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Abstract 
Active natural processes, such as landslides, that can induce damages and casualties, 

recurrently affect mountainous areas. In order to reduce the risks, the careful assessment and 

monitoring of landslides is highly needed. Interferometric Synthetic Aperture Radar (InSAR) 

is a powerful tool that can extract useful information to monitor natural hazards. Over the 

past two decades, several studies have demonstrated the potential of synthetic aperture radar 

interferometry for detecting and quantifying land surface deformation. Despite the 

advantages of InSAR methods for quantifying landslide deformation, some limitations 

remain. The temporal and spatial decorrelation, the presence of atmospheric artifacts, the 1-

D Line Of Sight (LOS) observation restriction, the possible high velocity rate and the multi-

directional movement properties make it difficult to monitor accurately complex landslides 

in areas covered by vegetation. Therefore, complementary and integrated approaches, such 

as offset tracking-based techniques, and sophisticated atmospheric artifacts estimation are 

needed to overcome these limitations for monitoring ground surface deformations. These 

critical issues are particularly challenging in mountain environments, due to the SAR 

properties, the stronger spatial variations of the local atmospheric conditions and the 

scattering characteristics of the ground surface, leading to spatial and temporal decorrelation 

of the SAR signal. Hence, the performance evaluation of the offset tracking and atmospheric 

corrections techniques is important in order to assess their potentials, robustness and 

limitations. In this thesis, we aim at improving estimation accuracy of offset tracking and 

InSAR atmospheric phase delay estimation. To this end, the Corvara landslide, located in the 

Alpine region of South Tyrol, is used as a pilot site to implement and test the offset tracking 

and atmospheric correction techniques. This area is monitored with GPS periodic campaigns 

and permanent stations and over there a set of corner reflectors have been installed. This 

thesis aims at improving accuracy of offset tracking and phase delay estimation of SAR 

images through the following two approaches: 

 

i) An offset tracking feature-based approach for the velocity estimation of the X-band 

Corner Reflectors (CRs) installed on the complex and vegetated landslide. The 

approach is based on the using the combination of the corner and blob-based detectors 

and descriptors driven from computer vision filed. The aforementioned algorithms are 

applied to COSMO-SkyMed data to estimate the high velocity rate and non-LOS 

movement of the CRs and the results are validated by GPS measurements executed 

closer to the satellite acquisitions. 

 

ii) An approach for estimation and improvement of InSAR atmospheric phase delay 

correction using numerical weather data. The approach is based on the use of the new-

released ERA5 data to estimate turbulent stratified delays on the Sentinel-1 data. The 

performance of phase and weather-based data are analyzed and validated using the 

GPS and external reference data. 

 



  

 

For each of the above-mentioned topics a comprehensive state of the art is addressed, the 

limitations and challenges of existing methods are mentioned and the proposed solutions to 

the considered problems are described in detail. Experimental results conducted using real 

SAR data are provided in order to present and confirm the validity and accuracy of each one 

of the used methods.  
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Chapter 1 

 

1. INTRODUCTION 
1.1     Introduction and Motivations of the Thesis 

 

Natural disasters induced by gravitational mass movements are widespread phenomena of 

various magnitude caused by geological and climatic conditions or induced by anthropogenic 

factors [1]. Slope displacement can be detected and monitored by several Earth observation 

techniques [2], while the selection of an adequate monitoring concept depends on the scope 

of the study, the type and scale of phenomena, the data available, and the skills of the 

investigators [3][4]. The kinematics and spatial and temporal evolution of landslides using 

InSAR-based techniques have been analyzed in a large number of scientific studies 

[5][6][7][8]. New generations of satellites, such as the Copernicus Sentinel-1 (S1), open up 

new perspectives for continuous ground surface monitoring, being characterized by 

enhancements in terms of revisit time, coverage, timeliness, and reliability of service [9]. 

Indeed, the C-band S1 synthetic aperture radar (SAR) instrument is specifically designed to 

carry out interferometric analyses over land [10], and recent studies have confirmed that S1 

data allows analyzing Earth’s surface displacements using differential SAR interferometry 

(DInSAR) techniques [11][12][13]. DInSAR has the capability to precisely monitor surface 

displacements over time (temporal sampling rate up to 6 days for Sentinel-1A/B) with a wide 

coverage in a labour-saving, time-, and cost-efficient manner [14]. 

Despite the capabilities of DInSAR techniques, those suffer several drawbacks including 

spatial and temporal decorrelations [15], a possible inaccurate estimation of the phase 

ambiguity in the unwrapping phase step [16], atmospheric artifacts [17] and the capability to 

only measure 1D displacement components limited to the line of sight (LOS) direction of the 

satellite path. Regarding the latter one, should note that the design and the launch of non-

polar SAR space borne satellites cannot be currently achieved. Therefore, numerous attempts 

have been done to develop new techniques to extract the along-track components using 

available SAR data. From this perspective, InSAR techniques generally are divided into two 

groups: along-track and LOS-based SAR processing techniques. For this purpose, several 

advanced DInSAR methods can be used to extract 3D displacement components from LOS-

based detection techniques such as permanent scatterer and Small BAseline Subset, and 

along-track-based techniques multi-aperture interferometry (MAI) and pixel offset tracking.  

