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Abstract 

Water stored in snow is a critical contribution to the world’s available freshwater supply and is 

fundamental to the sustenance of natural ecosystems, agriculture and human societies. The 

importance of snow for the natural environment and for many socio-economic sectors in several 

mid‐ to high‐latitude mountain regions around the world, leads scientists to continuously develop 

new approaches to monitor and study snow and its properties. 

The need to develop new monitoring methods arises from the limitations of in situ measurements, 

which are pointwise, only possible in accessible and safe locations and do not allow for a 

continuous monitoring of the evolution of the snowpack and its characteristics. These limitations 

have been overcome by the increasingly used methods of remote monitoring with space-borne 

sensors that allow monitoring the wide spatial and temporal variability of the snowpack. Snow 

models, based on modeling the physical processes that occur in the snowpack, are an alternative 

to remote sensing for studying snow characteristics. 

However, from literature it is evident that both remote sensing and snow models suffer from 

limitations as well as have significant strengths that it would be worth jointly exploiting to achieve 

improved snow products. Accordingly, the main objective of this thesis is the development of 

novel methods for the estimation of snow parameters by exploiting the different properties of 

remote sensing and snow model data. In particular, the following specific novel contributions are 

presented in this thesis: 

i. A novel data fusion technique for improving the snow cover mapping. The proposed 

method is based on the exploitation of the snow cover maps derived from the AMUNDSEN 

snow model and the MODIS product together with their quality layer in a decision level 

fusion approach by mean of a machine learning technique, namely the Support Vector 

Machine (SVM). 

ii. A new approach has been developed for improving the snow water equivalent (SWE) 

product obtained from AMUNDSEN model simulations. The proposed method exploits 

some auxiliary information from optical remote sensing and from topographic 

characteristics of the study area in a new approach that differs from the classical data 
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assimilation approaches and is based on the estimation of AMUNDSEN error with respect 

to the ground data through a k-NN algorithm. 

The new product has been validated with ground measurement data and by a comparison 

with MODIS snow cover maps. In a second step, the contribution of information derived 

from X-band SAR imagery acquired by COSMO-SkyMed constellation has been 

evaluated, by exploiting simulations from a theoretical model to enlarge the dataset. 

 

Keywords: snow cover area, snow water equivalent, optical remote sensing, active Syntetic 

Aperture Radar (SAR), snow model, machine learning, Support Vector Machine (SVM), k-

Near Neighbor (k-NN) algorithm. 
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Chapter 1 

 

1. INTRODUCTION  

1.1 Background  

Snow cover is a critical geophysical parameter for Earth climate and hydrological systems [1]. 

Snow cover contributes to regulate the Earth surface temperature, and once it melts, the melting 

water helps fill rivers and reservoirs in many regions of the world. 

In terms of spatial extent, seasonal snow cover is the largest single component of the cryosphere 

and has a mean winter maximum areal extent of 18.1 million square miles, about 98% of which is 

located in the Northern Hemisphere [2].While on large scale snow cover changes affect the energy 

exchange between Earth’s surface and the atmosphere and are, thus, useful indicators of climatic 

variation, on a smaller scale, variations in snow cover can affect regional weather patterns. 

Therefore, snow cover is an important climate change variable at both large and small scales 

because of its influence on energy and moisture budgets. The high snow albedo (which measures 

how much sunlight is reflected back into the atmosphere) implies that a snow-covered surface may 

reflect up to 90% of incoming solar radiation, whereas vegetation and soil may reflect only 10-

20% of sunlight. A decrease in snow cover results in a decrease of reflected energy and thus in an 

increase of solar radiation absorption, by adding heat to the system and self-powering the process. 

Surface temperature is highly dependent on the presence or absence of snow cover, and 

temperature trends have been linked to changes in snow cover [3] [4] [5]. Thus, since the beginning 

of the satellite era in the 1960s, the areal extent of snow cover has been a key satellite observation 

target for the purposes of daily weather forecasting and a better understanding of the Earth's 

climate system and hydrological cycle [6] [7] [8]. 

Figure 1.1 shows the average snow extent by month relative to the Norther Hemisphere. Data refer 

to the period between November 1966 and January 2017. August has the lowest value of average 

monthly snow cover extent with about 1.1 million square miles and with most of the snow cover 

observed at the high latitudes of the Arctic and in the highest elevations at lower latitudes. Snow 
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cover typically reaches its largest extent in mid-winter, with a January average snow cover extent 

of about 18.1 million square miles, covering 31% of Earth’s land surface. The springtime snow 

melt is particularly important in terms of spring river discharge, permafrost thaw, and the length 

of the vegetation growing season.  

    

Figure 1.1 The annual snow cycle in the Northern Hemisphere, based on Rutgers Snow Lab data provided by Jake 

Crouch, NCEI. Graph by NOAA Climate.gov 

Recent studies of snow climatology suggest an overall tendency toward decreases in several 

metrics of snow such as snow cover extent, snow water equivalent (SWE), and snow depth (SD) 

for the winter period from 1960/1961 to 2014/2015 [9]. In the study, the negative trend is especially 

strong in North America and apparently less evident in Europe, but this is mainly due to limited 

data coverage for Eurasia. 

Because of the strong consequences of changes in snow amount on Earth's environment and 

population, scientists have developed ways to continuously measure and monitoring snow and its 

properties. While over the long-term changes in snow cover are useful as indicators of climatic 

variations, in the short term, information about snow amount can help for more operational 

purposes by providing indications about water availability, which are useful for water management 

or flood risk forecasting. The next sections show an overview on available methods for snow 

parameter retrieval.  
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1.2 Snow Observation 

The traditional snow observations consist of in situ measurements during periodic field campaigns 

at fixed sites or through networks of automatic nivological stations recording snow parameters and 

often coupled with weather stations. The objective of field campaigns is to characterize the day 

from a nivometeorological point of view through the collection of a series of significant parameters 

extracted with simple and fast procedures. The measurements concern parameters such as: 

snowpack depth, fresh snow depth, air temperature, weather conditions, cloudiness, visibility and 

wind activity at high altitude. Nevertheless, since this thesis will focus on snow coverage and snow 

water equivalent (SWE), in the following only the description of the measurement techniques used 

for these two parameters will be reported. 

The ideal site for measuring snow is a flat and wind sheltered area where the snow cover and the 

base surface are relatively homogeneous. Moreover, the measurement area should also represent 

the surrounding landscape as much as possible [10]. In alpine terrain, a flat area large enough to 

make a representative measurement without encountering edge effects should be chosen, avoiding 

basins, slopes and ridges.  

1.2.1 Snow Depth 

Snow depth is defined as the vertical distance from the snow surface to a stated reference level 

(the base surface, typically the ground) and is reported in full centimeters (cm). Unless the 

measurement area is very homogeneous, the automatic snow depth measurements at the point scale 

not necessarily are representative of the surrounding landscape. Vice versa, for manual snow depth 

measurements the observer has the possibility of averaging multiple point measurements and 

reporting the mean value. Manual snow depth measurements are generally performed every 24 

hours between 06.00 and 08.00 UTC; depending on the site, fixed stakes or portable rulers are 

used by observers (Figure 1.2). The observers avoid creating disturbances in the measurement field 

around the stake. To prevent incorrect measurements, values are read as horizontally to the surface 

as possible. Measured values are reported in full centimeters. 

Automatic snow depth measurements are performed by means of instruments employing either 

sonic or optical (laser) technology, depending on the measurement sites and on the country. Laser 

instruments have a higher degree of precision (approx. 0.1 cm) than sonic ones (approx. 2 cm), but 

they require more power for operation. Laser snow depth sensors emit a modulated beam of light 
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in the visible part of spectrum and determines the distance to a target by analyzing the phase 

information from the reflected beam; this kind of sensors are usually mounted 2 m above the 

ground [10]. Sonic snow depth sensors, instead, transmit an ultrasonic pulse towards the target and 

listen for a return signal reflected from that target. Sonic instruments usually measure the distance 

to the highest obstacle within the instrument response area, i.e. a conical footprint, the radius of 

which depends on the height of the instrument above the target; these sensors are usually located 

4–6 m above the ground [10], Figure 1.3.  

 

Figure 1.2 (a) Manual measurement field, with a snow stake and a fresh snow board (Source: Meteomont Carabinieri, 

Italy). (b) Manual snow depth measurement with a graduated snow rod in a measurement (Source: Corpo Forestale 

Regionale Valanghe, SSCV, Friuli Venezia Giulia). (c) An extendible 1-cm-graduated snow rod (Source: Institute for 

Environment and Climate Change Canada, ECCC, Canada) 
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Figure 1.3 Automatic snow depth instruments: (a) sonic instrument with artificial turf below (Source: Finnish 

Meteorological Institute, FMI, Finland); (b) laser instrument with an artificial target below (Source: Deutscher 

Wetterdienst, DWD, Germany). 

1.2.2 Snow Water Equivalent (SWE) 

The SWE is defined as the vertical depth of water that would be obtained if the snow cover melted 

completely. SWE is the product of the snow depth in meters and the vertically integrated density 

of the snow in kilograms per cubic meter [11]. Generally, all manual measurement techniques of 

this parameter involve a snow sampler which collects a known (or calculable) volume of snow 

from which snow density is derived. During the field campaigns, a snow pit is manually dug down 

to the ground and used both for snowpack stratigraphy observations and for calculating the snow 

density. Field campaigns with snow pits are theoretically performed once per week, but in practice 

longer intervals are common. Using a graduated snow cylinder (in aluminum or steel) with a 

certain cross-sectional area (in m2) and a certain length (in m), a snow sample is extracted vertically 

from the snowpack. The snow cylinder is then attached to a spring scale to measure the total weight 

of the snow (in kg). The corresponding SWE of the sample is calculated by dividing the measured 

weight by the cross-sectional area of the snow cylinder. The final SWE of the snowpack is 

calculated by summing the SWE values of all sampled layers. The snow tube measurement is based 

on the same concept of snow cylinder with the difference that in this case no snow pits are needed 

because the snow tube is inserted vertically into the snowpack until it reaches the base surface 

(using tube extensions where required) and a snow core is extracted. Figure 1.4 shows the two 

manual methods for estimating SWE. 
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The most common automatic measurement techniques for SWE retrieval are (1) weighing 

mechanisms (e.g. snow pillows or snow scales) and (2) passive gamma radiation instruments 

(Figure 1.5). The measurement principle of weighing mechanisms is similar to that of the manual 

instruments that measure the weight of the snowpack, by converting it in density and subsequently 

in SWE. Passive gamma radiation instruments apply the concept that snow attenuates natural 

gamma emissions from the soil, and the magnitude of attenuation is related to the mass of the water 

between the soil and the detector [12]. However, in this thesis no automatic measurements of SWE 

have been employed because the few available are not validated 

 

Figure 1.4 (a) Snow cylinders, with volumes of 0.0001 and 0.0005 m3, and a spring scale (valid for a maximum weight 

of 0.5 kg) used to manually measure SWE in snow pits (Source: Provincia Autonoma di Trento, PAT, Italy). (b) A 

snow cylinder being weighed with a spring scale (Source: WSL Institute for Snow and Avalanche Research SLF, 

Switzerland). (c) Snow tube attached to a scale (Source: Agenzia Regionale per la Protezione dell’Ambiente Valle 

d’Aosta, ARPAVA, Italy). 
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Figure 1.5 (a) Snow pillow and snow scale at the Filefjell station. (b) Gamma radiation sensor at the Breidvatn station 

(Source: the Norwegian Water Resources and Energy Directorate, NVE, Norway). 

1.3 Satellite Remote Sensing of Snow  

Satellite remote sensing represents an important tool for monitoring snow properties at large scale 

and in remote or inaccessible areas where in-situ measurements may be expensive and dangerous. 

The global coverage and regular repeatability of measurements provided by satellite remote 

sensing allow monitoring the wide spatial and temporal variability of the snowpack [7]. The 

interaction between snow cover and electromagnetic radiation at different frequencies makes snow 

distinguishable from other land covers by allowing its detection through the use of both active and 

passive remote sensing techniques. All these techniques present some limitations due to different 

factors, such as cloud presence, forest cover or complexity of mountainous terrain with its 

heterogeneity. 

1.3.1  Visible and Near-Infrared Sensors 

Due to the high snow reflectance in the visible part of the electromagnetic spectrum (0.4-0.8 𝜇𝑚), 

optical remote sensing is very suitable to detect the snow extent (i.e. the presence or absence of 

snow) regardless of snow amount. However, some limitations exist: firstly, darkness or low 

illumination conditions are problematic for optical sensors that can provide visible imagery only 

in that portion of the surface illuminated by sunlight. Secondly, the presence of clouds does not 

allow the optical signal to transit by reducing the possibility of acquisition to the only cloud-free 

conditions. Almost all clouds, indeed, reflect a significative part of visible radiation, preventing 

any visible radiative information about the surface from reaching the satellite [7]. Moreover, due 

to the similarity between albedo values of snow and some type of clouds, the discrimination 

between cloud and snow-covered surfaces may be difficult. For this reason, near-infrared bands 



8 

 

can be used to distinguish snow from most of clouds because at these wavelength, reflectance of 

most clouds is high while that of snow is low. 

Finally, forest cover and in general vegetation obscure the underlying surface and lower the surface 

reflectance [13], by making difficult the snow detection below the trees. Figure 1.6 shows an 

example of optical image over the alpine area obtained from the Moderate-resolution Imaging 

Spectroradiometer (MODIS) aboard the NASA satellite Terra.  

 

Figure 1.6 MODIS image over the alpine arc on 23 March 2019 (source: NASA 

https://worldview.earthdata.nasa.gov/). 

1.3.2 Microwave sensors 

When snow covers the ground, some of the microwave energy emitted by the underlying soil is 

scattered by the snow grains. Therefore, microwave emission from a snow-covered surface is 

diminished with respect to a snow-free surface, and the presence of snow can be identified [14], 

[15]. The signal attenuation depends on the microwave wavelength and the snowpack properties, 

such as the amount of snow, the grain size, the snow density, presence of ice lenses and the amount 

of liquid water [16]. Microwave data are mainly exploited for estimating volumetric snow 

parameters as SD and SWE [17], [18], [19]. Clifford [20] provides a review of global estimates of 

snow water equivalent from passive microwave. However, also passive microwave sensors suffer 
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of some limitations: one of the major limitations is the presence of liquid water in the snowpack 

that affects the snowpack dielectric constant, by increasing the absorption, masking the microwave 

emission signal from the snow and thus inhibiting the ability of microwave sensors to detect wet 

snow. In the last decades, scientists have also extensively investigated the potential of active 

Synthetic Aperture Radar (SAR) data for deriving SWE [21], [22], [23], [24]. 

Unlike visible and infrared sensors, microwave sensors do not depend on the presence of sunlight 

and thus are a valid alternative at high latitudes; moreover, microwave sensors are not affected by 

the presence of clouds, by offering the potential to estimate snow cover properties also in cloudy 

conditions. An example of microwave image is shown in Figure 1.7. 

 

Figure 1.7 RGB composition of preprocessed Sentinel-1 backscatter data (Red: VV; Green: VH Blue: VV) from Track 

117 on 24 January 2016. Source: Contains modified Copernicus Sentinel data [2016]/Eurac research 

1.4 Snow Modelling 

During the last decades many snow models have been developed. The modelling of physical 

processes that occur in the snowpack are used in hydrological forecasting, in numerical weather 

prediction and climate modelling.  
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Snow models calculate the energy and mass balances of snow on the ground by considering that 

snow, in some cases, may be partially obscured by tree canopy, which may itself hold intercepted 

snow. Moreover, it can occur that ground is partially snow-free. As a consequence, radiative fluxes 

beneath canopies are modified by interception of shortwave radiation and emission of longwave 

radiation by the tree canopy. Snow and rain can be partially intercepted by vegetation canopies 

and subsequently can be removed by evaporation or sublimation to the atmosphere or fall down to 

the underlying surface. Rain or meltwater at the snow surface can percolate into the snow, where 

a certain amount of water can be held in the liquid form or refreeze, releasing latent heat. Melt 

water reaching the base of the snow is partitioned into infiltration into the soil, runoff or basal ice 

formation. Snow models express the energy and mass balances through equations characterizing 

the temperature and water content of the canopy, snowpack and soil, coupled with terms that 

describe the evaporation, sublimation and melt processes [25]. Most simple models approximate 

the snowpack as a single layer or a combined snow and soil layer, but there has been increasing 

use of multi-layer snow models with 3 to 5 snow layers [26] [27]. In the single layer approach the 

surface temperature between the snowpack and the atmosphere above is modelled in a relatively 

straightforward way, by avoiding modelling the uncertainty of the processes within the snowpack. 

Indeed, one of the primary reasons of poor performance of single-layer models is the poor 

representation of internal snowpack heat transfer processes [28], [29]. The parametrization of 

surface properties and processes is fundamental in snow modelling: the energy exchange between 

snow and atmosphere is controlled by numerous factors and albedo plays a key role. Snow albedo 

is generally parametrized as a function of surface temperature and snow age. The effect of snow 

age on albedo differs at different wavelengths: in the near-infrared spectrum region, snow albedo 

decreases with age because snow grain size increases due to the metamorphism, whereas in the 

visible spectrum region snow albedo decreases with age due to the accumulation of impurities 

related to aerosols and dust deposition on snow surface [25].  For these reasons, some snow models 

consider albedo in two or more spectral bands. Another parameter that snow models consider is 

the surface roughness: indeed, snow reduces the surface roughness by covering vegetation and 

filling the topographic depressions. This can be represented in models by decreasing the surface 

roughness length as a function of snow depth, down to a minimum value for deep snowpack [25]. 

However, literature about snow models reveals that a small number of parameterizations are used 

in different combinations from different models, so the models are not all truly independent [30]. 
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Intercomparison studies have shown that models differ greatly in their predictions of snow 

accumulation and ablation. Nevertheless, Essery et al. [30] showed that there is no “best” model, 

and increasing model complexity is no guarantee of improved model performance; well-

established empirical parameterizations often give results that are as good as physically-based 

parameterizations. Although the physical processes within the snowpack are increasingly well 

parameterized, uncertainties still exist, by affecting the energy and mass balance simulation at the 

snowpack surface. 

1.5 The study area 

In this section a description of the investigation area is provided in order to characterize it from 

the meteorological and topographic point of view. The study area of this work is the European 

Region Tyrol – South Tyrol – Trentino, which consists of the Austrian federal state of Tyrol 

(12.648 km2) and the Italian region of Trentino-Alto Adige (6.207 km2 for Trentino and 7.398 km2 

for Alto Adige). The elevation range in the entire area is remarkable. Indeed, after having deeply 

shaped the landscape, the Sarca river flows into the waters of Lake Garda at an altitude of only 65 

m a.s.l., while the Ortles peak reaches the 3.905 m altitude. Half of the study area surface is 

between 1.000 and 2.000 meters above sea level; only 20% is at lower altitudes and the remaining 

30 % at higher altitudes. The average altitude is 1.620 m, while the mean slope is 23° and only 5 

% of the area is considered flat (slope angle ≤3°).  

Trentino includes the Garda Lake, the largest lake basin in Italy and the only large inland lake in 

the area considered in the study. Table 1. 1 shows the minimum and the maximum elevation and 

the percentage of area covered by the forest in each region. To have an idea of the dominating 

meteorological conditions for the snow accumulation, Figure 1.8 shows the mean annual air 

temperature (a) and precipitation (b) and the mean DJF air temperature and precipitation relative 

to the winter period of December-January-February (c and d). 

Table 1. 1 Topographic characteristics of the study area. *Source: http://www.europaregion.info/it/cifre-euregio.asp  

Parameter Tyrol South Tyrol Trentino 

Maximum elevation [m a.s.l.] 3.798 3.905 3.769 

Minimum elevation [m a.s.l.] 465 207 65 

Percentage of area covered by forest (%)* 36,9 39,5 63 

http://www.europaregion.info/it/cifre-euregio.asp
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Figure 1.8 Figure represents the mean values computed over the period 1981-2010 of the following parameters: a): 

Mean annual air temperature; b): Mean annual precipitation; c) Mean DJF air temperature; d) Mean DJF 

precipitation. Source: the book “Il clima del Tirolo - Alto Adige – Bellunese”, output of the Interreg project 3PCLIM, 

http://www.clima-alpino.eu/ ).  

The winter season with the relative snowfalls starts, on average, earlier in the northern slopes than 

in southern ones. At an altitude of 2000 m, for example, in the north, the first snowfalls are to be 

expected in the first half of September, while on the southern slopes at the beginning of October. 

Vice versa, at these altitudes, the last snowpack melts, on average, around the summer solstice in 

the northern Alps and already at the beginning of June on the southern alpine side. Regarding 

lower altitudes, at an altitude of 1000 m a.s.l., the northern Alps are covered by a snowpack mainly 

http://www.clima-alpino.eu/
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between the end of October and the second half of April, while on the southern alpine side the first 

snowfalls occur in mid-November and the last snow melts in early April. 

1.6 Thesis Objectives and Contributions 

The limitations of existing approaches, described in previous sections, and the lack of continuous 

and spatially homogeneous distribution of snow measurements (both manual and automatic) have 

pointed out the importance of further improvements in the estimation and monitoring of the 

heterogeneous distribution of snow cover and of its properties. The high complexity and the non-

linearity of snow parameters retrieval problem require the development and the use of advanced 

methods. 

Traditional approaches exploit the strengths of different sources (theoretical model simulations, 

remote sensing images and ground measurements) through data assimilation techniques [31], [32], 

[33]. However, a class of effective regression methods, which has been successfully introduced in 

the field of geo/bio-physical variable estimation in the last decades as an alternative to data 

assimilation techniques, is represented by non-linear machine learning techniques. 

Due to advanced learning strategies, machine learning techniques can learn and approximate even 

complex non-linear systems, exploiting the information contained in a set of reference samples. 

