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1 INTRODUCTION
This report is an extension of the paper “Coherent Extension, Composition, and Merging Operators in Contract
Models for SystemDesign”, published as part of the EMSOFT 2019 proceedings onACMTransactions on Embedded
Computing Systems [70]. We complete the work with the proofs of all results, and extend the treatment of the
related work. In this report, we replicate the structure of that paper to match the definition and theorem numbers,
although we do not repeat the text which can be found in the original publication.
Several component, interface and contract models have been proposed in the literature [9, 12, 13, 22, 26, 29,

33, 40, 47, 48, 56, 63, 64, 75, 76]. In this report, we examine the general form of an interface or contract, and
study equivalent representations that facilitate the definition of the operators and refinement relations. We deal
with refinement between components at the same level of abstraction, which we call conformance to distinguish
from other forms of refinement. In particular, we are interested in conformance and its related conjunction
operator applied across different viewpoints. We adapt the mathematical framework proposed by Benveniste
et al. [10, 27], with simplifications to facilitate the exposition. The reader is referred to our full paper [70] for
comments, explanations and examples regarding the definitions and results outlined in this report.

2 COMPONENT, INTERFACES AND CONTRACT MODELS

2.1 Components
Definition 2.1 (Component). Let Σ ⊆ A be an alphabet, and let B(Σ) be the set of all behaviors over alphabet Σ.

A component M over alphabet Σ is a set of behaviors from B(Σ), i.e.,
M ⊆ B(Σ).

A component may further partition its alphabet into a set of inputs I and outputs O , such that I ∪O = Σ.

Definition 2.2 (Component composition). LetM1 andM2 be components over alphabet Σ, and let O1 ∩O2 = ∅.
Their compositionM = M1 ∥ M2 is the component over alphabet Σ given by

M = M1 ∩M2.

Definition 2.3 (Component projection). LetM be a component over alphabet Σ′, and let Σ ⊆ Σ′. The projection
ofM to Σ is defined as

projΣ′,Σ (M) = {x ∈ B(Σ) | ∃y ∈ M,x = projΣ′,Σ (y)}.
Definition 2.4 (Component inverse projection). Let M be a component over alphabet Σ, and let Σ′ ⊇ Σ. The

inverse projection ofM to Σ′ is defined as
proj−1Σ′,Σ (M) = {x ∈ B(Σ′) | projΣ′,Σ (x) ∈ M}.
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Definition 2.5 (Component conformance). LetM andM ′ be components over the same alphabet Σ, such that
I1 = I2 and O1 = O2. Then,M conforms toM ′, writtenM ⪯ M ′, whenever

M ⊆ M ′.

Definition 2.6 (Component complementation). LetM be a component over alphabet Σ. The complementM ofM
is the component given by

M = B(Σ) −M .

Theorem 2.7 (Component conjunction and disjunction). LetM1 andM2 be components over alphabet Σ,
such that I1 = I2 and O1 = O2. The conjunctionM = M1 ⊓M2 is the component over alphabet Σ given by

M = M1 ∩M2.

The disjunctionM = M1 ⊔M2 is the component over alphabet Σ given by

M = M1 ∪M2.

Proof. Consider the case for conjunction. We prove thatM is the greatest lower bound of conformance. We
must first show thatM conforms toM1 andM2. This follows easily, since by hypothesisM ⊆ M1 andM ⊆ M2.
Thus, by Definition 2.5,M ⪯ M1 andM ⪯ M2.

Assume now M ′ conforms to both M1 and M2. We must show that M ′ conforms to M . Assume this is not
the case. Then, by Definition 2.5, there exists x ∈ M ′ such that x < M . Because M ′ conforms to M1 and M2, x
must necessarily be in at least one of these two. If x ∈ M1, then necessarily x < M2, otherwise, by hypothesis,
x ∈ M1 ∩M2, and therefore x ∈ M . This contradicts the assumption thatM ′ conforms toM2. Similarly if x ∈ M2.
Thus, by contradiction,M ′ conforms toM .

The case for disjunction is similar. □

2.2 Interfaces
Definition 2.8 (Interface). An interface I over alphabet Σ is a pair (R,G) where R (the requirements) and G

(the guarantees) are components over Σ.

Definition 2.9 (Implementations and Environments). A component M is an implementation of the interface
I = (R,G), written M |=G I, if and only if M ⪯ G. It is an environment of I, written E |=R I, if and only if
E ⪯ R.

Definition 2.10. Let I1 = (R1,G1) and I2 = (R2,G2) be interfaces. Then,
I1 ∥ I2 = (R1 ∥ R2,G1 ∥ G2).

