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ABSTRACT 67 
 68 
Association studies have linked microbiome alterations with many human diseases, but not always 69 
reported consistent results, which necessitates cross-study comparisons. Here, a meta-analysis of 70 
eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer 71 
(CRC, N = 768), which was controlled for several confounders, identified a core set of 29 species 72 
significantly enriched in CRC metagenomes (FDR < 1E-5). CRC signatures derived from single 73 
studies maintained accuracy in other studies. By training on multiple studies we improved detection 74 
accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes revealed 75 
enriched protein and mucin catabolism genes and depleted carbohydrate degradation genes. 76 
Moreover we inferred elevated production of secondary bile acids from CRC metagenomes 77 
suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. 78 
Through extensive validations, this meta-analysis firmly establishes globally generalizable, predictive 79 
taxonomic and functional microbiome CRC signatures as a basis for future diagnostics. 80 
 81 
 82 
INTRODUCTION 83 
 84 
Studying microbial communities colonizing the human body in a culture-independent manner has been 85 
enabled by metagenomic sequencing technologies [1]. These have yielded glimpses into the complex 86 
yet incompletely understood interactions between the gut microbiome – the microbial ecosystem 87 
residing primarily in the large intestine – and its host [2]. To explore microbiome-host interactions in a 88 
disease context, metagenome-wide association studies (MWAS) have begun to map gut microbiome 89 
alterations in diabetes, inflammatory bowel disease, colorectal cancer and many other conditions [3-90 
12]. However, due to the many biological factors possibly influencing gut microbiome composition in 91 
addition to the condition studied, a current challenge for MWAS is confounding, which can cause false 92 
associations [13, 14]. This issue is further aggravated by a lack of standards in metagenomic data 93 
generation and processing, making it difficult to disentangle technical from biological effects [15]. 94 
 95 
Robustness of microbiome-disease associations can be assessed through comparisons across 96 
multiple metagenomic case-control studies, i.e. meta-analyses. These aim at identifying associations 97 
that are consistent across studies and thus less likely attributable to biological or technical 98 
confounders. Most informative are meta-analyses of populations from diverse geographic and cultural 99 
regions. Previous microbiome meta-analyses based on 16S rRNA gene amplicon data found stark 100 
technical differences between studies and the reported taxonomic disease associations were either of 101 
low effect size or not well resolved [16-18]. In contrast, shotgun metagenomics enables analyses with 102 
higher taxonomic resolution and of gene functions to improve statistical power for fine-mapping 103 
disease-associated strains and aid in the interpretation of host-microbial co-metabolism. Thus far 104 
however, meta-analyses of shotgun metagenomic data have either reported on features of general 105 
dysbiosis in comparisons across multiple diseases [19], or have left it unclear how well microbiome 106 
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signatures generalize across studies of the same disease when data are rigorously separated to avoid 107 
over-optimistic evaluations of their prediction accuracy [20]. 108 
 109 
Here, we present a meta-analysis of a total of eight studies of CRC including fecal metagenomic data 110 
from 386 cancer cases and 392 tumor-free controls. After consistent data reprocessing, we examined 111 
an initial set of five studies for CRC-associated changes in the gut microbiome. Firstly, we investigated 112 
potential confounders, followed by identifying (univariate) microbial species associations, and inferring 113 
species co-occurrence patterns in CRC. Secondly, we trained multivariable classification models for 114 
recognition of CRC status, from both taxonomic and functional microbiome profiles and tested how 115 
accurately these models generalized to data from studies not used for training. Moreover, we 116 
evaluated performance improvements achieved by pooling data across studies and the disease-117 
specificity of the resulting classification models. Thirdly, targeted investigation of virulence and toxicity 118 
genes as candidate functional biomarkers for CRC revealed several of these to be enriched in CRC 119 
metagenomes indicative of their prevalence and potential relevance in CRC patients. Three additional, 120 
more recent studies were finally used to independently validate these taxonomic and functional CRC 121 
signatures. 122 
 123 
RESULTS 124 
 125 
Consistent processing of published and new data for meta-analysis of CRC metagenomes 126 
In this meta-analysis we included four published studies which used fecal shotgun metagenomics to 127 
characterize CRC patients compared to healthy controls (referred to by the country codes FR, AT, CN, 128 
and US, corresponding to the respective main study population; see Table 1, Supplementary Table 129 
S1, and Methods for inclusion criteria). For an additional fifth study population, we generated new 130 
fecal metagenomic data from samples collected in Germany (herein abbreviated as DE); a subset of 131 
samples from this patient collective were published previously (Table 1, Methods, [8]). These five 132 
studies were conducted on three continents and differed in sampling procedures, sample storage, and 133 
DNA extraction protocols. Notably, the fecal specimen of the US study were freeze-dried and stored at 134 
-80°C for more than 25 years before DNA extraction and sequencing [10]. In all studies, however, 135 
samples were collected prior to treatment, thus excluding cancer therapy as a potential confounding 136 
effect [14, 21]. Most samples were even taken before bowel preparation for colonoscopy, with some 137 
exceptions in the DE, CN and US studies (Supplementary Table S2). To ensure consistency in 138 
bioinformatic analyses, all raw sequencing data were (re-)processed using mOTUs2 for taxonomic 139 
profiling [22] and MOCAT2 for functional profiling [23]. 140 
 141 
Univariate meta-analysis of species associated with CRC 142 
The first aim of the meta-analysis was to determine gut microbial species that are enriched or depleted 143 
in CRC metagenomes in a consistent manner across the five study populations. However, as these 144 
studies differed from one another in many biological and technical aspects, we first quantified the 145 
effect of study-associated heterogeneity on microbiome composition. We contrasted this with other 146 
potential confounders (‘patient age’, ‘BMI’, ‘sex’, ‘sampling after colonoscopy’, and ‘library size’; 147 
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additionally, ‘smoking status’, ‘type II diabetes comorbidity’, and ‘vegetarian diet’ where available 148 
Extended Data 1, Supplementary Table S3). This analysis revealed the factor ‘study’ to have a 149 
predominant impact on species composition, which is supported by a recent comparison of DNA 150 
extraction protocols, as these typically differ between studies [15]. An analysis of microbial alpha and 151 
beta diversity showed study heterogeneity to also have a larger effect on overall microbiome 152 
composition than CRC in our data (Extended Data 2). 153 
 154 
For the identification of microbial taxa significantly differing in abundance in CRC, parametric effect 155 
size measures are not well established, because microbiome data is characterized by non-Gaussian 156 
distributions with extreme dispersion; we thus used a generalisation of the fold change (Extended 157 
Data 3) and non-parametric significance testing. In this permutation test framework [24] (herein 158 
referred to as blocked univariate Wilcoxon tests) differential abundance in CRC can be assessed  159 
while accounting for ‘study’ as a nuisance effect that is treated as a blocking factor; additionally, 160 