These techniques have also the advantage of not requiring any assumptions a priori about the data 

distribution. Due to this property, the retrieval process can integrate data coming from different 

sources with poorly defined (or unknown) probability density functions but that are correlated to 

the target variable. Machine learning methods have shown their versatility in different contexts by 

using optical and radar data, by fusing remotely sensed data with ground data, as well as by 

exploiting data derived from theoretical model simulations. These approaches have been also 

compared to other parametric approaches (such as iterative or Bayesian approaches), indicating 

that in most of the cases, machine learning methods outperformed these latest ones [34]. 

In this context, the main objective of this thesis is the development of new methods based on 

machine learning techniques for improving the estimation of two crucial snow parameters: the 

snow coverage and the SWE. The study area is the alpine area that includes Trentino - Alto Adige 

region (in the north-eastern part of Italy) and Tyrol region in (in south Austria). To achieve this, 

satellite products together with ground measures and data derived from a snow model and two 
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coupled electromagnetic models are jointly exploited in a data fusion approach through the use of 

machine learning techniques. 

The following specific objectives of the thesis have been identified: 

• To develop a novel data fusion technique for improving the estimation of snow coverage over 

the study area. The innovative aspect is the joint exploitation of remotely sensed data and snow 

model simulations, differing from traditional techniques where remote sensing is mainly used 

for model tuning or in data assimilation approaches. In this thesis a decision-level fusion process 

is implemented. The approach first retrieves the snow cover maps and their quality measures 

separately from the two different sources. Then, the two maps are fused to obtain a new and 

enhanced product that overcomes the aforementioned limitations and takes advantage of both 

the specific properties of remote sensing data and of the snow model simulations. 

• To develop a new concept to improve the distributed estimation of SWE derived by the snow 

model (the AMUNDSEN model is used in the thesis), by exploiting both topographic 

parameters and auxiliary products from optical remote sensing data to correct the model with 

respect to the ground measurements. The novelty of this proposed method is the approach based 

on the error estimation with an adaptive k-NN algorithm for improving the SWE derived from 

model simulations. 

• To assess the contribution of the information derived from the COSMO-SkyMed X-band SAR 

for SWE retrieval. To this end, a Support Vector Regressor (SVR) has been trained on a dataset 

consisting of simulated backscattering coefficients and then tested on available satellite data. In 

both cases, the ground measurements derived SWE values are used as reference dataset. The 

simulated values of backscattering have been obtained through the use of two electromagnetic 

models (Dense Medium Radiative Transfer theory, DMRT [35], coupled with the Advanced 

Integral Equation Method, AIEM [36]) and by exploiting as models inputs the snow parameters 

collected from ground measurements. The novelty of this part is the exploitation of the potential 

of X-band data together with simulated data and ground measurements for SWE retrieval by 

means of a machine learning technique. 

From a global perspective, the main goal of this thesis is thus to improve the estimation of snow 

coverage and SWE through the development of general methods transferable even in other regions 

with respect to the study area and applicable to other physically based model. 
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The main novel contributions related to the above-mentioned objectives are: 

• The development of a method that jointly exploit remotely sensed data and physical model 

simulations, differing from traditional approaches where remote sensing is mainly used for 

model tuning or in a data assimilation context. In this thesis, a decision-level fusion process is 

implemented, where the snow cover maps and their quality measures are retrieved separately 

from the two different sources and then integrated by SVM to exploit their complementarities 

and to address their uncertainties. 

• The development of an advanced estimation technique to derive SWE by jointly using snow 

model simulations, ground data and auxiliary products based on optical remote sensing. The 

presented approach, based on the error estimation with an adaptive k-NN algorithm, represents 

a novel and relevant contribution for the SWE retrieval, and in general in the field of snow 

hydrology. 

• The sensitivity of backscattering at X-band to the snow parameters is still controversial, due to 

different behaviors depending on the variable snow characteristics. In this thesis, the main novel 

contribution regards the exploitation of COSMO-SkyMed X-band SAR data by means of a 

machine learning technique, based on SVR, for the estimation of SWE.  

1.7 Thesis Structure 

This thesis is organized as follows: 

Chapter 1: provides the background about the topic of this work, by introducing the role of snow 

in Earth's climate system and hydrological cycle as well as the effect of changes in snow cover on 

human life. Then the state of the art of the existing techniques for snow parameters retrieval is 

presented and the main objectives of the thesis introduced. 

Chapter 2: is dedicated to the first part of the research, i.e. the development of a novel technique 

for improving the snow cover mapping, by generating a time series of snow maps. The method has 

been validated by exploiting both high-resolution satellite images and ground measurements of 

snow depth on which a threshold value has been imposed to obtain binary values of snow presence. 

Chapter 3: provides a description of the method adopted for improving the SWE estimation 

derived by the snow model AMUNDSEN. The snow model, the ground-based and the remote 

sensing data as well as the methodological workflow are presented. Afterwards, results are 
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analyzed and compared with ground data and MODIS snow maps in order to validate and verify 

the potential and limitations of proposed method for SWE retrieving. 

Chapter 4: explores the potential of COSMO-SkyMed X-band SAR for SWE retrieval. In this 

chapter, COSMO-SkyMed mission is presented together with the theoretical model used for 

simulating backscattering values, in order to increase the size of training dataset. The proposed 

method tries to catch the relation between X-band backscattering and SWE by means of a machine 

learning technique, based on the Support Vector Machine (SVM). 

Chapter 5: draws the conclusion of this thesis and presents a brief summary on the possible further 

developments of the research activities.  



17 

 

References 
 

[1]  A. Frei and D. A. Robinson, "Northern Hemisphere snow extent: Regional variability 1972–1994," 

International Journal of Climatology: A Journal of the Royal Meteorological Society, vol. 19, no. 14, 

pp. 1535-1560, 1999.  

[2]  N. National Snow & Ice Data Center, "National Snow & Ice Data Center (NSIDC)," 20 June 2019. 

[Online]. Available: https://nsidc.org/cryosphere/snow/climate.html. 

[3]  P. Groisman, T. Karl and R. Knight, "Observed impact of snow cover on the heat balance and the 

rise of continental spring temperatures," Science, vol. 263, pp. 198-200, 1994.  

[4]  R. Brown and D. Robinson, "Northern Hemisphere spring snow cover variability and change over 

1922–2010 including an assessment of uncertainty," The Cryosphere, vol. 5, pp. 219-229, 2011.  

[5]  S. Peng, S. Piao, P. Ciais, P. Friedlingstein, L. Zhou and T. Wang., "Change in snow phenology and its 

potential feedback to temperature in the Northern Hemisphere over the last three decades," 

Environmental Research Letters, vol. 8, 2013.  

[6]  D. Robinson, K. Dewey and R. H. Jr., "Global snow cover monitoring: an update," Bull. Am. 

Meteorol. Soc, vol. 74, pp. 1689-1696, 1993.  

[7]  A. Frei, M. Tedesco, S. Lee, J. Foster, D. Hall, R. Kelly and R. Robinson, "A review of global satellite-

derived snow products," Adv. Space Res., vol. 50, pp. 1007-1029, 2012.  

[8]  T. Estilow, A. Young and D. Robinson, "A long-term northern hemisphere snow cover extent data 

record for climate studies and monitoring," Earth Syst. Sci. Data, pp. 137-142, 2015.  

[9]  K. Kunkel, D. Robinson, S. Champion, X. Yin, T. Estilow and R. Frankson, "Trends and extremes in 

Northern Hemisphere snow characteristics," Current Climate Change Reports, vol. 2, pp. 65-73, 

2016.  

[10]  A. Haberkorn, J. Helmert, L. Leppänen, J. López-Moreno and R. Pirazzini, European Snow Booklet - 

an Inventory of Snow Measurements in Europe, 2019, p. 363. 

[11]  B. E. Goodison, H. L. Ferguson and G. A. and McKay, "Measurement and Data Analysis," in 

Handbook of Snow: Principles, Processes, Management and Use, The Blackburn Press, 1981, p. 

191–274. 

[12]  E. L. Peck, V. C. Bissell, E. B. Jones and D. L. Burge, "Evaluation of snow water equivalent by 

airborne measurement of passive terrestrial gamma radiation," Water Resources Research, vol. 7, 

no. 5, pp. 1151-1159, 1971.  

[13]  D. Robinson and G. Kukla, "Maximum surface albedo of seasonally snow covered lands in the 

Northern Hemisphere," Journal of Climate and Applied Meteorology, vol. 24, p. 402–411, 1985.  



18 

 

[14]  N. Grody, "Relationship between snow parameters and microwave satellite measurements: theory 

compared with AMSU observations from 23 to 150 GHz," Journal of Geophysical Research, vol. 

113, no. D22108, 2008.  

[15]  M. Tedesco and E. Kim, "Inter-comparison of electromagnetic models for passive microwave 

remote sensing of snow," IEEE Transactions on Geoscience and Remote Sensing, vol. 44, no. 10, pp. 

2654-2666, 2006.  

[16]  F. Ulaby, R. Moore and A. Fung, Microwave remote sensing, active and passive. Volume II: Radar 

remote sensing and surface emission theory, Norwood, Massachusetts: Artech House, 1982.  

[17]  C. Derksen, "The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal 

forest snow water equivalent retrievals," Remote Sensing of Environment , vol. 112, pp. 2701-

2710, 2008.  

[18]  C. Derksen, A. Walker, B. Goodison and J. Strapp, "Integrating in situ and multiscale passive 

microwave data for estimation of subgrid scale snow water equivalent distribution and variability," 

IEEE Transactions on Geoscience and Remote Sensing , vol. 43, no. 5, pp. 960-972, 2005.  

[19]  J. Pulliainen and M. Hallikainen, "Retrieval of regional snow water equivalent from space-borne 

passive microwave observations," Remote Sensing of Environment , vol. 75, no. 1, pp. 76-85, 2001.  

[20]  D. Clifford, "Global estimates of snow water equivalent from passive microwave instruments: 

history, challenges and future developments.," International Journal of Remote Sensing , vol. 31, 

no. 14, p. 3707–3726, 2010.  

[21]  F. T. Ulaby and W. H. Stiles, "The active and passive microwave response to snow parameters: 2. 

Water equivalent of dry snow," Journal of Geophysical Research: Oceans, vol. 85, no. C2, pp. 1045-

1049, 1980.  

[22]  J. R. Kendra, K. Sarabandi and F. T. Ulaby, "Radar measurements of snow experiment and analysis," 

IEEE Transactions on Geoscience and Remote Sensing, vol. 36, pp. 864-879, 1998.  

[23]  S. Sun, T. Che, J. Wang, H. Li, X. Hao, Z. Wang and J. Wang, "Estimation and analysis of snow water 

equivalents based on C-band SAR data and field measurements," Arctic, antarctic, and alpine 

research, vol. 47, no. 2, pp. 313-326, 2015.  

[24]  V. Conde, G. Nico, P. Mateus, J. Catalão, A. Kontu and M. Gritsevich, "On the estimation of 

temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application 

for the Sentinel-1 mission," Journal of Hydrology and Hydromechanics, vol. 67, no. 1, pp. 93-100, 

2019.  

[25]  R. Essery, "Snow modelling," in ECMWF Seminar on Polar Meteorology, Reading, UK, 4-8 

September, 2006.  



19 

 

[26]  P. Bartelt and M. Lehning, "A physical SNOWPACK model for the Swiss avalanche warning: Part I: 

numerical model," Cold Regions Science and Technology, vol. 35, no. 3, pp. 123-145, 2002.  

[27]  E. Brun, P. David, M. Sudul and G. Brunot, "A numerical model to simulate snow-cover stratigraphy 

for operational avalanche forecasting," ournal of Glaciology, vol. 38, no. 128, pp. 13-22, 1992.  

[28]  G. Blöschl and R. Kirnbauer, "Point snowmelt models with differ-ent degrees of complexity – 

internal processes," J. Hydrol., vol. 129, p. 27–147, 1991.  

[29]  H. Koivasulo and M. Heikenkeimo, "Surface energy exchange overa boreal snowpack," Hydrol. 

Process., vol. 13, p. 2395–2408, 1999.  

[30]  R. Essery, S. Morin, Y. Lejeune and C. B. Ménard, "A comparison of 1701 snow models using 

observations from an alpine site," Advances in water resources, vol. 55, pp. 131-148, 2013.  

[31]  E. E. Stigter, N. Wanders, T. M. Saloranta, J. M. Shea, M. F. Bierkens and W. W. Immerzeel, 

"Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent 

and snowmelt runoff in a Himalayan catchment," The Cryosphere, vol. 11, no. 4, pp. 1647-1664, 

2017.  

[32]  T. M. Saloranta, "Operational snow mapping with simplified data assimilation using the seNorge 

snow model," Journal of Hydrology, vol. 538, pp. 314-325, 2016.  

[33]  N. Griessinger, J. Seibert, J. Magnusson and T. Jonas, "Assessing the benefit of snow data 

assimilation for runoff modeling in Alpine catchments," Hydrology and Earth System Sciences, vol. 

20, no. 9, pp. 3895-3905, 2016.  

[34]  S. Paloscia, P. Pampaloni, S. Pettinato and E. Santi, " A comparison of algorithms for retrieving soil 

moisture from ENVISAT/ASAR images," IEEE Trans. Geosci. Remote Sens., vol. 46, pp. 3274-3284, 

2008.  

[35]  L. Tsang, J. Pan, D. Liang, Z. Li, D. W. Cline and Y. Tan, "Modeling active microwave remote sensing 

of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects," IEEE 

Transactions on Geoscience and Remote Sensing, vol. 45, no. 4, pp. 990-1004, 2007.  

[36]  K. S. Chen, W. T. D., L. Tsang, Q. Li, J. Shi and A. K. Fung, "Emission of rough surfaces calculated by 

the integral equation method with comparison to three-dimensional moment method 

simulations," IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 1, pp. 90-101, 

2003.  

 

 



20 

 

Chapter 2 

 

2. A NOVEL DATA FUSION TECHNIQUE FOR 

SNOW COVER RETRIEVAL  

This chapter1 presents a novel data fusion technique for improving the snow cover monitoring 

for a mesoscale Alpine region.   

The presented methodological innovation consists in the integration of remote sensing data 

products and the numerical simulation results by means of a machine learning classifier (Support 

Vector Machine), capable to extract information from their quality measures. This differs from the 

existing approaches where remote sensing is only used for model tuning or data assimilation. The 

technique has been tested to generate a time series of about 1300 snow maps for the period 

between October 2012 and July 2016. 

The results show an average agreement between the fused product and the reference ground data 

of 96%, compared to 90% of the MODIS data product and 92% of the numerical model simulation. 

Moreover, one of the most important results is observed from the analysis of snow cover area 

(SCA) time series, where the fused product seems to overcome the well know underestimation of 

snow in forest of the MODIS product, by accurately reproducing the SCA peaks of winter season. 

  

 
1 This chapter has been published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing: 

 De Gregorio, L., Callegari, M., Marin, C., Zebisch, M., Bruzzone, L., Demir, B., Strasser, U., Marke, T., Günther, D., Nadalet, 

R. and Notarnicola, C. (2019). A Novel Data Fusion Technique for Snow Cover Retrieval. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing. DOI: 10.1109/JSTARS.2019.2920676  
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2.1 Introduction 

now is a dynamically changing water resource that plays an important role in the hydrological 

cycle in mountainous areas. The traditional acquisition means for the snow cover distribution and 

variability are in-situ monitoring stations that provide point observations for their locations. The 

locations of most of these stations are in easily accessible and valley areas, whereas in the higher 

Alpine regions there are only few in operation, a notable exception, e.g., being the special 

observation networks of the national avalanche warning services. Therefore, in mountain regions, 

where the spatial variability of the snow cover is particularly high, the related hydrological 

processes are mostly unknown due to the lack of spatially and temporally continuous observations 

[1]. To fill this gap, remote sensing can make a valuable contribution by providing high spatial 

and temporal resolution data. Snow cover mapping by multispectral remote sensing images implies 

some limitations and problems. Sources of misinterpretation can be related to: 

Clouds: one of the major problems in snow detection by satellite is the distinction between clouds 

and snow. Depending on the spectral channels available and cloud type, very bright reflectance of 

some clouds can make them indistinguishable from snow cover [2]. 

Forest cover: the reflectance of forested areas can be much lower than the one of non-forested 

areas, even with a considerable snowpack beneath the trees. The forest cover obscures the snow 

beneath and hence hides it from the optical sensors. Additionally, tree crowns intercept snow. Due 

to a higher crown density, conifer trees intercept considerably more snow than leafless deciduous 

trees and this affects the melting pattern as well as the accumulation pattern. Therefore, it is still a 

challenge to accurately detect the ground snow in a forested area [3]. 

Shadow: shadow can be particularly relevant in the winter season on north-facing slopes in 

dependence of the relative position between the sun and the sensor. Similarly, cloud shadows may 

complicate the snow detection process [4]. 

To reduce the effects of the cloud cover, a possible approach is to combine satellite images 

acquired at different times. In the case of MODIS satellites, Terra and Aqua composite images by 

Xie et al. [5] show a higher agreement with ground measurements than the daily Terra or Aqua 

product alone. Xie et al. applied their method to the Colorado Plateau (USA) and northern Xinjiang 

(China). For the 2003-2004 hydrological year, the daily Terra/Aqua composite images exhibit ~10-

15% less annual mean cloud cover and ~1-4% more annual mean snow cover, compared to the 

S 
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daily Terra or Aqua products. Parajka and Blöschl [6] and Gafurov and Bardoyy [7] added a 

temporal window to the Terra/Aqua data combination where 1 or to 2 days in the past and 1 or 2 

days into the future were analyzed to produce cloud-free classification results. 

New methods to improve the detection of snow under forests have been developed in recent years. 

Vikhamar and Solberg [3] for example applied a linear spectral mixing model for snow, trees and 

snow-free ground to calculate a fractional snow cover. The model requires a forest cover map and 

surface area proportions as input; the reflectance values of snow and forest are derived from in situ 

reflectance measurements. Wang et al [8] introduced the Normalized Difference Forest Snow 

Index (NDFSI) to distinguish snow-covered from snow-free evergreen coniferous forests. The 

index is based on the analysis of the spectral signature of both landcover types in the near-infrared 

(NIR) and shortwave infrared (SWIR) bands. 

In mountainous areas, shadows frequently occur on steep slopes when the sun elevation angles are 

low. Shaded areas generally have lower reflectance than sunny areas. Fahsi et al [9] demonstrated 

that, due to the effect of topography, satellite image pixels of the same cover type may have 

different spectral response, whereas pixels of different cover types may have similar spectral 

characteristics as well, due to the effect of topography. Therefore, many approaches have been 

proposed to remove, or at least to reduce the effect of topographic shadowing (topographic 

correction). Shahtahmassebi et al. [10] propose an alternative approach with respect to the 

conventional technique of cosine correction [11]. They tested two filling functions for estimating 

the forest areas in mountainous shadows in Landsat images using information about the land cover 

type of neighboring pixels. The drawback of this technique is the assumption of uniform variability 

of land cover type throughout the whole image during the interpolation phase. Moreover, this 

approach meets difficulties in complex landscapes where mixed pixels occur, especially at the 

forest borders. Another common approach to mitigate shadow effect is the multi-source data 

fusion. A simple and typical procedure, thereby, is to replace shadowed pixels in an image with 

the no-shadow pixels of the same area in a corresponding image acquired at different time [12]. 

Dorren et al. [13] used the multi-source approach by exploiting the digital elevation model (DEM) 

as additional band, in addition to Landsat TM data, to improve the forest mapping in steep 

mountainous terrain. 

An alternative method for retrieving information about snow characteristic is the application of 
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distributed, numerical snow models. These models use meteorological observations to simulate 

the accumulation, storage and melt of a seasonal snow cover. Many types of snow models, suitable 

for many different application purposes, have been developed, resulting in a wide variety of 

methodical simulation approaches, from purely empirical to more physically oriented approaches 

[14]. Even though extensively tested and validated at well-equipped research sites, the complex 

energy-balance based models can be subject to rather large uncertainties if used in spatially 

distributed applications. These uncertainties may originate mainly from uncertainties in i) the 

meteorological input data, ii) snowpack process representations and iii) model parameter sets [15].  

Due to the uncertainties in any single data source used to produce a snow cover map (data gaps, 

nonlinear dynamics or surface heterogeneity that make difficult parameters retrieval, model error 

and inaccurate processing algorithms), a single "best" remotely-sensed data product or snow cover 

simulations result to monitor snow cover does not exist [16]. In this context, data fusion methods 

are a good alternative to overcome these limitations and exploit the strengths of the two different 

methods. In general, data fusion refers to a formal concept for combining data from different 

sources in order to provide new products of higher quality (in a broad sense) than the individual 

input datasets and thus to minimize the difference between true measurements and generated 

products. The most common use of this approach exploits information derived from spectral 

reflectivities provided by different terrestrial, airborne or satellite sensors. An example is the work 

done by Cammalleri et al. [17], who proposed a new approach for evapotranspiration (ET) 

retrieval. Since satellite‐based thermal sensors are characterized by either low spatial resolution 

and high repeatability or by moderate/high spatial resolution and low frequency, they fused 

characteristics of both classes of sensors, by exploiting daily MODIS images at 1 km and biweekly 

Landsat imagery at 30 m, to provide optimal spatiotemporal coverage.  

In literature, only few works perform a real data fusion between remote sensing and model 

products. Painter et al. [18] combined results from the Airborne Snow Observatory (ASO), a 

coupled scanning lidar system and imaging spectrometer, with a distributed snow model in order 

to obtain the snow spectral/broadband albedo and the snow water equivalent (SWE). First, 

spectrometer data have been fused with lidar data and then combined with the snow model 

simulations in order to obtain a higher-level product, such as the SWE, that is retrieved from the 

combination of lidar-derived snow height [19, 20] and modeled snow density.  
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The most common approach for using snow cover simulation together with remote sensing data in 

a synergistic way is involving the latter in a data assimilation approach or in the calibration phase. 