Definition 2.11 (Interface conformance and equivalence). Let I = (R,G) and I ′ = (R ′,G′) be interfaces. We
define

• I ⪯ I ′ if and only if R ′ ⪯ R and G ⪯ G′.
• I ∼ I ′ if and only if R ′ ∼ R and G ∼ G′.

Corollary 2.12. An interface I conforms to an interface I ′, written I ⪯ I ′, if and only if, for all components
M and E,

M |=G I =⇒ M |=G I ′ and E |=R I ′ =⇒ E |=R I.
Proof. For the forward direction, assume I conforms to I ′. Let nowM |=G I. Then, by Definition 2.9,M ⪯ G.

By Definition 2.11, since I ⪯ I ′, G ⪯ G′. Thus, by transitivity, M ⪯ G′. Hence, M |=G I ′. Similarly for an
environment E.
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For the reverse direction, assume for all M , M |=G I =⇒ M |=G I ′. By Definition 2.9, this is the same as
M ⪯ G =⇒ M ⪯ G′. We want to show that G ⪯ G′. Assume this is not the case. Then, there exists x ∈ G such
that x < G′. ChooseM = {x}. Then,M ⪯ G, howeverM ̸⪯ G′, which contradicts the hypothesis. Hence, G ⪯ G′.
Similarly, we show that R ′ ⪯ R. Therefore, by Definition 2.11, I ⪯ I ′. □

Lemma 2.13 (Interface Bounds). An interface I is a greatest lower bound of the interfaces I1 and I2, written
I = I1 ⊓ I2, if and only if, for all componentsM and E,

M |=G I ⇔ M |=G I1 ∧M |=G I2 and

E |=R I ⇔ E |=R I1 ∨ E |=R I2.
It is a least upper bound, written I = I1 ⊔ I2, if and only if, for all componentsM and E,

M |=G I ⇔ M |=G I1 ∨M |=G I2 and

E |=R I ⇔ E |=R I1 ∧ E |=R I2.
Proof. Assume I = I1 ⊓ I2. Then, by definition, I ⪯ I1 and I ⪯ I2, and therefore, by Corollary 2.12,

M |=G I =⇒ M |=G I1 ∧M |=G I2. Assume now M |=G I1 ∧M |=G I2, and assume, by contradiction, that
M ̸ |=G I. Then construct the interface I ′ with G′ = G1 ∩ G2 and R ′ = R1 ∪ R2. Clearly, I ′ is a lower bound
of I1 and I2. Thus, by definition of greatest lower bound, I ′ ⪯ I, which implies M |=G I, contradicting our
hypothesis.

The remaining clauses can be proven similarly. □

Theorem 2.14. Let I1 = (R1,G1) and I2 = (R2,G2) be interfaces. Then,
I1 ⊓ I2 = (R1 ⊔ R2,G1 ⊓ G2) and
I1 ⊔ I2 = (R1 ⊓ R2,G1 ⊔ G2).

Proof. The theorem follows from Lemma 2.13. Construct the given interfaces, and apply Lemma 2.13 in the
backward direction to show that the expressions indeed form the greatest lower bound and the least upper
bound. □

2.3 Contracts
Definition 2.15 (Maximal System). The maximal system of an interface I = (R,G) is the component SI = G ∥

R .
Definition 2.16 (System Equivalence). Two interfaces I1 and I2 are system equivalent, written I1 ≡ I2, if and

only if SI1 = SI2 .

Lemma 2.17. I1 ∼ I2 =⇒ I1 ≡ I2.
Proof. Assume I1 ∼ I2. Then, by Definition 2.11, R2 ∼ R1 and G1 ∼ G2. By Definition 2.5, conformance for

components is the same as set containment. Hence, R1 = R2 and G1 = G2. Therefore, by Definition 2.15, SI1 = SI2
Hence, by Definition 2.16, I1 ≡ I2. □

Definition 2.18 (Extension). An interface I ′ is an extension of an interface I, written I { I ′, if and only if,
for all componentsM and E,

M |=G I =⇒ M |=G I ′ and E |=R I =⇒ E |=R I ′.

Corollary 2.19. I { I ′ ⇐⇒ G ⊆ G′ ∧ R ⊆ R ′.
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Proof. For the forward direction, assume I ′ is an extension of I. By Definition 2.9, G |=G I. Therefore, by
Definition 2.18, G |=G I ′. Thus, by Definition 2.9, G ⪯ G′. Hence, by Definition 2.5, G ⊆ G′. The proof is similar
for R.
For the reverse direction, assume G ⊆ G′. Let M |=G I. Then, by Definition 2.9, M ⪯ G, and therefore, by

Definition 2.5,M ⊆ G. Thus, by transitivity,M ⊆ G′. Therefore, by reasoning backwards,M |=G I ′. By a similar
argument, we show that E |=R I =⇒ E |=R I ′. Hence, by Definition 2.18, I { I ′. □

Definition 2.20 (Completion). An interface I ′ is a completion of an interface I, written I 7→ I ′, if and only if
I ≡ I ′ and I { I ′.