motivated by our confounder analysis, we also blocked for ‘colonoscopy’ in all analyses (Methods, 161 
Extended Data 1). To rule out spurious associations due to the compositional nature of microbial 162 
relative abundance data, we additionally compared the results of this test with a method [25] 163 
employing log-ratio transformation (and found highly correlated results, Supplementary Fig. 1, 164 
Supplementary Table S4). 165 
 166 
At a meta-analysis false discovery rate (FDR) of 0.005, we identified 94 microbial species to be 167 
differentially abundant in the CRC microbiome, out of 849 species consistently detected across 168 
studies (Supplementary Table S4, Methods). Among these, we focused on a core set of the 29 most 169 
significant markers (FDR < 1E-5, Fig. 1a) for further analysis. The latter included members of several 170 
genera previously associated with CRC, such as Fusobacterium, Porphyromonas, Parvimonas, 171 
Peptostreptococcus, Gemella, Prevotella, and Solobacterium (Fig. 1b, [8-11]),  and 8 additional 172 
species without genomic reference sequences (meta-mOTUs, Methods, [22]) mostly from the 173 
Porphyromonas and Dialister genera and the Clostridiales order (see Extended Data 4 and 174 
Supplementary Table S4 for genus-level associations). Collectively, these 29 core CRC-associated 175 
species show a previously underappreciated diversity of 11 Clostridiales species to be enriched in 176 
CRC (Fig. 1b). In contrast to the majority of species that are more strongly affected by study 177 
heterogeneity than by CRC status, 26 out of the 29 CRC-associated species varied more by disease 178 
status (Fig. 1d). 179 
 180 
All of the core CRC-associated species were enriched in patients and were often undetectable in 181 
metagenomes from non-neoplastic controls. While previous studies were contradictory in the reported 182 
proportion of positive versus negative associations [8, 9, 17, 20], our meta-analysis results are more 183 
easily reconciled with a model in which – potentially many – gut microbes contribute to or benefit from 184 
tumorigenesis than with the opposing model in which a lack of protective microbes contributes to CRC 185 
development (Fig. 1b). Although these core taxonomic CRC associations were highly significant and 186 
consistent, individual studies showed marked discrepancies in the species identified as significant 187 
(Fig. 1a). Retrospective examination of the precision and sensitivity with which individual studies 188 
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detected this core of CRC-associated species showed relatively low sensitivity for the US study 189 
(consistent with the original report [10]) and low precision of the AT study due to associations that 190 
were not replicated in other studies (Supplementary Fig. 2). 191 
 192 
Analyzing patient metagenomes for co-occurrences among the core set of 29 species that are strongly 193 
enriched in the CRC microbiome revealed four species clusters with distinct taxonomic composition 194 
(Fig. 2a, Extended Data 5, Methods). Two of them showed strong taxonomic consistency: Cluster 1 195 
exclusively comprised Porphyromonas spp., and cluster 4 only contained members of the Clostridiales 196 
order. In contrast, the other two clusters were taxonomically more heterogeneous with cluster 3 197 
grouping together the species with highest prevalence in CRC cases (all among the ten most highly 198 
significant markers), consistent with a co-occurrence analysis of one of the data sets included here 199 
[11]. Cluster 2 contained species with intermediate prevalence. 200 
 201 
Investigating whether these four clusters were associated with different tumor characteristics, we 202 
found the Porphyromonas cluster 1 to be significantly enriched in rectal tumors (Fig. 2b), consistent 203 
with the presence of superoxide dismutase genes in Porphyromonas genomes possibly conferring 204 
tolerance to a more aerobic milieu in the rectum (Extended Data 5). The Clostridiales cluster 4 was 205 
significantly more prevalent in female CRC patients. All species clusters showed a slight tendency 206 
towards late-stage CRC (i.e. AJCC stages III and IV), but this was only significant for cluster 3. 207 
Associations with patient age and BMI were weaker and not significant (Extended Data 5). To rule out 208 
secondary effects due to differences in patient composition among studies, all of these tests were 209 
corrected for study effects (by blocking for ‘study’ and ‘colonoscopy’, see Methods). At the level of 210 
individual species, significant stage-specific enrichments could not be detected suggesting CRC-211 
associated microbiome changes to be less dynamic during cancer progression than previously 212 
postulated [26], although fecal material may be less suitable to address this question than tissue 213 
samples. 214 
 215 
Metagenomic CRC classification models 216 
To establish metagenomic signatures for CRC detection across studies in face of geographic and 217 
technical heterogeneity, we developed multivariable statistical modeling workflows with rigorous 218 
external validation to avoid prevailing issues of overfitting and over-optimistic reports of model 219 
accuracy [19]. As a precaution against over-optimistic evaluation, these workflows are independent of 220 
the above-described differential abundance analysis. Instead, LASSO (Least Absolute Shrinkage and 221 
Selection Operator) logistic regression classifiers were employed to select predictive microbial 222 
features and eliminated uninformative ones (Methods). 223 
 224 
In a first step, we used abundance profiles from five studies including the 849 most abundant microbial 225 
species and assessed how well classifiers trained in cross validation (CV) on one study generalize in 226 
evaluations on the other four studies (study-to-study transfer of classifiers) (Fig. 3a). Within-study 227 
cross-validation performance, as quantified by the Area Under the Receiver Operating Characteristics 228 
(AUROC) curve, ranged between 0.69 and 0.92 and was generally maintained in study-to-study 229 
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transfer (AUROC dropping by 0.07±0.12 on average) with two notable exceptions. First, in line with 230 
the univariate analysis of species associations, CRC detection accuracy on the US study was lower 231 
than for the other studies, both in cross-validation and in study-to-study transfer. This could potentially 232 
be explained by the US fecal specimen, unlike in the other studies, being freeze-archived for >25 233 
years before metagenomic sequencing [10]. Second, classifiers trained on the AT study did not 234 
generalize as well to the other studies, consistent with low study precision seen in univariate meta-235 
analysis (Supplementary Fig. 2). Given the microbial co-occurrence clusters described above, we 236 
wondered whether species-species interactions would provide additional information relevant for CRC 237 
recognition that is not contained in species abundance profiles. However, nonlinear classifiers able to 238 
exploit such interactions did not yield significantly better accuracies (Supplementary Fig. 3, see also 239 
[27]), suggesting that the linear model based on few biomarkers (on average 17 species account for 240 
more than 80% of the classifier weight, Extended Data 6) is near optimal for CRC prediction. 241 
 242 
We further assessed if including data from all but one study in model training improves prediction on 243 
the remaining held-out study (leave-one-study-out validation, LOSO). LOSO performance of species-244 
level models ranged between 0.71 and 0.91, and when disregarding the US study as an outlier was 245 
≥0.83 (Fig. 3b). This corresponds to a LOSO accuracy increase of 0.076±0.03 compared to study-to-246 
study transfer. These results suggest that one can expect a CRC detection accuracy ≥0.8 (AUROC) 247 
for any new CRC study using similarly generated metagenomic data. We moreover verified that 248 
metagenomic CRC classification models trained on species composition were not biased for clinical 249 