Data assimilation techniques have undergone continuous development in the last decades: in 

weather forecasting, the assimilation of satellite, atmospheric and surface observations into 

numerical weather prediction (NWP) models has led to an extreme improvement in the forecast 

skill [21].  The data assimilation techniques have also been developed and implemented in many 

other applications from hydrology [22, 23] to biogeochemistry [24, 25]. However, dynamical 

incorporation of remotely sensed data into any model systems is not a trivial task and is 

computationally expensive. Finger et al. [26] proposed a multiple data set calibration approach to 

estimate runoff composition using hydrological models with three levels of complexity. The results 

indicate that all three observational data sets are reproduced adequately by the model, allowing an 

accurate estimation of the runoff in the three mountain streams. 

The objective of this study is to develop a novel fusion approach for snow cover maps generation 

by using physically based model simulations and remotely sensed products. The fusion aims at 

improving the snow cover detection in those areas where data sources disagree. As such, we try to 

overcome the aforementioned limitations of traditional methods and to take advantage of both the 

specific properties of remote sensing data (such as detailed spatial representation of the estimated 

parameters), and of the physical basis (independency from atmospheric and shadowing conditions) 

of the model simulations. The proposed fusion approach is based on a Support Vector Machine 

(SVM), a machine learning technique which has many important properties relevant for the 

analysis of remotely sensing data (i.e. high generalization capability, relatively high accuracy, 

sparsity of the solution and fast processing in the test phase [27]). Moreover, due to the 

minimization of the structural risk, it is more robust than other pattern recognition techniques in 

training datasets with a small number of labeled samples.  

The innovative aspect of the presented approach is the joint exploitation of remotely sensed data 

and physical model results, differing from approaches where remote sensing is mainly used for 

model tuning. In the decision-level fusion process, the snow cover maps and their quality measures 

are retrieved separately from the two different sources, then they are integrated by SVM to exploit 

their complementarities and to address their uncertainties. 

The final output of this research is a time series of about 1300 fused snow maps obtained by 
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applying the method to the whole simulation period (October 2012 - July 2016). 

The chapter is organized as follows: after introducing the study area and datasets in section 2.2, 

the method for data fusion is described in section 2.3; results are shown and discussed in section 

2.4 and, finally, conclusions on current applicability and indications for future development are 

drawn in section 2.5.  

2.2 Study Area and Dataset 

2.2.1 Study Area 

The study area of this research is the area including Tyrol (Austria), South Tyrol (Italy) and 

Trentino (Italy) (Figure 2.1). This area is a good field laboratory because it is well instrumented 

and this guarantees a high data availability. The climatological conditions are representative for 

different Alpine zones: precipitation reaches its maximum in the northern and southern prealpine 

areas (up to 2200 mm/year), whereas the inner region is drier (less than 600 mm/year in the 

Venosta region) [28]. Permanent snow line ranges between 3200 and 2800 m a.s.l. Most of the 

rivers in the central and northern part of the region considered have a nivo-glacial regime with 

maximum discharge during the later summer months, whereas in the southern part of Trentino 

maximum discharge is usually found during spring or fall with an earlier snowmelt [29]. The 

region is covered by a dense network of meteorological and snow monitoring stations, operated 

by the Hydrographical Services of the regional authorities, which provide an excellent validation 

dataset for the proposed methodologies. 

 

 

 

Figure 2.1 Study area: Tyrol (Austria), South Tyrol (Italy) and Trentino (Italy). 
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2.2.2 Data Description 

The fusion method adopted in this study involves the use of snow maps and respective quality 

measures, originating independently from satellite remote sensing data and from distributed, 

numerical snow model simulations (Table 2.1). 

 

1) Remote Sensing Data: In this study two types of satellite data-derived products have been used:  

- MODIS snow maps developed by Eurac Research. 

- Sentinel-2 and Landsat-8 RGB images. 

The MODIS images, which are freely provided by NASA (http://modis.gsfc.nasa.gov/), have been 

processed by Eurac Research (Bolzano, Italy) by applying a specific algorithm adapted to 

mountain areas to obtain snow maps with 250 m spatial resolution [30, 31]. The spatial resolution 

higher than the standard MODIS product (which has 500 m spatial resolution) can better represent 

the snow variability in mountainous terrain with very complex topography. The MODIS product 

derived from the algorithm has been extensively validated by comparison with high resolution 

SCA maps derived from Landsat 7 ETM+ images, with the NASA standard SCA products MOD10 

(MYD10) and with snow height measured by ground stations in selected test sites in Austria, 

Slovakia, Germany and Italy [31]. Overall accuracies for the different regions between the Eurac 

SCA product and in situ snow measurements range between 82.4% and 93.7%. The comparison 

with Landsat shows a mean overall accuracy of around 88.1% in forested areas, whereas in open 

areas the accuracy reaches 93.6%. The same behavior was found in the comparison with the NASA 

 

Table 2.1 The data sources used for the presented SVM fusion approach. 
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product, where the accuracy is 90.2% and decreases to 85.4% in forested areas [32]. In open areas 

the performances are quite similar, with the advantage that more detailed features are detectable 

with respect to the 500 m MOD10 (MYD10) maps. All snow maps are provided together with a 

quality measure, which is based (as explained in the following section relative to the “Data 

collection”) on NDSI. This index, unlike the standard MODIS product, is not used for snow cover 

area estimation and thus can be used for estimating a quality layer. Further details about the 

algorithm are explained in [30]. These snow maps, together with the quality measure, have been 

used as inputs to the fusion process. 

The high-resolution images provided by Sentinel-2 and Landsat-8 have been used for extracting 

reference values used in the training phase of the data fusion classifier. For this purpose, RGB 

images (with a spatial resolution of 10 and 30 m for Sentinel-2 and Landsat-8, respectively) have 

been used in a visual interpretation to find suitable reference points. Unlike the MODIS data-

derived snow maps that are available daily, Sentinel-2 mission consists of two satellites flying on 

the same orbit but phased at 180°, which have a revisit frequency of 5 days at the Equator. The 

temporal resolution of Landsat-8 is instead 16 days. Thus, the selection of dates for extracting the 

reference points has been constrained by the availability of Sentinel-2 and Landsat-8 images.  

2) Snow cover simulations: The evolution of the seasonal snowpack is simulated with the 

distributed, physically based hydroclimatological model framework “Alpine MUltiscale 

Numerical Distributed Simulation Engine” (AMUNDSEN) [32]. For every time step and grid cell, 

a meteorological preprocessor computes all necessary inputs to solve the coupled mass and energy 

balance of the snowpack and does not require any calibration. The functionality of the model 

includes sophisticated routines for (i) the regionalization of meteorological input data of various 

sources [33], (ii) the simulation of short- and longwave radiation including the consideration of 

shadows and cloudiness [34], (iii) the simulation of the snowpack thermodynamics by means of 

the factorial snowpack model (FSM) [35] and (iv) the simulation of canopy effects between the 

trees and snow accumulation on the ground [36, 37]. The presented study focusses on snow cover 

mapping, hence the model set-up is limited to simulate the snowpack evolution and any processes 

subsequent to snow melt are neglected (e.g. no simulation of stream flow). 

Snow cover simulations are forced with hourly recordings of air temperature, precipitation, 

global radiation, wind speed and humidity from 325 climate stations in the regions. Furthermore, 
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AMUNDSEN requires a digital elevation model and maps of land use, soil properties and 

watershed delineation as inputs in order to distribute input meteorology and parameter sets across 

the simulation domain. 

AMUNDSEN has proven its performance in a variety of applications in most different natural 

environments [38]. The model ability to predict the seasonal snowpack accumulation and ablation 

processes in the region was validated at 38 stations with automated snow height recordings. 

Additionally, 16 stations operated by the hydrographic service of the province Bolzano provide 

recordings of snow surface temperature, offering the opportunity to validate the mass and energy 

balance separately. Generally, daily snow height was predicted with acceptable accuracy with a 

mean Nash-Sutcliffe efficiency (NSE) of 0.68 (ranging from 0.25 to 0.96). However, especially at 

stations prone to significantly lateral fluxes of blowing snow the observed snow height dynamic 

could not be reproduced accurately. We explain this primarily by the precipitation under catch 

corrections, which are well performing at most stations in the region but fail under such extreme 

conditions.  Surface temperature observations could be reproduced with a mean NSE of 0.88, 

indicating that the model is well capable of solving the energy balance of the snowpack.  

3) Ground Data: The ground measurements of snow height, used for validating our results, are 

collected through different procedures depending on the region. In South Tyrol, measurement 

campaigns are carried out every day, at 7 a.m., during the whole winter season (from October to 

May) by private citizens appointed by the public administration. The objective of the survey is to 

characterize the day from a nivometeorological point of view through a series of significant 

parameters that can be extracted with simple and fast procedures. The measurements concern 

parameters such as: snowpack height, fresh snow height, air temperature, weather conditions, 

cloudiness, visibility and wind activity at high altitude. In particular, for the snow height 

measurement, a snow measurement stick is inserted vertically into the snowpack until the bottom 

of the stick rests on the ground; the total height of the snowpack is read on the graduated scale, at 

the surface of the snowpack. 

The measurement sites should be representative of the surrounding area from a nivological point 

of view, i.e. with regular snow deposition and snowpack evolution by avoiding zones with too fast 

changes due to the action of wind. The ideal terrain for measurement sites is a flat or slightly 

sloping terrain (< 10°). The data have been provided by the Autonomous Province of Bolzano, 
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Agency for Civil Protection – Hydrographic Office. 

In Trentino, snow height data have been collected from the snow profiles weekly performed by 

the operators of the Avalanche Office of Province of Trento, alpine guides or avalanche 

commission members. During the campaign a snow profile is carried out by the operators who 

analyze and extract parameters which help to identify weaknesses and processes in the snowpack 

for an avalanche risk evaluation. The extracted parameters are snow height, snow density, grain 

size and shape for each snowpack layer and air temperature. The data have been provided by 

Autonomous Province of Trento – Risk prevention service, Forecasting and planning office. The 

homogeneity of ground measurements is guaranteed by the common protocol used for the snow 

parameters acquisition, i.e. the AINEVA protocol, used regularly from both South Tyrol and 

Trentino operators. Moreover, the observation provided by the Province of Bolzano are performed 

by observers trained and paid by the Province, able to accurately measure snow parameters. 

Finally, regarding Tyrol, data have been collected from some automatic nivometeorological 

stations and provided by the Hydrographic Service of Tyrol. Figure 2.2 shows the measurement 

sites location in the test area.  

 

 

2.3 Method 

The aim of the proposed fusion approach is to improve the snow cover mapping in the areas 

 

Figure 2.2 Location of measurement sites in the test region. In Tyrol the measurement sites are indicated with numbers, 

in South Tyrol with the name of location and in Trentino with alphanumeric codes. For reproducibility of the analysis, 

the stations names have been simply reported as provided by the Province databases. 
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where remote sensing product and the simulation results disagree, by taking advantage of both the 

specific properties of remote sensing data (such as detailed spatial representation of the estimated 

parameters) and the characteristics typical of physical model (such as solid physical basis and good 

generalization capabilities). The satellite data-derived snow maps and the model-simulated snow 

distribution are considered as independent data sets, with individual, spatially varying accuracy. 

Hereafter, the snow maps derived from the satellite data and those derived from the model 

simulations will be called MODIS and AMUNDSEN products, respectively. 

In the next sections the method for quality measure computation will be explained and later the 

fusion strategy is presented. 

2.3.1 Computation of Quality Measures 

The first step of the proposed method consists in the calculation of the quality measures of the two 

snow cover maps, provided by remote sensing and snow model simulations, respectively. The 

techniques for the calculation of these quality measures, which are later used as input together with 

the snow maps for the classifier, are explained in the following sections. 

A. Quality Measure for the MODIS Product 

 The quality measure for the MODIS product is based on NDSI (Normalized Difference Snow 

Index). It is computed only for the two classes of interest, i.e. snow and no snow, whereas for all 

the other classes it is not considered. NDSI is an index related to the presence of snow in a pixel 

and is based on the different reflectivity values of the surface between a band in the visible and 

one in the short-wavelength infrared (or near-infrared) parts of the spectrum. Since snow is highly 

reflective in the visible bands and highly absorptive in the short-wavelength infrared (or near-

infrared), this index allows a good distinction between snow and clouds, most of which have a 

high reflectivity in both sections of the spectrum. 

𝑁𝐷𝑆𝐼 =
𝑉𝐼𝑆−𝑆𝑊𝐼𝑅

𝑉𝐼𝑆+𝑆𝑊𝐼𝑅
          →   −1 ≤ 𝑁𝐷𝑆𝐼 ≤ 1     (2.1) 

One of the main differences between the Eurac and NASA algorithms in the detection of snow 

is the use of NDSI index (bands for this index are at 500 m). The NASA algorithm adopts a 

combined use of NDVI and NDSI, which improves the snow detection in forested areas. Vice 

versa, the Eurac algorithm uses only the NDVI and B1 (the red band) to preserve the resolution of 

250 m. This allows us to use the NDSI for assessing the quality of the snow classification in each 
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pixel. For the snow and no snow classes, the quality measure (U) can vary between 0 (low quality) 

and 1 (high quality) and is computed as follows: 

       {
𝑈 =

1+𝑁𝐷𝑆𝐼

2
  𝑓𝑜𝑟  𝑡ℎ𝑒  𝑐𝑙𝑎𝑠𝑠  𝑠𝑛𝑜𝑤

𝑈 =
1−𝑁𝐷𝑆𝐼

2
  𝑓𝑜𝑟  𝑡ℎ𝑒  𝑐𝑙𝑎𝑠𝑠  𝑛𝑜  𝑠𝑛𝑜𝑤

     (2.2) 

B. Quality Measure for the AMUNDSEN Product 

 Snow maps derived from physically based model simulations comprise a large number of state 

variables for the snowpack in each pixel. First, however, we only use the binary information of 

snow presence (i.e., whether snow is present in a certain pixel, or not) for the processing of the 

snow maps. These are derived from simulated snow water equivalent (SWE): 

      {
𝑖𝑓    𝑆𝑊𝐸 < 𝑡ℎ → 𝑥 = 0(𝑠𝑛𝑜𝑤𝑓𝑟𝑒𝑒)

𝑖𝑓    𝑆𝑊𝐸 > 𝑡ℎ → 𝑥 = 1(𝑠𝑛𝑜𝑤𝑐𝑜𝑣𝑒𝑟𝑒𝑑)
     (2.3) 

Where 𝑡ℎ = 5𝑚𝑚 is a threshold that accounts for the scale discrepancy between a point location 

and the pixel dimension. The resulting map is a binary image with values being 0 (no snow) or 1 

(snow). The quality measure for the AMUNDSEN product is computed in two different ways for 

snow-covered and snow-free pixels. The quality measure for snow covered pixels is very simplistic 

and merely links the uncertainty information of the pixels to the magnitude of predicted SWE 

value. The assumption behind this approach is that, due to the cumulative nature of the snowpack, 

large errors (in total snow mass) are needed for a misclassification of snow-covered pixels when a 

deep snowpack is predicted, whereas smaller errors in snow mass suffice for a misclassification 

when a shallow snowpack is predicted. The certainty of the classification is assumed to increase 

with increasing snow mass in a hyperbolic manner. For deep snowpack far enough away from the 

snow cover threshold, an increase in snow mass is assumed to not further increase the certainty of 

the snow cover classification. Starting from these definitions, the quality measure for snow-

covered pixels is calculated considering that a higher quality in the snow map is associated with a 

larger snow mass and, thus, a larger SWE value: 

      𝑈 = −𝑡𝑎𝑛ℎ (
𝑆𝑊𝐸

𝑆𝑊𝐸𝑡
) + 1      (2.4) 

with 𝑆𝑊𝐸𝑡 = 100 mm and 𝑆𝑊𝐸 the snow water equivalent value of the pixel.  
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For snow-free pixels, the quality of the snow cover classification is assumed to increase over time 

until a threshold is reached: the higher the number of previous snow-free days, the higher is the 

probability that the pixel is snow-free. This quality approximation relies on the time distance to 

the predicted melt out of a cell. Errors in the simulation of accumulation and ablation processes 

will translate to error in melt-out timing. With an increasing time distance to the predicted melt-

out, larger model errors would be required for a misclassification. In order to maintain a reasonable 

scaling of the quality measure, the growth of the certainty is limited. Otherwise the certainty of a 

no-snow classification in autumn would be unrealistic high compared to one just after the snow 

ablation in spring. The respective quality measure hence is: 

      𝑈 = −𝑡𝑎𝑛ℎ (
∆𝑡

∆𝑡𝑡
) + 1       (2.5) 

with ∆𝑡𝑡= 10 days and ∆𝑡 the number of no-snow days. 

The quality measures as defined here can be considered as proxy quantities of the model accuracies 

for the detection of snow and snow-free pixels. 

2.3.2 Data Fusion Strategy 

The fusion strategy involves the disagreement points through the use of SVM technique and 

exploiting as input features the snow maps from MODIS and from model simulations, as well as 

the relative quality measures. The procedure is summarized in Figure 2.3. It includes three phases:  

- Data collection: MODIS and AMUNDSEN snow maps, together with their quality measures are 

prepared to be then used as inputs to the data fusion process. The MODIS snow maps considered 

are of binary type (snow/no-snow), with other classes (clouds, water and no-data) masked. 

Simultaneously, high-resolution RGB images from Sentinel-2 and Landsat-8 acquired during the 

period October 2012 - July 2016 are selected and collected. 

- Data selection and SVM training: the input data and the corresponding reference data has been 

selected for the estimation of the SVM model parameters during the training phase. Since the 

dataset for performance evaluation in the testing phase shall be independent, two datasets (one 

for training and one for testing the classifier) have been collected: the first step was the selection 

of some dates in different periods of the year, in order to consider the seasonal variability of snow 

coverage. Then, on these randomly selected dates, the pixels locations have been selected and 

extracted from the snow maps. The corresponding reference dataset with the true labels has been 
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extracted through a visual interpretation of S2 and L8 images and the whole data set created. This 

resulting dataset was then randomly divided into a training dataset (80%, about 720 points) and 

a test dataset (20%, about 180 points). 

- Maps generation and performance evaluation: finally, the classifier has been tested on the 

independent dataset (test dataset) to evaluate the performance.  

2.3.3 Support Vector Machine Approach 

SVMs are supervised learning models for classification and regression procedures. They can 

address both linear and non-linear relations and work well for many practical applications. SVMs 

have been proved to have a higher classification accuracy than other widely used pattern 

recognition techniques, such as the maximum likelihood and the multilayer perceptron neural 

network classifiers [27]. Moreover, SVMs appear to be especially advantageous when only few 

training samples are available [27].  

 

An important property of SVM models is that they do not require the knowledge of the statistical 

distributions of classes to carry out the classification, as they exploit the concept of margin 

maximization [27]. The growing interest in SVMs is mainly related to a) the higher effectiveness 

with respect to traditional classifiers, resulting in high classification accuracies and very good 

generalization capabilities; b) the relatively low effort required for architecture design (only few 

control parameters); c) applicability to linearly constrained quadratic optimization problems. 

 

Figure 2.3 Data fusion strategy flowchart. 
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These described properties, together with a strong ability to deal with remotely sensed data [27], 

make SVM the suitable approach to address the presented classification problem. Further technical 

details on SVM mathematical formulation can be found in [27]. 

2.3.4 Validation Strategy 

The validation of the data fusion method has been conducted at two different levels: the first one 

exploits the data from high-resolution remotely sensed images, whereas the second considers the 

ground data collected by measurement sites located throughout the test area.  

In order to compare snow height ground measurements with the binary maps (snow or no-snow) 

obtained from the fusion approach, as well as those derived by both MODIS and AMUNDSEN, a 

threshold needs to be selected for discriminating between snow and no-snow. Two different 

threshold values on snow height, i.e. 5 cm and 10 cm, were tested to assess the impact of this 

choice on results. As shown by Thyrel et al. [39], the agreement with ground data seems to improve 

for lower snow height threshold. Other snow height threshold values have been used in literature, 

such as 1 cm [40], 2.54 cm [41] and [42], 2 cm [31]. The final choice of setting 5 cm as threshold 

is related to the observation that a shallow snow layer can rapidly melt during the day and might 

thus not reveal the actual snow status at the time of the satellite acquisition. Vice versa, a too low 

threshold may not be representative of the surrounding area. 

The validation with ground data has been carried out by using points that are, except some cases, 

snow-covered, since the snow height measurements are performed in winter season and manual 

observations for snow-free conditions are lacking. 

2.4 Results and Discussion 

In this section, the validation of the proposed method and the results derived from the analysis 

of time series are presented. Hereafter, in the validation with ground data, the term “points” 

indicates the single ground data at a specific date and in a specific observation site. 

2.4.1 Validation with High-Resolution Images 

By validating the fusion data method on the test dataset (180 points), the overall accuracy reaches 

89%, with respect to 40% (MODIS) and 60% (AMUNDSEN). Figure 2.4 shows the confusion 

matrices and some statistical indices for the test points. The overall accuracy (OA, in %) is defined 

as the sum of snow/snow agreement and no-snow/no-snow agreement divided by the total number 
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of observations available. The True Positive Rate (TPR) indicates the percentage of snow samples 

that are correctly identified and the True Negative Rate (TNR) represents the proportion of no-

snow points that are correctly identified. 

 

From the confusion matrices, it results that, on average, the MODIS product tends to overestimate 

the snow coverage while the AMUNDSEN product seems to underestimate it. The new fused 

product balances these behaviors by improving the overall accuracy with the high-resolution 

images. 

Table 2.2 shows the agreement with reference dataset divided per area, as fraction of total points 

matching with the selected points in high-resolution images. The three products, i.e. MODIS, 

AMUNDSEN and fused products, are reported separately for the three areas. The column “Points 

per area” indicates the total number of points selected for South Tyrol, Trentino and Tyrol, 

respectively.  Results indicate that AMUNDSEN shows a higher agreement with selected reference 

points in South Tyrol with respect to the other areas; vice versa, MODIS seems to perform better 

in Tyrol than in South Tyrol and in Trentino. 