Definition 2.21 (Maximal Interface). An interface I is maximal if and only if it is maximal under completion,
i.e., for all interfaces I ′, if I 7→ I ′, then I ∼ I ′.

Theorem 2.22. Let B(Σ) be the universe of behaviors over alphabet Σ. An interface I over Σ is maximal if and
only if G ∪ R = B(Σ).

Proof. For the forward direction, let I be a maximal interface and, by way of contradiction, assume that
G ∪ R , B(Σ). Then, there must be x ∈ B(Σ) such that x < G and x < R. Construct interface I ′ = (R ′,G′),
such that G′ = G ∪ {x} and R ′ = R. Then, G ⊆ G′ and R ⊆ R ′. Therefore, by Corollary 2.19, I { I ′. At the
same time, since x < R ′, G ∥ R = G′ ∥ R ′. Hence, by Definition 2.15 and Definition 2.16, I ≡ I ′. Therefore,
by Definition 2.20, I 7→ I ′. However, G′ |=G I ′, but G′ ̸ |=G I, since G′ ⊈ G. Therefore, I ̸∼ I ′. Thus, by
Definition 2.21, I is not maximal, contradicting our hypothesis.
For the reverse direction, assume interface I is such that G ∪ R = B(Σ). Let I ′ be a completion of I, i.e.,

I 7→ I ′. We must show that I ∼ I ′, or, by Definition 2.11, that G = G′ and R = R ′. We proceed as follows.
Since I 7→ I ′, by Definition 2.20, I ≡ I ′ and I { I ′. From I { I ′ and Corollary 2.19, it follows that G ⊆ G′

and R ⊆ R ′. Therefore, since G ∪ R = B(Σ), it must also hold that G′ ∪ R ′ = B(Σ). In addition, from I ≡ I ′, by
Definition 2.16 and Definition 2.15, we have G ∥ R = G′ ∥ R ′. Therefore, by Definition 2.2, G ∩ R = G′ ∩ R ′.
Assume now that G′ ⊈ G. Then, there must be x ∈ G′ such that x < G. Then, since G ∪ R = B(Σ), we must
have x ∈ R. Therefore, since R ⊆ R ′, x ∈ R ′. Consequently, x ∈ G′ ∩ R ′. However, since G ∩ R = G′ ∩ R ′, it
must also be x ∈ G ∩ R, which contradicts the assumption that x < G. Therefore, G′ ⊆ G, and hence, since by
the previous argument also G ⊆ G′, it follows that G′ = G. By similar arguments, we show that R ′ = R. Thus,
I ∼ I ′, and, by Definition 2.21, I is maximal. □

Corollary 2.23. An interface I is maximal if and only if G = G ∪ R.
Proof. For the forward direction, let I be maximal. Then, by Theorem 2.22, G ∪ R = B(Σ). Consequently,

R ⊆ G (if x < R then x ∈ G for G ∪ R = B(Σ) to hold). Therefore, G ∪ R = G.
For the reverse direction, assume G = G ∪ R and let x ∈ B(Σ). There are two cases. If x ∈ G, then clearly

x ∈ G ∪ R. Assume now x < G. Since G = G ∪ R, then also x < R. Consequently, x ∈ R. Therefore x ∈ G ∪ R.
Thus, G ∪ R = B(Σ) and, by Theorem 2.22, I is maximal. □

Theorem 2.24. Let I = (R,G) be an interface. Then the interfaces IR and IG defined by

IR = (R ∪ G,G) and IG = (R,G ∪ R)
are maximal completions of I.

Proof. Consider IR = (R ∪ G,G). Since G ∪ R ∪ G = B(Σ), by Theorem 2.22, IR is maximal. In addition,
since G ∩ G = ∅, we have G ∩ R = G ∩ (R ∪ G). Hence, by Definition 2.15 and 2.16, I ≡ IR . Considering that
G ⊆ G and that R ⊆ R ∪ G, by Corollary 2.19 I { IR . Thus, by Definition 2.20, I 7→ IR . Therefore, IR is a
maximal completion of I. By similar arguments we show that IG is a maximal completion of I. □
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Definition 2.25 (Product - Requirement Relaxation). Let I1 and I2 be interfaces. Then I is a product with
requirement relaxation of I1 and I2, written I = I1 ∥R I2, if and only if

G = G1 ∩ G2 and R = (R1 ∩ R2) ∪ (G1 ∩ G2).
Definition 2.26 (Product - Guarantee Relaxation). Let I1 and I2 be interfaces. Then I is a product with guarantee

relaxation of I1 and I2, written I = I1 ∥G I2, if and only if

G = (G1 ∩ G2) ∪ (R1 ∩ R2) and R = R1 ∩ R2.

