (t′, `′, v′)) to each trader, on a
first come first served basis.

2. The ideal functionality will poll the broke traders Pi ∈ B for market orders (with fixed input
(t, `sell, i, v) for short position or (t, `buy, i, v) for long position and v must be at the same time
within their holding or owed volume and the current available volume at the market price) to
net each of them out (the chance to take the better price are left to the broke traders in a first
come first served manner) until B := ∅:

(a) If the market cannot supply the margin settlement of Pi, i.e, there is no order to match,
return “fail”. Otherwise run the matching order steps (from step 1 to step 4) of Order
Fullfilment.

(b) If vi = 0, let B := B \ {Pi}.

3. Go back to step 1 if there are new good traders Pi becomes broke, i.e. Pi was not in B and
ηi < 0.

4. Else if there is a broke position that cannot be fixed (mi < 0 even if vi = 0), return “fail”.

5. Else return “succeed”.

Order Fulfillment for oi = (t, `, i, v) starts with t′ = 1, repeat the following for each entry oj =
(t′, `, j, v′) ∈ O such that v · v′ < 0:

1. Send (match, t′, `, v′) to each trader;

2. Compute the matched volume δ := min(|v|, |v′|), then remove δ from oi and oj , i.e. in case
v > 0, o∗i := (t, `, i, v − δ) and o∗j := (t′, `, j, v′ + δ) (otherwise swap i and j).

3. Let O∗ be an identical copy of O, where the orders oi and oj are replaced, respectively, with
o∗i and o∗j .

4. In case v > 0, update the inventories as follows (in case v < 0, swap i and j in the equations
below):

m∗i := mi − p`δ v∗i := vi + δ m∗j := mj + p`δ v∗j := vj − δ;

5. Let I∗ be an identical copy of I where the inventories of Pi and Pj are replaced, respectively,
with (m∗i , v

∗
i) and (m∗j , v

∗
j).

6. Run Margin Settlement with input O∗ and I∗.
7. If Margin Settlement returns “fail”, proceed to Mark to Market (Fig.4.2) otherwise, let
O := O∗, I := I∗, and:

if v′ = 0, let O := O \ oj ; if v = 0 , let O = O \ oi

8. Define t′ := t′ + 1, and repeat the above until t′ = t or v = 0.

Figure 4.3: The operations of the ideal functionality FCFM for margin settlement and order
fulfillment

47

4.2. THE IDEAL REACTIVE FUNCTIONALITY CHAPTER 4. FUTURESMEX

ideal functionality is agnostic to a particular order of netting out broke traders and such

order is left to the broke traders’ own action. A broke trader needs to look up the best

available order on the opposite side and posts a market order of the same price. The new

order’s volume must be within the current holding volume of the trader and the available

volume at the best price. This means that a broke trader may need to post multiple market

orders to finally offset her position.

For simplicity, after a trader Pi is netted out, the trader cannot post a normal new

order in the market in the subsequent rounds. In the (unlikely) worst-case, a scenario

where: (i) the market cannot supply the margin settlement of broke traders (because, e.g.

they hold too many contracts comparing to the currently available volume in the order

book), or (ii) even the margin settlement cannot bring a broke trader’s position back to

non-negative, the ideal functionality proceeds directly to Mark to Market.9

Non-monotonicity. A challenging feature of the futures market’s ideal functionality is

its intrinsic non-monotonic behavior, in a sense made precise below.

Remark 4.2. The properties of private values of a honest trader Pi executing the ideal

functionality of Fig. 4.2–4.3 are non-monotonic in the actions of other honest traders.

Let Pi be a good trader (private value ηi ≥ 0) at round t with order book O. We further

assume that at round t + 1, the order book is updated to O∗ owing to an offer posted by

another good trader Pj 6= Pi. The new order book O∗ affects the value cash(vi) (Table 4.2),

resulting in a negative instant net position ηi (Eq. (4.1)). This makes Pi a bad trader at

round t+ 1, even if Pi was inactive during that round.

Security properties. We illustrate how FCFM fulfills the security requirements of the

futures market (described in Table 4.3). The Trader Anonymity property is guaranteed

by broadcasting only (post order, `, v) upon receiving a (post order, Pi, `, v) from Pi. The

same reasoning applies for canceling orders. The Confidentiality of Trader Inventory is

guaranteed as FCFM keeps the trader’s inventory secret and all broadcastdc post order,

cancel order, invalid post, invalid cancel, match and remove contain no inventory informa-

tion (mi, vi, ηi m̂i or v̂i). Furthermore, all computations of FCFM respect the conditions

of Market Integrity in Table 4.3. The Trader’s Precedence Traceability property is also

maintained owing to the followings: (i) only the owner of an order can match/cancel that

order, and (ii) only a good trader can post/cancel in normal phase, whereas only broke

traders can cancel, and canceled traders can post during the margin settlement phase.

The practical constraint, i.e. Proportional Burden (see Principle 5 in §3.2), is obvi-

ously satisfied by the centralized functionality (if you do nothing you do not talk to the

9In such cases our FuturesMEX protocol is finalized and can be restarted.

48

CHAPTER 4. FUTURESMEX 4.3. ASSUMPTIONS AND INGREDIENTS OVERVIEW

functionality). Thus, we return to its satisfaction of the actual distributed protocol in

§4.6.

4.3 Assumptions and Crypto Building Blocks Overview

We use several standard crypto blocks for both protocol construction and reliability of

security proofs.

Anonymous Communication Network and Secure Broadcast Channel Recall that

the ideal functionality of a futures market guarantees full anonymity of the traders. To

this end, we assume an underlying anonymous network that hides the traders’ identities

(e.g. IP addresses).10 Typically, a trader always uses this anonymous channel unless it

is a joint computation during an MPC. Numerous prior works have already used this

assumption, notably ZeroCash [164]. Moreover, we assume secure broadcast channels

between traders, and such channels are implemented through a consensus protocol, e.g.

PBFT [48].11 Finally, we assume that all traders are online during the protocol, and

availability attacks, e.g. Denial of Service, are considered solved by using an external

mechanism, e.g. Anti DDOS Protection Service such as CloudFlare [58], or buying optical

fiber [83] (already used in a centralized exchange).12

Commitment Schemes. We rely on a non-interactive commitment scheme Com, with

domain {0, 1}∗. We write JvK := Com(v; rv) for a commitment to a value v using random-

ness rv ∈ {0, 1}∗. To open a given commitment JvK, it suffices to reveal (v, rv) so that a

verifier can check JvK = Com(v; rv). For the proof of security, JvK need to statistically hide

the committed value v. After publishing JvK, it is computationally infeasible to open the

commitment in two different ways. We follow Goldreich [95] for the formal definitions. We

use the following standard NP relations: (i) Roc, for validity of commitments and own-

ership of an opening; (ii) Rzero− (resp. Rzero+ , R−, R+) for commitments to non-positive

(resp. non-negative, negative, positive) values; (v) Rec, for equality of two openings; (iv)

Rnec, for commitments to values different from a constant; (v) Rlec (Rgec) for a values less

than or equal to (greater than or equal to) a constant and (vi) Ror for a commitment to a

value of opposite sign and has an absolute value greater than or equal to a constant (see

Table 4.7.)

10In case of using Tor, a trader must build a new Tor circuit for each round to avoid linkability.
11The consensus protocol is unnecessarily performed by all traders. A scalable solution is to use a set of semi-

trusted servers (whose size is much smaller compared with a fewer number of traders) for consensus since no
secret is recorded in such a channel.

12In case a trader aborts intentionally, s/he will be penalized. See §4.9.

49

4.3. ASSUMPTIONS AND INGREDIENTS OVERVIEW CHAPTER 4. FUTURESMEX

Hybrid Ideal Functionalities. To implement FCFM, we use hybrid ideal functionalities

with simulation-based proofs that rely on the composition theorem [46].

All our functionalities receive the values/randomnesses and the corresponding commit-

ments, and check whether the commitment corresponds to the claimed value, otherwise

return⊥ (as in Roc). The remaining features outlined below are specific to our application,

and similar to range proofs [39,43] (see §4.5).

• The Secure All Non-Negative Check functionality Fanncheck receives the net position

of every trader ηi and guarantees solvency (i.e.
∧
i ηi ≥ 0).

• The Secure Sum Comparison functionality Fcompare receives from every party a pair

of old and new binary flags 〈fi, f ∗i 〉. It checks whether the total number of flags has

not changed (i.e.
∑

i fi =
∑

i f
∗
i).

• Finally, the zero-knowledge (ZK) functionality FRzk is parameterized by an NP rela-

tion R. A trader Pi plays the role of a prover, whereas all other traders {Pj}j 6=i play

the role of verifiers. As the prover sends the statement xi and the corresponding

witness wi to the functionality, each verifier sends its own statement xj that needs to

be checked. Each verifier gets the outcome of R(xj, wi) if xi = xj, otherwise it gets

⊥. For simplicity, we omit the zk subscript. MPC functionalities will be identified

by subscripts (e.g. Fcompare) and zk by superscripts (e.g. Fgec).

The NP relations for the market are summarized in Table 4.5. To describe these

relations, we use some auxiliary values not needed in the ideal functionality FCFM (albeit

they might be present in an actual centralized exchange implementation). These auxiliary

values are defined in §4.4 and Table 4.4. Some of our relations test the requirements of

Table 4.3, whereas other relations validate intermediate results in our protocol, sharing

similarities with the NP statement POUR in ZeroCash [164] (see §4.5.1.)

Remark 4.3. In this chapter, all our relations (e.g. Table 4.5, various relations in §4.5,

§4.8, and §4.9) must first check whether the prover knows the secret value v and the

corresponding randomness rv of a public commitment JvK (as in Roc). Thus, we only

specify JvK in the statement and v in the witness, leaving rv as an implicit part of the

witness unless necessary, e.g. we specify rv in F token since it is needed to describe the

double commitment JτiK.

Remark 4.4. As we employ several zero knowledge functionalities in our protocol, in-

stantiated with zk-SNARK [21], a first setup ceremony is required for global information

such as proving keys and verifying keys, achieved securely in practice with MPC [20].

50

CHAPTER 4. FUTURESMEX 4.4. SOLUTION OVERVIEW

Table 4.4: FuturesMEX Notation

Nota. Description

ρ Root of a Merkle tree
path Authentication path of a token τi in a Merkle tree with root ρ

(p̂h, V
buy
h) Adjusted range choice for embedding the partial sum on the buy side for long position trader to

use in the net position calculation, where p̂h =
∑`buy

l=h
p`·V`

V
buy
h

Obuy Current adjusted range choices for long position trader to use in net position calculation, de-
fined as {((0, 0), (p`buy , V

buy
`buy

)), ((p`buy , V
buy
`buy

), (p`buy−1, V
buy
`buy−1)), ((p̂`buy−1, V

buy
`buy−1), (p`buy−2, V

buy
`buy−2)),

. . . , ((p̂2, V
buy
2), (p1, Vmax))}

(p̂h, V
sell
h) Adjusted range choice for embedding the partial sum on the sell side for short position trader to

use in the net position calculation, where p̂h =
∑h

l=`sell
p`·V`

V sell
h

Osell Current adjusted range choices for short position trader to use in the net position calculation,
defined as {((0, 0), (p`sell , V

sell
`sell

)), . . . , ((p̂L−2, V
sell
L−2), (pL−1, V

sell
L−1)), ((p̂L−1, V

sell
L−1), (pL, Vmax))}

plb Lower bound (adjusted) price used for the net position calculation
Vlb Lower bound cumulative volume used for the net position calculation
pub Upper bound price used for the net position calculation
Vub Lower bound cumulative volume used for the net position calculation
δc Incremental value for the pending order counter

4.4 Solution Overview

The first challenging part of the protocol construction is to identify a suitable form for the

state of the reactive security functionality FCFM that would account for its non-monotonic

behavior in the legitimacy of traders and assets. A simple (but wrong) solution is to use

just the private inventory values of the individual traders. Each trader could prove in ZK

that it respects the constraints stated in Table 4.3. Unfortunately, new valid orders could

make the constraints of some other traders invalid, i.e. the protocol no longer considers

the ZK proof valid. Moreover, we must store the private state in a way such that after an

order is accepted by the market (i.e. by the ensemble of agents) it is impossible to link it

to the next order by the same trader. This is not just a union of the individual (unopened)

inventories. By looking at the unchanged inventories, the traders could identify the trader

who initiated the order. A global MPC step to update the entire state is a solution but

it would put an unnecessary burden on inactive traders. A further challenge is to keep a

fully ordered list (i.e. orders must be executed according to arrival time).

First, we augment the private state of each trader using additional information besides

the inventory mi and vi. We memoize the value of the estimation m̂i and v̂i, and a counter

ci to track the number of pending orders of each trader Pi. Each time a trader Pi posts

an order (`, v), the memoized values are updated as m̂i = mi − p` · v, v̂i = vi + v, and

ci = ci + δc where δc = 1. For order cancellations or complete matches of pending orders,

the reverse computation is performed (δc = −1). The use of memoized values is a quick

calculation to do and to verify cryptographically. Yet, the foremost reason for such a

51

4.4. SOLUTION OVERVIEW CHAPTER 4. FUTURESMEX

Table 4.5: Futures Market Relations

Relation Additional Conditions Statement Witness

Rtoken The new leaf JτiK is correctly constructed
from the inventory values, i.e.
JτiK = Com(Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri); rτi)

JτiK, JmiK, JviK, Jm̂iK, Jv̂iK,
JciK, Jfbad,iK, Jfdel,iK, Jfout,iK

mi, vi, m̂i, v̂i, ci,
fbad,i, fdel,i, fout,i, ri,
rτi

Rinv The new inventory values mi, vi, m̂i, v̂i, ci,
fbad,i, fdel,i, fout,i are correctly constructed
from an old inventory (with token τ ′i), i.e.
Auth(ρ, pathi, Jτ ′iK) = 1;
τ ′i = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; r

′
i)

ρ, τ ′i , JmiK, JviK, Jm̂iK, Jv̂iK,
JciK, Jfbad,iK, Jfdel,iK, Jfout,iK

path, Jτ ′iK,mi, vi, m̂i,
v̂i, ci,
fbad,i, fdel,i, fout,i, r

′
i

Ruinv The new inventory values m̂i
∗, v̂i

∗, c∗i are cor-
rectly updated from an old inventory (w.r.t.
δc, `, v), i.e.
m̂i
∗ = m̂i − δc · p` · v; v̂i

∗ = v̂i + δc · v;
c∗i = ci + δc.

Jm̂i
∗K, Jv̂i∗K, Jc∗i K, Jm̂iK, Jv̂iK,

JciK, δc, `, v
m̂i
∗, m̂i, v̂i

∗, v̂i, c
∗
i , ci

Rrng The upper and lower bounds of cumulative
volumes and prices plb, Vlb, pub, Vub are cor-
rectly selected from the Obuy or Osell, i.e.
Vlb ≤ |v| ≤ Vub and one of the following holds:
v > 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Obuy

or v < 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Osell

or v = 0 ∧ (plbVlb) = (pub, Vub) = (0, 0)

JvK, JplbK, JVlbK, JpubK, JVubK,
Obuy,Osell

v, plb, Vlb, pub, Vub

Rnet (Estimation) of an instant net position ηi
(resp. η̂i) are correctly computed, i.e. ηi =
mi + plb · Vlb + pub · (|vi| − Vlb)

JmiK, JviK, JηiK, JplbK, JVlbK,
JpubK

mi, vi, ηi, plb, Vlb, pub

Rmatch The order fulfillment is correctly done, i.e.
m∗i = mi − p` · v; v∗i = vi + v; c∗i = ci + δc.

Jm∗i K, Jv∗i K, Jc∗i K,
JmiK, JviK, JciK, δc, pl, v

m∗i ,mi, v
∗
i , vi, v̂i, c

∗
i , ci

Rflags The transition from the flags (fbad,i, fdel,i,
fout,i) to the flags (f∗bad,i, f

∗
del,i, f

∗
out,i) is con-

sistent with the values (η∗i , v
∗
i , c
∗
i), as shown

in the diagram in Fig. 4.4.

Jfbad,iK, Jf∗bad,iK, Jfdel,iK, Jf∗del,iK,
Jfout,iK, Jf∗out,iK, Jη∗i K, Jv∗i K, Jc∗i K

fbad,i, f
∗
bad,i, fdel,i, f

∗
del,i,

fout,i, f
∗
out,i, η

∗
i , v
∗
i , c
∗
i

Rmtm A trader Pi is correctly marked to market, i.e.
m∗i = mi + p̄ · vi

JmiK, JviK, Jm∗i K, p̄ mi,m
∗
i , vi

device is that the values m̂i, v̂i of a trader are needed to prevent the linking of limit orders

during the verification procedure. This also allows the instantaneous computation of η̂i.

Memoization avoids the use of MPC when addressing the conflicting requirements of

(i) providing a public trail of events, (ii) publicly verifying a constraint on a private subset

of such events as well as (iii) showing that such private events are all and only applicable

events. To meet (iii) Alice would have had to show which orders belonged to her to add

them to her estimated net position. Since the full order book is visible (i), her full trading

strategy would then be visible to the other players. In contrast, if we make sure that an

order is private to trader Bob (ii), this very property does not allow Alice to prove that

the order in question does not belong to her (and does not make her over budget), so

failing (iii). Again a full MPC protocol would be a solution but this would force other

traders to participate to the posting of any order from a third party. As mentioned, such

burden would be considered unacceptable.

52

CHAPTER 4. FUTURESMEX 4.4. SOLUTION OVERVIEW

0,0,0
(good)start

1,0,0
(broke)

1,1,0
(canceled)

1,1,1
(netted)

η∗i ≥ 0

η∗i < 0

η∗i < 0 ∧ c∗i = 0

c∗i > 0

c∗i = 0

v∗i 6= 0

v∗i = 0

Figure 4.4: Inventory flags state transition diagram

Table 4.6: Merkle Tree’s supported operations

Definition Description

ρ = Add(T , Jv′K) Adds a new leaf (the hash of Jv′K) to the tree and generates a new root ρ.
path = Path(T , Jv′K) Returns the authentication path from Jv′K to ρ.
{0, 1} ← Auth(ρ, path, JvK) Authenticates JvK in T w.r.t. the authentication path path (where output 1

means the authentication succeeded).

Next, we introduce three flags to represent the status of a potential broke trader. A

trader’s inventory is marked with three flags fbad,i, fdel,i, fout,i. We call an inventory with

a non-negative instant net position a good inventory (fbad,i=0, fdel,i=0, fout,i=0), otherwise

it is a broke inventory (fbad,i = 1, fdel,i = 0, fout,i = 0). A good trader can do a normal

post/cancel action, whereas a broke trader will cancel a previous order in the Margin

Settlement phase. Finally, we call an inventory canceled if it is a broke inventory with

no pending order (after canceling all orders in the Margin Settlement phase) at the

time of commitment (fbad,i=1, fdel,i=1, fout,i=0); an inventory is netted if it has a zero

volume holding (after matching an offset position during Margin Settlement) at the

time of commitment (fbad,i=1, fdel,i=1, fout,i=1). The state transition diagram in Fig. 4.4

shows how the inventory switches from one state to another and the condition causing

the transition. This status will capture the non-monotonic evolution of the validity of

commitments and zk proofs once a valid order (of another trader) is accepted.

The overall state is then captured by a token τi, which is the commitment of all values

in the inventory (with fresh randomness ri). Such a value is only known to the trader, and

each trader keeps the token secret and only broadcasts a new commitment to commit to a

new inventory. Such an inventory is considered as unspent. At a later point, a trader can

reveal the token and retrieve a previously committed inventory, in which the inventory is

considered as spent and the corresponding token will become unusable.

The anonymity of the inventory is guaranteed by relying on Merkle trees [137] in

conjunction with the zero-knowledge proofs (in Anonymous E-Cash [163]). Throughout

the execution of the protocol, a Merkle tree T based on a collision-resistant hash function

53

4.5. FUTURESMEX CRYPTO BUILDING BLOCKS CHAPTER 4. FUTURESMEX

H : {0, 1}∗ → {0, 1}∗, where the leaves are commitments, is maintained and updated. ρ

denotes the root of the tree, and path denotes the authentication path from a leaf JvK to

the root ρ. The number of leaves is not fixed a-priori; one can efficiently update a Merkle

tree T by appending a new leaf, resulting in a new tree T ′ with root ρ. This can be done

in time/space proportional to tree depth. Table 4.6 summarizes the supported ops Add,

Path and Auth of a Merkle tree T .

Preserving Traders’ Anonymity. The commitment (repsectively the retrieval) of trader

inventories to the Merkle Tree T is obtained by running a sub-protocols Πput (resp. Πget

, see Fig. 4.5) as follows:

• Executing protocol Πput, the trader broadcasts a commitment to the token corre-

sponding to the current inventory τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri).

Thus, the trader proves the token is correctly constructed (using F token) and ap-

pended into the Merkle tree T (with operation Add), before broadcasting the new

root of the tree. The other traders will check that the new root is correctly computed

before accepting it.

• In an execution of protocol Πget, a trader can retrieve a previously committed inven-

tory (say, at round t′ < t), and spend it for posting or canceling an order (l, v), by

revealing the secret unspent token τ ′i and proving that the newly committed values

are consistent updates of the values committed at round t′. This is done using F inv

(to retrieve the inventory) and then Fuinv (to update the inventory), i.e. proving

that Jτ ′iK is a leaf of the current tree and mi = m′i, vi = v′i, m̂i = m̂i
′ − δc · p` · v,

v̂i = v̂i
′ + δc · v, and ci = c′i + δc, while all the flags fbad,i, fdel,i, fout,i stay the same.

Every time an inventory is retrieved, two sets of commitments are generated corre-

sponding to the inventory values before and after the update. The token τ ′i is now

marked as spent and will not be usable for retrieving any inventory.

The main Merkle tree T is forked (via sub-protocol Πbackup, see below) into a backup

tree TU to use during the Mark to Market phase in case there are still traders with

a negative net position after the Margin Settlement phase. We use this feature to

challenge the non-monotonicity of security (see Margin Settlement phase in the next

§4.6) and go beyond security-with-abort (see §4.9).

4.5 FuturesMEX Crypto Building Blocks

In Table 4.7, we review a few standard NP relations related to commitment schemes.

Below we give the formal description of the auxiliary ideal functionalities that support

54

CHAPTER 4. FUTURESMEX 4.5. FUTURESMEX CRYPTO BUILDING BLOCKS

Sub-protocol Πput: The protocol is run by (P1, . . . , PN) in order to let Pi commit to a new inven-
tory by adding the commitment of the inventory token to a Merkle Tree T (resulting in a new
root ρ∗).

1. Pi picks ri, rτi ← {0, 1}∗, computes τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri),
and broadcasts JτiK = Com(τi, rτi).

2. Pi proves that the token is correctly constructed (using F token).

3. Pi runs ρ∗ = Add(T , JτiK) and broadcasts ρ∗. The other traders accept ρ∗ iff the token
has been correctly added to the tree.

Sub-protocol Πget: The protocol is used when a trader posts a new order (δc = 1, l, v), cancels a
pending order (δc = −1, l, v), or simply retrieves an unspent inventory that was committed
at round t′ ≤ t into a Merkle Tree T ; any spent token is rejected.

1. Pi recovers path = path(T , Jτ ′iK) and broadcasts τ ′i .

2. Pi proving that the newly committed values are consistent updates of the values com-
mitted at round t′ (using F inv and additionally Fuinv if (δc, l, v) 6= (0, 0, 0)). The token
τ ′i is now marked as spent by all traders.

Figure 4.5: Sub-protocols Πput and Πget

our protocol construction.

The Secure All Non-Negative Check Fanncheck runs on common inputs {JηiK}i∈[N],

receives inputs from a set of players (P1, . . . , PN), and interacts with them as follows.

1. Receive (Pi, ηi, rηi) from each Pi and accept the input iff (Roc(JηiK, (ηi, rηi)) = 1).

2. Output ⊥ to all the players in the presence of any invalid input.

3. Else, the output of all players is defined to be 1 if ηi ≥ 0 (∀i ∈ [N]), and 0

otherwise.

The Secure Sum Comparison Fcompare runs on common inputs 〈JfiK, Jf ∗i K〉, receives

inputs from a set of players (P1, . . . , PN), and interacts with them as follows.

1. Receive (Pi, fi, rfi , f
∗
i , rf∗i) from each Pi and accept the input iff (Roc(JfiK, (fi, rfi)) =

1) ∧ (Roc(Jf ∗i K, (f ∗i , rf∗i)) = 1).

2. Output ⊥ to all the players in the presence of any invalid input.

3. Else, the output of all players is defined to be 1 if
∑
fi =

∑
f ∗i , and 0 otherwise.

The zero-knowledge functionality FR is parametrized by an NP relation R, and re-

ceives inputs from a prover Pi and a set of verifiers {Pj}j 6=i. The interaction is as

follows.

1. Player Pi sends (Pi, xi, wi) to FR.

55

4.5. FUTURESMEX CRYPTO BUILDING BLOCKS CHAPTER 4. FUTURESMEX

Table 4.7: Standard NP relations for commitment schemes

Definition Description

Roc(JvK, (v, rv)) The relation of opening ownership, whose output is one iff (v, rv) is the opening
of JvK, i.e., JvK = Com(v; rv).