subgroups. With the exception of slightly more sensitive detection of late stage CRC (P = 0.03, mostly 250 
originating from the US study, Extended Data 7), we did not observe any classification bias by patient 251 
age, sex, BMI, or localization. Together this suggests that these metagenomic classifiers are unlikely 252 
to be strongly confounded by the clinical parameters recorded. 253 
 254 
Several previous studies comparing microbiome changes across multiple diseases reported primarily 255 
general dysbiotic alterations and highlighted the need to examine the disease specificity of 256 
microbiome signatures [17, 19]. Therefore, we assessed false positive (FP) predictions of our 257 
metagenomic CRC classifiers on fecal metagenomes of type 2 diabetes [4, 5], Parkinson’s disease 258 
[12], ulcerative colitis and Crohn’s disease [6, 7] patients, reasoning that classifiers relying on 259 
biomarkers for general dysbiosis would yield an excess of FPs on these cohorts. However, our LOSO 260 
classification models calibrated to have a false-positive rate (FPR) of 0.1 on CRC datasets in fact 261 
maintained similarly low FPRs on other disease datasets ranging from 0.09 to 0.13 (Fig. 3c). 262 
Interestingly, disease specificity of LOSO models was significantly improved over that observed for 263 
classifiers trained on a single study, indicating that inclusion of multiple studies in the training set of a 264 
classifier can substantially improve its specificity for a given disease. 265 
 266 
 267 
Functional metagenomic signatures for CRC 268 
As shotgun metagenomics data, in contrast to 16S rRNA gene amplicon data, allow for a direct 269 
analysis of the functional potential of the gut microbiome, we examined how predictive metabolic 270 
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pathways and orthologous gene families differing in abundance between CRC patients and controls 271 
would be of CRC status. When applying the same classification workflow as above to eggNOG 272 
orthologous gene family abundances [28], CRC detection accuracy was very similar to that observed 273 
for taxonomic models (Fig. 3de). AUROC values ranged from 0.70 to 0.81 for study-to-study transfer 274 
(per-study averages, Fig. 3e) and from 0.78 to 0.89 in LOSO validation with a pattern of generalization 275 
across studies resembling that for taxonomic classifiers. The accuracy of functional signatures did not 276 
strongly depend on eggNOG as an annotation source, but was similar when based on other 277 
comprehensive functional databases, such as KEGG [29] (Extended Data 8). When using individual 278 
gene abundances from metagenomic gene catalogues as a classifier input [30], we observed higher 279 
within-study cross-validation AUROC values of ≥0.96 in all studies, but lower generalization to other 280 
studies (AUROC between 0.60 and 0.79) (Extended Data 8). 281 
 282 
To explore changes in metabolic capacity of gut microbiomes from CRC patients more broadly, we 283 
quantified gut metabolic modules (defined in [31]) and subjected these to the same differential 284 
abundance analysis developed for microbial species. Gut metabolic modules with significantly higher 285 
abundance (FDR < 0.01, Wilcoxon test blocked for study and colonoscopy) in CRC metagenomes 286 
predominantly belonged to pathways for the degradation of amino acids, mucins (glycoproteins) and 287 
organic acids. This clear trend was accompanied by a depletion of genes from carbohydrate 288 
degradation modules (Fig. 4ab). Differences in all four high-level categories were highly significant (P 289 
< 1E-6 in all cases, blocked Wilcoxon tests) and consistent across studies (Fig. 4b). Overall these 290 
results establish a clear shift from dietary carbohydrate utilization in a healthy gut microbiome to amino 291 
acid degradation in CRC consistent with an earlier report based on a subset of the data [8]. 292 
Correlation analysis suggests that increased capacity for amino acid degradation is mostly contributed 293 
by CRC-associated Clostridiales (cf. cluster 4 in Fig. 2, Supplementary Fig. 4). About one half of 294 
these metagenomic pathway enrichments are also in agreement with independent metabolomics data 295 
suggesting increased availability of amino acids in epithelial cells or feces of CRC patients 296 
(Supplementary Table S5, [32-36]). While the observed pathway enrichments could potentially result 297 
from many factors, including unmeasured ones [13], they are consistent with established dietary risk 298 
factors for CRC, which include red and processed meat consumption [37] and low fiber intake [38]. 299 
 300 
The large metagenomic data set analyzed here allowed us to quantify the prevalence of gut microbial 301 
virulence and toxicity mechanisms thought to play a role in colorectal carcinogenesis. Prominent 302 
examples include the Fusobacterium nucleatum adhesion protein A (encoded by the fadA gene), the 303 
Bacteroides fragilis enterotoxin (bft gene) and colibactin produced by some Escherichia coli strains 304 
(pks genomic island) [39, 40] . Moreover, intestinal Clostridium spp. are known to contribute to the 305 
conversion of primary to secondary bile acids using several metabolic pathways including 7α-306 
dehydroxylation, encoded in the bai operon [41]. The products of this 7α-dehydroxylation pathway, 307 
deoxycholate and lithocholate, are known hepatotoxins associated with liver cancer [42] and 308 
hypothesized to also promote CRC [43]. Although intensely studied at a mechanistic level, these 309 
factors are not (well) represented in general databases that can be used for metagenome annotation 310 
(Supplementary Fig. 5). Thus, we built a targeted metagenome annotation workflow based on 311 
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Hidden Markov Models to identify and quantify virulence factors and toxicity pathways of interest in 312 
CRC. Additionally, we used co-abundance clustering to infer operon completeness for factors encoded 313 
by multiple genes (Methods, Extended Data 9, Supplementary Fig. 5). While fadA, bft, the pks island 314 
and the bai operon were clearly detectable in deeply sequenced fecal metagenomes, they varied 315 
broadly with respect to abundance, significance and cross-study consistency of enrichment (Fig. 4c): 316 
fadA and pks were significantly enriched in CRC metagenomes (P = 5.3E-10 and 4.1E-4 respectively), 317 
whereas no significant abundance difference could be detected for bft in fecal metagenomes, despite 318 
reports on its enrichment in the mucosa of CRC patients [44], its carcinogenic effect in mouse models 319 
[45], and synergistic action with pks [46]. Our quantification of the bai operon showed a highly 320 
significant enrichment in CRC metagenomes (P = 1.6E-9) observed across all five studies (Fig. 4d) at 321 
an average abundance that exceeded fadA and pks copy numbers (Fig. 4c). Metagenome analysis 322 
indicated that at least four Clostridiales species (including the well characterized C. scindens and C. 323 
hylemonae [47, 48]) have a (near) complete 7α-dehydroxylation pathway contributing to the observed 324 
enrichment of bai operon copies (Extended Data 9). To validate this finding and further explore its 325 
value towards diagnostic application, we developed a targeted quantification assay for the baiF gene 326 
based on quantitative PCR (qPCR, see Methods). Quantification of baiF by qPCR using genomic DNA 327 
from 47 fecal samples of the DE study population was found to be similar to, yet more sensitive than 328 
by metagenomics (Fig. 4e). Gut microbial baiF copy numbers clearly distinguished CRC patients from 329 
controls (P = 0.001) at an AUROC of 0.77, which in this subset of samples is surpassed by only a 330 
single species marker for CRC (Extended Data 9). Although consistent with increased deoxycholate 331 
metabolite levels reported for serum and stool samples of CRC patients [49], this finding does not 332 
imply 7α-dehydroxylation pathway activity. We therefore quantified baiF expression using RNA 333 
extracts from the same set of fecal samples, and found also transcript levels to be elevated in CRC 334 