The methods based on time series analysis of SAR data are also characterized by the 

separation between atmospheric delay and deformation phase. All decomposition methods 

that isolate the phase of atmospheric delay assume that the atmospheric delay is uncorrelated 

in time, and therefore, the expected value of the differential atmospheric delay is zero. 



  

 

Different techniques can be used to reduce the effect of atmospheric delay on the time series 

stack,  such as averaging of various interferograms [17] [18][19], separating atmospheric 

phase in the single master on the stack [20], stochastic models [21] and a sequence of high-

pass and low-pass filters in time and space [22][23]. To benefit from the advantages of the 

last two ones, a combination of both methods can be used [24]. In cases of sharp topography, 

the assumption of no correlation between atmospheric delay and time may not be valid. In 

this case, in addition to the atmospheric delay, heterogeneity in pressure, temperature and 

humidity will affect the consecutive SAR data [15] and can lead to the temporal 

decorrelation. Different approaches such as using numerical weather models [25] can be used 

to estimate the vertical stratification and mitigate its effects on the interferograms. 

 

1.2     Contributions of the Thesis 

 

On the basis of the analysis of the problems related to the monitoring of complex and 

vegetated landslides in mountainous areas, this thesis generally focuses on how phase and 

intensity-based offset tracking and InSAR atmospheric correction can contribute in the 

estimation of the related terrain deformation. 

More in details, the two topics are analyzed as follows:  

 

• Comprehensive assessment of the literature on offset estimation methods; 

  

• Definition of hybrid techniques based on the combination of different feature-based 

and area-based matching algorithms for improving accuracy in offset estimation in 

SAR data in vegetated terrains characterized by high velocity rates; 

 

• Comprehensive performance evaluation of the InSAR atmospheric corrections 

methods; 

 

• Improvement of InSAR phase delay estimation using the new-released numerical 

weather model ERA5. 

 

 

In the next sub-sections the main objectives and novelties are more elaborated. 

 

Accuracy improvement of offset estimation using computer vision-driven techniques 

applied to SAR data 

 

We analyzed phase and intensity-based offset-tracking techniques to improve the accuracy 

of offset estimation (related to movement of the CRs on the area of study). To this end, the 

goal is how we can overcome or mitigate the geometrical distortions caused by the tilting of 

the CRs installed in the area characterized by fast movements on the SAR data, which are the 

main problems in offset estimation. In the phase-based part, PSI and MAI techniques, and in 

in the feature-based part, area and feature-based matching algorithms are used for extracting 



  

 

LOS and azimuthal displacement components. In the area-based algorithms section, phase 

and orientation correlation in the frequency domain, and intensity-based cross correlation in 

the spatial domain are apples to SAR data. In the feature-based algorithms section, the local 

feature detectors and descriptors in the spatial domain are applied. Four well-known area-

based and five feature-based matching algorithms (taken from the computer vision) are 

applied to 16 X-band corner reflectors and the results are validated with ground GPS 

measurements. The accuracy of the amplitude offset tracking technique have been 

empirically reported by researcher between about 1/10 to 1/30 of the pixel size for typical 

SAR systems, corresponding to 10% and 3.3% of the pixel size of CSK data. Our results 

presented that offset accuracy from 0% of the pixel size (i.e., correct estimation) using a 

combination of the feature-based algorithms up to 1% of the pixel size using the phase 

correlation.  

 

Performance evaluation of phase and numerical weather models in InSAR atmospheric 

correction 

 

Performances of phase and numerical weather models in InSAR atmospheric correction are 

evaluated in order to assess their potentials, robustness and limitations. This section analyzes 

and evaluates the performance of four numerical weather models, two phase-based models 

(i.e., linear and non-liner) and multispectral data to estimate phase delay using Sentinel-1A/B 

data over the Corvara landslide. The GPS data and external product are used to validate the 

results. Three statistical parameters and two different metrics are utilized as performance 

indicators to evaluate the model’s performance for the zenith and InSAR phase delay 

estimation. We generally found that ERA5 outperformed among the current and conventional 

models with a phase standard deviation reduction of 77.7%, correlation coefficient of 0.86 

and a less significant error in the velocity estimation of the landslide. 

 

 

1.3     Structure of the Thesis 

 

The thesis is organized in six chapters. The current chapter addressed the motivations of the 

research and highlighted the objectives and the main contributions.  

 

Chapter 2 provides the fundamentals about the basic and state of the art of the offset tracking 

techniques, and SAR, InSAR, multi-temporal DInSAR and InSAR atmospheric correction 

methods. 

 

Chapter 3 starts with a brief presentation of the test site, the equipment installed and the 

datasets, as well as some metrics used for the quality assessment. The method section 

illustrates the techniques, including PSI, MAI, and phase and intensity-based sub-pixel offset 

tracking, used in the study and some data processing tasks. The effectiveness of the methods 

has been validated on COSMO-SkyMed data over the set of X-band CRs. The results of 



  

 

InSAR and offset tracking techniques applied to the CRs are presented in the following 

section. Finally, the performance assessment results, downsides and advantages of each 

technique are addressed in the discussion and conclusion sections. 