Rzero−(JvK, (v, rv)) The relation of commitments to non-positive values, whose output is one iff
Roc(JvK, (v, rv)) = 1 and v ≤ 0.

Rzero+(JvK, (v, rv)) The relation of commitments to non-negative values, whose output is one iff
Roc(JvK, (v, rv)) = 1 and v ≥ 0.

R−(JvK, (v, rv)) The relation of commitments to negative values, whose output is one iff
Roc(JvK, (v, rv)) = 1 and v < 0.

R+(JvK, (v, rv)) The relation of commitments to positive values, whose output is one iff
Roc(JvK, (v, rv)) = 1 and v > 0.

Rec((JvK, Jv′K), (v, rv, v′, rv′)) The relation of commitments to equal values, whose output is one iff
Roc(JvK, (v, rv)) = 1, Roc(Jv′K, (v′, rv′)) = 1 and v = v′.

Rnec((JvK, v′), (v, rv)) The relation of commitments to unequal values, whose output is one iff
Roc(JvK, (v, rv)) = 1 and v 6= v′.

Rlec((JvK, c), (v, rv)) The relation of commitments to values less than or equal to c, whose output is
one iff Roc(JvK, (v, rv)) = 1 and v ≤ c.

Rgec((JvK, c), (v, rv)) The relation of commitments to values less than or equal to c, whose output is
one iff Roc(JvK, (v, rv)) = 1 and v ≥ c.

Ror((JvK, c), (v, rv)) The relation of commitments to values of opposite sign and greater than or
equal to c, whose output is one iff Roc(JvK, (v, rv)) = 1 and v · c < 0 ∧ |v| ≥ |c|.

2. Each player Pj sends (Pj, xj) to FR.

3. Output R(xj, wi) to each trader Pj if xi = xj, otherwise return ⊥.

If Rtype is a relation, for simplicity we often write F type instead of FRtype
for the

corresponding zero-knowledge ideal functionality.

4.5.1 Futures Market Relations

The futures market relations used for the protocol construction in §4.6 are described in

detail in this subsection.

Relation for Token Generation

The relation Rtoken takes as input the following statement and witness:

xtoken
i = (JτiK, JmiK, JviK, Jm̂iK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK) (4.3)

wtoken
i = (mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i, ri, rτi). (4.4)

The output of Rtoken is defined to be one iff the following conditions are met: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) JτiK = Com(Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri); rτi).

56

CHAPTER 4. FUTURESMEX 4.5. FUTURESMEX CRYPTO BUILDING BLOCKS

Relation for Inventory Retrieval

The relation Rinv takes as input the following statement and witness:

xinv
i = (ρ, τ ′i , JmiK, JviK, Jm̂iK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK) (4.5)

winv
i = (pathi, Jτ ′iK, r

′
i,mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i). (4.6)

The output of Rinv is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) Auth(ρ, pathi, Jτ ′iK) = 1; (iii) The value τ ′i is the commitment of the inventory

at a previous round, i.e. τ ′i = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; r
′
i).

Relation for Correct Post/Cancel Update

The relation Ruinv takes as input the following statement and witness:

xuinv
i = (Jm̂iK, Jv̂iK, JciK, Jm̂i

∗K, Jv̂i∗K, Jc∗i K, δc, `, v) (4.7)

wuinv
i = (m̂i, m̂i

∗, v̂i, v̂i
∗, ci, c

∗
i). (4.8)

The output of Ruinv is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) m̂i
∗ = m̂i − δc · p` · v, v̂i

∗ = v̂i + δc · v, and c∗i = ci + δc.

Relation for Correct Range Choice

The relation Rrng takes as input the following statement and witness:

xrng
i = (JvK, JplbK, JVlbK, JpubK, JVubK,Obuy,Osell) (4.9)

wrng
i = (v, plb, Vlb, pub, Vub). (4.10)

The output of Rrng is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) Vlb ≤ |v| ≤ Vub; (iii) Eq. (4.11) ∨ Eq. (4.12) ∨ Eq. (4.13) below holds:

v > 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Obuy (4.11)

v < 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Osell (4.12)

v = 0 ∧ (plbVlb) = (pub, Vub) = (0, 0). (4.13)

57

4.5. FUTURESMEX CRYPTO BUILDING BLOCKS CHAPTER 4. FUTURESMEX

Relation for Correct Computation/Speculation of an Instant Net Position

The relation Rnet takes as input the following statement and witness:

xnet
i = (JmiK, JviK, JηiK, JplbK, JVlbK, JpubK, JVubK) (4.14)

wnet
i = (mi, vi, ηi, plb, Vlb, pub, Vub). (4.15)

The output of Rnet is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) ηi = mi + plb · Vlb + pub · (|vi| − Vlb).

Relation for Correct Flags Update

The relation Rflags takes as input the following statement and witness:

xflags
i = (Jfbad,iK, Jf ∗bad,iK, Jfdel,iK, Jf ∗del,iK, Jfout,iK, Jf ∗out,iK, Jη

∗
i K, Jv

∗
i K, Jc

∗
i K) (4.16)

wflags
i = (fbad,i, f

∗
bad,i, fdel,i, f

∗
del,i, fout,i, f

∗
out,i, η

∗
i , v
∗
i , c
∗
i). (4.17)

The output of Rflags is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) The transition from the flags (fbad,i, fdel,i, fout,i) to the flags (f ∗bad,i, f
∗
del,i, f

∗
out,i)

is consistent with the values (η∗i , v
∗
i , c
∗
i), as shown in the diagram in Fig. 4.4.

Relation for Correct Match

The relation Rmatch takes as input the following statement and witness:

xmatch
i = (JmiK, JviK, JciK, Jm∗i K, Jv

∗
i K, Jc

∗
i K, δc, p`, v) (4.18)

wmatch
i = (mi,m

∗
i , vi, v

∗
i , ci, c

∗
i). (4.19)

The output of Rmatch is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) m∗i = mi − p` · v and v∗i = vi + v and c∗i = ci + δc.

Relation for Correct Mark to Market

The relation Rmtm takes as input the following statement and witness:

xmtm
i = (JmiK, JviK, Jm∗i K, p̄) (4.20)

wmtm
i = (mi,m

∗
i , vi). (4.21)

58

CHAPTER 4. FUTURESMEX 4.6. PROTOCOL CONSTRUCTION

Post/ Cancel:
ZK: 7 (rng,
net,
zero+, oc)
MPC: -

Initialize: Πput

Margin
Settl.:
ZK: 6 (rng,
net, flags)
MPC: 2
(Fcompare,
Fanncheck)

Order Fulfillment:
ZK: 4 (match)
MPC: -

Mark To Mar-
ket:
ZK: 4 (mtm)
MPC: -

Margin Settl. Can-
cel:
ZK: 5 (rng, net)
MPC: 1 (Fcompare)

Margin Settl. Offset:
ZK: 6 (rng, net,
match)
MPC: 2 (Fcompare)

Order is valid:
Πvalid

No broke traders and
there are matches Πnet

No broke
traders: Πnet

Order Fulfilled Πmatch

Found broke traders: Πnet

Cancel Order:

No broke traders’
pending order:
Fcompare

Liquidate Inventory:
Πmatch

Broke traders
netted out:
Fcompare

End of
day

Unfixable
Crashes Πnet

Our stateful functionality traverses several states each of which requires a number of ZK and MPC
steps. The subprotocols Πget, Πput and their functionalities inv, uinv, token are needed to interact with
the trader’s inventory. Hence, for every state we show the remaining required ZK proof steps and the
MPC steps. The numbers are of ZK and MPC steps. We distinguish Margin Settlement into three
sub-states: Margin Settl. (where net positions are checked), Margin Settl. Cancel (where we remove
the pending orders), and Margin Settl. Offset (where we offset the positions).

Figure 4.6: Hybrid Implementation of the Ideal Functionality

The output of Rmtm is defined to be one iff the following conditions are satisfied: (i) The

commitments in the statement are valid commitments of the corresponding values in the

witness; (ii) m∗i = mi + p̄ · vi.

4.6 Protocol Construction

At this point, an easy solution is to run the entire reactive functionality as a global MPC.

As we mentioned previously, this is unacceptable from the perspective of most traders: the

burden of computation should rather be shifted to parties wishing to prove something (e.g.

good and bad standing). All traders should be involved only when the global consistency

59

4.6. PROTOCOL CONSTRUCTION CHAPTER 4. FUTURESMEX

of the market is at stake. We illustrate the burden of using just MPC empirically with

our simulation in §4.10.1.

Fig. 4.6 summarizes how various security functionalities and sub-protocols have been

used to implement each step of the global ideal functionality.

Common Sub-Protocols The protocols in Fig. 4.7 are used extensively as sub-routines

in our main protocol.

We denote by superscript ·∗ the updated values (computed locally by Pi after an update

of the order book, e.g. m∗i), that are used as common inputs for the sub-protocols. In

particular we use as common inputs the commitments of the inventory values, e.g. JmiK,
the related order information (δc, `, v) and the Merkle Tree T , where Pi additionally holds

the committed values and the corresponding randomnesses.

Protocol Description The overall protocol runs in four phases, described on a high-level

below. The formal description is found from Fig. 4.8 to 4.11.

Initialize Phase: Every trader participating in the futures market must commit to a

valid initial inventory. This is done by each trader individually during the first

round, as follows:

1. Pi holds an initial non-negative secret amount of cash (i.e. mi ≥ 0), zero volume

holding (i.e. vi = 0), an initial estimation of the cost to pay for pending orders

(i.e. m̂i = mi), and an zero estimation of the volume holding for pending orders

(i.e. v̂i = 0) and all initial zero inventory flags.

2. Pi commits to its initial inventory and proves in zero knowledge, in which such

an inventory is valid (as defined above), by using the functionality F zero+ for mi

and F ec for m̂i, while simply decommitting vi and v̂i and the flags is sufficient

to prove that they are all zeros.

3. The traders run protocol Πput to commit the inventory of Pi; the backup tree

TU is identical to T .

Post/Cancel Order Phase: A good trader can post a new order (δc = 1, `, v) or cancel

a previous order (δc = −1, `′, v′).

1. The traders run Πvalid.

2. The traders run Πnet; this can lead to Mark to Market.

3. The traders run Πmatch for each match in the order book (only for Post Order).

60

CHAPTER 4. FUTURESMEX 4.6. PROTOCOL CONSTRUCTION

Sub-protocol Πvalid is run by (P1, . . . , PN) in order to let Pi prove a valid Post Order or Cancel
Order action. Every time a trader Pi posts or cancels an order, say (δc, `, v), the protocol has
to check for its validity.

1. In case of Cancel Order, Pi proves the ownership of the order using Foc.

2. All traders run Πget to take out the corresponding inventory then Pi proves that s/he
can perform the action by decommitting the inventory flags to show:

(a) fbad,i = 0 in a normal post/cancel action;

(b) (fbad,i = 1) ∧ (fdel,i = 0) for a cancel action during Margin Settlement;

(c) (fbad,i = 1)∧ (fdel,i = 1)∧ (fout,i = 0) for a post action during Margin Settlement.
All traders check that the posted order is matchable with the best opposite order.
In addition, Pi proves that s/he picks the best pending order correctly, i.e. vi · v <
0 ∧ |vi| ≥ |v|, using For.

3. Pi proves it has a non-negative estimation for instant net position η̂i (only in a normal

post/cancel action) using F rng, Fnet, and F zero+

.

4. All traders run Πput to put back the new inventory.

Sub-protocol Πnet Every time the order book is updated via (i) a post/cancel action of a trader
Pi, or (ii) a match of two traders Pi and Pi′ , all the traders (including Pi and Pi′), need to be
checked for negative instant net position.

1. Repeat the following for each trader Pi to retrieve the inventory then update and check
their new inventory flags.

(a) All traders run Πget.

(b) Pi commits to the ranges JplbK, JVlbK, JpubK, JVubK and proves that those range choices
are correct using F rng.

(c) Pi commits to the instant net position ηi, updates the flags accordingly and proves
integrity using Fnet (using JplbK, JVlbK, JpubK, JVubK above), and Fflags.

(d) All traders run Πput

2. All traders run Fcompare.

3. During a normal phase, if Fcompare returns 1, run Πbackup.

Sub-protocol Πmatch for updating the inventories upon a match of orders (t, `, JiK, v) of Pi and
(t′, `, Ji′K, v′) of Pi′ (v · v′ < 0).

1. Pi proves the ownership of the order using Foc, then all traders run Πget to take out the
corresponding inventory.

2. Pi computes the new inventory values and broadcasts the new commitments.

3. All traders run Πput to put back the inventory.

4. Pi′ performs steps 1-3.

Sub-protocol Πbackup is run to fork a backup tree. Additionally, the common inputs include Jη∗i K,
and Pi also holds η∗i .

1. All traders run Fanncheck.

2. If Fanncheck returns 1, all traders run Πput to obtain TU∗.

Figure 4.7: Sub-protocols Πvalid, Πnet, Πmatch, and Πbackup

61

4.6. PROTOCOL CONSTRUCTION CHAPTER 4. FUTURESMEX

4. After each match, all traders run Πnet again; if it returns 1, run Πbackup; otherwise

go to Margin Settlement.

Margin Settlement Phase: This phase is started by Πnet only when there is at least one

new broke trader when the order book is updated (post, cancel or match happens)

and is re-started every time there is at least one new trader with a bad standing (i.e.

fbad,i = 0 and η∗i < 0) during the execution of this phase. It proceeds as described

below; afterwards the protocol goes back to the previous phase (whatever it was).

1. On a first come first served basis, if there is an order o′ = (t′, l, JiK, v) belongs

to a broke trader Pi she must cancel it:

(a) The traders run Πget with parameters (−1, `, v), to retrieve Pi’s two inven-

tories: one before the cancellation of the pending order and one after the

cancellation.

(b) The traders run Πvalid.

(c) All traders forward the necessary flags f ∗del,i and fbad,i to Fcompare to check

whether
∑
f ∗del,i =

∑
fbad,i, i.e. all pending orders of the broke traders have

been canceled. If the check is successful, move to next step. Otherwise go

back to Step (a).

2. The traders run Πnet to check and restart this phase if there are new broke

traders.

3. In a first come first served manner, the broke traders offset their positions until

all broke traders are netted out.

(a) The traders run Πget to retrieve their inventory.

(b) The traders find matches on the order book at the current best price, say

between Pi and Pi′ .

(c) The traders run Πvalid then both traders locally update their inventory,

commit to the new inventory, and prove in zero knowledge that the match

has been done correctly (using Fmatch).

(d) All traders forward the necessary flags f ∗out,i and fbad,i to Fcompare to check

whether
∑
f ∗out,i =

∑
fbad,i, i.e. all the positions have been offset, if the

check is successful, go to next step.

4. The traders run Πnet to check and restart this phase if there are new broke

traders.

5. All traders run Πbackup to check if a backup tree can be forked, if not, go to

Mark to Market phase.

62

CHAPTER 4. FUTURESMEX 4.6. PROTOCOL CONSTRUCTION

Mark to Market Phase: This phase is invoked at the last round t = T , or during

Margin Settlement.

1. The traders run Πget to retrieve their inventory.

2. The traders locally updates their inventory, commits to the new inventory, and

proves in zero knowledge that the match has been done correctly (using Fmtm).

3. Finally the new inventory is added back to the Merkle tree T by running Πput.

The Proportional Burden is fulfilled, for what is technically possible, as we require

traders posting/canceling an order to prove the validity of their actions before other

traders prove the validity of their inventories according to the new order book. The latter

is necessary for distributed risk management. It could be optimized by having a trader

proving the validity of an inventory for a range of price values rather than just the current

price (e.g. up/downward ticks as appropriate).

Initialize Phase: This phase runs in the first round where each trader Pi commits to a
good inventory with cash mi.

1. Trader Pi commits to and broadcasts the following values:

(a) A secret cash balance JmiK, and a zero volume holding JviK.
(b) A secret estimation of cash balance regarding pending orders Jm̂iK.
(c) A zero expected volume holding for regarding orders Jv̂iK.
(d) A zero counter for the number of regarding orders JciK.
(e) Three zero inventory flags Jfbad,iK, Jfdel,iK, Jfout,iK.
(f) A token JτiK, where τi = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; ri) with ri
← {0, 1}∗.

2. Pi sends (Pi, JmiK,mi) and each other Pj 6=i sends (Pj , JmiK) to Fzero+ .

3. Pi sends (Pi, (Jm̂iK, JmiK), (m̂i,mi)) and each other Pj 6=i sends (Pj , (Jm̂iK, JmiK))
to Fec.

4. Pi decommits JviK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK to show that the values are 0.

5. All traders run Πput on common input (T , JmiK, Jm̂iK, JviK, Jv̂iK, JciK, Jfbad,iK,
Jfdel,iK, Jfout,iK), where Pi additionally holds (mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i).

6. Set TU := T .

Figure 4.8: The Initialize phase of protocol ΠDFM

63

4.6. PROTOCOL CONSTRUCTION CHAPTER 4. FUTURESMEX

Post Order Phase: This phase is run in order to post an order o = (t, `, i, v) at round t
(where ` ≥ `buy for v < 0, and ` ≤ `sell for v > 0).

1. Pi broadcasts the values (1, `, v) and a commitment JiK.

2. All traders run Πvalid;

3. All traders run Πnet.

4. Starting from t′ = 1, repeat the following steps for each matching entry
(t′, `, Ji′K, v′) ∈ O such that v · v′ < 0, until v = 0 or t′ = t:

(a) All traders run Πmatch;

(b) All traders run Πnet.

Cancel Order Phase: This phase is run in order to cancel an order o = (t′, `, i, v).

1. Pi broadcasts the values t′ and (−1, `, v).

2. All traders run Πvalid;

3. All traders run Πnet.

Figure 4.9: The Post Order and Cancel Order phase of protocol ΠDFM

64

CHAPTER 4. FUTURESMEX 4.6. PROTOCOL CONSTRUCTION

Margin Settlement Phase: This phase is run whenever at least one inventory was added
to the Merkle Tree T during the sub-protocol Πnet. Thereafter, the protocol goes back
to the invoking phase.

1. While there is an order o′ = (t′, l, JiK, v) belongs to a broke trader Pi she has to
cancel it:

(a) Pi broadcasts the values t′ and (−1, `, v).

(b) All traders run Πvalid on common inputs (T , JmiK, Jm̂iK, JviK, Jv̂iK, JciK,
Jfbad,iK, Jfdel,iK, Jfout,iK, Jm∗i K, Jv

∗
i K, Jm̂i

∗K, Jv̂i∗K, Jc∗i K, Jf
∗
bad,iK, Jf

∗
del,iK, Jf

∗
out,iK,

δc, l, v), where Pi additionally holds (Jτ ′iK, τ
′
i , r
′
i,mi,m

∗
i , vi, v

∗
i , m̂i, m̂i

∗, v̂i, v̂i
∗,

ci, c
∗
i , fbad,i, f

∗
bad,i, fdel,i, f

∗
del,i, fout,i, f

∗
out,i).

(c) Pi forwards f∗del,i and fbad,i to Fcompare; if Fcompare returns 1, proceed to next
step, else go back to step (a).

2. The traders run Πnet, and return to step 1 if there is any new broke inventory.

3. Offset the volume holding vi of every broke trader Pi until vi = 0. A broke trader
Pi locally looks up the order book from t′ = 1 to t′ = t and posts an opposite
order for an order o′ = (t′, l, Ji′K, v′) (where l = `sell for vi < 0, and l = `buy if
vi > 0), then the following steps are performed for each o′:

(a) The traders run Πvalid.

(b) The traders run Πmatch.

(c) Pi forwards f∗out,i and fbad,i to Fcompare. If Fcompare returns 1, proceed to the
next step, else, go back to step (a).

4. The traders run Πnet, and return to step 1 if there is any new broke inventory.

5. All traders run Πbackup to check if a backup tree can be forked, if not, the traders
proceed to Mark to Market using the tree TU .

Figure 4.10: The Margin Settlement phase of protocol ΠDFM

65

4.6. PROTOCOL CONSTRUCTION CHAPTER 4. FUTURESMEX

Mark to Market Phase: This phase is called either during the Margin Settlement, or
in the last round, where every trader Pi retrieves and commits to a good inventory
with new marked-to-market values.

1. All traders run Πget on common input (T , JmiK, Jm̂iK, JviK, Jv̂iK, JciK, Jfbad,iK,
Jfdel,iK, Jfout,iK, Jm∗i K, Jv

∗
i K, Jm̂i

∗K, Jv̂i∗K, Jc∗i K, Jf
∗
bad,iK, Jf

∗
del,iK, Jf

∗
out,iK), where Pi ad-

ditionally holds (Jτ ′iK, τ
′
i , r
′
i,mi,m

∗
i , vi, v

∗
i , m̂i, m̂i

∗, v̂i, v̂i
∗, ci, c

∗
i , fbad,i, f

∗
bad,i, fdel,i,

f∗del,i, fout,i, f
∗
out,i).

2. Pi computes the following:

m∗i := m̂i
∗ := mi + p̄ · vi and v∗i := v̂i

∗ := c∗i := f∗bad,i := f∗del,i := f∗out,i := 0.

3. Pi broadcasts Jm∗i K, Jv∗i K, Jm̂i
∗K, Jv̂i∗K, Jc∗i K and Jf∗bad,iK, Jf∗del,iK, Jf∗out,iK.

4. Pi decommits Jv∗i K, Jv̂i∗K, Jc∗i K and Jf∗bad,iK, Jf∗del,iK, Jf∗out,iK. to show the values
are 0.

5. Pi sends (Pi, x
mtm
i , wmtm

i) to Fmtm, while Pj 6=i sends (Pj , x
mtm
j)—cf. Eq. (4.20)-

(4.21).

6. Pi sends (Pi, (Jm̂i
∗K, Jm∗i K), (m̂i

∗,m∗i)) and each other Pj 6=i sends
(Pj , (Jm̂i

∗K, Jm∗i K)) to Fec.

7. All traders run Πput on common input (T , Jm∗i K, Jm̂i
∗K, Jv∗i K, Jv̂i

∗K, Jc∗i K, Jf
∗
bad,iK,

Jf∗del,iK, Jf
∗
out,iK), where Pi additionally holds (m∗i , v

∗
i , m̂i

∗, v̂i
∗, c∗i , f

∗
bad,i, f

∗
del,i,

f∗out,i).

Figure 4.11: The Mark To Market phase of protocol ΠDFM

66

CHAPTER 4. FUTURESMEX 4.7. SECURITY ANALYSIS

4.7 Security Analysis

The theorem below states the security of our protocol ΠDFM from §4.6.

Theorem 4.1. Let Com be a statistically hiding (and computationally binding) commit-

ment scheme. Protocol ΠDFM from §4.6 securely realizes the ideal functionality FCFM in the

(Fzk,Fcompare,Fanncheck)-hybrid model, where the zero-knowledge functionality Fzk supports

all the NP relations defined in §4.3, and §4.5.

4.7.1 Proof sketch

Let us first describe the intuitive approach to our security proof. As in standard simulation-

based security proofs, we exhibit an efficient simulator interacting with the ideal func-

tionality FCFM that is able to fake the view of any efficient adversary corrupting a subset

I ⊆ [N] of the traders in an execution of protocol ΠDFM
13.

Our protocol is designed in a “hybrid world” with several auxiliary ideal functionalities

(mainly for zero-knowledge proofs and for running secure comparisons). Importantly, in

such a world, there is no security issue when using these functionalities: a composition

theorem ensures that our protocol is still secure when we replace the auxiliary ideal

functionalities with sub-protocols securely realizing them. An advantage of working in

the hybrid model is that the simulator gets to see the inputs that corrupted traders

forward to the auxiliary ideal functionalities in the clear. The simulator has to play the

role of the trusted party that computes each auxiliary functionality in the hybrid model.

On a very high level, our simulator S works as follows. During the Initialize phase,

it commits to zero values for each commitment forwarded by a honest trader in the

real protocol; the commitments to the token of each inventory are added to a simulated

Merkle Tree that is maintained internally by the simulator. During a Post/Cancel

Order action, it relies on the ideal functionality FCFM to post/cancel the corresponding

orders; afterwards, in the Margin Settlement phase, for each match notification received

from the ideal functionality FCFM, the simulator commits to zero for each commitment

forwarded by a honest trader in the real protocol execution. During the Mark to Market

phase, it commits to zero values for each commitment forwarded by a honest trader in

the real protocol.

The hiding property of the commitment scheme implies that the above simulation is

indistinguishable to the view generated in a mental experiment where the simulator S is

given the real inputs corresponding to each honest trader. The only difference between

this mental experiment and a real protocol execution is that in the former experiment

13We assume the set I is fixed before the protocol execution starts.

67

4.7. SECURITY ANALYSIS CHAPTER 4. FUTURESMEX

the market evolves using the inventories held at the beginning by each corrupted trader,

whereas in the latter experiment the adversary can try to cheat and fake the inventory

of a corrupted trader (e.g. by claiming an order pertaining to a honest trader). However,

the binding property of the commitment scheme and the collision resistance of the Merkle

Tree, ensure that such cheating attempts only succeed with a negligible probability.