 

 

Figure 2.4 Confusion matrix relative to a) MODIS product; b) AMUNDSEN product; c) fused product. OA= Overall 

Accuracy; TPR= True Positive Rate; TNR= True Negative Rate. 

 
            
 

  

Fused product No_snow Snow

No_snow 61 11

Snow 9 98

MODIS No_snow Snow

No_snow 1 38

Snow 69 71

AMUNDSEN No_snow Snow

No_snow 63 64

Snow 7 45

  = 0   
   = 0  0
   = 0   

  = 0  0
   = 0  5
   = 0 01

  = 0  0
   = 0  1
   = 0  0

a) b) c)

Table 2.2 Agreement (%) for each region (South Tyrol, Trentino and Tyrol) with validation points extracted from 

high-resolution images. 

. 
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2.4.2 Validation with Ground Data 

For the second type of validation analysis we compare the data fusion product to ground data. 

The general results are shown in Figure 2.5, where the confusion matrices for the three products 

are reported. Fig. 5 shows the same behavior found in Table 2.2: MODIS has the best performances 

in Tyrol, whereas AMUNDSEN accuracy is higher for South Tyrolean territory.  

By using a threshold value of 5 cm, the agreement percentages for each observation are calculated 

for all three snow cover maps (Table 2.3). The column “Points per station” indicates the number 

of points available for each station. The agreement percentages have been evaluated by considering 

the number of points, which can vary considerably among the observation sites. This could lead to 

different performances: in most of Trentino site, for example, the number of available 

measurements may be very low (in the worst case only 2 measurements are available) so the 

percentages may also be very high. If the measurement site is located in a pixel classified as 

“cloud” in MODIS product, it is excluded from the analysis. 

 

 

Figure 2.5 Validation with ground data. Confusion matrix relative to a) MODIS product; b) AMUNDSEN product; 

c) fused product. OA= Overall Accuracy; TPR= True Positive Rate; TNR= True Negative Rate. 
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The average agreement between the fused product and observations is 96% with respect to 90% 

(MODIS) and to 92% (AMUNDSEN) (Table 2.3). In this type of validation, ground data can 

involve both pixels where MODIS and AMUNDSEN disagree and where they agree. Since the 

fusion process is applied only on disagreement pixels, in order to assess how the method works, 

some statistics have been computed by considering only these points, i.e. where AMUNDSEN 

indicates “snow” and MODIS “no-snow” (or vice versa). 

Figure 2.6 presents the results about the validation in South Tyrol: for each measurement site the 

two columns indicate on the left the AMUNDSEN and MODIS behavior and on the right the fused 

product behavior. White bars represent the number of total available points (dates) for each 

measurement site; light and dark blue respectively show the samples where MODIS is wrong and 

AMUNDSEN is correct with respect to the ground data and vice versa. Above these two bars, the 

cyan bars indicate the points where both model and satellite data are wrong. The remaining points 

above the cyan bars are the points where AMUNDSEN and MODIS agree and give correct 

classification. In these points, as well as in the points of cyan bars, the fusion does not work 

because the model and the satellite products agree. For each measuring site, the sum of pink bars 

gives an idea of the improvement provided by the presented approach with respect to the single 

sources (MODIS and the AMUNDSEN snow maps), by showing the number of disagreement 

points that are correctly classified after fusion approach. 

By averaging the results on all the stations, one can observe that 76% of the disagreement points 

are correctly classified by the SVM classifier. Moreover, in about 73% of these correctly classified 

points, the fused product follows AMUNDSEN, while in the remaining 27% it coincides with 

MODIS. This behavior could be explained by considering that about 68% of considered 

disagreement points in South Tyrol correspond to measurement sites located in pixels classified as 

forest. This means that these sites are probably located near the forest and are representative of 

such type of land cover. The well-known problem of MODIS in detecting snow in these areas 

could lead the fusion method to be more confident with AMUNDSEN product. Moreover, 

approximately 38% of the remaining disagreement points in open areas correspond to north-facing 

sites. In this case the lower reliability of MODIS product could be ascribed to the underestimation 

in low-light conditions which frequently happen during wintertime as reported in [31].  
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The same procedure has been applied to data collected in Trentino and in Tyrol. For the data 

from the Trentino region, in 16 out of 28 measurement sites MODIS and AMUNDSEN are always 

in agreement and both accurately reproduce the ground observations. These sites are not shown in 

the histogram. As shown in Figure 2.7, the points where MODIS and AMUNDSEN provide 

different results are correctly classified by the fusion procedure. Moreover, the points where 

MODIS and AMUNDSEN provide the same results are all correctly classified with respect to the 

Table 2.3 Agreement (%) for each measuring station in South Tyrol, Trentino and Tyrol. In Trentino, only 12 out 

of 28 stations have at least one point of disagreement between MODIS and AMUNDSEN. In the table, only these 

stations are mentioned, by omitting all those where AMUNDSEN and MODIS are always in agreement. 
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observations. Hence, for the Trentino area and the period considered, the fused product is able to 

correct all errors present in the two snow cover maps. In particular, this total agreement of fused 

product with ground data is symmetrically distributed between the two sources of information: in 

50% of cases the fused product matches the MODIS product and in the remaining 50% it coincides 

with AMUNDSEN.   

 

 

For the Tyrol region, 70% of the disagreement points have been correctly classified by the SVM 

classifier (Figure 2.8). In about 74% of these correctly classified points, the fused product matches 

the MODIS product, whereas in the remaining 26% of cases it agrees with the modelled value. In 

this case, the behavior of fused product seems to be opposite to the one found in South Tyrol: 

fusion method seems to be more confident with MODIS product than with AMUNDSEN one. This 

could be ascribed to a lower number of disagreement points in forested areas. Unlike what happens 

in South Tyrol, in fact, in Tyrol most of the selected disagreement points (about 58%) is associated 

to measurements sites located in pixels classified as open areas.  

      

 

Figure 2.6 Validation with ground data from measurement sites in South Tyrol: white bars indicate the total points 

for each station; dark blue marks points where MODIS is correct and AMUNDSEN is wrong with respect to ground 

data; light blue shows points where MODIS is wrong and AMUNDSEN is correct; cyan bars represent points where 

both MODIS and AMUNDSEN are wrong; light pink are points where the fused product is correct and equal to 

MODIS; dark pink are points where the fused product is correct and equal to AMUNDSEN. 
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In order to understand if the differences with ground data are due to an underestimation or an 

overestimation of snow, the histogram in Figure 2.9 shows, by considering all stations, the number 

of times where each snow cover map disagrees with the ground data, per month. From the 

histogram, the MODIS product underestimates the presence of snow in most cases, especially in 

December and January (value of the yellow bars). This behavior is in line with accuracy variation 

reported for standard MODIS product by NASA [42] and [43].  

 

In the fused product, the smallest errors occur in February when the amount of snow is large. 

AMUNDSEN seems to produce the largest errors in spring, due to the accumulative nature of the 

errors in the computation of the accumulation, redistribution and melt processes [15]. This effect 

might lead to a higher uncertainty in snow detection in this period.  

The decision fusion classifier has been applied to about 1300 maps in the considered simulation 

period to generate the resulting time series of fused snow maps. The accuracy of snow detection 

from satellite data is, in general, significantly higher in open areas than in forested areas. Indeed, 

trees increase the complexity of the scene by masking the snow on the ground and altering the 

radiance measured by the MODIS satellite [3, 8]. Since elevation also strongly affects quantity 

and distribution patterns of precipitation and snow, we analyzed the snow cover area (SCA) for 

      

 

Figure 2.7 Validation with ground data from measurement sites in Trentino. 
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different land use (i.e. forest and open areas) and elevation bands. Figure 2.10 shows the SCA (i.e. 

the total number of snow-covered pixels divided by the total number of snow-covered and snow-

free pixels) behavior in time of the three snow products for the entire period (October 2012 - July 

2016).  

The underestimation of snow in forest as found in the MODIS product seems to be solved in the 

fused product, which follows the accurate simulation of the forest snow cover in AMUNDSEN: in 

forest, for all elevation bands, the fused product accurately reproduces the SCA peaks of winter 

season, also when there is a sharp underestimation in the MODIS product. In open areas, the 

behavior of AMUNDSEN and MODIS products is similar and the fused snow cover maps well 

reproduce the seasonal variability of the winter peaks and summer minima.  

      

 

Figure 2.8 Validation with ground data from measurement sites in Tyrol. 
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2.4.3 Cloud Effect Correction 

A further improvement of the final data fusion snow maps can be achieved by a cloud correction 

approach applied to the regions where the MODIS snow maps are incomplete, due to the cloud 

presence. Hence, the final product consists of a map having the pixel value obtained by the fusion 

method in those pixels where two original snow cover maps (MODIS and AMUNDSEN) disagree 

and the AMUNDSEN pixel value where MODIS indicates “cloud”. 

Figure 2.11 shows two examples of snow maps at the end (on April 17th, 2014) of the winter 

season 2013-2014 and at the start (on November 23th, 2014) of winter season 2014-2015. The 

right figures show the images with clouds, whereas the left ones show the corrected images, as 

above explained. The colors highlight the different behaviors of the fused product: green and white 

represent the pixels where AMUNDSEN and MODIS agree and, therefore, where the data fusion 

approach is not applied and consequently has the same value of the two single sources; the dark 

and light blue are the pixels where the fused snow map has the same value of the MODIS map; 

      

 

Figure 2.9 Monthly difference between snow products and observations. 
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finally, the dark and light pink indicate the pixel where the fused snow map follows the behavior 

of the AMUNDSEN simulation. In the winter image, most of the pixels classified as snow by 

AMUNDSEN as well as by the fused product (dark pink) are located on the northern exposure. 

This behavior may be ascribed to the MODIS underestimation in low-light conditions which 

frequently happen during wintertime as reported in [31]. The cyan color indicates that the fused 

product follows the MODIS product behavior in detecting the snow absence. Most of these areas 

are located in forest: as highlighted in Figure 2.9, in forested area the fused product results follow 

the AMUNDSEN behavior because of the well-known limitation of optical satellites to detect 

snow under the canopy. In this context, it is worthwhile mentioning that snow detection in forest 

      

 

Figure 2.10 Snow cover area (SCA) behavior in time for AMUNDSEN (blue), MODIS (orange) and the fused (grey) 

products, respectively. The analysis is carried out in open (left) and forested (right) areas for different elevation 

bands. The red circles in forested area highlight the winter snow SCA peaks where the MODIS underestimation is 

more evident. 

 

 

 

. 
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is very complex and it depends on many factors such as the location of the forest (north/south), the 

density of the forest, the type of the forest (broadleaf or conifer). It is found that normally MODIS 

product tends to underestimate the snow cover in forested areas [44, 45]. At the same time, at the 

beginning and end of the season, it can be supposed that AMUNDSEN model may simulate low 

values of SWE in these transient periods, so that SVM classifier can give in some cases, as shown 

in Figure 2.10, the priority to the MODIS product. This behavior highlights the importance in the 

selection of the feature to be used in the data fusion approach, both the inputs and the related 

quality measures. These measures shall provide both an evaluation of the quality of the inputs and 

try as well to cover the different spatial and temporal variability, which the snow has in mountain 

areas. As a future step, different quality measures will be evaluated in order to understand their 

impact on the final products and how they can tackle the heterogeneity of snow cover in complex 

terrain. 

 

      

 

Figure 2.11 Example of fused product, with clouds (right) and with cloud effect correction (left). The colors show the 

different behavior of the fused product. 
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2.5 Conclusion and Outlook 

In this chaper we present a method to overcome the limitations of existing remote sensing and 

modelling techniques for snow cover mapping. The data fusion approach developed takes 

advantage of the specific properties of the remote sensing data (such as independency from 

meteorological observations and a spatialized representation of snow cover) and those of a physical 

snow model (such as solid physical basis and the independency from cloud coverage). The 

objective of the data fusion is solving the ambiguity of disagreement points, i.e. those pixels where 

the snow model indicates snow presence and the satellite product snow absence (or vice versa).  

The agreement points (where both MODIS and AMUNDSEN say “snow” or “no snow”) cannot 

be improved from this fusion approach, but an analysis on these situations has been carried out in 

order to understand the behavior of products with respect to the ground data. In South Tyrol and 

Trentino less than 1% of agreement pixels is wrongly classified and they occur especially in 

situation of shallow snowpack (less than 5 cm, which is the threshold imposed on the ground snow 

height values to obtain binary values) when MODIS and AMUNDSEN say snow and the ground 

measurement registers no snow. 

The case of Tyrol is slightly different because the ground data come from automatic 

nivometeorological stations. The snow height measurements are continuous and are also collected 

in the summer period. However, measurements in summer period are critical: the grass grows at 

stations and is measured by the ultrasonic sensor by causing a supposed increase in the height of 

the snowpack. If it snows in summer, the grass is flattened. A snowfall causes, thus, a sudden drop 

in the measured height. Most of wrong classification of agreement pixels in Tyrol area occur in 

summer period, when measurements from automatic stations in summer are not reliable. Some 

cases occur at the beginning of the winter season with first snowfalls and shallow snowpack. 

The fusion is carried out by means of an SVM, a pattern recognition technique often adopted in 

the field of bio-physical parameter retrieval for its capability to handle complex and non-linear 

problems and to manage different kinds of inputs. The results show that the presented data fusion 

method is able to produce a more accurate snow cover map than could be provided by remote 

sensing or snow modelling alone. The validation of the fused snow cover product was performed 

by using ground data derived from measurements carried out in open sites in the test region, 

resulting in a very good agreement. The average accuracy of 90% (MODIS) and 92% 
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(AMUNDSEN) is increased to 96% in the fused product. In future work we will extend the 

validation to forested sites. 

Moreover, it is worth saying that the analysis of the uncertainties shows that there are very few 

cases in which they are similar (difference between AMUNDSEN and MODIS uncertainties lower 

than 10%). These cases represent approximately the 3% and usually occur in December and in 

April. SVR behavior in these cases strongly depend on period of the year: in spring season, in 

average, SVR seems to be more confident with MODIS product even in the cases when 

AMUNDSEN uncertainty is slightly lower than in MODIS. Vice versa, when the case of similar 

uncertainties occurs in December, the SVR follows the AMUNDSEN behavior. This confirms that 

SVR approach is more than a simple classification based on uncertainties (choice of lower 

uncertainty) and that probably the regressor catches a seasonal trend from the training dataset that 

leads it to choose the most reliable product also depending on the period and not only on 

uncertainty values. 

A further improvement was carried out by applying a cloud clearing that makes use of the snow 

model result in areas that are classified as "cloud" in the MODIS product. This procedure allows 

to obtain a final snow cover map with coverage on the entire area. As further development, in 

addition to the two snow cover maps of satellite and model origin and their quality measures, other 

input features can be tested for the fusion procedure, e.g. the sun incident angle (to account for 

different illumination conditions) or the percentage of forest coverage in the pixel (to account the 

quality of remote sensing product that is, as mentioned, affected by this parameter).  

These results are promising if compared to what already exists in the literature: Parajka and 

Blöschl [6] presented a method for improving the existing MODIS daily snow products by 

reducing cloud coverage. They improve the combined Aqua and Terra snow cover product by 

using first a spatial filter and then a temporal filter for reducing the cloud covered pixels. Their 

approach allows a reduction in cloud coverage of more than 95%, with an overall annual accuracy 

of more than 92%, based on a comparison with ground snow height measurements. The same 

overall accuracy evaluation was applied by Pu et al. [46] who tested the MODIS 8‐day composite 

snow product against ground snow height data on the Tibet Plateau. They reported an average of 

90% overall accuracy in the period 2000–2003. Şorman et al. [47] compared daily snow cover 

maps obtained from MODIS images with ground observations in mountainous terrain of Turkey 
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for the winter season of 2002–2003 and 2003–2004 during the accumulation and ablation periods 

of snow. The comparison shows good agreement with overall accuracies in between 62 to 82 % 

considering a 2-day shift during cloudy days. 

Results obtained in this work encourage further research on the development of a general method 

being able to provide improved snow cover maps, transferable even in other regions or to exploit 

this fusion method for retrieving other snow parameters, such as snow water equivalent (SWE). 

Satellite products at high-medium resolution cannot deliver such variable and can contribute only 

with some auxiliary data. The objective of the fusion, in this case, will be the improvement of the 

reliability of physical model product by exploiting remotely sensed products as proxy information. 
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Chapter 3 

 

3. IMPROVING SWE ESTIMATION BY FUSION 

OF SNOW MODEL WITH TOPOGRAPHIC AND 

REMOTELY SENSED DATA 

This chapter2 presents a new concept to derive the snow water equivalent (SWE) based on the 

joint use of snow model (AMUNDSEN) simulation, ground data, and auxiliary products derived 

from remote sensing. The main objective is to characterize the spatial-temporal distribution of the 

model-derived SWE deviation with respect to the real SWE values derived from ground 

measurements. This deviation is due to the intrinsic uncertainty of any theoretical model, related 

to the approximations in the analytical formulation. The method, based on the k-NN algorithm, 

computes the deviation for some labeled samples, i.e. samples for which ground measurements are 

available, in order to characterize and model the deviations associated to unlabeled samples (no 

ground measurements available), by assuming that the deviations of samples vary depending on 

the location within the feature space. Obtained results indicate an improved performance with 

respect to AMUNDSEN model, by decreasing the RMSE and the MAE with ground data, on 

average, from 154 to 75 mm and from 99 to 45 mm, respectively. Furthermore, the slope of 

regression line between estimated SWE and ground reference samples reaches 0.9 from 0.6 of 

AMUNDSEN simulations, by reducing the data spread and the number of outliers.  

 
2 This chapter has been published in Remote Sensing: 

De Gregorio, L.; Günther, D.; Callegari, M.; Strasser, U.; Zebisch, M.; Bruzzone, L.; Notarnicola, C. Improving SWE Estimation 

by Fusion of Snow Models with Topographic and Remotely Sensed Data. Remote Sens. 2019, 11, 2033. 

http://dx.doi.org/10.3390/rs11172033 

http://dx.doi.org/10.3390/rs11172033
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3.1 Introduction 

Melt water from snow and glaciers plays a key role in the hydrological cycle by contributing to 

the river flow and water resources in many parts of the world. It is estimated that about one-sixth 

of the world's population depends on snow- and ice-melt for the supply with drinking water [1]. 

Therefore, for hydrological assessments in these regions, knowledge about the spatial and temporal 

distribution of the snow water equivalent (SWE) is of uttermost importance. SWE is defined as 

the amount of water contained within the snowpack: it can be thought as the depth of water that 

would theoretically result if the entire snowpack would melt instantaneously [2]. Where available, 

point ground measurements of SWE remain the main direct information about the snow mass. 

However, given the large spatial heterogeneity of snow they may not be representative of large 

areas. A spatialized estimation of SWE in mountain areas, which are typically complex terrains 

with high topographic heterogeneity, is currently one of the most important challenges of snow 

hydrology [3]. An improved knowledge of the spatial distribution of SWE and its evolution over 

time would allow a better management of mountain water resources for drinking water supply, 

agriculture and hydropower, as well as for flood protection. 

In literature, several approaches to the estimation of the spatial distribution of SWE exist. One 

of the most common methods is the interpolation of SWE ground measurements, constrained by 

remotely sensed maps of the snow extent. If enough ground measurements with a good spatial 

distribution are available, this approach may produce accurate SWE results [4]. Two different 

types of snow extent products derived from satellite exist: fractional and binary snow cover maps. 

Fassnacht et al. [4] and Molotch et al. [5] use of the fractional product that provides information 

about the percentage (from 0% to 100%) of snow coverage for each pixel. Elder et al. [6], instead, 

utilize binary mapping techniques with a set of thresholds to determine whether a pixel is snow-

covered or not. A common statistical technique for spatial interpolation is based on binary 

regression trees that have been successfully applied to obtain interpolated SWE values from 

ground observations [6, 7]. However, numerous studies show that individual point observations of 

SWE are not necessarily representative of the surrounding area [8, 9, 10], thus limiting the 

feasibility of this approach. 

Several statistical models have been developed to spatially interpolate the point-based snow 

information, e.g. multivariate linear regression can relate physiographic variables, historical SWE 
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data and snow-covered area imagery to the observed SWE. The accuracy of this simple method 

can be better than those of more complex techniques such as inverse-distance weighting [11]. 

Because of their accuracy and ability to preserve patterns from observations [12], nearest-neighbor 

approaches are an alternative methodical approach for spatio-temporal modeling biophysical 

parameters. However, in literature, only few studies exist based on the use of k-NN algorithms for 

modeling snow parameters. Among them, Zheng et al. [12] developed an approach to estimate 

SWE through the interpolation of spatially representative point measurements using a k-NN 

algorithm and historical spatial SWE data. Schneider et al. [13] estimated the relationships between 

SWE, snow covered area and topography to extend the Airborne Snow Observatory (ASO) dataset. 

In their analysis, they also used a nearest neighbor approach for resampling fractional snow-

covered area maps. Another common approach for retrieving spatially distributed SWE is the 

reconstruction based on both remotely sensed snow cover maps and the estimation of snowmelt. 

The main idea, developed by Martinec and Rango [14], is to identify the date of snow 

disappearance for each pixel starting from Landsat snow cover maps; then, through a backward 

calculation of the melt rate, the accumulated SWE for each day back to the last significant snowfall 

is reconstructed. The sources of uncertainty for this approach are mainly related to the melt model 

structure and its meteorological forcing. Moreover, the main disadvantage of this approach is that 

it works properly only in areas with distinct accumulation and ablation periods. Furthermore, it 

operates retroactively only after snow disappearance, and hence does not enable the application 

for streamflow forecasting. Bair et al. [15] validated two different SWE reconstruction methods 

with the NASA ASO data in the upper Tuolumne River Basin in California's Sierra Nevada. The 

first approach uses an energy balance model to calculate snowmelt, integrating different remotely 

sensed products like daily MODIS fractional snow‐covered area and albedo; it also considers 

ephemeral snow (i.e., snow that rapidly appears and disappears). The second reconstruction model 

implements a net radiation restricted degree‐day approach [16]. The first method results, on 

average, more accurate than the second one in the SWE reconstruction, by showing no bias (0%) 

and a low mean absolute error (26%). Other successful examples of reconstructed SWE for basins 

in Sierra Nevada are shown by Girotto et al. [17], Guan et al. [18] and Rittger et al. [19]. 