 

Chapter 4 deals with the assessment of the performance of 2D and 3D phase unwrapping 

methods in a vegetated landslide and evaluates the application of DInSAR using Sentinel-1 

data and DGNSS to continuously monitor the Corvara landslide. The ground-based and 

remote sensing data as well as the methodological workflow are also presented. Afterwards, 

DInSAR results are analyzed and compared with DGNSS data in order to discuss the 

potential and limitations of the new S1 mission for the continuous spatial monitoring of 

complex and vegetated landslides. 

 

Chapter 5 presents the use of phase-based models, including linear and non-linear (power 

law) models, Numerical Weather Models (NWM), multi-spectral data and GPS data, to 

estimate phase delay on Sentinel-1A/B data and evaluate their performance. Three steps are 

carried out: 1) cross-comparison between the ZTD, ZWD and TWD derived by GPS with its 

counterparts obtained by NWM-based models, 2) cross-comparison between the InSAR 

tropospheric phase delays estimated by phase and NWM-based models in a regional scale 

and 3) cross-comparison between the GPS stations velocity and the velocity corrected by the 

phase and NWM-based models in a local scale (i.e., the active Corvara landslide). For this 

purpose, in addition to the GPS data, we used the GACOS product as reference to cross 

validate the results in all steps.  

 

Finally, chapter 6 provides the conclusion of the results of the chapters 3, 4 and 5 and a 

brief summary on the possible further development. 

  



  

 

Chapter 2 

 

2. FUNDAMENTALS ON SAR AND OFFSET 

TRACKING TECHNIQUES 

 
The aim of this chapter is to provide the readers with the basic knowledge about synthetic aperture 

radars and the state of the art on InSAR and offset tracking techniques on SAR images. The chapter 

is organized in three sections. In the first section, the basic principles of SAR, InSAR, multi-temporal 

DInSAR (including PSI and SBAS) and atmospheric correction are reviewed. In the second section, 

InSAR-based offset tracking methods including split-bandwidth-based techniques (i.e., Spectral 

Diversity and Multiple Aperture Interferometry) and offset tracking-based techniques are described. 

In the last section, a brief summary of InSAR atmospheric correction methods are discussed. 

 

2.1    Synthetic Aperture Radar (SAR) system 

 

Radar satellite systems utilize a side-looking antenna to illuminate a footprint on Earth 

surface (swath) using signal pulses (see Figure 2.1). The amplitude of the pulse is constant 

while its frequency is linearly varied in time (chirp pulse) (see Figure 2.2). 

 

Figure 2.1 : SAR geometry imaging 



  

 

The transmitted chirped pulses are repeated at a rate called Pulse Repetition Frequency 

(PRF):  

 

Figure 2.2 : A simple sinusoidal pulse (left) and chirped pulse (right) [26]. 

 

According to Figure 2.1and Figure 2.2, the slant range resolution (rr) and ground range 

resolution (rg) of a real SAR system are defined as follows:  

2
a

c
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r
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=                                                      (2.1) 

12 sin
g
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c
r

B 
=                                                    (2.2) 

Where Bc and 𝜃 are bandwidth chirp and incident angle, respectively. From theory of antenna, 

the angular beamwidth of an antenna (Θ) with a length of la along the azimuth direction is 

defined as: 

             
a
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
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Thus, the azimuthal spatial resolution considering the footprint of antenna beam is given by: 

1a

a

r r
l


=                                                       (2.4) 

where r1 is the slant range distance (i.e., the distance from satellite to the ground target point) 

which is a height-dependent variable. As one can see from (2.4), a larger antenna can provide 

a better azimuthal resolution. In the SAR approach, a larger antenna is synthesized by using 

signal processing techniques so that the azimuthal resolution is no longer either height or 



  

 

range-dependent and only depends on antenna length. The maximum azimuth resolution 

obtaines with a synthetic antenna (aperture) is given by: 

2

a
a

l
r =                                                       (2.5) 

Therefore, contrary to real antenna aperture where the azimuth resolution has an inverse 

dependence on the antenna length (see (2.4)). In a SAR system (2.5), the azimuth resolution 

directly depends on the physical length of antenna. This means that a fine azimuth resolution 

can be achieved by using a short antenna in a SAR system [26].  

 

2.2     Synthetic aperture radar interferometry (InSAR) 

 

InSAR relays on multiplicative interference, which can be used either for DEM or 

deformation extraction. Two SAR images (called master and slave) usually captured at two 

different times and from a different position are needed to make an interferogram. After the 

co-registration step, the interferometric phase is obtained by multiplying the master with the 

complex conjugate of the co-registered slave. The resulted interferometric phase is attributed 

to the different distances between satellite and target in the Line Of Sight (LOS) direction 

(see Figure 2.3): 

4 rr





 =                                                          (2.6) 

 

Figure 2.3 : Repeat pass interferometry. The relationship between phase difference and shift in slant range. 