This allows us to conclude that the view simulated in the ideal world (with the func-

tionality FCFM) is computationally indistinguishable from the view in a real execution of

the protocol, thus establishing the security of ΠDFM.

4.7.2 Security Proof

Proof. It is clear that ΠDFM computes FCFM. We proceed to prove the security of ΠDFM.

Let A be a non-uniform deterministic PPT adversary. The simulator S is given access to

the ideal functionality FCFM, and can also read the stored/updated values of the corrupted

traders (that A controls) from FCFM; recall that, since we prove only static security, the

set of corrupted traders I is fixed before the protocol execution starts.

Sub-routines. To simplify the simulator’s description, we introduce sub-routines Sput

and Sget as well as Svalid, Sbackup, Snet, and Smatch that will call Sput and Sget when it is

related to committing and retrieving inventories. The sub-routines will later be invoked

by S; while reading them, think of the simulator’s behaviour as a simulation strategy for

the corresponding protocols Πput, Πget, Πvalid, Πbackup, Πnet, and Πmatch. Each sub-routine

invokes A and receives messages from it. The sub-routines use the aforementioned Sget

and Sput. Since we are working in the hybrid model, whenever A interacts with an ideal

functionality the simulator receives A’s inputs to the functionality in the clear, and thus

it can perfectly emulate the output of the hybrid functionality.

Sput: When a trader Pi commits to an inventory, it acts as a prover while the other traders

act as verifiers. If Pi is corrupted, S needs to simulate the views of both the prover

Pi and the corrupted verifiers Pj, by receiving the inputs from Pi and forwarding

them to each corrupted verifier Pj 6=i. Otherwise, S only needs to simulate the view of

the corrupted verifiers Pj, by forwarding J0K and ρ = Add(T , J0K) to each corrupted

verifier Pj. In both cases S simulates the output of F token for each corrupted players,

abort the simulation if any check fails.

Sget: Similar to Sput but using F inv and Fuinv.

Svalid: Similar to Sput but using Foc, F rng, Fnet, F zero+ and For.

68

CHAPTER 4. FUTURESMEX 4.7. SECURITY ANALYSIS

Sbackup: Similar to Sput but with F rng, Fnet and Fanncheck (i.e. output 1 if the ideal func-

tionality FCFM does not trigger Mark To Market).

Snet: When a trader Pi needs to be checked for a non-negative instant net position, it acts

as a prover while the other traders act as verifiers. The steps are also similar to Sput

but with F rng, Fnet, Fflags and Fcompare.

Remark 4.5. To simulate the output of Fcompare the simulator simply uses the public

output of FCFM during the net position check that may trigger the Margin Settle-

ment phase, i.e. whenever FCFM outputs a list of pending orders to be removed or

an order to be matched (to offset a broke inventory), the simulator outputs 0 for

Fcompare and Fanncheck.

Smatch: When a trader Pi posts an order, it acts as a prover together with some other trader

Pi′ with a matching order, while the other traders act as verifiers. We distinguish

four cases for the honesty of Pi and Pi′ . The steps are also similar to Sput but with

Foc and Fmatch.

Simulator description. We are now ready to describe the simulator. In each round

t ≤ T , the simulator S runs as follows depending on the current phase the protocol.

Initialization: Let Pi be the trader committing to a good inventory. If Pi is corrupted:

1. Receive the commitments of inventory values and JτiK from Pi; obtain the inputs

that A sends to F zero+ and F ec, and simulate the output of such ideal functionalities

for each corrupted trader in I.

2. Forward (init, Pi,mi) to FCFM; if the ideal functionality returns 0 simulate an abort

of the protocol.

3. Receive the decommitments corresponding to JviK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK,
and simulate an abort of the protocol if such values are not valid openings.

4. Run Sput (for the case of corrupted Pi).

If Pi is honest we proceed as follows.

1. Forward commitments to zero for each of the values broadcast by Pi in the first

step of the initialize phase; obtain the inputs that A sends to F zero+ and F ec, and

simulate the output of such ideal functionalities for each corrupted trader in I.

2. Open the commitments to zero corresponding to JviK, Jv̂iK, JciK, Jfbad,iK, Jfdel,iK, Jfout,iK.

3. Run Sput (for the case of honest Pi).

69

4.7. SECURITY ANALYSIS CHAPTER 4. FUTURESMEX

Post/Cancel Order: Let Pi be the trader posting an order or canceling a previous

order. We distinguish two cases for Cancel Order and four cases for Post Order. If Pi is

corrupted:

1. For Post Order, receive the values (1, l, v) and JiK from Pi and forward (post order, Pi, t, l, v)

to FCFM. Otherwise, receive the values t′ and (−1, l, v) from Pi and forward (cancel order, Pi, t
′)

to FCFM.

2. Run Svalid and Snet (for the case of corrupted Pi).

3. For Post Order, for each command (match, t′, l, v′) received from FCFM run Smatch

and then Snet (for the case of corrupted Pi).

If Pi is honest:

1. For Post Order, receive (post order, t, l, v) from FCFM. Otherwise receive (cancel order, t′)

from FCFM.

2. Run Svalid and Snet (for the case of honest Pi).

3. For Post Order, for each command (match, t′, l, v′) received from FCFM run Smatch

and then Snet (for the case of honest Pi).

If Pi is honest and Pi′ is corrupted (or viceversa): proceed as above, depending

on who is honest/corrupted.

Margin Settlement: During this phase the simulator S first obtains the list of pending

orders that needs to be canceled directly from the broke corrupted traders and indirectly

from the broke honest traders (through a cancellation received from the ideal function-

ality). Similarly the simulator S obtains the new orders to be matched directly from

the broke corrupted traders and indirectly from the broke honest traders (through a new

order received from the ideal functionality). If Pi is corrupted we proceed as follows.

1. For each order to be canceled:

(a) Receive the values t′ and (−1, l, v) from Pi; obtain the inputs that A sends

to Foc, and simulate the output of such ideal functionality for each corrupted

trader in I.

(b) Run Svalid (for the case of corrupted Pi).

(c) Obtain the inputs that A sends to Fcompare, and simulate the output of such

ideal functionality, i.e. output 0 all the time until the last order to be canceled,

for each corrupted trader in I.

70

CHAPTER 4. FUTURESMEX 4.7. SECURITY ANALYSIS

2. Run Snet (for the case of corrupted Pi).

3. For each order to be matched:

(a) Receive the values (1, l, v) and JiK from Pi; forward (post order, Pi, t, l, v) to

FCFM.

(b) Run Svalid and Smatch (for the case of corrupted Pi).

(c) Obtain the inputs that A sends to Fcompare, and simulate the output of such

ideal functionality, i.e. output 0 all the time until the last order to be matched,

for each corrupted trader in I.

4. Run Snet (for the case of corrupted Pi).

5. Run Sbackup (for the case of corrupted Pi).

If Pi is honest: Same as mentioned above, except that the values (l, v′) for each order

to be canceled and matched are obtained from FCFM.

Mark To Market: Let Pi be the trader committing to a good inventory with marked-

to-market values. If Pi is corrupted:

1. Run Sget (for the case of corrupted Pi).

2. Receive the commitments and obtain the inputs that A sends to Fmtm, and simulate

the output of such ideal functionality for each corrupted trader in I.

3. Run Sput (for the case of corrupted Pi).

If Pi is honest:

1. Run Sget (for the case of honest Pi).

2. Forward commitments to zero for each of the values broadcast by Pi in the second

step of the Mark to Market phase; obtain the inputs that A sends to Fmtm, and

simulate the output of such ideal functionality for each corrupted trader in I.

3. Run Sput (for the case of honest Pi).

Indistinguishability of the simulation. We need to show that for all PPT adversaries

A, all I ⊆ [N], and every auxiliary input z ∈ {0, 1}∗, the following holds:

REALΠDFM,A(z),I ≈c IDEALFCFM,S(z),I .

We start by considering a hybrid experiment HYBRID1
A(z),S1,I with a simulator S1 that

runs exactly the same as S, except that S1 also plays the role of the ideal functionality

71

4.7. SECURITY ANALYSIS CHAPTER 4. FUTURESMEX

FCFM on its own. This means that S1 directly receives the inputs of other honest traders

that are not under control of A. Clearly, for all adversaries A, all subsets I, and every

auxiliary in put z ∈ {0, 1}∗, we have that HYBRID1
A(z),S1,I ≡ IDEALFCFM,S(z),I , as there is no

difference in generating the view of A in the two experiments.

Next, we consider another hybrid experiment HYBRID2
A(z),S2,I with a simulator S2 that

runs exactly the same as S1, except that whenever S1 committs to zero values when

dealing with dishonest verifiers, S2 commits to the real values received from the honest

provers. The lemma below shows that the two experiments are statistically close.

Lemma 4.1. For all (unbounded) adversaries A, all I ⊆ [N], and every z ∈ {0, 1}∗:
HYBRID1

A(z),S1,I ≈s HYBRID
2
A(z),S2,I

Proof. The proof is down to the statistical hiding property of the non-interactive com-

mitment Com.

We consider a variant of the statistical hiding property where a distinguisher D is

given access to a left-or-right oracle Olr(b, ·), parametrized by a bit b ∈ {0, 1}, that upon

input v ∈ {0, 1}∗ returns JvK (if b = 0) or J0K (if b = 1), where |0| = |v|; hence, we have

Com is statistically hiding if for all computationally unbounded D,∣∣Pr
[
DOlr(0,·)(1λ) = 1

]
− Pr

[
DOlr(1,·)(1λ) = 1

]∣∣ ≤ ν(λ),

for a negligible function ν : N → [0, 1]. By a standard hybrid argument, as long as D
makes a polynomial (in λ) number of oracle queries, the above flavor of statistical hiding

is equivalent to that of Com. Assume there exists a distinguisher D′ and a polynomial

p(λ), such that, for some I ⊆ [N] and z ∈ {0, 1}∗, and for infinitely many values of λ ∈ N,

we have that ∣∣∣∣∣Pr
[
D′(HYBRID1

A(z),S1,I) = 1
]

− Pr
[
D′(HYBRID2

A(z),S2,I) = 1
] ∣∣∣∣∣ ≥ 1/p(λ).

We can construct a distinguisher D breaking the statistical hiding property of Com as

follows. D runs A and simulates an execution of protocol ΠDFM exactly as S1 does, except

that whenever S1 forwards a commitment to zero, D asks a query to the left-or-right

oracle and sends the output of the oracle to A; the value v for each oracle query is equal

to the value S2 would commit to (instead of committing to zero).

In case D receives always commitments to zero, the view of A when run by D is

identical to the view in the first hybrid experiment; on the other hand, in case D receives

72

CHAPTER 4. FUTURESMEX 4.7. SECURITY ANALYSIS

always commitments to the values queries to the left-or-right oracle, the view of A when

run by D is identical to the view in the second hybrid experiment.

Thus, D retains the same advantage of D′. This concludes the proof.

The lemma below says that the view of the adversary in the last hybrid experiment is

computationally indistinguishable from the view in the real experiment.

Lemma 4.2. For all PPT adversaries A, all I ⊆ [N], and every z ∈ {0, 1}∗, it is

HYBRID2
A(z),S2,I ≈c REALΠDFM,A(z),I .

Proof. Fix I ⊆ [N], and z ∈ {0, 1}∗. Consider the following events, defined over the

probability space of the last hybrid experiment.

Event Badinv: The event becomes true whenever A can modify the inventory of a cor-

rupted trader Pi, by finding two distinct valid openings for a token τi. The computational

binding property of Com implies that Pr [Badinv] is negligible.

Event Badspend: The event becomes true whenever A can double spend the inventory

of a corrupted trader Pi, by finding two distinct valid openings for JτiK. The computational

binding property of Com implies that Pr [Badinv] is negligible.

Event Badforge: The event becomes true whenever A forges an inventory of a trader

Pi, by finding two distinct valid authentication paths for a leaf JτiK of the Merkle Tree.

The computational binding property of the Merkle Tree, which follows from the collision

resistance of the underlying hash function, implies that Pr [Badforge] is negligible.

Event Badswap: The event becomes true wheneverA claim a pending order of an honest

trader Pi′ , by finding two valid openings for the commitment Ji′K. The computational

binding property of Com implies that Pr [Badswap] is negligible.

Define Bad := Badinv ∨ Badspend ∨ Badforge ∨ Badswap. It is not hard to see that condi-

tioning on Bad not happening, the view of A is identical in the two experiments. This is

because the only difference between the last hybrid and the real experiment is that in the

former experiment the values mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i are read from the internal

storage of S2 (playing the role of FCFM), whereas in the latter experiment these values are

specified by the attacker. Hence, by a standard argument, for all PPT distinguishers D:∣∣∣Pr
[
D(HYBRID2

A(z),S2,I) = 1
]

− Pr
[
D(REALΠDFM,A(z),I) = 1

] ∣∣∣ ≤ Pr [Bad] .

The proof of the lemma now follows by a union bound.

Combining the above two lemmas, we obtain that the real and ideal experiment are

computationally close, as desired.

73

4.8. PROTOCOL OPTIMIZATION CHAPTER 4. FUTURESMEX

4.8 Protocol Optimization

Several optimizations to the protocol improve the practical performance of FuturesMEX

and reduce the computational cost to 30%.

We streamline the number of the validations of the commitments by packing fbad,i,

fdel,i, fout,i into a single integer fi. This improves the circuit F token, F invt as well as Fflags.

Then, we combine the circuits F invt, Fuinv, F rng, and Fnet. Proof generations can also be

parallelized in a protocol step, e.g. in Πvalid, F invt, Fuinv, F rng, Fnet, F zero+ and F token are

independent of each other.

Furthermore, since functionalities Fcompare and Fanncheck are used extensively in our

protocol, their consistency check of the commitments slows down the entire protocol. We

can replace the full functionality Fcompare with a lighter functionality Fdtc to detect the

flag in an unwanted state without validating the consistency of the commitments and

to randomly select a Py in the unwanted state to open the flag to check. This is not a

problem as Py is not linked to any traders from the previous steps or the subsequent ones

due to the anonymity mechanism (Merkle Tree and ZK Functionalities). She is just an

anonymous volunteer for this round. The full positive check functionality Fanncheck can be

similarly replaced.

The Secure Detection Fdtc runs with common input (f) (the unwanted state such as

the broke state) and interacts with a set of players 〈P1, . . . , PN〉 and receive (Pi, fi, ri)

from each Pi. Upon receiving all inputs, let B∗ = 〈Py〉 be the set of traders such that

(fy = f), and let cf be the size of B∗, if cf > 0, compute j =
∑
ri mod cf and output the

index y of the j-th broke trader Py in B∗ to all players and ⊥ otherwise. In the protocol,

each trader samples a random ri and forwards (Pi, fi, ri) to Fdtc with a common input

f to obtain y or ⊥. If the outcome is ⊥, each trader Pi proves that her flag is different

from the f (using Fnec). Otherwise, the trader Py proves that the inventory flag is the

same as the common input by decommitting the flags. Any trader unable to prove either

properties is considered aborting.

The Secure All Non-Negative Check Fanncheck is modified similarly to Fdtc to interact

with a set of players 〈P1, . . . , PN〉 as follows: For all inputs (Pi, ηi, ri) from each Pi, let

B∗ = 〈Py〉 be the set of traders such that (ηi < 0), and let cf be the size of B∗, if cf > 0,

compute j =
∑
ri mod cf and output the index y of the j-th broke trader Py in B∗ to all

players and ⊥ otherwise. In the protocol, if Fanncheck outputs ⊥, all traders need to prove

a non-negative net position using F zero+ . Otherwise, the trader Py proves the negative

position with F−. Any trader unable to prove either properties is considered aborting.

Remark 4.6. In the security proof (§4.7) when packing the three flags into one single

integer or combining several circuits into one for optimization, the simulator changes

74

CHAPTER 4. FUTURESMEX 4.8. PROTOCOL OPTIMIZATION

accordingly. In the simulator description, we just replace the three flags (fbad,i, fdel,i, fout,i)

with one fi. It is similar for optimized functionalities be replaced with the new one. In

Sget, we replace F inv and Fuinv with F inv+uinv or in Snet we replace Fcompare with Fdtc.

4.8.1 Optimized Building Blocks

For the flag packing optimization, the relations simply combine fbad,i, fdel,i, fout,i into fi.

Possible values are 000, 100, 110, and 111 for good, broke, canceled and netted. The state

transition function is similar to Fig. 4.4. Below is the combination of relations.

Optimized Relation for Inventory Retrieval + Correct Post/Cancel Update

The relation Rinv+uinv takes as input the following statement and witness:

xinv+uinv
i = (ρ, τ ′i , JmiK, JviK, Jm̂i

∗K, Jv̂i∗K, Jc∗i K, JfiK, δc, l, v) (4.22)

winv+uinv
i = (pathi, Jτ ′iK, r

′
i,mi, vi, m̂i, v̂i, ci, fi). (4.23)

The output of Rinv+uinv is defined to be one iff the following conditions are met: (i)

The commitments in the statement are consistent with the corresponding values in the

witness; (ii) Auth(ρ, pathi, Jτ ′iK) = 1; (iii) The value τ ′i is the commitment of the inventory

at a previous round, i.e. τ ′i = Com(mi||vi||m̂i||v̂i||ci||fi; r′i). (iv) m̂i
∗ = m̂i − δc · p` · v,

v̂i
∗ = v̂i + δc · v, and c∗i = ci + δc.

Optimized Relation for Correct Computation/Speculation of an Instant Net Posi-

tion

The relation Rrng+net takes as input the following statement and witness:

xrng+net
i = (JmiK, JviK, JηiK,Obuy,Osell) (4.24)

wrng+net
i = (mi, vi, ηi). (4.25)

The output of Rrng+net is defined to be one iff the following conditions are satisfied: (i)

The commitments in the statement are consistent with the corresponding values in the

witness; (ii) ηi = mi + plb · Vlb + pub · (|vi| − Vlb) where (iii) Vlb ≤ |v| ≤ Vub; (iv) Eq. (4.26)

∨ Eq. (4.27) ∨ Eq. (4.28) below holds:

v > 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Obuy (4.26)

v < 0 ∧ ((plb, Vlb), (pub, Vub)) ∈ Osell (4.27)

v = 0 ∧ (plbVlb) = (pub, Vub) = (0, 0). (4.28)

75

4.9. BEYOND SECURITY-WITH-ABORT CHAPTER 4. FUTURESMEX

4.9 Beyond Security-With-Abort

We opt towards the mechanism of Hawk [119, Appendix G, §B] in which private deposits

are frozen and the identified aborting parties cannot claim back the deposits in the with-

drawal phase. This fits precisely our scenario as the deposit can be defined to match the

initial margin, (which is the largest amount a trader can lose when being netted out14).

First we show that honest participants can eventually move to the Mark To Market

phase to cash their inventory. Let us denote by Adv the set of adversaries who abort

between time t and time t + 1 given a backup tree TU with a solvable inventory of all

traders (mi, vi) and the corresponding mid price p̄. Since TU is a valid tree15 it satisfies

the constraints in Table 4.3 (ηi ≥ 0). Since ηi = mi + cash(vi) ≤ mi + p̄ · vi, we have

0 ≤
∑

i 6∈Adv
(mi + p̄ · vi) ≤

∑
i
m0
i

This implies that there will be no unexpected loss to cover (0 ≤ . . .) nor additional money

would be created (. . . ≤
∑

im
0
i). Then honest traders can proceed to the Mark To

Market phase to split their own trade proceedings. Possibly this will include the money

that they have obtained from the traders controlled by the adversary which abandoned

the computation. If enough traders accept the move so that it ends into the public

ledger this would be considered an acceptable solution. From an economics perspective,

the adversary would be penalized with at least its initial cash margin which could be

substantial.

Now, we just need to extend our protocol to identify the aborting parties in various

protocols and prevent them from claiming the deposit in Mark To Market phase by

requiring each trader to present a proof of participation in the round where the abort

happens. A further step is to divide the money of the adversary if at the end of the

Initialize phase, the total sum of money is computed (by an MPC protocol, i.e. Fsum

that receives mi from each trader and computes
∑

imi). In the Mark To Market phase,

by computing the sum of money of the honest traders after the updates of the inventories,

we can find the difference corresponding to the money of the adversary and share it by

updating the inventories with the shares.

Formally, in an abort, every honest trader maintains a set of spent tokens τ ′i of the

participants. The Mark To Market phase now runs exactly the same as before except

14In practice traders can deposit additional funds when receiving a margin call. These incremental deposits
could be easily incorporated into our setting by adding a step similar to Initialize with an additional ZK for the
increment.

15The latest backup tree is the only point of restoration where every trader’s margin is non-negative. Ideally, a
recovery procedure should exist, we leave this for future work. However, the trader who responsible for the abort
is still penalized.

76

CHAPTER 4. FUTURESMEX 4.10. IMPLEMENTATION

that a trader must prove in zero knowledge he knows the opening of a token τ ′i in the

last step of the relation Roinv, taking as input the statement xoinv
i = (τ ′i) and witness

woinv
i = (r′i,mi, vi, m̂i, v̂i, ci, fbad,i, fdel,i, fout,i). The output of Roinv is defined to be one iff

τ ′i = Com(mi||vi||m̂i||v̂i||ci||fbad,i||fdel,i||fout,i; r
′
i). In the simplest settings, as in a joint

step, the set of tokens from participants can be trivially constructed. We discuss the

disqualification of an adversary in a more complex case where he refuses to match an

order o′:

1. All traders Pi cancel all orders o with o 6= o′.

2. All traders Pi prove they do not own o′ by decommitting JciK and showing that

ci = 0.

Similarly, if the Margin Settlement phase is aborted,

1. In cancellation phase, all traders retrieve their inventory with a token τ ′i , and prove

that the inventory flags is not broke, i.e. (fbad,i, fdel,i, fout,i) 6= (1, 0, 0).

2. In liquidation phase, all traders retrieve their inventory with a token τ ′i , and prove

that the inventory flags is not canceled, i.e. (fbad,i, fdel,i, fout,i) 6= (1, 1, 0).

For checking that the inventory flag is not in a specified state an additional NP re-

lation is necessary. We define R3nec((Jv1K, Jv2K, Jv3K, v′1, v′2, v′3), (v1, r1, v2, r2, v3, r3))] as the

relation of commitments to equal values, whose output is one iff Roc(JviK, vi) = 1 and

vi 6= v′i for i = {1, 2, 3}.

4.10 Implementation

We have implemented all phases of our protocol both the direct and the optimized ver-

sions. For the anonymous network and the distributed consensus protocol, off-the-shelf

implementations will do.16

Implementation of Components. We follow ZeroCash [164] in the instantiation of our

building blocks, at a security level of 128 bits. Let H(·) be a collision-resistant compression

hash function that maps l bits input (l ≥ 512) into 256 bits output (e.g. SHA25617). We

16We use the distributed ledger HyperLedger [109] in PBFT mode as a Byzantine fault tolerant storage for each
protocol step. Each broadcast is replaced with a write into the distributed ledger. To communicate anonymously,
the traders hide behind a Tor network [172] While we mention Tor, zcash, and HyperLedger in our implementation,
we can replace any sub-protocol with other protocols for the same task, without affecting the security. See [6,179]
for a comparison of different solutions.

17We have chosen SHA-256 as it is possible to use zcash in FuturesMEX, and we can leverage its builtin
implementation in our development framework libsnark.

77

4.10. IMPLEMENTATION CHAPTER 4. FUTURESMEX

use H(·) to instantiate the commitment scheme Com and the hash function for the binary

Merkle Tree T . The zero-knowledge functionality FR is instantiated with zk-SNARKs

for arithmetic circuit satisfiability [21], while generic MPC is used for the hybrid ideal

functionalities Fcompare and Fanncheck.

Our zk code is based on the libsnark library [166]. We split F inv into F invm to check

whether the token is one of the leaves of the Merkle Tree and F invt to check the consistency

of new commitments and old tokens. Our prototype supports 32 bits signed integers (see

footnote 1 on prices in §4.2), a Merkle Tree of depth 10 and up to 10 range choices18 (i.e.

Osell and Obuy used in F rng). Our MPC uses the SPDZ library [23,69,145,168].19

4.10.1 Evaluation

We evaluate our protocol in three steps. First, we evaluate the performance of the cryp-

tographic primitives used in our protocol, i.e. the zk-SNARK circuits and the MPC

functionalities, both in the offline and online phase on a concrete implementation. Then,

we use the obtained values to estimate the performance of each phase in our protocol.

Finally, we evaluate the full protocol’s performance by matching the above estimates with

the public data available from the order books. while network latencies are critical for

high-speed trading, we ignore them here since this issue is well understood by traders

either using known optimizations [125, 142] or buying dark fiber to cut delays between

exchanges [83].

All our experiments are run on an Amazon EC2 r4.4xlarge instance (Intel Xeon E5-

2686 v4 @ 2.3Ghz, 16 cores, 122 GB RAM). We exclude communication cost since each

operation requires less than 20 commitments and 10 zk-SNARKs proof. Per operation,

the data are less than 4KB (see Table 4.8). The MPC offline phase protocol is pipelined

with zk-SNARKs proof generation; thus, we exclude the MPC offline phase as well.

zk-SNARK Circuits Performance In Table 4.8, we report the performance metrics for

the pre-processing steps: the key generation time (KeyGen), the size of the proving keys

(PK), and the size of the verifying (VK) keys. We also report the time to generate a proof

(Proving Time) and to verify it (Verify time), as well as the size of the proof during the

actual trading execution. Proving key size and proof generation time scale is linear with

the a number of commitments of the relation.
18The set of net position range choices is a subset of the price ranges. The size of this set only affects the

performance in the direct implementation where the net position choices were committed. In the optimized
version, we have removed such an intermediate step; hence, the size of such a set does not affect the protocol
performance.

