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Abstract

The analysis and understanding of physiological and brain signals is critical in order to
decode user’s behavioral/neural outcome measures in different domain scenarios. Personal
Health-Care agents have been proposed recently in order to monitor and acquire reliable data
from daily activities to enhance control participants’ wellbeing, and the quality of life of
multiple non-neurotypical participants in clinical lab-controlled studies.
The inclusion of new wearable devices with increased and more compact memory require-
ments, and the possibility to include long-size datasets on the cloud and network-based
applications agile the implementation of new improved computational health-care agents.
These new enhanced agents are able to provide services including real time health-care,
medical monitoring, and multiple biological outcome measures-based alarms for medical
doctor diagnosis.
In this dissertation we will focus on multiple Signal Processing (SP), Machine Learning (ML),
Saliency Relevance Maps (SRM) techniques and classifiers with the purpose to enhance the
Personal Health-care agents in a multimodal clinical environment. Therefore, we propose
the evaluation of current state-of-the-art methods to evaluate the incidence of successful
hypertension detection, categorical and emotion stimuli decoding using biosignals.
To evaluate the performance of ML, SP, and SRM techniques proposed in this study, we
divide this thesis document in two main implementations: 1) Four different initial pipelines
where we evaluate the SP, and ML methodologies included here for an enhanced a) Hyper-
tension detection based on Blood-Volume-Pulse signal (BVP) and Photoplethysmography
(PPG) wearable sensors, b) Heart-Rate (HR) and Inter-beat-interval (IBI) prediction using
light adaptive filtering for physical exercise/real environments, c) Object Category stimuli
decoding using EEG features and features subspace transformations, and d) Emotion recog-
nition using EEG features from recognized datasets.
And 2) A complete performance and robust SRM evaluation of a neural-based Emotion
Decoding/Recognition pipeline using EEG features from Autism Spectrum Disorder (ASD)
groups. This pipeline is presented as a novel assistive system for lab-controlled Face Emotion
Recognition (FER) intervention ASD subjects. In this pipeline we include a Deep ConvNet as
the Deep classifier to extract the correct neural information and decode emotions successfully.



Table of contents

List of figures viii

List of tables xvii

Nomenclature xx

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 ASD clinical trial - Motivation . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Thesis Relevant Publications . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Autism Spectrum Disorder, Intervention, and Treatment Background 9
2.1 Face Emotion Recognition (FER) - ASD . . . . . . . . . . . . . . . . . . . 12

2.1.1 Electrophysiological Face Processing in Autism Individuals . . . . 13
2.1.2 Neurocorrelates related to Emotion processing- Faces- Autism . . . 16

2.2 Intervention and Treatment for Emotion Recognition in Autism . . . . . . . 19
2.2.1 Intervention Methodologies - Autism . . . . . . . . . . . . . . . . 20

3 Multimodal Neural based Emotion Decoding for ASD and non-ASD individuals 28
3.1 EEG-based classifiers Emotion Recognition - non ASD . . . . . . . . . . . 29

3.1.1 Pre-emphasis techniques used for EEG-based pipelines non-ASD . 41
3.1.2 Artifact Removal Techniques . . . . . . . . . . . . . . . . . . . . . 42
3.1.3 Features used for EEG-based Emotion Recognition . . . . . . . . . 43
3.1.4 Classifiers used for EEG-based Emotion Recognition Pipelines . . . 44
3.1.5 Deep Classifiers used for EEG-based Emotion Recognition Pipelines 46
3.1.6 Cross-validation Modalities . . . . . . . . . . . . . . . . . . . . . 49



Table of contents vi

3.2 EEG-based classifiers Emotion Recognition - ASD . . . . . . . . . . . . . 49
3.2.1 Classifiers applied to ASD diagnosis . . . . . . . . . . . . . . . . . 50
3.2.2 Classifiers applied EEG-emotion recognition including ASD individ-

uals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Machine Learning preliminary Evaluation on DEAP, Object Categories, and
TROIKA datasets 53
4.1 DEAP EEG-based Emotion Recogniton . . . . . . . . . . . . . . . . . . . 53
4.2 EEG-based Object Category Decoding . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Grand Average Analysis . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 HR prediction using HR spectrum and Adaptive Filtering - TROIKA . . . . 64
4.3.1 RLS Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 BHW bandwidth adjustment . . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Spectral Peak Tracking . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.4 IBI and HR estimation Results . . . . . . . . . . . . . . . . . . . . 68
4.3.5 Computational Load . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 HR and IBI calculation for Empatica Device . . . . . . . . . . . . . . . . . 72
4.4.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Classification Essential Hypertension . . . . . . . . . . . . . . . . 74

4.5 HR and IBI calculation in industry One-LVL company . . . . . . . . . . . 75

5 ConvNet Pipeline for EEG-based Enhanced Emotion Decoding in Autism 80
5.1 Demographics and Behavioral variables . . . . . . . . . . . . . . . . . . . 81

5.1.1 Experimental Protocol and Data Collection . . . . . . . . . . . . . 81
5.2 ConvNet pipeline Description . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 EEG Filtering and Artifact Removal . . . . . . . . . . . . . . . . . 83
5.2.2 ZCA Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.3 Deep ConvNet training . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.4 Leave-One-Trial-Out per subject (LOTO) Cross-validation . . . . . 86

5.3 Performances Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.1 Confusion Matrices - Performances . . . . . . . . . . . . . . . . . 89
5.3.2 Table Performances . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Performance Interaction - FER (Human) v.s Deep ConvNet (Machine) 92

6 Correlation between Deep ConvNet parameters and ADOS-CS 95
6.1 ADOS-CS evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Table of contents vii

6.2 Interaction Between Deep ConvNet and FER Accuracies with ADOS-CS . 96
6.2.1 FER v.s Deep ConvNet . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 FER v.s ADOS-CS . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.3 Deep ConvNet v.s ADOS-CS . . . . . . . . . . . . . . . . . . . . 100
6.2.4 Including AQ and SCQ scores . . . . . . . . . . . . . . . . . . . . 103

6.3 ConvNet and Behavioral Models, are linked? . . . . . . . . . . . . . . . . 105

7 Saliency Maps Evaluation - EEG Features Relevant Measures 107
7.1 Saliency Methods - Results . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2 iNNvestigate package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Previous Saliency Methods . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Layer-Wise Relevance Propagation (LRP) . . . . . . . . . . . . . . 110
7.2.3 PatternNet and Pattern Attribution . . . . . . . . . . . . . . . . . . 112

7.3 Relevance-maps - Comparison TD and ASD . . . . . . . . . . . . . . . . . 115
7.3.1 LRP A,B flat presets results . . . . . . . . . . . . . . . . . . . . . 116
7.3.2 PatternNet and Pattern-Attribution results . . . . . . . . . . . . . . 128

7.4 Topo-Maps - ADOS-CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 RemOve And Retrain (ROAR) evaluation . . . . . . . . . . . . . . . . . . 140

7.5.1 ROAR comparison TD/ASD . . . . . . . . . . . . . . . . . . . . . 145

8 Conclusions 151

Appendix A Statistical Generalized Linear Model (GLM) for variable interaction175

Appendix B Some Saliency Methods 176



List of figures

2.1 Organigram/block diagram showing the scientific reference points for preva-
lence study of ASD population. Mutiple enviromental factors and descrip-
tive/genetic studies focus the study of behavioral, biological, and neurological
aspects of the ASD population on particular items such as modification of
SHA, and CNTN prefix genes, prenatal age, parents age, inter-pregnancy
interval, M2 Microglia, inhibition of chromatin pathways and so on. . . . . 11

3.1 Sparse 2D DE features across channels and frequency bands arrangement
for ConvNet on (Li, Zhang, and He, 2016) . . . . . . . . . . . . . . . . . . 49

4.1 EEG-based emotion decoding pipeline, thus showing per subject cross-
validation for a single-trial classification. . . . . . . . . . . . . . . . . . . . 54

4.2 2-channel selection histogram based on the highest Hilbert Transform differ-
ence between both channels for DEAP dataset. . . . . . . . . . . . . . . . 55

4.3 Features and channels variation, using DEAP and our methodology features
results. Figures 4.3a and 4.3b refers the arousal and valence results using the
Bhatacharyya features variation from 25 to 600. Figures 4.3c and 4.3d are
associated with the channel variations using our features. Figures 4.3e and
4.3f that are related to the same variation but for the DEAP features . . . . 57

4.4 Object decoding pipeline with the corresponding subcomponents. The train-
ing and test distribution pass through PCA and Bhattacharyya feature extrac-
tion and selection analysis, thus obtaining a concentric separation regions. . 59

4.5 Channels distribution per ROI in the scalp Figure, and Table showing the
channels distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



List of figures ix

4.6 ERP plots for Right-Posterior and Middle-Anterior in Figures 4.6a and 4.6b
responses show a significant region between [150− 320] ms, consistent
with memory processes across early neural responses (Friederici and Singer,
2015). The scalp plots (Figure 4.6c) show significant activations around
posterior and middle-posterior regions, especially for N2 ranges. The col-
orbar scale show the variation of neural activity between the maximum and
minimum of the average signal. . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 The proposed HEAL-T for HR estimation method applied per signal-window. 64
4.8 HR estimation results for subjects #9 from the TROIKA training set in Figure

4.8a, and #7 from the TROIKA test set in Figure 4.8b. . . . . . . . . . . . . 68
4.9 Bland-Altman plots for HR estimation using the HR reference in Figure 4.9a,

and using the ECG groundtruth for IBI estimation in Figure 4.9b, this latter
having more points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.10 Comparison between our approach, the LMS (Han and Kim, 2012), and
the M-FOCUSS (Cotter et al., 2005; Zhang, Pi, and Liu, 2014) baselines in
terms of execution time in the log Y-axis, and the signal window size from 2
up to 32s in the X-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Pipeline for Hypertension prediction using wearable Devices signals. This
pipeline conforming blocks are: 1) Active noise Cancellation based on LMS,
2) R-peak IIBI estimation using PPG decontamination, and 3) GSR and ST
signal features extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.12 IBI and IIBI signals for a long trial in the Essential Hypertension detection
in Figure 4.12a, and the performance for all the feature-level combina-
tios evaluated in this study such as GSR, IIBI, GSR+IIBI, GSR+IIBI+ST,
GSR+BVP+IIBI, and GSR+BVP+IIBI+ST . . . . . . . . . . . . . . . . . 75

4.13 Accelerometer and BVP spectrum changes from a window kth, to a window
kth +1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.14 Histogram for all the windows and all the 12 R-Pearson values associated
with HR-based outcome measures proposed by One-LVL. . . . . . . . . . . 78

4.15 Bland-Altman plots for IBI (Figure 4.15a) and HR (Figure 4.15c) prediction
v.s the IBI and HR deduced from the ECG ground-truth given by One-LVL
company. In Figures 4.15b and 4.15d we show the differences plot and how
separated are the prediction in comparison with the ground-truth. . . . . . . 79



List of figures x

5.1 Pipeline for emotion decoding composed 1) EEG Filtering and Pre-emphasis,
2) the artifact removal process composed of a subsequent usage of the Prep
pipeline including Koethe’s cleanraw and Artifact Subspace Removal (ASR)
for bad-channel removal, and the ADJUST EEGlab plugin for automatic
noisy ICs removal, 3) the ZCA whitening normalization process to increase
the class separability and the high-frequency neural activity excerpts per trial,
4) the Deep ConvNet composed of 3 conv-pool layers going from high to
low in terms for conv-pool dimensionality, and low to high in terms of the
number of filters per conv-pool layer, two local normalization layers, and a
fully connected layer with 1024 units. . . . . . . . . . . . . . . . . . . . . 83

5.2 Barplots showing the mean and the standard deviation for the TD group in
red, and ASD group in blue. The black line marks the significant differences
found between the accuracy groups denoted as FER or for Deep ConvNet
classifier modalities. The number of asterisks are the number of zeros after
the comma of the p-value comparing the groups using one-way ANOVA. . . 88

5.3 Confusion matrices for the sample # 1, and for both groups TD and ASD. The
matrices are calculated grouping each individual confusion matrix per subject.
The colormap is jet and the colorbar show the performance between 0 and 1
going from blue being the lowest, and darker red the highest. The differences
are critical for angry and fear emotions contributing to the accuracy dropping
for FER metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Confusion matrices for the sample # 2, and for both groups TD and ASD. The
matrices are calculated grouping each individual confusion matrix per subject.
The color-map is jet and the colorbar show the performance between 0 and 1
going from blue being the lowest, and darker red the highest. The differences
are critical for angry and fear emotions contributing to the accuracy dropping
for FER metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Confusion matrices for the sample # 3, and for both groups TD and ASD. The
matrices are calculated grouping each individual confusion matrix per subject.
The color-map is jet and the colorbar show the performance between 0 and 1
going from blue being the lowest, and darker red the highest. The differences
are critical for angry and fear emotions contributing to the accuracy dropping
for FER metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of figures xi

5.6 Intra-subject effect plots linking the FER and the Deep ConvNet average
accuracies computed per subject for all the samples. Sample #3 only has an
ASD group and we only report a single effect plot this group. The lines going
up are observed in both TD and ASD groups yielding a higher variance in
TD groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Interaction effect between FER and Deep ConvNet accuracies, and the
ADOS-CS spectrum explicit on the x-axis. The variation across ADOS-CS
scores show high and low Deep ConvNet accuracies indistinguishably, as
well as high and low FER accuracies without finding any negative or positive
correlation across the variables. . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 FER v.s Deep ConvNet accuracies linear regressions for sample #1 (Figure
6.2a), #2 , and #3 . Dot points represent the pair (FER x-axis, Deep ConvNet
y-axis), and the line is a robust linear regression calculated using fitlm from
Matlab package, and the model explained in Appendix A. . . . . . . . . . . 98

6.3 ADOS-CS scores v.s FER accuracies linear regressions for sample #1 (Figure
6.3a) , #2 (Figure 6.3b) , and #3 (Figure 6.3c) . Dot points represent the pair
(ADOS-CS x-axis, FER y-axis), and the line is a robust linear regression
calculated using fitlm from Matlab, and the model explained in Appendix A. 100

6.4 ADOS-CS scores v.s Deep ConvNet accuracies linear regressions for sample
#1 (Figure 6.4a) , #2 (Figure 6.4b) , and #3 (Figure 6.4c) . Dot points
represent the pair (ADOS-CS x-axis, Deep ConvNet y-axis), and the line is a
robust linear regression calculated using fitlm package from Matlab, and the
model explained in Appendix A. . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Linear regression between the FER accuracies v.s AQ total scores in Figure
6.5a, and between Deep ConvNet accuracies v.s AQ total scores in Figure
6.5b with all the data from Sample #2 TD and ASD data included. . . . . . 104

6.6 Linear regression between the FER accuracies v.s SCQ total scores in Figure
6.6a, and between Deep ConvNet accuracies v.s SCQ total scores in Figure
6.6b with all the data from Sample #3. . . . . . . . . . . . . . . . . . . . . 105

7.1 The relevance-map propagation entanglement produced without using an
adequate numerical balance including the adequate αβ preset. These results
are extracted from (Weitz et al., 2018) . . . . . . . . . . . . . . . . . . . . 112



List of figures xii

7.2 LRP A average class relevance-map for TD 7.2a, and ASD 7.2b, and the
differences between TD-ASD 7.2c. For the TD and ASD groups we use a
jet colormap due to the relevance normalization between [−1,1], and for the
TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 118

7.3 LRP A Happy relevance-map for TD 7.3a, and ASD 7.3b, and the differences
between TD-ASD 7.3c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 LRP A Sad relevance-map for TD 7.4a, and ASD 7.4b, and the differences
between TD-ASD 7.4c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 LRP A Angry relevance-map for TD 7.5a, and ASD 7.5b, and the differences
between TD-ASD 7.5c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 121

7.6 LRP A Fear relevance-map for TD 7.6a, and ASD 7.6b, and the differences
between TD-ASD 7.6c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 122

7.7 LRP B average class relevance-map for TD 7.7a, and ASD 7.7b, and the
differences between TD-ASD 7.7c. For the TD and ASD groups we use a
jet colormap due to the relevance normalization between [−1,1], and for the
TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 123

7.8 LRP B Happy relevance-map for TD 7.8a, and ASD 7.8b, and the differences
between TD-ASD 7.8c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 124



List of figures xiii

7.9 LRP B Sad relevance-map for TD 7.9a, and ASD 7.9b, and the differences
between TD-ASD 7.9c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 125

7.10 LRP B Angry relevance-map for TD 7.10a, and ASD 7.10b, and the differ-
ences between TD-ASD 7.10c. For the TD and ASD groups we use a jet
colormap due to the relevance normalization between [−1,1], and for the
TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 126

7.11 LRP B Fear relevance-map for TD 7.11a, and ASD 7.11b, and the differences
between TD-ASD 7.11c. For the TD and ASD groups we use a jet colormap
due to the relevance normalization between [−1,1], and for the TD-ASD
difference relevance-map we use the redblue colormap with 50 color scale
between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . . . . . . . 127

7.12 PatternNet average class relevance-map for TD 7.12a, and ASD 7.12b, and
the differences between TD-ASD 7.12c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 129

7.13 PatternNet Happy relevance-map for TD 7.13a, and ASD 7.13b, and the
differences between TD-ASD 7.13c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 130

7.14 PatternNet Sad relevance-map for TD 7.14a, and ASD 7.14b, and the dif-
ferences between TD-ASD 7.14c. For the TD and ASD groups we use a jet
colormap due to the relevance normalization between [−1,1], and for the
TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 131

7.15 PatternNet Angry relevance-map for TD 7.15a, and ASD 7.15b, and the
differences between TD-ASD 7.15c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 132



List of figures xiv

7.16 PatternNet Fear relevance-map for TD 7.16a, and ASD 7.16b, and the dif-
ferences between TD-ASD 7.16c. For the TD and ASD groups we use a jet
colormap due to the relevance normalization between [−1,1], and for the
TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 133

7.17 Pattern Attribution average class relevance-map for TD 7.17a, and ASD
7.17b, and the differences between TD-ASD 7.17c. For the TD and ASD
groups we use a jet colormap due to the relevance normalization between
[−1,1], and for the TD-ASD difference relevance-map we use the redblue
colormap with 50 color scale between a range of [−0.1,0.1]. . . . . . . . . 134

7.18 Pattern Attribution Happy relevance-map for TD 7.18a, and ASD 7.18b, and
the differences between TD-ASD 7.18c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 135

7.19 Pattern Attribution Sad relevance-map for TD 7.19a, and ASD 7.19b, and
the differences between TD-ASD 7.19c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 136

7.20 Pattern Attribution Angry relevance-map for TD 7.20a, and ASD 7.20b, and
the differences between TD-ASD 7.20c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 137

7.21 Pattern Attribution Fear relevance-map for TD 7.21a, and ASD 7.21b, and
the differences between TD-ASD 7.21c. For the TD and ASD groups we use
a jet colormap due to the relevance normalization between [−1,1], and for
the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1]. . . . . . . . . . . . . . . . . . . 138



List of figures xv

7.22 Relevance topo-maps across the ADOS-CS spectrum in four groups low-
severity 1-4, low-mid severity 5-6, mid-severity 7-8, and high-severity 9-10
for methods LRP A preset (Figure 7.22a), and LRP B preset (Figure 7.22b).
TD and ASD groups are analyzed here in the first two rows. Colorbars are
normalized between [0,1] for TD and ASD topo-maps using the jet colormap,
and the TD-ASD difference colorbar is normalized between [−0.02,0.02]
using the redblue colormap. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.23 Relevance topo-maps across the ADOS-CS spectrum in four groups low-
severity 1-4, low-mid severity 5-6, mid-severity 7-8, and high-severity 9-10
for methods PatternNet (Figure 7.23a), and Pattern Attribution (Figure 7.23b).
TD and ASD groups are analyzed here in the first two rows. Colorbars are
normalized between [0,1] for TD and ASD topo-maps using the jet colormap,
and the TD-ASD difference colorbar is normalized between [−0.02,0.02]
using the redblue colormap. . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.24 RemOve And Retrain(ROAR) methodology pipeline. The pipeline sue a
re-trained new input feature-set modulated by an averaged relevance-map
calculated after the LOTO cross-validation. Using a binary mask we removed
the features corresponding relevant channel and time point with the purpose
of calculate new metrics using the original EEG image× binary mask per
saliency method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.25 Examples of binary-maps for random 47×1 slices baseline, and saliency method-

based 47×1 slices baseline, and the saliency method-based relevance for the LRP-B

preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.26 LRP B preset barplots accuracies comparison between FER human accuracy,

Deep ConvNet baseline, random baseline, 47×1 random slices, LRP B
based slices for r = 0.5, and all the corresponding LRP B ROAR patterns
r = 0.2, r = 0.5, and r = 0.7 shown in the x-axis. The values comparing
bar accuracies with *** are significantly different p < 0.0001, and with **
p < 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.27 Accuracies comparison between the 47×1 random baseline slices, 47×1
slices weighting for the Smooth-Grad baseline and TD/ASD groups. . . . . 146

7.28 Accuracies comparison results between the 47×1 random baseline slices,
47×1 slices weighting for the Smooth-Grad baseline and TD/ASD groups.
Figures 7.28a and 7.28b, 7.28c and 7.28d, 7.28e and 7.28f, and 7.28g and
7.28h show the plots for ROAR performance evaluation for Smooth-Grad
Squared, PatternNet, PatternAttribution, and LRP B preset respectively. . . 147



List of figures xvi

7.29 ROAR removal-rate r variation is shown in both plots here having the plotted
lines in the upper part, and with arrows we are pointing the binary mask
variation depending on the r values on the x-axis. Figure 7.29a and 7.29b
shows the corresponding variation summary for the TD and ASD groups of
Sample #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.1 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor
and Smooth-Grad baseline methods evaluated on class Average. The methods
name are denoted in the columns and the groups TD, ASD, and TD-ASD are
denoted in the rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor
and Smooth-Grad baseline methods evaluated on class Happy. The methods
name are denoted in the columns and the groups TD, ASD, and TD-ASD are
denoted in the rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.3 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor
and Smooth-Grad baseline methods evaluated on class Sad. The methods
name are denoted in the columns and the groups TD, ASD, and TD-ASD are
denoted in the rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

B.4 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor
and Smooth-Grad baseline methods evaluated on class Angry. The methods
name are denoted in the columns and the groups TD, ASD, and TD-ASD are
denoted in the rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.5 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor and

Smooth-Grad baseline methods evaluated on class Fear. The methods name are

denoted in the columns and the groups TD, ASD, and TD-ASD are denoted in the

rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



List of tables

2.1 Information in (Berggren et al., 2018) showing different types of interven-
tions methodologies used for Autism researchers. We report here the based
on Face-based tools used in the intervention, the corresponding behavioral
outcome measures for FER tasks, and for Social Competence. ** Means an
evident difference between the means of the Pre and Post times. NS is non-
significant effect for the corresponding variables in the outcome measures
columns, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The most relevant and recent studies including non-ASD participants where
Computer Scientists and Engineers have evaluated EEG-based emotion recog-
nition. Long and short time-locked trials are included here. . . . . . . . . . 35

3.2 Recent and relevant studies focused on ASD diagnosis or Early ASD diagno-
sis using ML-based pipelines, and using neural outcome measures as inputs
feature-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Recent and relevant studies focused on lab-controlled ASD groups emotion or
behavioral/outcome measures recognition using neural features, specifically
EEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Valence results in a LOTO per subject modality, comparing DEAP (28
channels) PSD features and our pipeline (2-channels + 500 features),*DEAP
baseline p < 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Arousal results in a LOTO per subject modality, comparing DEAP (28
channels) PSD features incidence and our pipeline (2-channels + 500 fea-
tures),*DEAP baseline p < 0.05 . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Baseline classification results obtained after we replicate the process of
(Murphy et al., 2011), using a radial basis SVM R = 1

N in which N is the
number of training exemplars for each cross-validation modality. . . . . . . 63



List of tables xviii

4.4 Accuracy average results for LOSO and 5-Fold modalities specifying the
ROIs. Bold+italics values are p < 0.05 using t-test and inter-classifier com-
parison. We achieve high performance using features from [0− 500] ms
ranges. This suggests that semantic information is contained in a higher level
of entropy ranges such as [0−500] ms used in (Murphy et al., 2011). . . . . 63

4.5 Absolute error for each subject for our approach, LMS baseline (Han and
Kim, 2012) and the TROIKA framework (Zhang, Pi, and Liu, 2014) baselines.
The results report significances p < 0.01 in bold italics values. . . . . . . . 69

4.6 IBI-based HR estimation for our approach, the LMS in (Han and Kim, 2012),
and the TROIKA framework (Zhang, Pi, and Liu, 2014) base. The results
report significances p < 0.01 in bold italics values. . . . . . . . . . . . . . 70

4.7 Absolute error for each subject for our approach using the TROIKA test-set,
LMS in (Han and Kim, 2012), and the TROIKA framework (Zhang, Pi, and
Liu, 2014) baselines. The values significantly different for p < 0.01 are in
bold italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Average and standard deviation results for the R-Pearson across the 12
HR-based proposed outcome measures, plus the R value obtained from the
Bland-Altman plot denoted as R-IBI . . . . . . . . . . . . . . . . . . . . . 79

5.1 Demographics, ADOS-CS, and IQ for all the participants across all the
samples included in this study. . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Average and standard deviation of the overall FER task performances metrics
for the all the samples are shown in this table. The results are computed
averaging the Accuracy (Acc), Precision (Pre), Recall (Re), and F1 score
(F1) from all the confusion matrices constructed per subject. . . . . . . . . 92

5.3 Average and standard deviation of the overall Deep ConvNet performances
metrics for the all the samples are shown in this table. The results are
computed averaging the Accuracy (Acc), Precision (Pre), Recall (Re), and
F1 score (F1) from all the confusion matrices constructed per subject. . . . 92

6.1 ADOS-CS calculation extracted from (Gotham, Pickles, and Lord, 2009)
and sumarize the calibration algorithm for normalize the ADOS-raw score
using age, and language levels obtained from the ADOS-2 itself. The values
inside the table are the ADOS raw scores, the values listed on the column
one is the resulting ADOS-CS. For this table NS is No Spectrum or TD, and
AUT Autism participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of tables xix

6.2 Linear regression R-Pearson correlation value and the corresponding p-value
between the variables in row and columns for sample #1. A positive R value
represent a positive slope, and negative R value represent a negative slope in
the linear regression. These values show the statistical relationship between
human and machine accuracies. Only the highlighted values are significant
correlations. The partially highlighted values are near to be significant in the
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Linear regression R-Pearson correlation values and the corresponding p-value
between the variables in row and columns for sample #2. A positive R value
represent a positive slope, and negative R value represent a negative slope in
the linear regression. These values show the statistical relationship between
human and machine accuracies. Only the highlighted values are significant
correlations. The partially highlighted values are near to be significant in the
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Linear regression R-Pearson correlation value and the corresponding p-value
between the variables in row and columns for sample #3. A positive R value
represent a positive slope, and negative R value represent a negative slope in
the linear regression. These values show the statistical relationship between
human and machine accuracies. Only the highlighted values are significant
correlations. The partially highlighted values are near to be significant in the
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Estimated parameters for all the linear regressions in this Chapter comparing
correlations between Deep ConvNet, FER human accuracies, and the ADOS-
CS scores for sample #1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Estimated parameters for all the linear comparing correlations between Deep
ConvNet, FER human accuracies, and the ADOS-CS scores for sample #2. 103

6.7 Estimated parameters for all the linear comparing correlations between Deep
ConvNet, FER human accuracies, and the ADOS-CS scores for sample #3. 103



Nomenclature

ACC Anterior Cingular Cortex

ADI Autism Diagnostic Interview

ADOS-CSS Autism Diagnostic Observation Schedule - Calibrated Severity Score

ADOS Autism Diagnostic Observation Schedule

α α Rhythm

β β Rhythm

γ γ Rhythm

µ µ Rhythm

θ θ Rhythm

ANN Artificial Neural Networks

AQ Autism-Spectrum Quotient

ASD Autism Spectrum Disorder

BCI Brain Computer Interface

BVP Blood Volume Pulse

ConvNet Convolutional Neural Network

ECG Electro-Cardiography

EEG Electro-Encephalography

ERDS Emotion Recognition and Display Survey



Nomenclature xxi

ERP Event-Related Potentials

FER Face Emotion Recognition

FG Fusiform Gyrus

fMRI functional Magnetic Resonance Imaging

GLM Generalized Linear Model

GSR Galavanic Skin Response

ICA Independent Components Analysis

LPP Late Positive Potential

LRP Layer-Wise Relevance Propagation

LSTM Long Short-Term Memory

MEG Magneto-Encephalography

mPFC Medial Prefrontal Cortex

PCA Principal Components Analysis

QCNN Quaternion Convolutional Neural Network

QNN Quaternion Neural Network

QRNN Quaternion Recurrent Neural Network

RBM Restricted Boltzmann Machine

SCQ Social Communication Questionnaire

SRS Social Responsiveness Scale

SSO Social Skills Observation

SSRS Social Skills Rating System

STS Superior Temporal Sulcus

SVM Support Vector Machine



Chapter 1

Introduction

"As long as our brain is a mystery, the
universe, the reflection of the structure
of the brain will also be a mystery.."

Santiago Ramon y Cajal

The implementation of automatic classification-based pipelines on recent health-care
environments has become an important research field nowadays and the near future research
projects (Beam and Kohane, 2018; Iqbal et al., 2016). Multidisciplinary and Interdisciplinary
are more necessary to understand deeply the influence of biosignal based systems, the
reliability of neural data acquisition, and the statistical incidence of behavioral, biological,
and neural outcome measures important for other measure of clinical micro-states, and
diagnosis prediction (Park and Han, 2018).
Multimodality is considered an important feature in real clinical environments as well
as the synchronicity, artifact detection and removal, and waveform characterization and
signal morphological categorization (Athavale and Krishnan, 2017). For the purpose of this
dissertation we considered the studies without a clear (Stimulus Onset Asynchrony) SOA as
an "in-the-wild" study where the stimulus and the neural activity are not time-locked, and
therefore not statistically linked, and in the opposite site a SOA study where the stimulus and
the neural activity are locked in time and therefore the study is connecting more the stimulus
elicitation with the neural activity of the TD and ASD individuals.
Neuroscientists, psychologists, and computer scientists have made a serious effort on create
comfortable, adaptive, and wearable systems which are not only able to present signals, but
also to analyze, and predict future outcomes measures from neurological disorder patients,
and neurotypical controls. Clinicians suggest to not only improve the multimodality features
on health-case agents, but also to evaluate effects between central biosignals such as EEG,
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fMRI, and MEG, with peripheral such as ECG, BVP, GSR and all the subsequent correlates
(Lischke et al., 2017).
In this dissertation we will describe multiple EEG pipelines using broadly-known datasets
such as DEAP and TROIKA, and a lab-controlled time-locked clinical trial including Autism
Spectrum Disorder (ASD) participants in order to describe how signal processing (SP), and
machine learning (ML) methodologies, and novel results influence positively to no-SOA
and lab-controlled environments being this latter a treatment and intervention study on ASD
groups.

1.1 Motivation

Our main motivation with this project and dissertation is to describe and explain the quan-
tifiable incidences of robust and new state-of-the-art SP and ML techniques on clinical
lab-controlled and non-clinical no-SOA environments to predict emotion, categorical
labels, and other biological outcome measures.
We propose in the first part of the dissertation 1) to evaluate our current pipelines using
broadly evaluated datasets on neuro-typical participants for predicting stimul-based classes,
and for the second and main part of the dissertation 2) we evaluate a Deep classifier architec-
ture such as the Deep ConvNet over a lab-controlled clinical trial including ASD participants,
and complementing the face emotion recognition tasks (Bzdok and Meyer-Lindenberg, 2018).
With the pipelines proposed here we are not only evaluating the performance of multiple
SP and ML methods, but the statistical relationship between the pipelines learnt and
resulting parameters with the behavioral and neural outcome measures.
As a novel evaluation for ML systems on clinical environments. We are using a set of robust
and recent saliency methods to describe with the highest reliability the neural activity rele-
vance in lab-controlled clinical environments assuming the Deep ConvNet as a "black-box"
object (Zhang and Zhu, 2018). This technical consideration is important and critical for
understanding what clinical outcome measures and its corresponding correlates are more
relevant for the system to do correct encoding and subsequent emotion class decoding (Kin-
dermans et al., 2017c).
In this study we wont emphasize in how the classifiers are trained to decode multiple be-
havioral labels in multiple data collection scenarios only, but how input features, or initial
biosignals’s features can influence on final classification results, and thus predict cor-
related heart and brain outcome measures on clinical lab-controlled environment.
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1.1.1 ASD clinical trial - Motivation

Our proposed real clinical analysis included ASD participants and a corresponding Deep
Classifier pipeline’s tests. ASD is a common neurological disorder presented in a rate of
10/1000 individuals around the globe following World Health Organization (WHO) and
American Psychiatric Association (APA) official reports, thus affecting in the broad ma-
jority children, adolescents, and young adults almost with the same level of severity
permuting normal distributions of individuals around the globe (Stavropoulos et al.,
2018).
ASD participants show critical impairments for recognizing others’ emotions and emotion ap-
praisal. This emotion recognition impairment is associated with different connectivity
patterns observed in ASD individuals’ mirror-neurons and emotion processing neu-
romechanisms, and it is considered a crucial deficit in important human communica-
tive and executive tasks such as FER, communication, and social interaction (Baron-
Cohen, 2016).
Recent studies confirm neural deficits evaluating FER and emotion appraisal in ASD groups
comparing Event-Related Potentials (ERP) amplitudes and timing, thus showing emotion
processing structures differences using functional Magnetic-Resonance Imaging (fMRI) data.
This neurological unbalance is also correlated positively with altered neural connectiv-
ity for processing emotions in ASD groups (Ameis and Catani, 2015).
Neuroscientists, psychologists, and psychiatrists associate the behavioral deficit observed in
ASD individuals with a neural deficit observed with multiple signals and sources through
the last decade. However, the differences and effects observed in neural signals have been
identified using average/group-level analysis. In current studies we can not individualize the
neural activity in single-trials to observe potential variability per trial, especially when a ML
pipeline is included.
In this dissertation we propose an initial evaluation of current state-of-the-art techniques
for a biosignals encoding, and subsequent and new Deep learning model based on a Deep
ConvNet for a robust EEG-based emotion decoding applied to ASD, and non-ASD groups
in multiple age-ranges. We implemented, for the first time, a Deep ConvNet using a 2D
EEG feature-set collected from a FER clinically-controlled experiment preserving the
critical and important early and late ERPs associated with emotion processing.
Additionally, in this study we evaluate the comparison human v.s machine performances
on ASD, and non-ASD groups finding quantifiable differences between FER human perfor-
mances, and the Deep ConvNet performances across the age-ranges and groups. For every
age group the Deep ConvNet outperform the human performances supporting the presence
of plausible and intact emotion processing neuromechanisms in ASD population preserved
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by our proposed Deep learning pipeline. This pipeline thus find a complete emotion neu-
romechanism in ASD individuals using alternative analysis such single-trial classification is
considered a big milestone in Autism and neuroscience research.
Our experience working with clinical groups working for ASD and Rett syndrome research
teams in Boston Children’s Hospital (BCH), and Stony Brook University (SBU), and the
knowledge we got with the data collection, contact with participants, and data analysis
procedures were priceless and invaluable to enhance the quality of our research work and
scopes of this dissertation.
In the following sections we will describe an overview of this PhD project and the structure
of this dissertation as well as the relevant publications related to this project.

1.2 Thesis Goals

As described above, we will set the thesis goals between the two parts of the thesis. The first
goals will involve a preliminary evaluation of SP and ML systems on current broadly used
datasets for heart-rate, object category stimuli, and emotion decoding based on biosignals:

1. To evaluate preliminary emotion decoding in arousal and valence high-low levels using
the DEAP dataset.

2. To evaluate performance of two-class pictograph object category decoding using
epoched EEG signals features.

3. To calculate HR and IBI measures from real-life scenario under exercise from the
TROIKA dataset, and daily-life activity environment.

From this initial evaluation we proceed to apply the knowledge learnt from this evaluation
to a real clinical scenario. As mentioned above the inclusion of deep classifiers such as the
Deep ConvNet have been evaluated recently in clinical environments, however, in this project
we propose to include the processing of 2D feature-set initial arrangement for EEG single
trials on ASD clinical studies. For this clinical evaluation we propose a main comparison
between human emotion recognition, and a Deep ConvNet (machine) emotion recognition
performances. For this part of the thesis we set the following goals:

1. To evaluate how a Deep ConvNet-based pipeline can be considered an intervention
tool and/or an online classifier for ASD population behavioral treatment.

2. To map the most relevant features from the neural activity using emotional stimuli
in ASD and nonASD groups, and match this information with current connectivity
studies.
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3. To correlate the machine (Deep ConvNet) training and performance parameters with
the Autism behavioral and severity assessment scores.

With this evaluation on a complex clinical environment such as emotion recognition autism
intervention, we propose a quantifiable generalization of a Deep ConvNet classifier to decode
emotion successfully and support ASD behavioral deficits.