 

where r1 and r2 indicate the range between the SAR platform and ground object on the earth 

and B refers to the separation baseline between A1 and A2. Interferometric phase is composed 

of the different phase contributions as follows: 



  

 

base topo disp atm noise      = + + + +                                    (2.7) 

( )
4

sinbase topo perpB


   


+ = − −                                        (2.8) 

where 𝜑𝑏𝑎𝑠𝑒 is the phase induced by the baseline between the location of two platforms, 

𝜑𝑡𝑜𝑝𝑜 is due to topography, 𝜑𝑑𝑖𝑠𝑝 is due to ground displacement, 𝜑𝑎𝑡𝑚 is due to atmospheric 

phase delay, and 𝜑𝑛𝑜𝑖𝑠𝑒 is related to external and internal noises sources such as ionospheric 

and system noise. Since the interferometric phase is wrapped into 2π, to achieve a continuous 

deformation map the differential phase between adjacent pixels must be integrated using a 

procedure called phase unwrapping. Conventional InSAR encounters several limitations such 

as temporal and geometric decorrelation [27] and phase variability due to the atmospheric 

phase screen mainly correlated with topography [15]. Multi-temporal InSAR can potentially 

mitigate or overcome the aforementioned drawbacks.  

Displacement component derived by InSAR can be decomposed and projected to the 

geographical components on the Earth. The sensitivity decomposition can be obtained using 

unit vector, as a function of range and azimuth changes for LOS (cross-track) [15] and along-

track deformation, as follows: 

  ( ) ( ) ( ) ( ) ( )( ) 1 1 1, , cos , sin .sin , sin .cos
T

Cross track LOS u n e h hU U U U     = −         (2.9) 

  ( ) ( )0, , 0, cos , sin
T

Along track n e h hU U U  = − −                                (2.10) 

The sensitivity decomposition of LOS deformation obtained by substituting 𝜃1 and 𝛼ℎ in 

(2.9), is  [0.697, −0.185, 0.692][𝑈𝑢, 𝑈𝑛, 𝑈𝑒]𝑇. 

 

 

2.3     Multi-temporal DInSAR 
 

2.3.1 Persistent scatterer Interferometry (PSI)  

PSI as an extension to the conventional InSAR has been developed to address decorrelation 

problems and atmospheric delays using multiple SAR acquisitions to estimate spatial-

temporal characteristics of a surface deformation[28]. Generally, PSI technique relies on the 

main following steps: 1) interferogram generation, 2) Computation of the differential 

interferograms using a digital elevation model (DEM), 3) preliminary estimation of PS 

pixels, which can be based on phase stability, amplitude and correlation, at a coarse grid, and 

4) Atmospheric Phase Screen (APS) removal. In the third step, we need to identify the pixels 

whose phase information is less contaminated by noise as much as possible. Changes in the 



  

 

singles scatterers contributing to a pixel over time (temporal decorrelation) and viewing 

angles (geometric decorrelation) lead to phase and amplitude variation of the pixel. Hence, 

two types of pixels types could be defined: (1) the pixels with scattering objects that  

dominate the radar backscattering in comparison to the background (i.e. high coherence over 

time), named permanent scatterers (PS), (2) pixels with strong backscattering coming from 

small scattering objects, named distributed scatterer (DS) (see Figure 2.4). If the phase of a 

pixel appears as a point scatterer on the image (a stable phase history over time), the 

decorrelation problem is mitigated. For example, manmade structures such building in urban 

areas or tree trunks in natural terrain produce a point target response in SAR images that are 

potential measurement points in the PSI technique. 

 

 

Figure 2.4 : Phase simulation for (a) a distributed scatterer pixel and (b) a persistent scatterer [29]. 

 

To select the pixels with a high phase stability, two selection approaches exist, including a-

priori pixel and a-posteriori pixel selection. The main purpose of the a-priori pixel approach 

is to reduce the negative effect of the pixels at low coherence as well as the computational 

load. PS selection can be based on either the phase or the amplitude information. The main 

methods that are generally used to PS pixel selection are: 1) normalized amplitude dispersion 

(DA) (2.11) [13], 2) amplitude thresholding [14], 3) signal-to-clutter ratio [15] and 4) 

supervised selection [16] (see Table 2.1). The normalized amplitude dispersion (DA) is 

defined (Figure 2.5): 

A
A

A

D



=                                                               (2.11) 

 

Figure 2.5 : Numerical simulation for the amplitude dispersion index [28]. 



  

 

where 𝜎𝐴 and 𝜇𝐴 are standard deviation and mean amplitude, respectively. In PSI technique, 

consistency of the amplitude is mainly used to estimate the phase stability in the stack. 

Therefore, a radiometric calibration of Single Look Complex (SLC) data, which are 

represented by a complex (I and Q) value containing both amplitude and phase information, 

should be carefully applied to the data. The reliability of the selected PS candidates will be 

specified using the a-posteriori pixel selection approach in order to remove unreliable pixels. 

Different quality indicators are used to select the PS, such as local ensemble coherence or 

variance factor and can be used along with a testing procedure based on the various key 

parameter such as phase ambiguities [17].  