patients (Fig. 4f). The observed weak correlation of baiF expression with genomic abundance (Fig. 4f) 335 
might be explained by dynamic transcriptional regulation [47] and bai expression in feces might not 336 
accurately reflect the tumor microenvironment. Taken together, these data suggest gut microbial 337 
metabolic markers to be meaningful and highly predictive of CRC status. 338 
 339 
Validation of CRC signatures in independent study populations 340 
Even though CRC classification accuracy for both species and functions were evaluated on 341 
independent data, we nonetheless sought to confirm it using two additional study populations from 342 
Italy (IT1 and IT2, combined N = 61 CRC, N = 62 CTR, [27], see Methods, Table 1) and one from 343 
Japan (JP, N = 40 CRC, N = 40 CTR, see Methods, Table 1). The overlap of single species 344 
associations detected in the IT2 study and those from the meta-analysis was found to vary within the 345 
range seen for the other studies, whereas for IT1 and JP the overlap was slightly lower (cf. study 346 
precision in Supplementary Fig. 2, Extended Data 10). Nonetheless, the AUROC of LOSO 347 
classification models based on species ranged between 0.79 and 0.81 and that for the classifiers 348 
based on eggNOG from 0.71 to 0.92 (Fig. 5ab). We also validated CRC enrichment of fadA, pks and 349 
bai genes in these three study populations (Fig. 5c). Altogether these results highlight consistent 350 
alterations in the gut microbiome of CRC patients across eight study populations from seven countries 351 
in three continents. 352 
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 353 
DISCUSSION 354 
 355 
Through extensive and statistically rigorous validation, in which data from studies used for training is 356 
strictly separated from that for testing, our meta-analysis firmly establishes that gut microbial 357 
signatures are highly predictive of CRC (see also [27]). In particular metagenomic classifiers trained 358 
on species profiles from multiple studies maintained an AUROC of at least 0.8 in seven out of eight 359 
data sets and achieved an accuracy similar to the fecal occult blood test, a standard non-invasive 360 
clinical test for CRC (Supplementary Fig. 6, cf. [8]). These results thus suggest that polymicrobial 361 
CRC classifiers are globally applicable and can overcome technical and geographical study 362 
differences, which we found to generally impact observed microbiome composition more than the 363 
disease itself (Fig. 1c, Extended Data 1, 2). The generalization accuracy of classifiers across studies 364 
seen here is higher than that reported in 16S rRNA gene amplicon sequencing studies, which are 365 
characterized by even larger heterogeneity across studies [16, 18] (Supplementary Fig. 7).  366 
 367 
Previous microbiome meta-analyses suggested that the majority of gut microbial taxa differing in any 368 
given case-control study reflect general dysbiosis rather than disease-specific alterations illustrating 369 
the difficulty of establishing disease-specific microbiome signatures [17, 19]. Here, by combining data 370 
across studies for training (LOSO), we were able to develop disease-specific signatures that 371 
maintained false positive control on diabetes and IBD metagenomes at a very similar level as for CRC 372 
(Fig. 3c) despite these diseases having shared effects on the gut microbiome [17, 50] and an 373 
increased comorbidity risk [51]. 374 
 375 
Although for diagnostic purposes, unresolved causality between microbial and host processes during 376 
CRC development are not a central concern, elucidating the underlying mechanisms would greatly 377 
enhance our understanding of colorectal tumorigenesis. Towards this goal, we developed both broad 378 
and targeted annotation workflows for functional metagenome analysis. First, we found functional 379 
signatures based on the abundances of orthologous groups of microbial genes to yield accuracies as 380 
high as taxonomic signatures (Fig. 3), which raises the hope for future improvements in metagenome 381 
annotation to translate into microbiome signature refinements. Second, by investigating potentially 382 
carcinogenic bacterial virulence and toxicity mechanisms taking a targeted metagenome annotation 383 
approach, we confirmed highly significant enrichments of the colibactin-producing pks gene cluster 384 
and the Fusobacterium nucleatum adhesin FadA in CRC metagenomes (Fig. 4c). Our results support 385 
the clinical relevance of these factors adding to the experimental evidence for their carcinogenic 386 
potential [46, 52-54]. We further examined the bai operon, encoding enzymes that produce secondary 387 
bile acids via 7α-dehydroxylation, as an example of toxic host-microbial co-metabolism (see [27] for 388 
another intriguing example). While α-dehydroxylated bile acids are established liver carcinogens [42], 389 
their contribution to CRC is less clear [43]. Here, we have, for the first time, shown bai to be highly 390 
enriched in stool from CRC patients (Fig. 4cd) and confirmed this finding at both the genomic and the 391 
transcriptomic level using qPCR (Fig. 4ef). As bai enrichment (and expression) is likely a 392 
consequence of a diet rich in fat and meat [55], it is intriguing to explore whether bai could be used as 393 
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a surrogate microbiome marker for such difficult-to-measure dietary CRC risk factors. To further 394 
unravel the molecular underpinning of these dietary CRC risk factors, molecular pathological 395 
epidemiology studies that investigate the mucosal microbiome as part of the tumor microenvironment, 396 
hold great potential [56, 57]. However, they will require more comprehensive diet questionnaires, 397 
medical records, and molecular tumor characterizations than are available for the study populations 398 
analyzed here. In this context, carcinogens possibly contained in the virome also warrant further 399 
investigation [58, 59], but for this goal, metagenomic data needs to be generated with protocols 400 
optimized for virus enrichment [60]. 401 
 402 
Taken together, our results and those by Thomas, Manghi et al. [27], strongly support the promise of 403 
microbiome-based CRC diagnostics. Both taxonomic and metabolic gut microbial marker genes 404 
established in these meta-analyses could form the basis of future diagnostic assays that are 405 
sufficiently robust, sensitive, and cost-effective for clinical application. The targeted qPCR-based 406 
quantification of the baiF gene is a first step in this direction. Our metagenomic analysis of this and 407 
other virulence and toxicity markers bridge to existing mechanistic work in preclinical models and 408 
could enable future work aiming to precisely determine the contribution of gut microbiota to CRC 409 
development. 410 
 411 
 412 
Data and Code Availability 413 
The raw sequencing data for the samples in the DE study that had not been published before (see 414 
Methods), are made available in the European Nucleotide Archive (ENA) under the study identifier 415 
PRJEB27928. Metadata for these samples are available as Supplementary Table S6. 416 
For the other studies included here, the raw sequencing data can be found under the following ENA 417 
identifiers: PRJEB10878 for [11], PRJEB12449 for [10], ERP008729 for [9], and ERP005534 for [8]. 418 
The independent validation cohorts can be found in SRA under the identifier SRP136711 for [27] and 419 
in the DDBJ database under the ID DRA006684.  420 
Filtered taxonomic and functional profiles used as input for the statistical modeling pipeline are 421 
available in Supplementary Data 1. 422 
The code and all analysis results can be found under https://github.com/zellerlab/crc_meta. 423 
 424 
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 467 
Figure Captions 468 
 469 
Figure 1. Despite study differences, meta-analysis identifies a core set of gut microbes 470 
strongly associated with CRC. 471 
(a) Meta-analysis significance of gut microbial species derived from blocked Wilcoxon tests (n=574 472 
independent observations) is given by bar height (false discovery rate, FDR, of 0.05). (b) Underneath, 473 