Lemma 2.27. Let I1 and I2 be interfaces. Then I1 ∥R I2 and I1 ∥G I2 are maximal interfaces.

Proof. I1 ∥G I2 is maximal by Corollary 2.23, since clearly G = (G1 ∩ G2) ∪ (R1 ∩ R2) = G ∪ R = (G1 ∩
G2) ∪ (R1 ∩ R2) ∪ (R1 ∩ R2).
It is easy to show that Corollary 2.23 holds also if we interchange the roles of G and R. By similar arguments,

then, also I1 ∥R I2 is maximal. □

Definition 2.28 (Contract model). The set of maximal interfaces equipped with conformance and product with
requirement relaxation forms a contract model closed under composition.

3 SYMMETRIES AND VIEWPOINTS

3.1 Weak and strong assumptions
Definition 3.1 (Implication). An implication C over alphabet Σ is a pair (A,G), where A (the assumption) and G

(the promise) are components over Σ. The implication is equivalent to the componentM given by

M = A → G = G ⊔A = G ∪A.

3.2 Symmetric interfaces
Definition 3.2 (Dual). Let C = (A,G) be an implication. The dual of C is the implication Ĉ such that Ĉ = (G,A).
Definition 3.3 (Symmetric Interface). An interface I = (R,G) is symmetric if and only if R = Ĝ.
Theorem 3.4. If I is a symmetric interface, then I is also maximal.

Proof. Let I = (R,G) with C = (A,G). Since I is symmetric, by Definition 3.3 R = Ĝ, and therefore, by
Definition 3.2 R = (G,A). By Definition 3.1, we have G = G ∪ A and R = A ∪G. Let us now compute G ∪ R.
By De Morgan’s Law, R = (A∪G) = (A∩G). Thus, R ⊆ G. Therefore, G ∪ R = G ∪A∪ (A∩G) = G ∪A = G.
Hence, by Corollary 2.23, I is maximal. □

Theorem 3.5. LetI = (R,G) be a maximal interface. Then there exists a symmetric interfaceI ′ = ((G,A), (A,G))
such that I ∼ I ′.

Proof. It is sufficient to assign A = R and G = G. In this case, by Definition 3.1, I ′ is the same as I ′ =
(R ∪ G,G ∪ R). Because I is maximal, by Theorem 2.22 G ∪ R = B(Σ). Hence, G ⊆ R, which implies that
R ∪ G = R. Similarly, R ⊆ G, which implies that G ∪ R = G. Therefore, I ′ = (R,G).
Several other assignments can be used to obtain a symmetric interfaces, such as the following:

A = G, A = G ∪ R, A = G,
G = R . G = R . G = R ∪ G.

or other variations in between. □
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Definition 3.6 (Symmetric canonical form). A symmetric interface I = (Ĉ,C), with C = (A,G) is in canonical
form whenever A = A∪G and G = G ∪A.

Theorem 3.7 (Conformance of symmetric interfaces in canonical form). Let I = (Ĉ,C), and I ′ =
(Ĉ′,C′) be symmetric interfaces in canonical form, with C = (A,G) and C′ = (A′,G ′). Then, I ⪯ I ′ if and only if

G ⊆ G ′ and A′ ⊆ A.

Proof. Consider first the guarantees. Since I and I ′ are in canonical form, by Definition 3.6, G ⊆ G ′ is the
same as G ∪A ⊆ G′ ∪A′. Thus, by Definition 3.1, this is the same as C ⊆ C′. Therefore, by Definition 2.5, that
condition is equivalent to C ⪯ C′. The same reasoning applied to the assumptions shows that A′ ⊆ A is the same
as Ĉ′ ⪯ Ĉ. The result then follows from Definition 2.11. □

3.3 A revised notion of contract merging
Definition 3.8 (Merging). Let I1 and I2 be contracts. Then I is the resulting of merging I1 and I2, written

I = I1 · I2, if and only if

G = (G1 ∩ G2) ∪ (R1 ∩ R2) and R = R1 ∩ R2.