 

Table 2.1 : Summary of main methods for the pixel selection  
 

Methods A-priori selection A-posteriori selection Atmospheric signal 

Stacking [18] [19] [20] Coherence - Averaging 

Phase gradient approach 

[27] 

Coherence and phase 

gradient 
- Weighted averaging 

Permanent Scatterers 

[13] [21] 
Amplitude dispersion Temporal coherence 

High-pass/low-pass 

filtering 

SBAS [23] Mean spatial coherence - 
High-pass/low-pass 

filtering 

STUN [22] [28] 
Amplitude  

dispersion/SCR 
Parameter testing Stochastic model 

StaMPS [25] Amplitude dispersion 

PS probability (temporal 

coherence+ amplitude 

dispersion) 

High-pass/low-pass 

filtering 

(adapted) 

SqueeSAR [29] 
Statistical homogeneity 

Test 
Temporal coherence 

High-pass/low-pass 

filtering 

 

Generally, the initial pixel selection is performed within grid cells for reducing the 

computational load and a network is then created to link the PS pixels for displacement and 

DEM errors estimation, and APS residual removal (Figure 2.6). The pixels are selected as a 

PS pixel if the amplitude dispersion is below a threshold, typically between 0.25 and 0.4 

[30][28]. The PS pixels density must be at least ∼3 PS/km2, since otherwise the atmospheric 

signal cannot reliably be interpolated [30]. 

 



  

 

 

Figure 2.6 : Pixel selection and construct a network. On the left side, the best point-like scatterer (the red 

squares) is selected in each grid cells in the initial pixel selection step. On the right side, a network 

is created to estimate the displacement and DEM errors. The difference between nearby pixels 

also mitigates APS.     

 

At the end, to isolate the deformational signal from interferogram, the atmospheric phase is 

removed and the uncorrelated component of the DEM error (∆ℎ) is obtained and removed at 

the inversion step through the following equation:  

 

( )14 sinperpB h 





 =                                                    (2.12) 

Bperp indicates the perpendicular baseline. Indeed, pixel selection based on the phase stability 

provide more PSs than amplitude-based PSs selection. In the atmospheric phase removal 

step, as atmospheric signal is uncorrelated in time and correlated in space, hence, this can be 

isolated from the other components of the residual phase by low-pass filtering in the spatial 

domain and high-pass filtering in the temporal domain. The filtering can be performed on 

wrapped complex residual signal separately to estimate low wavelengths without need for 

unwrapping [20]. After the low wavelength part of the atmospheric delays, it is interpolated 

at the original resolution of the differential interferograms and the interpolated atmospheric 

delays are subtracted from the differential interferograms at full resolution. The Kriging 

interpolation can also be utilized instead of using moving averaging window in the 

interpolation step [30]. 

 

Instead of using a model of deformation in time, which is used in conventional PSI, StaMPS 

uses the spatial correlation to estimate displacement parameters. PSI technique, in its first 

versions, identifies PS pixels whose phase history match a pre-defined model (often a linear 

model). Thus, a priori knowledge of how displacement varies in time is essential for a correct 

displacement estimation. When a temporal pattern of deformation is not known a-priori, 

which is the case for natural terrain such as landslides and volcanos, specific techniques (e.g., 

StaMPS), have been developed. In StaMPS, first for the initial PS pixel selection, a high 

threshold of amplitude dispersion is applied. Then, spatial correlation of phase 

measurements, rather than a functional temporal model, is used to identify PS pixels. This is 

applicable in areas undergoing non-steady deformation with no prior knowledge of the 

variations in deformation rate. This is performed using low-pass filtering in the space domain. 



  

 

In this way, the low frequency components of the predefined patches (by user), including 

correlated spatially of the first four phase contributions of the interferogram, will be passed 

and the noise component is filtered (see (2.7) and Table 2.2).  

 

Table 2.2 : Spatial and temporal correlation status of the phase contributions in Eq. 2, where ↓ and ↑ 
symbols refer to low and high frequency, respectively [29]. 

 

Phase contribution Correlation             Frequency  

Deformation Spatial ↓ Temporal ↓ 

Atmospheric phase screen Spatial ↓ Temporal ↑ 

Orbit errors Spatial ↓ Temporal ↑ 

Topo correction error Spatial ↑ α Baseline ↑ 

Uncorrelated noise terms Spatial ↑ Temporal ↑ 

 

Subsequently, the contribution of each pixel is weighted based on its estimated temporal 

coherence and the previous processing is iterated.  

 

2.3.2     Small BAseline Subset (SBAS) 

SBAS relies on the definition of a threshold on temporal and spatial baseline values. A shorter 

spatial baseline, which is characterized by a small orbital separation (baseline), can 

considerably reduce the spatial decorrelation phenomena. Let us assume N+1 SAR images 

corresponding to the same area and acquired between time t0 to tN exist leading to M 

interferograms with the following condition: 

(
𝑁+1

2
≤ 𝑀 ≤ 𝑁 (

𝑁+1

2
))                                    (2.13) 

For a given interferogram between times 𝑡𝐵 and 𝑡𝐴 we can write the relationship between 

deformation and phase: 

𝛿𝜑 = 𝜑(𝑡𝐵) − 𝜑(𝑡𝐴) = 4𝜋 𝜆(𝑑𝐵 − 𝑑𝐴)                          ⁄ (2.14) 

 

The relationship between the N unknown phase values 𝜑𝑇associated with the deformation 

and the vector of the M (known) phase values of interferograms can be defined as follows 

[23]:    

 

𝜑𝑇 = [𝜑(𝑡1), … . , 𝜑(𝑡𝑁) ]                𝛿𝜑𝑇 = [𝛿𝜑1, … . , 𝛿𝜑𝑀 ]                      (2.15) 

 

Therefore, the phase deferential for a given interferogram for a master (m) and a slave (s) can 

be written as: 