19While libsnark is efficient and scalable, SPDZ hits the limit of 10 parties owing to the complexity in implement-
ing SHA256 with the library; i.e. right-shift is not natively supported for 32-bits word. Thus, we must implement
it using left-shift and other bitwise operations.

78

CHAPTER 4. FUTURESMEX 4.10. IMPLEMENTATION

Table 4.8: zk-SNARK Simple and Opt. Circuits Performance

Pre-processing On-Line Trading

Circuit KeyGen | PK | | VK | Prove | Proof | Verify
(ms) (MB) (KB) (ms) (B) (ms)

F rng 8759 119 9 4752 287 31
F invm 16778 210 2 8447 .. 29

F token 15925 189 .. 7642 .. 27

Fflags 12943 171 .. 6115
F invt 12954 171 .. 6111
Fuinv 9650 116 .. 4748

Fmatch 9644 116 .. 4748
Fnet 9638 115 .. 4691
Fmtm 5456 57 .. 2365
F ec 3343 38 .. 1429

F zero+ 1639 19 .. 739 .. 26
Fmax 1635 19 .. 739
Foc 1635 19 .. 729

Optimized

F token .. 157 .. 5691

Fflags .. 97 .. 3908
F invt+Fuinv .. 137 .. 5193
F rng+Fnet .. 84 .. 3509

Table 4.9: MPC Performance

MPC Funct Bytecode Size On-Line Time
#Traders 3 5 10 3 5 10

Fcompare 425 MB 709 MB 1.4 GB 14s 24s 67s
Fanncheck 212 MB 354 MB 708 MB 7s 13s 36s

Performance of the MPC functionalities To gauge the effectiveness of our MPC com-

ponents, we evaluate the performance for each functionality separately. Table 4.9 reports

the size of the bytecode and the corresponding running times for 3, 5, and 10 traders.

We expect this compilation phase to be run at each trader’s computer as for security

reason one would want to compile the circuit himself to make sure she runs the correct

computation. The memory requirement for the compilation of the MPC functionalities

using SHA-256 commitments crashed after 10 traders by exceeding 120 GB. We found

that the dynamic memory requirement is typically 100x the final bytecode size (Fig. 4.12).

This was not reported before (e.g. [69]), and it is an important insight on the limit of the

technology.

Overall Evaluation In our experiment, we employed the futures trades of the first quar-

ter of 2017 for the Lean Hog futures market (see Table 3.2) collected from the Thomson

Reuters Tick History database [175]. For each day, we have five level limit orders (buy

and sell, which we chose for the F rng) and have transaction data at ticks level with mil-

79

4.10. IMPLEMENTATION CHAPTER 4. FUTURESMEX

1

4

16

64

256

1024

4096

16384

65536

1 4 16 64 256 1024 4096

M
EM

O
RY

 V
IR
TU

AL

SI
ZE

M
B

TIME IN SECONDS

SHA‐2p SHA‐3p SHA‐5p SHA‐7p

AES‐2 O‐RAM‐2p Dijkstra‐2p Vickrey‐2p

The built-in examples of SPDZ are evaluated: (1) AES-2 is a 2-party AES encryption where one party
inputs the message; whereas the other parties input the key; (2) O-RAM-2 is an Oblivous RAM retrieval
while Dijisktra-2 is implemented based on O-RAM-2; (3) Vickrey-2 is a 2-party Vickrey Auction. We
implemented the SHA-256 functionality and evaluated for 2, 3, 5, and 7 parties (SHA-2p, etc.). For
all cases, the memory requirements are 100 times the final byte code size.

Figure 4.12: An evaluation of the memory requirements of different MPC functionalities over
time

lisecond timestamps. At a low end, we must support a minimum of 10 traders and this

is the limit we chose for illustrating our prototype. From the dataset, we are unable to

determine the status of each trader (trader anonymity!), so we assume they have a large

margin and never enter a broke state (i.e. we still check all the net positions to capture

non-monotonicity; however, we exclude the worst case in Margin Settlement where we

need to net out traders as a consequence of non-monotonicity). We can combine the

number of posts, cancel, and matched orders from the market data (e.g. Table 3.2, 4.10

and 4.11) to estimate the corresponding execution overhead for a day trading. The final

results for a Merkle Tree of depth 10 are reported in Table 4.10. The total runtime for

each main operations, i.e. Post, Match and Cancel, are 187s, 188s and 177s respectively

in the plain implementation. In the optimized implementation the total runtime are 51s,

52s and 53s respectively. In Table 4.11 we give some examples for the estimation of the

protocol’s main operations runtime in case we need a Merkle Tree of higher depth. The

actual timing of the protocol is still slow compared with the millisecond delay required

80

CHAPTER 4. FUTURESMEX 4.10. IMPLEMENTATION

Table 4.10: Runtime of Individual Market Operations with Merkle Tree of depth 10

Each individual operation is done in a few seconds for a market of 10 traders. With simple
optimizations, we boost the performance and reduce the role of other traders in the computation of
the critical “ecological” constraint.

Plain Prot. Runtime Opt. Prot. Runtime
Protocol Trader Others (%) Trader Others (%)

Initialize 11s - 9s -
Post Order 39s 148s (79%) 24s 27s (53%)
Cancel Order 40s 148s (79%) 25s 27s (52%)
Match Order 29s 148s (84%) 26s 27s (51%)
MarkToMarket 28s - 25s -

Table 4.11: Runtime of Individual Market Operations with Merkle Tree of depth higher than 10

We use the Merkle Tree of depth 10 as a baseline measurement (see Table 4.8). As the performance
of the F invm functionality (which only checks that a token is committed into the Merkle Tree as in the
Auth operation) grows linearly with the depth of the Merkle Tree, we can estimate the performance
in case of a Merkle Tree with higher depth d by multiplying with the scaling factor d

10
. We simply

replace the base measurement with the adjusted performance when we aggregate the runtime of each
protocol operation.

Merkle Tree Depth d = 13 d = 15 d = 17

Protocol Plain Optimized Plain Optimized Plain Optimized

Post Order 192s 56s 196s 60s 199s 63s
Cancel Order 193s 57s 197s 61s 200s 64s
Match Order 182s 58s 186s 62s 189s 65s

by the CME.

To estimate the cost of a näıve MPC implementation, we use as building block the

simplest of our stateless MPC functionalities Fdtc to detect negative inputs and open one

index. It costs only 0.2s for 10 traders. Then, we estimate the cost of a näıve MPC

implementation of our stateful ideal functionality by accumulating the steps in Fig. 4.2

and Fig. 4.6 under the favorable assumption (for MPC), in which the execution times

accrue linearly with the number of steps.

To estimate the burden of computation, we observe that the summary of each data

point from the THTR is described by a tuple 〈d, np, nc, nm, nt〉 where:

• d is the trading date,

• np is the number of post orders (# increases),

• nc is the number of cancelled orders (# decreases),

• nm is the number of matched orders (# actual trades),

• and nt is the number of traders.

81

4.10. IMPLEMENTATION CHAPTER 4. FUTURESMEX

As the plain implementation cannot go beyond 10 traders we have assumed that only

10 traders could actually participate (so we cap nt at 10). With this cap made, we

estimate the required computation in a näıve MPC implementation according to Fig. 4.2

as follows.

• For Post/Cancel Order, an order requires 3 sub-steps per trader which yields 3nt
sub-steps to process an order.

• Similarly, for Match Order, an order requires 2 sub-steps per trader hence 2nt
sub-steps to match a trade.

• In each sub-step, one phase must walk through np
2

orders in average (These opera-

tions contribute to most of the generic MPC overhead).

They are then multiplied by the time τmpc(nt) required by the elementary MPC operation

Fdtc.

Differently, while generic MPC requires all traders to compute for one trader, the

hybrid protocol allows traders to produce and verify the proof on their own simultaneously

so the cost is not affected by nt. The proof generation time τhybi,gen and the proof verification

time τhybi,ver are actually performed by different traders. Furthermore we have limited the

MPC time to only τhybi,mpc(nt) per trader during the check of non-negative net positions.

This is not important for calculating the overall crypto-overhead of operating the market

in a distributed fashion (before moving to the next order both operations must be done)

but will be important for the calculation of the proportional burden.

Therefore the total time to process a trading day d reported in Fig. 4.13 of the single

trader follows the equations given below:

Tmpcd =
np
2

(∑
i=p,c

ni3nt + nm2nt

)
τmpc(nt)

T hybd =
∑

i=p,c,m

ni

(
τhybi,gen + τhybi,ver + τhybi,mpc(nt)

)
and similarly for the optimized version where the costs are estimated according to Ta-

ble 4.10.

To estimate the fraction of retail and institutional traders ρt we use the data from

[130] as well as the fraction of orders performed by retail traders ρo (ρt = 0.71, ρo =

0.18). Albeit TSX and CME are different exchanges, the skeweness against retail traders

might be even more pronounced when the market is more active. For the MPC näıve

computation a party has to participate in the computation regardless of whether the

82

CHAPTER 4. FUTURESMEX 4.10. IMPLEMENTATION

party actually made any order. Therefore, the overall burden of computation by retail

traders for näıve MPC (Fig. 4.14) is as follows:

Rmpc
d = ρtntT

mpc
d

In the hybrid approach, a retail trader only needs to verify proofs when an institutional

trader has to generate proof. Hence, the computation by retail traders (Fig. 4.14) is

determined by the following equation:

Rhyb
d = ρtnt

∑
i=p,c,m

ni

(
ρoτ

hyb
i,gen + (1− ρo)τhybi,ver + τhybi,mpc(nt)

)

Fig. 4.13 shows the overall record for the plain and optimized version as well as an

estimation of a naive MPC implementation of the ideal functionality. For most of the

entire quarter, our distributed protocol is optimized to have less than 5x overhead. These

overheads can be further offset by parallelizing the traders’ ZK-proofs (which can yield an

improvement factor by 5x or 6x). This performance compares well with the estimates for

the generic MPC algorithm whose smallest factor is 6x and is usually on a 10x to 1000x

overhead.

Pure MPC imposes a significant burden on retail traders20 (the overwhelming majority

of the market) during peak times when algorithmic traders frequently post and almost

immediately cancel practically all orders (see [130]). Our hybrid approach shifts the

burden on computation on algorithmic traders. As shown in Fig. 4.14, retail traders would

devote significant computational resources in a pure MPC implementation for allowing

speculators to speculate.

The optimized implementation can break the barrier of 10 traders and do the full 66

traders of the peak day. Parallelization can further reduce the runtime of the sub-protocol

to just 8s (compared with 24s of sequential proof generation). Furthermore, additional

practical design decisions can increase the protocol throughput, e.g. if traders can prove

their inventory is valid for a range of prices, they only need prove validity when the price

fluctuates out of that range, or by allowing multiple traders to post/cancel in one round.

We leave this for future research.

20Retail traders are typically hedgers. Of course they could also be speculators. This is a different classification
based on the volume and quantity of orders. High frequency traders are overwhelmingly speculators. Retail
traders make much less orders, mostly trades.

83

4.11. RELATED WORK CHAPTER 4. FUTURESMEX

100

101

102

103

104

01/Jan - 31/Mar 2017

T
o
ta

l
C

ry
p

to
O

ve
rh

ea
d

(x
ti

m
es

)

Generic MPC
Plain

Optimized

Performance of execution overhead regarding the expected processing time (1 day). For the optimized
version, only 3 days of trading exhibits overheads greater than 10x, and only 16 days greater than
5x. These overheads are already offset by parallelizing the traders’ ZK-proofs (each trader has to do
several of these) to achieve an improvement factor of 6x.

Figure 4.13: Crypto Protocol Evaluation on Q1 of Lean-Hog

4.11 Related Work

Distributed Ledgers are ledgers maintained by a network of nodes. The most impor-

tant property for distributed payment networks, being fully decentralized, is consensus

among the nodes. The most prominent example of a distributed payment network is

Bitcoin [144], whose core components are the Proofs-of-Work and the Blockchain. The

current bottleneck of Bitcoin is its low throughput regarding its transactions-per-second

(TPS) (roughly 10 TPS compared to 2000 TPS of Visa.) Several variants/extensions of

Bitcoin appeared recently, including ZeroCoin [139], ZeroCash [164], and Ethereum [77].

Secure Multiparty Computation Seminal feasibility results in the theory of MPC es-

tablished that any functionality is securely realizable via a distributed protocol in the

computational (resp. information-theoretic) setting, assuming an honest minority (resp.

majority) [18,55,97,156,182]. The recent progress on efficient implementations of general-

purpose MPC protocols [9,68,69] opened up the way to advanced applications of a privacy-

preserving data mining [129]. See Orlandi [147] for an overview of applications of MPC.

84

CHAPTER 4. FUTURESMEX 4.12. SUMMARY

100

101

102

103

Lean-Hog Futures - 01/Jan - 31/Mar 2017

T
ot

a
l

C
om

p
u

ti
n

g
E

ff
or

t
b
y

R
et

a
il

T
ra

d
er

s
(d

ay
s)

Generic MPC
Hybrid

With MPC retail traders have to always participate whether they make an order or not (and they
overwhelmingly do not [130]). They would be supplying to algorithmic traders some orders of mag-
nitude of costly computing resources. With our approach the burden on retail traders is significantly
smaller.

Figure 4.14: Total Burden of Computation by Retail Traders

SNARKs. The influential work of Micali on computationally sound proofs [138] offered

the first zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) for

all of NP , relying on the random oracle heuristic [15]. Later work [27, 69] showed that

zk-SNARKs existed in the standard model, based on the knowledge-of-exponent assump-

tions. These type of assumptions seem to be inherent for constructing zk-SNARKs [93].

An overview of these results is found in Walfish and Blumberg [180]. In terms of imple-

mentation, the most efficient ones include Ben-Sasson et al. [19,21] and Parno et al. [149].

4.12 Summary

FuturesMEX is the first practical secure, distributed financial intermediation without a

trusted third party. Our chosen example has been a landmark institution of financial

intermediation: a Futures Market Exchange.

Besides its practical application, such a realization is interesting from a security per-

spective as it provides a rich security functionality with varied and potentially conflicting

requirements. One should support a public availability of information about all actions

performed by traders in the market, (such as post or cancel orders) as well as public ver-

85

4.12. SUMMARY CHAPTER 4. FUTURESMEX

ifiability of the integrity of private information from the traders. Furthermore, we must

provide participants anonymity and public unlinkability with global integrity guarantees

and private linkability.

Our hybrid protocol offers an efficient solution to the requirement of a proportional

burden of computation. Traders infrequently making bids only participate in the protocol

to control market risk with a significant saving of the computational resources they would

need to stake if general purpose MPC was used to implement the ideal functionality.

We have shown that our security protocol can be actually implemented through lib-

snark [21], for the zero-knowledge proofs, and the SPDZ protocol [69], for securely realizing

a few auxiliary sub-tasks that are used in our main protocol.

For our analysis of the actual trading days, we use the Thomson-Reuters database,

including a complete trading history at the level of milliseconds, and show that the com-

putation behind our protocol is within engineering reach. We simulated a low frequency

market of a secure protocol using a normal server (as opposed to traders’ typical super-

computers), executed within a day with a handful of exceptions.

For practical implementation, we found the libsnark library to be pretty scalable, while

the SPDZ library of our direct implementation hit a hard limit of 10 traders owing to the

dynamic memory requirements (with the natural encoding of SHA256 in Python). This

was surprising as the final size of SPDZ bytecode was acceptable and consistent with the

results of the literature [69].

86

Chapter 5

Dark Financial Intermediation with

Witness Key Agreement

Dark pools (private markets) are increasingly popular mechanisms for trad-

ing financial instruments. In such pools, investors wish to disclose informa-

tion only to trading partners whose transaction conditions and asset holdings

satisfy a suitable arithmetic relation. The investor must securely authenti-

cate traders against their committed information and the desired relation while

traders should be eligible to keep their financial information secret. For ex-

ample, in over-the-counter (OTC) markets, traders broadcast a price but not

the quantity of their holding contracts. In this chapter, we describe a new

cryptographic primitive called Witness Key Agreement (WKA) that enables

secure, distributed dark financial intermediation. We then present a practi-

cal construction of WKA based on designated-verifier succinct zero-knowledge

non-interactive argument of knowledge (zk-SNARK) for quadratic arithmetic

programs (QAPs) and analyze the obtained scheme’s security. We also provide

both theoretical and practical performance evaluation for our WKA scheme.

5.1 Possible Solutions for Dark Financial Intermediation

Financial intermediation is traditionally based on trusted third-party solutions, such as

exchanges (e.g. NASDAQ or the CME), or clearing mechanisms (e.g. EU’s TARGET2-

Securities and US’s Depository Trust & Clearing Corporation). In the last years, new

technologies have been proposed to replace centralized intermediaries with purely dis-

tributed protocols, e.g. the privacy-preserving cryptocurrency ZeroCash [164], or the

crypto-based distributed futures exchange FuturesMEX (Chapter 4).

87

5.1. POSSIBLE SOLUTIONS CHAPTER 5. DARK POOLS

In those distributed systems, the users commit their financial information (e.g. ac-

counts, or bids and quotes) to a distributed ledger and use zero-knowledge proofs to prove

that their committed information satisfies a suitable relation to preserve the integrity of

the market and the solvency of the participants. For example to make a buy bid in a

Futures Market, one must prove (privately to the central Exchange [169] or to all parties

using a suitable crypto protocol as FuturesMEX in Chapter 4) to have enough money to

buy the desired number of futures contract at the current price.

Different from public markets (where the limit order books are published while infor-

mation on individual traders positions and quotes is private [169]), private markets (dark

pools [107], often used by institutional investors and market makers), have tighter confi-

dentiality requirements as minimal legitimate information leakage can be very costly [141].

In such a scenario, the investors may only want to eventually disclose data to a partner

who meets some constraints for solvency and liquidity. For example she might want to sell

at least v shares at price p and want to disclose v and p only to traders who committed to

have cash c ≥ c′ where c′ ≥ pv. Alternatively she might be willing to buy from somebody

who has at least v′ shares or accept a price pegged within an interval, etc. For the very

same reasons, the trader might not just want to make his information fully public, but

just to reassure the investor that he meets the constraints.

From a security perspective, these constraints are easily captured by an NP-relation

R which we illustrate in Table 5.1. In this, the instance φ is the public information

(including the trader’s commitments and the investor’s constraints), and the witness ω is

the private information (the trader’s committed information). An investor may look for

traders with enough capacity and use the Sufficient Capacity (SC) relation in Table 5.1.

A trader may ask the investor to show interest in some price ranges, e.g. from p′− to

p′+ using the Price Range (PR) relation and additionally check the consistency of the

challenged threshold using Matchable Bid (MB) (Table 5.1, if the investor has previously

committed to the desired bid price p and bid volume v where c′ ≥ pv).

To authenticate such traders, a trivial (but wrong) solution is to ask each trader to

couple a public key pk with a zk-SNARK [27] proof π for the satisfaction of the desired

constraints on the financial instruments represented as an arithmetic relation R. The

investor will encrypt the private offer with pk after verifying the proof π. Only the trader

with the corresponding private key sk can decrypt. Since the decryption condition above

says nothing about the validity of π, one cannot guarantee that pk is actually from the

trader that produced π. It may come from a man in the middle attacker (MITM) (who

does not produce the proof).

Authenticated key exchanges (AKE) such as Password-AKE [17] or Credential-AKE [42]

only support relations on credentials. Here we have other relations among values not re-

88

CHAPTER 5. DARK POOLS 5.1. POSSIBLE SOLUTIONS

Table 5.1: Dark Pool Example Relations

We describe some of the dark pool example relations below. In each relation, let us
denote JxK = SHA256(x; rx) as the public SHA256 commitment of the secret business
variable x using randomness rx. For a dark pool transaction, we denote by c the cash
capacity of a trader, c′ the threshold given by the investor. For a bid, we denote (p, v)
as the bid price and the bid volume.

Relation Public φ Secret ω Conditions of R

Sufficient Capacity (SC) JcK, c′ c, rc JcK = SHA256(c; rc), c ≥ c′
Price Range (PR) JpK, p′+, p′− p, rp, JpK = SHA256(p; rp), p

′
− ≤ p ≤ p′+

Matchable Bid (MB) JpK, JvK, p′+,
p′−, c′

p, v, rp, rv JpK = SHA256(p; rp), p
′
− ≤ p ≤ p′+

JvK = SHA256(v; rv), c
′ ≥ pv

lated to credentials as they can change dynamically. Language-AKE [104] is more flexible

but it does not support non-algebraic relations such as SHA-256 employed by FuturesMEX

and ZeroCash [164].

Signature of Knowledge [103] (SoK) can certainly be used to sign the public key pk to

prevent the mentioned MITM attack. However, SoK delivers only the public key pk of the

trader hence only allow one-way communication from the investor to the trader unless we

assume a public key infrastructure (PKI) for investors.1 Besides, the trader is unsure the

upcoming message encrypted with pk is from the investor: as pk is public, anyone can see

it and send a message to the trader using pk.

An interested investor could also use Witness Encryption [90] (WE) with the desired

constraints on the financial instruments represented as an arithmetic relation R, and only

the traders who possess the witness ω for that instance φ such that R(φ, ω) = 1 could

decrypt. However, general WE constructions [4, 88, 89, 92] are impractical as they rely

on multilinear maps or Indistinguishabiliy Obfuscation while practical WE under a GS

proof [71] cannot support arithmetic relation of depth greater than 1, e.g. SHA-256 as

employed by ZeroCash [164] and FuturesMEX (Chapter 4).

One can also ask the investors and traders to join an MPC protocol through an ex-

change. In this respect, FuturesMEX (Chapter 4) provides support for an open Order

Book. Cartlidge et al. [47] proposed a MPC for implementing dark pools. In contrast, we

aim to support communication over a distributed ledger where trader information (e.g.

the cash of a trader) is bound. The presence of a distributed ledger was not considered

by Cartlidge et al. [47]. Since Cartlidge et al. [47] only evaluated the 2 or 3 party cases

(one of them being a regulator that nowadays never participate in such exchanges and

mostly have not the technical means to do so), it is unclear whether MPC will scale to

1However, this is not always feasible or desirable: an appropriate PKI may be unavailable, or the parties
may want to remain anonymous, and not reveal their identities as anonymity can be critical (see the Price
Discrimination Attack in Chapter 3).

89

5.2. WKA SOLUTION CHAPTER 5. DARK POOLS

the full number of traders and investors (see Fig. 4.13 and 4.14 in Chapter 4).

5.2 Dark Financial Intermediation with Witness Key Agree-

ment

To support the dark pool scenario, we propose a new cryptographic primitive called the

Witness Key Agreement (WKA) scheme.

In a WKA scheme defined for an NP-relation R(φ, ω), the investor will first run

the key challenge algorithm taking as input the relation R and outputs a public challenge

parameter pc and a secret challenge parameter sc. Then, the investor broadcasts the public

challenge. The interested trader runs the key response algorithm with input the relation

R, the public challenge parameter pc, the instance φ (her committed information), and the

corresponding witness ω (his corresponding secret information). Then, the trader outputs

a public response parameter pr and a secret key kr. Upon receiving the public response pr
and the corresponding instance φ, the investor runs the key derivation algorithm taking

as inputs the relation R, the secret challenge parameter sc, the instance φ, and the public

response pr and outputs a secret key kc.

The four required security properties of a WKA scheme, informally speaking, are (i)

Correctness: the key agreement is successful, i.e. kr = kc if R(φ, ω) = 1; (ii) Adaptive

Knowledge Soundness: the trader, without ω, can produce a valid pair (pr, kr) with only

negligible probability; (iii) Zero-Knowledge: the public response pr leaks nothing about

ω (even to the investor who knows sc); (iv) Response Indistinguishability: the public

response pr cannot be distinguished from a random string (except to the investor who

knows sc).

These four security properties collectively capture our security requirements. The Cor-

rectness property guarantees a successful key agreement in a normal case. The other three

properties prevent misfeasance from a cheating prover (trader), verifier (investor); and a

third party, respectively. The Adaptive Knowledge Soundness prevents the trader from

cheating. The Zero-Knowledge property targets the designated verifier, i.e. the investor,

to prevent her from learning the witness, whereas the Response Indistinguishability tar-

gets a third party (other than the prover/trader and the designated-verifier/investor) who

can read the public response with access to the communication channel, e.g. the public

ledger in our scenario.

Remark 5.1 (Main goal). This main goal of this chapter is to define the WKA scheme

and offer an efficient construction of the WKA scheme. We aim to provide the basic

functionalities of our dark pool scenario where the investor/trader must authenticate each

other based on the committed information on a public ledger.

90

CHAPTER 5. DARK POOLS 5.3. TECH. BACKGROUND

By the wording ‘efficient construction’, we also mean that a performance simulation

for such functionality in a realistic setting using actual trading data (in §5.7.2) is at least

comparable on a day by day basis: if we were to run a day of trading messages, we would

expect it to not take more than a day to actually exchange those messages.