species-level significance as computed by two-sided Wilcoxon test (FDR-corrected P-value) and 474 
generalized fold change (Methods) within individual studies are displayed as heatmaps in gray and 475 
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color, respectively (see color bars and Table 1 for details on studies included). Species are ordered by 476 
meta-analysis significance and direction of change. (c) For a core of highly significant species (meta-477 
analysis FDR 1E-5), association strength is quantified by the area under the Receiver Operating 478 
Characteristics curve (AUROC) across individual studies (color coded diamonds) and 95% confidence 479 
intervals are indicated by gray lines. Family-level taxonomic information is color-coded above species 480 
names (numbers in brackets are mOTU species identifiers, see Methods). (d) Variance explained by 481 
disease status (CRC vs controls) is plotted against variance explained by study effects for individual 482 
microbial species with dot size proportional to abundance (Methods); core microbial markers are 483 
highlighted in red. F. nucleatum – Fusobacterium nucleatum. 484 
 485 
Figure 2. Co-occurrence analysis of CRC-associated gut microbial species reveals four 486 
clusters preferentially linked to specific patient subgroups.  487 
(a) The heatmap shows for all CRC patients (n=285 independent samples) if the respective sample is 488 
positive for each of the core set of microbial marker species (see Methods for adjustment of positivity 489 
threshold). Samples are ordered according to the sum of positive markers and marker species are 490 
clustered based on Jaccard similarity of positive samples, resulting in four clusters (Methods). Barplots 491 
in (b), (c), and (d) show the fraction of CRC samples that are positive for marker species clusters 492 
(defined as the union of positive marker species) broken down by patient subgroups based on 493 
differences in tumor location, sex, or CRC stage, respectively. Statistically significant associations 494 
between CRC subgroups and marker species clusters were identified using the Cochran–Mantel–495 
Haenszel test blocked for study effects and are indicated above bars (P < 0.1). 496 
 497 
Figure 3. Both taxonomic and functional metagenomic classification models generalize across 498 
studies in particular when trained on data from multiple studies. 499 
CRC classification accuracy resulting from cross validation within each study (gray boxes along 500 
diagonal) and study-to-study model transfer (external validations off diagonal) as measured by 501 
AUROC for classifiers trained on (a) species and (d) eggNOG gene family abundance profiles. The 502 
last column depicts the average AUROC across external validations. Classification accuracy, as 503 
evaluated by AUROC on a held-out study, improves if taxonomic (b) or functional (e) data from all 504 
other studies are combined for training (leave-one-study-out, LOSO validation) relative to models 505 
trained on data from a single study (study-to-study transfer, average and standard deviation shown). 506 
Bar height for study-to-study transfer corresponds to the average of four classifiers (error bars indicate 507 
standard deviation, n=4). (c) Combining training data across studies substantially improves CRC 508 
specificity of the (LOSO) classification models relative to models trained on data from a single study 509 
(depicted by bar color, as in (c) and (d)) as assessed by the false positive rate (FPR) on fecal samples 510 
from patients with other conditions (see legend). Bar height for study-to-study transfer corresponds to 511 
the average FPR across classifiers (n=5) with error bars indicating the standard deviation of FPR 512 
values observed. 513 
  514 
Figure 4. Meta-analysis identifies consistent functional changes in CRC metagenomes. 515 
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(a) Meta-analysis significance of gut metabolic modules derived from blocked Wilcoxon tests (n=574 516 
independent samples) is indicated by bar height (top panel, FDR of 0.01). Underneath, the 517 
generalized fold change (Methods) for gut metabolic modules [31] within individual studies is displayed 518 
as heatmap (see color key below (b)). Metabolic modules are ordered by significance and direction of 519 
change. A higher-level classification of the modules is color-coded below the heatmap for the four 520 
most common categories (colors as in (b), white indicating other classes). (b) Normalized log 521 
abundances for these selected functional categories is compared between controls (CTR) and 522 
colorectal cancer cases (CRC). Abundances are summarized as geometric mean of all modules in the 523 
respective category and statistical significance determined using blocked Wilcoxon tests (n=574 524 
independent samples, see Methods). (c) Normalized log abundances for virulence factors and toxins 525 
compared between metagenomes of controls (CTR) and colorectal cancer cases (CRC) (significant 526 
differences P < 0.05 were determined by blocked Wilcoxon test, n=574 independent samples, see 527 
Methods for gene identification and quantification in metagenomes; fadA: gene encoding 528 
Fusobacterium nucleatum adhesion protein A, bft: gene encoding Bacteroides fragilis enterotoxin, pks: 529 
genomic island in Escherichia coli encoding enzymes for the production of genotoxic colibactin, and 530 
bai: bile acid inducible operon present in some Clostridiales species encoding bile acid converting 531 
enzymes). (d) Meta-analysis significance (uncorrected P-value) as determined by blocked Wilcoxon 532 
tests (n=574 independent samples) and generalized fold change within individual studies are 533 
displayed as bars and heatmap, respectively, for the genes contained in the bai operon. Due to high 534 
sequence similarity to baiF, baiK was not independently detectable with our approach. (e) 535 
Metagenomic quantification of baiF (metag. ab. – normalized relative abundance) is plotted against 536 
qPCR quantification in genomic DNA (gDNA) extracted from a subset of DE samples (n=47), with 537 
Pearson correlation (r) indicated (see Methods). (f) Expression of baiF determined via qPCR on 538 
reverse-transcribed RNA from the same samples in contrast to genomic DNA (as in e). The boxplots 539 
on the side of (e), (f) show the difference between cancer (CRC) and control (CTR) samples in the 540 
respective qPCR quantification (P-values on top were computed using a one-sided Wilcoxon test). All 541 
boxplots show interquartile ranges (IQR) as boxes with the median as a black horizontal line and 542 
whiskers extending up to the most extreme points within 1.5-fold IQR. 543 
 544 
Figure 5. Meta-analysis results are validated in three independent study populations 545 
CRC classification accuracy for independent datasets, two from Italy and one from Japan (see 546 
Supplementary Table S2), is indicated by bar height for single study (white) and leave-one-study-out 547 
(grey) models using either (a) species or (b) eggNOG gene family abundance profiles (cf. Fig. 3). Bar 548 
height for single study models corresponds to the average of five classifiers (error bars indicate 549 
standard deviation, n=5). (c) Normalized log abundances for virulence factors and toxins (cf. Figure 550 
4c) compared between controls (CTR) and colorectal cancer cases (CRC). P-values were determined 551 
by blocked, one-sided Wilcoxon tests (n=193 independent samples). Boxes represent interquartile 552 
ranges (IQR) with the median as a black horizontal line and whiskers extending up to the most 553 
extreme points within 1.5-fold IQR. 554 
 555 
 556 
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Table 1. Fecal metagenomic studies of colorectal cancer included in this meta-analysis.  557 
See Methods for inclusion criteria and Supplementary Table S2 for extended meta-data. For a 558 
detailed description of patient recruitment and data generation for the DE study, see Methods. The 559 
data for 38 samples from the DE study had been published previously as part of an independent 560 
validation cohort in [8]. 561 