𝛿𝜑 = 𝜑(𝑡𝑚) − 𝜑(𝑡𝑠)                                                 (2.16) 

 

Then a matrix representation of a system of M equations with N unknowns can be defined: 

 

𝐴𝜑 = 𝛿𝜑                                                           (2.17) 



  

 

 

Where A is an M×N matrix, and for M=N and M>N the equation above can be solved by 

Least Square (LS) technique, which is limited to a single small baseline subset: 

 

𝜑̂ = 𝐴#𝛿𝜑       𝑤𝑖𝑡ℎ          𝐴# = (𝐴𝑇𝐴)−1𝐴𝑇                             (2.18) 

 

In case of increasing temporal sampling rate of the deformation signal, including probably 

different subset, the singular value decomposition method (SVD) (due to rank deficiency of 

the constructed matrix) is used to make a connection between independent acquisition 

datasets, especially for large baselines [23]. Decomposition of the vector A by SVD, 

characterized by minimum-norm constraint on the signal phase, forces the solution to be as 

close to zero as possible, probably leading to large discontinuities in the cumulative 

deformation [23]. As a result, mean phase velocity between time-adjacent acquisitions is 

replaced with the unknowns in equation (2.17) to overcome this problem. The block diagram 

in figure 2.7 represents the SBAS implementation. 

 

 
Figure 2.7 : Schematic diagram of SBAS implementation [23]. LP and HP refer to low and high pass filters, 

respectively. 

 

The atmospheric phase artifacts are removed using the large number of available data (i.e. 

spatial and temporal information). SBAS is generally based on the three following steps: 1) 

looking for the high coherent pixels on the data where the noise can be considered negligible 

using following two main criteria; first,  small spatial and temporal baseline; second, 

minimum frequency shift between the Doppler centroids [30], 2) separating the phase 

information results from deformation from the undesired phases including the topographic 

and atmospheric artifacts, 3) removing the artifacts from the interferometric phase and 

generating the deformation map. Two unwrapping algorithms can be generally used: (1) the 

minimum cost flow algorithm [31] and (2) the region growing procedure that is used to 

extend the unwrapping coverage to the low coherent areas. Finally, the atmospheric phase 

and any possible orbital ramps due to the shifts in satellite orbits are filtered out using the 

cascade of a low-pass filtering [32]. The main methods used in the baseline configurations 

of the SBAS algorithm are presented in Table 2.3.  



  

 

 

 
Table 2.3 : Summary of the main important baseline configurations 

 
Method Baseline Configuration Characteristics 

Ferretti [13] Single master stack Using only for PSs 

Berardino [23]; 

Schmidt [34] 
Short temporal and/or perpendicular 

Minimizing the baselines and connection of 

clusters by 

(SVD) 

van Leijen and 

Hanssen [35] 

Minimal number of connections 

graph, a traveling salesman solution 

Minimizing the baselines using all available 

SLC’s 

Perissin et al., [36] Minimal spanning tree 
Minimizing the baselines using all available 

SLC’s 

 

We can use SBAS at the local and regional scales. In the former case, we usually use single 

look data, to get best possible spatial resolution, and in the latter one, we need to apply 

multilooking processing [33]. The baseline configurations related to the large interferometric 

image pairs in the time series may also influence SBAS results. The optimal baseline 

configuration leads to minimize the noise and therefore the decorrelation. It is expressed in 

terms of either perpendicular baseline, acquisition temporal baseline or Doppler baseline. In 

stacking the InSAR time-series, the master should be selected based on the highest stack 

coherence (γm) according to the following equation [21] adopted for the CSK to maximizes 

the sum correlation of all the interferograms:  

( ) ( ) ( ), , ,
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, 5000 , 1.5 , 1260
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=                   (2.19) 
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                                  (2.20) 

with 𝐵𝑝𝑒𝑟𝑝
𝑘,𝑚  as perpendicular baseline between images m and k at the center of images, 𝑇𝑘,𝑚 

temporal baseline (in years), and 𝑓𝑑𝑐
𝑘,𝑚 Doppler baseline. 

 

2.4     InSAR atmospheric correction 

 

According to (2.7), the fourth component of interferogram phase is related to the variation of 

signal delay as it travels through the atmosphere. The main source of this delay results in the 

variation of water vapor in the atmosphere. Water vapor is predominantly found in the 

troposphere (the lowest 10-12 km part of atmosphere) almost one-half of it is concentrated 

between sea level and 1.5 km, less than 5-6% above 5 km and less than 1% is within 

stratosphere (>12 km) (Figure 2.8). Water vapor is highly variable between 0-4% in temporal 



  

 

and spatial scale [31]. The atmospheric phase term (2.7) is locally correlated in space 