1.3 Thesis Contributions

The thesis’ main contributions are focused on the lab-controlled clinical study including
ASD participants evaluating there a Deep emotion recognition pipeline. However, in our
initial evaluation we contribute to performance evaluation on current no-SOA datasets. An
important contribution is not to include a more signal correlated stimuli such time-locked
emotion faces, but to construct a more reliable system for behavioral outcome measures
decoding (Dinov and Leech, 2017).
With a proper construction of neural (central and peripheral) signals stimuli correlation we
will observe not only a better performance in the behavioral outcome measure decoding, but
also a more realistic pipeline and performance results correlated with the behavioral and
biological conditions of the TD and ASD participants.
The main purpose of this project is to make the Artificial Intelligence (AI) advances and ML
closer to clinical assessments. Particularly, for ASD this project is a big step to connect psy-
chological intervention and treatment methodologies with robust deep classifiers extending
a the impact of multimodality, and data reliability as a relevant features for new pipelines
(Andreotti et al., 2018).

1.4 Structure of the Thesis

The structure of this thesis dissertation document is composed of the following chapters:

1. Chapter 2 - Autism Spectrum Disorder, Intervention, and Treat-
ment Background: In this chapter we will describe the ASD neural charac-
terization, and behavioral assessments focusing on the Face Emotion Recognition
methodologies.

2. Chapter 3 - Multimodal Neural based Emotion Decoding for ASD
and non-ASD individuals: Here we will describe the current and more impor-
tant state-of-the-art for AI implementations on ASD and non-ASD clinical trials. We
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will also describe the AI implementations for behavioral and neural outcome measures
in intervention studies.

3. Chapter 4 - Machine Learning preliminary Evaluation on DEAP,
Object Categories, and TROIKA datasets: This chapter is focused on
the preliminary evaluation on existing datasets such as DEAP, TROIKA, and Object
Category stimuli dataset. Here we will make emphasis on the pipeline compositions,
training methodologies, and results.

4. Chapter 5 - ConvNet Pipeline for EEG-based Enhanced Emotion
Decoding in Autism: This chapter will describe the performance results of the
Deep ConvNet classifier using the EEG features from ASD and non-ASD participants
across three different age groups. Barplots, Confusion Matrices, and Tables are
included in this chapter.

5. Chapter 6 - Correlation between Deep ConvNet parameters and
ADOS-CS: This chapter contains the statistical analysis with Multiple compar-
isons ANOVA, and Pearson correlation analysis to compare the machine parameters
interaction and the behavioral scores on ASD and non-ASD groups.

6. Chapter 7 - Saliency Maps Evaluation - EEG Features Relevant
Measures: In this chapter we will explain, and describe the most robust Saliency
maps in the ML state-of-the-art. These Saliency methods are included in the pack-
age iNNvestigate and the evaluation on EEG-based ASD emotion decoding shows
important results linked with previous neural connectivity studies.

7. Chapter 8 - Conclusions

In addition with the chapters enumerated above, we include two additional appendices.
Appendix A including the Generalized Linear Model used for the statistical comparison,
and correlation analysis of Chapter 6, and Appendix B including the mathematical
models for each Saliency Method described in Chapter 7.

1.5 Thesis Relevant Publications

For this project we have published some related and relevant papers associated with the first
part of the thesis, or the preliminary ML systems evaluation such as:

1. Ghosh, A., Torres, J. M. M., Danieli, M., and Riccardi, G. (2015, August). Detection
of essential hypertension with physiological signals from wearable devices. In 2015

https://ieeexplore.ieee.org/abstract/document/7320272
https://ieeexplore.ieee.org/abstract/document/7320272
https://ieeexplore.ieee.org/abstract/document/7320272
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37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC) (pp. 8095-8098). IEEE.

2. Ghosh, A., Danieli, M., and Riccardi, G. (2015, August) Annotation and prediction
of stress and workload from physiological and inertial signals. In 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC),pp. 1621-1624, IEEE.

3. Torres, J. M. M., Stepanov, E. A., and Riccardi, G. (2016, May). Eeg semantic
decoding using deep neural networks. In Rovereto Workshop on Concepts, Actions,
and Objects (CAOS).

4. Torres, J. M. M., Ghosh, A., Stepanov, E. A., and Riccardi, G. (2016, August). Heal-T:
An efficient PPG-based heart-rate and IBI estimation method during physical exercise.
In 2016 24th European Signal Processing Conference (EUSIPCO) (pp. 1438-1442).
IEEE.

5. Torres, J. M. M., and Stepanov, E. A. (2017, August). Enhanced face/audio emotion
recognition: video and instance level classification using ConvNets and restricted Boltz-
mann Machines. In Proceedings of the International Conference on Web Intelligence
(pp. 939-946). ACM.

6. Ghosh, A., Stepanov, E. A., Torres, J. M. M., Danieli, M., and Riccardi, G. (2018,
September). HEAL: A Health Analytics Intelligent Agent Platform for the acquisition
and analysis of physiological signals. In 2018 IEEE 20th International Conference on
e-Health Networking, Applications and Services (Healthcom) (pp. 1-6). IEEE.

For the second part of the thesis, we have published three papers, and now we are preparing
two closing journal papers related to the ASD population clinical study extending the two
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Chapter 2

Autism Spectrum Disorder, Intervention,
and Treatment Background

The prevalence around the world of Autism Spectrum Disorder (ASD) has been evaluated by
American Psychiatric Association (APA) and World Health Organization (WHO) reaching
record levels in recent decades where an approximate average of more than 10/1000 children
are diagnosed with ASD (Lord et al., 2000; Mahdi et al., 2018; WHO, 2014).
An individual diagnosed with ASD using the Autism Diagnostic Observation Schedule v2.0
(ADOS-2) (Gotham, Pickles, and Lord, 2009) the most accepted and evaluated assessment,
can be categorized as Low-Functioning ASD individuals being affected by cognitive and
motor disabilities and impairments related to the Autism spectrum such as communication
impairments, important changes on brain structures such as Midbrain, Corpus Callosum, and
Hippocampus, and other additional disorders such as Fragile X, Down Syndrome, Anxiety,
and Intellectual disabilities. In most cases this group is considered Non-verbal autism.
On the other hand, Autism individuals can be categorized as a high-functioning where the
cognitive and physical impairments are not so profuse or severe, but the communication
skills and social competence are still widely affected between the ASD population, thus
constraining ASD individuals in daily life tasks, verbal communication, and social (Fletcher-
Watson et al., 2014).
New studies project an increased prevalence of ASD in children and adolescents age-ranges,
which represents a considerable high cost for treatment and intervention even for countries
with a high-quality of life such USA, Canada, and northern European countries (Lundström
et al., 2015; Lyall et al., 2017).
In terms of Public Health research ASD and its related neurological syndrome have been
studied profusely to describe critical and related biological and behavioral factors (Caronna,
Milunsky, and Tager-Flusberg, 2008; Waddington et al., 2018). Recent epidemiological
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studies relate the emotion recognition impairments (Fletcher-Watson and Happé, 2019;
Wijnhoven et al., 2018) with some Autism prevalence factors such as the Attention-Deficit/
Hyperactivity Disorder (ADHD), Rett, and the Fragile X syndrome comorbidities (presence
of both disorders or syndromes) (Lyall et al., 2017; Ng, Heinrich, and Hodges, 2019). Figure
2.1 summarize ASD prevalence research items such as Descriptive Epidemiology, Genetic
Epidemiology, and all the Environmental factors measured in the recent ASD prevalence
studies.
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Fig. 2.1 Organigram/block diagram showing the scientific reference points for prevalence
study of ASD population. Mutiple enviromental factors and descriptive/genetic studies focus
the study of behavioral, biological, and neurological aspects of the ASD population on
particular items such as modification of SHA, and CNTN prefix genes, prenatal age, parents
age, inter-pregnancy interval, M2 Microglia, inhibition of chromatin pathways and so on.



2.1 Face Emotion Recognition (FER) - ASD 12

The positive correlation between the comorbidity of emotion recognition impairments and
other common syndromes and disorders extend the incidence of Genetic Epidemiology, and
its corresponding correlation with the emotion recognition impairments to more individuals
with ASD these with specific emotion recognition deficits. Recent epigenetic studies (Wendt
et al., 2019) have examined the variation and deletion of PHB014 with results of human Face
Emotion Recognition (FER) tasks in individuals diagnosed with Autism. As well as previous
FER behavioral analysis (Dawson et al., 2002), the recent studies involving epigenetics point
out multiple important features such as Accurate Recognition of Emotion, Speed of Emotion
Recognition, and Differentiating Emotion Intensity.
Emotion recognition on different executive levels can be represented as an important item
of the ASD group’s Descriptive Epidemiology section. Emotion recognition is now broadly
studied from controlled and epoched experiments such as auditory, especially voices, and
visual, especially faces (Harms, Martin, and Wallace, 2010; Hobson, Ouston, and Lee, 1988).
During the last decade the study of face recognition, and the brain regions encoding face
units has been developed broadly (Bal et al., 2010; Dawson, Webb, and McPartland, 2005;
Tian, Kanade, and Cohn, 2001).
In this study we will incidence profusely on at least two emotion recognition metrics such as
Accurate Recognition of Emotion and Speed of Emotion Recognition specifically on visual-
facial emotion recognition performance of ASD groups. The inclusion of Deep classifiers as
we will mentioned in the following chapters will be presented as a robust and adequate option
for neural-based emotion recognition online classifier for ASD individuals. In the following
sections and subsections we will discuss how Autism researchers have analyzed finding
effects between behavioral, biological, and neurological variables, as well as correlating
these effects with possible intervention and treatment methodologies.

2.1 Face Emotion Recognition (FER) - ASD

Preliminary reviews analyzing emotion recognition in ASD populations (Dawson, Webb, and
McPartland, 2005; Dawson et al., 2002) Autism researchers set a three critical and important
neurological outcome measures related to emotion recognition metrics such as Accurate
Recognition of Emotion and Speed of Emotion Recognition. The first measure denoted
by Autism researchers and neuroscientists is Gaze and eye contact which is important for
influencing a posterior social motivation and subsequent emotion appraisal. Most studies
analyze the gaze and eye contact converting the FER task as executive task, where the face
stimuli is divided into units such as eyes, nose, and mouth.
Recent studies measure the gaze and link this gaze fixation with memory and neural correlates
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using eye tracker studies (Murias et al., 2018; Vernetti et al., 2018). The first effect measured
was a different neuromechanism observed between Controls and ASD groups. This is also
associated with early cognitive Theory-of-Mind non-processing (Senju et al., 2009) in ASD
groups.
A second neurological measure observed in FER studies is the ability for Face Memory to
occur. Recent studies measure the performance for face discrimination, and face recognition.
For children and adolescents the performance is different but is not considerable between
Controls and ASD grpups. However, in more recent studies this difference is more plausible
between Controls and ASD in Adults age ranges (Vettori et al., 2019) relating the emotion
recognition impairment within a selective behavior and thus supporting the activation of an
altered neuro-mechanism for emotion recognition in the ASD group.
The third measure found in the early behavioral studies is Abnormal strategies for those
with ASD to process a face prior a social interaction. Specifically, these effect are observed
when the altered neural network activation used to identify and recognize faces and their
corresponding emotions better from parts rather than a holistically (Lynn et al., 2018).
Despite multiple behavioral and neural correlations studies published in the current ASD state-
of-the-art. There is still discrepancies in results that can relate altered neural structure from
the ASD groups with the emotion recognition impairments. Multiple neural structures such as
Amygdala, ACC, and STS show low activations (Ameis and Catani, 2015; Black et al., 2017),
and few connectivity patterns in ASD groups in comparison with Controls. Others regions
such as mPFC, and pFC, Precuneus, Stratum, Insula, and other white matter areas with
hyper-myleniation show higher levels of connectivity in individuals with ASD supporting
again the different strategies on face and emotion perception in Autism individuals.
In the following subsections we will describe clinical studies including Autism population
with and without comorbidities which have studied the statistical relevance of important EEG
neuro-correlates such as N170, N200, P300, P600, and Late Positive Potential (LPP) with its
corresponding timing windows.

2.1.1 Electrophysiological Face Processing in Autism Individuals

The basic units for measuring the prevalence and activation of neural activity in clinical
studies is the Event-Related-Potential (ERPs). An ERP is defined by basis (Luck and
Kappenman, 2011; Perry et al., 2015) as an electrical measure showing a dendritic post-
synaptic aggregation associated with a specific neurobiological stimulus recorded from an
EEG clinical device. An ERP can be detected as a positivity, negativity or a big slope
elicited from neurological stimulus. The neural potential associated with the stimulus can
be observed as a difference in amplitude, time, and frequency outcome measures such as
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Event-related De-synchronization (ERD) conforming a critical measure for epoched trials as
Event-Related Spectral Perturbation (ERSP) (Wang et al., 2015). From this point of view the
ERSP can be catalogued as an important outlier across time from this type of time-locked
stimuli.
Multiple other measures are used for stimuli without time locking. Most of these measures
are used in order to understand brain activation in a non-invasive way for resting-state,
or longer tasks associated to neural micro-state (Wang et al., 2013). Multiple studies use
frequency analysis for epoched trials for face processing because it is easier to relate face
stimuli in a time locked environment. The power of the spectrum from infra-slow ranges
from δ [1-3] Hz, θ [4-7] Hz, µ [8-10] Hz, to low frequencies such as α [8-13] Hz, Low β

[15-20] Hz, and High β [20-40] Hz, to a high frequencies such as γ [> 40Hz] and ripples
higher than 100 Hz.
The neurological correlates associated in both types of experiments have been analyzed in
Controls and individuals with ASD finding important correlation between face processing,
and the subsequent emotion processing associated with the face units.

ERPs associated with Face processing

Cognitively speaking neuroscientists in Autism research have tried to segment the ERPs
observation in early and late neural stages (Webb et al., 2006). The initial analysis have
explored the face structures in parts, and holistically finding differences in amplitude and
latencies between modalities.
In adult humans a negativity is observed constantly in 170 ms after the stimulus onset. This
negativity is denoted by N170 slope. The N170 is observed with a certain level of latency
varying and comparing faces with objects, or faces with faces structural variations such as
interventions, eyes-only, or deconstructed faces (Dawson et al., 2002).
When the Autism individuals are included in the initial EEG-based face processing experi-
ments bigger latencies are observed in the N170 component. This effect is associated with an
early face processing disruption (McPartland et al., 2004), and the Autism altered network
connectivity. Furthermore, the N170 different neural modulation is also observed in different
cortical regions such as more central activation in comparison with the basal activation in
temporo-occipital regions observed in those without ASD.
In general the shorter response of the N170, and the precursor of the N170 prN170 observed
in the typically developed individuals are also associated with a higher speed on face pro-
cessing and recognition in this group in comparison with ASD (Webb et al., 2011). With the
prN170 there is also morphological observations, for instance quicker responses of prN170
in autistic children in comparison with adults, and smaller amplitude of prN170 for autistic
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children too (Webb, Neuhaus, and Faja, 2017). Across age ranges, the N170 is more negative
in adults than in children or adolescents. Studies with neonates confirms not only differences
in amplitude but also in terms of latencies to process faces, thus relating this effect with
cortical brain structures maturity, and other subcortical structures such as STS and amygdala
(Webb et al., 2006). However, other studies suggest no differences between N170 amplitude
and latencies across age groups.
Recent magnetic resonance studies correlate atypical lateralization of the N170 in ASD
groups (Ji et al., 2019) assuming again a different and altered connectivity pattern between
Control and ASD groups. Other EEG-fMRI studies correlate the N170 with a-posteriori
emotion processing structures such as ACC, amygdala, and insular cortex only for controls
(Bayer et al., 2019), and showing again differences with ASD groups.
In summary studies including the analysis of face processing and specifically N170 and
nearby components have found an important early and subsequently pre-cognitive disruption
of face processing. Further, low and small neural activation presented in autistic individuals.

Alpha-α and Gamma-γ measures - Face processing

In recent ASD studies involving EEG signals researchers have found frontal γ activity
involved in early face processing stages Naumann et al., 2018. Individuals with autism show
no behavioral differences recognizing holistically structured faces in comparison with a
non-structured face. However, individuals with ASD shown an elevated γ power from P1 to
the Late Positive Complex (LPC) range around 800ms after the stimulus onset.
Other very sensitive outcome measures from γ rhythm is the lateralization index defined
as any measure normalizing additive differences to follow the expression RH−RL

RH+LF where
RH is the right-hemisphere measure, and LF the left-hemisphere corresponding measure.
Selecting any channel from fronto-central regions a lateralization index is showing significant
differences inside the γ rhythm after P1 showing a different synaptic pathway related to face
processing (Keehn et al., 2015).
MEG studies (Leung et al., 2018) also support the over-activation of temporal and insular
cortical and subcortical structures such as STS, and Fusiform Gyrus in Autism individuals in
comparison with typically developed who correlates the N170 peaks with activation of the
occipital and frontal structures such as ACC, Amygdala, and mPFC. This correlation also
suggest an alternative strategy not only for the face processing and memory tasks but also for
emotion processing.
Other studies have associated higher frequencies such as α and β rhythms with a higher
social competence measure, and a lower ASD severity (Courellis et al., 2019) for those with
ASD group. A recent study has complement the previous desynchronization results with a
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high amplitude frontal activations of α , β and γ in individuals with ASD. This fact points
again to an altered connection for processing faces in ASD group.
To link the early face processing impairments found in Autism individuals, a recent study
(Almeida et al., 2016) found increased α rhythm related to an early arousal perception with
no variation across face structures such as upright, inverted, and holistic type of emotional
faces. Therefore, the question is open to know if the altered network found in individuals
with ASD only correlates with early face processing or with emotion processing and other
post-cognitive ERPs.

2.1.2 Neurocorrelates related to Emotion processing- Faces- Autism

As previously we mentioned we itemize multiple neurocorrelates related with early face
processing deficits. However, we can enumerate four different implications related to the
face processing speed and the subsequent emotion appraisal:

1. The face processing deficit observed in early stages is also considered a percep-
tual/cognitive deficit in individuals with ASD.

2. The early face processing deficit is preventing ASD groups to extract important
information from face features and detect the corresponding emotional content.

3. The neural pathway associated with face processing and all the corresponding neural
structures such as FG, STS, Amygdala, and mPFC are considered dysfunctional in
ASD population.

4. Future intervention oriented to face/emotion processing in Autism individuals should
be focused on the electrical stimulation of the dysfunctional pathways, or teaching
autism individuals to focus on central features of facial emotion, and the inclusion of
information-processing facilitation strategies to enhance emotion apprehension.

These items do not only enumerate deficits for face and emotion processing found in pre-
vious studies, but also suggest the possibility to functionally enhance the face and emotion
perception from intervention and technologies to help in ASD intervention. In this study we
focus on the importance to use alternative analysis per trial, using Deep classifiers, and
creating new emotion-recognition based intervention tools that can help to restore the
dysfunctional neuromechanisms presented in ASD individuals.
In terms of the principles of face processing it is important to understand how the neural
pathways process the corresponding emotion category associated and labeled to the face.
The arousal segment from the emotion category associated with the face stimulus is processed
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early by controls but not by individuals with Autism. Therefore, neuroscientists have tried
to look for more neurocorrelates in the late stage of the face processing potentials. The
main idea with emotion processing analysis using EEG or neural outcome measures is to
differentiate the neurocorrelates associated with particular emotions, specially the negative
and the high-arousal categories representing the performance detriment in individuals with
ASD (Adolphs, Sears, and Piven, 2001).

Emotion Face processing ERPs - Autism

The first emotion category analyzed in emotion recogniton studies look into impairments
in ASD population was fear. Representing the most critical and negative emotional state
and ASD population can not perceive. Again these fear emotion based studies (Dawson
et al., 2002) suggest an abnormal strategy, and a considerable detriment in emotion speed
recognition and face processing associated with the altered neural connection for negative
emotion processing.
Subsequent studies have found important later ERP components in the N300 slope comparing
the performances between controls and ASD individuals. Specifically, Controls show a
shorter latency for N300 in comparison with ASD individuals and even with Controls who
performed worse in the emotion recognition task (Dawson, Webb, and McPartland, 2005).
However, in comparison with the early studies the N300 latencies and amplitude are not
correlated with non-social stimuli. These findings linked social interaction impairments with
the FER speed performances, and the slower latencies of N300 in ASD groups. (Dawson and
Bernier, 2007; Lerner, McPartland, and Morris, 2013).
Recent studies conclude the observation of a systematical information-processing deficit
in individuals with ASD are supported on lower amplitude and a higher latencies from
early ERPs in ASD individuals. In imaging studies we observe structural abnormalities
in emotion processing structures related with the previously mentioned temporal ERPs
inaccuracies (Safar et al., 2018).

Later stage Emotion Face processing in Autism

To conceptualize the neurological emotion temporal processing on individuals with and with-
out ASD the neural components such as ERPs inside N1, and N2 ranges can be categorized
as early perceptual components. The negativities or positivities found after the previous
mentioned ranges can be considered as later stage information processing or post-cognitive
neural components (Dawson, Webb, and McPartland, 2005).
The corresponding emotion category associated to the face is processed properly when the
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face information is processed early focusing on eyes, mouth, and nose face units (Dawson
and Bernier, 2007). The first intuition about emotion recognition is related to familiarity
appraisal. Toddlers and children show an increased P400 amplitude when the mother’s face
is presented in comparison with a unfamiliar face (Luyster et al., 2014; Webb et al., 2011).
Other studies involving children with Autism did not show differences in P400 amplitudes
comparing familiar and unfamiliar faces. However, they show differences evaluating between
a toy object and a face (Dawson et al., 2002; Jones, Dawson, and Webb, 2018) suggesting
again an abnormal activation to process faces and the corresponding emotions.

LPP incidence in emotion recognition - Autism

On the other hand, a longer waveform slope such as LPP is associated with differential
emotion regulation, emotion appraisal, theory-of-mind, and empathy processing (Dennis and
Hajcak, 2009). The LPP waveform was first analyzed dividing into three windows Early
[300-600] ms, Middle [600-1000] ms , and Late [1000-2000] ms. Some studies differ around
20-50 ms before and after the time values stated above (Ferri, Weinberg, and Hajcak, 2012;
Foti, Hajcak, and Dien, 2009) but the three windows are critical to evaluate and process
emotional faces and scenes in Autism population.
To analyze the LPP sensitivity across emotion categories the initial studies set a group of
EEG electrodes across the scalp in a symmetrical way. For the LPP studies the electrodes
are divided into four main clusters Left-Anterior, Right-Anterior ,Left-Posterior, and Right-
Posterior(Schupp et al., 2004). These cluster division will increase the options to find
significant effects using multiple comparisons and extended factors as we will describe in
Appendix A.
The first emotion variable included in the analysis is the emotion dysregulation comparing
neutral and fear emotions and it shows a positive correlation with the Middle, and Late LPP
windows in the posterior clusters. Other studies correlate the difference between neutral and
negative high/arousal emotions from faces, and a subsequent non-evidence of this difference
in ASD (Ferri, Weinberg, and Hajcak, 2012; Luckhardt et al., 2017; Schupp et al., 2003).
More recent studies have linked single-trial classification using LPP features validating them
as useful features for emotion recognition, and thus obtaining different neural connectivity
patterns between Controls and ASD groups (Mayor Torres et al., 2018). Some studies
find that LPP low amplitudes is positively correlated with fewer social interactions and a
consequent lower emotion recognition performance in ASD and Control groups (Benning
et al., 2016; Clarkson et al., 2019).



2.2 Intervention and Treatment for Emotion Recognition in Autism 19

Understanding Face/Emotion impairments in ASD

With previous research attributing neural potentials to a post-cognitive emotion processing
and all the alternative connectivity patterns found in ASD groups. It is possible to conclude
two main statements about the cognitive/affective deficits observed in Autism individuals.

1. The neural dysfunctionality observed in early and late time-ranges is considered an
important perceptual/cognitive impairment in ASD.

2. The disfunctionality of brain structures such as FG, STS, Amygdala are not only
related to face processing deficits but also with emotion and motivational deficits.

3. A hypothesis is created after ASD cognitive/affective impairments is observed in sub-
sequent neural potentials. A lack of social motivation is associated with inefficient
face/emotion information processing is observed in Autism individuals. Autism
researchers suggest two approaches to improve face/cognitive/emotion information
processing capabilities.

• To implement intervention methodologies based on cognitive rewards in which
individuals with ASD can infer face/emotion information using feedback from
neural structures which process face/emotion information per se (Whyte, Smyth,
and Scherf, 2015).

• To inhibit or stimulate the neural circuitry processing face/emotion information.
Dopamine and GABAergic circuits involved in the structures mentioned above
are important to enhance FER performances (Barak and Feng, 2016; Chakrabarti
and Baron-Cohen, 2011).

The stated hypotheses and the influence associated with the social motivation, and altered
connectivity are general across age ranges and the comorbidities. Intervention methodologies
can be developed using ERPs and such as N170, N300, P400, and LPP as a construction
basis for online intervention in emotion recognition. In the next section and subsections we
will describe the resources and methodologies used for psychological intervention based on
behavioral and biological outcome measures for individuals with Autism.

2.2 Intervention and Treatment for Emotion Recognition
in Autism

The main details for starting a behavioral intervention for ASD groups are a) For children
increase the affective exchange and the eye contact towards the face stimulus, making
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reinforcement through toys and familiar objects associating them with the presented stimulus,
b) Increase the face-to-face contact to motivate social interaction in children with ASD,
extending it for a cognitive training a the individual preferences, and c) For adults with ASD
it is more convenient to describe the face units and features and relate the corresponding
emotion with familiar facts and daily life (Webb, Neuhaus, and Faja, 2017; Webb et al.,
2011).
From the previously mentioned studies ASD researchers have created multiple FER training
assessments in order to affect the attention of socio-emotional cues, enhance social awareness,
and Theory-of-Mind (ToM) capabilities in cognitively and affectively sides.
The computer based clinical practices more commonly used by Austim researchers were
stimuli sets designed for intervention such as The Frankfurt Test and Training of Facial
Affect Recognition (FEFA) (Bölte et al., 2006) focusing on the training on face photographs
and the corresponding eyes regions, The Transporters video series is also a series of face
stimuli taken from the video series for Autism intervention (Adams and Robinson, 2011),
The Emotion Trainer focusing also on real faces and the stimulation of the FG (Silver and
Oakes, 2001), Let’s face it which teach children and adults ASD individuals to enhance
identity and emotion perception (Tanaka et al., 2010), The computer based assessment used
for Autism ToM-based intervention FaceSay (Whyte, Smyth, and Scherf, 2015), and Mind
Reading stimuli set included in the Cambridge Mind-Reading Face-Voice battery (Golan,
Baron-Cohen, and Hill, 2006) which familiarize autistic individuals introducing the concept
of attributing/perceiving emotion state to each face stimulus (Lacava et al., 2007).
Recent reviews and survey studies (Berggren et al., 2018) have stated the information
collected in experiments using multiple FER intervention methodologies and also have
itemized the challenges and future directions of Autism researchers must go to enhance these
methodologies.

2.2.1 Intervention Methodologies - Autism

The methodologies that have found interesting effects and results on the FER performances
are itemized in the following types of intervention methodologies: a) interventions that
enhance emotion recognition using a treatment wait-list with controls (Fletcher-Watson et al.,
2014), b) interventions with "placebo" contact control method such as cartoon based video
engines (Grossard et al., 2017), or c) interventions with no therapeutic content to bias the
intervention content such as leisure groups, pizza parties, etc. (Russo-Ponsaran et al., 2018).
(Berggren et al., 2018) summarized nine important studies that we will include in this chapter
to illustrate how psychologists and neuro-scientists are investigating how to enhance the FER
performances from key behavioral outcome measures obtained from Pre and Post, before and
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after the intervention. To clarify this we re-organize the Table 2.1 on (Berggren et al., 2018)
adding a more summarized information about recent intervention methodologies focusing on
FER tasks.
As a brief overview of the review, the intervention period documented here varies from 8
days to 20 weeks. The intervention intensity is also variable and not necessarily linked with
a shorter intervention period. Most evaluations has reported by PhD students and graduate
assistants.
Some of the studies included in this section proposed two types of behavioral outcome
measures. One type of measure was defined to quantify the level of emotion recognition
enhancement, and other type of measure related to the level of social competence. Any
significant increasing effect observed for the particular outcome measure between the Pre
and Post and/or an extra Follow-up period is considered a significant and a positive effect
which supports the intervention process.

Emotion Recognition - Outcome Measures

The assessments used for extracting the emotion recognition outcome measures can be seen in
Table 2.1. These include for instance the NEPSY-II affect recognition skills battery composed
of 32 neuro-psychological subtests (Brooks, Sherman, and Strauss, 2009) to evaluate emotion
recognition researchers used the face matching test.
Other examples are the Emotion Recognition and Display Survey (ERDS) (Thomeer et al.,
2011) which include a set of face stimuli which are categorized using the CAM-C and the 35
emotion states defined by (Golan et al., 2010). The Receptive and Expressive subscales from
ERDS are used for some intervention studies complementing the initial cognitive evaluation.
An intervention tool which is used broadly in recent studies not only for emotion recognition
but for social competence measurement is the Diagnostic Analysis of Non-Verbal Accuracy
2 (DANVA-2) stimuli set (Nowicki, 2000). In this stimuli childrens’ and adults’ faces and
voices are labeled in four emotions as we will explain in the sections below. DANVA-2
stimuli set is used in this study in order to elicit EEG neural activity from the child/adult
emotional faces. For this particular case of intervention DANVA-2 can be quantified using
the FER performance using error-rate and accuracy outcome measures (Lerner, Hutchins,
and Prelock, 2011).



2.2
Intervention

and
Treatm

entforE
m

otion
R

ecognition
in

A
utism

22
Table 2.1 Information in (Berggren et al., 2018) showing different types of interventions methodologies used for Autism researchers.
We report here the based on Face-based tools used in the intervention, the corresponding behavioral outcome measures for FER tasks,
and for Social Competence. ** Means an evident difference between the means of the Pre and Post times. NS is non-significant effect
for the corresponding variables in the outcome measures columns,

Study-Authors Age Range Intervention N Follow-up Duration
Emotion Recognition Social Competence

ComparatorOutcome Mea-
sures

Differences be-
tween groups

Outcome Mea-
sures

Differences be-
tween groups

(Golan et al.,
2010)

4-8 years The Trans-
porters video
series

39 (30 /9) Post 4 Weeks, 3
episodes per visit

Situation
Facial-
Expression
matching: 1.
Familiarity gen-
eralization, 2.
Unfamiliriaty
generalization,
3. Distant
Generalization

1. 1.65
(0.90,2.39),
2. 1.66
(0.91,2.41),
3. 1.41 (0.70,
2.14)

N/A N/A No-
intervention

(Hopkins
et al., 2011)

6-15 years FaceSay 49 (44/5) Post 6 Weeks, 1 visit
twice a week, 10-
25 mins per visit

Emotion
Recognition

LFA: Non-
Significant,
HFA: 1.43
(0.51, 2.35)**

1. SSRS, 2.
SSO

1. LFA: 0.91
(0.05,1.75),
HFA: Non-
Significant.
2. LFA: Non-
Significant,
HFA: 1.23 (0.36,
2.11)

Wait-list tux
painting, as-
sistance for
children in
painting

(Rice et al.,
2015)

5-11 years FaceSay 31(28/3) Post 10 Weeks 1 time
per week, 25
mins per visit

NEPSY-II
affect recog-
nition Score
(matching
capabilities)

1.33 (0.54,
2.12)

1. SRS-2,
2. Positive
Observations,
3. Negative
Observations

1. NS, 2. NS, 3.
NS

SuccessMaker,
reading in-
structions
from wait-list

(Ryan and
Charragáin,
2010)

6-14 years Emotion
Recognition
Training

30 (27/3) Post 4 Weeks, Weekly
session 1 hour

Emotion
Recognition

Significant dif-
ference

N/A N/A Waitlist
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(Silver and
Oakes, 2001)

1-18 years Emotion
Trainer (ER)

22 Post 2-3 week, daily,
30 mins

1. Facial
Expressions
photographs, 2.
Strange stories

1. Significant
difference
supporting
intervention, 2.
NS,

N/A N/A School
Lessons

(Tanaka et al.,
2010)

10.85±2.61
Treatment,
11.41±3.7,
Control

Let’s Face it 79
(62/17)

Post 20 hours play-
ing the computer
game/ 100 min-
utes per week

1. Emotion
Recognition
cartoons, Let’s
face it Skills
battery

1. NS N/A N/A Waitlist

(Thomeer
et al., 2015)

7-12 years Mind Read-
ing

43
(38/15)

Post, 5
week
follow up

12 weeks, 2 ses-
sions per week,
90 mins per ses-
sion

1. CAM-C
faces, 2. CAM-
C voices, 3.
ERDS recep-
tive, 4. ERDS
Expressive

Post: 1. 1.19
(0.54, 1.84),
2. 1.05 (0.41,
1.69), 3. NS,
4. NS **
Follow-up: 1.
0.76 (0.12,
1.36), 2. 0.73
(0.11,1.35), 3.
NS, 4. NS**

1. SRS, 2.
BASC-2 social
skills

Post: 1. NS,
2.NS Follow-up:
1. NS, 2. NS

Waitlist

(Young and
Posselt, 2012)

4-8 years The Trans-
porters video
series

25 Post 3 weeks, 3
episodes per
week

1. NEPSY-II af-
fect recognition
Score, 2. Faces
Tasks

1. 1.55 (0.63,
2.46), 2. 1.20
(0.34, 2.07)**

1. Peer Interest,
2. Eye Contact,
3. Gaze Aver-
sion

1. NS, 2. NS, 3.
NS

Thomas the
tank engine,
15 selected
episodes

(Lopata et al.,
2010)

7-12 years Summer pro-
gram

36 (34/3) Post 6 20 minutes ses-
sion for 5 weeks

Danva-2 Child
faces perfor-
mance

NS 1. SRS, 2.
BASC-2 social
skills

1. 0.69 (0.00,
1.37), 2. 0.82
(0.14, 1.59) **

Waitlist

(Solomon,
Goodlin-
Jones, and
Anders, 2004)

7-12 years The Social
adjustment
enhancement
curriculum

18 (18/0) Post training program Danva-2 Child
and Adults
faces perfor-
mance

NS N/A N/A Waitlist

(Thomeer
et al., 2012)

7-12 years Summer pro-
gram

35 (30/5) Post 6 20 minutes ses-
sion for 5 weeks

Danva-2 Child
faces perfor-
mance

NS 1. SRS, 2.
BASC-2 social
skills

1. NS, 2. 0.88
(0.18, 1.59)

Waitlist
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Another example of emotion recognition intervention in ASD groups is a classic emotion
recognition task for face and audio stimuli correlated with an additional or an extra part of
the stimuli set as a Waitlist.
Overall the enhancement effect observed in the studies summarized in Table 2.1 varies the
emotion recognition measurement across the type of intervention. In most cases the effect is
not powerful enough to be considered a fully-recovered emotion recognition capabilities in
ASD groups. A considerable effect is only observed to match faces or gestures. However,
for the emotion recognition at least as a quantifiable outcome measure the effect can not be
generalizable for any age, or ASD participant sample. This measure is not even observable
for social competence as we will describe in the next subsection.

Social Competence - Outcome Measures

In Table 2.1 we can observe multiple different variables which are proposed to measure not
only the amount of social interactions or the enhancement in social communication (White,
Keonig, and Scahill, 2007).
In recent studies the social competence outcome measures are more sensitive markers to show
a FER performance improvement in ASD population (Marino et al., 2019). As we mentioned
in the previous section the face/emotion perception is more affected by motivational deficits
and ASD individuals should receive intervention using emotional reinforcement.
Social competence outcome measures are not only very sensitive for face/emotion perception
and recognition, but these variables can be considered important markers to measure the
intervention efficacy for the social competence and the correlated emotion recognition tasks
(Lee et al., 2018).
Although most FER intervention studies do not include social competence assessments. A
social competence assessment included in the studies is the Social Skills Rating System
(SSRS) (Gresham et al., 2011). The SSRS has a social skills evaluation subscale with 40
items. 10 items refer to Cooperation, 10 items to Assertion, 10 items to Responsibility, and
10 items to Self-Control all items oriented to social interactions in school, relationships with
peers, and assertive behavior.
A complement for SSRS is the Social Skills Observation (SSO) which is a psychological
protocol described by (Hopkins et al., 2011) as empirical social competence evaluation. The
SSO methodology consists in a 2 hour practice session evaluated by two blind psychologist
trained for the assessment. During the two assessment hours ASD individuals have to per-
form a peer interaction and meanwhile the trained reviewers annotate the performance. The
psychologist/annotators should achieve a 90% of inter-rater reliability for each item in the
assessment.
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A widely evaluated social competence assessment is the Social Communication Question-
naire (SCQ). This evaluation was constructed initially for Autism screening as a Autism
Screening Questionnaire by (Rutter et al., 2007) based on the old version of Autism Diagnos-
tic Interview old version, nevertheless the SCQ is used for social competence evaluation from
the primary caregiver focusing on reciprocal social interaction, language and communication,
and stereotypes behaviors (Chandler et al., 2007).
Despite the reliability of the caregiver-based questionnaire, other social competence outcome
measures are used in FER-based intervention for ASD individuals. The Social Responsive-
ness Scale (SRS) (Constantino, 2013) is a 65-item rating scale that measure the Reciprocal
Social Behavior (RSB) or the quality of reciprocal social interaction that with ASD children
involve in. This scale evaluate the severity of three possible social competence deficits such
as social, language, and stereotypic behaviors.
Recently, other assessment have not only included clinical and behavioral variables in the
evaluation but the adaptive responses found in children with ASD when a repetitive protocol
is presented.
The Behavior Assessment System for Children - 2 (BASC-2) measures not only diagnosis
aspects but also behavioral and personality aspects that can affect profusely the emotion
recognition capabilities (Volker et al., 2010). BASC-2 was developed with the purpose of
assisting the diagnosis of Autism using the DSM-IV. The initial part of the assesment can
be filled by the participant or the reviewer, but the Parent Rating Scale (PRS) reports the
scores to evaluate adaptive behavior at home and school as well as in the community. All
the PRS included in the BASC-2 are composed of 150 items including subjective behaviors
evaluation such as Aggression, Anxiety, Attention Problems, Atypicality, Conduct Problems,
Depression, Hyperactivity, Somatization, and Withdrawal, and for each behavior BASC-2
defines five adaptive scales such as Activities of Daily Life, Adaptability, Functional Com-
munication, Leadership, and Social Skills.
As overall summary across the social competence outcome measures used in the intervention
studies are shown in Table 2.1. If the stimuli set is not adequate for social skills measurement
the studies are not reporting significant effects between the Pre and Post treatment spots.
The important effect observed in the intervention studies was in the BASC-2 whole score.
The SSRS and the SSO show a small difference effect when the population is divided in
low-functioning, and high-function groups (Hopkins et al., 2011), but not with the entire
ASD group is taken into account for the evaluation.
The null effect observed in social competence outcome measures for most FER interven-
tion studies is a critical indicator of a multidomain deficit associated with the face/emotion
processing. The neural outcome measures mentioned above such as N170, N300, P400,
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LPP, and the frequency de-synchronizations are not only related with a deficit in early
face processing. Additionally, the posterior emotion recognition is also related to be-
havioral deficits, but to a lack of motivation and social skills including subscales such
as reciprocal social interaction, and atypical behaviors.