3.4 Composition, merging, and the contract lattice
Theorem 3.9. Let I = (R,G) and I ′ = (R ′,G′) be contracts. Then the contract I ⊓I ′ is equal to the conjunction

of the following three contracts:

(1) (R − R ′,G ∪ R − R ′)
(2) (R ′ − R,G′ ∪ R ′ − R)
(3) (R ∩ R ′,G ∩ G′ ∪ R ∩ R ′)

Proof. The union of the requirements of the three contracts clearly yields R∪R ′. We compute the intersection
of the guarantees:

(G ∪ R ′) ∩ (G′ ∪ R) ∩ (G ∩ G′ ∪ R ∩ R ′)
= (G ∪ R ′) ∩

(
(G ∩ G′) ∪ (G′ ∩ R) ∪ (G′ ∩ R ′) ∪ (R ∩ R ′)

)
= (G ∪ R ′) ∩

(
(G ∩ G′) ∪ R ′

)
(since G ∩ R ′ ⪯ G ∩ G′)

=
(
(G ∩ G′) ∪ (G ∩ R ′)

)
= G ∩ G′,

which are the guarantees of the conjunction. □

Theorem 3.10. Let I = (R,G) and I ′ = (R ′,G′) be contracts. Then the contract I⊔I ′ is equal to the disjunction
of the following three contracts:

(1) (R ∪ G − G′,G − G′)
(2) (R ′ ∪ G′ − G,G′ − G)
(3) (R ∩ R ′ ∪ G ∩ G′,G ∩ G′)

Proof. Obtained by dualizing the proof of Theorem 3.9. □
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3.5 Decomposition of contracts and separation of viewpoints
Theorem 3.11 (Contract qotient). Let I and I1 be contracts. Then Iq is the quotient between contracts I

and I1, written Iq = I /I1, if and only if

Gq = G ∩ R1 ∪ (R ∩ G1) and Rq = R ∩ G1.

Proof. We wish to show that Iq satisfies

∀I ′. I ′ ∥ I1 ⪯ I ⇐⇒ I ′ ⪯ Iq . (1)

Suppose I ′ is a contract that conforms to Iq . Let I2 = I1 ∥ Iq . Expanding, we have
G2 = G1 ∩ (R1 ∩ G ∪ R) and

R2 = R ∪ G1.

Clearly, G2 ⪯ G and R ⪯ R2, so I2 ⪯ I. Since composition is monotonic with respect to conformance,
I ′ ∥ I1 ⪯ I2 ⪯ I.

Conversely, suppose I ′′ ⪯ I for I ′′ = I ′ ∥ I1. We wish to show that I ′ ⪯ Iq . From the assumption I ′′ ⪯ I,
we observe that

R ⪯ R ′′ = R ′ ∩ R1 ∪ (G′ ∩ G1) ⪯ R ′ ∪ G1

∴ Rq = R ∩ G1 ⪯ R ′. (2)

Rewriting the left-hand side of (2), we have

(R ′ ∩ R1) ∩ (G′ ∩ G1) ⪯ R
∴ G′ ⪯ R ∪ (R ′ ∩ R1) ∪ G1 ⪯ R ∪ R1. (3)

From the hypothesis I ′′ ⪯ I, we have G′ ∩ G1 ⪯ G. This constraint together with (3) gives us

G′ ⪯ (R ∪ R1) ∩ (G ∪ G1) = G ∩ R1 ∪ (R ∩ G1) = Gq .

This result and (2) imply that I ′ ⪯ Iq . □

Theorem 3.12 (Separation). Let I and I1 be contracts. Then Is is the separation of contracts I and I1, written
Is = I ÷ I1, if and only if

Gs = G ∩ R1 and Rs = R ∩ G1 ∪ (G ∩ R1).
Proof. The proof is obtained by dualizing the proof of Theorem 3.11. We give the full details.
We wish to show that Is satisfies

∀I ′. I ⪯ I ′ · I1 ⇐⇒ Is ⪯ I ′.

Suppose Is ⪯ I ′ for a contract I ′. Let I2 = I1 · Is . Expanding, we have
R2 = R1 ∩ (G1 ∩ R ∪ G) and

G2 = G ∪ R1.

Clearly, R2 ⪯ R and G ⪯ G2, so I ⪯ I2. Since merging is monotonic with respect to conformance, I ⪯ I2 ⪯
I ′ ∥ I1.
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Conversely, suppose I ⪯ I ′′ for I ′′ = I ′ · I1. We wish to show that Is ⪯ I ′. From the assumption I ⪯ I ′′,
we observe that

G ⪯ G′′ = G′ ∩ G1 ∪ (R ′ ∩ R1) ⪯ G′ ∪ R1

∴ Gs = G ∩ R1 ⪯ G′. (4)
Rewriting the left-hand side of (4), we have

(G′ ∩ G1) ∩ (R ′ ∩ R1) ⪯ G
∴ R ′ ⪯ G ∪ (G′ ∩ G1) ∪ R1 ⪯ G ∪ G1. (5)

From the hypothesis I ⪯ I ′′, we have R ′ ∩ R1 ⪯ R. This constraint together with (5) gives us

R ′ ⪯ (G ∪ G1) ∩ (R ∪ R1) = R ∩ G1 ∪ (G ∩ R1) = Rs .