(topography-dependent) and in time on the scale of hours and days. In fact, considering revisit 

time of SAR satellites (in any case more than a couple of days), the atmospheric signal can 

be considered uncorrelated in time. The wet component of atmospheric refractivity gives rise 

excess path of radar signal propagating in the atmosphere [32]. It is usually modelled as a 

long wavelength component in the unwrapped phase [29]. Sensitivity of the tropospheric 

refractivity is highest for spatial variations in water vapor content (4-20 times greater than 

for temperature variation) [15]. Since the total signal delay could be up to several meters, this 

contribution can represent a very strong limitation for a correct unwrapping of the 

interferogram [15]. Consequently, atmospheric artifacts could introduce considerable errors 

to simple or multi-temporal InSAR measurements [33]. Delay measurements could be 

obtained by space-geodetic tools to estimate perceptible water vapor in the atmosphere [34] 

and GPS [35]. Generally, to mitigate the atmospheric artifact on InSAR measurements 

different approaches can be used:  1) InSAR phase model, 2) numerical weather models, 3) 

multispectral data and 4) GPS data. The first ones rely on linear or non-linear relationships 

between InSAR phase and topography [36]. The second one uses computation of the 

refractivity components of weather data to estimate the phase delay [37]. The third ones can 

provide only the wet component of refractivity [38]. Finally, the last one can yield a point-

wise of zenith total delay (wet+ hydrostatic components) [39]. 

 

Figure 2.8 : Atmosphere layers (yellow dash line) with temperature (white line) 

Generally, phase delay of radar signal induced by the atmosphere can be defined by the 

atmospheric refractivity N: 
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where T is the temperature (Kelvin), P is the pressure (hPa), e is the partial pressure of water 

vapor (hPa), ne is electron number density per cubic meter, f is the radar center frequency and 

W is the liquid water content (g/m3), while K1=77.6, K2=23.2 and K3=3.75×105 are empirical 

coefficients [40]. The refractivity term is composed of four components (2.21): hydrostatic 

or dry Nhydro (the first term), wet Nwet (the second term), ionospheric Niono (the third term) 

and liquid Nliquid (the forth term). Each component can partially cause some phase delay (i.e., 

Nhydro+ Nwet) or phase advance (Niono) of the radar signal. The effect of Niono is often 

significant for longer wavelengths (e.g., P and L-band), whereas for sensors with shorter 

wavelengths (e.g., X and C-band) is negligible. The liquid component affects the refractivity 

just in case of saturated atmosphere and for the InSAR application can be ignored [15]. 

Therefore, one-way tropospheric delay (𝑆𝑡𝑟𝑜𝑝) and two-ways tropospheric phase delay 

(𝜑𝑡𝑟𝑜𝑝) can be characterized by integrating over the refractivity along radar line-of-sight at a 

given height (h) as: 
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 where -4π/λ is a factor to convert from pseudo-range increase to phase delay [15]. Generally, 

tropospheric delays vary both vertically and laterally and can be considered as the sum of 

two components, i) a turbulent component (wet delay) and ii) a vertically stratified 

component (hydro or dry delay). The former is considered as a short-scale (few km) signal 

and is highly correlated with topography results from troposphere dynamics. The latter is 

known as a large-scale (10s of km) signal highly varied in space and time and is related to 

variations in pressure, temperature, and relative humidity.  

 

Stratified tropospheric delay can cause a long-term bias in estimates of the deformation signal 

where stacking-based methods are used especially when seasonal variations have not 

properly been sampled in time [41]. Different methods have been proposed to correct the 

tropospheric phase delay in SAR data, which can be generally split  into two groups: i) phase-

based methods (or empirical methods), relying on the correlation between interferometric 

phase and topography in either a non-deforming area [36][42] or a deforming area (power 

law) [43], ii) weather-based models (or predictive methods) relying on weather parameters 

(e.g., pressure, temperature, and relative humidity) of (NWM)[44][37][45] such as ERA-



  

 

Interim [37] and ERA5 provided by ECMWF (European Center for Medium-Range Weather 

Forecasts), Generic Atmospheric Correction Online Service for InSAR (GACOS) (based on 

HRES-ECMWF)[46], Global Forecast System (GFS) data using Weather Research and 

Forecast (WRF) model [47][48], Modern-Era Retrospective analysis for Research and 

Applications (MERRA-2). Satellite spectrometers, utilizing observations of atmospheric 

water vapor, could also be used to estimate wet delay such as Moderate Resolution Imaging 

Spectroradiometer (MODIS) [38] and Medium-Resolution Imaging Spectrometer on board 

Envisat (MERIS)[49]. In addition to that, point-wise GPS measurements can be used to 

estimate Zenith Total Delay (ZTD), Zenith Wet Delay (ZWD) and Zenith Hydrostatic Delay 

(ZHD) [50][51][52] alone or in combination with spectrometer data [39]. 

Each method has its own drawbacks and advantages. For instance, linear methods have two 

main limitations: i) the requirement to have a non-deforming area (this could be overcome 

by applying a spatial-band filtering sensitive to deformation [53] or using a deformation 

model [54]), ii) the simple hypothesis of dependency between phase and elevation does not 

take into account the spatial variation of atmospheric characteristics. The power law 

technique [43] was proposed to either operate on a deforming region or consider the spatial 

variation between phase and elevation.  

The efficiency of the atmospheric correction methods is restricted by different variables. For 

example, Generally, NWM models have a low spatial and temporal resolution and might not 

be available at the time of SAR data acquisition. Therefore, interpolating in time and 

resampling in space could potentially lead to an unwanted uncertainty [47]. GPS data are 

known as accurate pointwise measurements but are not available everywhere. Multi-spectral 

data can only be used in cloud-free and daylight conditions. 