Country Code Reference No. of cases No. of controls 

FR Zeller et al., 2014 [8] 53 61 

AT Feng et al., 2015 [9] 46 63 

CN Yu et al., 2017 [11] 74 54 

US Vogtmann et al., 2016 [10] 52 52 

DE this study  60 60 

External validation cohorts 

IT1 [27] 29 24 

IT2 [27] 32 28 

JP Courtesy of T. Yamada et al. 40 40 

 562 

 563 

 564 
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Methods 695 
 696 
Study inclusion and data acquisition 697 
We used PubMed to search for studies that published fecal shotgun metagenomic data of human 698 
colorectal cancer patients and healthy controls. The search term, all hits, and the justification for 699 
exclusion or inclusion are available in Supplementary Table S1. Raw fastq files were downloaded for 700 
the four included studies from the European Nucleotide Archive, using the following ENA identifiers: 701 
PRJEB10878 for [11], PRJEB12449 for [10], ERP008729 for [9], and ERP005534 for [8]. 702 
 703 
DE study recruitment and sequencing 704 
The German (DE) study population data consist of 60 fecal CRC metagenomes, 38 of which were 705 
sequenced and published in [8] under ENA accession ERP005534. The fecal metagenomes from 706 
additional 22 CRC patients recruited for the same ColoCare study (DKFZ, Heidelberg, [61, 62]) were 707 
sequenced later as part of this work. All fecal samples were collected after colonoscopy. Sixty gender- 708 
and age-matched participants of the PRÄVENT study run by the same clinical investigators were 709 
included as healthy controls; as these were not subjected to colonoscopy, the presence of 710 
undiagnosed colorectal carcinomas cannot be completely ruled out but is expected to be unlikely due 711 
to low prevalence of preclinical CRC in the general population [63]. 712 
Written informed consent was obtained from all additional 22 CRC patients and 60 controls. The study 713 
protocol was approved by the institutional review board (EMBL Bioethics Internal Advisory Board) and 714 
the ethics committee of the Medical Faculty at the University of Heidelberg. The study is in agreement 715 
with the WMA Declaration of Helsinki and the Department of Health and Human Services Belmont 716 
Report. 717 
Genomic DNA was extracted from the fecal samples (preserved in RNALater) and libraries were 718 
prepared as previously described [8]. Whole-genome shotgun sequencing was performed by using 719 
Illumina HiSeq 2000 / 2500 / 4000 (Illumina, San Diego, USA) platforms at the Genomics Core 720 
Facility, European Molecular Biology Laboratory, Heidelberg.  721 
 722 
Independent validation cohorts 723 
During the revision of this manuscript, we included three independent study populations for external 724 
validation. Two of them were recruited in Italy (IT1 and IT2) with informed consent from all participants 725 
and ethical approval by the Ethics committee of Azienda Ospedaliera of Alessandria and that of the 726 
European Institute of Oncology of Milan. Shotgun fecal metagenomic data was generated as 727 
described in [27]. 728 
The third study population was recruited in Japan (JP) with informed consent and ethical approval of 729 
the institutional review boards of the National Cancer Center Japan - Research Institute and the Tokyo 730 
Institute of Technology. DNA was extracted from frozen fecal samples using a GNOME DNA Isolation 731 
Kit (MP Biomedicals, Santa Ana, CA) with an additional bead-beating step as previously described 732 
[64]. DNA quality was assessed with an Agilent 4200 TapeStation (Agilent Technologies, Santa Clara 733 
CA). After final precipitation, the DNA samples were resuspended in TE buffer and stored at -80°C 734 
before further analysis. Sequencing libraries were generated with the Nextera XT DNA Sample 735 