5.2.1 Limitations of our WKA construction

Our WKA construction is based on the designated-verifier succinct zero-knowledge non-

interactive argument of knowledge (zk-SNARK) compiled from a non-interactive linear

proof (NILP) for Quadratic Arithmetic Programs (QAPs) by Groth [102]. Therefore, our

WKA scheme inherits the limitations of those building blocks.

First, zk-SNARKs are not known to satisfy composability and therefore cannot be

run out of the box in parallel within the design of larger protocols [120]. In a basic dark

pool scenario, we only consider sequential composition where each execution of WKA

concludes before the next execution begins [45]. For an extended scenario, one might

use other instruments to identify parallel runs as described in Principle 10 for security

protocol design by Abadi and Needham [1].

Second, our WKA scheme uses QAPs [91]; hence, it is only as efficient as the arithmetic

circuit expressing the constraints.

Finally, we opted for simplicity rather than making the WKA scheme subversion-

resistant as this requires the zero-knowledge property to be maintained even when the CRS

is maliciously generated (see Bellare et al. [14]). Abdolmaleki et al. [2] and Fuchsbauer [85]

constructed subversion-resistant NIZK based on Groth’s zk-SNARK construction [102].

However, both works are only limited to the publicly verifiable zk-SNARK construction

based on bilinear groups. Our WKA construction requires the designated-verifier zk-

SNARK; therefore, those constructions are not applicable to our scheme. Hence, we

consider only honest setups in our settings.

5.3 Recap of Technical Background

To make this chapter self-contained, we recap here the key technical terminology and

definitions.

5.3.1 Summary of NIZK, SoK, AKE, WE and MPC

Non-interactive zero-knowledge (NIZK) proof system is a cryptographic primitive

such that, given an instance φ and an NP-relation R, a party (the Prover) can convince

another party (the Verifier) that there exists a witness ω of the instance φ such that

91

5.3. TECH. BACKGROUND CHAPTER 5. DARK POOLS

R(φ, ω) = 1, without leaking any information about ω [96, 98]. A zero-knowledge (ZK)

proof system satisfies (1) perfect completeness (given any true statement, an honest prover

should be able to convince an honest verifier); (2) perfect soundness (a malicious prover

cannot convince a verifier of a false statement); and (3) perfect zero-knowledge (the proof

leaks nothing more than the correctness of instance φ).

Non-interactivity allows the proof π to consist of only a single message. This property

requires a one-time initial setup phase that yields a common reference string σ (CRS).

This phase is run by a trusted third party or an MPC protocol [20]. A stronger notion

of NIZK proof is NIZK proof of knowledge where the prover can, at the same time,

convince the verifier that there exists a witness ω and the prover knows such ω (Knowledge

Soundness [15]).

Perfect soundness can be relaxed to computational soundness using the notion of NIZK

argument (of knowlegde). This relaxation allows the proof system to be succinct, i.e. poly-

logarithmic in communication complexity [41,138]. The notions of succinct zero-knowledge

non-interactive argument (zk-SNARG) and succinct zero-knowledge non-interactive argu-

ment of knowledge (zk-SNARK) are those that follow such relaxation [93]. Further im-

provements of online procedures are tailored by pre-processing zk-SNARK to achieve that

(1) the runtime of the verification algorithm is polylogarithmic to the instance size, and

(2) the proof size is polynomial in λ where λ is the security parameter (for which the algo-

rithms take the unary form 1λ as input). Additionally, a zk-SNARK is fully-succinct if the

CRS size is also polynomial in λ. Bitansky et al. showed that preprocessing zk-SNARKs

can be compiled into fully-succinct zk-SNARKs [27].

Signature of Knowledge (SoK) [52] is a generalization of digital signature [73] aiming

to fix the malleability of zk-SNARK by replacing the public (verifying) key pk with an

instance φ in an NP-relation. SoK requires the signer to know the witness ω of φ to sign.

Similar to NIZK, SoK hides the witness ω to prevent others from signing with the same

witness. Recently, Groth et al. exploited the link between SoK and NIZK to construct

the first succinct SoK [103].

Authenticated Key Exchange (AKE) allows two parties to share a secret key over an

insecure network using various authentication means. For example Password-Authenticated

Key Exchange (PAKE) [17] allows two parties to agree on strong keys (in different ses-

sions) if they both know a weak shared password. Credential-Authenticated Key Exchange

(CAKE) [42] allows two parties to generate a common secret key if a specific relation is

satisfied between credentials held by the two players. CAKE indeed can also be used

to instantiate PAKE. However the concrete instantiation of CAKE only supports limited

92

CHAPTER 5. DARK POOLS 5.3. TECH. BACKGROUND

relations such as vectored unions of product relations, equality testing or product rela-

tions [42, Section 6, 7 and 8]. Language-Authenticated Key Exchange (LAKE) is closely

related to CAKE. It allows two parties to share a secret key if they hold credentials

that belong to a specific algebraic language [104]. Compared with PAKE, LAKE is more

practical-oriented as it allows two members of the same group to secretly and privately

authenticate each other without revealing this group beforehand. However, LAKE only

supports languages defined by linear pairing product equations on committed values.

Therefore it is not usable in our scenario.

Witness Encryption (WE) was introduced by Garg et al. [90] and refined by Bellare and

Hoang [16]. In a WE scheme defined for a NP language L with witness relation R(φ, ω),

i.e. L = {φ | ∃ ω : R(φ, ω) = 1}, the encryption algorithm takes as input a message M , an

instance φ, and produces a ciphertext C. A party with a witness ω, such that R(φ, ω) = 1

can decrypt C (correctness); and if φ /∈ L the message M is computationally hidden

(soundness). Existing WE for arbitrary NP languages are currently considered impractical

as they require multilinear maps [88, 92] or Indistinguishability Obfuscation [89]. The

improvement proposed by Abusalah et al. [4] moved the computational hard part to an

offline setup phase so that online encryption and decryption can be efficiently done but

still relies on Indistinguishability Obfuscation. For some particular NP languages, WE

is efficient2. For example, Derler et al. [71] proposed an offline WE construction under a

Groth-Sahai (GS) proof for algebraic languages defined over bilinear groups, which can

be employed for group encryption [116] and language-authenticated key exchange [104].

Smooth Projective Hash Function System (SPHF) was introduced by Cramer and

Shoup [66]. Such system is defined on a language L. SPHF defines two keys: (1) the secret

hashing key hk for the language L; and (2) the public projection key hp for an instance

x ∈ L. The correctness property of SPHF requires that the hash value using hk and x the

hash value is the same as using pk and w where w is the witness of x. The smoothness

property requires that the hash value using hk and x is random without the knowledge of

w. SPHF is such a strong primitive that it can be used to construct WE [71]. Therefore

SPHF is also useful in constructing WKA. However, existing SPHF [71, 104] only focus

on languages defined over bilinear groups hence not applicable in our scenario.

Secure Multiparty Computation (MPC) It is known that any functionality can be

securely realized by a distributed protocol assuming honest minority (in the computational

2An example is public key encryption: φ is the public key pk and ω is the private key sk. Similarly for identity-
and attribute-based encryption [161].

93

5.3. TECH. BACKGROUND CHAPTER 5. DARK POOLS

setting) [55] and honest majority (in the information-theoretic setting) [156]. Recent

advances in the implementations of generic MPC protocols (see Archer et al. [9]) allow

efficient MPC applications, e.g. privacy-preserving data mining [128] and exchanges [47].

See Orlandi [147] for an overview of MPC applications.

5.3.2 Formal Definitions for NILP and QAP

Notations. A multivariate polynomial t : Fm → F over a finite filed F has a degree d if

the degree of each monomial in t is at most d and at least one monomial has degree d. A

multivalued multivariate polynomial t : Fm → Fµ is a vector of polynomials (t1, . . . , tµ),

where each ti : Fm → F is a multivariate polynomial.

We denote a scalar by x and a vector by x. We write x← X when picking an element

x uniformly from a finite set X. For a probabilistic algorithm, we write y ← A(x) when

picking the randomness r and returning y = A(x; r). Pr[ε|Ω] denotes the probability of

an event ε over the probability space Ω.

We denote the security parameter using 1λ in the unary form for the polynomial

runtime. We denote the negligible function negl(·). Given two probability functions

f, g : N → [0, 1], we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| = O(λ−c) for every constant

c > 0. We say that f is negligible when f(λ) ≈ 0.

Remark 5.2 (Generation of the relation R). For convenience, we follow the notation

of Groth [102], a relation generator R receives a security parameter 1λ and returns a

polynomial-time decidable binary relation R, i.e. R ← R(1λ). For notational simplicity,

we assume 1λ be deduced from R.

Linear interactive proof (LIP) was introduced by Bitansky et al. [27] as a natural

extension of the definition of interactive proof by Goldwasser et al. [98]. The extension

requires that each prover’s message is an affine combination of the previous messages sent

by the verifier.

LIP considers only adversaries using affine prover strategies, i.e. a strategy described

by a tuple (Π,π0) where Π ∈ Fk×y represents a linear function, and π0 ∈ Fk represents

an affine shift. Then, on input a query vector σ ∈ Fy, the response vector π ∈ Fk

is constructed by evaluating the affine relation π = Πσ + π0. With the goal of non-

interactive succinct verification, Bitansky et al., focused on only input-oblivious3 two-

message LIPs for boolean circuit satisfiability problems [27].

Remark 5.3 (Enforcing Affine Prover Strategy). Intuitively speaking, a prover restricted

to such affine strategy (Π,π0) can perform additions and multiplications by a constant but

3The LIP verifier’s messages do not depend on the instance φ.

94

CHAPTER 5. DARK POOLS 5.3. TECH. BACKGROUND

not products for elements in σ. For example, given σ = (x1, x2), such prover can compute

x1 + x2 and z1x1 (or z2x2, where z1, z2 are known constants) but not x1x2. Bitansky et

al. [27] showed that such restrictions on the prover could be obtained by executing the

linear operations in the discrete logarithms or by encrypting the elements of σ with an

additive homomorphic encryption scheme, such as the Paillier cryptosystem [148].

Non-interactive linear proof (NILP), defined as a tuple of polynomial-time algorithms

(Setup, Prove, Verify, Simulate) as in Fig. 5.1, is a useful characterization of SNARK con-

structions. Groth renamed the input-oblivious two-message LIPs for boolean circuit satis-

fiability by Bitansky et al. [27] into NILP [102] to clarify the the connection between LIP

and NIZK proof. NILP satisfies perfect completeness and statistical knowledge soundness

against affine prover strategies, i.e. there exists a probabilistic polynomial time (PPT)

extractor ε such that for every PPT adversary Â:

Pr


Π ∈ Fk×y

R(φ, ω) 6= 1

Verify(R,σ, φ,Πσ) = 1

∣∣∣∣∣∣∣∣∣
R← R(1λ)

(σ, τ)← Setup(R)

(φ,Π)← Â(R)

ω ← ε(R, φ,Π)

 < negl(λ) (5.1)

where Π is a proof matrix that constitutes the proof π.

zk-SNARK (zk-SNARG) from LIP (and NILP) The notion of zero-knowledge also

applies to LIP and NILP. Bitansky et al. [27] shows that LIP (and NILP) can be compiled

into both publicly verifiable (verifier degree 2, using bilinear maps) and designated-verifier

(using linear-only encryption scheme) zk-SNARK (zk-SNARG).

Intuitively, the prover computes the proof π as linear combinations of the CRS σ

and the verifier checks the argument by checking the quadratic equations corresponding

to the relation R. We base our WKA scheme on the concrete efficient construction of

zk-SNARK from NILP for quadratic arithmetic programs given by Groth [102]. We use

linear encryption to compile such NILP to a WKA scheme. Later in this section, we

summarize the definition of a Linear Encryption scheme given by Bitansky et al. [27].

Quadratic Arithmetic Programs (QAPs) were introduced by Gennaro et al. [91] and

comprehensively summarized by Groth [102]. A QAP considers an arithmetic circuit C

with only addition and multiplication gates over a finite field F. Let us focus on binary

relations R whose instance φ consists of all the public input and output wires of C whereas

the witness consists of the rest (the private inputs and intermediate outputs) of C’s wires.

We recall the formal definition of QAP and a concrete construction of an NILP for QAP.

95

5.3. TECH. BACKGROUND CHAPTER 5. DARK POOLS

We assume that 1λ is deduced from R (see Remark 5.2). Setup is run by a trusted third party or an MPC
protocol [20], if the NILP is compiled into a publicly verifiable zk-SNARK. Otherwise Setup can be run by the
designated-verifier. Prove is run by the Prover, and Verify is run by the Verifier (except for the publicly verifiable
zk-SNARK case where Verify can be run by any party). Simulate can be run by any party with the simulation
trapdoor τ (e.g. the trusted third party or the designated-verifier).

NILP is defined as a tuple of polynomial-time algorithms (Setup, Prove, Verify, Simulate):

(σ, τ)← Setup(R): output σ ∈ Fy and τ ∈ Fx.

π ← Prove(R,σ, φ, ω): obtain the proof matrix Π ← ProofMatrix(R,φ, ω) (where
ProofMatrix is a probabilistic polynomial time algorithm that generates Π ∈ Fk×y)
and output π = Πσ.

{0, 1} ← Verify(R,σ, φ,π): obtain t← Test(R,φ) where Test is a polynomial time algorithm
that generates t : Fy+k → Fη which is an arithmetic circuit corresponding to the
evaluation of multivariate polynomials, such that t(σ,π) = 0 if π is valid.

π ← Simulate(R, τ , φ): obtain t← Test(R,φ) and solve t(τ ,π) = 0 for the output (π).

where y, x, k, η and d are constants or polynomials in the security parameter 1λ.

Figure 5.1: Non-interactive linear proof [102]

Definition 5.1 (QAP). A quadratic arithmetic program Q over a field F for a relation

R(φ, ω) consists of three sequences of polynomials 〈ui(X), vi(X), wi(X)〉mi=0 and a target

polynomial t(X) = Πn
q=1(X − rq) such that with a0 = 1, φ = {ai}li=1, and ω = {ai}mi=l+1,

the following Eq. (5.2) holds.

m∑
i=0

aiui(X)
m∑
i=0

aivi(X) =
m∑
i=0

aiwi(X) + h(X)t(X) (5.2)

where ui(X), vi(X), wi(X) are of at most degree n− 1 and h(X) is of degree n− 2.

Remark 5.4 (QAP description). For convenience, we follow the QAP description of

Groth [102], we consider the QAP for R, i.e.

(F, aux, l, 〈ui(X), vi(X), wi(X)〉mi=0, t(X))

where F is a finite field; aux is some auxiliary information; 1 ≤ l ≤ m; ui(X), vi(X), wi(X), t(X) ∈
F[X], ui(X), vi(X), wi(X) are of at most degree n−1. Such QAP defines a binary relation

R =

{
(φ, ω)

∣∣∣∣∣ a0 = 1, φ = {ai}li=1, ω = {ai}mi=l+1∑m
i=0 aiui(X)

∑m
i=0 aivi(X) =

∑m
i=0 aiwi(X) + h(X)t(X)

}

96

CHAPTER 5. DARK POOLS 5.3. TECH. BACKGROUND

Example 5.3.1. A QAP can be efficiently built from an arithmetic circuit [19]. Let

us take as an example a simple arithmetic circuit C that takes as input a variable in

and outputs out = in ∗ 3 + 5.

Such circuit consists of 3 variables: the input in, the intermediate variable inter,

and the output variable out; and 2 constraints: inter = in∗3 and out = inter+5.

For such circuit, the obtained QAP will have m = 3 (the number of variables),

l = 1 (the number of output variables) and n = 2 (the number of constraints).

To generate a QAP from a circuit, we need to convert it into a rank-1 con-

straint system (R1CS) [19]. For each constraint j, we need a group of three vectors

(za,j, zb,j, zc,j), whereas the common solution of all the vector groups is a vector zs
such that (zs · za,j)(zs · zb,j) = (zs · zc,j) for all j.

For our example circuit C each vector (za,j, zb,j, zc,j) and zs must be of length 4

to capture the required constraints for 4 variables: an additional dummy variable one

at the first index representing the number 1 followed by all the circuit’s input, output,

and intermediate variables (in, out, and inter).

Let us fix zs = (1, 3, 14, 9) (in = 3, out = 14 and inter = 9), we can now fill

the corresponding elements for the vectors of each constraint j that satisfies

(zs · za,j)(zs · zb,j) = (zs · zc,j)

1. for the first constraint inter = in ∗ 3, we can have za,1 = (0, 1, 0, 0), zb,1 =

(3, 0, 0, 0), zc,1 = (0, 0, 0, 1);

2. for the second constraint out = inter + 5, we can have za,2 = (5, 0, 0, 1),

zb,2 = (1, 0, 0, 0), zc,2 = (0, 0, 1, 0).

Now; we convert the R1CS into its QAP form to enforce the exact same constraints

using polynomials (as in Eq. (5.2)) instead of some vector products. For C we must

transform the 2 groups of 3 vectors length-4 ((za,1, zb,1, zc,1) and (za,2, zb,2, zc,2)) into

4 groups of 3 polynomials degree-1 (ui(X), vi(X), wi(X) for i ∈ [4], here n = 2 for

Eq. (5.2)) whose evaluations at each X = x represents one of the constraints.

To perform this task, we take the first (second, and so on) elements of each vec-

tor (za,j, zb,j, zc,j) and use Lagrangian interpolation for generating the polynomials

coefficients at X = 1 (X = 2 and so on):

• u0(X) = (5X − 5), u1(X) = (−X + 2), u2(X) = 0 and u3(X) = (X − 1)

• v0(X) = (−2X + 5), v1(X) = 0, v2(X) = 0 and v3(X) = 0

97

5.3. TECH. BACKGROUND CHAPTER 5. DARK POOLS

• w0(X) = 0, w1(X) = 0, w2(X) = (X − 1) and w3(X) = (−X + 2)

For t(X) = Πn
q=1(X−rq), we can simply fix t(X) = Π2

q=1(X−q) = (X−1)(X−2).

To obtain h(X), we use Eq. 5.2, and we must divide

m∑
i=0

aiui(X)
m∑
i=0

aivi(X)−
m∑
i=0

aiwi(X)

= −22X2 + 66X − 44

(as a1 = 3, a2 = 14 and a3 = 9) by

t(X) = (X − 1)(X − 2) = X2 − 3X + 2

Hence, we have h(X) = −22.

The obtained QAP equation has the following form:

((5X − 5) + a1(−X + 2) + a3(X − 1))((−2X + 5))

= a2(X − 1) + a3(−X + 2) + (−22)(X − 1)(X − 2)

The NILP construction for QAP (by Groth [102], as shown in Fig. 5.2) yields a tuple of

polynomial-time algorithms (Setup, Prove, Verify, Simulate). The obtained NILP has per-

fect completeness, perfect zero-knowledge, and statistical soundness against affine prover

strategies. As shown by Groth [102], the NILP construction in Fig. 5.2 (of degree 2) is

compiled into publicly verifiable zk-SNARK by executing the linear operations (Eq. (5.4),

(5.5) and (5.6)) in the discrete logarithms, using pairings for the product operations in the

verification equation (Eq. (5.7)). To compile an NILP for QAP into designated-verifier

SNARK, one requires a linear-only encryption scheme [27].

Remark 5.5 (Soundness of zk-SNARK from NILP for QAP). Let us take as an example

the NILP for QAP in Fig. 5.2. zk-SNARK from NILP for QAP is only sound if the

prover uses only affine strategies, i.e. the prover cannot compute the non-affine term αβ
δ

hence s/he cannot run the proof forging equation Eq. 5.8 in Simulate. We can enforce

such restriction using bilinear maps and linear only encryption.

In the public verifier case, as the operations are executed in the discrete logarithms

the prover can only compute Eq. (5.4), (5.5) and (5.6). Using bilinear maps, the public

verifier can compute Eq. (5.7). However, it is necessary that Setup that yields the CRS σ

is run by a trusted party or an MPC protocol [20] to prevent the Simulate from being able

to run by the prover.

The designated verifier case is more relaxed. The Setup step that yields (σ, τ) is run

by the verifier. However, it is more restricted for the prover. Due to the Linear Only

98

CHAPTER 5. DARK POOLS 5.3. TECH. BACKGROUND

We consider the QAP that defines a binary relation R as described in Remark 5.4. NILP
for such QAP is defined as a tuple of polynomial-time algorithms (Setup, Prove, Verify,
Simulate):

(σ, τ)← Setup(R): Pick α, β, γ, δ, x ← F∗. Set the secret τ = (α, β, γ, δ, x) and the public
σ:

σ = α, β, γ, δ, {xi}n−1
i=0 ,

{
βui(x) + αvi(x) + wi(x)

γ

}l
i=0

,{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2

i=0

(5.3)

π ← Prove(R,σ, a1, . . . , am): Pick r, s← F and compute π = (A,B,C) where:

A = α+
m∑
i=0

aiui(x) + rδ (5.4)

B = β +
m∑
i=0

aivi(x) + sδ (5.5)

C =

m∑
i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+
h(x)t(x)

δ
+ sA+ rB − rsδ (5.6)

{0, 1} ← Verify(R,σ, a1, . . . , al, π): Output 1 iff:

AB = αβ +

l∑
i=0

ai
βui(x) + αvi(x) + wi(x)

γ
γ + Cδ (5.7)

π ← Simulate(τ |R, a1, . . . , al): Pick A,B ← F, and output π = (A,B,C) where:

C =
AB

δ
− αβ

δ
−
∑l

i=0 ai(βui(x) + αvi(x) + wi(x))

δ
(5.8)

Figure 5.2: NILP for QAP [102])

Encryption scheme (e.g. a two-ciphertext variants of the Paillier cryptosystem [148]),

the prover can compute Eq. (5.4), (5.5) and (5.6) (using the public key in σ). However,

the only party that can execute the verification equation Eq. (5.7) is the verifier with the

corresponding decryption key sk (in τ). In such a case, the Simulate algorithm can be run

by the verifier.

99

5.4. WITNESS KEY AGREEMENT CHAPTER 5. DARK POOLS

Linear-only encryption (LE) scheme Σ (Bitansky et al. [27]), e.g. a two-ciphertexts

variant of Paillier [148], is a tuple of polynomial-time algorithms (KeyGen, Enc, ImgVer,

Dec, Add) where the ImgVer (image verification) prevents oblivious ciphertext samplings

in the image of Enc using pk. This property prevents the adversary from encrypting plain-

texts from scratch (see Remark 5.9 in §5.6 for further details). Add is for evaluating linear

combinations of valid ciphertexts. An LE scheme satisfies correctness, additive homomor-

phism, indistinguishability under chosen plaintext attack (IND-CPA), and in addition,

linear-only homomorphism which essentially states that it is infeasible to generate a new

valid ciphertext except by evaluating an affine combination of valid ciphertexts (via Add).

This property formally guarantees that given a valid ciphertext π by an adversary it is

possible to efficiently extract the corresponding affine function (Π,π0) (see Remark 5.3)

that explains π. Such LE scheme can be instantiated using existing encryption schemes.

See Bitansky et al. [27, §5.3] for further details.

Remark 5.6 (Security assumptions of LE). The security of an LE scheme relies on

the assumptions of q-power Diffie-Hellman, q-power Knowledge of Exponent, and q-power

Knowledge of Equality [27].

5.4 Witness Key Agreement

First, we give a formal definition of the witness key agreement scheme Ω. Then we further

define our variant of split designated-verifier NILP which is useful for the WKA scheme

construction. Next, we show how to construct our WKA scheme Ω using NILP and

non-deterministic LE. Finally, we provide a proof sketch for the security of our WKA

scheme.

5.4.1 Witness Key Agreement Definition

Formally, we define witness key agreement as follows:

Definition 5.2 (Witness key agreement). Let L be an NP-language with the witness rela-

tion R(φ, ω). We call φ an instance of L and ω a witness for φ. A Witness Key Agreement

scheme Ω for L is a tuple of polynomial-time algorithms (KChallenge, KResponse, KDerive)

as defined in Fig. 5.3.

A witness key agreement scheme Ω satisfies Correctness, Adaptive Knowledge Sound-

ness, Zero-Knowledge and Response Indistinguishability, as shown in Fig. 5.4.

100

CHAPTER 5. DARK POOLS 5.4. WITNESS KEY AGREEMENT

For notational simplicity we assume that λ is deduced from the description of R (See Re-
mark 5.2).

(pc, sc)← KChallenge(R) is run by the investor and takes as input the relationR (from which
the corresponding security parameter 1λ is deduced). It outputs a pair of public and
secret challenge parameter (pc, sc).

(pr, kr)← KResponse(R, pc, φ, ω) is run by the trader and takes as input the relation R, the
public challenge parameter pc, the instance φ, and the corresponding witness ω. It
outputs a public response parameter pr and a secret key kr.

{kc,⊥} ← KDerive(R, sc, φ, pr) is run by the investor and takes as input the relation R, the
secret challenge parameter sc, the instance φ and the public response parameter pr.
It outputs a key kc or ⊥.