Intervention Generalizability

In the complete set of interventions described in Table 2.1 we can enumerate the reasons
supporting the systemetic lack of assessment generalizability as follows:

1. The difficulty in creating a long-term follow-up process in intervention studies due to
a incremental cost and patients’ eligibility criterion.

2. The studies are not generalized enough to attribute a positive effect of the current
interventions methodologies into the autism social skills improvement.

3. With a combination of emotion recognition and social competence oriented inter-
vention it is possible to obtain small effects in social skills and emotion recognition
improvements.

In future studies the interventions methodologies should be modified in order to affect
emotion recognition and social skills outcome measure in an integral way. In this study
we propose to assist the current emotion recognition intervention methodologies us-
ing Deep classifiers extracting the important information from a successful emotion
decoding from EEG single-trials.

Clinical Implications - Intervention

Due to the high prevalence of ASD across multiple demographics, the demand of interven-
tions for emotion recognition has increased considerably. New technologies and resources
should be included not only to reduce the time and cost to reproduce an emotion recognition
intervention, but also to automatize and make the assessments easier for the participants and
reviewers.
The difficulty of having statistical generalizability should be taken into account for the design
of future behavioral interventions. The difficulty for finding improvement effects across
multiple ASD groups make the decision for changing the intervention methodologies very
challenging.
For future implementations of emotion recognition interventions for ASD individuals the de-
cisions and preferences of the parents and caregivers are strong biases for finding significant
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and generalizable effects.
A double-blind for reviewer and caregiver, or a randomized effect should be introduced into
the participant sample to increase the sample generalizabity and make the effects stronger in
the intervention evaluation.
In the next chapter, we will complement this clinical, neural, and behavioral studies back-
ground clarifying the corresponding Autism deficits for face/emotion processing with the
implementations of previous Machine Learning (ML) systems on Controls and individuals
with Autism. We will introduce the ML systems dedicated to infer and learn from neural
features to decode emotion and other outcome measures without including ASD individuals
samples.



Chapter 3

Multimodal Neural based Emotion
Decoding for ASD and non-ASD
individuals

ML Classifiers based on neural features have become a new tendency in the ML state-
of-the-art research. SVM, LDA, and different Gaussian Mixtures approaches have been
proposed from the initial analysis of EEG single-trial classification (Blankertz et al., 2011;
Pfurtscheller et al., 2006). However, the classification model is not a single piece pipeline,
and for bio-signal and events classification pre-processing, artifact removal, and statistical
transformations are important for an adequate EEG single-trial classification for in-vitro,
and/or in-the wild data acquisition (Vaid, Singh, and Kaur, 2015).
Most EEG-based single trial classification studies for emotion decoding have included only
non-ASD participants because of the flexibility of non-ASD participants and the complexity
of finding formally ADOS-2 or DSM-IV diagnosed participants. This limitation is common
in other neurodevelopmental disorders. Some related clinical studies have certain limitations
when a purely engineering team is trying to obtain results from brain signals (Govindarajan
and Kumaravelu, 2019).
Another important difficulty for EEG-based classification pipelines no-SOA is to find an
adequate SNR, and an adequate synchronization between the stimulus and the neural signal
itself (Mühl et al., 2014). Depending on the protocol study, it is not easy to find a clinical
formal study with formally time-locked stimuli including only non-ASD participants.
There are multiple wireless BCI platforms such as Emotiv EPOC, gtec Nautilus, and Enobio
Neuroelectrics (Debener et al., 2012). These and multiple other devices are included in
EEG-based behavioral decoding with purpose of making EEG-based pipelines more flexible
and enrich no-SOA data acquisition environments. However, these devices are not precisely
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included in lab-controlled environment where the preferable devices have an increased SNR,
Total-Harmonic-Distortion (THD), and a Common Mode Rejection Ratio (CMRR) (Mora,
De Munari, and Ciampolini, 2015).
The Deep ConvNet based pipeline proposed in this project is studied in depth in the next
sections in order to understand not only if the neural information features can decode
successfully the emotion or the behavioral class, but how the Deep ConvNet is weighting the
importance of these particular input features. We include the evaluation of the most reliable
saliency maps in the current ML state-of-the-art. With this analysis we are not only finding
a complete and intact neuromechanism for emotion processing, but which time ranges and
electrodes are important got ASD and non-ASD groups to decode successfully emotions
from the corresponding neural activity.
In the following subsections we will describe in detail the most important studies covering
Deep and shallow ML implementation for behavioral, especially emotion recognition, on
ASD and non-ASD participant samples.

3.1 EEG-based classifiers Emotion Recognition - non ASD

For non-ASD or neurotypical controls it is very easy to find multiple studies using EEG
for evaluating emotion recognition, dividing the classes inside the affective circumplex
arousal/valence Russell’s axis (Gerber et al., 2008) and recognized 21 emotion categories/states
across the circumplex axis currently defined in a neural study oriented to ASD groups (Baron-
Cohen et al., 1999).
Since 2000s, a new strategy was stated to decode emotion, emotion states, and circumplex
states using neural features emerged (Jenke, Peer, and Buss, 2014; Mühl et al., 2014). How-
ever, most of the pipelines constructed in the initial research wave using EEG-features did
not clarify the incidence of artifacts, device distortion sources, and bad channels (Lotte et al.,
2018). After the pre-emphasis and artifact removal techniques have been debugged and
complement for a fair neural representation of a EEG emotion-elicited single-trial (Delorme
and Makeig, 2004).
Table 3.1 summarizes all the methods for the pre-emphasis processes, the number of par-
ticipants, the artifact removal procedures, Supervised/Unsupervised classifiers, the cross-
validations modalities used in the evaluation, and the datasets included in the most relevant
EEG-based emotion/behavioral decoding studies for non-ASD groups. For these particular
studies we won’t find diagnosis prediction, and additional outcome measures such as social
competence, and social responsiveness questionnaire.
For ASD participants we divide the multimodal pipelines in 1) pipelines designed for ASD
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diagnosis and/or Early diagnosis, and 2) pipelines designed for EEG-based or behavior
outcome measures prediction including ASD groups which are fewer in the current literature.
To illustrate the most recent and relevant studies for these two categories we report the most
important pipelines for ASD diagnosis in Table 3.2, and the pipelines constructed for ASD
emotion or behavioral outcome measures recognition in Table 3.3.
In the following subsections we will summarize and analyze the drawbacks and advantages
observed on the recent most relevant implementations for EEG-based emotion recognition
pipelines including and without including ASD participants as well as the methodologies used
for pre-emphasis, artifact removal, and cross-validation modalities used for classification.
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Study-Authors Dataset /Ac-
quisition

N EEG type of
data

Classes Pre-Emphasis Artifact-
Removal

Features used Classifier Cross-validation Performance

(Jirayucharoensak,
Pan-Ngum, and
Israsena, 2014)

DEAP - EEG
signal 40 videos

all 32 subjects,
40 trials, 1
minute trial per
subject.

long-trials
watching emo-
tional videos,
online tagging

2-class high-low
Arousal/Valence
levels

Downsampling
from 512Hz to
128Hz, Filter for
5 frequency bands
theta, lower alpha,
upper alpha, beta,
and gamma PSD
128 samples

None PCA Covariate Shift Adapta-
tion - 50 best components per
window

A 3 layer Deep Neu-
ral Nework (DNN), with
a final Softmax layer -
50 units hidden-layers.
Fine-Tuning and Back-
propagation trained us-
ing the 50 PCA features-
per window, and per trial.
SVM used as baseline

Leave-one-subject-
out (LOSO) -
Following DEAP
original paper
modality

Accuracy -> Arousal
: 52.01%, Valence:
53.34%

(Mehmood, Du,
and Lee, 2017)

Data collection
from IAPS
emotional
scenes. 180
stimuli shown
per subject.
45 trials x 4
emotions

21 subject, 9
male, 11 female

Emotiv - Epoc
1.5 s time-
locked trials.
LPP and P300
based

4 emotions
(happy, calm,
scared)

Filtering, and
Hjorth parameter
estimation

EEGlab plug-
ing for EOG
artifact removal
from (Gómez-
Herrero et al.,
2006)

Hjorth parameters: Activ-
ity, Mobility, and Complexity.
These three featues are calcu-
lated per band δ , θ , α , β , and
γ . 360 epochs per emotion
were grouped

LDA, KNN, SVM, DNN,
Bagging, Boosting, Ran-
dom Forest, and Naive
Bayes. Majority Vot-
ing between all the clas-
sifiers decision is applied.
360 features used per
trial no PCA

10-fold cross val-
idation across all
subjects

Accuracy For Deep
Learning -> 73.66%
and Majority Voting ->
76.65%

(Mehmood and Lee,
2016)

Data collection
from IAPS
emotional
scenes. 180
stimuli shown
per subject.
45 trials x 4
emotions

21 subject, 9
male, 11 female

Emotiv - Epoc
1.5 s time-
locked trials.
LPP and P300
based

4 emotions
(happy, calm,
scared)

Filtering between
0-50 Hz

ICA and
pop_eegfilt
applied per
trial to re-
move artifacts
EEGlab

3 features from the LPP am-
plitude on three LPP win-
dows Early, Middle, and Late.
These features are grouped for
the 5 rhythms δ , θ , α , β , and
γ . All the windows ranges and
all the frequency bands fea-
ture combination are used to
train.

A linear kernel SVM,
and a KNN (K=5) classi-
fiers

10-fold cross val-
idation across all
subjects, and leave-
one-subject-out
cross-val

Accuracies: For LPP
early window in
LOSO SVM -> 57.6%
θ , KNN-> 58.0% α .
For the 10-fold cross-
val LPP early shows
better performance ->
59.12%

(Li et al., 2018) 4 min length 6
music videos
selected from
Youtube Chi-
nese films.
Divided in 12
sessions per
subject. The
SEED Database

15 subjects
(7 male, 8
female) they
filled Eysenck
Personality
Questionnaire
(EPQ).

ESI Neuroscan
- 4 mn trials 45s
rest between
each video
presented

Meanwhile the
users are watch-
ing the video,
each stimuli is
labeled between
3-classes posi-
tive, neutral, and
negative

None None A grouped sparse canonical
correlation analysis (GSCCA)
is applied to the raw EEG sig-
nal. An a Bi-hemispheres ad-
versial Neural Networks (Bi-
DANN) semi-supervised fea-
ture extractors

TCA, KPCA, TPT, and
Bi-DANN optimization
one-regularization, and
two regularization layers
R1, R2.

9 sessions for all
the subjects for
training, and 3 re-
manent sessions for
test. Baseline for
the SEED database.
And also a Leave-
One-Subject-Out
(LOSO) cross-
validation is
applied

Accuracies: For Bi-
DANN in a SEED
baseline was 92.38
±7.04%. And for the
LOSO cross-val 83.28
±9.61%

(Zheng et al., 2015) 4 min length 6
music videos
selected from
Youtube Chi-
nese films.
Divided in 12
sessions per
subject. The
SEED database

15 subjects
(7 male, 8
female) they
filled Eysenck
Personality
Questionnaire
(EPQ)

ESI Neuroscan -
4 min trials 45s
rest between
each video
presented

Meanwhile the
users are watch-
ing the video,
each stimuli is
labeled between
3-classes posi-
tive, neutral, and
negative

Bandpass filtering
between 0.3 and
50 Hz

None Differential entropy (DE) fea-
tures for each video trial from
five different EEG bands δ , θ ,
α , β , and γ . Different fea-
ture set from the DE feature
set, and DE assymetric fea-
tures set such DCAU, DASM,
and RASM

A set fronto temporal
channels are selected for
performance evaluation.
For a SVM C=1 and
linear kernel, and a 3-
layer Deep Belief Net-
work (DBN) 4,6,9,and 12
channels DE features are
giving for training

9 sessions for all
the subjects for
training, and 3
remanent sessions
for test.

For 12 channels and
all the DE features
from the whole fre-
quency bands together
the accuracy was the
best 86.85 ±2.99%.
For the DBN group-
ing all the bands is the
best accuracy 86.07
±1.47%
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(Koelstra et al.,
2010)

70 candidate
music videos
taking from
subjective
selection by
participants, 20
videos selected
by participants.
Russel’s axis
is defined
on the three
4 subplanes
LAHV/HAHV,
LAHV/LALV,
LALV/HALV,
HAHV/ HALV,
plus a neutral
class

6 participants,
selected 20 test
videos

Active Two
Biosemi.
Recorded at
256 Hz. A 30
s long trials
recorded per
stimulus

3 2-class prob-
lems. High-low
arousal, high-
low valence, and
like-dislike

band-pass be-
tween 0.3 and
35Hz

None PSD features are extracted
with the Welch method ex-
tracting features from a 3Hz
window. CSP filter features
are extracted each 3 Hz with a
50% overlap. PSD, and CSP
features are originally divided
in the five most used EEG fre-
quency bands δ , θ , α , β , and
γ

A linear kernel SVM
C=1

Leave-one-trial-out
(LOTO) per subject
cross-validation

Accuracies: For
Valence: PSD ->
58.8%, CSP-> 58.8%.
For Arousal: PSD
-> 51.9%, CSP->
55.7%. For Liking:
PSD->49.4%, CSP->
48.8%

(Petrantonakis and
Hadjileontiadis,
2011)

60 Ekman
face pictures
presented for
5 seconds, and
rated with 6 dif-
ferent emotion
categories. (10
per emotion)

16 Healthy
participants (9
male, 7 female)

g.MOBIlab
engineer-
ing, Guger
Technologies,
portable biosig-
nal acquisition
system four
EEG bipolar
channels, fil-
ters: 0.5–30 Hz
at 256Hz

The 6 Ekman’s
basic emotion
states happi-
ness,surprise,
anger, dis-
gust,sadness,
and fear

band-pass for
letting pass alpha
and beta rhythms
only 5-15 Hz

Signal Averag-
ing (with the
same trial)

Wavelet-based features, High-
Order-Crossing (HOC), and
additional statistical features
per 0.1s window

HOC-Emotion Classifier
(HOC-EC), and linear
SVM, Mahalanobis Dis-
tance (MD), and a QDA.
For HOC-EC authors
separated the features
for a single channel
and combined channels
features

Leave-out-n-out
cross-validation.
Randomly sepa-
rated 100 groups of
trials

Classification rate
measure is re-
ported: HOC-EC
/QDA-> 62.03%
single-channel, HOC-
EC/SVM -> 83.33%

(Jenke, Peer, and
Buss, 2014)

8 scene emo-
tions 5-sec long
trials for each
5 emotions per
subject , taken
from IAPS
database. IAPS
scenes are
labeled using
SAM and the
emotion labels.

16 subjects (9
male, 7 female)

64-channel
EEG cap with
g.tec gUSBamp
recording at
512Hz, with
an initial filter
between 0.1
and 100 Hz

5 emotions rated
by the authors
on the IAPS
database: happy,
curious, angry,
sad, and quiet.

50Hz Notch Filter None A total of 22881 features
were grouped per trial: 448
statistics, 128 Hjorth param-
eters, 64 Non-Stationary In-
dex, 64 Fractal Dimension,
640 HOC, 3264 STFT, 4096
HOS, 320 HHS power, 192
DWT bior3.3 , 192 DWT
db4, 12096 MSC estimate,
277 diff/derivative assymetry
, and 232 radio assymetry
. From this huge amount
of features 4 Feature Extrac-
tion Methods were proposed
mRMR, ReielfF, ES f2, ES γ ,
ES θ .

QDA evaluated per fea-
ture selection method

Leave-one-stimuli-
out using a 8 fold
over the training
set for the feature
extraction

Best Accuracies: ES
γ -> 36.38%, ES θ ->
36.68%
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(Frantzidis et al.,
2010)

500ms long
IAPS selected
trials. 40 trials
per subject
and online
annotation.

112 subjects
healthy (56
male, 56
female)

Neurobehavioral
Systems, Al-
bany, CA
Epoched time-
locked 500 ms
stimuli, EEG
recorded at
500Hz

2-class dividing
the Russels
axis in a four
different bi-
nary problems
LAHV/HAHV,
LAHV/LALV,
LALV/HALV,
HAHV/ HALV.
And each axis
separately for a
4-class problem.

Bandpass IIR but-
terworth filtering
between 0.5 and
50 Hz.

EOG artifacts
were removed
using a LMS
adaptive filter
per trial

DWT , ERP oscillations were
calculated using the five EEG
bands δ , θ , α , β , and γ , and
only the γ band included into
50 Hz. With SVMattribute
value only 2 features are se-
lected per trial one for ampli-
tude and one for latency.

Mahalanobis Distance,
linear SVM, a Polyno-
mial SVM, Radial basis
SVM

10 Fold cross-
validation across
all trials and all
subjects

Accuracies for linear
SVM best 2-class:
LAHV/HAHV ->
89.3%, LAHV/LALV
-> 92.9%,
LALV/HALV ->
82.12%, and HAHV/
HALV ->100%. For
the 4-class problem:
Maha -> 79.46%,
and linear SVM ->
81.25%

(Gao, Lee, and
Mehmood, 2015)

Data collection
from IAPS
emotional
scenes. 180
stimuli shown
per subject.
45 trials x 4
emotions

21 subject, 9
male, 11 female

Emotiv - Epoc
1.5 s time-
locked trials.
LPP and P300
based

4 emotions
(happy, calm,
scared)

Filtering, and
Hjorth parameter
estimation

EEGlab plug-
ing for EOG
removal from
(Gómez-
Herrero et al.,
2006)

Amplitude features from six
critical channels Fpl, Fp2, C3,
C4, F3, and F4

3 layers Semi-supervised
Deep RBM, and SVM,
KNN, and ANN base-
lines.

For RBM intra-
subject 120 trials
for training and 60
for test for each
subject, and other
two cross-vals 11
subjects for train,
10 for test, and
channel selection

For Deep RBM Ac-
curacies: intra-subject
-> 68.4%, 11/10 ->
28.67%, and channel
selection -> 57.2%

(Wang, Nie, and Lu,
2014)

The movie clips
set includes
six clips for
each of two tar-
get emotional
states: positive
and negative
emotions. Each
movie clip
duration is 4
minutes, with a
45 minutres for
SAM

6 healthy volun-
teers (3 male, 3
female)

ESI-128, Neu-
roScan Labs,
SCAN 4.2
software, and
a modified
64-channel
QuickCap. 4
minutes EEG
trial length

2- class problem
positive and neg-
ative video clip
classification us-
ing features for
the entire EEG
trial.

Downsampling
from 1000Hz to
200Hz. Trials
with EOG/EMG
components
are removed
manually

Features are
smoothed using
LDS, but noth-
ing is applied
to the signal or
the entire signal
distribution

PSD features extracted from
δ , θ , α , β , and γ , and 27
asymmetry indexes from 27
pair of channels. Wavelet fea-
tures grouped in 200 features
for all the EEG bands. 200
features covers the decompo-
sition and approximation co-
efficients, and the correspond-
ing entropy level. And Non-
linear dynamic feature (NLD)
and a new entropy features
estimation. LDS is used to
calculate the entropy and the
spectrum estimation cleaner

PCA, and LDA are used
for feature reduction and
a set of 3 SVM classifiers
are used here: a linear, a
polynomial, and a radia-
basis kernel. The C value
is estimated per fold.

10-Fold cross-
validation across
all trials and
subjects

Linear SVM shows
the best accuracies:
PSD without LDS
-> 87.53%, and PSD
with LDS -> 87.53%.
PSD asymmetry
features -> 82.38%.
Wavelet Features ->
78.41%. And NLD
features -> 71.38%.
Emotion trajectory
estimated, in direction
but not amplitude.

(Zheng et al., 2018) 168 movie
clips separated
tagged in 4
emotions. And
72 movies
were selected
between the
subjects. Each
EEG trial is 2 s
and a 45 s after
watch them is
taking for self-
assessments

44 participants
(22 male, 22 fe-
male)

The Emotion-
Meter hardware
is composed
of a SMI-ETG
eye-tracking
glasses, and 6
symetrical elec-
trodes T7-T8,
FT7-FT8, and
TP7-TP8

Each video is
labeled with one
of 4 emotion:
happy, sad, fear,
and neutral

A bandpass filter
betwen 1-75Hz.
And EEG and
eye-tracker data
is resampled from
1KHz to 200Hz

Non-linear
Dynamic Syste,
but nothing is
applied to the
signal

PSD and DE Features are
grouped for all the 5 EEG im-
portant bands and for the 6
channels δ , θ , α , β , and γ

A bi-modal Deep Au-
toencoder (BDAE) was
used to encode EEG and
eye-tracker features. A
subsequent stacked RBM
into the BDAE is used to
reconstruct the features
and classification.

1 session for train
- and one session
for test. Selected a-
priori

Accuracies: Eye-
tracker Features ->
67.82 ±18.04%, EEG
-> 70.33 ±14.45%,
and Feature Fusion
->75.88 ±16.44%
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(Zhang et al., 2018) 4 min length 6

music videos
selected from
Youtube Chi-
nese films.
Divided in 12
sessions per
subject. The
SEED database
and SEED-IV

15 subjects
(7 male, 8
female) they
filled Eysenck
Personality
Questionnaire
(EPQ)

ESI Neuroscan -
4 min trials 45s
rest between
each video
presented

Meanwhile the
users are watch-
ing the video,
each stimuli is
labeled between
3-classes posi-
tive, neutral, and
negative

A bandpass filter
betwen 1-75Hz.
And EEG and
eye-tracker data
is resampled from
1KHz to 200Hz

None DE features taken from 5
EEG important bands and for
the 6 channels δ , θ , α , β , and
γ For all the 62 channels.

TCA, KPCA, TPT, and
DANN optimization are
implemented here, and
Domain-Adversarial
Neural Network is
complemented using a
final two layers with
Maximum Mean Dis-
crepancies (MK-MMD)
blocks.

Leave-one-subject-
out (LOSO) -
Complementing
the SEED dataset
cross-val

Accuracies: DAN
-> 83.81 ±8.56%,
and DANN -> 79.19
±13.34

(Soleymani et al.,
2015)

20 videos
excerpts cho-
sen from
MAHNOB-
HCI database.
14 out of 21
were taking fro
movies. Clips
were taken
between 34.9s
to 117s . Data
collection and
labeling has
a Cronbach
alpha= 48.47%

28 healthy
volunteers com-
prising 12 male
and 16 female

EEG signals
were acquired
from 32 active
electrodes on
10-20 interna-
tional system
using a Biosemi
Active II device

Continuous la-
beling with the
SAM scale -5
to 5 for Arousal
and Valence
levels across all
the video length.

Band-pass Filter
for Alpha, Beta
and Gamma
bands

The artifac-
tual trials are
rejected calcu-
lating the EEG
bands correla-
tion R-squared
with the facial-
movements.
The Granger
causality is
calculated from
the 49 facial
points.

PSD features from 4 EEG
bands such as θ , α , β , and
γ . 32 electrodes x 4 bands fea-
tures 128 features

A Long Short Term
Memory Neural Net-
work regressor, based
Multilinear regression
techniques applied to
continuous labelling

10 Fold cross-
validation across
all trials and all
subjects

Pearson Correlation
Coefficient (PCC),
and Root-Mean-
Square Error (RMSE)
metrics are reported:
For EEG only PCC
-> 0.24 ±0.34, and
RMSE: 0.053 ±0.029.
With feature fusion
PCC-> 0.40 ±0.33,
RMSE -> 0.047
±0.025

(Liu, Zheng, and
Lu, 2016)

DEAP - EEG
signal 40
videos, and
SEED Dataset
videos 4 min
length 6 music
videos selected
from Youtube
Chinese films

all 32 subjects,
40 trials, 1
minute trial
per subject for
DEAP, and

ESI Neuroscan -
4 min trials 45s
rest between
each video
presented for
SEED, long-
trials watching
emotional
videos, online
tagging for
DEAP

2-class high-low
Arousal/Valence
levels - For
DEAP, and 3-
classes positive,
neutral, and
negative for
SEED

Filtered are ap-
plied as SEED
and DEAP papers
suggest. Addi-
tional filtering is
not added in this
study

None PSD and DE Features are
grouped for all the 5 EEG im-
portant bands and for all the
channels δ , θ , α , β , and γ

A bi-modal Deep Au-
toencoder (BDAE) was
used to encode EEG and
eye-tracker features. A
subsequent stacked RBM
into the BDAE is used to
reconstruct the features
and classification. A
DBN is used for DEAP,
and BDAE for SEED
dataset.

LOTO per subject
is used for DEAP,
and 9 sessions for
train and 3 test is
used for SEED

Accuracies: DE fea-
tures: For SEED ->
91.01 ±8.91%. And
for DEAP -> 85.2 Va-
lence, 80.5 Arousal,
84.9 Dominance, 82.4
Liking

(Zhang, Ji, and
Zhang, 2016)

DEAP - EEG
signal

all 32 subjects,
40 trials, 1
minute trial per
subjec

long-trials
watching emo-
tional videos,
online tagging

2-class dividing
the Russels
axis in a four
different bi-
nary problems
LAHV/HAHV,
LAHV/LALV,
LALV/HALV,
HAHV/ HALV.

Downsampling
from 512Hz to
128Hz, Filter for
5 frequency bands
theta, lower alpha,
upper alpha, beta,
and gamma PSD
128 samples

None Empirical Mode Decomposi-
tion Features (EMD) - only
channels are used per sub-
ject, and calculated across the
LOSO cross-val. For each 2
channel Intrinsic Mode Func-
tions (IMF) features

linear kernel SVM| Leave-one-subject-
out (LOSO) -
Following DEAP
original paper
modality

Best Accuracy SVM -
> 93.06%
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(Li, Zhang, and He,
2016)

15 movie clips
of 240s or 4
minutes from
SEED dataset
are shown in
online self-
assessment
task

4 healthy partic-
ipants

long EEG trials,
separated in six
emotions from
SEED dataset

Each stimulus is
labeled between
3-classes posi-
tive, neutral, and
negative

Downsampling
from 1000Hz to
200Hz, and a
bandpass filter
between 0.3 to 50
Hz

None 256 points STFT δ , θ , α ,
β , and γ , and DE maps cal-
culated per trial using Shan-
non entropy models. The DE
maps are organized in 2D us-
ing an scalp representation of
62 EEG channels. This orga-
nization is called as a Sparse
map and it is one per fre-
quency band as image chan-
nel

A Hierarchical 2-
convolutional 2 max-
pooling layers layer
ConvNet and a final
fully-connected with sig-
moid activation function.
The convnet is trained
using a batch-size of 50
and a learning rate of 1.

Three valiation
options : A. 3 Fold
cross-validation
200 repetition intra-
subject. B.Leave-
one-subject out
(LOSO). C. Us-
ing LOSO for
pretraining, and
intra subject for
fine-tuning

The best accuracy is
found using the γ . For
A -> 88.2±6.66%, for
B->37.10±1.91, and
for C->80.01±9.09%

Table 3.1 The most relevant and recent studies including non-ASD participants where Computer Scientists and Engineers have
evaluated EEG-based emotion recognition. Long and short time-locked trials are included here.
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Study-Authors Features # Classes N Performace Age-group
(Bosl, Tager-
Flusberg, and
Nelson, 2018)

DB4 Wavelet decomposition for 30
sec segments, 256 samples per second
EEG resting state, Recurrence Quanti-
tive Analysis (RQA), RR, DET, LAM,
ENT, longest diagonal, mean diago-
nal length, trapping time (TT), First
Poincare recurrence, Second Poincare re-
currence, and Sample Entropy and De-
trend Fluctuation Analysis

3 ASD, Low Risk Con-
trols (LRC), and High
Risk of ASD (HRA)
classes based on fam-
ily recruitment group
sibling. ADOS was
used to differentiate 2
no ASD-ASD binary
classification, and Cal-
ibrated Severity Score
1-10 (CSS) was esti-
mated

188 divided in
LRC, HRA and
ASD group. 89
LRC, 99 HRA,
and the rest ASD.
ADOS-CSS cut-off
is 4 to identify
ASD and non ASD
participants

LRC and ASD are used for train, and HRA is group is
used to test. And all the subjects together modalities.
Leave one subject out cross-validation and SVM clas-
sifier for both ASD and non ASD problem, and CSS
estimation. More than 95% sensitivity, specificity,
and PPV were obtained for mostly all age groups
from 3-36 months

150 participants re-
ceived 36 months, 23
received 24 months,
and 15 18 months age
groups

(Heunis et al.,
2018)

5 sec segments 10 RQA features
RR, DET, LAM, and Poincare Recur-
rence. Another set of PCA multidi-
mensional features were extracted, Kol-
mogorov–Smirnoff test feature selection,
and Mutual Information features were
also added in the feature set

Differentitating ASD
and TD groups

46 TD, and 16 ASD
subjects

Leave-one subject out classification, and 10-fold
cross-validation modalities. 70-30 train-test split is
used for the full range sample, and the second sub-
sample. The 10-fold and leave-one out crossvalida-
tions are used for the age-matched sample. 92.9%
Accuracy 100% sensitivity, and 87.5% specificity for
ASD-TD problem classification (leave-one-subject
out). LDA, MLP, and SVM classifier comparisons.
MLP shows the best accuracy for the full-range sam-
ple, and the SVM shows the best performances for
0-6 years subsample, and the age-matched subsam-
ple.

Analysis is subdivided
in three age-groups 0-
18 years, 0-6 years, and
2-6 years being this
latter and age-matched
sample

(Castelhano et al.,
2018)

Time-frequency values from 10-90Hz
and from 9 different categories of images
and 45 images per each category. Pho-
tographic, Schematic, and Mooney, and
three possibilities for each upright, in-
verted, and scrambled.

Classifying TD con-
trols and ASD groups
individuals

29 TD controls, and
10 high function-
ing ASD. 10 out of
29 controls were se-
lected for classifica-
tion analysis

85% Accuracy, and 94% AUC, for photographic face
features the best ROC was obtained reaching an AUC
of 98.6%. All these performances were evaluated for
a linear hyperplane SVM. The best regularization pa-
rameter was calculated in a 3-fold cross-validation
modality.

ADOS and Autism
Diagnostic Interview-
Revised (ADI-R)
were used to screen
ASD participants, and
they performed the
Welcher’s Intellegence
Scale assesment. All
subjects were adults
with a mean of 23.4
years for controls and
23.1 for ASD.
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(Eldridge et al.,
2014)

ERPs obtained from oddball task dae and
daa phonemes elicited for 340 ms long.
a) First features were extracted from sum
of signed differences (SSD) computing
median differences between deviant and
standard stimuli, b) Second, time vari-
ance of the standard stimuli response, c)
Third, calculation of modified Multiscale
Entropy (mMSE)

Classifying TD con-
trols and ASD groups
individuals

19 ASD, 30 TD
subjects same age
peers

79% Accuracy obtained with mMSE+first and sec-
ond feature sets using a Naive Bayes Classifier, Naive
Bayes Classifier also shows a maximum for the first
and second feature sets 66%. and linear SVM shows
a maximum for mMSE 0.69. A threefold cross-
validation modality was used for the evaluation.

ADOS-CSS and Child-
hood Autism Rating
Scale (CARS) are ob-
tained to separate ASD
group. Adults were in-
cluded in this evalua-
tion

(Pistorius et al.,
2013)

5s second resting state EEG 9 RQA fea-
tures, and PCA dimension reduction fea-
tures. A two-way ANOVA analysis was
implemented to select features that are
p<0.05 between TD/ASD groups in the
training set

Classifying TD con-
trols and ASD groups
individuals

7 TD and 5 ASD kNN k=3 and LDA are evaluated as possible claasi-
fiers. kNN and LDA perform equally well with the
EEG segments after artifact removal process. An ac-
curacy of 83.3%, a sensitivity of 85.7%, and specifici-
city of 80.0% 10/12 subjects were correctly classified
in a leave-one-subject-out crossvalidation modality.

ASD group was screen-
ing based on ADOS,
ADI-R and Kaufman
Assessment Battery for
Children. Age was dis-
tributed between 8-17
years

(Bosl et al., 2011) 20 sec EEG resting-state segments were
collected, subsequently a modifiefd mul-
tiscale entropy (mMSE) is calculated de-
tecting longer-range correlation between
multiple time ranges scales. Features for
the time asymmetry are calculated for
the EEG signal representing the number
of irreversible time points for each signal
excerpt

Classifying TD con-
trols and High Risk
ASD (HRA) groups in-
dividuals

79 subjects divided
into 46 HRA, and
33 TD controls, 143
sessions and a age-
group between 6-
24 months were in-
cluded

The mean mMSE shows an constant difference
around all the channells between TD and HRA
groups and across all the age groups. 192 values
feature vector was used as input vector to feed three
classifiers k-NN, SVM, and Naive Bayes. All in-
fants are also evaluated for boys and girls only. A
10-fold crossvalidation modality is executed for each
age group. A maximum accuracy 0.9 k-NN and 1.0
SVM is observed for boys in 9 months old and for 18
months 0.9 k-NN and 0.9 Naive Bayes.

TD and HRA partic-
ipants were screened
based on Infant Sibling
Project study, Partic-
ipants cover the age
range between 9-24
months
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(Jamal et al., 2014) 1000ms ERPs are extracted from the emotional and

neutral faces elicitation, they feed the following

pipeline: 1) a Continuous Wavelet Transform (CWT)

for each channel is calculated and the instantaneous

phase difference between each pair of channels is com-

puted, as well as the frequency representation, 2) a

k-means clustering is applied across all the channel

combinations, to find phase connectivity patterns. 3)

Depending on the number of clusters 3 brain syn-

chrostates are calculated from the k-NN clustering, a

phase synchronization index is calculated between all

the channels and for each synchrostate. 4) A synchro-

nization feature selection is processed using modular-

ity, transitivity, characteristic path length, radius, and

diameter per calulated graph connectivity between the

channels. 5) 36 features were collected for 2 max-min

states, 3 stimuli fear, neutral, happy, and the 6 parame-

ters of the graph.

Classifying TD Con-
trols and ASD groups
individuals

24 participants, 12
TD and 12 ASD,
processing 4 blocks
of 10 happy, 10 neu-
tral and 10 fearful
faces

LDA, QDA, SVM linear to 4 polynomial order clas-
sifiers were evaluated using a and for three different
cases of features, 1) the whole feature set for maxium
and minimum synchrostates, 2) maximum, 3) mini-
mum other 6 cases were evaluated using only a par-
ticular parameter from the 36 feature set parameters.
A maximum performances is obtained in case 1 and
2 for linear SVM obtaining 94.7 accuracy, 85.7 sen-
sitivity, and 100% specificity. The modality used for
the evaluation is a leave-one-observation-out group-
ing all the observations per subject and excluding
each them individually.

ASD group cover an
age group between 6-
17 years, with a mean
of 10.2 years

(Ingalhalikar et al.,
2014)

Magneto-encephalographic (MEG) and
Diffusion Tensor Imaging (DTI) features
were used. Two auditory experiments
were executed: The first is a binaural
sinousoidal wave at 45dB to detect the
auditory latency called M100. The sec-
ond is an oddball task between a deviant
tone and two vowels tokens detecting a
change in the Superior Temporal Gyrus
(STG) called Magnetic Mismatch Field
(MMF)

Classifying TD/ASD
participants and clas-
sifying ASD/LI- /
ASD/LI+ classes as
separate problems

135 participants,
were included
in this study 42
TD controls, 57
ASD/without lan-
guage impairment,
36 ASD/with lan-
guage impairment.
55 out of 135
complete the MEG
data

MMF+M100+DTI features were grouped together
producing the highest accuracy feeding a LDA clas-
sifier. 5 Fold cross-validation is use for a classifier us-
ing fuision data, and single fusion data. For ASD/TD
classifier the 5-fold cross-validation the authors ob-
tained 83.3% accuracy, 72.9% sensitivity, and 86.1%
sensitivity. Fusion performance on the new subjects
gives 87% accuracy classifying well 20/23 subjects.
For ASD/LI-/ASD/LI+ classifier the 5-Fold accuracy
was 70.1%, 66.6% sensitivity, and 76.6% specificity.

ASD and TD were
screened using ADOS
and ASD/LI- and
ASD/LI+ using
Clinical Evalua-
tion of Language
Fundamentals(CELF-
4). TD age mean is
10.4 years, and for
ASD is 10.1 years.