This result and (4) imply that Is ⪯ I ′. □

Definition 3.13 (Composition and merging identity). A composition identity, denoted 1c , is a contract such that
I ∥ 1c = 1c ∥ I = I. Likewise, a merging identity, denoted 1m , satisfies I · 1m = 1m · I = I.
Lemma 3.14. Let Σ be the union of all alphabets over which components are defined. The contract identities

just introduced and the contracts ⊥ and ⊤ have the following explicit forms: ⊤ = (∅,B(Σ)), ⊥ = (B(Σ), ∅), and
1m = 1c = (B(Σ),B(Σ)). Since both identities are equal, we call 1 = 1c = 1m the identity.

Proof. Obvious. □

Definition 3.15 (Reciprocal). Let I = (R,G). Its reciprocal, denoted I−1, is given by I−1 = 1 / I = 1 ÷ I = (G,R).

3.6 Multiviewpoint design

4 RELATED WORK
In this report we discuss the formal underpinnings for abstraction and reuse in the design of embedded, hybrid,
heterogeneous and cyber-physical systems for early system and software design and verification [20, 72, 73].
In particular, determining the correctness of designs made of library parts that are developed independently
implies the development of formal methods that can guarantee compositionality. In our previous work, we
have addressed several of these issues [6, 17, 30, 66, 69, 71, 80, 81]. This must be ensured in the presence of
heterogeneous models and multiple viewpoint design, which we discuss in particular in our previous work related
to heterogeneous design methods [12, 15, 16, 50, 52, 54, 66]. While this paper deals primarily with theoretical
results with regard to contract model operators, we have applied several of the ideas in methodologies and
tools [11, 18, 25, 38, 39, 44, 45, 61, 62, 67], including both simulation methods, and design space exploration [3–
5, 28, 36, 60], applied to a number of case studies [7, 14, 19, 31, 51, 68, 77].
Here, we focus in particular on contract models. In previous work, we have addressed some of the concerns

discussed here using modalities and special operators [9, 10, 35, 74–76, 78] and we have analyzed the problem of
correct decomposition [49, 53]. The results in this report extend this work, providing new and coherent operators
for both hierarchical and viewpoint decomposition.
The notion of contract as used in our framework derives from the theory of abstract data types and was

first suggested by Meyer in the context of the programming language Eiffel [59], following the original ideas
introduced by Floyd and Hoare [37, 41] to assign logical meaning to sequential imperative programs in the form of
triples of assertions. In his work, Meyer introduces preconditions and postconditions as assertions or specifications
for the methods of a class, and invariants for the class itself. Preconditions correspond to the assumptions under
which the method operates, while postconditions express the promises at method termination, provided that
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the assumptions are satisfied. Promises must be guaranteed only if the assumptions are satisfied. Invariants,
on the other hands, are conditions that must be true of the state of the class regardless of any assumption.
The notion of class inheritance, in this case, is used as a refinement, or sub-typing, relation. To guarantee safe
substitutability, a subclass is only allowed to weaken assumptions and to strengthen promises and invariants.
Similar ideas were already present in seminal work by Dijkstra [32] and Lamport [46] on weakest preconditions
and predicate transformers for sequential and concurrent programs, and in more recent work by Back and von
Wright, who introduce contracts in the refinement calculus [2]. In this formalism, processes are described with
guarded commands operating on shared variables. Contracts are composed of assertions (higher-order state
predicates) and state transformers. These contracts are of a very different nature, since there is no clear indication
of the role (assumption or promise) a state predicate or a state transformer may play. This formalism is best
suited to reason about discrete, un-timed process behavior.
Most interface and contract models fit within our theory, and their properties can be well explained by our

results. Besides the ones that were already mentioned, three in particular form the basis of the models that
were subsequently developed in the literature. Our work is based, in particular, on three models that were
subsequently developed in the literature. The work of Dill on asynchronous trace structures was the first to
differentiate between acceptable and non-acceptable uses of a component [33]. Behaviors, or traces, can be
either accepted as successes, or rejected as failures. The failures, which are still possible behaviors of the system,
correspond to unacceptable inputs from the environment, and are therefore the complement of the assumptions.
Safe substitutability is expressed as trace containment between the successes and failures of the specification and
the implementation. The conditions obtained by Dill are equivalent to requiring that the implementation weaken
the assumptions of the specification while strengthening the promises. If we denote the set of successful traces
by S , and by F the set of failure traces, one obtains a maximal interface I by setting

G = S ∪ F , R = F .