An accurate estimation of SWE from remotely sensed images represents a longstanding 

challenge. Satellite data in the visible bands may provide information about the presence or 

absence of snow cover [20] but require cloud-free conditions. However, no indication on the total 
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amount of the snow mass can be derived. Passive microwave (PM) instruments are able to estimate 

the brightness temperature naturally emitted from the Earth and can be used to estimate SWE. 

When snow covers the ground, microwave radiation transmitted through the snowpack is absorbed 

and scattered by snow grains by decreasing the measured radiation. A deeper snowpack includes 

a larger number of snow grains, which are the main responsible for signal attenuation. This inverse 

relationship between snow depth and temperature brightness is the basis of SWE retrieval from 

PM measurements [21]. Vuyovich and Jacobs [21] compared snow hydrology model results to 

remotely sensed data to determine if passive microwave estimates of SWE can be used to 

characterize the snowpack and estimate runoff from snowmelt in the Helmand River, in 

Afghanistan. Mizukami and Perica [22] tried to identify SWE retrieval algorithms feasible for 

large‐scale operational applications. In their study, Vuyovich et al. [23] compared the daily 

AMSR‐E and SSM/I SWE products over nine winter seasons with spatially distributed model 

output of the SNOw Data Assimilation System (SNODAS) at watershed scale (25 km of spatial 

resolution) for 2100 watersheds in the United States. Results show large areas where the passive 

microwave SWE products are highly correlated to the SNODAS data, except in heavily forested 

areas and regions with a deep snowpack, where passive microwave SWE is significantly 

underestimated with respect to SNODAS. The best correlation is associated with basins in which 

maximum annual SWE value is lower than 200 mm and forest fraction is less than 20%. Forest 

cover has been proven to be one of the most relevant sources of uncertainty in SWE retrieval with 

PM sensors by acting as a mask for the snowpack microwave emission [24, 25]. Moreover, snow 

metamorphism affects the snowpack microwave emission by changing the crystal sizes, caused by 

temperature and water vapor gradients [26, 27]. Finally, SWE estimation from PM sensors suffers 

from several issues related to the coarse spatial resolution of the sensors (~ 25 km): in mountain 

regions, indeed, the spatial variability of snow cover and snow properties over a 25-km grid is 

large due to topographic influences. In the last decades, scientists have also extensively 

investigated the potential of Synthetic Aperture Radar (SAR) data for deriving SWE. Sun et al. 

[111] used microwave scattering models to analyze the C-band SAR scattering characteristics of 

snow-covered areas and estimated the distribution of the SWE using SAR data and snow cover 

data measured in the field. Conde et al. [112] presented a methodology for mapping the temporal 

variation of SWE through the SAR Interferometry technique and Sentinel-1 data. 
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Information about snow state variables can also be obtained from hydrological models. Many of 

the existing snowpack models are based on the same physical principles and solve the surface 

energy balance problem of a snowpack [30]. The main difference among these models is related 

to the way they represent physical processes in the snowpack such as absorption of incoming 

radiation, advection and convection, and how they represent the internal structure of the snowpack. 

In a cross-comparison with 33 models, Rutter et al. [30] found that the correlation of models’ 

performance between years is always stronger at the open sites than in the forest, suggesting that 

models are more robust at open sites. The increasing complexity of snow-cover models demands 

high-quality forcing data. However, meteorological forcing data as provided by weather station 

recordings or atmospheric simulations suffer from several errors such as those induced by 

inaccuracy of the measurement, the regionalization scheme or boundary conditions. The process 

representations in deterministic, physically based snow models (which simulate physical processes 

in the snowpack) are an abstraction of reality, and hence inherently introduce uncertainty through 

simplification and the choice of parameter values. For fully distributed snow models, the spatial 

resolution is a compromise between computational feasibility and adequacy in mirroring the 

spatial scale of physical processes. Especially if the resolution (i.e. cell size) is much larger than 

the processes considered in the model, this choice is associated with uncertainty. 

On the basis of this analysis, the main objective of this work is to generate a spatialized product 

of SWE over an Alpine area composed of Tyrol, South Tyrol and Trentino (Euregio region), by 

overcoming the aforementioned problems of hydrological models related to intrinsic uncertainty 

of the forcing data and correcting the spatial-temporal distribution of SWE as simulated by the 

snow model AMUNDSEN. The correction is performed using a specific k-NN algorithm and 

exploiting ground measurement-derived SWE data. The innovative aspect of our work is the joint 

use of snow model simulations, ground data, auxiliary products based on remote sensing and an 

advanced estimation technique to derive SWE. In this way our approach differs from traditional 

data assimilation techniques. 

The chapter is organized as follows: section 3.2 introduces the study area and, after a description 

of the dataset, the method for SWE retrieval is presented in the last part of the section; results are 

then shown and discussed in Section 3.3 and, finally, conclusions and future perspectives are 

drawn in Section 3.5.  
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3.2 Materials and Methods  

3.2.1 Study area 

The considered study area is the Alpine region that includes Tyrol (Austria), and South Tyrol and 

Trentino (North-East Italy, Figure 3.1). Most of the rivers in the central and northern part of the 

considered region have a nivo-glacial regime with maximum discharge during the late summer 

months, whereas in the southern part of Trentino maximum discharge usually occurs during spring 

with an earlier snowmelt [31]. The area is covered by a relatively dense network of measurements 

sites (Figure 3.1), where snow profiles are periodically collected by the operators of the Avalanche 

Offices of the Provinces of Trento and of Bolzano (for Trentino and South Tyrol, respectively) 

and by the Hydrographic Service and the Zentralanstalt für Meteorologie und Geodynamik 

(ZAMG) for the Tyrol region. 

 

 
3.2.2  Data description  

This section describes the input (features) and the target variables used in the proposed method. 

The same features have been selected for the three regions. Table 3.1 summarizes the features 

selected for implementing the k-NN algorithm and, below, shows the number of SWE ground 

samples available for each region. The following subsections will describe the single features used 

in the analyses.  

 
Figure 3.1 Study area: Tyrol (Austria), South Tyrol (Italy) and Trentino (Italy) and location of the measurement 

sites. 
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A. The AMUNDSEN model and its uncertainty 

SWE is simulated using the distributed, physically based snow model AMUNDSEN (“Alpine 

MUltiscale Numerical Distributed Simulation ENgine”) [32]. The regionalization and 

approximation of measured and unmeasured meteorological forcing and the inclusion of snow-

canopy interactions are performed by the meteorological preprocessor of the model. Then the 

Table 3.1 Features selected for implementing the k-NN algorithm (above); Number of SWE ground samples 

available for each region (below). 

Feature name Feature description 

Altitude Measurement site altitude 

Geographic coordinates Measurement site latitude and longitude 

Forest coverage Percentage of pixel (containing measurement site) covered by forest 

Slope Pixel slope 

Aspect Pixel aspect 

Day of the year (DOY) DOY rescaled with respect to the start of hydrological year (the day number 1 is the 1
st

 of 
October). 

SWE value from 
AMUNDSEN 

SWE value from AMUNDSEN corresponding to location and date of each ground 
measurement. 

SWE climatology Calculated as average SWE value (from AMUNDSEN) on the other years (10 years). 

SWE quality measure 
(CV) 

Coefficient of Variation (standard deviation divided by the mean) on ensemble SWE 
simulations. 

Land Surface 
Temperature (LST) 

Mean daily LST calculated on previous month and number of days in previous month having 
positive temperatures. 

Region # of SWE ground samples 

South Tyrol 1270 

Tyrol 1467 

Trentino 605 
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coupled mass- and energy-balance is solved at every raster cell by means of the energy balance 

scheme of the integrated 1-D Factorial Snowpack Model (FSM) [33]. AMUNDSEN has proven 

its performance in a variety of applications in different natural environments [34]. In our 

application, the model has been validated at 38 stations with automated snow depth recordings. 

Additionally, 16 stations operated by the Hydrographic Service of the Province of Bolzano provide 

recordings of the snow surface temperature to validate the mass and energy balance separately. 

Daily snow height was predicted with a mean Nash-Sutcliffe efficiency (NSE) of 0.68 (ranging 

from 0.25 to 0.96). 

In this work three snowpack variables provided by AMUNDSEN are used as features for 

implementing the k-NN algorithm: (i) SWE, corresponding to location and date of respective 

ground measurements, (ii) the associated uncertainty value, and (iii) a “SWE climatology” 

parameter. The latter is the average of the SWE values at the point and for the date corresponding 

to the ground measurement calculated for the other years. The uncertainty associated to the 

AMUNDSEN SWE simulation is based on ensemble simulation comparisons. Such ensemble 

simulations are a common way for assessing the uncertainty of model output. In many disciplines, 

such as hydrology, meteorology and cryospheric sciences, ensemble simulations have 

demonstrated their potential in improving the robustness of forecasts [35] and assimilation 

schemes [36]. In this study we follow a multi-model approach to generate an ensemble and include 

as many sources of uncertainty as possible. However, given the large extension of our study site 

the resulting computational costs need to be considered. In order to resolve critical snow-related 

processes such as snow redistribution and absorption of incoming shortwave radiation, hourly 

simulations are carried out with a spatial resolution of 250x250m. A maximum of 96 ensemble 

members were considered feasible, parallelized on a 96-core cluster. In order to reduce the number 

of the ensemble members while still enabling a certain amount of dispersion, just the most sensitive 

model configurations, i.e. those that explain most of the output variance, are accounted for.   

An uncertainty and sensitivity analysis of FSM at one station in the study region identified the 

albedo formulations as well as the liquid water transport scheme inside the snowpack as the origin 

of the highest explanatory power for the performance variance [37]. Errors in precipitation sums 

and the approximation of the precipitation phase together with errors in air temperature and the 

radiative forcing are responsible for most uncertainties from a forcing data perspective. We 

reproduced the spread of a larger ensemble by a manual selection, result of a point-scale sensitivity 
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analysis aimed at identifying the most important uncertainty sources (input data, model structures 

and parameters choice) to explain the variance of the model performance. The selection is based 

on the findings of the Guenther et al. study [37]. However, in order to reduce the number of the 

ensemble members (in this study limited to 96 for computational reasons) while still representing 

the uncertainty for spatial distributed simulations, we just perturbed some of the most sensitive 

model settings. Particularly, we considered the following sources of uncertainty: 

• Precipitation phase: The wet-bulb temperature (Tw), obtained through an iterative solution of 

the psychometric equation, has shown to improve predictions of snow and rainfall transition 

[38]. Lower and upper wet-bulb temperature limits, between which mixed snow and rainfall 

events are possible, are set. Precipitation undercatch and errors in elevation gradient and lateral 

redistribution: uncertainties associated with these factors are lumped together and their 

influence is approximated with two different precipitation correction factors. 

• Longwave irradiance: Incoming longwave radiation is sparsely measured in the study area. 

Therefore, this input variable is derived from recordings of shortwave irradiance, air 

temperature (Ta), water-vapor content (ea) and the subsequent computation of atmospheric 

transmissivity and surface temperatures of surrounding slopes [39]. We utilize two different 

formulations of the clear-sky emissivity (εcs) estimation for a rough uncertainty estimation of 

this factor. 

• Snow albedo (𝛼𝑆): in FSM two different albedo evolution representations are implemented. The 

prognostic option decreases albedo as snow ages over a timescale factor τa (with different 

values for cold and melting snow, respectively) towards a minimum (𝛼𝑚𝑖𝑛), and increases 

albedo according to the amount of fresh snowfall (𝑆𝑓) relative to a required snowfall amount to 

refresh the albedo (𝑆𝛼) to its maximum (𝛼𝑚𝑎𝑥). The second option predicts albedo as a function 

of surface temperature (𝑇𝑆) in relation to the melting temperature (𝑇𝑚). We employ both albedo 

options with two sets of parameters each for minimum and maximum albedo. 

• Snowpack hydraulics: liquid water in snow layers is parameterized by a simple bucket model, 

where the maximum amount of liquid water (𝑊𝑚𝑎𝑥) that a snow layer i can contain is dependent 

on the porosity (φ𝑖), the snow layer depth (h𝑖) and the irreducible liquid water content (W𝑖𝑟𝑟). 

In the ensemble we apply this scheme with three different values of W𝑖𝑟𝑟. Setting W𝑖𝑟𝑟 to 0 

corresponds to switching off this option.  
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The combination of all presented model options and parameter sets results in an ensemble with 96 

members.  

B. Topographic and auxiliary parameters 

This section refers to all those parameters that do not vary in time and that are used as features 

in the k-NN algorithm for SWE derivation. Topographic parameters can be used as proxies for the 

meteorological drivers, such as precipitation or wind for sublimation and redistribution or solar 

radiation (and temperature) for snowmelt. In addition, vegetation, and in particular the presence 

and density of a canopy, affects local meteorological conditions [40]. Several works aim at 

understanding the relationship between snowpack distribution and properties, and topographic 

variables. With the purpose of producing SWE maps, Erxleben et al. [41] considered elevation, 

slope, aspect, and forest coverage. Since elevation and SWE are known to be highly correlated [4], 

Fassnacht et al. [40] examined the relation between SWE and other topographic parameters, 

including location, canopy density, slope and aspect. In this study, the following parameters have 

been included for the estimation of SWE:   

• Geographic coordinates (latitude and longitude) 

• Altitude 

• Slope and aspect 

• Forest coverage as percentage (from 0% = no forest coverage to 100% = fully forested) 

• Day number in the hydrological year (day number 1 is the 1st of October)   

The day of the year has been included as a parameter in order to take into account the correlation 

between the AMUNDSEN performance and the period of the year. This correlation is due to the 

cumulative nature of the SWE, leading to a propagation of the deviation in time. 

C. Satellite products 

SWE is the amount of water that results from the melt of a snowpack with given depth and 

density. The latter can vary considerably: new snow generally has the lowest density of about 100 

kg m3, and it can increase due to metamorphism to about 350–400 kg m3 for dry old snow and up 

to 500 kg m3 for wet old snow. The velocity at which the metamorphism takes place varies 

depending on the ambient conditions. As a general rule, the higher the temperature and the greater 

the temperature difference between the inner layers and the surface, the more rapidly the snow 
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structure changes [42]. Since snow temperature is generally close to 0°C near the ground, an 

estimation of snow surface temperature gives an idea of what stage of metamorphism is going on 

and therefore what kind of grains are present in the snowpack. Snow surface temperature can 

therefore be a proxy for snowpack conditions and hence be useful for SWE estimation. 

In this study we exploit the MODIS product MOD11A1, i.e. the Land Surface Temperature 

(LST) images at 1-km spatial resolution. Collection 6 (C6) has been validated for Stage 2 via a 

series of field campaigns conducted in 2000-2007, and for more locations and time periods through 

radiance-based validation studies [43]. Further technical information can be retrieved in [44]. 

MOD11 can be downloaded from the NASA website [45]. LST product has a considerable 

dependency on surface material, vegetation cover, and topography and this makes validation 

results obtained for a single station alone never globally representative. Over surfaces with a 

heterogeneous land cover or with large topographic differences, satellite LST data are exposed to 

larger variations than over more homogeneous regions [46]. For this reason, Martin et al. [46], in 

their analysis, evaluated the accuracy of the LST data sets obtained from several sensors (AATSR, 

GOES, MODIS, and SEVIRI) by exploiting multiple years of in situ data from globally distributed 

stations representing various land cover types and topographies, including mountainous areas. An 

important reason for differences between satellite and in situ LST data is the upscaling of in situ 

data, because satellite measurements usually cover considerably larger areas than in situ point 

measurements, which may result in a lack of representativeness. The representativeness of the 

surrounding environment is very much dependent on the land cover and topography of each 

station, and therefore each station has to be examined individually [46]. In the Table Mountain 

station, authors found that the median accuracy, i.e. the satellite LST minus the station LST, of the 

MODIS product for the study years (2003-2012) is within ±1 𝐾 and by considering all 

measurement stations within ±2 𝐾.In particular, in this work, two LST-derived products have been 

used  as features for implementing the k-NN algorithm: the mean LST calculated for the last 30 

days with respect to each measurement acquisition date and the number of days, during these last 

30 days, in which the temperature was positive. Both products have been chosen to broadly 

characterize different snowpack conditions. The mean surface temperature is used as a proxy for 

indicating the general condition of the snowpack, as mentioned by Oesch et al. [47] who proved 

the feasibility of snow surface temperature product derived from the NOAA-AVHRR sensor for 

monitoring snowmelt processes in snow covered pixels. The surface temperature, indeed, cannot 
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only be used for calibrating and calculating snow surface energy budget models, it is also possible 

to monitor the snow melting process itself. Furthermore, Colombo et al. [48], in their study on 

thermal inertia for monitoring snowmelt processes, remark the importance of accurate surface 

temperature measurements to infer snow density, especially during melting period. Because of the 

cloudiness, in this work daily product of LST has not been used and different mean values 

calculated over different time windows (10-15-30 days) have been tested in order to evaluate the 

product with larger sensitivity to the SWE retrieval. Moreover, in addition to the temporal 

resolution, also the spatial resolution of LST product (1km) could affect the sensitivity because 

that spatial scale may not be able to capture the snowpack variations. The basic idea is therefore 

that the mean value calculated over the last 30 days is the parameter that best captures the spatial 

and temporal variation of the snowpack, also considering the uncertainty of the satellite product. 

The number of positive temperature days, instead, can be used as a measure for “counting melting 

events”, since mid-winter melt events could be correlated to the model SWE error, as explained in 

the model uncertainty description. The underlying hypothesis for the use of these parameters is 

that the AMUNDSEN behavior could be different for different snowpack conditions (e.g. the 

relative model error may be smaller for cold snowpacks than for snowpacks near melting 

conditions; model error is larger for repeated mid-winter melt events, etc.). 

D. Ground data 

The ground measurements of SWE, used partly in the training phase as target and partly to 

validate the proposed strategy, are collected through manual measurements performed by the 

foresters and operators of the Avalanche Office of the Provinces of Bolzano and Trento for South 

Tyrol and Trentino, and by the Hydrographic Service or the Zentralanstalt für Meteorologie und 

Geodynamik (ZAMG) for the Tyrol region. Measurement campaigns were carried out about every 

2 weeks (South Tyrol and Trentino) and every week in Tyrol, or individually after significant snow 

and weather events (e.g., heavy snowfall, sudden and significant temperature change or wind 

activity) during the period of snow coverage. The main objective of the snow profile observations 

is the investigation of the physical and mechanical characteristics of the different layers of the 

snowpack, to identify weak layers and a potential instability. Regarding the choice of the 

measurement sites, these have to be safe and mostly representative for the slope of interest. 

Measurements were supposed to be preferably carried out for slopes with an inclination close to 
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or slightly less than 30°. Care was taken to select locations with mostly undisturbed snowpack. 

During the surveys, several physical parameters of the snowpack were measured by stratigraphic 

analysis, including the density of the different layers and the depth of the snowpack. The average 

density (𝜌𝑠) and depth of the snowpack (HS) allow an estimation of the snow water equivalent by 

means of the following formula: 

𝑆𝑊𝐸 (𝑚𝑚) = 𝐻𝑆 ∗ 𝜌𝑠 (3.1) 

In Trentino and South Tyrol the manual estimations of SWE are performed according to the 

AINEVA protocol [49]. In Tyrol, operators use a similar protocol, based on snow pit and manual 

measurements of snow depth and density from which SWE is derived. It is worth noting that the 

manual ground measurements can be affected by transcription errors (by the operator), 

measurement errors (not reached the bottom of the snowpack and thus wrong estimation of snow 

depth) or errors in the metadata (e.g. coordinates) or measurement units. Moreover, the manual 

observations can have significant limitations in consistency, continuity, spatial and temporal 

resolution and time and manpower consumption. Nevertheless, this type of data represents the 

most reliable estimate of the true SWE available for the study area and will therefore be used as 

ground truth in this study. 

3.2.3 Proposed Method 

In this section, the method used for SWE retrieval and the basic concepts of the adopted k-NN 

algorithm will be introduced. The proposed approach aims to overcome the errors inherent in the 

results from any snow modelling. Accordingly, the SWE values resulting from the AMUNDSEN 

simulations (SWEA) can be affected by uncertainties compared to the SWE derived from ground 

measurements (SWEg). The i-th SWE real value can be written as the sum of the estimation 

provided by AMUNDSEN and a deviation term δi: 

𝑆𝑊𝐸𝑖
𝑔
= 𝑆𝑊𝐸𝑖

𝐴 + 𝛿𝑖 (3.2) 

The deviation is defined only for the samples where ground real values are available, hereafter 

called labeled samples. The characterization of deviation for unlabeled samples (no ground value 

available) is crucial for generating the new improved SWE product. Thus, the aim of our approach 

is to characterize the distribution of the model deviation in an automatically identified feature 
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space using the ground observation, and then to estimate the final SWE value for unlabeled 

samples. 

A feature-selection technique based on a genetic algorithm (GA) and a proper cost function has 

been used for each region (i.e. Tyrol, South Tryol and Trentino) of the study area, in order to assess 

which variables are more relevant for the estimation of the deviation term (target variable). The 

procedure adopts the approach presented in [50] and is shown in Figure 3.2. 

  

A. Modeling of deviation value 

This phase aims at computing the deviation values for unlabeled samples starting from the 

training dataset. For doing this, first the deviations for labeled samples are computed by calculating 

the difference between the AMUNDSEN SWE values and the respective ground samples. Then 

the deviation distribution is characterized in the feature space (consisting of the variables reported 

in Table 1). We adopted the Local Deviation Bias (LDB) strategy, which was tested to have better 

performance and describe the deviations more accurately with respect to the Global Deviation Bias 

(GDB) strategy [50]. LDB approach assumes that the AMUNDSEN model can provide different 

accuracies depending on the sample location in the feature space. In other words, the deviation 

locally changes in the space of the features and its value for an unlabeled sample is related to that 

of training samples located in the same portion of the feature space. The estimation of the 

deviations for the unlabeled samples is performed through the k-NN algorithm: for each unlabeled 

sample, the k-nearest labeled samples having the smallest distance in the feature space are 

 

Figure 3.2 Flow chart of the proposed method for SWE retrieval. 