Table 3.2 Recent and relevant studies focused on ASD diagnosis or Early ASD diagnosis using ML-based pipelines, and using neural
outcome measures as inputs feature-set .
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Study-Authors Features #Classes #Subjects Performance Age-group
(Fan et al., 2017b) EEG signals were filtered between (0.2-

45 Hz). Each segment was cleansed with
a 50% overlap. Artifacts were removed
with EEGlab plugin (Gómez-Herrero et
al., 2006) and slew-rate threshold re-
moval. Features are extracted for a 60
mins long visit. Statistical, HOC, HHS,
and HOS features were grouped per trial.
Features were calibrated using this ex-
pression Fc =

f− flow
fhigh− flow

.

Identify men-
tal/affective states
on driving skill train-
ing environment.
Affective States and
mental workload are
quantifying on the
experiment. Engage-
ment, enjoyment,
frustration, and bore-
dom. Observer rate
the mental/affective
state and the workload
with scale between
0-9. Workload was
rated in binary way
high-low intensity

20 ASD (19 males,
1 female) diag-
nosed using the
ADOS-2. Each
subject developed 6
visits comforming
120 sessions, and
111 were processed

A nested cross-validation was applied. In the outter
loop it is a leave-one-subject out, and in the inner
loop is a 10-fold were the F-value is calculated for
each feature intra-subject. A kNN classfier is used to
reduce the classification noise. A best average perfor-
mance was obtained grouping all the features hyper-
parameters with macro F1 score of 0.90.

The age of the ASD
group has a mean of
15.69±1.65, and a
ADOS total raw score
of 13.56±3.67

(Fan et al., 2017a) EEG signals were filtered between (0.2-
45 Hz). Each segment was cleansed with
a 50% overlap. Artifacts were removed
with EEGlab plugin Gomez-Herrero and
slew-rate threshold removal. Features
are extracted for a 60 mins long visit.
Statistical, HOC, HHS, and HOS fea-
tures were grouped per trial

Facial Affect Recog-
nition task from a
emotional avatar, 28
trials are presented to
the participants. The
social expression is
shown for 3s after
a social vignette. 4
emotions presented
joy, sadness, surprise
and neutral

8 high-functioning
ASD male partici-
pants diagnosed us-
ing ADOS-2

5-fold stratified cross-validation, and 20 iteration
used to formalize the random effect

The age of the ASD
group was 13 to 18
years (M = 15.13, SD =
1.56) years
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(Fan et al., 2015) EEG signals were filtered between (0.2-

45 Hz). Each segment was cleansed with
a 50% overlap. Artifacts were removed
with EEGlab plugin Gomez-Herrero and
slew-rate threshold removal. PCA is ap-
plied for feature reduction

Identify men-
tal/affective states
on driving skill train-
ing environment.
Engagement, enjoy-
ment, frustration, and
boredom. Workload
is not included in this
study, but difficult is
included instead

16 ASD male par-
ticipants diagnosed
using ADOS-2

A 10-fold cross-validation is used across all the users
and the authors include a naive Bayes, a radia-basis
SVM, kNN with euclidean function estimation, and
a random forest with a 100 trees. The best perfor-
mances was registered for the kNN with 83.45% ac-
curacy.

The age of the ASD
group was 13 to 18
years (M = 15.24, SD =
1.63) years

(Simoes et al.,
2018)

Epoched data is taken for 1.25s. The
EEG signal was filtered between 1-
100Hz. ICA infomax is used for EOG
blinking artifacts. PSD features from θ ,
α , β , and δ bands was grouped. Features
such as signal envelope (ENV), Teager
energy operator (TEAG) and instanta-
neous power (POW) were taken from the
bands, and Non-Linear Domain features.
t-test comparison and evaluation is used
for feature selection.

The experiment was
divided in two task:
1) a Visual Stimulation
Task, and 2) Mental
Imagery Tasks. The
identification of neu-
tral faces, and emo-
tion faces (happy/sad)
in the MI task is the tar-
get of this study

17 male teenagers,
were recruited
and diagnosed
using ADOS-2 and
ADI-R. Other 17
TD male teenagers
were recruited for
comparison and
effects analysis
with ERP average
analyses.

80-20% cross-validation with 50 repetitions is used
for performance evaluation in MI tasks. SVM op-
timized kernel, and a WiSARD classifiers are used
here. Best F1-scores were reported for WiSARD
in emotion faces 76.2±3.3 %, and for neutral faces
69.7±3.4%

ASD: 16.4± 0.6 years;
TD: 15.5±0.6 years

Table 3.3 Recent and relevant studies focused on lab-controlled ASD groups emotion or behavioral/outcome measures recognition
using neural features, specifically EEG.
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3.1.1 Pre-emphasis techniques used for EEG-based pipelines non-ASD

Most no-SOA ML pipelines regardless of ASD participants inclusion have given low impor-
tance to data pre-emphasis EEG signal treatment. In Table 3.1 most pre-emphasis methods
are only including band-pass filtering. This pre-emphasis evaluation is vague because of
there is no standardized for most no-SOA studies in the filter range included here.
A common gold-standard for filtering in EEG lab-controlled environments is a range between
0.1-30Hz. This is convenient for ERP oriented analysis (Lerner, McPartland, and Morris,
2013; Leventon, Stevens, and Bauer, 2014) and make the waveforms for a time-locked
signal more distinguishable as neural activity. Nevertheless, these initial filtering ranges
are therefore more conditioned by the requirements of the subsequent feature extraction
and classification methodologies. Complete frequency ranges between θ and γ are more
convenient in some examples such as (Gao, Lee, and Mehmood, 2015; Wang, Nie, and Lu,
2014). The strong contribution of these particular pipelines are in the classifiers and the
training methodologies supervised/semi-supervised. Most of the features included in this
pipeline have a low probability to be related to the stimuli elicitation and the corresponding
neural synchrostate (Jamal et al., 2015), especially for video-elicited long EEG trials.
Other important aspects for pre-emphasis techniques in EEG-based is the downsampling
(Jirayucharoensak, Pan-Ngum, and Israsena, 2014; Koelstra and Patras, 2013). The down-
sampling not only reduces the computational complexity of the subsequent processes but also
enhances the Occam’s razor effect for the subsequent feature extraction processes. In most
cases with a sampling rate on 200 or 256Hz it will be possible to preserve the high-frequency
differences observed in high γ bands (Maffei, Spironelli, and Angrilli, 2019).

Datasets Drawbacks

For most studies including non-ASD or healthy volunteers without screening processes the
evaluations are broader in terms of the type of stimuli presented. For most cases stimuli
videos are presented from two approaches 1) some authors explained data-collection where
we found fewer examples, or 2) existing datasets such as DEAP (Koelstra et al., 2011),
MANHOB-HCI (Soleymani et al., 2011), or SJTU Emotion EEG datase (SEED) (Zheng
and Lu, 2015). Multiple other datasets such as DECAF (Abadi et al., 2015) or AVEC
(Schuller et al., 2011) have been created as a result of previous implementations with DEAP
or MANHOB-HCI, but the three first initially mentioned datasets have been created for
EEG-based emotion decoding without stimuli synchronization.
From the generation of these multimodal datasets, computer scientists have focused their
attention to enhance the baseline performances but the pre-emphasis techniques are not
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precisely important for the most relevant studies included in Table 3.1. The creation of these
datasets are focused on making the multimodality easier on the data-collection methodologies,
however despite the big amount of data collected, and the versatility of the video emotion
stimuli, most neural data collected using this method are not always associated with the
stimuli, and the continuous emotion tagging will add an elicitation lag and unmatching
effect associated with expected emotion appraisal, and cognitive processing of the annotator
(Baveye et al., 2017).

3.1.2 Artifact Removal Techniques

Artifactual trials contaminated with electro-occulogram (EOG) components such as blinking,
and eye movement, and electro-myographic (EMG) high-frequency bursts generated by head
muscles are very frequent in EEG-based studies.
In lab-controlled environments some companies such as Biosemi and Brain-Products have
designed visual inspection tools to do manual artifact rejection, and neuroscientists invest
multiple human resources for manual artifact rejection based on visual inspection (Delorme,
Makeig, and Sejnowski, 2001). This process is taking an exponential amount of time in
comparison with automatic approaches. One of the first semi-automatic for artifact removal
was designed by (Gómez-Herrero et al., 2006), however, despite some no-SOA studies
use this artifact removal method, it still requires the setting of a numerical threshold for a
slew-rate and amplitude rejection per EEG trial.
The best automatic artifact removal techniques have been included as plugins on EEGlab
(Delorme and Makeig, 2004) a broadly used Matlab based toolbox for EEG signal processing.
EEGlab plugins such as ADJUST (Mognon et al., 2011), Artifact Subspace Reconstruction
(ASR) (Mullen et al., 2013), ICA-based artifact removal methods (Winkler, Haufe, and
Tangermann, 2011), and other Supervised methods such as MARA (Winkler et al., 2015),
or the subordinated methods included in the Prep pipeline (Bigdely-Shamlo et al., 2015).
We will describe the usage of some of these methods in the chapters below where we are
applying them in our proposed pipeline.
Ironically, these automatic methods are not precisely used for the methods included in
the Table 3.1. For no-SOA EEG-based pipelines the eye movements, blinking, and head
movements artifacts are more recurrent and affect the quality of the neural activity perceived
from the EEG signal. For some studies (Li et al., 2018; Liu, Zheng, and Lu, 2016; Zhang
et al., 2018; Zheng and Lu, 2015) there is not any artifact removal pipeline or plugin reported
given almost the entire pipeline robustness and statistical contribution to the classifier. This
is risky statistically-talking because of the low-quality of the neural representation implied
on the artifactual EEG signal recorded, and the unreliability of these signal’s features for
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using them in the subsequent classifier (Bos, 2006).
This previous assertion does not only give a low statistical power to the results obtained
on results without artifact removal pre-processing, but it is conditioning generative and
discriminative classifiers to learn from non-realistic features (Soleymani et al., 2015).

3.1.3 Features used for EEG-based Emotion Recognition

Some feature selection and extraction methodologies were mentioned in the chapter above.
But as well as filtering ranges on pre-emphasis methodologies the variety found in feature
selection and extraction methodologies is very vast for EEG-based emotion recognition
pipelines (Nakisa et al., 2018).
A very common feature selected for emotion decoding in long EEG trials is the PSD of five
important EEG bands such as δ [1-3] Hz, θ [4-7] Hz, α [8-13] Hz, β [15-40]Hz, and γ [>
40Hz] bands in average, and/or using Differential Entropy (DE) measures from the single-
trial spectrogram (Frantzidis et al., 2010; Koelstra et al., 2010). These frequency-domain
features are commonly used in long EEG trials involving video and a posterior annotation,
but frequency measures are also used for time-locked trials such as ERSD, ERD, and ERS as
we mentioned above.
More recent studies evolve from entropy and PSD features to High-Order-Crossing (HOC)
features, and High-Order-Statistics (HOS). These two models extend the variability of simple
frequency-domain features constructing the frequency domain representations to high-order
and statistics distributions across the important frequency bands (Petrantonakis and Hadjileon-
tiadis, 2011). These model extensions are commonly supported with Discrete/Continuous
Wavelet Decomposition methods (D/CWT) that can model spectrum, phase, and amplitude
domains with multiple quadrature family functions (Sharma et al., 2017). Some studies use
an even symmetry function such as Daubechies4 or Bi-orthogonal functions (Jenke, Peer,
and Buss, 2014) to model more accurately EEG signal slopes and ERPs.
Other common feature extracted from EEG single-trials is the Common-Spatial-Filters (CSP)
weights. CSP metrics are positively correlated with spatial symmetry indexes across EEG
channels (Kothe and Makeig, 2011). For binary-class problems in motor imagery CSP is used
to find the most separable features between two movement (Sturm et al., 2016), this effect is
also observed for other multi-class problem in EEG-based emotion decoding (Koelstra et al.,
2010).
An extra spatial-based signal process for an EEG signal modelling is the Hjorth filter param-
eters. The Hjorth model propagate the variance of the spectrogram across the channels in
the scalp with three critical features such Activity = var(y(t)), Mobility =

√
var(y′(t))
var(y(t)) , and
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Complexity = Mobility(y′(t))
Mobility(y(t)) . These features are indicators of slow and high frequency patterns

in long EEG trials (Soleymani et al., 2011).
Some researchers have focused on include system dynamics and linear and non-linear de-
scriptors to explain how the EEG signal is describing patterns, especially for long EEG
trials. Initially, computer scientists proposed a more descriptive but noise set of features
based on DE denoted as h(X) = −1

2 log(2πeσ2). This cross-entropy approximation as-
sumes the EEG signal as a Gaussian representation and following this assumption we
can define the Differential Asymmetry (DASM) DASM = DE(Xle f t)−DE(Xright), the Ra-

tional Asymmetry (RASM) RASM =
DE(Xle f t)

DE(Xright)
, and the Differential Caudality (DCAU)

DCAU = DE(X f rontal)−DE(Xposterior).
All these features are very descriptive in terms of the overall neural activity propagated
through the scalp in long term (Duan, Zhu, and Lu, 2013). However, these features need a
proper smoothing process such as Linear Dynamical System (LDS). The LDS consist of a
feature reconstruction based on a previous measured feature per channel and per frequency
band using a linear model function to link previous and posterior samples as Fi. The complete
model for the LDS is defined as follows Fi(Xv) = AFi(Xv−1)+ω , where Xv is the EEG signal
and A the class transition matrix and ω the modelled noise per trial (Zheng et al., 2015).
Another dynamic EEG signal descriptor is the Non-linear Dynamic Feature (NLD) as a
complex marker to measure the EEG signal regularity in time for long-trials. The NLD
model describe the entropy as a complex entropy based on Lyapunov series (Aftanas et al.,
1997) and the non-stationary properties of the EEG signal using the Hurst Exponent (Wang
et al., 2015).
In summary, using all the features set described above for decoding emotion labels in con-
tinuous or non-continuous way is not only a complicated task. However, these model are
not easy to model EEG signals as a deterministic interaction between the stimulus and the
neural activity, and for no-SOA modalities it is not easy to identify real neural activity and
artifactual responses (Jenke, Peer, and Buss, 2014). In the next subsection we will describe
the most recent and relevant classifiers used for EEG-based emotion decoding for non-ASD
population.

3.1.4 Classifiers used for EEG-based Emotion Recognition Pipelines

From Table 3.1 summary we did not find a considerable variety of classifiers to evaluate
EEG-based emotion recognition for non-ASD participants. However, for recent studies
computer science researchers are trying to include Deep Classifiers to encode any neural
feature/outcome measure (Spampinato et al., 2017).
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Historically, the Support Vector Machine (SVM) is a flexible classifier to evaluate multiple
types of kernels such as linear, polynomial, and radial-basis (Mehmood and Lee, 2015).
The usage of SVM has been employed as a first baseline not only for EEG-based emotion
recognition but as a baseline for motor imagery, and multiple disorders diagnosis (Subasi
and Gursoy, 2010).
As we described above the NLD, DE, and LDS feature smoothing process assume a Gaussian
cross-entropy calculation. We can check this in Table 3.1 where the best SVM performances
are associated with the linear-kernel SVM (Petrantonakis and Hadjileontiadis, 2011; Zhang
et al., 2018).
Other classifiers such as k-Nearest Neighbors (kNN) with the number of neighbours parameter
k = 5 or k = 4 has been used but due to the large variety of feature selection/extraction, this
parameter is not easy to calculate or infer for a better performance (Mehmood and Lee, 2016).
A more simplified classification approach is the linear classifier and in some implementations
such as Naive Bayes, Linear Discriminant Analysis (LDA), or Gaussian Mixture Model
(GMM)(Lotte et al., 2007) contributing with good performances in some pipelines (Mehmood,
Du, and Lee, 2017; Wang, Nie, and Lu, 2014). A Quadratic Discriminant Analysis (QDA)
classifier is also applied with good performances (Jenke, Peer, and Buss, 2014), and this
unexpected results are justified when 2-class problem represented with PCA and ICA-based
features are solved based on linear hyper-planes separability (Blankertz et al., 2011).
Other classification approaches use Transfer Components Analysis (TCA), Kernel Principal
Component Analysis (KPCA), and Transductive Parameter Transfer (TPT). All these models
perform parameter learning and subsequent transfer learning from linear hyperplanes. For
instance TCA use a calculation of a modified feature map φ that minimizes the cost between
the input features hyperplane Xs and the predicted hyperplane Xt expressed in Equation 3.1

Dist(Xs,Xt) =

∣∣∣∣∣
∣∣∣∣∣ 1
n1

n1

∑
i=1

φ(xs)−
1
n2

n2

∑
i=1

φ(xt)

∣∣∣∣∣
∣∣∣∣∣
∇

(3.1)

For these methods xs is represented as a the complete 2D feature-set composed of channels
× time per trial, and similar to TCA, KPCA classifier uses a kernel function to optimize
the φ calculation. Following (Pan et al., 2010) the Equation 3.1 can be re-written with as a
eigenvalue decomposition for a kernel function approximation K as in Equation 3.2.

Dist(Xs,Xt) = tr(W T KLKW ) (3.2)

These two latter models are not transferring learnt weights and parameters from an specific
type of classifier to another. However, TPT is a linear model that transfer the learning weights



3.1 EEG-based classifiers Emotion Recognition - non ASD 46

from a intra-subject SVM classifier to another classifier to leave-one-subject-out subsequent
SVM classifier. In (Sangineto et al., 2014) TPT is explained as aa first phase where the initial
SVM parameters are learnt from multiple intra-subject SVM classifiers Θ = [ω l

i ,bi]. These
parameter set is transfer to a subsequent subject independent Regressor SVM-R. The full
learning model expression is described in Equation 3.3

minπ

1
2

M+1

∑
i=1
||βi||2 +λE

N

∑
i=1

E (||Θi− fπ(Xi)||) (3.3)

In Equation 3.3 the βs represent the slope parameters of the SVM regressor. The specific
application of TPT in EEG-based pipelines was found in (Li et al., 2018) to enhance the
subject independent neural emotion decoding.
With the exhaustive search reported in Table 3.1 we found additional Deep classifiers joining
supervised and unsupervised training methods. In the next subsection we will describe this
models in detail.

3.1.5 Deep Classifiers used for EEG-based Emotion Recognition Pipelines

Deep learning is a hot topic in computer science and in interdisciplinary research constituting
a high implementability trend. However, the inclusion of Deep Learning pipelines is missed
in EEG decoding pipelines (Martinez, Bengio, and Yannakakis, 2013).
The last Turing award winners prof. Geoffrey Hinton, Yann LeCun, and Yoshua Bengio have
contributed incredibly in the ML state-of-the-art (LeCun, Bengio, and Hinton, 2015), and
thus have opened the door for exploring new feature-set conformations in 2D, 3D, or 4D
arrangements with multiple sensors such as a multi-channel image.
From this point of view, a recent study (Andreotti et al., 2018) has changed the paradigm of
Deep Learning and have applied Deep Learning classifiers successfully into the clinical trials.
Nevertheless, despite the immaturity of these models in lab-controlled clinical trials multiple
researchers have included Deep classifiers in multiple clinical modalities as we described in
Table 3.1.
The first Deep classifier which gains attention in lab-controlled environment was the Deep
Belief Network (DBN). In previous implementation DBN has been used to extract the most
separable feature-space from a initial clinical feature set (O’Leary et al., 2017a,b). For
more recent implementation the DBN is modelled as composition of Restricted Boltzmann
Machines (RBM) units with the possibility to be trained it in semi-supervised way (Bengio,
2009). The new revolutionary idea with these multi/greedy layer schemes is to avoid
overfitting presented in a typical backpropagation process when the number of hidden-layers
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is high (Asthana, Goyal, and Pandit, 2017).
The DBN can be constituted as a greedy-layer wise model. This model is a biderectional
neural structure described in (Bengio, 2009; Goodfellow, Bengio, and Courville, 2016)
trained using a semi-supervised process denoted as a pre-training. However, in recent
computer vision pipelines there is not any more pre-training associated with unsupervised
method but associated with a previous self-supervised or transfer learning process (Iyer et al.,
2018), and not necessarily associated with clinical lab-controlled environments.
This unsupervised process is also described as a Gibbs sampling for a unitary layer assuming
the DBN as a set of RBMs. This process is referred also as a Constrastive Divergence (CD)
process for the complete DBN structure. The initial process give the neural network the name
RBM propagating the parameter learning based on the feature-set distribution Xi, and it will
modulate the unsupervised parameters θ . Equation 3.4 expresses how the parameters learnt
from CD process are proportional to a gradient calculation across layers.

∆θ ∝
∂FreeEnergy(Xi)

∂θ
− ∂FreeEnergy(X̂i)

∂θ
(3.4)

The propagation is modelled by Equation 3.5 and it propagates the learning parameters from
bottom to top in the network structure. Equation 3.5 shows the general model for parameter
learning in the previous mentioned CD process.

∂ logP(Xi)

∂θ
= E

[
∂ logP(Xi|h1)

∂θ

]
−E

[
∂ logP(h1)

∂θ

]
(3.5)

After the unsupervised pre-training the new results for X̂i, thus the training process for the
DBN is complemented with a fine-tuning supervised process to adjust the new parameters
in the network and avoid overfitting. Most cases implementing DBN use different learning
rates for the pre-training, and fine-tuning process. Equation 3.6 shows the general model for
the supervised greedy-layer wise training DBN system.

P(Xi,h1,h2...,hl) =

(
l−2

∏
k=0

P(hk|hk+1)

)
P(hl−1|hl) (3.6)

The expression on Equation 3.6 shows how the posteriors P(Xi,h) are calculated based on
the hidden values parameters h from the layer k to the layer k+1. This deep modelling is
applied in some EEG-based emotion recognition studies (Gao, Lee, and Mehmood, 2015;
Zheng and Lu, 2015) outperforming in the most cases the SVM baselines.
On the other hand, some researchers use a variation of a bimodal Autoencoder named as
Bi-Modal Deep Autoencoder (Bi-DAE). This structure has been used when eye tracking
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features are included in the study. This structure is composed of a Deep RBM on top and a
Deep RBM on the bottom in other to find a shared representation for long-trial inputs. This
new model and posterior probabilities calculation was defined by (Ngiam et al., 2011) and
the new model s process following this P(h j|xi) =

1

1+exp

(
b j+ωT

j xi
σ2

) . In our review Table 3.1

we report two pipelines including Bi-DAE with eye tracking and EEG pipelines with each
modality as a uni-dimensional feature vector (Liu, Zheng, and Lu, 2016; Zheng et al., 2018).
Other Deep Classifier option is the adaptive Deep Neural Network scheme or for other
researchers Deep Adaptive Neural Network (DANN). This network is trained with special
method denoted as Multiple-Kernel Maximum-Mean-Discrepancies (MK-MMD). This new
model consist of a Deep ConvNet (Dumoulin and Visin, 2016; Krizhevsky, Sutskever, and
Hinton, 2012) with multifunctional layers, with two or more tranferable convolutional layers.
To complement the transfer model an EEG-based implementation (Li et al., 2018) used
the model on Equation 3.7 similar to the transfer model of TPT in the previous subsection
adding a penalty constant λ to the parameters of the layer l−1 propagating the transfer to
the full-connected (FC) layers (Long et al., 2015). The kernel function dk is modulated by
the input and target values and for the EEG-based recognition pipeline the authors used this
for a better performance using session transfer-learning.

minΘ

1
nl

nl

∑
i=1

J
(

Θ(X l
i ,yi)

)
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ConvNet Output Parameters

+ λ

l2

∑
l=11

d2
k (X

l
i ,X

l
t )︸ ︷︷ ︸

MK-MMD parameters

(3.7)

In this dissertation we will base our ML approach in a Deep ConvNet but with a traditional
discriminative training based 2D functional layers as we will explain in the next chapters and
sections. Unfortunately, we did not find an recent and relevant implementation of EEG-based
emotion recognition using a simple function Deep ConvNet with a exception of (Li, Zhang,
and He, 2016) where a Hierarchical Deep ConvNet (HCNN) is implemented with learning
transfer as we can see in Figure 3.1. However, in general reviewing EEG-based emotion
recognition is going through a multimodal training methodologies (Andreotti et al., 2018)
more than using the EEG channel features only. In this study we introduce this critical aspect
and a novelty, and a crucial part of our pipeline constructing a new 2D EEG feature set
dedicated to our Deep ConvNet classifier.
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Fig. 3.1 Sparse 2D DE features across channels and frequency bands arrangement for
ConvNet on (Li, Zhang, and He, 2016)

3.1.6 Cross-validation Modalities

The summary is reported in the Table 3.1. We found a considerable different amount of
cross-validation modalities for EEG-based emotion recognition pipelines.
The first level of cross-validation evaluated in the EEG-based is for instance 5-Fold and
10-Fold cross-validation across subjects. For a single-trial EEG classification use a folding
with repetition across all trials is not precisely the most realistic possible scenario.
The next level of formality is the Leave-one-Subject-Out (LOSO) cross-validation that
assures a subject independence isolating the trials for a unique subjects for test and the rest
for training. For this particular case EEG features and the signal itself it is not easy to find
separability between biological, and behavioral features (Blankertz et al., 2004). The EEG
trials variability construct a personal neural model per participant. Therefore, an intra-subject
cross-validation such as Leave-One-Trial-Out (LOTO) for K-Fold per subject will provide a
more significant feature set for classifier evaluation.
In the summary Table 3.1 we reported multiple cross-validations for a single study, where
the LOSO cross-validations always show lower performances, in comparison with general
K-Fold cross-validations, and other intra-subject LOTO cross-validations. In this dissertation
we have multiple intra-subject cross-validations for our preliminary no-SOA/SOA studies,
and for our lab-controlled Autism experiment we use a LOTO cross-validation per subject
to compare the machine and behavioral performances in a more personal model (Blankertz
et al., 2011). We will detail this methodology in the next chapters.

3.2 EEG-based classifiers Emotion Recognition - ASD

Table 3.2 and Table 3.3 shows the more relevant studies for studies applied for ASD early or
non-early diagnosis, and EEG-based emotion state decoding. In comparison with studies
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including only neurotypical participants, we found fewer studies ML pipelines for diagnosis,
and emotion-state decoding including ASD participants.
As we mentioned in previous sections the difficulty to find ASD participants for a ML
study including screening process is very considerable. In spite of these drawbacks and the
additional care to take into with a no-SOA signal acquisition. In the following subsections
we will discuss in detail the results and methodologies use for ML studies including ASD
participants, and how these metrics will persuade us for the construction of our pipelines in
the next chapters.

3.2.1 Classifiers applied to ASD diagnosis

In the studies reported in Table 3.2 we did not find a big variety of classifiers, and recently
there is not a Deep classifier included for ASD diagnosis in the current literature.
For an EEG-based ASD Early diagnosis in (Bosl, Tager-Flusberg, and Nelson, 2018; Bosl
et al., 2011) more than 188 subjects diagnosed with Low-Risk Controls (LRC), basal ASD,
and High-Risk of ASD (HRA) using Infant Sibling Project assessments (Stone, McMahon,
and Henderson, 2008) considering screening methods. In the first study the features were
evaluated across groups to define a biomarker separability, and in the subsequent study a set
of classifiers such as k-NN, SVM, and linear Naive Bayes classifiers. The main novelty of this
set of studies is modelling the EEG resting-state signals using the Recurrence Quantitative
Analysis (RQA) features (Acharya et al., 2011).
First the recurrence plots Ri, j is defined as a time displacement 2D quantitative metric. This
plot is defined as a gray-scale matrix showing amplitude difference in time through long-term
trials such as resting-state Ri, j = Φ

(
εi−

∣∣∣∣xi− x j
∣∣∣∣). The xi is a no-displaced EEG signal

and x j is the displaced signal modelled with a different z-representation. The final recurrence
plot is normalized using a Heaviside function Φ , and the threshold distance εi.
The studies using RQA for ASD diagnosis use a particular set of features from the 2D
recurrence plot. Features such as the Recurrence Rate RR = 1

N2 ∑i, j=0 Ri, j, the Determinism

DET =
∑l=lmin lP(l)

∑i, j Ri, j
being the P(l) the frequency distribution, and lmin as the minimum length

of the recurrence plot diagonal, Mean Diagonal Line Length < L >=
∑l=lmin lP(l)
∑l=lmin P(l) , the recur-

rence plot Entropy estimation ENT R = ∑l=lmin P(l) ln(P(l)), the Laminarity (LAM) or the

fractions of points in the recurrence plot that forms vertical lines LAM =
∑v=vmin vP(v)

∑v=1 P(v) being v
the length of the vertical line, the Trapping Time (TT) or the mean length where the EEG rep-
resentation is trapped in vertical lines T T =

∑v=vmin vP(v)
∑v=vmin P(v) , longitudinal features such as Longest

Vertical Line Vmax = max(vi; i = 1..Nv), Longest Diagonal Line Lmax = max(li; i = 1..Nl).
From the first study in the summary, the authors correlate the modifier Multiscale Entropy
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(mMSE) EEG features with the LRC, and HRA prediction. In this study and in the subse-
quent second study three classifiers were evaluated k-NN, SVM, and Naive Bayes using
LRC, and ASD basal diagnosis subjects’ RQA and DWT features for training and HRA for
test. In some analysis they used only the channels T7 and T8 features and achieving good
performances.
Other studies (Eldridge et al., 2014; Pistorius et al., 2013) follow the biomarker analysis
initially proposed by (Bosl et al., 2011). RQA, and mMSE features are included again in
this case to diagnosis early ASD, but with an alternative screening methodology such as the
ADOS-2 and the ADI-R.
The most popular classifier in Table 3.2 is the linear kernel SVM reporting the better per-
formances. Multiple studies (Castelhano et al., 2018; Eldridge et al., 2014; Heunis et al.,
2018; Jamal et al., 2014) use the SVM as baseline for diagnosis 2-class prediction. Some of
these studies extend the statistical an incidence of RQA and DE features across frequency.
However, (Heunis et al., 2018) has been the first to include multi-variable classifier such as
1 hidden-layer neural network as the Multilayer-Perceptron (MLP) obtaining good perfor-
mances.
A more specific study (Jamal et al., 2014) is the first study including CWT, DE, synchroniza-
tion in time and frequency domain features, and k-NN clustering features from emotional
face stimuli elicitation. In this study a leave-one-subject cross-validation is evaluated, thus
obtaining a good performances from the EEG single-trial’s features. This study is the first to
include adult participants for ASD diagnosis prediction.
In the table we report only one study including MEG signals (Ingalhalikar et al., 2014). This
study use an alternative assessment for ASD screening based on the Clinical Evaluation of
Language Fundamentals (CELF-4) (Paslawski, 2005), and the classes for the automatic diag-
nosis is the diagnosis of ASD with low language impairments ASD-LI-, and ASD with high
language impairments ASD-LI+. The authors used the Diffusion Tensor Imaging features
from posterior, temporal, and central channels related to auditory stimuli.

3.2.2 Classifiers applied EEG-emotion recognition including ASD indi-
viduals

Table 3.3 is showing the studies including ML pipelines for emotion-state decoding using
EEG features. Checking the state-of-the-art and literature it was not easy to find studies for
EEG-based emotion recognition with previously diagnosed ASD participants.
For the studies we found, we concatenate three studies in time evaluating complex emotion
states on a driving Virtual Reality (VR)environment. In (Fan et al., 2015, 2017b) the authors
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elevate the level of complexity of cross-validations trying to decode first 4 or in the more
recent studies 5 different complex emotion states such as engagement, enjoyment, frustration,
and boredom, or an additional measure of the level of workload from a 5-fold stratified
cross-validation to a 10-fold nested cross-validation with a LOSO cross-validation outer
loop.
In the earlier study (Fan et al., 2017a) the authors predict 4 more basic emotions such as
joy, sadness, surprise, and neutral following the same VR driving environment of the studies
mentioned above. For all these studies the authors use HOC, HOS, and Hilbert-Huang
Spectrum (HHS) features. As we explained above these features are essential for long EEG
trials decoding (Jenke, Peer, and Buss, 2014).
The more recent study for EEG-based emotion decoding including ASD groups (Simoes
et al., 2018) decode emotion from PSD features including θ , δ , α , and β bands, and
other morphological features such as Teager Energy operator as a discrete time energy
operators ω2x(ω)∗ x(ω) where the ∗ is the convolution of the two frequency representations.
The envelope-differential operator (ENV) |x(ω)+ jH (x(ω))| being x(ω) the frequency
response of the EEG signal, and H the Hilbert Transform, and the Instantaneous Power
(POW) X

(
dx(t)

dt ,ω
)

. The big difference between this study and the rest including ASD
groups is: 1) a face emotion recognition task used for training a SVM and a Wilkes, Stonham
and Aleksander Recognition Device (WiSaRD) classifier (França et al., 2014) using EEG
and image features, and 2) a subsequent mental imagery task remembering the previous faces
presented in the previous stage.



Chapter 4

Machine Learning preliminary
Evaluation on DEAP, Object Categories,
and TROIKA datasets

In this chapter we present the results of the preliminary ML pipelines evaluation for 1) DEAP
EEG-based emotion arousal/valence level decoding, 2) An object category prediction using
EEG features subspace transformation, and 3) a HR prediction and IBI signal calculation
using regression light complexity implementations, applied for treadmill exercise, and real-
life scenarios.
The methodologies described here are well documented in previous pipeline implementations,
we will focus on the results, research implications, and the new methodologies included in
these implementations. We will cite the papers related to these implementations.

4.1 DEAP EEG-based Emotion Recogniton

In this section we will describe four different items of our DEAP dataset EEG-based emotion
recognition preliminary pipeline: A) the DEAP dataset pipeline and its corresponding
baseline replication, B) our signal processing pre-emphasis pipeline part composed of the
Hilbert Transform representation, C) the Bhattacharyya feature-selection phase explanation,
and D) the DNN, K-NN, and GMM classifiers used in this pipeline.
DEAP (Koelstra et al., 2011) dataset is a multimodal dataset where 40 1 min length music
videos clips trials are shown to 32 subject who was instructed to recognize high and low
arousal-valence levels in a continuous annotation modality. DEAP authors used a Biosemi
ActiveTwo EEG device amplifier.
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DEAP paper proposes to analyze the feature representation in a personalized way as we
explained above. Then, the DEAP baseline should be evaluated using a LOTO cross-
validation per subject using the symmetrical features from 28 out of the 32 channels except
Cz, Fz, Oz and Pz channels. Features such as statistical features mean, standard deviation,
maximum, minimum and the Power Asymmetries Indexes (PAI)-Equation 4.1 show the
difference between the absolute powers between the left and right channels- for four important
EEG bands such as α , β , θ , and γ . A Gaussian Mixture Model (GMM) classifier calculating
two mixtures for arousal-valence (high/low) classes

PAIle f t−right = 10(log10(X(ω)le f t)− log10(X(ω)right)) (4.1)

On the other hand, for our specific approach each EEG single-trial is filtered using two 150
order Blackman-Harris FIR filters to preserve α and γ rhythms. For each EEG single-trial
f (u) and for each k channel the EEG signal in time-domain is transformed using the absolute
value of the Hilbert transform following Equation 4.2 Torres, 2013. On Figure 4.1 we
describe the whole 2-channels EEG-based emotion decoding pipeline on DEAP pipeline.

Fig. 4.1 EEG-based emotion decoding pipeline, thus showing per subject cross-validation for
a single-trial classification.

|H (x)|=
∣∣∣∣ 1π
∫

∞

−∞

f k(u)
1

(x−u)
du
∣∣∣∣=∣∣∣∣limx→0

(∫ x−ε

−∞

+
∫

∞

x−ε

)
f k(u)h(x−u)du

∣∣∣∣ (4.2)

The absolute value of the Hilbert Transform |H (x)| provides a positive time-domain and a
modulatory signal representation related mainly to α low-frequency formers. These positive
values describe better spectrum asymmetries in α rhythms. The pair of channels with the
higher difference between the |H (x)| means are selected only using the training-set trials -
39 trials for training-. Figure 4.2 shows the histogram for this 2-channels selection where we
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can observe some high occurrences in left-fronto-central and parietal regions (Samaha et al.,
2015).

Fig. 4.2 2-channel selection histogram based on the highest Hilbert Transform difference
between both channels for DEAP dataset.

The top selected channels using the Hilbert transform differences were FC5 : 23.71 %, Pz
: 17.32 % and T7: 13.34 %. These percentages are calculated from the total occurrences, and
validating α + γ spiking in fronto-central region during long audiovisual stimuli presentation
(Kang et al., 2015). However for a non-SOA study including continuous annotation and
emotion elicitation, the synchronization between the stimulus and the neural activity is not
locked and instantaneous.
With the pair of electrodes selected, we concatenate and sort the Hilbert signal representations.
Subsequently, we use the gradient operator ∇ to obtain the most variable positive ranges
across the Hilbert representation, and sort the resulting feature-vector only using the 1000
more variable peaks per trial.
With the sorted Hilbert peaks we use the Bhattacharyya distance criterion (Obermaier et al.,
2001) described by Equation 4.3. This process assumes a non-linear Bayes-Error’s upper
bound representation (Emin) with the high-low arousal-valence levels’ priors denoted by
p(ω1) and p(ω2), and the corresponding posteriors denoted by p(z|ω1) and p(z|ω2).

Jbhatt =− ln
[∫

z

√
p(z|ω1)p(z|ω2)

]
(4.3)

We observe each trial from training-set obtaining a subset of features after the sequential
search from the Bhattacharyya feature map computing the Equation 4.4 (Somol, Novovičová,
and Pudil, 2006) and we picked the best 500 ranked features out of 1000 maximum Hilbert
peaks per trial.