19 
 

Preparation Kit (Illumina, San Diego, CA). Library quality was confirmed with an Agilent 4200 736 
TapeStation. Whole-genome shotgun sequencing was carried out on the HiSeq2500 platform 737 
(Illumina). All samples were paired-end sequenced with a 150-bp read length to a targeted data set 738 
size of 5.0 Gb. 739 
 740 
Taxonomic profiling and data preprocessing 741 
The metagenomic samples were quality controlled using MOCAT2's -rtf procedure, which is based on 742 
the 'solexaqa' algorithm [23]. In particular, reads that map with at least 95% sequence identity and 743 
alignment length of at least 45 bp to the human genome hg19 were removed. In a second step, 744 
taxonomic profiles were generated with the mOTU profiler version 2.0.0 ([22, 65, 66] – see motu-745 
tool.org and GitHub version tag 2.0.0) using the following parameters: -l 75, -g 2 and -c. Briefly, this 746 
profiler is based on ten universal single-copy marker-gene families (COG0012, COG0016, COG0018, 747 
COG0172, COG0215, COG0495, COG0525, COG0533, COG0541 and COG0552) [66]. These 748 
marker-genes were extracted from >25,000 reference genomes and >3,000 metagenomic samples 749 
allowing to profile prokaryotic species with a sequenced reference genome (ref-mOTUs) and ones 750 
without (meta-mOTUs). The read count for a mOTU was calculated as median of the read count of the 751 
genes that belonged to that mOTU. 752 
mOTU profiles were first converted to relative abundances to account for library size. Then, profiles 753 
were filtered to focus on a set of species that are confidently detectable in multiple studies. 754 
Specifically, microbial species that did not exceed a maximum relative abundance of 1E-03 in at least 755 
3 of the studies were excluded from further analysis, together with the fraction of unmapped 756 
metagenomic reads. 757 
 758 
Functional metagenome profiling and data preprocessing 759 
High-quality reads (same quality filtering as for taxonomic profiling) were aligned against a combined 760 
database (IGChg38 hereafter) consisting of the hg38 release of the human reference genome and the 761 
integrated gene catalog (IGC) containing 9.9 million non-redundant microbial genes [30] using BWA 762 
mem [67] (Version: 0.7.15-r1140) with default parameters. The purpose of adding the human genome 763 
to the reference database was to filter out reads that mapped as well or better to some human 764 
sequence than to any bacterial gene. Alignments were computed separately for paired-end and single 765 
read libraries (single reads could result from read pairs where one read was filtered out in the quality 766 
filtering procedure described above). Alignments were then filtered to only retain those longer than 767 
50bp with >95% sequence identity. Then the highest scoring alignment(s) was/were kept for each 768 
read. As IGChg38 is a database of predominantly genes and not genomes, there will be a substantial 769 
proportion of read-pairs where one end maps within the gene while the other end does not – it either 770 
maps to an adjacent gene or remains unmapped due to intergenic regions not contained in the 771 
database. Therefore, we counted a whole read-pair aligning to a gene when (i) both ends from a read 772 
pair map to the same gene, (ii) only one end from a read-pair maps to the gene, or (iii) a read from the 773 
single read library maps to the gene. We then counted only the read-pairs that map uniquely to one 774 
gene in the IGC, thus excluding ambiguous read pairs mapping with similarly high scores to multiple 775 
genes in the database. For a given metagenomic sample, we further normalized the abundance of 776 
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each IGC gene by the length of that gene. We then estimated relative abundance of IGC genes by 777 
dividing gene abundances by the total abundance of all genes in IGC (excluding the human 778 
chromosomes). 779 
Because metagenomes from CRC patients were not included when the IGC was constructed, we 780 
analyzed how well CRC-associated species as identified in this meta-analysis were represented in the 781 
IGC. Using a phylogenetic marker gene (COG0533), which is also used by the species profiling 782 
workflow on which the meta-analysis is based, for 24 out of the 29 core CRC-associated species we 783 
found a match in the IGC with at least 90% nucleotide identity, indicating that a sequence from the 784 
same species (above 93.1% identity) or a slightly more distant relative is present in the IGC 785 
(Supplementary Fig. 8). 786 
The relative abundance of eggNOG orthologous groups [28] was estimated by summing relative 787 
abundances of genes annotated to belong to the same eggNOG orthologous group as of the most 788 
recent annotations provided by MOCAT2 [23]. To obtain KEGG orthologous groups (KO) and pathway 789 
abundances, we applied the same procedure, but using KEGG annotations for IGC provided by 790 
MOCAT2 [29]. 791 
 792 
Overview over statistical analyses 793 
For univariate association testing between the abundances of microbial taxa or gene functions we 794 
used nonparametric tests throughout; all of these were two-sided Wilcoxon tests except were 795 
otherwise noted. To account for potential confounding and heterogeneity between data sets we 796 
employed a stratified version of the Wilcoxon test [24] (see below for details). ANOVA was conducted 797 
on rank-transformed data. Significance of binary co-occurrence patterns was assessed using 798 
(stratified) Cochrane-Mantel-Haenszel tests. 799 
Multivariable analysis was done with strict separation between training and test data. This importantly 800 
also pertained to feature selection, which was either done via the LASSO [68] or by nested cross-801 
validation procedures to avoid overoptimistic performance assessment [69] (see below for details). All 802 
samples included in this meta-analysis came from distinct individuals to ensure that generalization 803 
across subjects – rather than across timepoints within a given subject – is assessed. 804 
 805 
Confounder analysis 806 
To quantify the effect of potential confounding factors relative to that of CRC on single microbial 807 
species, we used an ANOVA-type analysis. The total variance within the abundance of a given 808 
microbial species was compared to the variance explained by disease status and the variance 809 
explained by the confounding factor akin to a linear model including both CRC status and confounding 810 
factor as explanatory variables for species abundance. Variance calculations were performed on ranks 811 
in order to account for non-Gaussian distribution of microbiome abundance data. Potential 812 
confounders with continuous values were transformed into categorical data either as quartiles or for 813 
the case of body mass index (BMI) into lean/obese/overweight according to conventional cutoffs (lean: 814 
< 25, obese: 25 - 30, overweight: > 30). 815 
 816 
Univariate meta-analysis for the identification of CRC-associated gut microbial species 817 
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Significance of differential abundance was tested on a per-species basis using a blocked Wilcoxon 818 
test implemented in the R coin package [24]. Informed by the results of the preceding confounder 819 
analysis, we blocked for `study` and additionally `colonoscopy` in the CN study. Within this framework, 820 
significance is tested against a conditional null distribution derived from permutations of the observed 821 
data. Notably, permutations are performed within each block in order to control for variations in block 822 
size and composition. To adjust for multiple hypothesis testing, P-values were adjusted using the 823 
false-discovery rate (FDR) method [70].  824 
As nonparametric effect size measures we used the area under the ROC curve (AUROC) with 825 
permutation-based confidence intervals computed using the pROC package in R [71]. We further 826 
developed a generalization of the (logarithmic) fold change that is widely used for other types of read 827 
abundance data. This generalization is designed to have better resolution for sparse microbiome 828 
profiles (where 0 entries can render median-based fold change estimates uninformative for the large 829 
portion of species with a prevalence below 0.5). The generalized fold change (gFC) is computed as 830 
mean difference in a set of pre-defined quantiles of the logarithmic CTR and CRC distributions (see 831 
Extended Data 3 for further details; we used quantiles ranging from 0.1 to 0.9 in increments of 0.1). 832 
For the retrospective analysis of study precision and recall for detecting microbial species associations 833 
from the meta-analysis, the true set was defined as the species which were associated at a given FDR 834 
in the meta-analysis. Then, we checked how well this set of species would be recovered using the 835 
single-study significance as determined by the Wilcoxon test. Study precision corresponds to the 836 
proportion of meta-analysis significant species among those detected as significant in a single study. 837 
Similarly, recall (or sensitivity) corresponds to the proportion of species out of the true set of meta-838 
analysis significant species that were recovered in a given study.  839 
 840 
Species co-occurrence and cluster analysis in CRC metagenomes 841 
For the analysis of gut bacterial species co-occurring in CRC microbiomes, relative abundances of the 842 
core set of associated species (excluding the CRC-depleted Clostridiales meta-mOTU [1296]) were 843 
discretized into binary values to determine whether a CRC (metagenomic) sample is “positive” or 844 
“negative” for a given microbial marker. To normalize for differences in prevalence (and therefore 845 
specificity) of these markers we adjusted the threshold value, above which a sample is labeled 846 
“positive” based on the abundance in healthy controls. For each microbial species, the 95th percentile 847 
in healthy controls was used as threshold, which effectively results in adjusting the per-marker false 848 
positive rate to 0.05. Based on the binarized species-by-sample matrix, species were then clustered 849 
using the Jaccard dissimilarity as implemented in the vegan package in R [72]. Associations between 850 
species clusters and meta-variables were tested as 2-by-n (where n is the number of categories in the 851 
meta-variable tested) contingency tables using a Cochrane-Mantel-Haenszel test with study as 852 
blocking factor as implemented in the coin package [24]. 853 
  854 
Multivariable statistical modeling workflow and model evaluation 855 
As a main goal of our work is to assess the generalization accuracy of microbiome-based CRC 856 
classifiers across technical and geographic differences in patient populations, we extensively validated 857 
classification models across studies taking the following two approaches. 858 
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In study-to-study transfer validation, metagenomic classifiers were trained on a single study and their 859 
performance externally assessed on all other studies (off-diagonal cells in Fig. 3ac). Effectively we 860 
implemented a nested cross validation procedure on the training study to compute within-study 861 
accuracy (cells on the diagonal in Fig. 3ac) and tune the model hyperparameters. 862 
In leave-one-study-out (LOSO) validation, data from one study was set aside as an external validation 863 
set, while the data from the remaining 4 studies was pooled as a training set on which we 864 
implemented the same nested cross validation procedure as for study-to-study transfer (see [19] for a 865 
more detailed description of LOSO). 866 
Data preprocessing, model building, and model evaluation was performed using the SIAMCAT R 867 
package (https://bioconductor.org/packages/SIAMCAT, version 1.1.0). 868 
 869 
Preprocessing of taxonomic abundance profiles for statistical modeling 870 
Relative abundances were first filtered to remove markers with low overall abundance and no variance 871 
(an artifact for single-study data arising from the joint data filtering described above), log-transformed 872 
(after adding a pseudo-count of 1E-05 to avoid non-finite values resulting from log(0), [73]) and finally 873 
standardized as z-scores. Data were split into training and test set for 10 times repeated 10-fold 874 
stratified cross validation (balancing class proportions across folds). For each split, a L1-regularized 875 
(LASSO) logistic regression model [68] was trained on the training set, which was then used to predict 876 
the test set. The lambda parameter, i.e. regularization strength was selected for each model to 877 
maximize the area under the precision recall curve under the constraint that the model contained at 878 
least 5 non-zero coefficients. Models were then evaluated by calculating the area under the Receiver 879 
Operating Characteristics curve (AUROC) based on the posterior probability for the CRC class. 880 
In model transfer to a hold-out study, the holdout data were normalized for comparability in the same 881 
way as the training dataset by using the frozen normalization function in SIAMCAT, which retains the 882 
same features and re-uses the same normalization parameters (e.g. the mean of a feature for z-score 883 
standardization). Then, all 100 models derived from the cross validation on the training dataset (10 884 
times repeated 10-fold CV) were applied to the holdout dataset and predictions were averaged across 885 
all models. 886 
In the LOSO setting, data from the four training studies were jointly processed as a single dataset in 887 
the same way as described above using 10 times repeated 10-fold stratified cross validation. 888 
 889 
Preprocessing of functional abundance profiles 890 
Functional profiles, such as eggNOG gene family or KEGG module abundance profiles were 891 
preprocessed as described above for species profiles, but using 1E-06 as maximum abundance cutoff 892 
and 1E-09 as a pseudo-count during log transformation. Since these abundance tables contained 893 
several thousand input features we implemented an additional feature selection step, which was 894 
nested properly into the cross-validation procedures as described above. This nested approach is 895 
crucial to avoid over-optimistically biased performance estimates ([74], Chapter 7.10). Specifically, 896 
features were filtered inside each training fold (without using any information from the test fold) by 897 
selecting the 1600 features with highest single-feature AUROC values (for features depleted in CRC, 898 
1 - AUROC was used for feature selection). 899 
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 900 
Preprocessing of gene abundance profiles 901 
To ascertain the predictive power of a classifiers based on IGC gene abundances [30] we applied a 902 
series of filters to the abundance tables to reduce the number of genes that would be the input of the 903 
LASSO modelling. These filters where applied once on a per-study level and once in a leave-one-904 
study-out (LOSO) mode, where they were applied jointly to all studies in the training set, with the 905 
remaining one being held out for external validation. 906 
The following filters were applied in this order: 907 