 

 
 



67 

 

identified and the deviation for the unlabeled sample is then calculated as the average deviation 

value of the k-nearest labeled samples. 

The application of the k-NN algorithm to our study can be schematized as follows: given 𝑥𝑖 

labeled samples of training dataset with 𝑖 = 1,… ,𝑀 , the output variable is represented by the 

deviation (between modelled and observed SWE), which is defined for each unlabeled sample 𝑥𝑗 

as the average deviation value of the k-nearest labeled samples in the feature space: 

𝛿(𝑥𝑗) =
∑ 𝛿(𝑥𝑖)𝑊(𝑥𝑗 , 𝑥𝑖)
𝑀
𝑖=1

∑ 𝑊(𝑥𝑗, 𝑥𝑖)
𝑀
𝑖=1

 (3.3) 

where 𝑊(𝑥𝑗 , 𝑥𝑖) is 0 or 1 depending on whether 𝑥𝑖 is among the k-NN’s of the unlabeled sample 

𝑥𝑗 or not. This means that 𝑊(𝑥𝑗 , 𝑥𝑖) = 1  if 𝑥𝑖 is one of the k-NN’s of 𝑥𝑗, and 𝑊(𝑥𝑗 , 𝑥𝑖) = 0 

otherwise. An important question in this approach is how to select an optimal value of parameter 

k. In this study, we use the well-known rule of setting k as the square root of the half of the total 

number of reference samples [51]. 

B. Estimation of final SWE value 

Once the deviations for all unlabeled samples (𝛿�̂�) are calculated, the final corrected SWE values 

(𝑆𝑊𝐸𝑖
𝐴_𝑐𝑜𝑟𝑟) are obtained by adding them to the respective AMUNDSEN SWE value: 

𝑆𝑊𝐸𝑖
𝐴_𝑐𝑜𝑟𝑟 = 𝑆𝑊𝐸𝑖

𝐴 + 𝛿�̂� (3.4) 

In other words, the estimate of SWE from AMUNDSEN simulations is corrected by the use of 

the deviation. The deviations differ from each other depending on the sample location in the feature 

space. 

C. Validation strategy 

The above explained method has been applied for each region in the study area (Tyrol, South 

Tyrol and Trentino) separately as well as for the whole dataset, which includes all three regions. 

The method has been firstly validated by exploiting the ground data and then, once applied the 

method overall the study area, the generated SWE maps have been compared with binary MODIS 

snow maps. In the following, the two steps of validation and comparison are described. 
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Validation with ground data  

For each region and the whole dataset, the following procedure has been applied. The dataset has 

been divided into two independent datasets: the learning (70%) and test (30%) ones (Figure 3.3). 

 

The 70% of learning dataset is used for generating the algorithm and is composed by a training 

and a validation set, used by applying a repeated 10-fold cross validation for 10 times. To ensure 

independence between datasets, as the deviation is time-correlated for each measurement point, 

the folds have been selected such that no points in the validation dataset are present in the training 

dataset even with a different time. This means that each time the algorithm uses 9 folds composed 

by certain measurement sites points as training dataset and the remaining one fold, which includes 

different measurement sites points, as validation dataset. Once the algorithm has been 

implemented, it has been tested on an independent test dataset, which include different 

measurement sites points with respect to the learning dataset, in order to evaluate the performances. 

The SWE values obtained have been compared with ground samples through the computation of 

some statistic metrics in order to evaluating the improvement achieved with the proposed method 

with respect to the AMUNDSEN simulations. The statistical metrics are: the Root Mean Square 

Error (RMSE), the Mean Absolute Error (MAE), the determination coefficient (𝑅2) and the bias. 

These metrics have been computes for both the training (as mean value of the repeated 10-fold 

cross validation results) and the test datasets in order to verify that the performance of the two 

datasets were consistent and without overfitting phenomena. Moreover, for test dataset, a 

scatterplot graph between estimated and ground samples together with the relative intercept and 

slope values has been reported. 

 

Figure 3.3 Separation of dataset for generating and testing the k-NN algorithm. 
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Learning
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Comparison with snow cover maps 

The comparison with snow cover maps involves the information derived from the MODIS snow 

cover maps developed by Eurac Research, having a spatial resolution of 250 m [52, 53]. In order 

to evaluate the agreement between the SWE maps from the AMUNDSEN simulations and the 

proposed method and the MODIS snow maps, a pixel-based analysis was performed. The SWE 

values of the maps are therefore converted into binary values. To this purpose, different values 

ranging between 20 mm and 50 mm [54] were tested and an acceptable SWE threshold was found 

to be equal to 50 mm, value for which it is very likely that a pixel is classified as snow-covered in 

the MODIS product. In this way the agreement between pixels in the SWE maps and those in the 

snow cover maps has been computed, by analyzing separately the two class (snow/no snow) and 

two different altitude belts. 

3.3 Results and Discussion 

In this section, we present analyses and results obtained with the proposed method. In Section 

3.3.1 we show the preliminary analyses relative to the AMUNDSEN SWE simulations. Then, in 

the Sections 3.3.2-3.4 we present the results obtained by the application of the proposed method. 

3.3.1 Analysis of AMUNDSEN SWE simulations 

The analysis of the AMUNDSEN simulations helps to understand how the model results vary 

with respect to the period of the year, the altitude and the different regions included in the study 

area. This analysis will guide the identification of the training data samples that are representative 

of the area under study. Figure 3.4 shows the temporal evolution of the deviations between 

modelled and observed SWE for labeled samples. The main evidence, observed for all years, is 

the temporal increase of the spread in the deviations due to the cumulative nature in the SWE 

variable, so the deviation propagates in time. Table 3.2 shows the number of points for each year 

and the relative mean percentage error (MPE), calculated as the ratio between the deviation and 

the corresponding observed SWE value. The percentage error is a relative error and expresses how 

large the absolute error (namely deviation) is, compared to the total amount of the measured SWE. 

The lower maximum value of SWE observed in the hydrological year 2005-2006 is due to lower 

values of snow depth recorded in this year with respect to the other studied years. It is useful for 

comparing samples having differing size. In our case, SWE derived from ground measurements 
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(hereafter also called “ground SWE”) can range from few mm up to around 1450 mm, as reported 

in the last column of Table 3.2.  

The analysis of the simulated SWE with respect to the altitude for the first study year 2005/2006 

is shown in Figure 3.5 (the other years show similar behavior). By comparing the temporal 

evolution for altitudes lower than 1000 m and higher or equal to 1000 m, a different behavior can 

be observed: the distribution of deviation values for lower altitudes seems to be asymmetrical with 

respect to zero: the simulated SWE is higher (negative values) than the observed one (Figure 3.5a). 

This asymmetrical deviation distribution at low altitudes could be due to several reasons such as 

an error in estimation of the precipitation phase or gradient in the model [32, 33], or the non-

representativity of the observation sites at low altitudes. 

Another factor to be considered is the thickness of the snowpack. At locations where the 

snowpack is shallower (typically at lower altitudes) and therefore with low SWE values, absolute 

underestimation cannot be high, since the SWE value is limited by a prediction of 0 mm. On the 

other side, there is no such limitation for the overestimation. This asymmetry in the deviation 

distribution does not appear at higher altitudes, where the snowpack is generally thicker. In this 

case the main evidence is the increasing temporal spread, as shown in Figure 3.5b. 
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Figure 3.4 Temporal evolution of the deviation of AMUNDSEN model from ground measurements derived SWE 

for the 4 years analyzed. 

 

 

Table 3.2 Number of samples and Mean Percentage Error (MPE) for each considered study year. 

Hydrological 
year 

Number of 
samples 

Mean percentage 
error 

Min - Max values of 
observed SWE (mm) 

2005-2006 760 23.5% 4-512 

2008-2009 708 18.6% 15-1446 

2012-2013 1017 9.6% 8-1264 

2013-2014 856 5.2% 5-997 
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Finally, an analysis per region was performed. Figure 3.6 shows the deviation of the 

AMUNDSEN simulations from the ground values of local observations for Tyrol, South Tyrol and 

Trentino. In both graphs, the main remark is about the AMUNDSEN behavior for Tyrol area. As 

for low altitudes, the deviations are asymmetric (again, by showing an overestimation of SWE by 

the snow model). Also in this case, this behavior could be ascribed to the measurement sites 

altitude. About 42% of measurement sites in Tyrol are located below 1000 m, while in Trentino 

and South Tyrol altitudes are always above 1000 m (in Trentino) and 1500 m (in South Tyrol). 

These preliminary analyses suggest different model performance depending on the period of the 

year and on the region of the study area. To evaluate the proposed method, we tested it on three 

different datasets, one per region, as well as on the entire dataset in order to identify differences in 

the performances that depend on the regional sampling. 

  

 

Figure 3.5 Deviation evolution with respect to the altitude, for low altitudes, <1000 meters (a) and for higher 

altitudes, >=1000 meters (b). 
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3.3.2 Results: South Tyrol dataset 

For South Tyrol, 1270 observations are available. The k-NN algorithm was implemented by 

using the 70% of the sample, i.e. a sub-dataset of almost 900 samples. The target variable is the 

deviation, i.e. the difference between the AMUNDSEN simulation and the ground measurements 

derived SWE, and the feature space includes all variables indicated in Table 3.1. The resulting 

algorithm was then applied to the remaining 380 samples (test dataset) in order to evaluate the 

performance on a new and independent dataset. Once errors values are obtained, they are added to 

the corresponding simulated SWE in order to estimate its corrected value. Table 3.3 shows the 

performance in the estimation of SWE on both the training and the test data of the proposed method 

and the AMUNDSEN simulations. The k-NN algorithm seems to halve both RMSE and MAE 

compared to the modelled SWE. However, the statistical metrics used are no relative errors and 

should be contextualized with respect to the range of respective absolute measured SWE, which 

in this case can reach very high values (up to 1450 mm). 

Figure 3.7 shows the comparison of scatterplots between observed SWE reference samples 

versus AMUNDSEN simulations (Figure 3.7a) and with the proposed method (Figure 3.7b). The 

absolute improvement of the SWE estimation is higher for higher observed values. Higher SWE 

values typically occur in the later season where the difference between the AMUNDSEN model 

results and the observations is larger. 

 

Figure 3.6 Analysis per region. For 2005/2006 no data from Trentino are available. 
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3.3.3 Results: Tyrol dataset 

The analysis of the Tyrol dataset involves around 1470 observations. 70% of them (around 1030 

samples) are used for implementing the algorithm with the same validation approach used for 

South Tyrol. Results relative to the remaining 30% of data (around 440 samples, test dataset) are 

shown together with the training dataset in Table 3.4. Also in this case, the proposed method 

 

Table 3.3 Estimation performance obtained with AMUNDSEN simulation and with proposed method on the 

test dataset of South Tyrol. 

Region Dataset 
Estimation 

method 

RMSE 

(mm) 

MAE 

(mm) 
𝑅2 Bias 

South 

Tyrol 

Training 

AMUNDSEN 166.3 111.2 0.4 -37.5 

Proposed 

method 
77.2 49.5 0.8 1.4 

Test 

AMUNDSEN 167.7 109.7 0.4 -33.8 

Proposed 

method 
80.9 53.4 0.8 2.5 

 

 

Figure 3.7 Regression scatterplot for South Tyrol dataset: simulated SWE vs observation (a) and corrected 

SWE vs observation (b). The dashed line represents the 1:1 line. 
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provides a more accurate estimation in terms of MAE, RMSE and bias compared to the model 

simulation.  

Figure 3.8 shows the scatterplots of estimated versus observed SWE values. Similar to the 

previous case of South Tyrol, the main result is that the proposed method reduces the difference 

between the two sources of SWE by increasing the slope of the regression line up to 0.9 and 

reducing the intercept value to 10 mm. 

 

3.3.4 Results: Trentino dataset 

The third data set involves around 600 labeled observations. Also in this case, results are tested 

on 30% of the samples, i.e. around 180 data points. Table 3.5 reports the obtained values of MAE 

Table 3.4 Estimation performance obtained with AMUNDSEN simulation and with proposed method on the 

test dataset relative to Tyrol. 

Region Dataset 
Estimation 

method 

RMSE 

(mm) 

MAE 

(mm) 
𝑅2 Bias 

Tyrol 

Training 

AMUNDSEN 89.4 65.1 0.6 34.8 

Proposed method 39.4 26.2 0.9 0.7 

Test 

AMUNDSEN 88.4 64.9 0.6 32.6 

Proposed method 44.8 28.1 0.8 1.3 

 

 

Figure 3.8 Regression scatterplot for Tyrol dataset: simulated SWE vs observation (a) and corrected SWE vs 

observation (b). The dashed line represents the 1:1 line. 
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and RMSE together with the R-squared and the bias. Also in this case, the assumption that the 

deviation is varying depending on the sample location in the feature space leads to an improvement 

in the SWE estimation. The high RMSE of 240.7 mm for the AMUNDSEN simulations is probably 

due to the presence of numerous outliers and the small number of test points. Since the errors are 

squared before they are averaged, the RMSE gives a relatively high weight to large errors, by 

resulting impacted by the presence of outliers. Figure 3.9 shows the proposed method based on the 

k-NN algorithm reduces the data spread and increases the slope of the regression line up to 0.9, 

while the RMSE sharply decreases to 102.8 mm.  

 

Table 3.5 Estimation performance obtained with both the AMUNDSEN simulation and the proposed method on 

the test dataset relative to Trentino. 

Region Dataset 
Estimation 

method 

RMSE 

(mm) 

MAE 

(mm) 
𝑅2 Bias 

Trentino 

Training 

AMUNDSEN 251.4 170.8 0.3 -82.6 

Proposed 

method 
101.5 63.2 0.8 12.9 

Test 

AMUNDSEN 240.7 162.7 0.3 -91.0 

Proposed 

method 
102.8 65.3 0.8 18.6 

 

 

Figure 3.9 Regression scatterplot for Trentino dataset: simulated SWE vs observation (a) and corrected SWE 

vs observation (b). The dashed line represents the 1:1 line. 
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3.3.5 Results: the whole dataset 

The last analysis was conducted by using the whole dataset available, i.e. around 3300 

observations, including the 4 years and the entire study area. 30% of the samples (i.e. around 1000 

samples) were used for evaluating the performances of the proposed method. Table 3.6 reports the 

statistical metrics for the SWE estimations obtained with both the AMUNDSEN simulations and 

the proposed method. The performances for the whole data set are approximately equal to the mean 

performances achieved over the three regions separately. Figure 3.10 shows the scatterplots of 

simulated versus observed SWE, as well as a comparison of the proposed method results to the 

observations. The scatterplots confirm the results derived by quantitative analysis given in Table 

3.6, pointing out an increase of the slope value and a corresponding decrease in the value of the 

square error RMSE for the proposed method. 

Performances were then evaluated by analyzing different periods of the year and different 

altitudes. The test dataset was composed of around 600 measures from the winter period (i.e. 

November to February), and 400 points from spring (March to May). Around 200 of the test points 

are located below 1000 m, and the remaining 800 above 1000 m altitude. This disparity in test 

sample distribution with elevation is due to the fact that only 13.6% of the observation sites are 

located below 1000 m. Table 3.7 shows the RMSE and MAE in relation to the seasonal periods 

and altitude bands. As already mentioned in section 3.3.1, the cumulative nature of SWE leads to 

a temporal increase of the deviations between the simulations and the results of the proposed 

Table 3.6 Estimation performance obtained with both the AMUNDSEN simulation and the proposed method on 

the test dataset relative to entire study area. 

Region  Dataset 
Estimation 

method 

RMSE 

(mm) 

MAE 

(mm) 
𝑅2 Bias 

Euregio 

Training  

AMUNDSEN 163.2 103.4 0.4 -14.1 

Proposed 

method 
70.0 41.6 0.8 1.3 

Test 

AMUNDSEN 153.7 98.7 0.4 -12.2 

Proposed 

method 
75.3 45.0 0.8 -1.7 
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method: from a value of RMSE of 124.8 mm in the winter period to a value of 200.8 mm in 

springtime. At low altitudes the uncertainty in the AMUNDSEN results is smaller than for high 

altitudes. This is probably due to the absolute nature of both RMSE and MAE and to the shallower 

snowpack at lower altitudes. This implies low SWE values and therefore lower absolute errors 

than for higher altitudes. 

  

3.4 SWE maps 

Previous analyses provide the basis to create SWE maps for the entire study area. It was shown 

that applying the proposed method to the whole dataset results in a performance similar to the 

mean performance of the individual data sets. Furthermore, implementing a single algorithm for 

the whole study region reduces the computational cost significantly. For this reason, the generation 

of corrected SWE maps is based on the application of the proposed technique trained on the whole 

dataset. The resulting algorithm from the training procedure is then applied to the spatially 

distributed simulations of the Euregio region in order to generate a SWE map time series. Figure 

3.11 and Figure 3.12 show two examples of SWE maps obtained with the proposed method, 

compared to AMUNDSEN simulations and the MODIS snow cover maps developed by Eurac 

Research. 

 The map in Figure 3.11 refers to an end-of-season situation (7 March 2014), while the maps in 

Figure 3.12 refer to a begin of the season (29 November 2013). In both cases, the proposed method 

shows lower SWE values compared to the AMUNDSEN simulations, especially for higher 

 

Figure 3.10 Regression scatterplot for the whole dataset: simulated SWE vs observation (a) and corrected SWE 

vs observation (b). The dashed line represents the 1:1 line. 
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altitudes (more than 2000 m) where the difference between AMUNDSEN simulations and the 

SWE values estimated by the proposed method reach values up to 67 mm. 

 

At the begin of the season, differences between the model and the proposed method results are 

more evident with respect to those of the end of the season, especially in the southern and in the 

northern part of the study area. The lower SWE values as evident in the map derived with the 

proposed method, in the southern part lead to an improved matching with the snow cover map 

derived by MODIS by better capturing the snow free areas.  

Table 3. 8 shows the pixel-based agreement in percentage between the SWE maps and the MODIS 

product. We can confirm the behavior found in Figure 3.11 and Figure 3.12, i.e. that the proposed 

method, in both cases, improves the estimation of snow-free areas, but shows lower values in the 

snow-covered areas, generally located at higher altitudes for the dates analyzed. An improvement 

could be achieved by integrating the dataset with more high-altitude points (in this study, only 

15% is located above 2000 m) in order to provide more training data to the algorithm. 

Table 3.7 Performance obtained with both the AMUNDSEN simulations and the proposed method by dividing 

the test dataset in two seasonal periods and two altitude bands. 

Period Estimation method RMSE (mm) MAE (mm) 

Winter 

AMUNDSEN 124.8 77.9 

Proposed method 64.5 37.0 

Spring 

AMUNDSEN 200.8 142.0 

Proposed method 93.8 61.4 

Altitude Estimation method RMSE (mm) MAE (mm) 

Low altitudes 

(<=1000m) 

AMUNDSEN 89.3 68.1 

Proposed method 55.5 32.7 

High altitudes 

(>1000m) 

AMUNDSEN 163.0 104.5 

Proposed method 78.4 47.3 
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Figure 3.11 March 7th, 2014: (a) SWE map generated by the proposed method and (b) by the AMUNDSEN 

simulations. (c) is the difference between the two products and (d) the snow cover map product by MODIS. 
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3.5 Conclusion 

In this chapter a new concept to improve the distributed estimation of snow water equivalent 

(SWE) is presented. The proposed method exploits a physically based model (AMUNDSEN), field 

observations, some topographic and auxiliary parameters and products from optical remote sensing 

for creating a time series of SWE maps for a region including Tyrol, South Tyrol and Trentino 

(Euregio area). Available ground reference samples are used for characterizing deviations of the 

snow model simulations affected, as any theoretical model, by uncertainties from approximations 

in the analytical formulation with respect to the observation. The hypothesis is that such deviations 

 

Figure 3.12 November 29th, 2013: (a) SWE map generated by the proposed method and (b) by the AMUNDSEN 

simulations. (c) is the difference between the two products and (d) the snow cover map product by MODIS. 
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are varying depending on their location in the feature space. This behavior can be characterized by 

exploiting the properties of a specific k-Nearest Neighbor (k-NN) estimator, based on a “feature 

similarity” principle, to predict values of any new data point. Once the deviation is computed, it is 

added to the modelled SWE in order to obtain a corrected value.  

Obtained results are promising with a significant improvement of performance: the new method 

in our data decreased, on average, the RMSE and the MAE from 154 to 75 mm and from 99 to 45 

mm, respectively compared to the AMUNDSEN simulations. Furthermore, the slope of the 

regression line between estimated SWE and ground observations increases from 0.6 to 0.9 by 

reducing the data spread and the number of outliers. 

 

In the approach presented in this study, two aspects are critical: the feature selection and the 

amount of observation samples. In this work, the feature selection in this work was performed 

Table 3. 8 Agreement between MODIS snow maps and SWE maps estimated with AMUNDSEN and with 

proposed method. 