Emin ≤ p(ω1)p(ω2)

[∫
z

√
p(z|ω1)p(z|ω2)

]
(4.4)
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After the feature selection process the resulting feature-set for training set is 39 trials × 500
features and the corresponding test-set 1 trial × 500 features per subject.
The feature-set is normalized using Xn =

X−Xmin
Xmax−Xmin

. A GMM parametric classifier -DEAP
baseline- and a set of non-parametric classifiers such as KNN-20, and BPNN-25 with a
sigmoidal activation function are trained using PRtools Duin, 2000 Matlab Toolbox. We
evaluate a DBN 50-50 units classifier using DeepLearn Matlab toolbox (Palm, 2012) with
a sigmoidal activation function, 100 unsupervised Contrastive Divergence iterations, and
100 fine-tuning supervised iterations. We set learning rates of unsupervised and supervised
processes in 0.01 and 0.1 respectively.
Using the 500 more significant features selected by the Bhattacharyya distance criterion to
train the DBN 50-50 classifier. As a results we found a F1 score of 0.755 for valence, and
0.711 for arousal 2-class low high level problem. Tables 4.1 and 4.2 show the results for
valence and arousal classification levels, and we found the maximum performance obtained
by 2-channels+DBN setting. The DEAP baseline is symbolized by ∗.
To complement our results analysis we vary the number of features selected by the Bhat-
tacharyya distance criterion starting from 25 to 600 features. Figures 4.3a and 4.3b show
the F1-score variation in terms of the number of features selected for arousal and valence.
Comparing these results with the DEAP baseline on Tables 4.1 and 4.2 we can observe for
2-channels and more than 100 features selected it is possible to obtain a better performance
in comparison with the DEAP baseline.
An extra analysis in this evaluation was to change the Hilbert differences features. For this
evaluation we used all the possible symmetrical pair of channels in both hemispheres, we
extend the channel selection per pairs from 2 to 28 selecting from the higher to the lower best
pair of channels inferred by the Hilbert Transform phase. Figures 4.3c and 4.3d describe the
variability in terms of number of channels for the Hilbert Transform differences, and Figures
4.3e and 4.3f show the same variability using the DEAP features. Comparing approaches we
observe a little performance increasing ∼ 15-18 channels for DEAP baseline in comparison
with our features. However, our features represent a better performance for larger number of
channels.
We can conclude from this initial evaluation on a broadly known dataset that the combination
of good signal envelope representation such as Hilbert transform with a robust classifier such
as DBN can contribute on good EEG-based arousal valence levels decoding performances,
especially with long EEG trials.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.3 Features and channels variation, using DEAP and our methodology features results. Figures
4.3a and 4.3b refers the arousal and valence results using the Bhatacharyya features variation from 25
to 600. Figures 4.3c and 4.3d are associated with the channel variations using our features. Figures
4.3e and 4.3f that are related to the same variation but for the DEAP features

Table 4.1 Valence results in a LOTO per subject modality, comparing DEAP (28 channels) PSD
features and our pipeline (2-channels + 500 features),*DEAP baseline p < 0.05

Valence - Methods DBN 50-50 GMM * KNN-20 BPNN-25
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

DEAP (28 chan)
(Koelstra et al.,
2011)

AVG 0.641 0.592 0.6123 0.555 0.542 0.546* 0.591 0.556 0.571 0.594 0.581 0.587

STD 0.151 0.096 0.112 0.087 0.069 0.074 0.111 0.074 0.079 0.152 0.102 0.112
Hilbert + Bhat-
tacharyya (2
channels)

AVG 0.790 0.728 0.755 0.511 0.503 0.502 0.598 0.586 0.591 0.612 0.582 0.596

STD 0.086 0.119 0.097 0.108 0.073 0.077 0.077 0.062 0.062 0.122 0.101 0.114
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Table 4.2 Arousal results in a LOTO per subject modality, comparing DEAP (28 channels) PSD
features incidence and our pipeline (2-channels + 500 features),*DEAP baseline p < 0.05

Arousal - Methods DBN 50-50 GMM* KNN-20 BPNN-25
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

DEAP (28 chan)
(Koelstra et al.,
2011)

AVG 0.631 0.591 0.606 0.539 0.537 0.538* 0.538 0.529 0.532 0.545 0.535 0.541

STD 0.157 0.132 0.133 0.079 0.072 0.075 0.113 0.077 0.086 0.125 0.113 0.121
Hilbert+ Bhat-
tacharyya (2
channels)

AVG 0.762 0.671 0.710 0.504 0.512 0.510 0.569 0.566 0.569 0.587 0.563 0.576

STD 0.127 0.105 0.103 0.086 0.081 0.085 0.098 0.091 0.093 0.113 0.102 0.111

4.2 EEG-based Object Category Decoding

For EEG-based object category decoding implementation we used the parameters set in
(Torres, Stepanov, and Riccardi, 2016). In this study we propose a combination of Bhat-
tacharyya distance Criterion as mapping as we explained in the previous section, and a Deep
Neural Network (DNN) classifier to improve the performance of stimulus concept decoding
for within-subject analysis as the 5-fold cross-validated classification, and a cross-subject
analysis as leave-one-subject-out (LOSO) cross-validation.
We refine the previous analyses of DEAP baseline selecting features from seven Regions-
Of-Interests (ROIs) such as Middle-Frontal, Left-Anterior, Right-Anterior, Middle-Anterior,
Left-Posterior, Right-Posterior, and Middle-Posterior finding significant differences for grand-
average ERPs comparing the two concept classes in the N2 component range [150-200]ms.
EEG data was obtained from (Murphy et al., 2011) and it has been recorded using a 64 elec-
trode Brain-Vision-Brain-Amp system with a sampling frequency fs = 500Hz and a right-ear
lobe channel reference. Each trial was filtered using a Butterworth bandpass filter between
1-50 Hz, and down-sampled to 120 Hz with purpose of removing high and low frequency
noise, and eye-artifacts were removed by hand from an ICA-infomax decomposition.
We take data from seven healthy Italian speakers (5 male and 2 female,µ = 29). They were
asked to silently name animal and tool objects classes presented in normalised grey-scale
photographs. The study presented 30 land-mammals, and 30 work-tools photographs each
presented in random order composing a total of 180 trials for each class.
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Fig. 4.4 Object decoding pipeline with the corresponding subcomponents. The training
and test distribution pass through PCA and Bhattacharyya feature extraction and selection
analysis, thus obtaining a concentric separation regions.

The EEG-based object decoding pipeline methodology in Figure 4.4 is composed of 3
stages: 1) a pre-processing stage consisting in a moving average filter through all the 64
channels, and per the trial, 2) we split the complete dataset for a leave-one-subject-out 6-to-1
cross-validation, and a 5-fold cross-validation per subject following the number of iterations
proposed by (Murphy et al., 2011) to generalize unseen exemplars per class.
From the stimuli neural response we calculate PCA (PCAm) and Bhattacharyya distance crite-
rion (Bhattm) maps using the training set only. Multiplying the corresponding transformation
matrices with the corresponding test set feature matrix we obtained the distributions defined
by PCA and Bhattacharyya mappings across the pipeline execution.
Each channel out of 64 are filtered using a moving average filter with order M = 5 to preserve
the frequencies between [0−32] Hz as low-pass filter. The resulting signal per channel is
smoothed to increase the SNR and include α and γ rhythms, and preserving the critical
negativities in N2 ranges for a grand-average evaluation.
We use 72 samples from 0 to 500 ms range from each channel for the ERP analysis. The
initial feature space is composed of 64 channels × 72 samples = 4608 features across the
180 trials for each class, and per subject. Subsequently, we group these features according to
the set of channels, and ROIs described in Table 4.5b and Figure 4.5a (Meulman et al., 2014).
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Middle-Anterior
Right-Anterior
Left-Anterior
Middle-Frontal
Middle-Posterior
Left-Posterior
Right-Posterior

(a) scalp ROI Distribution

ROIs Channels
Middle-frontal Fz, FC1, FC2, Cz, FCz
Left-Anterior F7, F5, AF7, FC7, FC5

Right-Anterior F8, F4, AF8, FC8, FC4
Middle-Anterior Fp1, Fp2, AF3, AF4, F1,F2
Middle-Posterior CP1, CP2, P1, Pz, P2, POz, PO4, PO3, O1, O2

Left-Posterior CP5,CP3,P7,P5,PO7,P9
Right-Posterior CP6,CP4,P4,P6,PO8,P8

(b) ROI distribution Table

Fig. 4.5 Channels distribution per ROI in the scalp Figure, and Table showing the channels
distribution

PCA is used as parametric model in the training set side to calculate the covariance matrix
Σ from both semantic classes. This matrix is diagonalized to extract the most representative
eigenvalues λn as well as the related eigenvectors φn.

M

∑
n=0

φnΣφ
T
n =

M

∑
n=0

λn(φnφ
T
n −1) (4.5)

The PCA mapping is applied following Equation 4.5 thus reducing the number of features
per trial to M = 180 and using the eigenvalues including the 95 % of the variance in the
resulting distribution.
Using the Bhattacharyya distance criterion to complement the PCA feature selection we
first define Φ as an orthogonal matrix for reducing the PCA features N ×M to N ×Mb

with Mb < M. We define Φ = [Φ1,Φ2,Φ3, . . . ,ΦMb ], Mb as the number of features, and N
the subspace dimensionality, thus updating each column vector following the sequential
search (Somol, Novovičová, and Pudil, 2006). Equation 4.6 shows how each vector should
be updated from its own direction based on the sequential search, being δ a constant
transformation step.

Φ
i
new = Φ

1
old +δΦ

i
old (4.6)

The Φ matrix is randomly initialized from the PCA distribution taking a subset from both
concept classes. We use δ = 0.1 as (Choi and Lee, 2003) iterating 500 times along the
feature-set thus reducing the features to Mb = 180. The resulting distribution after the
sequential search is presented in Figure 4.4. The DBN used here follows a similar proces
we used in the DEAP approach in the section above. The training process is composed of
two stages: 1) the unsupervised pre-training process defined as CD, and 2) a fine-tuning
supervised process defined as a back-propagation step. Now, we will report the results for
the grand-average ERP, and the classification performances.
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4.2.1 Grand Average Analysis

We evaluate the statistical difference between Tools and Mammals class neural responses
with a non-parametric test based on a Montecarlo permutation using a 5000 iterations, and a
Bonferroni-Holm correction after the permutation for each subject, and ROI based on (Maris
and Oostenveld, 2007).
This analysis shows that some specific ROIs in early time ranges exhibit significant difference
between Tools and Mammals concept classes on: the Medial-Frontal region in [150−200]
ms p = 0.0321, Middle-Posterior in [150− 200] ms p = 0.0381, and Left-Posterior in
[200− 320] ms p = 0.0482. This is consistent with propagation of semantic information
from the visual-cortex, the posterior and occipital regions to the Prefrontal-Cortex (PC) (Jeon
and Friederici, 2015).
Analyzing other ROIs we found significant differences in Right-Posterior p = 0.0282 and
Middle-Posterior p = 0.0184 in [200−320] ms. Figure 4.6a shows the ERP plots for these
neural response ranges being consistent with the good performances obtained using the
features on this time ranges. We also found significant differences in Middle-Anterior regions
in the same time ranges for the Right-Posterior ROI p = 0.0342, in Figure 4.6b we can see
the waveform for the Middle-Anterior region. All these p-values support the appearance of
early and posterior positivities correlated with semantic decoding (Simanova et al., 2010).
Figure 4.6c shows the averaged scalp topoplots for the time regions mentioned above.
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Fig. 4.6 ERP plots for Right-Posterior and Middle-Anterior in Figures 4.6a and 4.6b responses
show a significant region between [150−320] ms, consistent with memory processes across
early neural responses (Friederici and Singer, 2015). The scalp plots (Figure 4.6c) show
significant activations around posterior and middle-posterior regions, especially for N2
ranges. The colorbar scale show the variation of neural activity between the maximum and
minimum of the average signal.

4.2.2 Classification Results

To evaluate DBN classifier performances we use other two extra common baseline classifiers
such as SVM, and kNN. For all the classifiers we use the 180 best ranked Bhattacharyya
features. We use a LOSO, and a 5-fold per subject cross-validations introducing initial EEG
signal amplitude feature in the range [0−500] ms for each channel and for each trial.
After the application of the Bhattacharyya mapping the dataset is composed of 180 examples
for each class, and for each subject. For the training process we set up the classifiers as
follows: 1) The SVM classifier using a radial-basis type with R = 1

N as the baseline paper
described, 2) the kNN classifier using a k = 20 number of neighbors, and the DBN with
2 hidden-layers composed of 10-20 units, and with learning rates εpre−training = 0.01, and
ε f ine−tuning = 0.1, iterating 120 times for the unsupervised pre-training, and 520 times for
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fine-tuning supervised process encoding 10 mini-batches per iteration. This DBN array was
implemented with the Deep-learning Matlab toolbox (Palm, 2012), and the SVM and kNN
classifiers using PRTools v4.0 (Duin, 2000).
To validate our proposed pipeline we replicate the process described in (Murphy et al., 2011)
where for each trial we use a CSP for adjust feature separability using only the features
between [0− 500] ms. Subsequently, we train a SVM classifier with these same features,
using the same 5-fold cross-validation explained in (Murphy et al., 2011). All the baseline
results are reported on Table 4.3.

Table 4.3 Baseline classification results obtained after we replicate the process of (Murphy
et al., 2011), using a radial basis SVM R = 1

N in which N is the number of training exemplars
for each cross-validation modality.

LOSO Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Avg
Acc 0.699 0.655 0.712 0.592 0.661 0.585 0.671 0.653
5-Fold Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 Sub7 Avg
Acc 0.722 0.712 0.721 0.682 0.721 0.713 0.698 0.709

The results using our proposed feature-set are reported on Table 4.4. We achieved
high classification performance in Left and Right Posterior, and Middle-anterior ROIs, thus
showing significant difference comparing the performances with a multi-variable ANOVA
analysis, and thus being consistent with the results obtained in the grand average analysis.
The DBN was the best classifier across ROIs, and also for All-ROIs feature combination.
The Deep model advantages allow to identify better the entangled separation between Tools
and Mammals classes feature-space.

Table 4.4 Accuracy average results for LOSO and 5-Fold modalities specifying the ROIs.
Bold+italics values are p < 0.05 using t-test and inter-classifier comparison. We achieve
high performance using features from [0− 500] ms ranges. This suggests that semantic
information is contained in a higher level of entropy ranges such as [0− 500] ms used in
(Murphy et al., 2011).

Modalities LOSO 5-Fold per subject
ROIs kNN-20 SVM R=0.1 DNN 10-20 kNN-20 SVM R=0.1 DNN 10-20

Middle-frontal 0.535 0.567 0.731 0.401 0.699 0.782
Left-Anterior 0.532 0.651 0.746 0.443 0.631 0.771

Right-Anterior 0.510 0.583 0.730 0.467 0.681 0.789
Middle-Anterior 0.545 0.657 0.721 0.378 0.674 0.797
Middle-Posterior 0.578 0.527 0.752 0.452 0.731 0.824

Left-Posterior 0.612 0.611 0.744 0.534 0.743 0.834
Right-Posterior 0.624 0.626 0.758 0.452 0.761 0.853

Average 0.562 0.603 0.740 0.447 0.703 0.807
All-ROIs 0.601 0.633 0.751 0.527 0.718 0.838
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4.3 HR prediction using HR spectrum and Adaptive Filter-
ing - TROIKA

In this section we will describe the details of the paper (Torres et al., 2016) where we explain
the TROIKA dataset baselines, and our proposed pipeline for a low-complexity HR and IBI
signals calculation from noisy, and distorted BVP signal under an environment affected by
movement artifacts (MA) such as physical exercise, and daily life activities.
We use the publicly available TROIKA dataset (Zhang, Pi, and Liu, 2014) used in the
2015 for the IEEE Signal Processing Cup 1. This dataset recreates closely the real-life
motion activities in our experiments. TROIKA is composed of 5 minute long treadmill trials
performed by 12 different subjects. The biosignals are recorded from PPG, and accelerometer
sensors including an extra ECG ground-truth. Each 5 min trial is divided into 6 different
tasks such as: 30 seconds - rest (1-2 km/h), 1 min - Walking (6-8 km/h), 1 min - Running
(10-12 km/h), 1 min - Walking (6-8 km/h), 1 min - Running (10-12 km/h) and finally 30
seconds - rest (1-2 km/h). The PPG and the accelerometer sensor were sampled at 250Hz.
For these TROIKA experiments the authors stablish an sliding window of 8 seconds with a 6
second overlap between windows following that the HR and IBI calculation should be done
per window, or per each pair of ECG R-peaks.
The HEAL-T pipeline is shown in Figure 4.7 and consists of 1) a initial filtering stage
which consists of a fast-ICA decomposition and a moving-average-filter application, 2) a
Recursive Leave-Squares (RLS) filter scheme for intrincated MA removal, 3) a Blackman-
Harris Window (BHW) FIR filter bandwidth adjustment, 4) a spectral peak tracking process
added as a novelty, and 5) a final IBI estimation task.

fast-ICA
Moving-Av.

Filter
RLS
Filter

BHW
Filter

Spectral Peak
Tracking

IBI
Estimation

Raw PPG Signal

Raw Accel Signal

Initial Filtering bandwidth adjustment

Fig. 4.7 The proposed HEAL-T for HR estimation method applied per signal-window.

For the filtering stage each window is assumed to be statistical independent modelling
and we can stablish a linear phase on the signal to preserve the BVP important frequency
ranges with an adequate spectral resolution (Cui et al., 2015).
The fast-ICA decomposition or unmixing models the negentropy gradient between PPG and
Accelerometer channels in order to calculate the unmixing matrix Ws (Hyvarinen, 1999).
This process returns 5 independent-components (ICs) one for each PPG channels, and one

1http://archive.signalprocessingsociety.org/community/sp-cup/ieee-sp-cup-2015/

http://archive.signalprocessingsociety.org/community/sp-cup/ieee-sp-cup-2015/
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for each x, y and z axes from the Accelerometer signal.
The subsequent fast-ICA mixing process use the two PPG channels and Accelerometer ICs are
ignored. To remove the residual MAs after applying the fast-ICA we apply a moving average
filter. For window X i a linear compositional model can be defined as X i =PPGi+Acceli+Ni.
PPGi and Acceli are PPG and Accelerometer signals, and Ni is a high-frequency additive
noise.
The filter is a computational inexpensive convolution between X i signal and the constant
impulse response 1

M . Equation 4.7 shows the moving average filter that is proposed for
increasing the SNR and reduces the signal additive noise (Lee, 2014).

X̂ i(k) =
1
M

M−1

∑
n=0

X i(k−n) (4.7)

4.3.1 RLS Filter

We set our moving average filter with an order M = 20 as a low-pass bandwidth to preserve
the critical PPG channel frequency ranges [0.9−2.5]Hz (Singh et al., 2015).
Subsequently, we iteratively apply a RLS filter to remove the incidence of MA in the
BVP signals. RLS provides a non-misadjusted solution for least-squares cost function and a
resulting smoothed spectrum. The filter uses an optimal adaptive noise-cancellation algorithm
for the critical PPG channels low-frequency bands (Shimazaki et al., 2014).
Equations 4.8 and 4.9 show evolution of the RLS algorithm where we set a forgetting factor
λ in order to modulate the filter weights ω(n) as a function of the previous weights ω(n−1).

ω(n) = ω(n−1)−κ(n−1) [d(n)−ω(n−1)υ(n)] (4.8)

P(n) = λ
−1P(n−1)−λ

−1
κ(n−1)υT (n)P(n−1) (4.9)

RLS parameters such as υ(n) the accelerometer signal, the factor κ(n) = (λ−1P(n−
1)υ(n))/(1+λ−1υT (n)P(n− 1)υ(n)), and the desired response d(n) = X̂ i(n) should be
synchronized in a sequence to generate the corrected output X̂r. We set the RLS parameters
as λ = 0.99 and P(0) = 10−3I following (Shimazaki and Hara, 2015), and a filter order of
N = 32 (Han and Kim, 2012).

4.3.2 BHW bandwidth adjustment

The corrected signal X̂r(k) or the out of the RLS method is then adjusted between [0.9−
2.5]Hz reducing the phase non-linearities and the stopband ripple (McDuff, Gontarek, and Pi-
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card, 2014). Subsequently, a 4-term model BHW filter is applied to achieve desired stopband
attenuation of As =−60dB. Equation 4.10) described the BHW bandwidth adjustment using
the BHW impulse response ḣ(n) truncated in N = 150 order, and a stop-band attenuation
Âs = −52.66dB with a maximum stopband ripple of |δs| = 2.32dB. When we compared
with other FIR filters such as Rectangular or Bartlett, the BHW yields superior stopband
attenuation and lower ripple variance.

Ẋ(k)i =
N−1

∑
n=0

X̂r(k−n)iḣ(n)
[

0.3587−0.4883cos
(

2πn
N−1

)
+0.1413sin

(
4πn

N−1

)
−0.0116cos

(
6πn

N−1

)] (4.10)

4.3.3 Spectral Peak Tracking

(Zhang, Pi, and Liu, 2014) support the usage such as Sparse Signal Reconstruction (SSR)
techniques specially the Focal-Underdetermined-System-Solver extension (M-FOCUSS)
(Cotter et al., 2005) to increase the level of numerical sparsity, and increase the spectral peak
identifiability between no signal spectrum peak and the real HR peaks (Gorodnitsky and
Rao, 1997). Multiple MA can increase the error probability in a HR peak detection process.
The performance of HR peak detection can be substantially improved using a peak tracking
process Sun and Zhang, 2015. Our proposed spectra peak tracking method is divided in two
stages: 1) A Peak Selection process described in Algorithm 1, and 2) a Peak Verification
process described in Algorithm 2.
All possible HR peak spectrum candidates are selected using the Algorithm 1. This process
starts with an FFT (FFTfunc) for PPG and Accelerometer channels separately. In the Algo-
rithm 1 the GetN peaks subprocess find the possible HR peak candidates (Npeaks) on the BVP
signal Ẋ(k)i spectrum. Each peak selected is a local maximum above 30% of the normalized
spectrum amplitude.
For each selected peaks the corresponding accelerometer spectrum peaks Accel(n) are sub-
tracted from the BVP signal spectrum amplitudes HR(n). If the difference between these
spectrum amplitudes is lower than 0.10 the subprocess searchHRpeak is executed. The
process searchHRpeak is a function for inner and more specific peak selection associating
a search direction depending on flag activation given by the Peak Verification process. De-
pending of the verification flag calculated by the Algorithm 2, the subprocess searchHRpeak
selects the first peak from left-to-right using the function increasepeak, or in the opposite
direction using the function decreasepeak. These functions return the variance associated
with new truncated peak candidates in the HR vector.
The HR Peak Verification is a subordinate role returning every possible HR peak candidate
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Algorithm 1 HR Peak Selection Process denoted as PeakSelection
1: Input : PPG,ACCEL,NFFT
2: HR← FFTfunc(PPG,NFFT)
3: Accel← FFTfunc(ACCEL,NFFT)
4: Npeaks← GetNpeaks(HR)
5: while n < Npeaks do
6: if (abs(HR(n))−abs(Accel(n))> 0.10) then
7: [HR,HRvar]← searchHRpeak(HR)
8: return([HR,HRvar])
9: else

10: n← n+1
11: end if
12: end while

(HR(k)) and their corresponding variance (HRvar) associated with the current and truncated
BVP normalized frequency segment ˆX(k).
Each HR peak found by the PeakSelection function is evaluated on the Algorithm 2. The
Algorithm 2 start with the four initial HR selected peaks assigned by default as the maxi-
mum HR peak candidate inside [0.9 − 2.5] Hz range, and depending on the HR selected
peaks the increasepeak or decreasepeak functions activate a flag that will be received by the
searchHRpeak process, and thus proceeding as we explained above in Algorithm 1. The

Algorithm 2 HR Peak Verification process
1: Input : PPG,ACCEL,nwindow,NFFT = 65,536
2: k← 1
3: while k < nwindow do
4: [HR(k),HRvar]← PeakSelection(PPG(k),ACCEL(k),NFFT)
5: if k > 4 then
6: if (HRvar < 0.10) then
7: threshold← 0.05
8: else
9: threshold← 0.10

10: end if
11: if HR(k)<= mean(HR(k−4 : k−1))− threshold ∗mean(HR(k−4 : k−1))) then
12: HR(k)← increasepeak(HR(k))
13: changeBHW (HR,ωp +0.30,ωs)
14: end if
15: if HR(k)>= mean(HR(k−4 : k−1))+ threshold ∗mean(HR(k−4 : k−1))) then
16: HR(k)← decreasepeak(HR(k))
17: changeBHW (HR,ωp,ωs−0.30)
18: else
19: k← k+1
20: end if
21: end if
22: end while

BHW bandwidth adjustment process changeBHW function is applied iteratively narrowing the
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BHW bandwidth adding or subtracting 0.30Hz to ωp and ωs being this HR peaks initialized
using the Equation 4.11 also depending on the four previous HR peak amplitude.

[ωp,ωs] =

[0.9,2.5]Hz if HR(1)≤ 120BPM

[1.7,3.5]Hz if HR(1)> 120BPM
(4.11)

4.3.4 IBI and HR estimation Results

The variance of the HR peak candidates HRvar is used to set a new threshold value as follows:
If the HRvar value returned by the Peak Search process is lower than 0.10 the threshold will
be equal to 5%, otherwise, the threshold will be equal to 10%. Thus, any peak candidate
which overcomes all these conditions are accepted as definitive HR values per signal window.
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Fig. 4.8 HR estimation results for subjects #9 from the TROIKA training set in Figure 4.8a,
and #7 from the TROIKA test set in Figure 4.8b.
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(a) (b)

Fig. 4.9 Bland-Altman plots for HR estimation using the HR reference in Figure 4.9a, and
using the ECG groundtruth for IBI estimation in Figure 4.9b, this latter having more points

For the IBI signal estimation we grouped the dichrotic notches from the BVP signal,
and the corresponding R-peaks of the ECG signal groun-truth. The selected notches may
be above 50 % in amplitude for each given window. Subsequently, for this IBI estimation
process we calculate the time-difference between the adjacent/nearest dichrotic notches.
To estimate the IBI from the BVP signal we first compensate the window overlaps, and
calculate the IBIs between the BVP notches and on the overlap IBIs we calculate the averaged
between both overlapped windows while we group the values from the non-overlapping
segments. Subsequently, we use smoothing Cubic spline to calculate the Interpolated-IBI
(IIBI) signal, and thus reduce undesired IBI spectral harmonics and discontinuities.
For the HR estimation performance, and the computational efficiency measurement, we use
the LMS using the same parameters in (Han and Kim, 2012), and the TROIKA framework
(Zhang, Pi, and Liu, 2014) as baselines.

Table 4.5 Absolute error for each subject for our approach, LMS baseline (Han and Kim,
2012) and the TROIKA framework (Zhang, Pi, and Liu, 2014) baselines. The results report
significances p < 0.01 in bold italics values.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg SD
(Torres et al., 2016) 3.96 1.73 0.91 2.21 0.32 1.19 0.32 0.47 0.26 4.22 0.87 1.41 1.49 1.36
(Han and Kim, 2012) 5.21 2.22 1.45 3.44 0.88 3.42 0.58 1.33 2.45 4.55 1.21 4.33 2.59 1.57
(Zhang, Pi, and Liu, 2014) 2.87 2.75 1.91 2.25 1.69 3.16 1.72 1.83 1.58 4.00 1.66 3.33 2.40 0.80
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Table 4.6 IBI-based HR estimation for our approach, the LMS in (Han and Kim, 2012), and
the TROIKA framework (Zhang, Pi, and Liu, 2014) base. The results report significances
p < 0.01 in bold italics values.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Avg SD
(Torres et al., 2016) 5.42 4.54 2.53 3.39 2.55 3.04 2.26 2.58 2.75 5.04 3.46 3.21 3.40 1.05
(Han and Kim, 2012) 6.41 5.64 6.01 5.43 2.88 4.12 4.08 3.45 3.88 6.46 5.55 5.75 4.97 1.22
(Zhang, Pi, and Liu, 2014) 6.55 5.43 5.12 4.45 2.81 3.78 2.78 3.33 3.42 6.74 4.52 4.64 4.47 1.32

Table 4.7 Absolute error for each subject for our approach using the TROIKA test-set, LMS
in (Han and Kim, 2012), and the TROIKA framework (Zhang, Pi, and Liu, 2014) baselines.
The values significantly different for p < 0.01 are in bold italics.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 Avg SD
(Torres et al., 2016) 5.43 4.54 6.71 3.01 2.71 5.37 1.39 0.92 3.21 2.10
(Han and Kim, 2012) 7.42 4.54 15.34 5.47 5.35 10.35 2.56 3.45 6.72 4.54
(Zhang, Pi, and Liu, 2014) 5.78 4.33 12.45 3.79 3.09 7.74 4.56 2.42 5.47 3.53

The HR estimation performance is evaluated in two modalities: 1) comparing obtained
HR spectrum peaks with the HR groundruth per window, and 2) comparing the extracted IIBI
defined as HRIIBI = 60/IIBI to compare these calculations with the ECG RR-peak distances.
To calculate a proper RR-peak using the ECG ground-truth we filtered the ECG signal wth
a Daubechies Wavelet filter with level 3, and order 3. The HR estimation performance
evaluation are reported in Tables 4.5 for the TROIKA training-set subjects, and 4.7 for the
TROIKA test-set subjects. The IBI-based evaluation modality results are reported in Table
4.6. The ECG signal is not available for the test set, therefore, we report the IBI-based
evaluation only for the training set.

Errork = |HRpredictedk−HRgroundtruthk | (4.12)

For the HR estimation per window we obtain a BPM absolute error of 1.49±1.36 for the
TROIKA training-set , and 3.21±2.10 for the TROIKA test-set. The absolute errores were
calculated following Equation 4.12 per window k. Evaluating our approach we obtained
combined absolute error value of the train-test set average 2.25±1.93, For the LMS ,and the
M-FOCUSS baselines the combined absoluted errors are 4.08±4.13 and 3.64±2.59. For
the IBI evaluation we obtain a BPM absolute error of 3.40±1.05 reported on Table 4.6.
Figures 4.8a and 4.8b show the performances of the proposed algorithm in time-domian
for subjects # 9 on the TROIKA training-set, and subject # 7 on TROIKA test-set -in red-
comparing them with the HR ground-truth in blue. Figures 4.9a and 4.9b present the Bland-
Altman plots (Euser, Dekker, and Cessie, 2008) for the two modalities evaluated here such
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as for the HR prediction obtaining a Pearson ρ = 0.9877, and for the IIBI v.s ECG modality
a ρ = 0.9813.

4.3.5 Computational Load

In comparison with the SSR techniques this pipeline is less computationally demanding.
In this study we evaluate a preliminary estimation of the computational load using the
Matlab R2015a profiler to compute the execution time of this approach thus varying the
BVP window size. The execution times reported in Figure 4.10 are averages of 20 different
executions per window (Altman, 2014). In Figure 4.10 the LMS adaptive filtering, and the
M-FOCUSS based pipelines were set with the learning parameters as λ = 0.1, γ = 10−4,
and maxiter = 500 (Cotter et al., 2005).
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Fig. 4.10 Comparison between our approach, the LMS (Han and Kim, 2012), and the M-
FOCUSS (Cotter et al., 2005; Zhang, Pi, and Liu, 2014) baselines in terms of execution time
in the log Y-axis, and the signal window size from 2 up to 32s in the X-axis.

For this computational load comparison we pick the subject # 10 from the TROIKA
training-set due to it is the worst case measurement scenario in terms of the number of calls
from the Matlab profiler evaluation our approach. The BVP window size is varied from 2
to 32 seconds with the 33% overlap in the x-axis of Figure 4.10. We can observe that our
approach execution time is 2 orders of magnitude lower than M-FOCUSS, and closer to the
LMS computational load minimum quota (Choudhury et al., 2014). These results support the
consideration of our HR+IBI estimation pipeline as a more suitable and accurate solution for
real-time HR wearable devices.
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4.4 HR and IBI calculation for Empatica Device

For this approach we evaluated our previous explained approach (Torres et al., 2016), denoted
as HEAL-T, thus applying the signal cleansed processes explained above on a real-life study
to characterize and classify Hypertension patients (Ghosh et al., 2015). The same pipeline
described in HEAL-T was applied to BVP and Accelerometer signals collected from an
Empatica E3 device during multiple days recording trials.
Our study was considered a Pilot Study including 10 Hypertensive and 10 Normotensive
(Healthy Control) adults recording 10 days each. The adults included in the Pilot study were
between the age of 30 and 65, and with the purpose of the clinical analysis we only include
patients with diagnosed essential (EH, n=8) who received treatment at the Centro Ipertensione
Ospedale Molinette, in Turin, Italy. The Normotensive (HC) and the Hypertension patients
were diagnosed by a psychologist to rule out hidden hypertension, and the hypertension
severity or the evidence of other disorder comorbidities which can affect the study. The
institutional ethics committee of the Azienda Ospedaliera Citta della Salute e della Scienza
di Torino and the ethics committee of the Universita degli Studi di Trento approved this
research study.
For 10 days the BVP and Accelerometer data were recorded from the Empatica E3 wristband
continuously. The main idea of this study was to monitor the participants during their
work day where the level of stress is higher. The participants have recording oscillating the
complete 24 hours recording, starting at morning before going work and until they went to
sleep. Along the experiment the participants answered questions and took notes regarding
their mental state, and the current activity using a mobile-agent application on the cellphone.
To balance the dataset being modified to include only eight participants with essential
hypertension we selected other eight normotensive participants sorting them in terms of the
quality of the signals collected. A total of 756 hours of data from the hypertensive patients
and 780 hours from normotensive subjects have been included in this study.
With a purpose to enhance the classification accuracy our study includes other signals from
the Empatica E3 device synchronizing them due to the sampling frequency differences.
Signals such as Galvanic Skin Response (GSR), and Skin Temperature (ST) sampled at 4Hz
were processed using low-pass Butterworth filter between [0-16] Hz, and linear detrending
operator.
We apply a modification of the HEAL-T pipeline to optimize the quality of BVP signal from
the PPG sensor on the Empatica E3 device following the pipeline on Figure 4.11. Using all
the recordings from the EH and HC participants we evaluate the TROIKA framework using
M-FOCUSS (Zhang, Pi, and Liu, 2014), and our pipeline with the impossibility to compare
our performances with a ECG or HR ground-truth reference, however, the performance for
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hypertension detection is given better metrics using our pipeline in comparison with the
TROIKA framework.

Fig. 4.11 Pipeline for Hypertension prediction using wearable Devices signals. This pipeline
conforming blocks are: 1) Active noise Cancellation based on LMS, 2) R-peak IIBI estimation
using PPG decontamination, and 3) GSR and ST signal features extraction.

The only difference with the HEAL-T process is the active-noise cancellation using
the LMS for artifact removal proposed in (Han and Kim, 2012). Specifically, This method
consists of a LMS adaptive algorithm as we mentioned above, and from a initial conditions
we minimize the error with respect to the desired filter desired response represented with a
FIR filter with [0.5-5] Hz bandwidth.

4.4.1 Feature Extraction

For the feature extraction we use a windowing range from 15 minutes to 2 and half hours
across the entire trial per subject. Concordantly, we proceed with the feature extraction using
features from the cleansed BVP, IIBI, GSR, and ST signals after pre-emphasis. We will
describe the features extracted as follows:

1. Cleansed BVP: we calculate the statistical features such as mean, SD, min and max
per trial.

2. GSR: we calculate statistical as well mean, SD, min and max, and instantaneous
change features such as the duration and amplitude of a the startle response on the GSR
signal trial. Features from Skin Conductance Level (SCL) are also extracted following
(Ghosh, Danieli, and Riccardi, 2015).

3. ST: we extrated the mean, standard deviation, maximum, and minimum, for non-
normalized and the normalized signal.
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4. IIBI: The IIBI signal positivities are correlated with sympathovagal activation and
the sympathetic baroflex function activation. 17 time-domain features per window
such as: the minimum of the Heart Rate estimated per window, Root Mean Square of
the Successive Difference of the NN interval (RMSSD) obtained from the cleansed
BVP dichrotic nothces, Standard Deviation of the NN interval (SDNN), Percentage of
Consecutive NN intervals which differ by more than 50 (pNN50), and 30 (pNN30) mil-
liseconds. On the other hand, some frequency-domain features related to sympathetic
and parasympathetic neural activity are extracted from the IIBI signal such as: the
ratio of the Low Frequency and High Frequency (LF/HF), and the statistical features
for Low and High frequency ranges such as mean, variance, max and min peaks. An
example of IIBI trial is shown in Figure 4.12a

4.4.2 Classification Essential Hypertension

Our classification problems is a 2-class hypertensive and normotensive subject detection used
a Leave One Subject Out (LOSO) cross-validation. Each test fold contains trials from either
a hypertensive subject or a normotensive participants exclusively. We calculate the confusion
matrix by combining the individual classes per fold for each subject. True Positives across
the confusion matrix per subject contribute as hypertensive subjects classified correctly as
hypertensive, and viceversa. We perform classification with both individual and combined
signal features. We evaluate feature-level fusion from all the different signals on five different
classifiers such as kNN, Naive Bayes, Decision Trees, Linear Kernel SVM, and two ensemble
learning algorithms such as Adaptive boosting (Adaboost), and Random Forest classifiers.
The ensemble based classifiers outperform the rest of the classifiers for both individual and
fusion of features, being Adaptive Boosting the best performance.
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(a) (b)

Fig. 4.12 IBI and IIBI signals for a long trial in the Essential Hypertension detection in Figure
4.12a, and the performance for all the feature-level combinatios evaluated in this study such
as GSR, IIBI, GSR+IIBI, GSR+IIBI+ST, GSR+BVP+IIBI, and GSR+BVP+IIBI+ST

Considering the single BVP signal’s features we always obtain low classification accu-
racies, with BVP features being the highest F-measure in 0.62. However, the feature-level
combination of different signal improves significantly the classification results. GSR-IIBI
and GSR-BVP+IIBI combinations provide the best discrimination between hypertensive
and normotensive/Controls participants. The best F-measure of 0.83 obtained feature-level
combinations is using a features from the cleansed BVP, GSR and IIBI signals. The F-
measure variability in terms of window size is plotted in Figure 4.12b showing only the
combination modalities. The F-Measure is calculated using the Equation 4.13 using each
subject k resulting confusion matrix.