1. All genes with 0 abundance in ≥15% of samples (regardless of CRC status) were discarded. 908 
2. The remaining data was discretized using the equal frequencies method implemented in the 909 

'discretize' function of the sideChannelAttack R package (version 1.0-6) as a preparation to 910 
the minimal-redundancy-maximal-relevance (mRMR) algorithm [75]. 911 

3. As a feature selection procedure, mRMR (code version from 20 April 2009 downloaded from 912 
http://home.penglab.com/proj/mRMR/ on 3 Dec 2016) was run on the gene abundance table 913 
to retain the 100 top genes as output. 914 

LASSO models were then built on log10-transformed abundances (pseudo-count of 10E-09, centered 915 
and scaled) of the sets of 100 top genes returned by mRMR. The whole process was repeated 10 916 
times in a 5-fold stratified cross-validation scheme to allow for an estimation of the confidence of the 917 
AUROCs of the resulting models. We used the LiblineaR package (version 2.10-8) to build the LASSO 918 
models in R and tested a sequence of 20 cost parameters (equivalent or the lambda parameter 919 
controlling regularization strength) evenly spaced from 0.0012 to 0.22. The cost parameter was 920 
selected to maximize the AUROC within the training set. 921 
 922 
External evaluation of disease-specificity of the metagenomic classifiers 923 
To assess how disease-specific the predictions of the CRC models are, we applied these to data from 924 
case-control studies investigating other human diseases. Fecal metagenomic data of patients with 925 
Parkinson’s disease [12], type 2 diabetes [4, 5], and inflammatory bowel disease [6, 7] were 926 
taxonomically profiled as described above. The parameters for quality control with MOCAT2 and for 927 
the mOTU profiler were the same as described above, except for the data from [6], where we used -l 928 
50 (to set the threshold for minimum alignment length to 50) as the read length is shorter (average 929 
read length 71) compared to the other more recently generated Illumina shotgun metagenomic data. 930 
Relative abundance data were treated exactly as another holdout dataset for each model, i.e. applying 931 
the frozen normalization prediction routines as described above. For each CRC model applied to the 932 
external datasets, a cutoff on its prediction output was adjusted to yield a false positive rate (FPR) of 933 
0.1 on the controls of its respective (CRC) training set. Subsequently its FPR on metagenomes from 934 
patients suffering from the above-mentioned (non-CRC) conditions was assessed to evaluate its 935 
disease specificity. The rationale behind this is that a metagenomic classifier recognizing general 936 
features of dysbiosis would be expected to predict CRC patients and those suffering from other 937 
conditions at a similar rate; such a classifier would thus in the above-described evaluation display a 938 
much higher FPR than on the controls of its training set. In contrast maintaining a low FPR in this 939 
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evaluation indicates that the classification model is based on CRC-specific features rather than 940 
hallmarks of general dysbiosis or nonspecific inflammation. 941 
 942 
Functional profiling of gut metabolic modules (GMMs) 943 
Gut metabolic modules were computed as originally proposed [31], using the KEGG KO profiles based 944 
on the IGC (see Functional metagenome profiling above) as input. Statistical analysis and 945 
generalized fold change calculations were performed analogously to species profiles (see above). Gut 946 
metabolic modules were summarized across functional groups (e.g. amino acid degradation) as 947 
geometric mean of all modules within the respective group. 948 
 949 
Targeted functional analysis of virulence and toxicity pathways of potential relevance in CRC 950 
To investigate toxins and virulence mechanisms that have previously been implicated with CRC [40], 951 
we constructed for each gene belonging to the respective virulence or toxicity pathway a hidden 952 
Markov model (HMM). Each HMM was built from a multiple sequence alignment generated by 953 
MUSCLE [76], containing the respective reference sequences and close homologs identified using 954 
PSI-Blast [77]. Multiple sequence alignments are available together with the code for this paper 955 
(https://github.com/zellerlab/crc_meta). Then, we screened the IGC metagenomic gene catalogue [30] 956 
with each HMM using the HMMER software (version 3.1b2) [78]. Genes with an E-value below 1E-10 957 
were filtered for uniqueness, since in some cases the HMMs would call different regions in the same 958 
gene. For single gene virulence factors (i.e. fadA and bft), potential IGC hits were aligned against the 959 
reference sequence using the Needleman-Wunsch algorithm in the EMBOSS package [79]. Hits were 960 
then filtered based on percentage of sequence identity (cutoff: 40%) and sequence similarly to the 961 
species relative abundance profiles based on maximum relative abundance (cutoff: 1E-07) in order to 962 
exclude genes with limited relevance. Statistical analysis was performed on the sum of all genes.  963 
For virulence pathways containing more than one gene, the IGC hits of each functional group within 964 
the pathway were aligned against the respective reference sequence and filtered for percentage of 965 
sequence identity and maximum abundance. Then, all hits were clustered based on the Pearson 966 
correlation of the log-abundances across all samples using the Ward algorithm as implemented in the 967 
hclust function in R. The gene clusters were filtered based on operon completeness (how many genes 968 
of the operon were present in the cluster) and average correlation within the cluster (Extended Data 969 
9). For statistical analysis, the genes in the selected gene clusters were summed up within each group 970 
or all together for the overall analysis. 971 
 972 
Quantitative PCR for baiF 973 
Real-time quantitative PCR to quantify the abundance and expression of baiF was performed on a 974 
subset of samples in the DE cohort (20 control and 24 colorectal cancer samples, see 975 
Supplementary Table S6). For these samples, DNA and RNA extraction was done with the Allprep 976 
PowerFecal DNA/RNA kit (Qiagen, Cat No: 80244) with additional RNAse and DNAse digestion steps, 977 
respectively, as described by the manufacturer. DNA and RNA concentrations were determined by 978 
Qubit Fluorometer (Invitrogen) and quality control of all RNA samples was done using an Agilent 2100 979 
Bioanalyzer in combination with RNA 6000 Nano and Pico LabChip kits.  980 
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First-strand cDNA was synthesized by SuperScript IV VILO Master Mix with ezDNAse enzyme and 981 
random hexamer primers (Invitrogen, catalogue number 11766500) as recommended by the 982 
manufacturer. Reaction were performed as described in the protocol with one minor change of 983 
temperature (incubation for the reverse transcription step at 55°C).  984 
To quantify baiF relative to the total bacterial RNA/DNA in a sample, qPCR was performed in 985 
triplicates for 16S rRNA and the baiF genes, using both cDNA and genomic DNA (gDNA) as template. 986 
We used the following primers for baiF: TTCAGYTTCTACACCTG (forward), 987 
GGTTRTCCATRCCGAACAGCG (reverse), and standard primers F515 and R806 for 16S [80].  RT-988 
PCR reactions were prepared with a final primer concentration of 0.5 ߤM, including 5 ng of genomic 989 
DNA or 10 ng of cDNA in 20 ߤl final reaction volume, and reactions were performed with SYBR Green 990 
qPCR mix on StepOne Real-Time PCR system (Thermo Fisler Scientific). Cycling conditions were as 991 
follows; initial denaturation of 95°C for 10 min, then 40 cycles of denaturing at 95°C for 15 s, annealing 992 
at 60°C for 60 s followed by melt curve analysis. 993 
Delta-Ct values were calculated as difference between baiF and 16S Ct values. Significance of the 994 
comparison between control and colorectal cancer samples was tested on the delta-Ct values using a 995 
one-sided Wilcoxon test as a confirmation of metagenomic enrichment. 996 
 997 
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