29/11/2013 

Estimation 
method 

Agreement with MODIS no snow Agreement with MODIS snow 

AMUNDSEN 86% 

34% (<=1000m) 

59% 

0% (<=1000m) 

52% (>1000m) 59% (>1000m) 

Proposed method 
(k-NN) 

98% 

34% (<=1000m) 

29% 

0% (<=1000m) 

64% (>1000m) 29% (>1000m) 

 

07/03/2014 

Estimation 
method 

Agreement with MODIS no snow Agreement with MODIS snow 

AMUNDSEN 53% 

44% (<=1000m) 

97% 

1% (<=1000m) 

9% (>1000m) 96% (>1000m) 

Proposed method 
(k-NN) 

61% 

46% (<=1000m) 

93% 

1% (<=1000m) 

15% (>1000m) 92% (>1000m) 
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through a genetic algorithm, by considering several variables supposed to be related to SWE 

computation. Different products from optical remote sensing were included in the feature 

selection, such as snow cover duration, snow cover fraction, different reflectance bands and the 

land surface temperature. The latter was found to be the only product relevant in our analysis. In 

particular, we exploited the mean surface temperature and the number of positive-temperature 

days, both computed on the last 30 days with respect to the date of ground acquisition. Certainly, 

many other parameters from remote sensing could be tested, such as products from radar sensors 

that are sensitive to the water presence in the snowpack [55]. A deeper and more extensive feature 

selection could for sure improve the results obtained. Regarding the amount of ground 

observations, an improvement to the proposed approach could be achieved by increasing the 

dataset variability in the feature space. This could be done by acquiring, for example, ground 

measurements that are more differentiated in the feature space, such as different altitudes or 

different percentage of forest cover or slope. 

We can conclude that the proposed approach effectively handles the variability of deviations 

between simulations and observations in the feature space and can be applied to other study areas 

and to other physically based snow models. 
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Chapter 4 

 

4. SWE RETRIEVAL BY EXPLOITING COSMO-

SKYMED X-BAND SAR IMAGERY AND 

GROUND DATA THROUGH A MACHINE 

LEARNING APPROACH 

The main objective of this chapter3 is to estimate Snow Water Equivalent (SWE) by jointly 

exploiting the information derived from X-band Synthetic Aperture Radar (SAR) imagery acquired 

by the Italian Space Agency COSMO-SkyMed satellite constellation in StripMap HIMAGE mode 

and manual SWE ground measurements. The idea is to verify the sensitivity of the backscattering 

coefficient at X-band to the SWE and, by means of a Support Vector Regression (SVR) algorithm, 

to estimate the SWE for the South Tyrol region, north-eastern Italy. The regressor is trained by 

exploiting about 1,000 simulated backscattering coefficients corresponding to different snowpack 

conditions, obtained with a theoretical model based on the Dense Media Radiative Transfer theory 

- Quasi-crystalline approximation Mie scattering of Sticky spheres (DMRT-QMS). Then, the 

performance is evaluated on the backscattering values derived from COSMO-SkyMed satellite 

images and using the corresponding ground measurements of SWE as references. The results show 

a correlation coefficient equal to 0.6, a bias of 10.5 mm and a RMSE of 51.8 mm between estimated 

SWE values and ground measurements. The limited performance could be related to the DMRT-

QMS theoretical model used for the simulations that results to be very sensitive to snow grain size 

and may have generated a training dataset only partially representative of satellite derived 

backscattering coefficients used for testing the algorithm.  

 
3 This chapter has been presented at SPIE Remote Sensing conference 2019: 

L. De Gregorio, F. Cigna, G. Cuozzo, A. Jacob, S. Paloscia, S. Pettinato, E. Santi, D. Tapete, C. Notarnicola, L. Bruzzone (2019): 

SWE retrieval by exploiting COSMO-SkyMed X-band SAR imagery and ground data through a machine learning approach. SPIE 

Remote Sensing conference, 9-12 September 2019, Strasbourg, France. 
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4.1 Introduction 

Snow coverage plays a crucial role in mountainous regions, especially in snowmelt-driven 

watersheds where solid precipitation is the main water input of the hydrological cycle [1]. Snowfall 

accumulates as snowpack throughout the cold season by storing large volumes of water, and 

gradually melts releasing water during the warm season [1]. The parameter that characterizes the 

hydrological importance of snow cover is the snow water equivalent (SWE). An accurate 

estimation of the spatial and temporal distribution of SWE in mountain environments is still a 

relevant challenge for the scientific community.  

In the last decades, the estimation of snow-related parameters by means of satellite images has 

become increasingly popular. The large-scale monitoring of the Earth’s surface from space-borne 

sensors improves the limited availability and representativeness of traditional point-wise in situ 

measurements, thus allowing a better spatialization of land surface parameters. Optical sensors are 

suitable for snow cover extent estimation, but to obtain volumetric information about snowpack, 

microwave sensors are needed. The penetration of microwaves in the snowpack depends on the 

related frequency and the snow conditions, such as water content and grain size [2] [3]. Several 

studies demonstrated the potential use of microwave sensors for the estimation of snow physical 

parameters [2] [3] [4] [5] [6] [7] [8]. From the literature, current methods for retrieving SWE from 

space rely on passive microwave sensors [4] [5]. The exploitation of passive microwave 

observations from space for snow cover properties detection is appealing due to the availability of 

a long time series of daily observations with near global coverage, extending back almost 40 years 

[5]. However, the use these sensors for snow properties detection is limited by the poor spatial 

resolution that implies difficulty in considering mixed pixel effects over heterogeneous landscapes, 

such as in mountainous areas. The use of Synthetic Aperture Radar (SAR) at suitable frequencies 

has been suggested as a potential observation method to overcome the coarse resolution of passive 

microwave sensors. 

Most studies concerning SAR for snow properties retrieval rely on wet snow detection or snow 

depth estimation, only few of them are focused on SWE estimation. Shi and Dozier [2] developed 

semi-empirical models for characterizing the snow–ground interaction terms, the relationships 

between the ground surface backscattering components, and the snowpack extinction properties at 

C-band and X-band. With these relationships, snow depth and optical equivalent grain size can be 

estimated from SIR-C/X-SAR measurements. Nagler and Rott [3] developed an algorithm for 
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mapping wet snow in mountainous terrain using repeat pass SAR images. Guneriussen et al [6] 

analyzed RADARSAT SAR images to determine the optimum image modes for snow monitoring. 

They found a large contrast between a wet snow cover and bare ground for high incidence angle 

data. This large contrast is supported by surface scattering model results by assuming wet snow 

has a smoother surface than bare ground. Moreover, temporal analysis shows that the 

backscattering coefficient of dry snow is 2–3 dB lower than for bare ground. Pettinato et al. [7] 

suggested a new approach to the retrieval of snow-covered areas with C-band SAR, where the 

snow cover fraction is retrieved by using a gradual transition between snow-free and snow-covered 

conditions. Sun et al. [9] used microwave scattering models to analyze the C-band SAR scattering 

characteristics of snow-covered areas and estimated the distribution of the SWE by exploiting SAR 

data and snow cover data measured in the field. Pettinato et al. [8] conducted a study on the 

sensitivity of X-band backscattering data from the Italian Space Agency (ASI)’s COSMO-SkyMed 

SAR sensors to snow characteristics. They found that X-band data contribute to SWE retrieval, 

provided that the snowpack is characterized by a snow depth of about 60-70 cm, i.e. SWE > 100-

150 cm, and with relatively large snow grain size. 

In this perspective, this work addresses SWE retrieval in the whole region of South Tyrol, in north-

eastern Italy, by exploiting the information derived from both the X-band SAR imagery acquired 

by the COSMO-SkyMed constellation in StripMap HIMAGE mode at 3 m ground resolution and 

the manual ground measurements. The SWE ground data are derived from manual snow profiles 

achieved by expert operators and provided by the Hydrographic Office of the Autonomous 

Province of Bolzano. The SWE retrieval has been performed by means of a machine learning 

technique, namely Support Vector Regression (SVR), by exploiting as input features the 

backscattering values and the relative incidence angle at each ground measurements location. In 

order to increase the number of samples included in training dataset, further backscattering values 

have been simulated by using the DMRT-QMS model, an implementation of the Dense Media 

Radiative Transfer (DMRT) theory, based on the Quasi-Crystalline Approximation (QCA) of Mie 

scattering of densely packed Sticky spheres [10]. 

4.2 Study area and dataset 

4.2.1 Study area 

The considered study area is the Alpine region of South Tyrol (~7,400 km²), in north-eastern Italy 

(Figure 4.1). The area is almost entirely mountainous and the altitude ranges between 200 and 
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3905 meters a. s. l. The wide altitude range implies a great variation in snow condition and snow 

cover duration in the period between November and May. Three main topographical landscapes 

can be distinguished in South Tyrol: the alpine ridge, with the highest mountains in the north of 

the region; the Adige valley, which separates at the top the Alps (to the West) from the Dolomites 

(to the East); and the Pre-Alps and Lake Garda (to the West) from the Venetian pre-Alps (to the 

East). The mountain ridges act as a natural obstacle on which larger-scale weather system can be 

deflected or modified. These landscape characteristics influence the spatial and temporal 

variability of the seasonal snow cover. 

 

4.2.2 Data 

This section describes all data involved in the study, including ground data and SAR backscattering 

values derived both from COSMO-SkyMed imagery and theoretical model simulations.   

A. Ground measurements  

In this work, the ground measurements of SWE are used as reference samples for SWE retrieval. 

SWE values are collected through manual measurements performed by the foresters and operators 

of the Avalanche Office of the Provinces of Bolzano every 2 weeks. During field campaigns, 

operators collect several physical parameters of the snowpack by means of stratigraphic analysis 

(Figure 4.2), including the density of the different layers and the depth of the snowpack. Through 

 

Figure 4.1 Study area: South Tyrol, Italy. Red points identify the snow measurement sites maintained by the 

Autonomous Province of Bolzano. 

 

. 
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the average density (𝜌𝑠) and the depth of the snowpack (SD), it is possible to estimate the SWE 

with the following formula: 

𝑆𝑊𝐸 (𝑚𝑚) = 𝐻𝑆 ∙ 𝜌𝑠 (4.1) 

The sites where snow measurements are performed have to be safe and mostly representative for 

the surrounding environment. Measurements are supposed to be preferably carried out in flat areas 

or with a slope of maximum 30°. Since the presence of liquid water in the snowpack is a limiting 

factor in the SWE estimation at X-band (this is due to the increase of absorption and therefore the 

reduction of signal penetration [11]), in this study 45 ground measurements-derived values of SWE 

have been collected when the snowpack is supposed to be dry, i.e. during the winter months of 

January and February for the years 2013, 2014 and 2015. The measurements have been chosen by 

selecting the dates corresponding to the COSMO-SkyMed acquisitions in the study period. 

 

B. COSMO-SkyMed data 

The COSMO-SkyMed mission consists of a constellation of four sun-synchronous, near-polar and 

low-Earth orbiting midsize satellites, each equipped with a multimode high-resolution SAR 

operating at the X-band (9.6 GHz frequency; 3.1 cm wavelength). The SAR instruments can be 

operated using different beam modes which include: Spotlight (mode 2 and mode 1, with mode 1 

for defence use only); StripMap (HIMAGE and PingPong); and ScanSAR (Wide Region or Huge 

Region) [12]. In this work, we exploited images acquired in HIMAGE mode, i.e. wide field, single 

 

Figure 4.2 SWE retrieval in a snow pit with a cylinder. Source: Institute for Snow and Avalanche Research 

(SLF) Davos, Switzerland. 
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polarization imaging mode with 40 km swath and 3 m ground resolution. Further details are 

available on the COSMO-SkyMed SAR Products Handbook [13]. 

Table 4.1 shows the 14 images used in the study period and their characteristics, including orbit 

direction, polarization, time and date of acquisition. Each image covers only a part of the study 

area, therefore only the measurement sites included in that portion of study area and for which 

ground data are available at that date have been used. The satellite images have been pre-processed 

by applying radiometric calibration, multi-looking and speckle filtering for speckle reduction, and 

finally terrain correction for geocoding the images by correcting SAR geometric distortions. The 

final product has a spatial resolution of 20 meters. For each image, at the available measurement 

sites, the radar backscattering value and the local incidence angle have been extracted.  

 

Table 4.1 COSMO-SkyMed StripMap HIMAGE mode HH-polarized images used for extracting the 

backscattering values. 

ID Satellite_name Acquisition_start Acquisition_stop Orbit_direction 

630884 
COSMO-
SkyMed-1 

2015-02-05 at 
04:42:12 UTC 

2015-02-05 at 
04:44:01 UTC 

ASCENDING 

227599 
COSMO-
SkyMed-2 

2013-01-17 at 
04:52:20 UTC 

2013-01-17 at 
04:54:01 UTC 

ASCENDING 

234317 
COSMO-
SkyMed-2 

2013-02-07 at 
04:46:06 UTC 

2013-02-07 at 
04:47:51 UTC 

ASCENDING 

343844 
COSMO-
SkyMed-2 

2014-01-09 at 
04:43:55 UTC 

2014-01-09 at 
04:45:40 UTC 

ASCENDING 

359414 
COSMO-
SkyMed-2 

2014-02-26 at 
04:43:39 UTC 

2014-02-26 at 
04:45:24 UTC 

ASCENDING 

439357 
COSMO-
SkyMed-3 

2015-01-29 at 
04:43:32 UTC 

2015-01-29 at 
04:44:02 UTC 

ASCENDING 

444756 
COSMO-
SkyMed-3 

2015-02-25 at 
04:48:39 UTC 

2015-02-25 at 
04:50:02 UTC 

ASCENDING 

239292 
COSMO-
SkyMed-4 

2013-02-22 at 
04:52:08 UTC 

2013-02-22 at 
04:53:52 UTC 

ASCENDING 

441790 
COSMO-
SkyMed-4 

2015-02-12 at 
04:48:25 UTC 

2015-02-12 at 
04:50:07 UTC 

ASCENDING 

233787 
COSMO-
SkyMed-1 

2013-02-07 at 
17:20:12 UTC 

2013-02-07 at 
17:21:29 UTC 

DESCENDING 

231128 
COSMO-
SkyMed-2 

2013-01-30 at 
17:20:09 UTC 

2013-01-30 at 
17:21:35 UTC 

DESCENDING 

440580 
COSMO-
SkyMed-2 

2015-02-05 at 
17:16:19 UTC 

2015-02-05 at 
17:17:44 UTC 

DESCENDING 

232124 
COSMO-
SkyMed-3 

2013-01-31 at 
17:20:02 UTC 

2013-01-31 at 
17:21:31 UTC 

DESCENDING 

227438 
COSMO-
SkyMed-4 

2013-01-18 at 
17:20:07 UTC 

2013-01-18 at 
17:21:37 UTC 

DESCENDING 
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C. Model data 

 Further backscattering coefficients, in addition to those extracted from the satellite images, 

have been generated by means of a theoretical model. The model is an implementation of the 

Dense Media Radiative Transfer (DMRT) theory, applying the scattering model of QCA (Quasi-

Cristalline Approximation) Mie of densely packed Sticky spheres (DMRT-QMS) [10]. The DMRT 

describes the scattering in a medium with particle fractional volume >10% (independent scattering 

is not valid). The model has been run for a single snow layer of identical scatterers, with a smooth 

air-snow interface and a rough snow-ground interface (Figure 4.3) with the objective of simulating 

further backscattering values, in addition to those extracted from the satellite images, with the aim 

to increase the dataset. Two snow parameters derived from ground measurements (snow depth, 

SD, and snow density, 𝜌𝑠) are used as inputs for model simulations. The grain diameter (dg) and 

stickiness (s) values, which are not available from ground measurements and used as input 

parameters for the model, have been set by performing the simulations in correspondence of 

available ground data and COSMO-SkyMed images, from which a measured backscattering value 

has been derived. In this way, it has been possible to select the best values by minimizing the 

difference between modeled and measured backscattering values as a function of these parameters: 

the grain diameter has been ranged between 0.5 and 3 mm, and the stickiness between 0.1 and 0.4 

[14]. The mean difference between measured and corresponding modeled backscattering values is 

0.9 dB. 

 

 

Figure 4.3 Scheme of a single layer approximation snowpack. The ε indicate dielectric constant of the medium: 

휀0 is relative to the air, 휀𝑖 to the ice particles and 휀𝑔 to the ground. 
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4.3 Methodology 

The idea of the proposed approach is to verify the sensitivity of the radar backscattering at X-

band to the snow characteristics for SWE retrieval through the use of an SVR technique. The 

procedure is shown in the flow chart of Figure 4.4 and summarized as follows: 

• After the first phase of model setting described above, the training dataset for SVR has been 

created by simulating backscattering coefficients. The model has been applied to about 1,300 

ground measurements of SD and 𝜌𝑠 in order to simulate the corresponding backscattering value. 

The ground measurements used for the simulations have been collected in the same dry-snow 

period, i.e. the months of January and February, and in the same sites of those corresponding to 

the satellite images and used for setting the model parameters. Therefore, it is reasonable to 

assume that the conditions of the snowpack are similar in all measurements. The model 

simulations have been iterated by randomly varying the grain diameter and the stickiness in the 

range obtained from the simulations in the setting phase of the model. Through this procedure, 

we obtained a set of backscattering coefficients for each input vector of snow parameters.  

• The simulations outputs, together with the incidence angle for each measurement site derived 

from the COSMO-SkyMed images, have been exploited for training the SVR by using as 

reference the corresponding values of SWE from ground measurements. 

• Subsequently, the SVR has been tested on observed data of backscattering (from COSMO-

SkyMed images) and of SWE (from the ground measurements corresponding to the COSMO-

SkyMed images) in order to evaluate the performance on an independent dataset.  
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4.3.1 Support Vector Regression  

The Support Vector Regression (SVR) is a machine learning technique developed from 

statistical learning theory that in the last decades has found numerous applications for the retrieval 

of biophysical parameters. It is a supervised non-parametric learning model used for regression 

(SVR) problems. Therefore, no assumptions on the underlying data distribution are necessary for 

the application of this technique. 

The application of this technique for biophysical parameters retrieval has already been 

successfully tested in other works: Bruzzone and Melgani [15] presented a novel approach to the 

estimation of biophysical parameters from remote sensing images based on a multiple estimator 

system; Camps-Valls et al. [16] proposed a robust ε-Huber SVR technique for the estimation of 

biophysical parameters extracted from remotely sensed data; Xiao et al. [17] developed a snow-

depth retrieval algorithm based SVR technique using passive microwave remote sensing data and 

other auxiliary data; Pasolli et al. [18] present an experimental analysis of the application of the ε-

insensitive support vector regression (SVR) technique to soil moisture content estimation from 

remotely sensed data at field/basin scale.  

 

Figure 4.4 Flow chart of the procedure for SWE retrieval. 𝜎0 indicates the backscattering value derived from 

the model simulations, while σ and ϑ are the backscattering value and the incidence angle extracted by the 

satellite images, respectively. SVR and DMRT-QMS stand for Support Vector Regression and Dense Media 

Radiative Transfer theory - Quasi-crystalline approximation Mie scattering of Sticky spheres, respectively.  
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4.4 Experimental Results 

4.4.1 Sensitivity analysis 

The sensitivity of X-band SAR to snow parameters has already been demonstrated in [8] and 

[14]. In this work, a sensitivity analysis has been conducted to verify the validity of this assumption 

for our study area. In order to have more backscattering data from COSMO-SkyMed images 

available, ground measurements performed on dates close (± 5 days) to the date of satellite 

acquisition has also been considered. The analysis has been performed by investigating the 

sensitivity for ascending and descending orbits separately because of the different acquisition 

times (i.e. at dawn and dusk; see Table 4.1) that may correspond to different snowpack conditions. 

The results are shown in Figure 4.5, where two behaviors can be pointed out: in the ascending 

mode the satellite acquisitions occur in early morning, i.e. when the snowpack is drier and the 

liquid water content in the snowpack is low or absent; this leads to a better correlation between 

SWE values and backscattering coefficients. Viceversa, in descending mode, the acquisition 

occurs in late afternoon, i.e. when the snowpack is potentially wetter due to surface snow melting. 

In this case, the scatterplot in Figure 4.5b shows lower correlation, due to the already mentioned 

limitation in the SWE estimation at X-band when the snowpack contains liquid water. 

 

4.4.2 Performance evaluation 

The SVR has been applied to a dataset of almost 1,000 simulated backscattering coefficients, 

selected from the initial 1,300, by considering only the samples with SWE values in the range of 

those of the test dataset, i.e. the dataset where backscattering coefficients are extracted from 

COSMO-SkyMed images. 70% of the dataset, i.e. about 700 samples, has been used to train the 

 

Figure 4.5 Sensitivity analysis: backscattering coefficients (σ) derived from COSMO-SkyMed StripMap HIMAGE 

HH-polarized images versus the corresponding SWE values derived from ground measurements for (a) ascending 

orbit and (b) descending orbit. 

 

descending orbit.    
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regressor and the remaining 30% for a test on a different dataset to evaluate the generalization 

capability of the algorithm. 

Table 4.2 reports different statistical metrics for both the training and the test datasets. The 

root mean square error (RMSE), the mean absolute error (MAE), the Pearson correlation 

coefficient (R) and the bias value are calculated between reference ground values and estimated 

SWE values. From the analysis of the results, we observe that the performance is consistent 

between the two datasets. This means that the regressor has good generalization capabilities. 

However, although the bias has low values in both cases, the Pearson correlation coefficients are 

0.5 for the training dataset, and 0.6 for the test one, which are relatively low values.  

 
Subsequently, once the algorithm has been trained and validated, it has been tested using as 

input data the backscattering coefficients and the incidence angles extracted from COSMO-

SkyMed images available, and as reference dataset the corresponding ground measurements 

derived SWE values. The performance is shown in Figure 4.6 and the results are comparable with 

those indicated in Table 4.2. The scatterplot shows the results of the test conducted on the 

backscattering coefficients extracted from the ascending mode images only that, as confirmed by 

the sensitivity analysis, are found to be more sensitive to the SWE parameter. The filter on the 

orbit direction allows improving the performance compared to what is obtained by considering all 

the images, i.e. ascending and descending mode together. Indeed, the MAE decreases from 46.2 

to 42.2 mm, the R coefficient increases from 0.5 to 0.6, the slope of the regression line increases 

from 0.4 to 0.5, and the intercept decreases from 167.9 mm to 143.2 mm. The positive bias value 

indicates that, on average, the SVR overestimates the SWE values compared to the true values 

from ground measurements. 

Table 4.2 Performance of the SVR retrieval algorithm on the training and test datasets. 