Fmeasurek =
2∗Recallk ∗Precisionk

Recallk +Precisionk
(4.13)

4.5 HR and IBI calculation in industry One-LVL company

In 2018 the company One-LVL, located in Austin, Texas, contacted us in the Signals and
Interactive System Lab (Sislab), in Trento, Italy with the purpose. The purpose of the contact
was to develop a system that can compete with other top systems which can measure HR and
IBI reliably using light implementation algorithms on wearable devices, more precisely a
wristband.
For a month we developed and enhanced the HEAL-T pipeline (Torres et al., 2016) with the
most realistic data possible acquired from One-LVL company. We enhanced the HEAL-T
performance based on 3 important items for HR prediction for an in-the-wild reported by
(Sun and Zhang, 2015) as follows, the itemize has been taken literally from the paper:

https://www.onelvl.com/
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• "About 75% of spectral peaks that have good amplitude are true peaks. Peaks with
good amplitude are defined as peaks with the highest amplitudes in their corresponding
time windows."

• "About 84% of peaks that have good positions are true peaks. A peak with a good
position refers to the one with the shortest distance from its previous true peak"

• "About 96% of true peaks have good amplitude and good position..."

Assuming these conditions from a modification in HR searching peak remarks explained in
the previous section it will be possible to obtain good performances even if the Accelerometer
is modelled with an adaptive filter or not. For this implementation we adjust the possible HR
ranges per subject adjusting manually the possible HR ranges for subjects that shown a large
change in estimated HR spectrum points.
An important anomaly observed to do the regression, is the multiple conditionals should
be done to separate the HR spectrum with the contaminated signal included Accelerometer
spectrum even after we implement an adaptive filter modelling the Accelerometer as noise as
we explained above. Figure 4.13 show how BVP and Accel spectrum are entangled. The
M-FOCUSS implementation assures a sparse spectrum but requires a large computational
complexity and resources (Zhang, 2015) to be used in from a wearable device.

Fig. 4.13 Accelerometer and BVP spectrum changes from a window kth, to a window kth+1.

For this One-LVL competition they share 100 trials collected from 16 possible events per
trial. 50 out of the 100 trials were selected for this evaluation excluding two sessions data
with excessive or unknown movement artifacts. Lie, Sitting, Start Computer and Lie trials
were included in this analysis where we found unexpected and non-periodic movements from
the Accelerometer. The main objectives of this phase I study for One-LVL evaluation were:
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1. Analyze in-vivo Photoplethysmographic (PPG) data from portable wristband prototype
for estimating Interbeat-Intervals (IBI) and Heart-Rate (HR) robustly.

2. Analyze errors, motion artifact, or data inconsistencies presented in the data collection
assuming events in real life scenarios.

3. Achieve a minimum of Pearson R = 0.9 measuring IBI-IBI or HR-HR correlation, and
analyzing twelve HR-related metrics proposed by One-LVL.

Grouping all the results found from the 50 trials analyzed in phase I we obtained the his-
togram, and cumulative histograms in Figures 4.14a and 4.14b from the complete twelve
HR-based outcome measures proposed by One-LVL researchers such as: very-low Frequency
average (vLF), amount value of the Low-Frequency ranges (aLF), amount value of the
High-Frequency ranges (aHF), amount value for the entire spectrum (aTotal), Percentage of
power High-frequency range (pHF), Normalized Low-frequency power (nLF), Percentage
of sucessive differences greater than 10 milliseconds (pNNx), standard deviation of nearest
notches interval (SDNN), standard deviation of sequential 5-minute notches interval average
(SDANN), root mean square of successive notches differences intervals (RMSSD), standard
deviation of the Poincaré plot first dimension (SD1), and standard deviation of the Poincaré
plot second dimension (SD2) (Handouzi et al., 2014).
We also included the R-Pearson values for the Bland-altman plot that proposed by our indi-
vidual research. The complete results for this Bland-Altman analysis with the corresponding
difference plots are reported in Figure 4.15. The overall results averaging the correlation
R-Pearson per trial is reported in the first row of the Table 4.8, the standard deviation results
calculated from the R-Pearson values per trial are reported in the second row of Table 4.8.
Ironically, when the HR predicted values for all the trials are concatenated assuming a se-
quence as One-LVL proposed we can observe some metrics such as aTotal, SDNN, SDANN,
SD2, and R-IBI greater than 0.90, being this latter the R value from the Bland-Altman IBI
shown in Figure 4.15a.



4.5 HR and IBI calculation in industry One-LVL company 78

(a) (b)

Fig. 4.14 Histogram for all the windows and all the 12 R-Pearson values associated with HR-based
outcome measures proposed by One-LVL.

The Bland-Altman plot is a measurement of agreement proposed for a variability-based
quantification of two outcome measures distribution, and how these two measures are more
or less constant between across themselves, and no whether or how much these outcome
measures are close enough (Bland and Altman, 2002; Giavarina, 2015). For our particular
research this measure is more adequate for a HR and IBI calculation in-the-wild.
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(a) (b)

(c) (d)

Fig. 4.15 Bland-Altman plots for IBI (Figure 4.15a) and HR (Figure 4.15c) prediction v.s the IBI and HR deduced from the ECG ground-
truth given by One-LVL company. In Figures 4.15b and 4.15d we show the differences plot and how separated are the prediction in
comparison with the ground-truth.

The Bland-Altman plotting can be considered a measure of agreement more desirable in
long term for clinical trials due to its flexibility and the clinical trials need for measuring bias
between two outcome measure means. Some studies suggest that a measured or p-values
or R-Pearson are not following a correct matching between variables’ means, in contrast
with the Bland-Altman’s R value. Our results confirms the importance of measures such as
Bland-Altman metrics instead of other indicadors from spectrum metrics such as HF, or LF
outcome measures that are showing only a partial evaluation of the HEAL-T pipeline on a
realistic environment.

Table 4.8 Average and standard deviation results for the R-Pearson across the 12 HR-based proposed
outcome measures, plus the R value obtained from the Bland-Altman plot denoted as R-IBI

R/Metr vLF aLF aHF aTotal pHF nLF pNNx SDNN SDANN RMSSD SD1 SD2 R-IBI

Av R 0.807 0.686 0.390 0.845 -0.049 -0.048 0.356 0.888 0.855 0.822 0.827 0.888 0.810
STD R 0.378 0.472 0.675 0.324 0.723 0.734 0.681 0.213 0.336 0.304 0.294 0.212 0.109
Conc. R 0.894 0.842 0.548 0.918 0.112 -0.021 0.703 0.947 0.908 0.855 0.855 0.946 0.918



Chapter 5

ConvNet Pipeline for EEG-based
Enhanced Emotion Decoding in Autism

This chapter starts the central and main part of this dissertation where we will describe
the Deep ConvNet pipeline for EEG-based successful emotion decoding including Autism
population from clinical lab-control and time-locked trial.
Due to a concrete and evident necessity of measure the statistical incidence of multiple
neuro-correlates included in the FER elicited ASD group neural activity, we propose to
measure and compare the neurocognitive effects, and the performances obtained from a FER
task elicited by DANVA 2.0 imageset (Nowicki, 2000) with a novel Deep ConvNet pipeline
to decode multiple emotion categories in a robust way (Schirrmeister et al., 2017; Weitz et al.,
2018).
Using our Deep ConvNet architecture we outperform significantly the FER human perfor-
mance in children and adults ASD, thus supporting the Deep ConvNet as a good candidate
for perceptual classifier capable to fill the multiple FER behavioral deficits observed in ASD
groups.
In the following subsections we will describe the methodologies use for construct and train
the Deep ConvNet pipeline for emotion decoding using EEG features, the corresponding
performances intra-subject, and across subjects, considering quantifiable comparison with
the corresponding FER human performances for each subject, and across all the participants
for non-ASD/TD controls and ASD participants.
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5.1 Demographics and Behavioral variables

For this study we include a complete sample of 192 participants to evaluate the classifier
performance. This 192 participants sample is divided in three subsamples: 1) A eighty-
eight children participant sample to evaluate the performance comparison, and the feature
importance analysis. This sample was composed of fourty-eight non-ASD/TD participants,
and 40 ASD participants with a clinical age Age = 15.69± 1.28 for TD participants, and
Age = 14.47±1.55 for ASD.
For performance results replication, specifically, for the TD/ASD Deep ConvNet performance
generalization, and the ADOS Calibrated Severity Scale (ADOS-CS) statistical correlation
analyses we include two complementary participant samples such as 2) a sample including
sixty-nine adults participants composed of fourty-two non-ASD/TD and twenty-seven ASD
participants with a clinical age of Age = 20.74±3.11 for the TD group, and Age = 22.97±
4.94 for the ASD group, and 3) a third sample including only thirty-six ASD participants
with a clinical age between 3 and 16 years old 13.41±1.96.
All the three participant samples grouped are a total of 192 TD/ASD participant included in
this study, and we included the Intellectual Quotient (IQ), the percentage of male and female
per group, and ADOS-CS being this latter significantly different between groups for the
sample # 1 (F(1,87)=2.345, p=0.0434) and # 2 (F(1,68)=2.001, p=0.0415). The IQ measure
was not significantly different for all the samples. Along this chapter we will report the Deep
ConvNet performance results for the three samples described here.

Samples

Sample
#1

Sample
#2

Sample
#3

TD ASD TD ASD ASD
N = 48 N = 40 N = 42 N = 27 N = 36
µ or # σ or % µ or # σ or % µ or # σ or % µ or # σ or % µ or # σ or %

Age
(years)

15.69 1.28 14.47 1.55 20.74 3.11 22.97 4.94 13.41 1.96

Male N
and %

29 60.42% 32 80.00% 31 60.42% 20 80.00% 25 69.44%

ADOS-
CS**

3.33 2.71 8.15 2.05 4.45 2.99 7.77 2.34 8.08 3.04

IQ 107.82 14.03 100.78 16.54 115.77 17.74 113.56 16.78 116.66 15.55

Table 5.1 Demographics, ADOS-CS, and IQ for all the participants across all the samples
included in this study.

5.1.1 Experimental Protocol and Data Collection

48 emotional faces from DANVA-2 image-set (Nowicki, 2000) were presented to all the 192
participants grouping all of them across the three participant samples mentioned above. The
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participants had EEG visits in the Social Competence and Treatment Lab (SCTL), in Stony
Brook University, NY, USA under the approval of Stony Brook Medicine Ethical Commitee.
The participants performed a FER task annotating the presented face between four different
emotions such as happy, sad, angry, and fear. DANVA-2 emotional face dataset does not
contain a neutral mental state, implying a variety of four different emotional states and a
clean elicitation of four extreme mental/emotion states dedicated to evaluate TD/ASD neural
and behavioral outcome measures.
EEG signals were recorded using a BrainVision 32 channels ActiChamp recorder sys-
tem downsampling the trials from 1KHz to 500Hz sampling frequency. The two electro-
oculogram (EOG) channels were removed from the initial analysis focused on the Prep
pipeline as we will describe below, but included again for ADJUST blinking artifact removal.
The rest of the pipeline execution use the 30 EEG channels only including neural activity
after the pre-emphasis and artifact removal methodologies as we will explain below.
The data were collected in anonymous way only identifying each participant with automatic
generated code, and the behavioral files containing the annotation, and the neural files in-
cluding EEG signals were saved separately but identified with the corresponding code per
participant.

5.2 ConvNet pipeline Description

The complete pipeline for EEG-based pipeline is shown in Figure 5.1 and it is composed
of four important substages such as 1) the EEG filtering stage or the pre-emphasis stage
using signal conditioning methods, 2) the artifact removal phase, 3) the ZCA whitening
transformation, and 4) the training of the Deep ConvNet described in Figure 5.1 and the
sections below.
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Fig. 5.1 Pipeline for emotion decoding composed 1) EEG Filtering and Pre-emphasis, 2) the artifact
removal process composed of a subsequent usage of the Prep pipeline including Koethe’s cleanraw
and Artifact Subspace Removal (ASR) for bad-channel removal, and the ADJUST EEGlab plugin
for automatic noisy ICs removal, 3) the ZCA whitening normalization process to increase the class
separability and the high-frequency neural activity excerpts per trial, 4) the Deep ConvNet composed
of 3 conv-pool layers going from high to low in terms for conv-pool dimensionality, and low to high
in terms of the number of filters per conv-pool layer, two local normalization layers, and a fully
connected layer with 1024 units.

5.2.1 EEG Filtering and Artifact Removal

Each raw EEG trial was processed using EEGlab (Delorme and Makeig, 2004) Matlab
toolbox assigning an EEGlab structure per participant/code, and for each emotion. We used a
150 coefficient Blackman-Harris-Window band-pass filter with a pass-band between [0.1-30]
Hz. The filtered EEG segments composed of 32 channels were initially referenced to Cz, and
re-referenced to maximize the neural activity in superior channels such as T9 -T10 obtaining
a new 30 channels EEG structure. Each channel was composed of 875 time-points based on
a 500Hz sampling rate. The EEG time-locked trial cover the time range between -200 and
1550 ms relative to the stimulus onset. Each structure groups the 12 corresponding epochs
associated with a specific emotion. Concordantly, each EEG structure had a data field with a
size of 30 channel × 875 time-points × 12 emotion epochs conforming a total of 48 epoched
trials, and 4 structures per participant one for each emotion.
The neural activity baseline was removed between -200 and 0 ms relative to the onset.
A bandpass filter with a passband between 0.1 and 30Hz was applied to each EEGlab
structure to conserve important neural activity on face perception such as N170, and LPP
windows(Dawson, Webb, and McPartland, 2005; Dawson et al., 2002; Mayor Torres et al.,
2018). Subsequently, an automatic channel rejection and an artifact removal process were
applied to each EEGlab structure.
First, the Prep pipeline (Bigdely-Shamlo et al., 2015) was used to remove noisy and arti-
factual channels based on the Koethe’s cleanraw function and Artifact Subspace Removal
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(ASR) method (Torres et al., 2018). Second, an Independent Component Analysis (ICA)
decomposition (Hyvärinen and Oja, 2000) was applied to 2D reshaped EEG structure to
calculate a decomposition matrix per structure, subsequently, the decomposition ICA matrix
and the 3D shaped EEG structure was used by the ADJUST EEGlab plugin (Mognon et al.,
2011) to classify artifactual independent components (ICs) using spatio-temporal high order
statistical moment ICs’ features. If a maximum is observed in features such as Temporal
Kurtosis, Spatial Average difference, Maximum Epoch Variance, or Generic Discontinuities
Spatial Feature a horizontal/vertical eye blink artifact can be detected. Therefore, the ICs
classified as artifactual based on the mentioned features were excluded from the subsequent
ICA composition process obtaining a clean EEG data structure.

5.2.2 ZCA Transformation

The artifact-free EEG structure was normalized using a ZCA whitening normalization. The
ZCA-like whitening normalization is also known as Mahalanobis Zero Phase Whitening
(Coates and Ng, 2011, 2012) and is used as previous step to create a 2D representation which
maximizes the average cross-covariance between each dimension of the whitened Xzca and
the original EEG cleansed data per trial X . Equation 5.1 represents the new Xzca whitened
EEG image representation where Sx =V DV T represents the eigenvalues decomposition of
the EEG cleansed matrix epoch composed of channels × time-points data field and denoted
with X . εzca is denoted as the contrast bias to move the resulting EEG image’s Xzca contrast
around the cross-covariance matrix trace. We set εzca value in 0.01.

Xzca =
VV T X√
D+ εzcaI

(5.1)

Xzca is then obtained decomposing and integrating the eigenvalues of the cross-covariance
matrix Sx. Applying the ZCA whitening normalization we convert a new EEG 2D feature
set in a high-frequency amplified "EEG image" which propagates better feature separability
across the max-pool layers of the ConvNet (Huang et al., 2018). The ZCA whitening
normalization allows a zero-phase and a minimal rotation of the feature input-map changing
the amplitude adequately to enhance our current pipeline decode the emotion successfully
from the neural activity. This whitening normalization process is iterated across all the 48
epoched trials, and per subject following the cross-validation modality explained below.
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5.2.3 Deep ConvNet training

The implementation of the Deep ConvNet was coded in the Tensorflow Python library (Abadi
et al., 2016), and the file management for the accessing whitening images was provided by
other Python Libraries. The Deep ConvNet was composed of three convolutional-pool layers.
The first convulitional-pooling (conv-pool) block had a convolutional-layer with a kernel-size
of 100x10 units and 32 filters, and a max-pool layer with a size of 5x2 units connected to
local response normalization layer (Schirrmeister et al., 2017). A second conv-pool block
was composed of a convolutional-layer with a kernel-size of 20x5 units, and a max-pool
layer with a size of 2x2 units also connected to a second local response normalization layer.
A third conv-pool block composed of a convolutional-layer with a size 10x2, and a max-pool
layer with a size 2x2 times 128 filters depth. Each conv-pool block has a stride factor of 2,
and non zero-padding using the option VALID from Tensorflow, and thus dividing the output
size for each dimension to a half after each conv-pool block. The third max-pool layer is
connected to a fully-connected (FC) Softmax layer with 1024 units to compute the final four
emotion classes probabilities for happy, sad, angry, and fear.
To illustrate a bit the Deep ConvNet arithmetic (Dumoulin and Visin, 2016) we can model
the final output-size after a conv-pool block described in Equation 5.2 where iconv, and kconv

the input size and the kernel size for each convolutional layer, and kpool , Opool , and Spool the
pooling size, the output size after the pooling layer, and the stride factor after the pooling
layer respectively. Running this ConvNet training in Seawulf (single process) occupies 12.3%
of memory from a Tesla K80 GPU node. On the other hand, running this ConvNet in HPC
Trento occupies 55.78% of memory from a Tesla V100 GPU node.

Opool =
[iconv− kconv +1]− kpool

Spool
+1 (5.2)

Getting into the Deep ConvNet training process, we initialize our conv-pool blocks following
an important initialization settings described in (Parcollet et al., 2018). The initialization
was used as a critical process for weight and biases values convergence on this type of
Deep ConvNet architecture. For our specific case we use the same initialization procedure
equivalent to only real modelled Deep ConvNet following Equation 5.3 with a uniform
random generated angle θ .

ω = |ω|cos(θ) (5.3)

Our choice to initialize the convolutional kernels in the first step were the Glorot’s uniform
initializer or also called Xavier Uniform initializer (Glorot, Bordes, and Bengio, 2011) from
Tensorflow. The biases were initialized with random normal distributions with 0.1 standard



5.2 ConvNet pipeline Description 86

deviation. Concordantly, the training process decreases the loss-function using a global-step
weight decay based on the stochastic Adam optimizer (Kingma and Ba, 2014) modulating
the weight changes from the FC layer, and starting with an initial learning rate of 0.00001.

θt ← θt−1−αt
m̂t√

υt + ε
(5.4)

Equation 5.4 and 5.5 show the Adam’s update rule for the parameters, the kernel and biases
weights θt , and the learning rate αt respectively. m̂t and υt are the bias-corrected estimators
calculated from the parameters distribution and bounded gradients derived from the previous
epoch learnt parameters, and the input feature-set.

αt = αt−1

√
1−β t

2
1−β t

1
(5.5)

β1 and β2 are the weight decay hyper-parameters calculated from the bias-correction either
which are used to update the learning rates across the Adam Optimizer procedure (Goroshin
et al., 2015). The training for all our evaluations in the three participant samples, and the
feature importance evaluation was executed using 4 mini-batches randomly distributed across
the epochs/training iteration. thus constituting the leave-one-trial-out (LOTO) per subject
cross-validation modality iterating the batches on 47 out 48 different training trials per trial.
A drop-out constant of 0.25 is applied per each training epoch. We will describe the LOTO
cross-validation in the next subsection.
All the units in the conv-pool blocks use Rectified Linear Unit (ReLU) activation functions
(Martinez, Bengio, and Yannakakis, 2013). A maximum of 500 iterations were set to train
each iteration in the cross-validation modality with an early stop criterion described in
(Schirrmeister et al., 2017).

5.2.4 Leave-One-Trial-Out per subject (LOTO) Cross-validation

To guarantee a correct execution of LOTO per subject cross-validation we created a .csv
file including the 47 training normalized images for the training-set, and a test-set .csv file
including the test normalized image to evaluate the Deep ConvNet classifier. As expected 47
trials for train and 1 for test per subject cross-validation.
The learning process read the training-set and test-set .csv files and used the features from
the ZCA whitening normalization when the training process ends the process generates an
output file grouping the results for each iteration for each subject. The results are composed
of the trial number, the loss value, and the four test probabilities assigning 0 or 1 accuracy if
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the maximum probability computed by the classifier match the real trial class (hit) or not
(miss).
All these values are computed per cross-validation epoch following Equation 5.6, 5.7, and
5.8 are used to compute the performance metrics such as the Accuracy, Precision, and Recall
values finally obtained averaging the true-positives, true-negatives, type I (false positive), and
type II (false negatives) errors per subject. We denote tp as true-positives, tn as true-negatives,
fp as false-positives, and fn false-negatives epochs for subject jth.

Accuracy j =
∑n tp +∑k tn

∑n tp +∑k tn +∑p fp +∑q fn
(5.6)

Precision j =
∑n tp

∑n tp +∑p fp
(5.7)

Recall j =
∑n tp

∑n tp +∑p fn
(5.8)

5.3 Performances Evaluation

The main results observed in this performance subsection is an overall higher accuracy
observed in the ASD groups in comparison with the non-ASD/TD groups for all the three
participant samples using our proposed Deep ConvNet performance, especially comparing
FER and Deep ConvNet metrics. Figure 5.2a shows the barplots for FER average accuracies
in red, and Deep ConvNet average accuracies in blue for the sample # 1 including 88
participans, and respectively Figure 5.2b for adults sample or sample # 2 with 69 participants,
and Figure 5.2c the ASD only sample or sample # 3 with 36 participants. Table 5.1 shows
the demographic details of these three participant samples.
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(a) sample # 1 (b) sample # 2

(c) sample # 3

Fig. 5.2 Barplots showing the mean and the standard deviation for the TD group in red, and ASD
group in blue. The black line marks the significant differences found between the accuracy groups
denoted as FER or for Deep ConvNet classifier modalities. The number of asterisks are the number of
zeros after the comma of the p-value comparing the groups using one-way ANOVA.

All the multivariable comparison used for the analysis below are one-way ANOVA. We
found significant differences in the sample # 1 ,F(1,79)=21.54, p=0.0000213 between ASD
FER accuracies and the ASD Deep ConvNet accuracies.
Comparing TD and ASD FER accuracies we found significant differences F(1,87)=4.69,
p=0.0342 for sample # 1. However, for the sample # 2 with adult participants we did
not find statistical differences between TD and ASD accuracies, F(1,68)=1.31,p=0.1053,
implying an increased variance on the TD FER and Deep ConvNet or machine accuracies.
For same sample # 2 the difference between ASD FER and ASD Deep ConvNet accuracies
is significant, F(1,52)=8.15, p=0.0062, supporting a Deep ConvNet model extension in terms
of performance for an older ASD sample thus complementing the non-behavioral difference
between adults groups. Evaluating the sample # 3 -a similar age range sample as sample # 1-
FER and Deep ConvNet accuracies we found a significant difference but with an increased
variance across both groups, F(1,68)=6.8,p=0.0112.
We evaluate the comparisons between TD FER accuracies and the corresponding Deep
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ConvNet accuracies and we did not find any difference on sample # 1, F(1,95)=1.131,
p=0.1256, and nor for sample # 2 F(1,83)=0.027, p=0.878.
On the other hand, we evaluate the difference between TD and ASD FER accuracies across
the three samples, thus finding significant differences only for the sample # 1, F(1,87)=4.69,
p=0.0342, being TD>ASD, and non-significant differences for sample # 2, F(1,68)=2.71,
p=0.1031 being TD>ASD. Sample # 3 we only have an ASD group and we can not evaluate
differences between groups in this case.
Evaluating the Deep ConvNet accuracies side between TD and ASD groups on sample # 1
and # 2 we did not find any significant difference due to the TD performance variance. For
sample # 1 we obtained, F(1,95)=1.46, p=0.2281, obtaining TD<ASD, and for sample # 2,
F(1,68)=2.71, p=0.1039, being TD< ASD. All these p-values are uncorrected due to they are
comparisons between groups adding the participant factor assuming a full ANOVA model
comparison.

5.3.1 Confusion Matrices - Performances

The accuracy metrics are extracted from each participant confusion matrix after the LOTO per
subject modality for the Deep ConvNet evaluation as well as measuring the FER performance
contructing a confusion matrix per participant as we mentioned above. In this subsection we
will report the grouped confusion matrices for FER and Deep ConvNet performances adding
the members of each confusion matrix calculated per subject.
The power of these results is shown in these FER and Deep ConvNet confusion matrices.
Figures 5.3, 5.4, and 5.5 show all the confusion matrices patterns for TD/ASD groups and
the three samples. Figures 5.3a, 5.3c, 5.4a, 5.4c, and 5.5a show an interesting pattern in the
FER confusion matrices for all the samples. The main metrics’ decreasing contribution is
observed in the negative emotions such as angry, and fear showing an accuracy dropping of
more than 20% in comparison with the Deep ConvNet accuracies across all the samples, and
for both TD and ASD groups.
This decreasing effect is not observed in emotions such as happy, and sad. For these
particular emotions the accuracy is the same or even higher than the Deep ConvNet accuracies.
This suggests a robust generalization of negative emotions such as angry, and fear appraisal
deficits using the Deep ConvNet on TD and ASD participants.
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(a) FER Confusion Matrix for TD on sample # 1 (b) Deep ConvNet Confusion Matrix for TD on sample # 1

(c) FER Confusion Matrix for ASD on sample # 1 (d) Deep ConvNet Confusion Matrix for ASD on sample # 1

Fig. 5.3 Confusion matrices for the sample # 1, and for both groups TD and ASD. The matrices are
calculated grouping each individual confusion matrix per subject. The colormap is jet and the colorbar
show the performance between 0 and 1 going from blue being the lowest, and darker red the highest.
The differences are critical for angry and fear emotions contributing to the accuracy dropping for FER
metrics.
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(a) FER Confusion Matrix for TD on sample # 2 (b) Deep ConvNet Confusion Matrix for TD on sample # 2

(c) FER Confusion Matrix for ASD on sample # 2 (d) Deep ConvNet Confusion Matrix for ASD on sample # 2

Fig. 5.4 Confusion matrices for the sample # 2, and for both groups TD and ASD. The matrices
are calculated grouping each individual confusion matrix per subject. The color-map is jet and the
colorbar show the performance between 0 and 1 going from blue being the lowest, and darker red the
highest. The differences are critical for angry and fear emotions contributing to the accuracy dropping
for FER metrics.

(a) FER Confusion Matrix for ASD on sample # 3 (b) Deep ConvNet Confusion Matrix for ASD on sample # 3

Fig. 5.5 Confusion matrices for the sample # 3, and for both groups TD and ASD. The matrices
are calculated grouping each individual confusion matrix per subject. The color-map is jet and the
colorbar show the performance between 0 and 1 going from blue being the lowest, and darker red the
highest. The differences are critical for angry and fear emotions contributing to the accuracy dropping
for FER metrics.
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The TD participants perform better in terms of negative emotions such as angry, and
fear FER accuracies, however, this deficit is observed in both groups showing a classifier
generalization independently from the group as we can see in the Deep ConvNet confusion
matrices. We can confirm this effect in Figures 5.3b, 5.3d, 5.4b, 5.4d, and 5.5b. All these
resulting confusion matrices are obtained grouping each confusion matrix per subject, and
per group individualizing the hit and misses in the corresponding emotion class.

5.3.2 Table Performances

Tables 5.2 and 5.3 show the overall performance metrics for FER and Deep ConvNet classifier
respectively. In these tables Accuracy (Acc), Precision (Pre), Recall (Re), and F1 score (F1)
are reported and these metrics are calculated following the Equations 5-7 for each participant
confusion matrix. Evaluating statistically using ANOVA we found always a significant
difference between the ASD Deep ConvNet metrics, and the ASD FER metrices, for all cases
F(1,>=35) 4.21, p<0.05. For TD we do not found any significant difference due to the high
variance in the performance metrics.

Table 5.2 Average and standard deviation of the overall FER task performances metrics for the all the
samples are shown in this table. The results are computed averaging the Accuracy (Acc), Precision
(Pre), Recall (Re), and F1 score (F1) from all the confusion matrices constructed per subject.

Samples / Groups

TD ASD
Acc Pre Re F1 Acc Pre Re F1

Sample #1 0.815±0.083 0.808±0.079 0.802±0.077 0.807±0.079 0.776±0.093 0.774±0.089 0.768±0.088 0.771±0.088
Sample #2 0.846±0.074 0.858±0.067 0.847±0.073 0.852±0.070 0.837±0.064 0.853±0.062 0.840±0.062 0.846±0.062
Sample #3 – – – – 0.817±0.077 0.8363±0.070 0.818±0.074 0.827±0.072

Table 5.3 Average and standard deviation of the overall Deep ConvNet performances metrics for
the all the samples are shown in this table. The results are computed averaging the Accuracy (Acc),
Precision (Pre), Recall (Re), and F1 score (F1) from all the confusion matrices constructed per subject.

Samples/Groups

TD ASD
Acc Pre Re F1 Acc Pre Re F1

Sample #1 0.860±0.213 0.864±0.201 0.860±0.204 0.862±0.202 0.934±0.134 0.935±0.132 0.933±0.134 0.934±0.132
Sample #2 0.847±0.198 0.856±0.191 0.848±0.197 0.852±0.194 0.915±0.127 0.9207±0.1218 0.915±0.127 0.918±0.124
Sample #3 – – – – 0.909±0.114 0.911±0.113 0.907±0.116 0.909±0.114

5.3.3 Performance Interaction - FER (Human) v.s Deep ConvNet (Ma-
chine)

In this section we also describe the numerical interaction between the FER and Deep ConvNet
accuracies showing effect plots per subject and intra-group for each sample. To relate the
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performance variables we plot a blue line to join the FER accuracy point in red with the
corresponding Deep ConvNet accuracy point in black.
Figure 5.6a, 5.6b, and 5.6c show these effect plots also denoted as Spaghetti Plots (Potter
et al., 2009) or an important tool for visualization of statistical ensembles. These plots show
an expected TD high-variance, however, most of the lines goes up linking FER with Deep
ConvNet accuracies and supporting in most cases the Deep ConvNet as a classifier which
can successfully decode the emotions having a lower FER accuracy or not indistinguishably.
This effect is a constant across the samples, except in sample #3 where we can see a more
sparse effect between the variables. For sample #3 we only compute the Run1 denoted by the
first phase of the experiment applied to these participants.

(a) sample # 1 (b) sample # 2

(c) sample # 3

Fig. 5.6 Intra-subject effect plots linking the FER and the Deep ConvNet average accuracies computed
per subject for all the samples. Sample #3 only has an ASD group and we only report a single effect
plot this group. The lines going up are observed in both TD and ASD groups yielding a higher
variance in TD groups.

The results shown in Figure 5.6 support the model isolation between the statistical model
which produce the behavioral performance in ASD participants and the Deep ConvNet
model which can extract important information for decode negative emotions properly, and
overcome the deficits shown in the confusion matrices of Figures 5.3, 5.4, and 5.5. In the
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following chapter we will show the statistical interactions between the FER (Human) and
Deep ConvNet (Machine)accuracy performances, and the ASD severity measure such as
the ADOS-CS, and others such as the AQ and the SCQ scores related to social competence
measures.



Chapter 6

Correlation between Deep ConvNet
parameters and ADOS-CS

In this chapter we will analyze statistical correlation between Performance variables de-
scribed in the chapter above such as FER and classifier accuracies, and behavioral outcome
measures such as ADOS-CSS or the ADOS calibrated severity score (Gotham, Pickles, and
Lord, 2012), the score of the Autism-Spectrum Quotient (AQ) (Baron-Cohen et al., 2001),
and Social Communication Questionnaire (SCQ) (Bölte, Holtmann, and Poustka, 2008).
We found an overall non-significant correlation between the FER (human) and Deep
ConvNet (machine) performances, and the Autism severity scores such ADOS-CS,
SCQ, and AQ for Adults specifically.
Following the same effect plots (Spaghetti Plots) analysis used between the FER and Deep
ConvNet accuracies in the chapter above we paired the FER and Deep ConvNet accuracies
with the ADOS-CS calculated for each sample in the screening time. First, we will describe
a typical a screening process using ADOS-2 and the calculating of the ADOS-CS used for
the three participant samples included in this dissertation.

6.1 ADOS-CS evaluation

In Social Competence and Treatment Lab (SCTL), StonyBrook, NY, USA the screening
process is very important before implement any neural measurement, or behavioral inter-
vention visit to a new participant sample as a clinical study. The PhD fellows and research
associates are formally trained to fill up . In (Gotham, Pickles, and Lord, 2009, 2012)
ADOS-2 assessment has been evaluated with more than 2000 participants across multiple
races, and ages providing a large statistical power. As we reported on Table 2.1 and chapter
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2 there is multiple methodologies for ASD diagnosis and screening such ADI-R, SSR, and
CELF-4.
Particularly, ADOS as a semi-structured assessment has an important statistical validity
(Gotham et al., 2007). Each item from the language and developmental level measurement
is divided in a 4-point scale with 0 meaning no abnormality observed, and 3 moderate or
severe abnormality observed. For each ADOS module the final score is obtained adding the
values of each item per module by the trained evaluator.
With purpose of reduce demographics variance and increase the sample representative level
Autism researchers calibrate the ADOS-2 raw score using eighteen specific age/language
cells mapping the raw ADOS score on each cell. Following the Table 6.1 and using the raw
ADOS score per module we can infer the corresponding ADOS-CS assigned per participant.
All the ADOS-CS values used in the subsections below are discrete integers between 1-10
meaning a larger severity with a larger number and viceversa.

Table 6.1 ADOS-CS calculation extracted from (Gotham, Pickles, and Lord, 2009) and sumarize the
calibration algorithm for normalize the ADOS-raw score using age, and language levels obtained
from the ADOS-2 itself. The values inside the table are the ADOS raw scores, the values listed on the
column one is the resulting ADOS-CS. For this table NS is No Spectrum or TD, and AUT Autism
participants.

ADOS CSS

ADOS Raw Score
Module 1, No Words Module 1, Single Word Module 2, Phrases Module 3, Fluent

2y 3y 4-5y 14y 2y 3y 4y 5-6y 14y 2y 3y 4y 5-6y 7-8y 16y 2-5y 6-9y 16y

NS

1 0–6 0–6 0–3 0–3 0–3 0–4 0–2 0–2 0–2 0–2 0–3 0–3 0–3 0–2 0–2 0–3 0–2 0–3
2 7–8 7–8 4–6 4–6 4–5 5–6 3–4 3–4 3–5 3–5 4–5 4–5 4–5 3–5 3–5 4 3–4 4
3 9–10 9–10 7–10 7–10 6–7 7 5–7 5–7 6–7 6 6 6 6–7 6–7 6–7 5–6 5–6 5–6

ASD

4 11–13 11–14 11–12 11–13 8–10 8–9 8–9 8–10 8–9 7–8 7–8 7 8 8 8 7 7 7
5 14–15 15 13–15 14–15 11 10–11 11 11 10–11 9 9 8–9 - - - 8 8 8

AUT

6 16–19 16–20 16–19 16–19 12–13 12–14 12–15 12–16 12–18 10–11 10–12 10–13 9–14 9–14 9–14 9–11 9–10 9–10
7 20–21 21–22 20–21 20–22 14–16 15–17 16–18 17–19 19–20 12 13–14 14–16 15–16 15–17 15–17 12 11–12 11–12
8 22 23 22–23 23–24 17–19 18–19 19–20 20–21 21 13–14 15–16 17–18 17–20 18–21 18–20 13–15 13–14 13–14
9 23–24 24 24–25 25 20–21 20–21 21–22 22–23 22–23 15–17 17–18 19–20 21–22 22–23 21–23 16–17 15–17 15–17
10 25–28 25–28 26–28 26–28 22–28 22–28 23–28 24–28 24–28 18–28 19–28 21–28 23–28 24–28 24–28 18–28 18–28 18–28

Autism and ASD are considered ASD and Pervasive Developmental Disorder. Not
Otherwise Specified (PDD-NOS) participants groups respectively for (Gotham, Pickles, and
Lord, 2009, 2012). For simplification purposes we only use TD and ASD groups grouping
all of the ADOS-CS values for the statistical correlation analysis explained below.