Figure 5.3: Witness key agreement definition

Main intuition for WKA construction. Our observation is that the proof π obtained

with NILP for QAP consists of k elements (by evaluating k linear functions4 corresponding

to the proof matrix Π), in which the k-th element can be obtained in the two following

ways given the first k − 1 elements [102].

1. On the prover’s side, if π is valid then the first k − 1 elements fully determine the

last one. For instance, in Fig. 5.2, A and B (Eq. (5.4) and (5.5)) uniquely define C

(Eq. (5.6)).

2. On the verifier’s side, the first k − 1 elements (A and B) can be fed into a proof

forging formula (Eq. (5.8)) to get the same k-th element (C).

Hence, after the CRS generation, by the prover computing π and publishing the first k−1

elements of π, both parties can agree on the last secret element and use it as a shared

secret key for secure communication.

5.4.2 Split Designated-Verifier Non-Interactive Linear Proof

We describe our notion of split designated verifier NILP based on Groth’s definition [102].

Groth also defined split NILP for the publicly verifiable case when working with Type

III pairings [102]. In the asymmetric pairings settings, the CRS σ and the proof π are

split into two corresponding to two groups of a bilinear map (σ1 and σ2, π1 and π2) where

each part is computed from the respective part of the CRS using linear combinations of

two proof matrices Π1,2 (Π1 ∈ Fk1×y1 and Π2 ∈ Fk2×y2 where k1 +k2 = k and y1 +y2 = y).

4k = 3 and the proof matrix Π is represented as the coefficients used in the Eq. (5.4), (5.5) and Eq. (5.6) in
the concrete construction in Fig. 5.2 by Groth [102].

101

5.4. WITNESS KEY AGREEMENT CHAPTER 5. DARK POOLS

A WKA scheme Ω satisfies Correctness, Adaptive Knowledge Soundness, Zero-Knowledge
and Response Indistinguishability :

Correctness Given a true instance, the key agreement is successful, i.e.

Pr

kc = kr

∣∣∣∣∣∣ R← R(1λ)
R(φ, ω) = 1

,
(pc, sc) ← KChallenge(R)
(pr, kr) ← KResponse(R, pc, φ, ω)

kc ← KDerive(R, sc, φ, pr)

 = 1 (5.9)

Adaptive Knowledge Soundness The key agreement is successful only with negligible
probability if the responder knows no witness for the instance, i.e.for any PPT Â,
there exists a poly-time extractor εÂ such that

Pr

R(φ, ω) 6= 1

∣∣∣∣∣∣∣∣∣∣∣∣

R ← R(1λ)
(sc, pc) ← KChallenge(R)

(φ, pr, kr) ← Â(R, pc)
kc ← KDerive(R, sc, φ, pr)

kc = kr
ω ← εÂ(R,φ, pr, kc)

 < negl(λ) (5.10)

Honest Verifier Zero-knowledge The response leaks nothing about the witness in the
honest setup, i.e.there is a simulator SZK that outputs a simulated response (pr, kr)
and key kc. Formally, for all λ ∈ N, R← R(1λ), R(φ, ω) = 1 and any PPT Â:

Pr

Â(R, pc, sc, φ, pr, kc) = 1

∣∣∣∣∣∣
(pc, sc) ← KChallenge(R)
(pr, kr) ← KResponse(R, pc, φ, ω)

kc ← KDerive(R, sc, φ, pr)


= Pr

[
Â(⊥|R, pc, sc, φ, pr, kc) = 1

∣∣∣∣ (pc, sc) ← KChallenge(R)
(pr, kr, kc) ← SZK(R, pc, sc, φ)

] (5.11)

Response Indistinguishability The public response is indistinguishable from a random
string, i.e. for all λ ∈ N, R ← R(1λ), R(φ, ω) = 1 there exists a simulator SRI such
that for any PPT Â:

Pr

[
Â(R, pc, φ, pr) = 1

∣∣∣∣ (pc, sc) ← KChallenge(R)
(pr, kr) ← KResponse(R, pc, φ, ω)

]
= Pr

[
Â(R, pc, φ, pr) = 1

∣∣∣∣ (pc, sc) ← KChallenge(R)
(pr) ← SRI(R, pc, φ)

] (5.12)

Figure 5.4: Security of Witness Key Agreement Scheme

For the designated verifier’s case, we write σ as σP and τ as σV to emphasize that

σP is for the prover and σV is for the verifier. In proof computation, we further split the

proof matrix Π ∈ Fk×y (see Fig. 5.1) into two: Π1 ∈ Fk−1×y and Π2 ∈ F1×y. The proof

102

CHAPTER 5. DARK POOLS 5.4. WITNESS KEY AGREEMENT

Following Groth [102], we assume that λ is deduced from R.

(σP ,σV)← Setup(R): output σP ∈ Fy and σV ∈ Fx .

(π1,π2)← Prove(R,σP , φ, ω): obtain the proof matrices

(Π1,Π2)← ProofMatrix(φ, ω|R)

where Π1 ∈ Fk−1×y and Π2 ∈ F1×y and output

π1 = Π1σP and π2 = Π2σP

{0, 1} ← Verify(R,σV , φ,π1,π2): obtain t ← Test(R,φ) where t : Fy+k → Fη is an arith-
metic circuit corresponding to the evaluation of multivariate polynomials such that
t(σV ,π1,π2) = 0 if π is valid.

(π1,π2)← Simulate(R,σV , φ): obtain t ← Test(R,φ) and solve t(σV ,π1,π2) = 0 for the
output (π1,π2).

where y, x, k, η and d are constant or polynomials in λ.

Figure 5.5: Split designated-verifier NILP

π is also split into π1 = Π1σP consists of k − 1 elements, and π2 = Π2σP consists of

the last element. This split of Π and π is unnecessary in a designated-verifier zk-SNARK

proof system. However, it is essential in our WKA scheme as we need to split the proof

into two (see our main intuition in §5.4.1).

Formally a split DV NILP is of the following form.

Definition 5.3 (Split designated-verifier NILP). Let L be an NP-language with the wit-

ness relation R(φ, ω). We call φ an instance of L and ω a witness for φ. A split designated-

verifier (split DV) NILP for L consists of the tuple of polynomial-time algorithms (Setup,

Prove, Verify, Simulate) as in Fig. 5.5.

A tuple of polynomial-time algorithms (Setup, Prove, Verify, Simulate) is a split DV

NILP if it has perfect completeness, perfect zero-knowledge, and statistical soundness

against affine prover strategies.

Remark 5.7 (Split DV NILP for QAP). A split DV NILP for QAP is directly reformu-

lated from the NILP in Fig. 5.2 as shown in Fig. 5.6. We simply split the proof matrices

into two Π1 and Π2 where Π1 ∈ F2×y corresponds to the matrix used in Eq. (5.4) and

(5.5), whereas Π2 ∈ F1×y corresponds to the matrix used in Eq. (5.6). Since the NILP

in Fig. 5.2 is secure, our obtained split DV NILP is also secure (see Remark 5.5 for the

103

5.4. WITNESS KEY AGREEMENT CHAPTER 5. DARK POOLS

A Split DV NILP for QAP is reformulated from the NILP for QAP in Fig. 5.2 as follows.

(σ, τ)← Setup(R): Pick α, β, γ, δ, x ← F∗. Set the secret τ = (α, β, γ, δ, x) and the public
σ:

σ = α, β, γ, δ, {xi}n−1
i=0 ,

{
βui(x) + αvi(x) + wi(x)

γ

}l
i=0

,{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2

i=0

(5.13)

(π1π2)← Prove(R,σ, a1, . . . , am): Pick r, s ← F and compute π1 = (A,B) and π2 = (C)
where:

A = α+

m∑
i=0

aiui(x) + rδ (5.14)

B = β +
m∑
i=0

aivi(x) + sδ (5.15)

C =
m∑

i=l+1

ai
βui(x) + αvi(x) + wi(x)

δ
+
h(x)t(x)

δ
+ sA+ rB − rsδ (5.16)

{0, 1} ← Verify(R,σ, a1, . . . , al,π1 = (A,B),π2 = (C)): Output 1 iff:

AB = αβ +
l∑

i=0

ai
βui(x) + αvi(x) + wi(x)

γ
γ + Cδ (5.17)

(π1π2)← Simulate(τ |R, a1, . . . , al): Pick A,B ← F, and output π1 = (A,B) and π2 = (C)
where:

C =
AB

δ
− αβ

δ
−
∑l

i=0 ai(βui(x) + αvi(x) + wi(x))

δ
(5.18)

Figure 5.6: Split DV NILP for QAP

intuition on the soundness of such NILP and Groth’s security proof [102, Theorem 1] for

further details).

5.4.3 Construction of WKA

We construct a WKA scheme Ω from a split DV NILP as shown in Fig. 5.7. Below is the

construction at a high level.

We modify the LE scheme’s encryption algorithm interface for denoting used random-

104

CHAPTER 5. DARK POOLS 5.4. WITNESS KEY AGREEMENT

Following Groth [102], we assume 1λ is deduced from R.

(pc, sc)← KChallenge(R) runs as follows:

1. Fix a linear-only encryption scheme Σ;

2. Run (pk, sk) ← Σ.KeyGen(1λ) where 1λ is the security parameter deduced from
R (see Remark 5.2); and (σP ,σV)← Setup(R);

3. Encrypt [σP,i, rP,i]← Σ.Enc(pk, σP,i) for each σP,i ∈ σP ;

4. Encrypt [rP,i]← Σ.Enc(pk, rP,i) for each rP,i above;

5. Return pc = (pk, {[σP,i, rP,i]}yi=1, {[rP,i]}
y
i=1) and sc = (sk,σV).

(pr, kr)← KResponse(R, pc, φ, ω): Upon receiving the challenge pc,

1. Run (Π1,Π2)← ProofMatrix(φ, ω|R);

2. Compute {[π1,j , r1,j]}k−1
j=1 = Π1({[σP,i, rP,i]}yi=1) (with Σ.Add);

3. Compute [π2, r2] = Π2({[σP,i, rP,i]}yi=1) (with Σ.Add);

4. Compute [r2] = Π2({[rP,i]}yi=1) (with Σ.Add);

5. Return pr = ({[π1,j , r1,j]}kj=1, [r2]) and kr = [π2, r2].

{kc,⊥} ← KDerive(R, sc, φ, pr) Output ⊥ if any verification fails:

1. Verify ImgVer(sk, [π1,j , r1,j]) = 1 for 1 ≤ j ≤ k − 1; and ImgVer(sk, [r2]) = 1;

2. Decrypt π1,j = Σ.Dec(sk, [π1,j , r1,j]) for 1 ≤ j ≤ k − 1;

3. Obtain t← Test(R,φ); solve t(σV , {π1,j}kj=1, π2) = 0 using {π1,j}k−1
j=1 to get π2;

4. Decrypt r2 = Σ.Dec(sk, [r2])

5. Return kr = Σ.Enc(pk, π2, r2) (r2 as randomness).

Figure 5.7: Construction of Witness Key Agreement

ness explicitly. We omit the randomness r and write only [m] ← Enc(pk,m) in case

r is unnecessary in subsequent computation. We write [m] = Enc(pk,m, r) in case we

input directly the randomness into the encryption algorithm. We also require that the

additive homomorphism of LE applies to both the message and the used randomness i.e.

Add(pk, 〈[mi, ri]〉, 〈αi〉) evaluates [
∑
αimi,

∑
αiri].

The challenge phase In KChallenge, the investor first generates a CRS (σP , σV) from

R (using a split DV NILP). Then, the investor encrypts each element {σP,i}yi=1 of the

σP with an LE scheme (with key pair pk, sk). Additionally, we require the investor

to encrypt the randomnesses {rP,i}yi=1 used for the encryption of the CRS {σP,i}yi=1

in KChallenge into {[rP,i]}yi=1. Finally, the investor publishes a challenge that consists

of pk and the encrypted elements ({[σP,i, rP,i]}yi=1, {[rP,i]}
y
i=1)). The investor keeps

105

5.4. WITNESS KEY AGREEMENT CHAPTER 5. DARK POOLS

private sk and the plain CRS σV .

The response phase Upon seeing the challenge, in KResponse, the trader computes

a response by generating a valid proof π for the desired tuple (φ, ω) (using the

proof matrix of the split DV NILP and the additive homomorphic operation Add

of the LE scheme). When the trader evaluates the last encrypted element [π2, r2]

using the proof matrix Π2 and the encrypted CRS {[σP,i]}yi=1, by the additively

homomorphic property of the LE scheme, the trader can also evaluate the ciphertext

[r2] of the randomness r2 of the encrypted [π2, r2] using the same Π2 and {[rP,i]}. The

trader publishes the first encrypted k−1 elements {[π1,j, r1,j]}k−1
j=1 and the encrypted

randomness [r2] as a public response and keeps secret the last encrypted element

[π2, r2].

Key derive phase When the investor sees the instance φ and the corresponding re-

sponse, in KDerive, he can decrypt the encrypted elements using sk to get {π1,j}k−1
j=1

and forge the last element π2 using the plain CRS σV . The investor then uses the

evaluated [r2] to reconstruct the correct ciphertext [π2, r2] of the last element, i.e.

the investor decrypts [r2] to get r2 to use as the randomness in the final encryption

of π2 to get [π2]. After that, both parties agree on the same ciphertext [π2, r2] of the

last element.

5.4.4 Security Analysis

Theorem 5.1 (Security of the WKA scheme Ω). If the LE scheme Σ satisfies correct-

ness, additive homomorphism, IND-CPA, and linear-only homomorphism, and the under-

lying split DV NILP satisfies perfect completeness, perfect zero-knowledge, and statistical

knowledge soundness against affine prover strategies, then, the WKA scheme Ω satisfies

correctness, adaptive knowledge soundness, honest verifier zero-knowledge, and response

indistinguishability.

As correctness follows the algorithm’s description, we focus on adaptive knowledge

soundness, honest verifier zero-knowledge, and response indistinguishability of Ω. For

simplicity, we only sketch the proofs as follows:

Adaptive Knowledge Soundness. In the soundness game the adversary Â comes up with

some proof ({[π1,j]}k−1
j=1 , [π2]) = (pr, kr) for the instance φ.

1. Given kc ← KDerive(R, sc, φ, pr), the assumption kc = kr implies that the sampled

proof ({[π1,j]}k−1
j=1 , [π2]) passes the image verifications. If ({[π1,j]}k−1

j=1 , [π2]) are not

affine combinations of {[σP,i]}yi=1; Â has broken the IND-CPA or the linear-only

homomorphism property of Σ.

106

CHAPTER 5. DARK POOLS 5.4. WITNESS KEY AGREEMENT

2. Otherwise if ({[π1,j]}k−1
j=1 , [π2]) are affine combinations of {[σP,i]}yi=1. There exists an

extractor for some matrices Π1 and Π2 from ({[π1,j]}k−1
j=1 , [π2]) and {[σP,i]}yi=1 such

that {[π1,j, r1,j]}k−1
j=1 = Π1({[σP,i, rP,i]}yi=1) and [π2, r2] = Π2({[σP,i, rP,i]}yi=1) unless

Â has broken the IND-CPA or the linear-only homomorphism of Σ.

3. Consequently, from the extractable matrices Π1 and Π2, as kc = kr implies that

({π1,j}k−1
j=1 , π2) is a valid proof forR (as ({π1,j}k−1

j=1 , π2) has passed the test t(σV , {π1,j}kj=1, π2) =

0, see Fig. 5.1), there must exists an extractor for the witness ω such that R(φ, ω) =

1. Otherwise, Â has broken the statistical soundness property of the underlying split

DV NILP (see Eq. 5.1).

Thus, we conclude that Ω is adaptively knowledge sound.

Honest Verifier Zero-knowledge. To prove the honest verifier zero-knowledge property of

Ω, we show how to construct SZK from the underlying split DV NILP (Setup,Prove,Verify,Simulate):

1. Fix an LE scheme Σ;

2. Run (pk, sk)← Σ.KeyGen(1λ); and (σP ,σV)← Setup(R);

3. Encrypt [σP,i, rP,i] = Σ.Enc(pk, σP,i) for each σP,i ∈ σP ;

4. Encrypt [rP,i] = Σ.Enc(pk, rP,i) for each rP,i used above;

5. Set pc = (pk, {[σP,i, rP,i]}yi=1, {[rP,i]}
y
i=1) and sc = (sk,σV).

6. Run (π1,π2)← Simulate(R,σV , φ) where π1 = {π1,j}k−1
j=1 and π2 = {π2};

7. Encrypt [π1,j]← Σ.Enc(pk, πj1) for each π1,j ∈ π1;

8. Encrypt [π2, r2]← Σ.Enc(pk, π2) and [r2]← Σ.Enc(pk, r2);

9. Set pr = ({[π1,j]}kj=1, [r2]) and kr = [π2].

10. Return (sc, pc, pr, kr = [π2], kc = [π2]).

The simulation and the real protocol only differ in Step 6 where the simulated proof

(π1,π2) is obtained. Owing to the zero-knowledge property of the underlying split DV

NILP, the simulated proof and the real proof are statistically indistinguishable. Hence,

the views of the adversary Â in the simulation and in the real protocol are statistically

indistinguishable. We conclude that Ω is honest verifier zero-knowledge.

Response Indistinguishability. To prove the response indistinguishability property of Ω,

we show how to construct SRI :

107

5.5. WKA FOR QAP CHAPTER 5. DARK POOLS

1. Randomly pick (Π1,Π2)← (Fk−1×y,F1×y);

2. Compute {[π1,j, r1,j]}k−1
j=1 = Π1({[σP,i, rP,i]}yi=1) (with Σ.Add);

3. Compute [π2, r2] = Π2({[σP,i, rP,i]}yi=1) (with Σ.Add);

4. Compute [r2] = Π2({[rP,i]}yi=1) (with Σ.Add);

5. Return pr = ({[π1,j, r1,j]}kj=1, [r2]).

The simulation and the real protocol is only different in Step 1 where instead of the

valid proof matrices (as in the real protocol), S obtains the completely random matri-

ces (Π1,Π2) (in the simulation). Since the adversary Â can see the IND-CPA secure

ciphertexts (pc), the views of the adversary Â (without sc) in the simulation and in the

real protocol are computationally indistinguishable unless Â has broken the IND-CPA

property of Σ. Thus, we conclude that Ω satisfies Response Indistinguishability.

5.5 Witness Key Agreement for Quadratic Arithmetic Program

Finally, we show in Fig. 5.8 how to construct Ω using a split DV NILP obtained from the

NILP in Fig. 5.2.

Theorem 5.2. If the LE scheme Σ satisfies correctness, additive homomorphism, IND-

CPA, and linear-only homomorphism, then the construction in Fig. 5.8 yields a WKA

scheme Ω that satisfies correctness, adaptive knowledge soundness, honest verifier zero-

knowledge, and response indistinguishability.

Proof. Since our NILP is reformulated from Groth’s NILP in Fig. 5.2 (see Remark 5.7), it

satisfies perfect completeness, perfect zero-knowledge, and statistical knowledge soundness

against affine prover strategies (see the full security proof of the NILP by Groth [102,

Theorem 1].

The correctness, additive homomorphism, IND-CPA, and linear-only homomorphism

of Σ and the perfect completeness, perfect zero-knowledge and statistical knowledge

soundness against affine prover strategies of the underlying split DV NILP implies that Ω

satisfies correctness, adaptive knowledge soundness, honest verifier zero-knowledge, and

response indistinguishability (Theorem 5.1).

5.6 Instantiation

Similarly to Gennaro et al. [91] and Bitansky et al. [27], we choose to instantiate the

linear-only encryption scheme Σ with a variant of the Paillier cryptosystem [148].

108

CHAPTER 5. DARK POOLS 5.6. INSTANTIATION

We assume 1λ can be deduced from R. Compared with the original NILP in Fig. 5.2, our
NILP neglects γ since we only need Eq (5.4), (5.5), (5.6) and (5.8) that do not contain γ (γ
is only needed in the verification equation Eq. (5.7)).

(pc, sc)← KChallenge(R): Fix an LE scheme Σ (with key pair (pk, sk) ← Σ.KeyGen(1λ)),
run (σP ,σV) ← Setup(R) to obtain σV = (α, β, δ, x) and generate the ciphertexts
{[σP,i, rP,i]← Σ.Enc(pk, σP,i)} and [rP,i]← Σ.Enc(pk, rP,i) for each σP,i ∈ σP where

σP =

{
α, β, δ, {xi}n−1

i=0 ,

{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)

δ

}n−2

i=0

}
; (5.19)

Return pc = (pk, {[σP,i, rP,i]yi=1}, {[rP,i]}
y
i=1) and sc = (sk,σV) .

(pr, kr)← KResponse(φ = {ai}li=0, ω = {ai}mi=l+1, R, pc): Upon receiving the challenge pc,

1. Pick r, s← F;

2. Compute [A], [B], and [C] (as well as [r2]) using the affine functions in Fig. 5.2
(Eq. (5.4), (5.5) and (5.6)) on {[σP,i, rP,i]yi=1} (and {[rP,i]}yi=1) with Σ.Add;

3. Set [π1,1] = [A], [π1,2] = [B] and [π2, r2] = [C];

4. Return pr = ([π1,1], [π1,2], [r2]) and kr = [π2, r2].

{kc,⊥} ← KDerive(R, sc, φ, pr) outputs ⊥ if any verification fails:

1. Verify ImgVer(pk, [π1,j]) = 1 for j = {1, 2};
2. Verify ImgVer(pk, [r2]) = 1;

3. Decrypt A = Σ.Dec(sk, [π1,1]); and B = Σ.Dec(sk, [π1,2]);

4. Decrypt r2 = Σ.Dec(sk, [r2]);

5. Compute C as in Eq. (5.8) with A and B;

6. Return kr = Σ.Enc(pk, C, r2) (using r2 as randomness).

Figure 5.8: Witness key agreement for QAP

Remark 5.8 (Extension of NILP over a ring). The Paillier encryption scheme (in

Fig. 5.9) technically requires a ring, not a field (as applicable to the WKA scheme Ω).

This is not an issue since it is unlikely to encounter encodings of nontrivial zero divisors

in Z∗N unless one can factor N .

Remark 5.9 (On oblivious ciphertext sampling). Additional ciphertexts are required to

adapt the Paillier encryption scheme into linear-only encryption: the encryption of a

message m will output a pair of ciphertexts c = Enc(pk,m) and c′ = Enc(pk, θm) (for

some pre-defined secret parameter θ). Hence, the decryption of a ciphertext [m] requires

decrypting two ciphertexts c = [m] and c′ = [θm]. ImgVer must check this additional

109

5.7. PERFORMANCE EVALUATION CHAPTER 5. DARK POOLS

The original Scheme 3 of the Paillier encryption scheme requires a multiplicative group
Z∗N2 , for N = pq, where p and q are two prime numbers:

(pk, sk)← KeyGen(1λ): runs as follows.

1. Select random primes p and q (|p|, |q| ≤ λ
2),

2. Compute N = pq and γ = lcm(p− 1, q − 1),

3. Randomly select g where g ∈ Z∗N2 and the order of g is γN .
As shown by Paillier [148], g is selected efficiently by checking whether gcd(L(gγ

mod N2), N) = 1 where L(u) = u−1
N (for u ≡ 1 mod N).

Output public pk = (N, g) and keep secret sk = (p, q, γ).

c← Enc(pk,m): Pick a random r ∈ ZN and output c = gm+rN mod N2. As the order of
g is γN , there could be bias in the output distribution of Enc if one picks r ∈ ZN
(this bias was present in the original Paillier’s paper). To remove this bias one could
pick r ∈ Zγ . However this bias should be negligible as the attacker should not able to
distinguish between sampling in N or sampling in φ(N). Furthermore, even though
γ, the secret key, is not usually available to the party that runs Enc, in our case, the
investor knows γ and is the only party supposed to run Enc, so she could pick r ∈ Zγ
and avoid the bias.

{0, 1} ← ImgVer(sk, pk, c): Output 1 iff c ∈ Z∗N2 ∧ gcd(c,N) = 1.

m = Dec(sk, c): Output m = L(cγ mod N2)
L(gγ mod N2)

mod N .

ĉ = Add(〈αi〉ni=0|pk, 〈ci〉ni=0): Output ĉ =
∏n
i=0 c

αi
i mod N2.

The additive homomorphism is straight forward to verify as:

n∏
i=0

(cin)αi = g
∑n
i=0 αimi+(

∑n
i=0 αiri)N mod N2

Figure 5.9: The Scheme 3 of the Paillier cryptosystem [148]

linear relation (ImgVer decrypts c, c′, and check their consistency with θ, i.e. c′ = θc).

This variant is also considered by Gennaro et al. [91] and Bitansky et al. [27] when

instantiating the linear-only encryption scheme.

5.7 Performance Evaluation

The Paillier cryptosystem is the main ingredient of our construction, and its performance

is well-studied in the literature. Paillier mentioned several optimization techniques in

the original paper [148], and Jost et al. [114] took a step to improve the performance

110

CHAPTER 5. DARK POOLS 5.7. PERFORMANCE EVALUATION

(including parallelization) by orders of magnitude faster as compared with a näıve imple-

mentation.

We use the baseline performance reported by Jost et al. [114]. In their implementation,

to generate the randomness grN they precomputed 2w exponentiations of grN for different

random r and randomly combined z of them to obtain the final randomness. As the

precomputed values may be repeated, the actual number of samples is
(

2w+z−1
z

)
. For

z = 10 and w = 16, this gives approximately 2138 samples.