The notion of refinement and composition are the same as for maximal interfaces, where composition is taken
as the product with requirement relaxation. We have shown in this paper how this is only one possible choice
for these operators, by working in a more general settings. The relaxation mechanism is obtained through a
process called autofailure manifestation and failure exclusion, which yield a maximal interface. Wolf later extended
the same technique to a discrete synchronous model [85]. The trace structures developed by Dill and Wolf are
particularly interesting because they address the problem of receptiveness, or input completeness, by proving
closure properties and by giving decision procedures. Finally, Process Spaces [63] is a more general model
proposed by Negulescu following the work of Dill and Wolf, and is based on processes equivalent to our maximal
interfaces with two sets: X is the set of possible behaviors, and Y is the set of acceptable behaviors. A process
has the requirement that X ∪ Y = B, making it equivalent to a maximal interface. A process is the same as an
interface I that has:

MI = X ,

EI = Y .

So, processes correspond to maximal interfaces. The notion of conformance corresponds to the one proposed here.
While several operators are introduced, Process Spaces ignore the issues with inverse projection in conjunction,
and weak and strong assumptions. Process Spaces define the operations of product and exclusive sum, which
are syntactically the same as our operations of parallel composition and merging for contracts, respectively.
Product is used to compose design elements, but no insight is given into the use of exclusive sum. In particular,
the paper does not address multiple viewpoints for the same design element. Also, this work does not show how
these operations relate to the lattice operations generated by the conformance order, as we do in Section 3.4, and
no distinction is made between inputs and outputs. In process spaces, an operation called reflection is defined.
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This operation has the same closed form as the operation of reciprocal that we introduced. Nonetheless, while
Negulescu defines the closed-form expression for reflection, in our development the closed-form of the reciprocal
is derived from an expression involving the identity and the quotient. The classic Interface Automata [29] and
HRC [12, 27] models are similar to synchronous trace structures, where failures are implicitly all the traces that
are not accepted. Thus, the interface is maximal. Composition is defined on automata, rather than on traces, and
requires a procedure similar to requirement relaxation (and therefore to autofailure manifestation) in order to
maintain maximality. The authors have also extended the approach to several other kinds of behaviors, including
resources and asynchronous behaviors [22, 40]. We take these concepts a lot further in this paper to include
several other operators.

These concepts were subsequently developed to maturity by giving rise to MDE (Model Driven Engineering) [43,
55, 79]. In this context, interfaces are described as part of the system architecture and comprise typed ports,
parameters and attributes. Contracts on interfaces are typically formulated in terms of constraints on the entities
of components, using the Object Constraint Language (OCL) [65, 84]. Roughly speaking, an OCL statement
refers to a context for the considered statement, and expresses properties to be satisfied by this context (e.g., if
the context is a class, a property might be an attribute). Arithmetic or set-theoretic operations can be used in
expressing these properties. To account for behavior and performance, the classical approach in MDE consists in
enriching components with methods that can be invoked from outside, and/or state machines. Attributes on port
methods have been used to represent non-functional requirements or provisions of a component [18]. The effect
of a method is made precise by the actual code that is executed when calling this method. The state machine
description and the methods together provide directly an implementation for the component — actually, several
MDE related tools, such as GME and Rational Rose, automatically generate executable code from this specification.
The notion of refinement is replaced by the concept of class inheritance. Inheritance, however, is unable to cover
aspects related to behavior refinement, since it is limited to constraining the signature of the method, rather than
their behavior. Nor is it made precise what it means to take the conjunction of interfaces, only approximated
by multiple inheritance, or to compose them. Liskov and Wing [57] address some of these shortcomings by
strengthening Meyer’s contract model to include the specification of extra methods in the subtype, which may
change the object state, and to account for the preservation of history properties.
Others in the literature have approached the problem of studying the properties of contract models from an

abstract point of view. One of the early foundational work that concerns interface and contract specification
is due to Abadi and Lamport, who were first to thoroughly discuss and differentiate between the component
guarantees and the environment assumptions [1]. In this work, the authors focus on the formulation of the
specification as an implication, in the sense described in Section 3.1. In particular, while a specification is allowed
to make assumptions, it is not interpreted as constraining the environment, or else the specification is considered
unrealizable. In this paper we formalize the difference between these two interpretations as weak and strong
assumptions. At the same time, however, and following the work of Dill [33], realizability is defined as a game, a
technique that would later be employed in other popular interface models, such as interface automata [29]. Of
greater significance, when defining the refinement relation, the authors insist that assumptions be weakened,
which is unnecessary for implications, thus effectively obtaining the equivalent of an interface model. The main
result of Abadi and Lamport is a full set of proof rules that show when the parallel composition of components
satisfies a given property, under a set of assumptions. These proof rules have later been reformulated in similar
ways in several other contract models and tools [8, 24, 34, 38]. Composition, expressed as intersection of behaviors,
takes primarily the view of the component. Our work builds on these concepts, and evolves in complementary
directions. First, we emphasize an approach to composition that is balanced between component and environment,
leading to the notions of maximal and symmetric interfaces. More importantly, while Abadi and Lamport touch
upon the need for inverse projection during composition, they do not discuss the operation of conjunction and
all that it entails. They also discusses the validity of the circular reasoning principle when liveness properties are
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considered. Our work is largely orthogonal to these aspects, although intersection of behaviors could clearly lead
to no or multiple solutions. Dill uses failures in infinite traces to express causality and liveness [33], a method
that could be reflected in contracts. Also, proof rules similar to those proposed by Graf et al. [38] in HRC could be
employed to determine how and when circular reasoning allows a component and its environment to be refined
concurrently, each relying on the abstract description of its context, and therefore prove conformance.