6.2 Interaction Between Deep ConvNet and FER Accura-
cies with ADOS-CS

The ADOS-CS spectrum reflects the level of Autism severity based on language, cognitive
competence impairments, and age. The ADOS-CS can be calculated for TD and ASD based
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on the Table 6.1. For our particular case sample #1 has ADOS-CS values for TD and ASD
groups. However, sample #2 and sample #3 have ADOS-CS scores reported for ASD groups
only. This limitation is given by sample #2 include adults TD participants (older than 18
years) and the ADOS-CS can not be extended for a NS adult participants. As for sample #3
it has only an ASD group.
Figures 6.1a, 6.1b, and 6.1c show the interaction effect across the participants that belong
to the 10 different ADOS-CS values between 1-10. We organize the effects grouping the
participant’s performances from 1 to 10 ADOS-CS values and similar to the effect plots in
Figure 5.6 red is FER accuracy, and black is Deep ConvNet accuracy per participant. In these
reported Figures TD and ASD performances are grouped all together to find a correlation per
sample, as we will analyze in the next subsection.

(a) sample # 1 (b) sample # 2

(c) sample # 3

Fig. 6.1 Interaction effect between FER and Deep ConvNet accuracies, and the ADOS-CS spectrum
explicit on the x-axis. The variation across ADOS-CS scores show high and low Deep ConvNet
accuracies indistinguishably, as well as high and low FER accuracies without finding any negative or
positive correlation across the variables.

High and low FER and Deep ConvNet accuracies are presented in both low and high
ADOS-CS scores showing a considerable level of sparsity across the ADOS-CS spectrum.
For sample #1 including TD participants we can observe a large variance thus suggesting FER,
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Deep ConvNet accuracies, and the ADOS-CS scores as three different models. However, we
expect a negative correlation between FER and ADOS-CS for one of the samples, or at least
ASD groups. We will support this hypothesis in the next subsection evaluating the statistical
correlation between FER, Deep ConvNet performances and ADOS-CS.

6.2.1 FER v.s Deep ConvNet

To visualize the effects of the Spaghetti Plots shown above we evaluate the statistical
correlations using a Generalized Linear Model (GLM) explained in the Appendix A. The
results obtained using the GLM analysis are shown in Figures grouping TD and ASD
groups within the corresponding FER and Deep ConvNet accuracies for the three samples
respectively. We can observe none significant regression, or a positive/negative significant
R-Pearson value to be considered significant in this analysis.
Figures 6.2a, 6.2b, and 6.2c show the linear regressions across TD and ASD groups, and
FER and Deep ConvNet accuracies across for the three samples in this study respectively.

(a) sample # 1 (b) sample # 2

(c) sample # 3

Fig. 6.2 FER v.s Deep ConvNet accuracies linear regressions for sample #1 (Figure 6.2a), #2 , and
#3 . Dot points represent the pair (FER x-axis, Deep ConvNet y-axis), and the line is a robust linear
regression calculated using fitlm from Matlab package, and the model explained in Appendix A.
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For sample #3 we found a little positive correlation but not significant. These results can
be justified because sample #3 was recruited in a specific location in Virginia, US, in early
2000s and with a very different experimental setting than sample #1. For this particular case
we can suggest that neural activity, and FER human performances are more in synchrony in
comparison with other samples.
These results suggest that FER and Deep ConvNet accuracies represent two different numeri-
cal models, thus showing that is possible to decode successfully the emotion using our Deep
ConvNet-based pipeline and assuming a complete different numerical representation from
the neural activity information decoding comparing the Deep ConvNet performances with
the FER human behavior performances across TD and ASD groups.
All the intercepts were significantly estimated except for sample #2 ADOS-CS v.s Deep
ConvNet evaluation. As expected β1 was always negative for the negative correlation value
observed between the FER accuracy and the ADOS-CS. The β values explained in Appendix
A are reported in Tables 6.5, 6.6, and 6.7 for sample #1, #2, and #3, specifically in the
intersection between row one and column one.

6.2.2 FER v.s ADOS-CS

To evaluate the correlation between performances and ADOS-CS variables we use the R-
Pearson values defining the positivity or negativity of the correlation, and the p-value obtained
pairing all the possible scores per subject between FER and Deep ConvNet accuracies, and
the ADOS-CS as we explained below.
Our golden-standard for this analysis is to find at least a negative correlation between
FER accuracies and ADOS-CS, observed in previous studies (Clarkson et al., 2019). Any
significant correlation is a plus for analysis expecting always negative R-Pearson comparing
performances with the severity scores.
Figure 6.3a, 6.3b, and 6.3c show the linear regressions measuring the relationship between
FER accuracies and ADOS-CS for all the samples included in this study. As expected all
correlations between FER performances and ADOS-CS are negative, thus finding significant
correlations for sample #1, and nearly significant for sample #2. In Tables 6.2 and 6.3
we found the R-Pearson and p-values for the regressions between ADOS-CS and FER
performances for sample #1 and #2. For #3 the correlation is negative but not negative
enough for being significant showing a more sparse FER performances in comparison with
sample #1 and #2. The R-Pearson and p-values are reported in Table 6.4 for sample #3.
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(a) sample # 1 (b) sample # 2

(c) sample # 3

Fig. 6.3 ADOS-CS scores v.s FER accuracies linear regressions for sample #1 (Figure 6.3a) , #2
(Figure 6.3b) , and #3 (Figure 6.3c) . Dot points represent the pair (ADOS-CS x-axis, FER y-axis),
and the line is a robust linear regression calculated using fitlm from Matlab, and the model explained
in Appendix A.

We suggest that the significant p-value found for sample #1 evaluating statistical cor-
relation between ADOS-CS and FER accuracies are related to the number of points or
subjects (N=88) being covered by the ADOS age cells. Sample #2 and #3 only include ASD
participants eliminating the β2 and β3 factors from the corresponding regressions. These
specific regressions are considered with less statistical power and robustness in comparison
with Sample #1. The β factors are reported in Tables 6.5, 6.6, and 6.7 for sample #1, #2, and
#3, specifically in the intersection between row three and column one.

6.2.3 Deep ConvNet v.s ADOS-CS

The Deep ConvNet accuracies depends on the neural activity but we expect differences
between ADOS-CS and Deep ConvNet accuracies due to the multiple conv-pool blocks
dedicated to discriminate intermediate features in our emotion decoding pipeline. The Deep
ConvNet model will be considered an isolated model from the ASD behavioral perfomance,
deficits, and Autism severity measures.
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Figures 6.4a, 6.4b, and 6.4c show the linear regressions between ADOS-CS and Deep
ConvNet accuracies. In this linear models we did not find any significant or considerable
correlation between both variables across the three samples. Tables 6.2, 6.3, and 6.4 show the
R and the p-values for all the samples in this study as we mentioned above. Sample #3 shows
a non-significant negative correlation similar to the FER case due to the different experiment
setting in comparison with Sample #1 as we mentioned above.

(a) sample # 1 (b) sample # 2

(c) sample # 3

Fig. 6.4 ADOS-CS scores v.s Deep ConvNet accuracies linear regressions for sample #1 (Figure 6.4a)
, #2 (Figure 6.4b) , and #3 (Figure 6.4c) . Dot points represent the pair (ADOS-CS x-axis, Deep
ConvNet y-axis), and the line is a robust linear regression calculated using fitlm package from Matlab,
and the model explained in Appendix A.

Tables 6.5, 6.6, and 6.7 shows the such as β1, β2, and β3 and the intercept b with
the corresponding p-values in the intersection between row two and column one. As we
mentioned above the for sample #2 and #3 with ASD group only, the linear model is reduced
using β1 and b only.
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Table 6.2 Linear regression R-Pearson correlation value and the corresponding p-value between the
variables in row and columns for sample #1. A positive R value represent a positive slope, and
negative R value represent a negative slope in the linear regression. These values show the statistical
relationship between human and machine accuracies. Only the highlighted values are significant
correlations. The partially highlighted values are near to be significant in the evaluation.

Sample #1 FER Deep ConvNet ADOS-CS

FER
R p R p R p
– – -0.0678 0.8972 -0.3079 0.003775

Deep Con-
vNet

-0.0678 0.8972 – – 0.1056 0.0867

ADOS-CS -0.3079 0.003775 0.1056 0.0867 – –

Table 6.3 Linear regression R-Pearson correlation values and the corresponding p-value between
the variables in row and columns for sample #2. A positive R value represent a positive slope, and
negative R value represent a negative slope in the linear regression. These values show the statistical
relationship between human and machine accuracies. Only the highlighted values are significant
correlations. The partially highlighted values are near to be significant in the evaluation.

Sample #2 FER Deep ConvNet ADOS-CS

FER
R p R p R p
– – 0.0290 0.8521 -0.3472 0.0765

Deep Con-
vNet

0.0290 0.8521 – – 0.0402 0.8395

ADOS-CS -0.3472 0.0765 0.0402 0.8395 – –

Table 6.4 Linear regression R-Pearson correlation value and the corresponding p-value between the
variables in row and columns for sample #3. A positive R value represent a positive slope, and
negative R value represent a negative slope in the linear regression. These values show the statistical
relationship between human and machine accuracies. Only the highlighted values are significant
correlations. The partially highlighted values are near to be significant in the evaluation.

Sample #3 FER Deep ConvNet ADOS-CS

FER
R p R p R p
– – 0.2964 0.0898 -0.1364 0.4484

Deep Con-
vNet

0.2964 0.0898 – – -0.1464 0.4334

ADOS-CS -0.1364 0.4484 -0.1464 0.4334 – –
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Table 6.5 Estimated parameters for all the linear regressions in this Chapter comparing correlations
between Deep ConvNet, FER human accuracies, and the ADOS-CS scores for sample #1.

Sample#1
Deep ConvNet

β1 p β2 p β3 p b p
FER 0.4783 0.1322 0.7246 0.0444 -0.8082 0.07184 0.8567 0.0759
ADOS-CS 0.0028 0.7323 0.3087 0.2375 -0.3143 0.3281 0.8464 6.35E-35

Sample#1
FER

β1 p β2 p β3 p b p
ADOS-CS -0.0077 0.0788 – – – – 0.8813 4.72E-22

Table 6.6 Estimated parameters for all the linear comparing correlations between Deep ConvNet, FER
human accuracies, and the ADOS-CS scores for sample #2.

Sample#2
Deep ConvNet

β1 p β2 p β3 p b p
FER 0.1841 0.6217 0.5646 0.3084 -0.5873 0.3662 0.6817 0.0335
ADOS-CS 0.0018 0.8393 – – – – 0.9054 1.25E-14

Sample#2
FER

β1 p β2 p β3 p b p
ADOS-CS -0.0077 0.0788 – – – – 0.8813 4.72E-22

Table 6.7 Estimated parameters for all the linear comparing correlations between Deep ConvNet, FER
human accuracies, and the ADOS-CS scores for sample #3.

Sample#3
Deep ConvNet

β1 p β2 p β3 p b p
FER 0.4814 0.0834 – – – – 0.4869 0.0324
ADOS-CS -0.0096 0.4214 – – – – 0.9353 2.01E-13

Sample#3
Deep ConvNet

β1 p β2 p β3 p b p
ADOS-CS -0.0052 0.4765 – – – – 0.8371 5,08E-15

6.2.4 Including AQ and SCQ scores

In this subsection in order to include TD participants for Sample #2 we include other severity
measures such as the Autism-Spectrum Quotient (AQ) (Baron-Cohen et al., 2001), and for
sample #3 the Social Communication Questionnaire (SCQ) (Bölte, Holtmann, and Poustka,
2008).
The AQ is a psychological self-assessment which was primarly evaluated to diagnose Autism-
Spectrum (AS), and High-Functioning Asperger (HFA) groups with different economic and
demographic conditions with a great validity. The AQ is composed of 50 items, 10 for each
module evaluated such as Communication, Social Skills, Imagination, Local Details, and
Attention Switching being this assessment only adequate for adult participants. The Total AQ
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score is reported summing the scores for al the 50 items.
The score is calculated per item from a 4 point-scale. For a half of the items the "Slightly
Agree" and "Definetely Agree" score 1, and for the other half "Slightly Disagree" and
"Definetely Disagree" score 1 too. As this assessment is dedicated to evaluate behavioral
outcome measures we repored the Total AQ score for Sample #2.
On the other hand, SCQ is a parent report questionnaire for screening and severity measures
of ASD participants using 40 binary scaled items for SCQ screening open the door for TD
and ASD participants having a last differentiation specificity of 0.96. An average SCQ score
is reported for the Sample #3 regressions.
A higher AQ and a lower SCQ total are a representation of a higher ASD severity using a
self and parent report options instead of a evaluator annotator as the ADOS-CS. In Figures
6.5a and 6.5b we show the linear regression of FER accuracies related to the AQ total scores,
and the Deep ConvNet accuracies related to the same AQ scores from Sample #2 including
only adults participants.
In Sample #2 AQ linear regressions we did not find any significant correlations in terms
of the p-values, however, we found a consistent negative correlation comparing the FER
performances and the AQ total scores, R =−0.1305,p = 0.2561, and an inconclusive little
positive correlation between the Deep ConvNet accuracies, and the same AQ scores, R =

0.1671, p = 0.1634 thus supporting again the different model established by the Deep
ConvNet which is learning features and patterns in a different way in comparison with the
human brain in TD and ASD participants.

(a) AQ v.s FER accuracies (b) AQ v.s Deep ConvNet Accuracies

Fig. 6.5 Linear regression between the FER accuracies v.s AQ total scores in Figure 6.5a, and between
Deep ConvNet accuracies v.s AQ total scores in Figure 6.5b with all the data from Sample #2 TD and
ASD data included.

Figures 6.6a and 6.6b show the linear regressions evaluating the relationship between
the FER accuracies and SCQ average scores, as well as the relationship between the Deep
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ConvNet accuracies and the same SCQ average scores respectively. The correlations are
both positives for FER and Deep ConvNet accuracies but they are not significant and again
they do not offer a conclusion about the statistical interaction of SCQ and the human,
(R = 0.2291,p = 0.2225), and machine, (R = 0.1778,p = 0.3221), performances.

(a) SCQ v.s FER accuracies (b) SCQ v.s Deep ConvNet Accuracies

Fig. 6.6 Linear regression between the FER accuracies v.s SCQ total scores in Figure 6.6a, and
between Deep ConvNet accuracies v.s SCQ total scores in Figure 6.6b with all the data from Sample
#3.

6.3 ConvNet and Behavioral Models, are linked?

The correlation results reported in previous two sections suggest that Deep ConvNet and the
subsequent complete pipeline proposed in this dissertation encode successfully the neural
activity representation to create and independent model through the higher performances
from the Deep ConvNet.
This neural activity statistically associated with the emotion decoding is then completely
isolated model comparing them with the machine accuracies. The FER human performances
are correlated negatively as expected with the severity scores such as ADOS-CS, AQ and
SCQ (Clarkson et al., 2019).
This supports our pipeline as a transparent system being able to generalize and compensate
the neural and behavior deficits found in ASD emotion appraisal mentioned in the previous
chapters.
The statistical results show negative Pearson correlation between FER accuracies and ADOS-
CS in Figure 6.3 and Tables 6.2, 6.3, and 6.4. The only significant correlation found across
all the variables and samples was between FER and ADOS-CS on sample #1.
Sample #3 shows some small negative and positive correlation comparing the Deep ConvNet
accuracies with the ADOS-CS. But this correlation is not significant because of the data
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sparsity and the sample #3 heterogeneity. In the following chapter we will show the similari-
ties between TD and ASD neural activity sensitivity, and the neural activity corresponding
relevance with its corresponding location in space and time using the more robust saliency
methods.



Chapter 7

Saliency Maps Evaluation - EEG
Features Relevant Measures

In this chapter we will explore the brain network differences between TD and ASD groups
(Black et al., 2017) visualizing the Deep ConvNet classifier sensitivity and the relevance
maps obtained from the Deep ConvNet using layer-wise and on-pixel relevance propagation,
inverse deconvolution operators, statistical linear modelling, and EEG features occluding
methods.
For this preliminary study we use the 88 TD/ASD participants observing plausible/significant
differences between groups on the relevance maps as we will explained below. This pro-
posed saliency maps can be considered a novel set of methodologies for measuring feature
importance going from EEG single trials 2D input-map to the classification output in a Deep
ConvNet, and visceversa (Kapishnikov et al., 2019).
Our definition of relevance-map is a feature relevance quantification using the training param-
eters from the Deep ConvNet and the 2D input image, and for our specific case we measure
similarities and differences as well in brain network activation from FER-elicited patterns in
TD and ASD groups.
For this saliency-map analysis we evaluate four different type of saliency methods. First, we
propose to investigate saliency maps which include parameter optimization, and linear/non-
linear constraints applied to all the conv-pool blocks on a trained Deep ConvNet classifier,
thus propagating feature-maps relevance quantification from the classifier decision to the
input layer.
These methods are called the Layer-wise Relevance Propagation (LRP) (Bach et al., 2015;
Binder et al., 2016) methodologies. These type of methods use constraint and inverse opera-
tor models to propagate the relevance from the output layer’s decisions through the hidden
conv-pool blocks to the input feature-map.
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On other hand, we use other methods such as the dedicated Deconvolution process (Zeiler
and Fergus, 2014; Zeiler, Taylor, and Fergus, 2011) using Deconvolution and Un-pooling
inverse operators for each conv-pool blocks. We will also focus on the deconvolution based
drawbacks and the evident need to add a double parameters per each conv-pool block to
obtain a single relevance-map.
Third, we study gradient-based methods such as the broadly used such as Gradient-weighted
Class Activation Map Grad-CAM (Selvaraju et al., 2017), Grad-CAM++ (Chattopadhay
et al., 2018), and other new evaluations such as Smooth-Grad (Smilkov et al., 2017) using
the learnt parameters of the last fully-connected weights from a function Deep ConvNet in
the particular case of our pipeline. However, we will focus on the gradient-based model
drawbacks specially when the number of classes is high, and the input space representation
is very entangled as the EEG single-trial.
A final type of saliency method is the systematic occluding of the input feature-set (Huang
et al., 2018; Zeiler and Fergus, 2014), this method will particularly occlude the transformed
EEG input 2D feature-set using square or rectangular occluding sections. The output perfor-
mances are modulated depending on the size and the amount of occluders distributed across
the input feature set.
In the following sections we will discuss the results for the Saliency Methods used for
feature-relevance calculation in Sample #1.

7.1 Saliency Methods - Results

In this section we will specify the results for LRP, Deconvolution-based, Gradient-based, and
Occluding based results. As we mentioned a select the sample #1 with 88 participants to test
the saliency methods generalizing the relevance-maps for a children and adolescents sample
who includes ADOS-CS values for TD and ASD groups, and thus allowing the possibility to
associate relevance-maps with the corresponding ADOS-CS scores.
The relevance/saliency maps calculated from proposed by the methodologies mentioned
above have different settings and different requirements for a correct relevance calculation,
thus implying different interpretations between methods.
In the following subsections we will explain the main core of the saliency methods models,
and the important parameters optimized for consolidating the saliency maps more robust.
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7.2 iNNvestigate package

The iNNvestigate package (Alber et al., 2019) is a set of enhanced and modified saliency
maps implemented by Google brain research group. In this dissertation we implement the
complete library on our 3-conv-pool block network pipeline to compare an initial set of
saliency maps such as Integrated Gradients, Deconvolution (mentioned above), PatternNet
and Pattern-Attribution (Kindermans et al., 2017a,b), and LRP presets using stabilizers
and the flat αβ rule balancing positively and negatively relevance propagations (Montavon,
Samek, and Müller, 2018). We will explain this in detail in the following subsections and
Appendix B.
These iNNvesitage methods represent the most significant improvement and most reliable
saliency maps options. iNNvestigate authors suggest to improve the salience maps reliabilities
using the package as critical improvement critical for ML studies which include clinical trials
(Hooker et al., 2018; Kindermans et al., 2017c).

7.2.1 Previous Saliency Methods

As we mentioned above popular saliency maps such as Grad-CAM and Grad-CAM++ have
been used for generalize neural activity in clinical trials (Andreotti, Phan, and De Vos, 2018).
However, in our particular experiment we can not propagate the gradient values from the last
max-pool layer because our input 2D feature-set is a single-channel image with a size 752
time points × 30 channels, thus the gradient calculated from single-channel image on the
fully-connected layer output is always zero cost function.
The existing Grad-CAM and Grad-CAM++ implementations use RGB, CMYK, and HSV
squared images, or other multi-channels image representation propagating a gradient different
than zero. This same situation is evaluated in (Andreotti, Phan, and De Vos, 2018) where
the input representation is an input image composed of three channels: one channel EEG,
a second channel EOG, and a third channel electro-myography (EMG) emulating a RGB
representation. These input images are composed of a Frequency × Time input image
composed of multiple biosignals EEG, EOG, and EMG channels.
In the following subsections we will discuss the most critical and robust saliency methods
evaluated by the iNNvestigate package such LRP its foundations and the corresponding
presets, PatternNet and Pattern-Attribution, and Smooth-Grad, with an extra evaluation
using the RemOve-and-RetrAin (ROAR) (Hooker et al., 2018) method to debug the level of
certainty of the resulting relevance-maps obtained by these established methods.
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7.2.2 Layer-Wise Relevance Propagation (LRP)

In this subsection and Appendix B we will explain the evolution and multiple models who
constraint and construct the LRP methodologies for relevance-map calculation on a Deep
ConvNet classifier.
To define the LRP foundations (Bach et al., 2015) defines a constraint for a single and
multiple hidden-layer ConvNet network based on the Lebesgue measure and the conservation
law (Szepessy, 1989). Equation 7.1 shows the conservation law for a multiple-layer network
quantifying the classifier output f (x) to calculate the corresponding relevance-maps denoted
as Rl

d where l is the lth layer or conv-pool block and d the dimensionality unit defined as a
pixel, a neuron, or a set of neurons. L is the total amount of layers in the Deep ConvNet.

f (x) = ∑
q

R1
q = ∑

d∈(l+1)
Rl+1

d = ∑
d∈(l)

Rl
d = . . .= ∑

d
RL

d (7.1)

Following Equation 7.1 LRP is a generalized model for a discriminative multi-layer network
using a "message passing" back-propagation methodology where the relevance calculated
from the neuron j to the neuron i can be calculated as the sum of the input relevances ∑i Rl,l+1

i← j

from predecessor layer. Equation 7.2 described this propagation using the same notation of
Equation 7.1.

∑
i

Rl,l+1
i← j = Rl+1

j (7.2)

To generalize more the network structure we can define the relevance R(l,l+1)
i← j based on the

layers and neuron’s parameters as follows zi j = xl
iω

(l,l+1)
i j where ω

(l,l+1)
i j are the learned

weights connecting layer l and i. These weights are adjacent to the inputs for neuron j all
related to the index i and the variable xl

i . Following this new parameter definition we can
rewrite Equation 7.3 assigning to f (x) = ∑i zi j from the top layer to the bottom generalizing
the message passing as Equation 7.3. For a sum across all the units per layer we add the bias
term as b j for the layer jth

Rl
i = ∑

j

zi j

∑i zi, j
Rl+1

j = ∑
j

xl+1
i ω

(l,l+1)
i j

∑i xl
iω

(l,l+1)
i j +b j

Rl+1
j (7.3)

Equation 7.3 can be affected for low and high relevance values propagated from the top layer.
Therefore, in order to not have unbounded relevance values in the feature-input layer (Binder
et al., 2016) introduce a stabilizer variable ε having always a positive sign.
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LRP-z and LRP-ε

The LRP-z method is defined as the most simple LRP method without any relevance numeri-
cal balance method, thus calculating the relevance propagation using the linear propagation
defined in Equation 7.3.
Equation 7.3 can be rewritten and split in two part Equations, where a positive and negative
relevance values are controlled through the propagation process. These two types of relevance
can be balanced per layer as we explain with the αβ rule in the Appendix B and sections
below. The split Equation 7.3 is expressed in Equation 7.4 and Equation 7.5.

Rl
i = ∑

j

zi j

∑i zi, j + εsign
(
∑i zi j

)Rl+1
j ∑

i
zi j ≥ 0 (7.4)

Rl
i = ∑

j

zi j

∑i zi, j− εsign
(
∑i zi j

)Rl+1
j ∑

i
zi j < 0 (7.5)

The numerical stabilizer ε is included in Equation 7.3 obtaining a split function in Equation
7.4 and 7.5 that yields the conservation law. The LRP-ε method is configured by the numerical
stabilization on the denominator of Equations 7.4 and 7.5 making the relevance-maps cleaner
as we will see in the sections below.

Flat αβ Rule

With the purpose of establishing a bilateral control on the relevance propagation across
classifier’s layers the positive z+i j , and the negative z−i j part of the relevance adjustment
parameters. These parameters α and β are set to adjust the positive and negative relevance
values controlling the amplitude overflow with a numerical constraint α−β = 1. Including
these adjust parameters the new expression for the relevance propagation is re-written in
Equation 7.6.

Rl
i = ∑

j

[
α

z+i j

∑ j z+i j
+β

z−i j

∑ j z−i j

]
(7.6)

Following the model on Equation 7.6 the relevance can be propagated through a Deep
ConvNet’s layers limiting the initial relevance calculation using a Taylor-type decomposition
(Nik and Soleymani, 2013) converting the classifier’s output decision to a vector of relevances
with the same dimensionality of the predecessor layer transforming the domain across layers
f : RN → RM where N is the dimensionality of the decision space, and M the dimensionality
of the previous layer. We will describe this model in detail in Appendix B.
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LRP numerical balance - A,B Presets

iNNvestigate authors include the LRP with flat rule adding the stabilizer with a value of
ε = 0.1 following the enhanced model, Equation 7.6 can be transformed to Equation including
the stabilizer in the denominator to clean the relevance propagation from the positive and
negative signs.
Previous implementations have include LRP without numerical balance using EEG features
with 2D arrangement for motor imagery decoding (Sturm et al., 2016). However, without the
adequate numerical balance the LRP-z or the LRP-ε approaches won’t describe the more
reliable locations for the more relevant or unrelevant features.
In the iNNvestigate package proposed a modification of α and β adjustment parameters. The
αβ preset A set the values in α = 1 and β = 0, and the preset B set the values in α = 2 and
β = 1 (Montavon, Samek, and Müller, 2018). To illustrate the LRP-z reliability limitations
we show the results from (Weitz et al., 2018) in Figure 7.1 where a face emotion decoding
problem becomes very tricky without using an adequate numerical balance such as the A and
B presets.

Fig. 7.1 The relevance-map propagation entanglement produced without using an adequate numerical
balance including the adequate αβ preset. These results are extracted from (Weitz et al., 2018)

In the following subsections we will illustrate the more robust methods such as PatternNet,
Pattern Attribution, and Smooth-Grad. The Deconvolution-based methods will be described
with more detail in the Appendix B. We will also show the results for the most reliable
methods applied to the sample #1 described in the previous chapter with the comparison
between TD and ASD groups.

7.2.3 PatternNet and Pattern Attribution

PatternNet and Pattern-Attribution (Kindermans et al., 2017a) are robust saliency methods
that can isolate the input signal model representation from any disturbing perturbation during
the training process using linear modelling. These methods optimize the learning represen-
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tation making it more disentangled from common linear and multidirectional disturbances
across each feature-space per conv-pool blocks.
The initial representation of inputs per layer in the Deep ConvNet is modeled using a typical
linear model x affected by any kind of deterministic/non-deterministic disturbance commonly
called by Google Brain researchers a "distractor" or d. The linear model from input feature-
space has a signal component denoted as s.
PatternNet and Pattern-Attribution methods optimize the linear model to increase the statis-
tical correlation between the signal component s and the linear representation x associated
with the corresponding layer output y.
The linear model is defined as x = s+d , and each component has a parametric direction
parameters denoted as as and ad for the signal s and the distractor d. Therefore, the linear
model can be re-written as x = asy+ εad where ε is a multidimensional noise source.
With this new linear model PatternNet and Pattern-Attribution propose methodologies to find
a set of filter weights ω to maximize the signal component taking into account the conv-pool
layer model y = ωT x.
In (Kindermans et al., 2017a) the authors first analyze gradient-based methods where the
propagation is not deriving the level of signal included in x, but only optimizing the filter
values based on the input-output relationship ∂y

∂x = ω .
With a gradient-based model the distractor can not be detected properly using relevance prop-
agation. Thus, re-formulating the derivative propagation the new linear model will be affected
by the distractor. Changing the approach such as Deconvolution and Guided-Backpropagation
process use a similar gradient propagation in comparison with gradient-based methods with-
out isolating the level of signal propagated through the Deep ConvNet layers.
As a third case the authors analyze relevance-based methods such as LRP-z and LRP Deep-
Taylor approaches. Both methods are sensitive to the Taylor constraint root value denoted
by x0 as we explain in the Appendix B. To simplify the distractor model for LRP methods
x0 = d. Following the isolation purpose PatternNet and Pattern-Attribution estimate a signal
contribution from a different region associated with a completely different model for the
distractor.
PatternNet and Pattern-Attribution model the distractor assuming this equivalences y = ωT x,
y = ωT s, and ωT d = 0 to compute a new signal estimator denoted as S(x) = s, and a corre-
lation estimator for quality measure denoted as ρ . This new estimator assumes a complete
isolation from distractor using an estimator denoted by d̂.
To compute ρ we assume that the distractor and the signal estimators should not be singular,
and should be decomposed in eigenvalues. Equation 7.7 shows that a better signal estimator
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S(x) can be evaluated with a more reliable neuron-wise explanation if ρ is higher.

ρ(S) = 1−maxcorr
(
ω

T x,uT (x−S(x))
)
= 1−max

(
uT cov(d,y)
√

σu,dσy

)
(7.7)

To simplify the ρ quality criterion as LRP proposed we assign σu,d = σy where u is the
new modelled input. The estimator S(x) can be reduced as a filtered signal estimator Sω(x).
Therefore, we define Sω(x) = ω

ωT ω
ωT x propagating the estimator through the network with

an evident association.
With the Sω(x) definition PatternNet and Pattern-Attribution methods propose two different
estimators approaches that can increase the quality criterion expressed in Equation 7.7.
The first estimator is a covariance-based linear estimator between x and the corresponding
output y. This covariance estimator is denoted as Sa(x), and the covariance between this
estimator and corresponding layer output y should be evaluated with a zero covariance
between the distractor and the output cov[d,y] = 0. The new linear estimator model is defined
in Equation 7.8 and modelling cov[x,y] assuming the previous statements we can calculate
the estimator a.

cov[x,y] = cov[Sa(x),y]⇒ cov[x,y] = cov[aω
T x,y]⇒ cov[x,y] = acov[y,y]⇒ a =

cov[x,y]
σy
(7.8)

a is equivalent to a filter estimator explained in (Kindermans et al., 2017b). This estimator is
related to distractor components when dense ReLU layers are included as our pipeline. Thus,
an alternative negative-positive new estimator should be defined to reduce the effect of ReLU
as a distractor.
This new estimator is denoted as Sa+−(x) including the negative and positive relevance
values and balancing the distractor effect on ReLU layers. To define this new estimator the
covariance between x and y, and the covariance between Sa(x) and y must be defined in a
bilateral way as well.

cov[xy] = π+ [E+[xy]−E+(x)E+(y)]+(1−π+) [E−[xy]−E−(x)E−(y)] (7.9)

cov[S(x)y] = π+ [E+[S(x)y]−E+(S(x))E+(y)]+(1−π+) [E−[S(x)y]−E−(S(x))E−(y)]
(7.10)

Equations 7.9 and 7.10 re-define the covariances mentioned above including the numerical
ratio π+ to be propagated across the trained network. To complete the balance across the
network we define the expected values E[xy], E[x], E[y], E[S(x)y], and E[S(x)]. All these
new expected value should be redefined bilaterally too E+ and E−.
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Equalling both covariances cov[xy] = cov[S(x)y], and closing the range of the estimator for
using only the positive relevance it is possible to define a new positive estimator denoted as
a+, assuming a minimum covariance between x and y with the distractor d.

a+ =
[E+[xy]−E+(x)E+(y)]

[ωT E+[xy]−ωT E+(x)E+(y)]
(7.11)

Equation 7.11 includes the formal definition of a+ to modulate the final relevance propagation.
Equation 7.11 also extend the definition of the optimized estimator from Equation 7.10
introducing the independent values a+ and ωT out of the brackets in Equation 7.11.
The next step is propagating a+ through the Deep ConvNet to reduce significantly the
distractor effect as well as increment the quality criterion ρ substantially as we can see on
the experiments in (Kindermans et al., 2017a,b).
With the estimator a+ defined we can point the PatternNet and Pattern-Attribution main
difference in the propagation modalities. PatternNet uses a similar propagation as LRP
DeepTaylor (Appendix B) but without propagating the filtered estimator.
PatternNet propagates a+ through the layers modulating linearly the distractor incidence. As
for Pattern-Attribution method the numerical incidence of the learnt weights ωT is propagated
using a linear product with a+ denoted as ωT a+ through the network.
The iNNvestigate package also includes other important methods such as the LRP flat presets
A and B as we explained in the section above. We will report the results comparing the most
important relevant maps across participants for the Sample #1.

7.3 Relevance-maps - Comparison TD and ASD

For the the relevance-maps show in the following Figures the dark red or hotter points can
be defined as "relevant" and the blue or colder spots "un-relevant". This rectangular form
is denoted here as a heat-map with the size of the input feature-set 752 × 30 as we ex-
plained in the chapters above. As we explained in the chapters above the 752 points cover the
time range between [0−1500] ms, and the 30 channels are the final cleansed channels such as:
FT9,F7,FC5,FP1,FZ,FP2,F4,F8,FC6,FT10,F4,F3,FC1,C3,FC1,FC2,C4,T7,CP5,CP1,CZ,CP2,
P4,P8,CP6,T8,P7,P3,Pz,O1,O2, and Oz. All these methods represent a mathematical intuition
about how the neural activity is decoding emotion through the Deep ConvNet training. To
show the relevance-maps we use a 2D representation denoted as colormap with the channels
in y-axis, and time in x-axis.
We use topo-maps or topographic plots from EEGlab (Delorme and Makeig, 2004) to com-
pare the relevance between TD and ASD groups averaging the relevance level in 5 time
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ranges such as [0-500],[250-750],[500-1000],[750-1250], and [1000-1500] ms after the
stimulus onset.
For the statistical comparison we use an ANOVA one-way with Bonferroni correction. The
F values are grouped based on the initial comparison values, and only the p-values were
corrected. To complement this evaluation we measure the differences in terms of statistical
origin, in other words if TD and ASD relevance-maps correspond or not to the same type of
CDF using the Kolmogorov-Smirnov test (K-S test) with a confidence value of 0.05 (Banerjee
and Pradhan, 2018).
The relevance-maps are presented using the heat-maps and the topo-maps in the same Figure
being the heat-map up and the 5 topo-maps down. The relevance-maps are also presented
with an amplitude normalized between [−1,1] following the normalization of (Bach et al.,
2015).
In the following relevance-maps the values R1

q≥ 0 contribute positively in the correct emotion
decoding "relevant", and the values R1

q < 0 are "un-relevant" or do not contribute to the
correct emotion decoding.
R1

q is calculated per method and group from the trained Deep ConvNet following the mod-
els explained in the sections above. For each method and group we report a difference
relevance-map substracting the normalized relevance obtained for the TD group with the
relevance-map obtained for the ASD group normalizing the final difference relevance-map
between [−0.1,0.1] for some methods and [−0.02,0.02] when the difference is not signifi-
cant.