Jost et al. [114] reported a number of experiments with different values of the parame-

ters: w = (16, 20) and z = (4, 5, 8, 9, 10, 16). For the key length of 2048-bit (whose security

is 112-bit), we choose the pair (w, z) with the least storage (w = 16) and an acceptable

level of security (z = 10) which gives 138-bit security for guessing the randomness (must

be at least 112-bit). For the timing of the Paillier encryption scheme we use the data

from Table 4 by Jost et al. [114] for the encryption time. The numbers were obtained

on an Intel i7-4600U CPU at 2.10GHz with 4 cores running Ubuntu 64-bit v14.04. In

particular, the reported result shows that, at 2048-bit key length, the encryption rate for

32-bit messages can reach 56K/s at the cost of 5.7s pre-computation time.

We estimate the theoretical and practical performance of our WKA scheme Ω based

on the number of encryptions, decryptions, and scalar multiplications for computing

Π1({[σP,i]}) and Π2({[σP,i]}) (Table. 5.2). We ignore the cost of additions as they are

fast. For the Paillier cryptosystem, while encryption requires exponentiation, addition is

only performed as the multiple-precision modular multiplication on the ciphertexts. The

number of decryptions is also small in our concrete construction, i.e. k = 3. Most compu-

tational costs are for encryptions and scalar multiplications since the scalar multiplications

are performed as exponentiations in the Paillier scheme.

5.7.1 Theoretical Performance Evaluation

Let us recall that m is the number of variables of a QAP, l is the number of instance

variables, and n − 1 is the degree of polynomials of the QAP. The KChallenge algorithm

requires the generation of {[σP,i]}; hence, it requires m−l+2n encryptions on the investor’s

side. The KResponse algorithm requires only the proof computation on the trader’s side,

yielding m − l + 3n scalar multiplications. The above numbers are doubled to fix the

malleability of the encryption scheme (see Remark 5.9). Then, it is doubled again for

computing the ciphertexts of the randomnesses. Finally, the KDerive algorithm requires

k decryptions and 1 encryption on the investor’s side.

111

5.7. PERFORMANCE EVALUATION CHAPTER 5. DARK POOLS

Table 5.2: Theoretical Performance evaluation (non-deterministic case)

Algorithm #Encryption #Decryption #Multiplication

KChallenge 4(m− l + 2n) - -
KResponse - - 4(m− l + 3n)
KDerive 1 k -

Note: m is the number of variables in a QAP, l is the number of instance variables,
and n − 1 is the degree of polynomials in the QAP. The number of decryption k is
construction dependent. In our case, we have k = 3.

Table 5.3: Specific circuit evaluation

Relation R m n− 1 TC (s) TR (s)

SC 25821 28312 5.8 7.8
PR 26080 28572 5.8 7.9

Note: The encryption scheme supports 2048-bit key length and provides 112-bit security. Recall
m is the number of variables and n− 1 is the degree of polynomials of the QAP.

5.7.2 Practical Performance Evaluation

We implement the relations SC and PR in Table 5.1 as arithmetic circuits using the libsnark

library [166] to measure the number of required variables m and the corresponding degree

of the polynomials (n − 1). The runtime of KChallenge and KResponse, the most costly

algorithms, are estimated with m and n5, for 112-bit security at 2048-bit key length, using

the 32-bit messages and the encryption rate as in Scheme 3 from Jost et al. [114].

As shown in Table 5.3, the performance of SC and PR are almost the same as their

circuit complexities are similar. KChallenge (TC) requires only 5.8s for the SC relation

and 5.9s for the PR relation. After the KChallenge, the key-agreement with KResponse

(TR) takes only 7.8s for SC and 7.9s for PR.

For our simulation we make use of the aggressive Bloomberg Tradebook [37] for the

period from Mar 13th to May 1st 2019 (35 days of trading in total).

Bloomberg Tradebook is an agency broker that serves financial services providers in

the US. The brokerage pool is a darkpool (quoting is restricted to the market participants)

and only trades (market orders) are reported to the market. There is no central limit order

book, but an electronic blind matching algorithm that utilizes a direct market access tool

for individual positions. The traders then can match against each other’s price-demand

schedules (hence a very similar set up to our WKA approach). So there are no brokers or

market makers in this set up.

The data available through Bloomberg is price data that contains the underlying

number of quote-message-queries needed prior to the trade being executed. Hence, there

5l is small, l < 100 in all examples.

112

CHAPTER 5. DARK POOLS 5.7. PERFORMANCE EVALUATION

Table 5.4: Market data samples for low and high days of Bloomberg Tradebook

Day Low High

Messages 4514 14103
Trades 53 55

0.4

0.6

0.8

1

1.2

1.4

13/Mar - 01/May 2019

T
ot

al
C

ry
p

to
O

ve
rh

ea
d

(x
d

ay
s)

SC+PR

Even with the aggressive Bloomberg Tradebook, only 3 out of 35 days of trading
exhibits overheads greater than 1x in our simulation.

Figure 5.10: WKA Evaluation on Bloomberg Tradebook

is an establishment of price, quantity and demand prior to each trade being executed.

The data here are for a specific date matched set of US Dollar denominated corporate

securities traded on Bloomberg Tradebook. Each data point in the tradebook is the

number of messages (which will be communications of quotes within the dark pool) prior

to an individual time stamped trade being executed. It should be noted that while

each trade is atomic (i.e.a transaction between two specific counter parties) the messages

between trades are not necessarily directly connected to the specific trade. Given that

the trade is a globally observable variable, it is reasonable to presume that most messages

within the trade time interval correspond to a particular transaction being explored and

validated.

The number of trades within this specific market are low, around 55 per day. The

number of messages is quite high, at around 6500 messages per day at an average of

around 130 messages quoted per trade executed. This is quite typical. Futures markets,

such as the Eurodollar, Crude Oil and agricultural commodities, have very similar limit-

order (public quotes) to traded securities ratios of between 50 to 300 quotes per trade.

Hence, this benchmark provides a realistic test case for our algorithm for a single security.

We combine the number of messages and trades from the extracted market data (exam-

113

5.8. SUMMARY CHAPTER 5. DARK POOLS

ples shown in Table 5.4) and Table 5.3 to estimate the corresponding execution overhead

throughout a day of trading. The final results are reported in Fig. 5.10. Performance is

evaluated in terms of execution overhead to the expected processing time (1 day). We

combine the relations SC with PR and we consider the execution time of a message as

the running time of SC’s KChallenge (5.8s). For trades execution time we consider the

sequential execution of KResponse from SC and the whole challenge and response time of

PR (21.6s). As shown in Fig. 5.10 we can fit 32 out of 35 days of trading within the day

in our simulation.

5.8 Summary

We introduced the notion of witness-key-agreement. Specifically we defined split designated-

verifier non-interactive linear proof following Groth’s definition of NILP [102]. We then

compiled the obtained split DV NILP into a Witness Key Agreement scheme using Linear-

Only Encryption.

Our obtained construction is efficient. After a one-time setup that yields a common

challenge for a relation R of interest, a party can agree on a secret key with another party

given that the latter knows a witness of a committed instance. Finally, our concrete WKA

scheme for quadratic arithmetic programs yields both succinct communication complexity,

i.e.the response to the common challenge consists of only 3 encrypted elements, and

efficient response computation and key derivation, i.e.only linear to the QAP size.

Our scheme is particularly suitable for private auctions in financial intermediation in

which one party wants to privately communicate with another party about committed

financial information which satisfies a relation R of interest.

114

Chapter 6

Conclusion

6.1 Research Contribution

We have addressed RQ1, whose main goal is the understanding of simple payment net-

works, with a high-level review of the traditional and crypto-based Payment Transaction

Networks (PTNs). We have identified and categorized the security challenges posed by

such systems and discussed the possible solutions to those challenges.

However, addressing only such challenges is not enough to build more advanced fi-

nancial intermediation, such as a futures exchange, owing to (i) the interaction between

security and economic viability; (ii) the essentially non-monotonic behavior (Alice’s good

standing is invalidated by an honest Bob), and (iii) the proportional burden requirement

in which the computational effort must be on par with the activities. To address RQ2, we

have identified and enucleated design principles to six non-trivial challenges (noticeably

the Price Discrimination Attack being the most interesting one) to decentralize a futures

exchange.

The distilled principles are then used to address RQ3 as we have shown how to build

FuturesMEX, a secure, distributed futures exchange:

1. We have put forward a cryptographic ideal functionality for a distributed futures

market, that captures all of the key security requirements. This is an ideal realization

of a distributed futures market, where the market is run by a trusted third party

which knows the secret inputs of all participating traders, and lets the market evolve

on their behalf. Such a functionality, by construction, embodies features described

in RQ2.

2. We have designed a cryptographic protocol securely realizing our ideal function-

ality. Our protocol combines multiparty computation (MPC) and non-interactive

zero-knowledge proofs on committed inputs, only relying on the basic assumptions

115

6.1. RESEARCH CONTRIBUTION CHAPTER 6. CONCLUSION

of secure broadcast channels between traders and an anonymous network. These

assumptions already appeared in several prior works, most notably ZeroCash [164].

We replace the local constraints verification of the MPC with non-interactive proofs

for efficient generation of publicly verifiable transactions and scalability w.r.t. the

number of traders. Full MPC is only performed for sub-tasks capturing the non-

monotonicity and anonymity requirements of the market. We prove the security

of our protocol with security-with-abort—where we allow an adversary to abort

the computation after receiving its own intermediate outputs [111]—and extend it

so that an aborting adversary is penalized by forfeiting its hard won stake in the

market, the ultimate discouragement in our setting.

3. We have shown that our approach is feasible. We have done so, by providing a proof

of concept implementation using the libsnark library [166] for the zero-knowledge

proofs, and the SPDZ protocol [69] for securely realizing the required MPC sub-

tasks. We have further optimized our protocol in order to yield a 70% efficiency

gain. Our results show that our solution is feasible for low frequency markets at

CME (e.g.trading in Lean Hog commodities): a trading day can be executed in

a day by an Amazon’s EC2 large VM. Further optimizations are needed for high

frequency trading in the largest markets (Eurodollar, Foreign Exchange and Crude

Oil futures), for instance by parallelizing proof generation as most of them are inde-

pendent, improvements in the zk-SNARK implementation; or different commitment

functions or batch proofs for good standing (e.g. proving the validity of a trader’s

inventory for a range of prices).

For RQ4, we have presented the first practical Witness Key Agreement scheme under

designated-verifier zk-SNARK proof for Quadratic Arithmetic Programs (QAP) [27, 91,

102] and shown how to instantiate the scheme with the Paillier cryptosystem [148]. In

our WKA scheme, a designated investor firsts broadcast a common reference string (CRS)

as a challenge for the relation R of interest. A trader then publishes a partial zk-SNARK

proof as a response for the committed instance that satisfies R. Using the partial zk-

SNARK proof, the investor derives a shared secret key with the trader. The CRS for R

is only computed once and is reusable for as many instances as desired. Partial proof

size is also succinct (low communication complexity), as it has at most three elements

regardless of R. Response computation and key derivation are efficient, i.e.only linear in

the QAP size. We have also provided the security analysis and performance evaluation

(both theoretical and practical of our WKA scheme using the Bloomberg tradebook. From

the results obtained, for the period from Mar 13 to May 1st 2019, our solution is suitable

for 32 out of 35 days of dark trading.

116

CHAPTER 6. CONCLUSION 6.2. FUTURE WORK

6.2 Future Work

The first interesting avenue of future research is the choice of majority for the distributed

consensus protocol: majority of traders or majority weighted by volumes. These solutions

need further validation by financial economists. Secondly, anonymous communication

networks often yield higher latency, an interesting research direction is to develop a secure

distributed trading platform without such networks. Drop-out and abort are also the

issues; even though they are also applicable to all secure multiparty computation protocols

that do not rely on the honest majority. Another direction is to analyze liveliness and

robustness against collusion and price discrimination. For simplicity, our protocol by

default goes to mark-to-market upon failure. Alternatives are possible, e.g. margin-call

for additional funds. We leave this line for future work.

117

Bibliography

[1] Mart́ın Abadi and Roger Needham. Prudent Engineering Practice for Cryptographic

Protocols. IEEE Transactions on Software Engineering, 22(1):6–15, 1996.

[2] Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac. A

Subversion-Resistant SNARK. In International Conference on the Theory and Ap-

plication of Cryptology and Information Security, pages 3–33. Springer, 2017.

[3] Dennis Abrazhevich. Classification and Characteristics of Electronic Payment Sys-

tems. In Electronic Commerce and Web Technologies, pages 81–90. Springer, 2001.

[4] Hamza Abusalah, Georg Fuchsbauer, and Krzysztof Pietrzak. Offline Witness En-

cryption. In International Conference on Applied Cryptography and Network Secu-

rity, pages 285–303. Springer, 2016.

[5] Franklin Allen and Anthony M Santomero. The Theory of Financial Intermediation.

Journal of Banking & Finance, 21(11-12):1461–1485, 1997.

[6] Mashael AlSabah and Ian Goldberg. Performance and Security Improvements for

Tor: A Survey. ACM Computing Surveys, 49(2):32, 2016.

[7] Milton Anderson. The Electronic Check Architecture, 1998. http://echeck.org/

files/ArchitectualOverview.pdf. Accessed: 2019-05-01.

[8] Apple. Apple Pay. http://www.apple.com/apple-pay/. Accessed: 2019-05-01.

[9] David W Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity

and Performance of Programmable Secure Computation. IEEE security & privacy,

14(5):48–56, 2016.

[10] BACS. BACS. http://www.bacs.co.uk. Accessed: 2019-05-01.

[11] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous Credentials Light. In 2013

ACM SIGSAC conference on Computer & Communications Security, pages 1087–

1098. ACM, 2013.

119

http://echeck.org/files/ArchitectualOverview.pdf
http://echeck.org/files/ArchitectualOverview.pdf
http://www.apple.com/apple-pay/
http://www.bacs.co.uk

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Bank of England. Payment and Settlement. https://www.bankofengland.co.uk/

payment-and-settlement. Accessed: 2019-05-01.

[13] Bank of England. One Bank Research Agenda. https://www.bankofengland.

co.uk/-/media/boe/files/research/one-bank-research-agenda---summary.

pdf. Accessed: 2019-05-01.

[14] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an Untrusted

CRS: Security in the face of Parameter Subversion. In International Conference on

the Theory and Application of Cryptology and Information Security, pages 777–804.

Springer, 2016.

[15] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Interna-

tional Cryptology Conference, pages 390–420. Springer, 1992.

[16] Mihir Bellare and Viet Tung Hoang. Adaptive Witness Encryption and Asymmetric

Password-Based Cryptography. In IACR International Workshop on Public Key

Cryptography, pages 308–331. Springer, 2015.

[17] Steven M Bellovin and Michael Merritt. Encrypted Key Exchange: Password-based

Protocols Secure Against Dictionary Attacks. In 1992 IEEE Computer Society

Symposium on Research in Security and Privacy, pages 72–84. IEEE, 1992.

[18] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems for

Non-Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM sympo-

sium on Theory of Computing, pages 1–10. ACM, 1988.

[19] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.

SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge.

In Advances in Cryptology, pages 90–108. Springer, 2013.

[20] Eli Ben-Sasson, Alessandro Chiesa, Matthew Green, Eran Tromer, and Madars

Virza. Secure Sampling of Public Parameters for Succinct Zero Knowledge Proofs.

In 2015 IEEE Symposium on Security and Privacy, pages 287–304. IEEE, 2015.

[21] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-

Interactive Zero Knowledge for a von Neumann Architecture. In 23rd USENIX

Security Symposium, pages 781–796, 2014.

[22] Josh Benaloh and Michael De Mare. One-Way Accumulators: A Decentralized

Alternative to Digital Signatures. In Workshop on the Theory and Application of

of Cryptographic Techniques, pages 274–285. Springer, 1993.

120

https://www.bankofengland.co.uk/payment-and-settlement
https://www.bankofengland.co.uk/payment-and-settlement
https://www.bankofengland.co.uk/-/media/boe/files/research/one-bank-research-agenda---summary.pdf
https://www.bankofengland.co.uk/-/media/boe/files/research/one-bank-research-agenda---summary.pdf
https://www.bankofengland.co.uk/-/media/boe/files/research/one-bank-research-agenda---summary.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-

Homomorphic Encryption and Multiparty Computation. In International Confer-

ence on the Theory and Applications of Cryptographic Techniques, pages 169–188.

Springer, 2011.

[24] David Bernhard and Bogdan Warinschi. Cryptographic VotingA Gentle Introduc-

tion. In Foundations of Security Analysis and Design VII, pages 167–211. Springer,

2014.

[25] Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymisation of

Clients in Bitcoin P2P Network. In 2014 ACM SIGSAC Conference on Computer

and Communications Security, pages 15–29. ACM, 2014.

[26] BIS. Real-Time-Gross-Settlement System. https://www.bis.org/cpmi/publ/

d22.pdf. Accessed: 2019-05-01.

[27] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Omer Paneth, and Rafail Ostrovsky.

Succinct Non-Interactive Arguments via Linear Interactive Proofs. In Theory of

Cryptography Conference, pages 315–333. Springer, 2013.

[28] BitcoinWiki. Bitcoin Address. https://en.bitcoin.it/wiki/Address. Accessed:

2019-05-01.

[29] BitcoinWiki. Bitcoin Coinbase Transaction. https://en.bitcoin.it/wiki/

Coinbase. Accessed: 2019-05-01.

[30] BitcoinWiki. Bitcoin Mining Introduction. https://en.bitcoin.it/wiki/

Mining#Introduction. Accessed: 2019-05-01.

[31] BitcoinWiki. Bitcoin Proof of Stake. https://en.bitcoin.it/wiki/Proof_of_

Stake. Accessed: 2019-05-01.

[32] BitcoinWiki. Bitcoin Proof of Work. https://en.bitcoin.it/wiki/Proof_of_

work. Accessed: 2019-05-01.

[33] BitcoinWiki. Bitcoin Transaction. https://en.bitcoin.it/wiki/Transaction.

Accessed: 2019-05-01.

[34] BitcoinWiki. Bitcoin Transaction Fees. https://en.bitcoin.it/wiki/

Transaction_fees. Accessed: 2019-05-01.

[35] BitcoinWiki. Bitcoin Transaction Input. https://en.bitcoin.it/wiki/

Transaction#Input. Accessed: 2019-05-01.

121

https://www.bis.org/cpmi/publ/d22.pdf
https://www.bis.org/cpmi/publ/d22.pdf
https://en.bitcoin.it/wiki/Address
https://en.bitcoin.it/wiki/Coinbase
https://en.bitcoin.it/wiki/Coinbase
https://en.bitcoin.it/wiki/Mining#Introduction
https://en.bitcoin.it/wiki/Mining#Introduction
https://en.bitcoin.it/wiki/Proof_of_Stake
https://en.bitcoin.it/wiki/Proof_of_Stake
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Transaction_fees
https://en.bitcoin.it/wiki/Transaction#Input
https://en.bitcoin.it/wiki/Transaction#Input

BIBLIOGRAPHY BIBLIOGRAPHY

[36] BitcoinWiki. Bitcoin Transaction Output. https://en.bitcoin.it/wiki/

Transaction#Output. Accessed: 2019-05-01.

[37] Bloomberg. Tradebook Bloomberg Professional Services. https://www.bloomberg.

com/professional/solution/tradebook/, 2019. Accessed: 2019-05-01.

[38] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen,

Jakob Pagter, et al. Secure Multiparty Computation Goes Live. In International

Conference on Financial Cryptography and Data Security, pages 325–343. Springer,

2009.

[39] Fabrice Boudot. Efficient Proofs that a Committed Number lies in an Interval. In

International Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 431–444. Springer, 2000.

[40] Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable Multi-party Computation for

zk-SNARK Parameters in the Random Beacon Model. Cryptology ePrint Archive,

Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050. Accessed: 2019-

05-01.

[41] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum Disclosure Proofs

of Knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[42] Jan Camenisch, Nathalie Casati, Thomas Groß, and Victor Shoup. Credential Au-

thenticated Identification and Key Exchange. In International Cryptology Confer-

ence, pages 255–276. Springer, 2010.

[43] Jan Camenisch, Rafik Chaabouni, et al. Efficient Protocols for Set Membership

and Range Proofs. In International Conference on the Theory and Application of

Cryptology and Information Security, pages 234–252. Springer, 2008.

[44] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-Cash. In

Advances in Cryptology, pages 302–321. Springer, 2005.

[45] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic

Protocols. In 2001 IEEE International Conference on Cluster Computing, pages

136–145. IEEE, 2001.

[46] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Com-

posable Two-Party and Multi-Party Secure Computation. In 34th ACM Symposium

on Theory of Computing, pages 494–503. ACM, 2002.

122

https://en.bitcoin.it/wiki/Transaction#Output
https://en.bitcoin.it/wiki/Transaction#Output
https://www.bloomberg.com/professional/solution/tradebook/
https://www.bloomberg.com/professional/solution/tradebook/
https://eprint.iacr.org/2017/1050

BIBLIOGRAPHY BIBLIOGRAPHY

[47] John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. MPC Joins the Dark

Side. Cryptology ePrint Archive, Report 2018/1045, 2018. https://eprint.iacr.

org/2018/1045. Accessed: 2019-05-01.

[48] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance and Proac-

tive Recovery. ACM Transactions on Computer Systems, 20(4):398–461, 2002.

[49] Miguel Castro, Barbara Liskov, et al. Practical Byzantine Fault Tolerance. In 3rd

USENIX Symposium on Operating Systems Design & Implementation, volume 99,

pages 173–186, 1999.

[50] Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable

Distributed Systems. Journal of the ACM, 43(2):225–267, 1996.

[51] CHAPS. CHAPS. http://www.chapsco.co.uk. Accessed: 2019-05-01.

[52] Melissa Chase and Anna Lysyanskaya. On Signatures of Knowledge. In International

Cryptology Conference, pages 78–96. Springer, 2006.

[53] David Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryp-

tology, pages 199–203. Springer, 1982.

[54] David Chaum. The Dining Cryptographers Problem: Unconditional Sender and

Recipient Untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[55] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty Unconditionally

Secure Protocols. In the twentieth ACM symposium on Theory of Computing, pages

11–19. ACM, 1988.

[56] David Chaum, Amos Fiat, and Moni Naor. Untraceable Electronic Cash. In Ad-

vances in Cryptology, pages 319–327. Springer-Verlag New York, Inc., 1990.

[57] Jeremy Clark, Joseph Bonneau, Edward W Felten, Joshua A Kroll, Andrew Miller,

and Arvind Narayanan. On Decentralizing Prediction Markets and Order Books.

In Workshop on the Economics of Information Security, 2014.

[58] CloudFlare. CloudFlare. https://www.cloudflare.com. Accessed: 2019-05-01.

[59] CME. Eurodollar. https://www.cmegroup.com/confluence/display/

EPICSANDBOX/Eurodollar#Eurodollar-NormalDailySettlement. Accessed:

2019-05-01.

123

https://eprint.iacr.org/2018/1045
https://eprint.iacr.org/2018/1045
http://www.chapsco.co.uk
https://www.cloudflare.com
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Eurodollar#Eurodollar-NormalDailySettlement
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Eurodollar#Eurodollar-NormalDailySettlement

BIBLIOGRAPHY BIBLIOGRAPHY

[60] CME. Margin: Know What’s Needed. https://www.cmegroup.com/education/

courses/introduction-to-futures/margin-know-what-is-needed.html. Ac-

cessed: 2019-05-01.

[61] CME. Market and Instrument States. https://www.cmegroup.com/confluence/

display/EPICSANDBOX/Market+and+Instrument+States. Accessed: 2019-05-01.

[62] CME Group. Eurodollar. http://www.cmegroup.com/confluence/display/

EPICSANDBOX/Eurodollar. Accessed: 2019-05-01.

[63] CoinDesk. Understanding The DAO Attack. http://www.coindesk.com/

understanding-dao-hack-journalists/. Accessed: 2019-05-01.

[64] CoinMarketCap. CoinMarketCap. https://coinmarketcap.com/. Accessed: 2019-

05-01.

[65] Rama Cont, Arseniy Kukanov, and Sasha Stoikov. The Price Impact of Order Book

Events. Journal of Financial Econometrics, 12(1):47–88, 2014.

[66] Ronald Cramer and Victor Shoup. Universal Hash Proofs and A Paradigm for

Adaptive Chosen Ciphertext Secure Public-Key Encryption. In International Con-

ference on the Theory and Applications of Cryptographic Techniques, pages 45–64.

Springer, 2002.

[67] Wei Dai. b-money. http://www.weidai.com/bmoney.txt, 1998. Accessed: 2019-

05-01.

[68] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P Smart. Practical Covertly Secure MPC for Dishonest Majority–or: Breaking

the SPDZ Limits. In European Symposium on Research in Computer Security, pages

1–18. Springer, 2013.

[69] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty Com-

putation from Somewhat Homomorphic Encryption. In Advances in Cryptology,

pages 643–662. Springer, 2012.

[70] Hans Degryse, Geoffrey Tombeur, Mark Van Achter, and Gunther Wuyts. Dark

Trading, chapter 12, pages 213–230. Wiley-Blackwell, 2013.