Dataset 
RMSE 

(mm) 

MAE 

(mm) 
R 

Bias 

(mm) 

Training 61.2 49.1 0.5 0.8 

Test 65.5 53.9 0.6 3.8 
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This limited performance could be related to two different factors. On one side, the X-band 

images analyzed in this chapter, are in HH polarization. This polarization is not the optimal choice 

for the sensitivity to snow parameters. To increase the sensitivity, dual polarization data should be 

considered, such as images in VV/VH polarization. The need for such data is being addressed at 

the site of Val Senales by a dedicated acquisition campaign with COSMO-SkyMed in StripMap 

PingPong mode that has been launched in mid 2019. The availability of PingPong data for this site 

will allow assessing the improvement in the algorithm performance that can be achieved using 

dual-polarization X-band data. 

On the other side, the theoretical model used for simulating the backscattering coefficients 

can be considered a first order approximation of the interaction between the SAR signal and the 

snowpack. The snow parameters used as inputs for implementing the model are partially derived 

from ground measurements (snow depth and snow density) and partially randomly generated 

(snow grain size and stickiness) by varying the values in a range defined starting from ground 

measurements corresponding to the COSMO-SkyMed images and used for testing the SVR. 

However, the computation of the backscattering coefficient by the theoretical model is very 

sensitive to these parameters and different grain radii or stickiness values can lead to very different 

backscattering values. This means that the simulated dataset used for training the algorithm could 

be only partially representative of the dataset derived from satellite images and used for testing the 

algorithm.  

 

Figure 4.6 SWE estimated by the SVR regressor applied to the COSMO-SkyMed satellite data. 
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In a the next step of our work we plan to consider the multilayer snowpack structure, by 

extracting the real snow grain diameters for each layer and using them for implementing the model 

and generating more realistic and representative backscattering coefficients to train the SVR. 

4.5 Conclusions 

In this work, the sensitivity of COSMO-SkyMed X-band SAR has been verified and exploited 

for the retrieval of SWE in the alpine region of South Tyrol, in north-eastern Italy, by means of an 

SVR approach. The results of the sensitivity analysis showed a better correlation between SWE 

and backscattering signal at X-band in ascending orbit mode with respect to those in descending 

orbit mode. This behavior is confirmed by the performance analysis where the error obtained by 

SVR in SWE estimation by exploiting ascending mode images information only is lower than that 

obtained if both ascending and descending modes are considered. However, the results derived by 

the comparison between estimated and true SWE values are not completely satisfactory, by 

showing a correlation coefficient of only 0.6, a bias value of 10.5 mm and a slope and intercept 

value of the regression line of 0.5 and 143.2 mm, respectively. 

There are two main possible reasons of this performance: i) the use of X-band data in HH 

polarization and ii) the limited representativeness of the training dataset. Regarding the latter, the 

simplified modeling of the single-layer snowpack used for simulating the backscattering 

coefficients of the training dataset, can be improved through a more detailed description of snow 

characteristics and its microstructure. Moreover, the assumption at the basis of this work is that 

the snowpack is dry: the selected ground data, and the corresponding satellite images, have been 

collected in a typical dry period for alpine regions, i.e. in January and February. However, this 

assumption should be supported by manual measurements that confirm the dry conditions of the 

snowpack.   
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Chapter 5 

 

5. CONCLUSION 

5.1 Thesis Summary and General Conclusions  

Although snow only occurs in certain parts of the world, it has strong effects on regional weather 

patterns. By studying snow distribution, snowpack characteristics and changes over time, scientists 

can help to improve weather forecast modeling and to learn more about the interaction between 

snow and local weather. Moreover, scientists also study snow cover to understand the effect of 

snow cover extent changes on climate and water supplies around the world. 

In this context, the main objective of this thesis is presenting novel methods for the accurate 

estimation of two snow parameters based on the use of model-based simulations and remote 

sensing data and ground measurement data as reference. In particular, the focus of this work is the 

improvement of the snow cover extent and the SWE over the alpine Euregio area, consisting of 

Tyrol region (Austria), South Tyrol region and Trentino region (Italy). The proposed methods 

represent a relevant contribution to the snow hydrology field and the automatic estimation of snow 

parameters. 

The automatic methods based on machine learning techniques presented in this work are capable 

of taking advantage from the specific properties of the different data sources, by providing a more 

comprehensive representation of the snowpack properties and overcoming the limits of existing 

approaches for snow parameters retrieval, highlighted from previous studies. 

Chapter 2 presents a method for generating a snow cover extent product, starting from the snow 

cover maps derived from both snow model simulations and remotely sensed data, able to solve the 

ambiguity of the disagreement points, i.e. those points where the two data sources disagree. From 

this chapter it is clear the importance of combining different data sources by means of a supervised 

non-parametric learning model, in our case SVM. Indeed, the results demonstrate that the proposed 

approach benefits from the specific properties of the remote sensing data (such as independency 
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from meteorological observations) to compensate the weaknesses of the physical model and at the 

same time takes advantage from the latter (e.g., for its solid physical basis and the independency 

from cloud coverage) overcoming the well-known limitations of optical remote sensing. The new 

snow cover product has been validated by using ground data derived from manual measurements, 

by showing a very good agreement. The average accuracy of 90% (MODIS) and 92% 

(AMUNDSEN, the snow model used in this thesis) is increased to 96% in the fused product. These 

results encourage further research for a generalization of the proposed method, by testing it even 

in other regions and by exploiting other snow models. In this chapter, the properties of SVMs have 

been exploited. Their ability to deal with both linear and non-linear problems make them very 

suitable and flexible in many practical applications. Moreover, SVMs have been proved to have a 

higher classification accuracy than other widely used pattern recognition techniques, such as the 

maximum likelihood and the multilayer perceptron neural network classifiers (ref [27] chapter 2) 

and they also work well when only few training samples are available. Finally, an important 

property of SVM models is that no prior knowledge in terms of statistical distribution of the dataset 

is required, as they are based on the concept of margin maximization.  

Chapter 3 introduces a new method to characterize and correct the deviations of a hydrological 

model (AMUNDSEN, in our case) from ground reference data in order to generate an improved 

SWE product with respect to the one derived from the model simulations. The hypothesis is that 

such deviations can be characterized by analyzing their behavior in the feature space, since they 

vary depending on the portion of the feature space. To this purpose, the correction strategy, 

inspired to a k-Nearest Neighbor approach, has been successfully used after an accurate feature 

selection by means of a genetic algorithm. The results obtained with the proposed approach are 

promising by showing a significant improvement of performance: on average, the RMSE and the 

MAE decrease from 154 to 75 mm and from 99 to 45 mm respectively, if compared to the 

AMUNDSEN simulations. Furthermore, the slope of the regression line between estimated SWE 

and ground observations increases from 0.6 to 0.9 by reducing the data spread and the number of 

outliers. In this work, the feature selection involved several products derived by optical remote 

sensing that have been tested to select those with most relevant auxiliary information for the 

estimation of model deviation. Only two land surface temperature derived products resulted 

significative by providing a marginal contribution (improvement of about 3% in the performance). 

These results stimulate further research in feature selection, by exploiting other satellite products, 
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such as higher resolution optical data or radar data. Nonetheless, experimental results obtained 

show an improvement in SWE estimation with respect to the simulated product, by confirming the 

ability of the proposed approach to handle and modeling the variability of deviations between 

simulations and observations in the feature space. 

In this chapter the k-NN algorithm has been exploited. This algorithm is of the simplest and most 

popular methods for the estimation of statistical variables. Indeed, the only two parameters to tune 

are the distance metric and k. Moreover, k-NN algorithm a non-parametric model and this means 

that no prior assumption on the data are needed. To classify the new data, the k-NN algorithm 

reads through whole dataset to find out k-nearest neighbors. Finally, this method has already been 

successfully applied to biophysical parameter retrieval by Castelletti et al. (ref. 50 chapter 3). 

The genetic algorithm (GA) used for the feature selection is an adaptive search technique which 

have demonstrated substantial improvement over a variety of random and local search methods 

[1]. This is accomplished by their ability to exploit accumulating information about an initially 

unknown search space in order to bias subsequent search into promising subspaces. GAs derive 

their name from the fact that they are based on models of genetic change in a population of 

individuals. These models consist of three basic elements: a) a Darwinian notion of "fitness," 

which governs the extent to which an individual can influence future generations; b) a "mating 

operator," which produces offspring for the next generation; and c) "genetic operators," which 

determine the genetic makeup of offspring from the genetic material of the parents [1]. 

The conclusion drawn from chapter 3 have led to the development of the method for SWE retrieval 

described in chapter 4. In this chapter the sensitivity of the backscattering coefficient at X-band to 

the SWE has been analyzed and then exploited for generating an algorithm being able to estimate 

this snow parameter. To this purpose, we used the X-band SAR imagery acquired by the Italian 

Space Agency COSMO-SkyMed constellation in StripMap HIMAGE mode together with the 

manual ground measurements of snow water equivalent (SWE) and theoretical model simulations. 

In this case, the proposed retrieval method is based on a machine learning technique (SVR) that 

exploits simulated backscattering coefficients for the training phase and then is tested with satellite 

derived data. Ground data are used as reference dataset in both training and test phases. The results 

derived from the sensitivity analysis show a correlation between backscattering coefficients 

extracted from the satellite acquisitions in ascending mode and the ground measurements of SWE, 
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are partially confirmed by the subsequent performances analysis of proposed method. Indeed, the 

results derived from the comparison between estimated and measured SWE values are not 

completely satisfactory and show a poor correlation and low accuracy. The experimental results 

obtained in this chapter encourage further analysis to improve the simulations used in the SVR 

training, as well as the use of more detailed information about the wetness status of the snowpack 

aimed at confirming the assumption of dry snow. 

In this chapter, the regressive problem of SWE estimation has been addressed with SVR. Although 

less popular than SVM, SVR has been proven to be an effective tool in real-value function 

estimation. One of the main advantages of SVR is that its computational complexity does not 

depend on the dimensionality of the input space. Additionally, it has excellent generalization 

capability, with high prediction accuracy [2]. 

In general, the choice of methods exploited in this thesis is mainly related to the data availability 

and to the parameter to estimate. A well-known advantage of the SVM techniques is the fact that 

no assumptions have to be made about the data distribution (for this reason, non-linear machine 

learning methods are often referred to as distribution free). Due to this property, the retrieval 

process can integrate data coming from different sources with poorly-defined (or unknown) 

probability density functions and relating well to the target variable. This ability makes these 

techniques very suitable in the case of snow cover area estimation, where the snow cover maps 

derived from two different sources, i.e. remote sensing and snow model, are exploited together 

with their quality measures, in order to generate an enhanced product in a decision-level fusion 

approach. In the case of SWE retrieval with COSMO-SkyMed images information, the ability of 

SVR in approximating even complex non-linear systems through the information contained in a 

set of reference samples is exploited. Finally, the case of SWE retrieval by using the AMUNDSEN 

product (cap 3) is a different situation because in this case the idea is correcting an existing product 

with respect to the ground reference. The error estimation has been addressed by exploiting the 

simplicity and the already tested capability of a k-NN algorithm (ref. 50 chapter 3). 

The following table, Table 5. 1, summarizes the techniques exploited in this thesis in order to give 

to the reader a general vision of the machine learning techniques at the basis of the developed 

algorithms.  
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Table 5. 1 Methods exploited in the developed approach for snow parameters retrieval 

Snow parameter estimated (chapter) Method(s) Purpose 

Snow cover area (chapter 2) SVM  To estimate the snow cover area 

Snow water equivalent (chapter 3) 

with optical data 

k-NN  To estimate the SWE 

Genetic algorithm For feature selection 

Snow water equivalent (chapter 4) 

with radar data 

SVR To estimate the SWE 

Theoretical model 

(DMRT-QMS) 

For simulating the backscattering 

coefficients used as input in SVR 

5.2 Future developments 

The research activities shown in this thesis aim at developing methods that can significantly 

improve the capability of automatically estimating snow parameters by exploiting snow and 

electromagnetic models as well as remotely sensed data and auxiliary topographic features in a 

data fusion at decision level approach, based on machine learning techniques. On the basis of the 

developed methods and the experimental results obtained, some interesting future research lines 

can be identified. 

First, since the main objective of this thesis is to develop general methods to improve snow 

parameters estimation, we aim to test the proposed methods on other study areas and by using 

other physically based models to confirm the robustness of the developed approaches. Another 

general issue to be further developed in this research is relative to ground data that have been 

always used as reference dataset. To make the proposed methods as general as possible, an accurate 

and deep validation analysis is needed, by including ground data that are representative of as many 

conditions as possible, e.g. by carrying out ad hoc measurement campaigns in forested areas 

(where available measurements are scarce) or on non-flat slopes (which are excluded from the 

snow measurement protocol). Moreover, also phenocam or drone images could be exploited for 

obtaining information at high spatial resolution of limited areas to integrate the pointwise manual 

measurements.  

Regarding the snow cover extent product, further developments could be devoted to the use of 

high-resolution optical sensors. The high potential of the new generation of satellites, such as 

Sentinel missions, that provide open-data products with high spatial resolution, can improve the 
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snow detection, by catching the wide spatial snow variability in forested areas and in 

topographically complex terrains, typical of mountainous areas. 

By focusing the attention on the method for SWE retrieval with the use of both optical satellite 

data and topographic parameters, two important aspects should be addressed in future research: 

the feature selection and the amount ground data. Regarding the former, we aim to further 

investigate the combination of different satellite products derived from optical sensors for creating 

informative feature spaces; about the latter, an improvement to the proposed approach could be 

achieved by increasing the dataset variability in the feature space.  

Finally, attention will be devoted to the last part of this work, regarding the SWE estimation by 

exploiting the backscattering coefficient at X-band. In particular, we aim to improve the 

knowledge of the snowpack. This improvement would lead to a double benefit: on the one side, a 

more detailed description of snow microstructure and characteristics, used as input parameters for the 

model, would lead to a more precise and realistic estimation of the backscattering coefficient, used as 

training dataset for the SVR. On the other side, the knowledge of the wetness status of the 

snowpack, would be useful to verify and confirm the basic hypothesis of the proposed approach 

regarding the dry condition snowpack. Moreover, in our study, we only use HH polarization 

images. The use of dual polarization data to increase the sensitivity to SWE would represent an 

interesting future research direction. Another interesting aspect to study is the use of the data in L-

band frequency, which, with interferometric approaches, have shown significant relationship to 

SWE variations. In this view, the use of the new SAOCOM satellite can be of high interest. 
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6. Appendix A 

In this appendix a more detailed description of the AMUNDSEN snow model is done in order to 

give a general view of the model used in this work to reader who is not familiar with it. Firstly, a 

general description of the model will be provided and then version used in this work, replacing all 

the snowpack thermodynamics with a different model with respect to the standard one, will be 

explained. More technical and analytic details of the model can be found in [1]. 

The modular, physically based, distributed modeling system AMUNDSEN (Alpine MUltiscale 

Numerical Distributed Simulation ENgine) has been designed to specifically address the 

requirements of snow modeling in mountain regions under climate change conditions and has 

already been extensively validated in several Alpine sites [1] [2] [3] [4] [5]. It provides distribute 

time series of snow process variables employing a wide range of interpolation, parametrization 

and simulation procedures. The input parameters needed for the model implementation are [1]: a 

DEM of the investigation domain with a spatial resolution typically of tens to hundreds of meters 

(the relatively high resolution is necessary for adequately capturing the small-scale processes 

shaping the snow cover in complex terrain); hourly to 3-hourly recordings of the meteorological 

variables, such as air temperature, relative humidity, precipitation, global radiation, and wind 

speed; various other spatial input fields, such as land cover, soil, catchment boundaries, canopy 

height) in order to run specific submodules (canopy module, evapotranspiration, runoff); finally, 

several derived topographic parameters (slope, aspect, sky-view factor, openness) can either be 

preprocessed or calculated during runtime. 

For an accurate simulation of snow cover heterogeneity and dynamics in mountain environment, 

both adequate model algorithm and meteorological input variables are required. Indeed, the 

understanding of spatial and temporal variability of meteorological variables is crucial for the 

description of the interaction between climate and the energy and mass balance of snow cover. 

This variability, relevant for snow accumulation and ablation, is often extrapolated from the 

observation available at the station in the study area or, alternatively, by using the simulations from 

a meteorological model.  
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Spatial interpolation of meteorological variables 

In AMUNDSEN, distributed meteorological variables are computed hourly from stations 

recording, as follows: firstly, the so-called trend field is derived by calculating linear regression of 

the meteorological observations with elevation; this regression is then applied to the whole area 

represented by the DEM. Then, the residuals (i.e. the deviation of measurements from the trend 

field) are spatially interpolated by applying an Inverse Distance Weighting (IDW) approach, 

resulting in a so-called residual field, which represents the local deviation of a specific 

meteorological variable from its value in the trend field. The weights are the inverse distances 

between any location defined by a DEM pixel and the stations. This algorithm ensures the 

spatialization of the station observations and can be applied regardless of whether a relation of the 

meteorological variable with elevation exist. Indeed, the algorithm is applied for each time step by 

ensuring that for each variable the variation rate is dynamically adjusted according to the 

observation for that time step [1]. This procedure is applied for the following meteorological 

variables: temperature, wind speed, shortwave incoming radiation and precipitation. Relative 

humidity (%) is converted into absolute humidity (kg∙m3), then spatial interpolated and re-

converted afterwards. It is worth to note that all interpolations within a time step can be limited in 

the range between the minimum and maximum values of the observation for that time step, to 

avoid the generation of unrealistic extrapolation values [1]. 

Radiation terms 

In this section, a short description of radiation terms is provided. 

Incoming shortwave radiation 

All shortwave radiation components are derived from local terrain characteristics and from 

physical and empirical relations described in the following. 

The algorithms compute the effects of shading by the surrounding terrain, the decrease of 

atmospheric transmittance due to the individual processes of scattering, and multiple reflections 

between the atmosphere and the ground as well as reflections from surrounding terrain. The latter 

aspect is very important for high mountain regions, where slope reflections can considerably 

increase incoming shortwave radiation, in particular if these slopes are covered with snow [6]. 
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Direct and diffuse shortwave radiative fluxes for each grid cell are parameterized using efficient 

vectorial algebra algorithms, the principles of which are described in detail in [6]. First, potential 

direct solar radiation for a clear sky is determined for each grid cell for its specific geographical 

position and date of simulation, considering the different effects influencing incoming radiation, 

i.e. the hill shading, the transmission losses due to scattering (Rayleigh and aerosol scattering) and 

absorption (by water vapor, ozone, and other trace gases), the transmission gains due to multiple 

reflections between the atmosphere and the ground, and reflections from surrounding terrain.  

Shading by adjacent terrain is computed by scanning the projection of cells onto a solar 

illumination plane perpendicular to the sun direction. By checking the projection of a grid cell over 

this plane, it is determined whether a point is in the sun or in the shade of another cell. 

The influence of clouds is accounted for through the use of the cloud factor which is computed as 

fraction of observed global radiation to the respective simulation result representing the clear sky 

situation. If more than one observation is available (more meteorological stations) in a single 

model timestep, then the cloud factor is spatially distributed over the domain in the same way as 

the meteorological variables [1]. 

Incoming longwave radiation 

The majority of the longwave radiation reaching the surface is emitted from the lowest layers of 

the atmosphere which are not necessarily correctly represented by measurements of temperature 

at the 2 m level [7]. Therefore, the longwave radiative flux emitted can be different depending on 

the location, on the mixture conditions in the boundary layer, on the height of a potential inversion 

layer and a subsequent different temperature profile. 

In AMUNDSEN model incoming longwave radiation is also derived following [6] using 

parameterizations for the radiation fractions coming from the clear sky, from clouds, and from 

surrounding slopes. These three phenomena have to be quantified and modeled for improving the 

final snow cover estimation. Indeed, spatial differences in the incoming longwave radiative flux 

can be attributed mainly to three phenomena: (i) differences in air temperature and its vertical 

profile, (ii) differences in the effect of north-facing slopes and (iii) differences in the effect of 

clouds.  
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Snowpack thermodynamics  

The module relative to the snowpack thermodynamics, i.e. everything about surface energy-

balance, cold content or albedo, in this study has been implemented with a different model with 

respect to the standard one, by exploiting the factorial snowpack model (FSM) implemented by 

Essery [8]. The open-source FSM solves the coupled mass and energy balance of a snowpack in a 

control volume of 1-m2 surface area and height Hs. A maximum of three snow layers can be 

selected by the user and the total snow depth governs the number and thickness of the snow layers 

[8]. The model can be run in 32 different configurations of varying complexity by switching on or 

off independently the five process parameterizations shown in Table A1 [8]. For each process FSM 

allows a simpler representation (option 0) and a more complex one (option 1). A more analytical 

and detailed description of the parameterized processes is done in [8].  

Table A1 Process parameterizations available in the FSM 

Process Implementation Option 

Absorption of solar radiation Snow albedo evolution Function of surface temperature (0)  

decays with time (1) 

Heat conduction in snow Thermal conductivity Constant (0) 

Function of snow density (1) 

Compaction of snow Snow density Constant (0) 

Compaction (1) 

Transfer of heat from the air to 

snow 

Correction for 

atmospheric stability 

Off (0) 

On (1) 

Transport of liquid water Snowpack hydraulics  Immediate drainage (0) 

Bucket model (1) 

 

Regarding the precipitation, two main contributes are considered in the FSM: rainfall and snowfall. 

The solid mass fluxes at the surface are snowfall (or deposition of wind-blown snow) Sf and 

sublimation E. Solid mass fluxes between layers are included because redistribution of mass is 

required by the discretization when the snow depth changes. The liquid mass fluxes into and out 

of the snow column are rainfall Rf and melt M at the surface and runoff Rb at the base of the 

snowpack; evaporation of liquid water in the snow is neglected. The relatively short run time and 
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the rather small set of model parameters make FSM ideal to investigate various model 

configuration and parameter settings and for this reason it has been used in this work for simulating 

the snowpack processes within the AMUNDSEN model. 
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