7.3.1 LRP A,B flat presets results

In this section we will show the relevance-maps obtained using the LRP A and B flat preset
as we explained in the section above. The methodology for showing results here will be
grouping and averaging the relevance calculated per each subject, and for each hit registered
by subject and for each emotion. In summary, we will show the relevance-map for Happy,
Sad, Angry,Fear, and the Average relevance-map averaging the relevance-maps for all the
classes.
Figures 7.2, 7.3, 7.4, 7.5, and 7.6 show the relevance-maps with the heat-maps and topo
maps for the LRP preset A for Average, Happy, Sad, Angry, and Fear classes respectively.
Evaluating the Bonferroni corrected ANOVAs across the 5 topo-maps, and for each class we
did not found any significant difference between TD and ASD groups for emotions Happy,
Angry, and Fear after correction F(1,87)<1.243, p>0.05.
We only found significant difference after correction in the emotion Sad for LRP A preset
method and for the ranges [1000-1500]ms, F(1,87)=13.54, p=0.0021, TD > ASD.
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Despite the non-significant differences in LRP A we found a consequent more relevant block
in late components approximately after 1000ms for LRP A and LRP B presets in ASD groups
observed in Angry and Fear emotions, and this effect is also replicated in the subsequent
Average class.
We can correlate this feature importance obtained in LRP A and B presets with the correct
emotion decoding observed in negative emotions in Chapter 5 in comparison with FER
performances.
For LRP A some K-S tests show a null-hypothesis h = 1 acceptance, thus supporting that
relevance-maps patterns between TD and ASD groups come from different statistical distri-
butions, and without being significant in the ANOVA comparisons. For emotions such as
Happy in ranges between [0-500]ms, p=0.0484, and between [750-1250]ms, p=0.0132, and
for Sad in ranges between [1000-1500]ms, p=0.0016.
Despite LRP A and LRP B preset relevance-maps were similar between groups, we only
found significant differences after correction for LRP preset B in the ranges due to the
participant’s high variability found in LRP A in comparison with LRP B presets. We found
significant differences after correction in [1000-1500ms], F(1,87)=7.889,p=0.0344, TD <
ASD, and [0-500ms], F(1,87)=11.56, p=0.0033, TD > ASD for the average class.
Figures 7.7, 7.8, 7.9, 7.10, and 7.11 show the relevance-maps with the heat-maps and topo
maps for the LRP preset B method and for Average, Happy, Sad, Angry, and Fear classes.
Although the LRP A preset and LRP B preset show similar relevance-map patterns, the
results found for the LRP B preset are very different in comparison with the LRP A preset
method.
Evaluating LRP B preset we found more significant differences after correction in emotions
such as Sad in ranges between [750-1250]ms, F(1,87)=8.491, p=0.0141, TD > ASD, and be-
tween 1000-1500ms, F(1,87)=13.54, p=0.0005, TD > ASD supporting again the differences
in late components, Angry in ranges between [0-500]ms, F(1,87)=10.85, p=0.0095, TD
> ASD, and between [1000-1500]ms, F(1,87)=9.667, p=0.0102, TD < ASD, and for Fear
emotion in ranges between [0-500]ms, F(1,87)=23.47, p=7.6e-6, TD < ASD, between [500-
1000]ms F(1,87)=7.193, p=0.0263, TD > ASD and between [750-1250]ms, F(1,87)=9.313,
p=0.0121, TD < ASD. These differences support the late greater relevance component ob-
served in ASD groups in comparison with TD, and a similar relevance pattern observed
between Angry and Fear classes maps.
The K-S tests for the LRP B preset method are accepting the null-hypothesis for the same
time regions where the ANOVAs are significant for 0-500 ms p=0.0198, and for 1000-1500ms
p=0.0244 for the average class. In consonance with the ANOVA comparisons the K-S tests
accept the null-hypothesis h = 1 for the same ranges and the same emotion classes such
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as Sad emotion between [0-500]ms,p=0.0484 and between [750-1250]ms,p=0.0132, Angry
in ranges between [750-1250]ms, p=0.0078, and for [1000-1500]ms p=0.0006, and Fear
covering all ranges such as [0-500]ms, p=5.5e-6, between [250-750]ms, p=0.0439, between
[500-1000]ms, p=0.0088, between [750-1250]ms, p=0.0030, and between [1000-1500]ms,
p=0.0251. These K-S p-values were not corrected due to they are multiple comparison but
statistical origin inference analyses.
As an overall effect we observed a consolidated significance difference on negative emo-
tions such as Angry and Fear, and the corresponding Average relevance maps com-
paring late time ranges such as [750-1250]ms and [1000-1500]ms across TD and ASD
groups.

(a) LRP A preset, TD average (b) LRP A preset, ASD average

(c) LRP A preset, TD-ASD diff average

Fig. 7.2 LRP A average class relevance-map for TD 7.2a, and ASD 7.2b, and the differences between
TD-ASD 7.2c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) LRP A preset, TD happy (b) LRP A preset, ASD happy

(c) LRP A preset, TD-ASD diff happy

Fig. 7.3 LRP A Happy relevance-map for TD 7.3a, and ASD 7.3b, and the differences between
TD-ASD 7.3c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) LRP A preset, TD sad (b) LRP A preset, ASD sad

(c) LRP A preset, TD-ASD diff sad

Fig. 7.4 LRP A Sad relevance-map for TD 7.4a, and ASD 7.4b, and the differences between TD-ASD
7.4c. For the TD and ASD groups we use a jet colormap due to the relevance normalization between
[−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50 color
scale between a range of [−0.1,0.1].
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(a) LRP A preset, TD angry (b) LRP A preset, ASD angry

(c) LRP A preset, TD-ASD diff angry

Fig. 7.5 LRP A Angry relevance-map for TD 7.5a, and ASD 7.5b, and the differences between
TD-ASD 7.5c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) LRP A preset, TD fear (b) LRP A preset, ASD fear

(c) LRP A preset, TD-ASD diff fear

Fig. 7.6 LRP A Fear relevance-map for TD 7.6a, and ASD 7.6b, and the differences between TD-ASD
7.6c. For the TD and ASD groups we use a jet colormap due to the relevance normalization between
[−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50 color
scale between a range of [−0.1,0.1].
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(a) LRP B preset, TD average (b) LRP B preset, ASD average

(c) LRP B preset, TD-ASD diff average

Fig. 7.7 LRP B average class relevance-map for TD 7.7a, and ASD 7.7b, and the differences between
TD-ASD 7.7c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) LRP B preset, TD happy (b) LRP B preset, ASD happy

(c) LRP B preset, TD-ASD diff happy

Fig. 7.8 LRP B Happy relevance-map for TD 7.8a, and ASD 7.8b, and the differences between
TD-ASD 7.8c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) LRP B preset, TD sad (b) LRP B preset, ASD sad

(c) LRP B preset, TD-ASD diff sad

Fig. 7.9 LRP B Sad relevance-map for TD 7.9a, and ASD 7.9b, and the differences between TD-ASD
7.9c. For the TD and ASD groups we use a jet colormap due to the relevance normalization between
[−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50 color
scale between a range of [−0.1,0.1].



7.3 Relevance-maps - Comparison TD and ASD 126

(a) LRP B preset, TD angry (b) LRP B preset, ASD angry

(c) LRP B preset, TD-ASD diff angry

Fig. 7.10 LRP B Angry relevance-map for TD 7.10a, and ASD 7.10b, and the differences between
TD-ASD 7.10c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].



7.3 Relevance-maps - Comparison TD and ASD 127

(a) LRP B preset, TD fear (b) LRP B preset, ASD fear

(c) LRP B preset, TD-ASD diff fear

Fig. 7.11 LRP B Fear relevance-map for TD 7.11a, and ASD 7.11b, and the differences between
TD-ASD 7.11c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].

The results obtained here for the LRP A and LRP B presets are the results with more
significant p-values after correction in comparison with other methods comparing the topo-
maps relevance patterns between TD and ASD groups. In the following analysis we will use
LRP B as the higher significance quota in comparison with other saliency methods.
As we mentioned above these results are confirming the late activation related with ASD
neural emotion decoding in comparison with TD (Benning et al., 2016; Black et al., 2017).
The spatial resolution of the input feature-set is not balanced in comparison with the time
resolution. Therefore, we expect a less relevance resolution on the channels in comparison
with the time domain (Selvaraju et al., 2016). We will show the results for PatternNet and
Pattern-Attribution results in the following subsections.
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7.3.2 PatternNet and Pattern-Attribution results

Figures 7.12, 7.13, 7.14, 7.15, and 7.16 show the relevance-maps for TD and ASD groups,
and the difference TD-ASD relevance-maps for the PatternNet saliency method for Average,
Happy, Sad, Angry, and Fear classes respectively.
On the other hand, Figures 7.17, 7.18, 7.19, 7.20, and 7.21 show the relevance-maps for TD
and ASD groups, and the difference TD-ASD relevance-maps for the Pattern Attribution
saliency method for Average, Happy, Sad, Angry, and Fear classes too.
For all the time ranges, PatternNet did not show any significant difference between the
groups for any emotion class such as Average F(1,87)<0.126, Happy F(1,87)<1.334, Sad
F(1,87)<0.556, Angry F(1,87)<0.775, and Fear F(1,87)<0.889 with all the p-values p>0.05
after correction.
The same results occur for Pattern Attribution were the propagation of the weights ωT

include a noisier relevance-map pattern in the propagation law across the Deep ConvNet as
we can see in the corresponding Figures. We did not found any significant difference after
correction for the Pattern Attribution method including Average class F(1,87)<0.034, and
emotion classes such as Happy F(1,87)<0.222, Sad F(1,87)<0.045, Angry F(1,87)<0.067,
and Fear F(1,87)<0.178 with all the p-values p>0.05 after correction.
The K-S tests were all h = 0 rejecting the null-hypothesis and we can not find any difference
in the statistical distribution between TD and ASD groups and across all the emotions such
as Average, Happy, Sad, Angry, and Fear.



7.3 Relevance-maps - Comparison TD and ASD 129

(a) PatternNet, TD average (b) PatternNet, ASD average

(c) PatternNet, TD-ASD diff average

Fig. 7.12 PatternNet average class relevance-map for TD 7.12a, and ASD 7.12b, and the differences
between TD-ASD 7.12c. For the TD and ASD groups we use a jet colormap due to the relevance
normalization between [−1,1], and for the TD-ASD difference relevance-map we use the redblue
colormap with 50 color scale between a range of [−0.1,0.1].
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(a) PatternNet, TD happy (b) PatternNet, ASD happy

(c) PatternNet, TD-ASD diff happy

Fig. 7.13 PatternNet Happy relevance-map for TD 7.13a, and ASD 7.13b, and the differences between
TD-ASD 7.13c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) PatternNet, TD sad (b) PatternNet, ASD sad

(c) PatternNet, TD-ASD diff sad

Fig. 7.14 PatternNet Sad relevance-map for TD 7.14a, and ASD 7.14b, and the differences between
TD-ASD 7.14c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) PatternNet, TD angry (b) PatternNet, ASD angry

(c) PatternNet, TD-ASD diff angry

Fig. 7.15 PatternNet Angry relevance-map for TD 7.15a, and ASD 7.15b, and the differences between
TD-ASD 7.15c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) PatternNet, TD fear (b) PatternNet, ASD fear

(c) PatternNet, TD-ASD diff fear

Fig. 7.16 PatternNet Fear relevance-map for TD 7.16a, and ASD 7.16b, and the differences between
TD-ASD 7.16c. For the TD and ASD groups we use a jet colormap due to the relevance normalization
between [−1,1], and for the TD-ASD difference relevance-map we use the redblue colormap with 50
color scale between a range of [−0.1,0.1].
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(a) Pattern Attribution, TD average (b) Pattern Attribution, ASD average

(c) Pattern Attribution, TD-ASD diff average

Fig. 7.17 Pattern Attribution average class relevance-map for TD 7.17a, and ASD 7.17b, and the
differences between TD-ASD 7.17c. For the TD and ASD groups we use a jet colormap due to the
relevance normalization between [−1,1], and for the TD-ASD difference relevance-map we use the
redblue colormap with 50 color scale between a range of [−0.1,0.1].
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(a) Pattern Attribution, TD happy (b) Pattern Attribution, ASD happy

(c) Pattern Attribution, TD-ASD diff happy

Fig. 7.18 Pattern Attribution Happy relevance-map for TD 7.18a, and ASD 7.18b, and the differences
between TD-ASD 7.18c. For the TD and ASD groups we use a jet colormap due to the relevance
normalization between [−1,1], and for the TD-ASD difference relevance-map we use the redblue
colormap with 50 color scale between a range of [−0.1,0.1].
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(a) Pattern Attribution, TD sad (b) Pattern Attribution, ASD sad

(c) Pattern Attribution, TD-ASD diff sad

Fig. 7.19 Pattern Attribution Sad relevance-map for TD 7.19a, and ASD 7.19b, and the differences
between TD-ASD 7.19c. For the TD and ASD groups we use a jet colormap due to the relevance
normalization between [−1,1], and for the TD-ASD difference relevance-map we use the redblue
colormap with 50 color scale between a range of [−0.1,0.1].
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(a) Pattern Attribution, TD angry (b) Pattern Attribution, ASD angry

(c) Pattern Attribution, TD-ASD diff angry

Fig. 7.20 Pattern Attribution Angry relevance-map for TD 7.20a, and ASD 7.20b, and the differences
between TD-ASD 7.20c. For the TD and ASD groups we use a jet colormap due to the relevance
normalization between [−1,1], and for the TD-ASD difference relevance-map we use the redblue
colormap with 50 color scale between a range of [−0.1,0.1].
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(a) Pattern Attribution, TD fear (b) Pattern Attribution, ASD fear

(c) Pattern Attribution, TD-ASD diff fear

Fig. 7.21 Pattern Attribution Fear relevance-map for TD 7.21a, and ASD 7.21b, and the differences
between TD-ASD 7.21c. For the TD and ASD groups we use a jet colormap due to the relevance
normalization between [−1,1], and for the TD-ASD difference relevance-map we use the redblue
colormap with 50 color scale between a range of [−0.1,0.1].

Now, in the Appendix B we report the rest of the results for the most important methods
of the iNNvestigate package, and we will report the relationship between the ADOS-CS and
the relevance-maps for the LRP A/B presets, PatternNet, and Pattern Attribution. We will
also report the results for the ROAR methodology applied for Sample #1.

7.4 Topo-Maps - ADOS-CS

To evaluate the relationship between the relevance-maps and ADOS-CS scores we evaluate
the linear regressions - similar to the linear models of Chapter 6- between the average value
of the relevance-maps across all emotions (using the average class). Subsequently, we
grouped p-values for each regression using a Bonferroni correction across the 5 time ranges
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[0-500],[250-750],[500-1000],[750-1250], and [1000-1500] ms as we explained above.
The results obtained after correction show no significance difference between TD and ASD
groups. For all severity levels we grouped ADOS-CS values in this experiment such as
low-severity 1-4, low-mid severity 5-6, mid-severity 7-8, and high-severity 9-10 in order to
make the topo-maps smoother. We set these ranges due to the topo-map per subject or for
each ADOS-CS value between 1-10 is showing an increased noise and non-deterministic
level.
All the p-values found after the regression were p>0.05, and R correlation values between
0.0045≤ R≤ 0.0932 for the LRP A preset, 0.0025≤ R≤ 0.0435 for LRP B, 0.0098≤ R≤
0.0775 for PatternNet, and 0.0056 ≤ R ≤ 0.0888 for Pattern Attribution method showing
again an isolated model in from the relevance-maps calculated from the trained Deep ConvNet
in comparison with behavioral outcome measures such as ADOS severity measures.

(a) LRP A preset v.s ADOS-CS (b) LRP B preset v.s ADOS-CS

Fig. 7.22 Relevance topo-maps across the ADOS-CS spectrum in four groups low-severity 1-4,
low-mid severity 5-6, mid-severity 7-8, and high-severity 9-10 for methods LRP A preset (Figure
7.22a), and LRP B preset (Figure 7.22b). TD and ASD groups are analyzed here in the first two rows.
Colorbars are normalized between [0,1] for TD and ASD topo-maps using the jet colormap, and the
TD-ASD difference colorbar is normalized between [−0.02,0.02] using the redblue colormap.

As we can see also in Figures 7.22 and 7.23 the difference topo-map in the row three is
showing minimum differences between [−0.02,0.02] supporting the non-significand regres-
sions for LRP-based and estimator propagation methods.
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(a) PatternNet v.s ADOS-CS (b) Pattern Attribution v.s ADOS-CS

Fig. 7.23 Relevance topo-maps across the ADOS-CS spectrum in four groups low-severity 1-4, low-
mid severity 5-6, mid-severity 7-8, and high-severity 9-10 for methods PatternNet (Figure 7.23a),
and Pattern Attribution (Figure 7.23b). TD and ASD groups are analyzed here in the first two rows.
Colorbars are normalized between [0,1] for TD and ASD topo-maps using the jet colormap, and the
TD-ASD difference colorbar is normalized between [−0.02,0.02] using the redblue colormap.

These results suggest that for low-severity ADOS-CS indicator TD>ASD, for low-mid
severity we found that TD<ASD for the overall scalp, for mid severity we found TD<ASD
for almost all the scalp, and for high severity we found TD<ASD for all the methods LRP
A/B, and PatternNet, and Pattern Attribution methods. However, even if the relevance is
going lower for a larger ADOS-CS values the correlation for each method is not enough
negative for being significant. For Pattern Attribution method the previous relationship effect
between the relevances and the ADOS-CS is not that evident due to the increased noise added
to the Pattern Attribution model on ωT .

7.5 RemOve And Retrain (ROAR) evaluation

Using the Sample #1 data we implemented ROAR (Hooker et al., 2018) methodology to
measure the level of reliability and interpretability for our 3-layer Deep ConvNet trained to
decode the four emotions explained above.
Following ROAR we use an initial training process based on (Torres et al., 2018, 2019)
to calculate an initial relevance-map R1

i j per trial from the most reliable methods of the
iNNvestigate package such as SmoothGrad, SmoothGrad-Squared, PatternNet, Pattern-
Attribution, and LRP presets A/B as we explained above (Alber et al., 2019).
As we mentioned in the section above the resulting relevance-map per trial is averaged for
each participant, and finally an averaged relevance-map is obtained for each class Happy,
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Sad, Angry, and Fear: Rhappy, Rsad , Rangry, and R f ear following Equation 7.12 for each
participant averaging across the total 48 trials.

Rav =
1

48N

N

∑
i

47

∑
j=0

Ri j (7.12)

A single and resulting relevance-map Rs is used for TD and ASD groups based on Equation
7.13 for each method mentioned above. To compute the removal part of the ROAR method we
transform the resulting relevance-map Rs into a binarized-mask map Rb sorting the relevance
values from high to low and removing the percentage of pixels which are considered important
for a particular saliency method.
Therefore, in order to compare ROAR on our proposed EEG feature-set we compute a
baseline based on a selection of thin slices testing the level of statistical correlation between
the EEG channels (Krishna, Pasha, and Savithri, 2016). The thin slices construction consists
in thin occluders with the size of an EEG channel, and 47 time points denoted here as a 47×1
slice.
Based on thin slices we select 47×1 slices of pixels indexes using a random uniform
distribution of pixels in the mask denoting this as random slices baseline for each saliency
method, or a method-based saliency slices baseline. We construct a second baseline based on
the same 47×1 slices but sorted using relevance values for each saliency method denoting it
as slices preffix complemented with the method name.

Rs = (Rhappy +Rsad +Rangry +R f ear)/4 (7.13)

With the Rb sorted indexes we set a pixel rate removal r between 0 and 1 created for remove
the pixels considered important by the corresponding saliency method, and the corresponding
baseline relevance-maps. The pixel/feature removal follows Equation 7.14 obtaining a
complete set of performance metrics for different r points such as 0.1, 0.2, 0.5, 0.7, 0.9 and
1 joining the points in the final plot. Rb is multiplied point by point to the input image to
regulate the feature acceptance on the re-training.

Rb =

1 Rs ≤ r

0 Rs > r
(7.14)

A summarized pipeline for ROAR methodology and our application on EEG data is shown
in Figure 7.24.
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Fig. 7.24 RemOve And Retrain(ROAR) methodology pipeline. The pipeline sue a re-trained new
input feature-set modulated by an averaged relevance-map calculated after the LOTO cross-validation.
Using a binary mask we removed the features corresponding relevant channel and time point with the
purpose of calculate new metrics using the original EEG image× binary mask per saliency method.

Using the LRP B preset method as baseline we show some binary masks Rb examples on
Figure 7.25. These Figures show how the pixel rate removal value r change the binary-masks
pattern diminishing the density of red points "relevant" in the Rb relevance-map having a
complete feature removal when r = 1. These Rb or binary mask are shown only with the
heat-map using the redblue colormap being the blue points 0 and the red points 1.
We can observe that changing the incidence of the relevance linearly the channel Cz shows
the higher relevance between TD and ASD groups across the relevance-maps, and there is
three "relevant" time spots in the TD group around 250, 550, and 1200ms after the onset. For
the ASD group we observe two important spots on 250, and 1200ms being more pronounced
in the late components as we observed in the ANOVA comparisons on the section above.
The first way we use to illustrate ROAR differences between the baselines and the saliency
methods is using the barplots comparison of Figure 7.26. We select again LRP B preset
as the most reliable method given our dataset on Sample #1 finding significant differences
between the accuracies obtained from the random baselines, slices based on the method, and
the method itself p < 0.001. The p-values for this comparison were reported after Bonferroni
correction.
The comparison after corrections were: comparing TD and ASD FER performances we
obtained the same results reported in Chapter 5 F(1,87)=4.69, with a greater p-value after
correction p=0.0455.
The rest comparisons are pairing ASD groups performances only across the different
modalities of Figure 7.26 such comparing FER and Deep ConvNet performances in ASD
F(1,79)=12.78, p=0.000345, comparing ASD random baseline with LRP B slices F(1,79)=13.77,
p=0.000112, comparing the ASD 47×1 random baseline with the LRP B slices F(1,79)=6.58,
p=0.0113, comparing the random baseline with the LRP B r = 0.5 F(1,79)=20.34, p=2.45E-6,
comparing the 47×1 slices performance with the LRP B r = 0.2 F(1,79)=17.88, p=0.0000345
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having an opposite sign being the LRP B r = 0.2 performance higher than the 47×1 slices,
comparing the same 47×1 slices accuracy with the LRP B r = 0.7 F(1,79)=34.89, p=1.67E-
10.
A similar difference is observed between the random baseline and the LRP B r = 0.5
F(1,79)=9.99, p=0.000367, and the random baseline again in comparison the LRP B r = 0.7
F(1,79)=15.90,p=4.45E-8. These similar difference are observed for the other robust methods
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(a) random baseline removing the 50% pixels (b) random slices removing the 50% pixels

(c) LRP B 47×1 r = 0.5 slices TD group (d) LRP B 47×1 r = 0.5 slices ASD group

(e) LRP B r = 0.2 TD group (f) LRP B r = 0.2 ASD group

(g) LRP B r = 0.5 TD group (h) LRP B r = 0.5 ASD group

(i) LRP B r = 0.7 TD group (j) LRP B r = 0.7 ASD group

Fig. 7.25 Examples of binary-maps for random 47×1 slices baseline, and saliency method-based
47×1 slices baseline, and the saliency method-based relevance for the LRP-B preset
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Fig. 7.26 LRP B preset barplots accuracies comparison between FER human accuracy, Deep Con-
vNet baseline, random baseline, 47×1 random slices, LRP B based slices for r = 0.5, and all the
corresponding LRP B ROAR patterns r = 0.2, r = 0.5, and r = 0.7 shown in the x-axis. The values
comparing bar accuracies with *** are significantly different p < 0.0001, and with ** p < 0.001

7.5.1 ROAR comparison TD/ASD

The second way to illustrate the accuracy changes using ROAR is observed in Figures.
In these plots we show the accuracy in y-axis, and r or pixel removal rate in x-axis for
SmoothGrad-Squared (go to Appendix B), PatternNet, Pattern-Attribution, and LRP B preset
methods.
These results evaluate the current most reliable saliency maps on real EEG data and between
two clinical groups such as TD and ASD. Being concordant with previous ML studies
predicting a more quantifiable saliency methods reliability in comparison with random, or
correlation baselines created the same relevance-maps.
To set a baseline for this comparison we use the plain Smooth-Grad method from iNNvestigate
package (Appendix B) where we expect a more noisy relevance-map. We expect that the
accuracy decreasing applying ROAR to this plain Smooth-Grad method won’t be significant
or the sign will be different in comparison with the slices and random baselines in comparison
with the other methods.
In Figures 7.27a and 7.27b we show the variation across r values between 0.1 and 1 evaluating
points in r = 0.1, r = 0.2, r = 0.5, r = 0.7, r = 0.9, and r = 1 for TD and ASD groups
respectively. Evaluation baselines plotted in the black (slices baselines), and in green
(random baseline) for the TD and ASD method the yellow line is in the middle of both
baselines being significantly different in comparison with the random baseline for r = 0.7
F(1,95)=3.31,p=0.00155 in TD, and r = 0.9 F(1,95)=2.65,p=0.0224 in TD too, and for
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r = 0.7 F(1,79)=4.01,p=0.000331 in ASD, and r = 0.9 F(1,79)=2.23,p<0.0338 in ASD too,
and in comparison with the slices 47×1 for r = 0.7 F(1,95)=10.58,p=1.45e-6 in TD, and
r = 0.9 F(1,95)=7.33,p=0.00023 in TD too, and for r = 0.7 F(1,79)=11.11,p=2.28E-7 in
ASD, and r = 0.9 F(1,79)=7.45,p<0.000148 in ASD too.
In Figure 7.27 the dashed red line show the FER accuracy quota for the Sample #1 participant
quantification, and in blue the Deep ConvNet quota obtained using the entire feature-set
without pixels removing. These latter values are reported in Tables 5.2 and 5.3.

(a) Smooth-Grad baseline TD (b) Smooth-Grad baseline ASD

Fig. 7.27 Accuracies comparison between the 47×1 random baseline slices, 47×1 slices weighting
for the Smooth-Grad baseline and TD/ASD groups.

To evaluate ROAR in the most robust methods Figure 7.28 is showing a common decrease
accuracy for the saliency method itself in terms of the percentage of pixels removed from
input set. We found signifcant differences comparing the accuracy decreasing observed by
SmoothGrad-Squared, PatternNet, Pattern-Attribution, and LRP B preset methods with the
decreasing obtained from random and LRP 47×1 baselines with the method performance
decreasing after r = 0.5 being the yellow line always down in terms of accuracies comparing
it with baselines (black line, green line).
However, we found the significant differences across multiple different r values across the
different robust saliency methods proposed here. We can observe an interesting performance
pattern for some methods where the slices baseline is decreasing more accuracy than the
method itself in a significant way. This effect is attributed to single channel correlations
propagated across the trained Deep ConvNet (Chandaka, Chatterjee, and Munshi, 2009).
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(a) Smooth-Grad Squared TD (b) Smooth-Grad Squared ASD

(c) PatternNet TD (d) PatternNet ASD

(e) Pattern Attribution TD (f) Pattern Attribution ASD

(g) LRP B preset TD (h) LRP B preset ASD

Fig. 7.28 Accuracies comparison results between the 47×1 random baseline slices, 47×1 slices
weighting for the Smooth-Grad baseline and TD/ASD groups. Figures 7.28a and 7.28b, 7.28c and
7.28d, 7.28e and 7.28f, and 7.28g and 7.28h show the plots for ROAR performance evaluation for
Smooth-Grad Squared, PatternNet, PatternAttribution, and LRP B preset respectively.
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We found significant performance differences where the random slices baseline is show-
ing a profuse accuracy decreasing for r = 0.2 for instance for Smooth-Grad Squared. For
TD group we found F(1,95)=10.99, p=0.0000274, and for ASD group F(1,79)=12.45,
p=0.0000345 being the slice baseline always lower than the method itself. However, we
did not find significant differences for TD group F(1,95)<2.58, p>0.1893, and ASD group
F(1,79)<2.88, p>0.1910 for all the values of r different than 0.2. Even without significant
differences between the slices baseline and the method itself the performance decrease
following the same patter of the slices baseline and lower than the random baseline as we
expected.
On the other hand, for PatternNet method we found only significant differences between the
slices baseline and the method itself in r = 0.7 where the method shows a lower accuracy for
TD F(1,95)=13.38, p=0.0001178, and for ASD F(1,79)=20.45, p=2.77E-7, and for r = 0.9
TD F(1,95)=3.42, p=0.0267, and ASD F(1,79)=2.99, p=0.0321. For the rest r values we did
not find significant differences F(1,95)<1.56, p>0.1034 for TD groups, and for ASD group
F(1,79)<3.26, p>0.0551, between the slices baseline and the method accuracies being the
method accuracies always lower than the baseline for r ≥ 0.5.
As for the Pattern Attribution method we found significant differences for r = 0.2 ,F(1,95)=8.35,
p=0.00327 for TD group, and for ASD group F(1,79)=7.91, p=0.00899, again associating the
persistence presence of the channels correlations with the propagation of ωT for the estimator
optimization described in the sections above. We found another significant difference where
the slice baseline is showing a lower performance than the method itself for r = 0.5, for TD
group F(1,95)=10.12, p=0.000224, and for ASD group F(1,79)=9.88, p=0.003367. For the
rest of r values we did not found any significant difference having F(1,95)<1.78,p>0.1256
for TD group, and F(1,79)<1.99,p>0.2212 for ASD group.
Evaluating the LRP B preset method we found again significant differences for r = 0.2 sup-
porting again the single channel correlation per trial as we mentioned above. The difference
here is as well as in previous methods lower for the slices baseline in comparison with the
method itself. We selected LRP B preset instead of LRP A preset because more significance
difference on the topo-maps analysis above. For TD group in r = 0.2 we have F(1,95)=3.56,
p=0.00214, and for ASD group F(1,79)=3.66, p=0.00203. The LRP B accuracy decreasing
has a different pattern in comparison with the other methods and we only observe a significant
difference for the ASD group in r = 0.7 F(1,79)=3.91, p=0.000156. For other r values we
did not find any significant difference between the slices baseline and the saliency method for
the rest of r values and for TD F(1,95)<2.88, p>0.1036, and for ASD F(1,79)<1.88, p>0.265.
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(a) ROAR variation TD LRP B

(b) ROAR variation ASD LRP B

Fig. 7.29 ROAR removal-rate r variation is shown in both plots here having the plotted lines in the
upper part, and with arrows we are pointing the binary mask variation depending on the r values on
the x-axis. Figure 7.29a and 7.29b shows the corresponding variation summary for the TD and ASD
groups of Sample #1

As a third option to show the ROAR method dynamics applied to the neural data from
Sample #1 for successful emotion decoding we use the same plot from Figures 7.28g and
7.28h and we attach the binary mask variation on the bottom. We can see these new plots in
Figures 7.29a and 7.29a. In these plots we can see a significant different averaged binary-
mask pattern for LRP B preset especially for r = 0.7, and r = 0.9 where the three important
timing spots at 250, 550, and 1200ms are more evident in TD groups, and two timing spots
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at 250 and 1200ms after stimulus onset, measuring it in the last topo-maps on [750-1250]ms,
and [1000-1500]ms, F(1,87)>5.57,p<0.0466 after correction.



Chapter 8

Conclusions

In this dissertation we evaluate multiple ML pipelines for EEG-based emotion decoding
based on DEAP dataset, semantic classification using EEG signals, and HR and IBI signal
estimation using PPG sensors on realistic environments. These evaluations help us to iden-
tify important pipeline parameters and signal treatment techniques to support robust class
decoding using biosignals as a first objective of this dissertation.
From the initial evaluation we can support the possibility of a successful emotion decoding
from Controls and Autism individuals neural activity using our proposed emotion decoding
pipeline based on 3 conv-pool blocks Deep ConvNet.
For all the samples described in this study including three participant samples from 3 different
age ranges the Deep ConvNet’s accuracies and other related metrics such as Precision and
Recall outperform FER human corresponding metrics We obtained a successful discrim-
ination and generalization of the neural activity for multiple emotion decoding using
neural activity.
The statistical disentanglement observed between Deep ConvNet accuracies, FER ac-
curacies, and the ADOS-CS scores suggest a diverse and isolated numerical represen-
tation from the trained Deep ConvNet correlated not only with the classifier, but with
the entire pipeline. The conjunction of Prep+ADJUST automatic artifact removal, and
the ZCA whitening normalization increase the separability of emotion classes. The Deep
ConvNet metrics are providing information for a completely different numerical model
defined by our proposed pipeline in comparison with the behavorial models obtained from
the ASD groups.
The feature importance results suggest that each trial correctly decoded by the pipeline shows
activation patterns attributing high importance to almost the complete channel array, and
some particular time spots differentiating between TD and ASD groups. These results can
re-define the current state-of-the-art emotion decoding pipeline supporting our Deep
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ConvNet classifier as a correct and perceptual pipeline being able to overcome the be-
havioral and neural emotion appraisal deficits observed in ASD groups.
Along this dissertation we can see FER human accuracy is negatively correlated with the
ADOS-CS scores across the three samples. This is expected as a golden rule, and the saliency
maps used for feature-importance representation are an initial intuition to constitute how
neural activity is affecting the classification rates.
The saliency methods used in this dissertation are sensitive to input perturbations. Different
initial image focal points, and different Deep ConvNet activation functions affect current
gradient-based saliency maps. Therefore, to overcome these limitations is necessary a further
exploration to include in other multiple clinical trials. Nevertheless, multiple clinical ap-
proaches have used LRP saliency maps for motor imagery, error potentials, and sleep stages
classification (Andreotti, Phan, and De Vos, 2018; Palazzo et al., 2018; Sturm et al., 2016;
Torres and Stepanov, 2017; Torres et al., 2018).
This study can be considered the first in analyzing emotion decoding sensitivity using
saliency maps for clinical trials including Control and Autism individuals. The usage of
these saliency maps opens a new path for the implementation of more detailed saliency
methods in the future, and a broad understanding of the current saliency maps applied
to EEG-based emotion decoding.
After evaluating the performances, the statistical correlation between machine and human
parameters, and the feature-importance results we can support the usage of Deep ConvNet
classifiers with an adequate artifact rejection and numerical normalization to successfully
decode emotion using neural activity. The training process is transparent between TD and
ASD groups showing better results comparing Deep ConvNet performances with FER human
performances, and showing time spot early/late differences between TD and ASD saliency-
maps.
The statistical disentanglement found between Deep ConvNet performances can be related
with an abrupt numerical differences included by our proposed emotion decoding pipeline,
and a no statistical relationship found between the resulting saliency maps and ADOS-CS
spectrum showing no statistical correlation too.
This pipeline can be considered a strong candidate for ASD assisted intervention, for
behavioral clinical measures, and online emotion decoding for ASD and TD groups
indistinguishably. A good size training dataset for emotion decoding can be used to imple-
ment multiple online EEG-based emotion decoding experiments in the future.
This classifier can be personalized easily evaluating the performances with a LOTO cross-
validation per subject modality including a training and test set for each participant. The
Deep ConvNet can be also trained including the frequency domain being able to predict
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other outcome measures such as ASD early diagnosis, ADOS-CSS, and social skills outcome
measures included in ASD clinical trials as a future work.
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Appendix A

Statistical Generalized Linear Model
(GLM) for variable interaction

For the linear regressions executed in the current dissertation, we applied a basic linear
regression model described by Equation A.1, where x is the independent variable that can be
the FER performances, the ADOS-CS values, and y the dependent variable or Deep ConvNet
accuracies.
For our specific case G is the binary indexes for both groups TD and ASD, and b is the y-axis
intercept for the complete regression. When the analyzed samples only include TD or ASD
groups β2 and β3 are suppressed from the regression analysis.
The βs are defined as the linear regression factors calculated from the (xi,yi) subject pair being
them the individual variables to correlate behavioral or ConvNet-based. For the analyses
explained on Chapter 6 x-axis changes for the ADOS-CSS, then x will be the ADOS-CSS,
and y FER and Deep ConvNet accuracies finding similar parameter regressions reported on
Tables 6.5, 6.6, and 6.7.

y = β1x+β2G+β3Gx+b (A.1)

Each β value has a p-value related showing the level of relevance of this β value into the
corresponding regression. The R-pearson value reported on Tables 6.5, 6.6, and 6.7 is
proportional to the slope calculate from the regression and it is more significant meanwhile
more pairs (xi,yi) support the linear model inclination. This type of regression is not very
sensitive to outliers so the values calculating from it are more formally considered as
descriptors of the two variables relationship (Courville and Thompson, 2001).



Appendix B

Some Saliency Methods

In this appendix we will report the LRP Taylor-type constraint (Montavon, Samek, and
Müller, 2018) and some graphical results for the rest of the most important iNNvestigate
(Alber et al., 2019) package methods such as Deconvolution, LRP-z, LRP-ε , LRP Deep
Taylor and Smooth-Grad baseline. We won’t describe the complete models for each of these
extra saliency methods. To refer to the complete models of each saliency maps mentioned
above see Chapter 7.
To complemente the LRP-z and LRP-ε methods the LRP Deep Taylor is defined. From these
models as we mentioned in Chapter 7 the distractor can not be detected based on propagating
reconstruction.
Therefore to control the relevance propagation even more we formulate a derivative linear
model can that can additively affect the distractor propagation. To isolate the level of signal
propagated from the Deep ConvNet we modify the direction of the signal s analyzing the
attribution/relevance-based from LRP using Taylor constraint root value denoted by x0.
To transform the relevance dimensionality following that premise we can define the rele-
vance of the top layer following the Taylor-type decomposition without a residual term and
differentiating the output function f (x) in Equation B.1.

R1
d = (x− x0)d

∂ f
∂xd

x0 (B.1)

The roots of x0 are calculated with the nearest neighbors approximation having the learned
output decision function f (x). Subsequently, the last step of the back-propagated LRP is to
normalize the final relevance map R1

d between [−1,1]. We can generalize the Equation B.1
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using the parameters learnt in the network and follow the Equation B.2.

Rl
d = ∑

j

∂Rl+1
d

∂ωT
(ωT x+b j) (B.2)

We can denote the LRP Deep Taylor method applying the Equation B.2 but without any αβ

numerical balance as we describe in Chapter 7.
Figures B.1, B.2, B.3, B.4, and B.5 show the relevance maps for the Deconvolution, LRP-z,
LRP-ε , LRP Deep Taylor and Smooth-Grad baseline methods saliency methods, and for
Average, Happy, Sad, Angry, Fear classes respectively. As we can see in these results
the relevance maps differs considerably across the saliency methods even comparing them
statistically with the methods reported in Chapter 7.

Fig. B.1 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor and Smooth-
Grad baseline methods evaluated on class Average. The methods name are denoted in the columns
and the groups TD, ASD, and TD-ASD are denoted in the rows.
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Fig. B.2 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor and Smooth-
Grad baseline methods evaluated on class Happy. The methods name are denoted in the columns and
the groups TD, ASD, and TD-ASD are denoted in the rows.

Fig. B.3 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor and Smooth-
Grad baseline methods evaluated on class Sad. The methods name are denoted in the columns and the
groups TD, ASD, and TD-ASD are denoted in the rows.
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Fig. B.4 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor and Smooth-
Grad baseline methods evaluated on class Angry. The methods name are denoted in the columns and
the groups TD, ASD, and TD-ASD are denoted in the rows.

Fig. B.5 Average relevance maps for Deconvolution, LRP-z, LRP-ε , LRP Deep Taylor and Smooth-
Grad baseline methods evaluated on class Fear. The methods name are denoted in the columns and
the groups TD, ASD, and TD-ASD are denoted in the rows.
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