Bauer et al. [8] present a meta-theory similar in spirit to our work. The objective is to provide a method with
which to construct a contract framework given a specification (or component, with our terminology) framework
with sufficient reasonable properties. The idea is to devise a set of axiomatic definitions for the contract operators
and relations, with provable compositional properties, which can be instantiated given a specification theory.
The work focuses on the relation of refinement and defines operators for composition, conjunction and quotient.
In particular, they show how to constructively define the composition operator. Their method is based on the use
of canonical forms, and treats environments and implementations asymmetrically. The modal specification model
introduced by Raclet et al. [75] is used as a case study. We follow a similar approach, and start from a generic
component model to build interface and contract models with increasing levels of structure. Our objectives,
however, are complementary. We focus in particular on dissecting the interface models to thoroughly understand
the role of each of its parts, and determine their expressiveness by considering different notions of refinement and
equivalence. Unlike the cited work, we treat environments and implementations on an equal ground, to include
methodologies that favor both component optimization and component reuse. We show the pitfalls associated
with applying inverse projection and union and propose an effective solution, using merging (see Section 3.3). In
particular, we do so from a purely semantic point of view, instead of employing the traditional transition systems.
Chilton et al. [23] develop an algebraic theory of interface automata based on traces which is also useful to

shed light on the properties of the operators and relations. The formalism is reminiscent of Dill’s trace structures,
and extends that work with additional operators, such as quotient. The authors also address issues of progress
in the context of finite traces, unlike trace structures which use infinite traces. Of particular interest is the
definition of refinement, which allows the refining component to have signatures with different sets of inputs and
outputs. Consequently, conjunction can also be defined on components with different signatures. This facilitates
a multiple viewpoint approach. However, the issue of inverse projection is not resolved, and the conjunction
“yields the coarsest component that will work in any environment safe for at least one of its operands” [23].
Hence, a viewpoint that makes no assumption will necessarily wipe out the assumptions of all other viewpoints,
as discussed in Section 3.3. We believe the merging operator that we introduce could be applied to their model to
properly handle these cases.

Most recently, Benveniste et al. have introduced a meta-theory of contracts to frame several models in the same
formalism [10], and discuss their operators. We also reason about the contract operators in a general settings, and
cover aspects, such as completion and merging, which were not analyzed previously. Our aim, however, is not
to construct another or better meta-theory. Instead, the formalism that we use is largely derived from previous
models (such as the mentioned HRC) and has been adapted to simplify the algebraic expression of our main
results. The quotient operation we discussed is the same as that defined in terms of its universal property (1) in
Benveniste et al. [10]. The closed-form expression for the quotient operation of contracts was introduced in [42].
As far as we know, the separation operation we discussed has no precedent in the literature.

Tripakis et al [83] also study the connection between different kinds of interface specification. In particular, they
show how to transform Relational Interfaces [82], which are not input complete (or receptive), into an equivalent
set of input complete specifications, in order to avoid game-theoretic methods and have a more efficient analysis.
We believe this procedure is akin to going from Interface Automata to Trace Structures. Similarly, Carmona and
Kleijn [21] explore the issue of compatibility in a general multi-component settings. This work deals primarily
with questions of receptiveness, progress and deadlock freedom. However, the authors do not develop a full
interface or contract model, but express assumptions implicitly in terms of the actions which are enabled at each
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state of the components. An analysis of these aspects, which are orthogonal to the work presented in this paper,
and their application to our context are part of our future work.

Damm et al. [26] introduce the distinction between weak and strong assumptions, which we extend using the
concept of implication. Mangeruca et al. [58] use a similar notion, called precondition, to define the conditions
under which the promises must hold, in a form similar to implications. The authors use this concept to define the
completeness of a contract relative to the requirements, and avoid implementations that vacuously satisfy their
contract. The formalism is also used to define extensions of the contract, by properly combining the promises and
their preconditions. This differs from our notion of completion, and is used to help designers cope with evolving
specifications. The authors also provide an operator to override a promise by another promise. These extensions
naturally fit in our formalism when promises are defined as implications. Using our theory, the same operators
can similarly be extended to cover also the environment requirements.

5 CONCLUSIONS
This report extends with proofs the theory presented at EMSOFT 2019 [70].
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