[71] David Derler and Daniel Slamanig. Practical Witness Encryption for Algebraic

Languages or How to Encrypt under Groth–Sahai Proofs. Designs, Codes and

Cryptography, 86(11):2525–2547, 2018.

124

https://www.cmegroup.com/education/courses/introduction-to-futures/margin-know-what-is-needed.html
https://www.cmegroup.com/education/courses/introduction-to-futures/margin-know-what-is-needed.html
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Market+and+Instrument+States
https://www.cmegroup.com/confluence/display/EPICSANDBOX/Market+and+Instrument+States
http://www.cmegroup.com/confluence/display/EPICSANDBOX/Eurodollar
http://www.cmegroup.com/confluence/display/EPICSANDBOX/Eurodollar
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://coinmarketcap.com/
http://www.weidai.com/bmoney.txt

BIBLIOGRAPHY BIBLIOGRAPHY

[72] Tim Dierks and Christopher Allen. The TLS Protocol version 1.0, 1998. https:

//www.ietf.org/rfc/rfc2246.txt. Accessed: 2019-05-01.

[73] Whitfield Diffie and Martin E Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[74] John R Douceur. The Sybil Attack. In International Workshop on Peer-to-Peer

Systems, pages 251–260. Springer, 2002.

[75] Evan Duffield and Daniel Diaz. Dash: A PrivacyCentric CryptoCurrency, 2015.

http://blockchainlab.com/pdf/Dash-WhitepaperV1.pdf. Accessed: 2019-05-

01.

[76] Cynthia Dwork, Nancy Ann Lynch, and Larry Stockmeyer. Consensus in the Pres-

ence of Partial Synchrony. Journal of the ACM, 35(2):288–323, 1988.

[77] Ethereum. A Next-Generation Smart Contract and Decentralized Application Plat-

form. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed: 2019-

05-01.

[78] Eurosystem. Target2. https://target2.ecb.europa.eu/. Accessed: 2019-05-01.

[79] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-

NG: A Scalable Blockchain Protocol. In 13th USENIX Symposium on Networked

Systems Design & Implementation, pages 45–59, 2016.

[80] Ittay Eyal and Emin Gün Sirer. Majority Is Not Enough: Bitcoin Mining Is Vul-

nerable. Communications of the ACM, 61(7):95–102, 2018.

[81] Hal Finney. RPOW - Reusable Proofs of Work. https://cryptome.org/rpow.htm,

2004. Accessed: 2019-05-01.

[82] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of Dis-

tributed Consensus with One Faulty Process. Journal of the ACM, 32(2):374–382,

1985.

[83] Forbes. Wall Street’s Speed War. http://www.forbes.com/forbes/2010/0927/

outfront-netscape-jim-barksdale-daniel-spivey-wall-street-speed-war.

html. Accessed: 2019-05-01.

[84] FRBServices. Fedwire R© Funds Service. https://www.frbservices.org/assets/

financial-services/wires/funds.pdf. Accessed: 2019-05-01.

125

https://www.ietf.org/rfc/rfc2246.txt
https://www.ietf.org/rfc/rfc2246.txt
http://blockchainlab.com/pdf/Dash-WhitepaperV1.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://target2.ecb.europa.eu/
https://cryptome.org/rpow.htm
http://www.forbes.com/forbes/2010/0927/outfront-netscape-jim-barksdale-daniel-spivey-wall-street-speed-war.html
http://www.forbes.com/forbes/2010/0927/outfront-netscape-jim-barksdale-daniel-spivey-wall-street-speed-war.html
http://www.forbes.com/forbes/2010/0927/outfront-netscape-jim-barksdale-daniel-spivey-wall-street-speed-war.html
https://www.frbservices.org/assets/financial-services/wires/funds.pdf
https://www.frbservices.org/assets/financial-services/wires/funds.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[85] Georg Fuchsbauer. Subversion-Zero-Knowledge SNARKs. In IACR International

Workshop on Public Key Cryptography, pages 315–347. Springer, 2018.

[86] Eiichiro Fujisaki and Koutarou Suzuki. Traceable Ring Signature. In International

Workshop on Public Key Cryptography, pages 181–200. Springer, 2007.

[87] Futures Industry Association. Largest Derivatives Exchanges

Worldwide in 2015, by Number of Contracts Traded (in

Millions). https://www.statista.com/statistics/272832/

largest-international-futures-exchanges-by-number-of-contracts-traded/.

Accessed: 2016-02-01.

[88] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate Multilinear Maps from

Ideal Lattices. In International Conference on the Theory and Applications of Cryp-

tographic Techniques, pages 1–17. Springer, 2013.

[89] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent

Waters. Candidate Indistinguishability Obfuscation and Functional Encryption for

all Circuits. SIAM Journal on Computing, 45(3):882–929, 2016.

[90] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness Encryption

and Its Applications. In 45th ACM symposium on Theory of Computing, pages

467–476. ACM, 2013.

[91] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic

Span Programs and Succinct NIZKs without PCPs. In International Conference on

the Theory and Applications of Cryptographic Techniques, pages 626–645. Springer,

2013.

[92] Craig Gentry, Allison Lewko, and Brent Waters. Witness Encryption from Instance

Independent Assumptions. In International Cryptology Conference, pages 426–443.

Springer, 2014.

[93] Craig Gentry and Daniel Wichs. Separating Succinct Non-Interactive Arguments

from all Falsifiable Assumptions. In 43rd ACM symposium on Theory of computing,

pages 99–108. ACM, 2011.

[94] Danezis George and Sarah Meiklejohn. Centrally Banked Cryptocurrencies. In

Network and Distributed System Security Symposium 2016, pages 1–14, 2016.

[95] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-

bridge University Press, 2009.

126

https://www.statista.com/statistics/272832/largest-international-futures-exchanges-by-number-of-contracts-traded/
https://www.statista.com/statistics/272832/largest-international-futures-exchanges-by-number-of-contracts-traded/

BIBLIOGRAPHY BIBLIOGRAPHY

[96] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing but

Their Validity or All Languages In NP Have Zero-Knowledge Proof Systems. Journal

of the ACM, 38(3):690–728, 1991.

[97] Shafi Goldwasser. How to Play any Mental Game, or A Completeness Theorem

for Protocols with an Honest Majority. In 19th ACM symposium on Theory of

Computing, pages 218–229, 1987.

[98] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity

of Interactive Proof Systems. SIAM Journal on computing, 18(1):186–208, 1989.

[99] Li Gong. Fail-stop Protocols: An Approach to Designing Secure Protocols. SRI

International,Computer Science Laboratory, 1994.

[100] Google. Google Wallet. https://www.google.com/wallet/. Accessed: 2019-05-01.

[101] Martin D Gould, Mason A Porter, Stacy Williams, Mark McDonald, Daniel J Fenn,

and Sam D Howison. Limit Order Books. Quantitative Finance, 13(11):1709–1742,

2013.

[102] Jens Groth. On the size of Pairing-Based Non-Interactive Arguments. In Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

pages 305–326. Springer, 2016.

[103] Jens Groth and Mary Maller. Snarky Signatures: Minimal Signatures of Knowl-

edge from Simulation-Extractable SNARKs. In International Cryptology Confer-

ence, pages 581–612. Springer, 2017.

[104] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and

Damien Vergnaud. Efficient UC-Secure Authenticated Key-Exchange for Algebraic

Languages. In International Workshop on Public Key Cryptography, pages 272–291.

Springer, 2013.

[105] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE), 1998. https:

//tools.ietf.org/html/rfc2409. Accessed: 2019-05-01.

[106] Larry Harris. Trading and Exchanges: Market Microstructure for Practitioners.

Oxford University Press, USA, 2003.

[107] Robert Hatch. Reforming the Murky Depths of Wall Street: Putting the Spotlight

on the Security and Exchange Commission’s Regulatory Proposal Concerning Dark

Pools of Liquidity. The George Washington Law Review, 78:1032, 2009.

127

https://www.google.com/wallet/
https://tools.ietf.org/html/rfc2409
https://tools.ietf.org/html/rfc2409

BIBLIOGRAPHY BIBLIOGRAPHY

[108] John Hull, Sirimon Treepongkaruna, David Colwell, Richard Heaney, and David

Pitt. Fundamentals of Futures and Options Markets. Pearson Higher Education

AU, 2013.

[109] HyperLedger. HyperLedger. https://www.hyperledger.org. Accessed: 2019-05-

01.

[110] IOTA. IOTA. https://www.iota.org/. Accessed: 2019-05-01.

[111] Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.

On Achieving the “Best Of Both Worlds” in Secure Multiparty Computation. SIAM

Journal on Computing, 40(1):122–141, 2011.

[112] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding Protocols. In

Secure Information Networks, pages 258–272. Springer, 1999.

[113] S Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing Contracts: An

Adventure in Financial Engineering. ACM SIG-PLAN Notices, 35(9):280–292, 2000.

[114] Christine Jost, Ha Lam, Alexander Maximov, and Ben JM Smeets. Encryption

Performance Improvements of the Paillier Cryptosystem. IACR Cryptology ePrint

Archive, 2015:864, 2015.

[115] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC

Press, 2014.

[116] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Group Encryption. In Inter-

national Conference on the Theory and Application of Cryptology and Information

Security, pages 181–199. Springer, 2007.

[117] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. An Efficient E2E Ver-

ifiable E-Voting System without Setup Assumptions. IEEE Security & Privacy,

2017.

[118] Sunny King. Primecoin: Cryptocurrency with Prime Number Proof-of-Work, 2013.

http://primecoin.io/bin/primecoin-paper.pdf. Accessed: 2019-05-01.

[119] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart

Contracts. In 2016 IEEE symposium on security and privacy, pages 839–858. IEEE,

2016.

128

https://www.hyperledger.org
https://www.iota.org/
http://primecoin.io/bin/primecoin-paper.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[120] Ahmed E Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T-H Hubert Chan, Char-

alampos Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. How to Use

SNARKs in Universally Composable Protocols. IACR Cryptology ePrint Archive,

2015:1093, 2015.

[121] Ranjit Kumaresan and Iddo Bentov. How to use Bitcoin to Incentivize Correct

Computations. In the 2014 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 30–41. ACM, 2014.

[122] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to Use Bitcoin to Play

Decentralized Poker. In the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 195–206. ACM, 2015.

[123] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-

provements to Secure Computation With Penalties. In the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 406–417. ACM, 2016.

[124] Albert Sidney Kyle. A Theory of Futures Market Manipulations. Number 64. Center

for the Study of Futures Markets, Columbia Business School, Columbia, 1983.

[125] John Labuszewski, John Nyhoff, James Boudreault, et al. Disseminating Floor

Quotes from Qpen Outcry Markets, April 23 2015. US Patent App. 14/061,286.

[126] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals

Problem. ACM Transactions on Programming Languages and Systems, 4(3):382–

401, 1982.

[127] Charles Lee. Litecoin. https://github.com/litecoin-project/litecoin, 2011.

Accessed: 2019-05-01.

[128] Yehida Lindell. Secure Multiparty Computation for Privacy Preserving Data Min-

ing. In Encyclopedia of Data Warehousing and Mining, pages 1005–1009. IGI Global,

2005.

[129] Yehuda Lindell and Benny Pinkas. Secure Multiparty Computation for Privacy-

Preserving Data Mining. Journal of Privacy and Confidentiality, 1(1):5, 2009.

[130] Katya Malinova, Andreas Park, and Ryan Riordan. Do Retail Traders suffer from

High Frequency Traders?, 2013.

[131] Jerry W Markham. Manipulation of Commodity Futures Prices-the Unprosecutable

Crime. Yale Journal on Regulation, 8:281, 1991.

129

https://github.com/litecoin-project/litecoin

BIBLIOGRAPHY BIBLIOGRAPHY

[132] Billy Markus and Jackson Palmer. Dogecoin. https://github.com/dogecoin/

dogecoin, 2013. Accessed: 2019-05-01.

[133] Fabio Massacci, Chan Nam Ngo, Jing Nie, Daniele Venturi, and Julian Williams.

The Seconomics (Security-Economics) Vulnerabilities of Decentralized Autonomous

Organizations. In Cambridge International Workshop on Security Protocols, pages

171–179. Springer, 2017.

[134] Henri Massias, X Serret Avila, and J-J Quisquater. Design of a Secure Timestamp-

ing Service with Minimal Trust Requirement. In 20th Symposium on Information

Theory in the Benelux, 1999.

[135] MasterCard. MasterCard. https://www.mastercard.us/en-us.html. Accessed:

2019-05-01.

[136] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon Mc-

Coy, Geoffrey M Voelker, and Stefan Savage. A Fistful of Bitcoins: Characterizing

Payments among Men With No Names. In 2013 Internet Measurement Conference,

pages 127–140. ACM, 2013.

[137] Ralph C Merkle. A Digital Signature based on a Conventional Encryption Function.

In Conference on the Theory and Application of Cryptographic Techniques, pages

369–378. Springer, 1987.

[138] Silvio Micali. Computationally Sound Proofs. SIAM Journal on Computing,

30(4):1253–1298, 2000.

[139] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. ZeroCoin:

Anonymous Distributed E-Cash from Bitcoin. In 2013 IEEE Symposium on Security

and Privacy, pages 397–411. IEEE, 2013.

[140] Steven P Miller, B Clifford Neuman, Jeffrey I Schiller, and Jermoe H Saltzer.

Kerberos Authentication and Authorization System. Project Athena Technical

Plan Section E. 2.1, 1987. http://web.mit.edu/Saltzer/www/publications/

athenaplan/e.2.1.pdf. Accessed: 2019-05-01.

[141] Hitesh Mittal. Are You Playing in a Toxic Dark Pool?: A Guide to Preventing

Information Leakage. The Journal of Trading, 3(3):20–33, 2008.

[142] Matt Morano, Ian Wall, Samuel Gaer, and Kai Neumann. Distributed trading bus

architecture, February 15 2011. US Patent 7,890,412.

[143] MTS. MTS Market. https://www.mtsmarkets.com. Accessed: 2019-05-01.

130

https://github.com/dogecoin/dogecoin
https://github.com/dogecoin/dogecoin
https://www.mastercard.us/en-us.html
http://web.mit.edu/Saltzer/www/publications/athenaplan/e.2.1.pdf
http://web.mit.edu/Saltzer/www/publications/athenaplan/e.2.1.pdf
https://www.mtsmarkets.com

BIBLIOGRAPHY BIBLIOGRAPHY

[144] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. https:

//bitcoin.org/bitcoin.pdf. Accessed: 2019-05-01.

[145] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. A New Approach to Practical Active-Secure Two-Party Computation. In

Advances in Cryptology, pages 681–700. Springer, 2012.

[146] Nxt.org. Decentralized Financial Ecosystem. http://nxt.org, 2013. Accessed:

2019-05-01.

[147] Claudio Orlandi. Is Multiparty Computation Any Good In Practice? In 2011

IEEE International Conference on Acoustics, Speech and Signal Processing, pages

5848–5851. IEEE, 2011.

[148] Pascal Paillier. Public-Key Cryptosystems based on Composite Degree Residuosity

Classes. In International Conference on the Theory and Applications of Crypto-

graphic Techniques, pages 223–238. Springer, 1999.

[149] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly

Practical Verifiable Computation. In 2013 IEEE Symposium on Security and Pri-

vacy, pages 238–252. IEEE, 2013.

[150] PayPal. PayPal. https://www.paypal.com/us/webapps/mpp/home. Accessed:

2019-05-01.

[151] Torben Pryds Pedersen. Non-Interactive and Information-Theoretic Secure Ver-

ifiable Secret Sharing. In International Cryptology Conference, pages 129–140.

Springer, 1991.

[152] Colin Percival. Stronger Key Derivation via Sequential Memory-Hard Functions,

2009. https://www.tarsnap.com/scrypt/scrypt.pdf. Accessed: 2019-05-01.

[153] Craig Pirrong. The Economics of Clearing in Derivatives Markets: Netting, Asym-

metric Information, and the Sharing of Default Risks through a Central Counter-

party. Asymmetric Information, and the Sharing of Default Risks Through a Central

Counterparty (January 8, 2009), 2009.

[154] PotCoin. PotCoin. https://github.com/potcoin/potcoin, 2014. Accessed: 2019-

05-01.

[155] Michael O Rabin. Randomized Byzantine Generals. In 24th Symposium on Foun-

dations of Computer Science, pages 403–409. IEEE, 1983.

131

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://nxt.org
https://www.paypal.com/us/webapps/mpp/home
https://www.tarsnap.com/scrypt/scrypt.pdf
https://github.com/potcoin/potcoin

BIBLIOGRAPHY BIBLIOGRAPHY

[156] Tal Rabin and Michael Ben-Or. Verifiable Secret Sharing and Multiparty Protocols

with Honest Majority. In the twenty-first ACM symposium on Theory of Computing,

pages 73–85. ACM, 1989.

[157] Ripple Labs. Executive Summary for Financial Institutions. https://ripple.

com/solutions/executive-summary-for-financial-institutions/. Accessed:

2019-05-01.

[158] Ripple Labs . Gateway Guide. https://ripple.com/build/gateway-guide/. Ac-

cessed: 2019-05-01.

[159] Ioanid Roşu. A Dynamic Model of the Limit Order Book. The Review of Financial

Studies, 22(11):4601–4641, 2009.

[160] Nicolas van Saberhagen. CryptoNote v 1.0. https://cryptonote.org/

whitepaper_v1.pdf, 2012. Accessed: 2019-05-01.

[161] Amit Sahai and Brent Waters. Fuzzy Identity-based Encryption. In International

Conference on the Theory and Applications of Cryptographic Techniques, pages 457–

473. Springer, 2005.

[162] Kazue Sako. An Auction Protocol which Hides Bids of Losers. In International

Workshop on Public Key Cryptography, pages 422–432. Springer, 2000.

[163] Tomas Sander and Amnon Ta-Shma. Auditable, Anonymous Electronic Cash. In

International Cryptology Conference, pages 555–572. Springer, 1999.

[164] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. ZeroCash: Decentralized Anonymous Payments

from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages 459–474.

IEEE, 2014.

[165] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. Journal of

cryptology, 4(3):161–174, 1991.

[166] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs. https://github.com/

scipr-lab/libsnark. Accessed: 2019-05-01.

[167] Yonatan Sompolinsky and Aviv Zohar. Accelerating Bitcoin’s Transaction Process-

ing. Fast Money Grows on Trees, Not Chains. IACR Cryptology ePrint Archive,

2013(881), 2013.

[168] SPDZ-2. SPDZ-2. https://github.com/bristolcrypto/SPDZ-2. Accessed: 2019-

05-01.

132

https://ripple.com/solutions/executive-summary-for-financial-institutions/
https://ripple.com/solutions/executive-summary-for-financial-institutions/
https://ripple.com/build/gateway-guide/
https://cryptonote.org/whitepaper_v1.pdf
https://cryptonote.org/whitepaper_v1.pdf
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://github.com/bristolcrypto/SPDZ-2

BIBLIOGRAPHY BIBLIOGRAPHY

[169] Daniel F Spulber. Market Microstructure and Intermediation. Journal of Economic

Perspectives, 10(3):135–152, 1996.

[170] SWIFT. Discover SWIFT. https://www.swift.com/about-us/discover-swift.

Accessed: 2019-05-01.

[171] Nick Szabo. Bit gold. http://unenumerated.blogspot.it/2005/12/bit-gold.

html, 2005. Accessed: 2019-05-01.

[172] The Tor Project. Tor. https://www.torproject.org/download/. Accessed: 2019-

05-01.

[173] TheClearingHouse. CHIPS. https://www.theclearinghouse.org/

payment-systems/chips. Accessed: 2019-05-01.

[174] TheVerge. Data glitch sets tech company stock prices at USD 123.47. https://www.

theverge.com/2017/7/3/15917950/nasdaq-nyse-stock-market-data-error.

Accessed: 2019-05-01.

[175] ThomsonReuters. Thomson Reuters Tick History. http://

financial-risk-solutions.thomsonreuters.info/TickHistory. Accessed:

2019-05-01.

[176] US CFTC. Mission & Responsibilities, 2016. http://www.cftc.gov/About/

MissionResponsibilities/index.htm. Accessed: 2019-05-01.

[177] U.S. Securities and Exchange Commission. Concept Release on Equity Market

Structure, 2010. https://www.sec.gov/rules/concept/2010/34-61358.pdf. Ac-

cessed: 2019-05-01.

[178] Visa. VISA. https://usa.visa.com. Accessed: 2019-05-01.

[179] Marko Vukolić. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT

Replication. In International Workshop on Open Problems in Network Security,

pages 112–125. Springer, 2015.

[180] Michael Walfish and Andrew J Blumberg. Verifying Computations without ReEx-

ecuting Them. Communications of the ACM, 58(2):74–84, 2015.

[181] Wikipedia. List of Futures Exchanges. https://en.wikipedia.org/wiki/List_

of_futures_exchanges. Accessed: 2019-05-01.

[182] Andrew Chi-Chih Yao. Protocols for Secure Computations. In 23rd Symposium on

Foundations of Computer Science, volume 82, pages 160–164, 1982.

133

https://www.swift.com/about-us/discover-swift
http://unenumerated.blogspot.it/2005/12/bit-gold.html
http://unenumerated.blogspot.it/2005/12/bit-gold.html
https://www.torproject.org/download/
https://www.theclearinghouse.org/payment-systems/chips
https://www.theclearinghouse.org/payment-systems/chips
https://www.theverge.com/2017/7/3/15917950/nasdaq-nyse-stock-market-data-error
https://www.theverge.com/2017/7/3/15917950/nasdaq-nyse-stock-market-data-error
http://financial-risk-solutions.thomsonreuters.info/TickHistory
http://financial-risk-solutions.thomsonreuters.info/TickHistory
http://www.cftc.gov/About/MissionResponsibilities/index.htm
http://www.cftc.gov/About/MissionResponsibilities/index.htm
https://www.sec.gov/rules/concept/2010/34-61358.pdf
https://usa.visa.com
https://en.wikipedia.org/wiki/List_of_futures_exchanges
https://en.wikipedia.org/wiki/List_of_futures_exchanges

BIBLIOGRAPHY BIBLIOGRAPHY

[183] ZCash. Parameter Generation. https://z.cash/technology/paramgen. Accessed:

2019-05-01.

[184] ZCash. The Design of the Ceremony. https://z.cash/blog/

the-design-of-the-ceremony/. Accessed: 2019-05-01.

[185] ZCash. ZCash. https://z.cash/. Accessed: 2019-05-01.

[186] Ennan Zhai, David Isaac Wolinsky, Ruichuan Chen, Ewa Syta, Chao Teng, and

Bryan Ford. AnonRep: Towards Tracking-Resistant Anonymous Reputation. In

13th USENIX Symposium on Networked Systems Design & Implementation, pages

583–596, 2016.

134

https://z.cash/technology/paramgen
https://z.cash/blog/the-design-of-the-ceremony/
https://z.cash/blog/the-design-of-the-ceremony/
https://z.cash/

	Introduction
	Motivation and objectives
	Understanding the Security Challenges and Solutions for Distributed Financial Exchanges
	Cryptographic Implementations of Secure, Distributed Financial Exchanges

	Research Contribution
	Structure of the Thesis

	Payment Transaction Networks
	A Primer on Payment Transaction Networks
	Traditional Digital Payment Transaction Networks
	Crypto-based Payment Transaction Networks

	Security Challenges and Solutions for Payment Transaction Networks
	Integrity and Availability
	Confidentiality and Anonymity

	Beyond Payment Transaction Networks
	Summary

	Security Challenges and Design Principles for Distributed Financial Exchanges
	An Introduction to Futures Markets
	Informal Security Requirements

	Security Challenges and Design Principles
	Protect against Discrimination
	Ensure Responsible behavior
	Manage Non-Monotonic (Honest) Evolution
	Account for a Large Number of Parties
	Guarantee Proportional Burden
	Ensure Drop-Out Tolerance

	Summary

	FuturesMEX: A Secure, Distributed Futures Market Exchange
	Formal Futures Market Definition
	The Ideal Reactive Functionality
	Assumptions and Crypto Building Blocks Overview
	Solution Overview
	FuturesMEX Crypto Building Blocks
	Futures Market Relations

	Protocol Construction
	Security Analysis
	Proof sketch
	Security Proof

	Protocol Optimization
	Optimized Building Blocks

	Beyond Security-With-Abort
	Implementation
	Evaluation

	Related Work
	Summary

	Dark Financial Intermediation with Witness Key Agreement
	Possible Solutions for Dark Financial Intermediation
	Dark Financial Intermediation with Witness Key Agreement
	Limitations of our WKA construction

	Recap of Technical Background
	Summary of NIZK, SoK, AKE, WE and MPC
	Formal Definitions for NILP and QAP

	Witness Key Agreement
	Witness Key Agreement Definition
	Split Designated-Verifier Non-Interactive Linear Proof
	Construction of WKA
	Security Analysis

	Witness Key Agreement for Quadratic Arithmetic Program
	Instantiation
	Performance Evaluation
	Theoretical Performance Evaluation
	Practical Performance Evaluation

	Summary

	Conclusion
	Research Contribution
	Future Work

	Bibliography