 

Atmospheric correction methods 

Phase delay of radar signal induced by the atmosphere can be defined by the atmospheric 

refractivity N using (2.21) and one-way tropospheric delay (𝑆𝑡𝑟𝑜𝑝) and two-ways tropospheric 

phase delay (𝜑𝑡𝑟𝑜𝑝) can be characterized by integrating over the refractivity along radar line-

of-sight at a given height (h) by (2.22) and (2.23). 

 

Phase-based tropospheric delay estimation (linear) 

Tropospheric phase delay based on the linear model assumes that a linear relation between 

the interferometric tropospheric delay and the topography exists. This phase delay is 

estimated from data in a non-deforming region: 

_ 0trop linear k h  = +                                                       (2.24) 



  

 

where the coefficient kΔφ indicates a constant relating the interferometric tropospheric phase 

to topography, h the altitude and Δφ0 is related to a constant shift applied to the whole 

interferogram that can be therefore neglected [43].  

  

Phase-based tropospheric delay estimation (non-linear) 

 Since tropospheric phase decreases by decreasing the height and relative delays between 

different acquisitions are only significant up to a certain altitude h0 (where phase delays 

converged to zero), the relationship between phase and topography can be empirically 

approximated by the following power law function [43]: 

( )0 0 0

d

trop k h h h h


 = − +                                         (2.25) 

where kφ is an unknown coefficient relating to phase and topography, which varies spatially 

in each acquisition. The parameters αd and Δ𝜑o are the power law decay component and the 

phase delay at the reference height, respectively. The interferometric phase delay (i.e., 

difference between phase delay of master and slaves acquisitions (∆𝜑𝑡𝑟𝑜𝑝 = 𝜑𝑡𝑟𝑜𝑝
𝑚 − 𝜑𝑡𝑟𝑜𝑝

𝑠 ) is 

obtained according to: 
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trop m s m sk k h h k k k


      = − − = −               (2.26) 

where kΔ𝜑 can be estimated by applying band-filtered phase and topography to (2.26) due to 

the fact that the tropospheric phase is present in all wavelength scales and the spatial 

frequency band is relatively not sensitive to other signals such as incorrect orbit and 

ionospheric delay [43][53]. 

 

 NWM-based tropospheric delay estimation 

The second type of the correction method exploits the availability of external data sets. NWM 

has a great potential in phase delay estimation in InSAR applications as an external data. In 

this approach, atmospheric variables are used to estimate the refractivity components (2.21) 

These NWM models are various in terms of spatio-temporal resolution and data provider. 

Therefore, the use of each model to estimate spatiotemporal variations of both water vapor 

and temperature (wet delay) and pressure (hydrostatic or dry delay) might lead to a different 

accuracy and precision in phase delay estimation. To determine the robustness and weakness 

of each NWM model we use ERA-Interim, ERA5, MERRA2 and WRF models for phase 

delay estimation and GACOS and GPS data for purpose of the results accuracy assessment. 

 



  

 

Multi-spectral data  

The MODIS data can be used to estimate the wet component of refractivity under cloud-free 

and daylight conditions. Five near-infrared (IR) MODIS channels including three water 

vapor absorption and two non-absorption are usually used to estimate water vapor. MODIS 

could retrieve water vapor using observations of water vapor attenuation of reflected solar 

radiation in the near-IR channels up to an accuracy of 5-10% [39] [55]. Comparison of water 

vapor estimated by MODIS data to GPS and radiosonde are pointed out that MODIS 

overestimates water vapor by a scale factor of 1.07-1.2. Therefore, MODIS-driven wet delay 

should be calibrated before using it in InSAR atmospheric correction [56].  

 

2.5     Offset tracking techniques  

     

Generally, offset could be estimated through following techniques:  

 

1) Relying on azimuth split-bandwidth of master and slave images into forward and 

backward including i) spectral diversity and ii) multi-aperture interferometry 

techniques; 

2)  Relying on Coherence using complex multiplication between master and slave 

images and based on intensity information of master and slave images (hereafter 

called Incoherent Cross Correlation (ICC)) offset estimation; 

3) Offset estimation-driven from image processing techniques including template-based 

matching. 

Each approach is addressed in detail in the following sub-sections.  

 

2.6    Spectral Diversity (SD) and Multi-Aperture Interferometry (MAI) 

The SD method was initially developed to specify absolute phase [57]. It was then used to 

improve co-registration accuracy between two SAR images [58]. SD extracts phase 

difference from an interferogram by a band-pass filter. It utilizes a linear phase element of 

the demodulated Impulse Response Function (IRF) in azimuth direction for master Am(t) and 

slave As(t) data (see Figure 2.99). The amplitude of an azimuth IRF is modulated by the 

position of the reflected signal in the azimuth antenna and then the real signal is obtained by 

removing the modulation through matched filtering [58]. A reference signal created by the 

Doppler history of satellite pulses can be defined as follows: 
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where t and t0 indicate time variable and zero Doppler frequency position (Df1), respectively. 

𝜑1 and 𝜑2 refer to signal phases, the sinc(t) function is given by sin(x)/x and Ka is the Doppler 

bandwidth covered by both master and slave. All the following parameters become equal 

when a command band filter (Ka) is applied (see Figure 2.9): 

 
1 2a a aK K K= =                                                    (2.29) 

1 2dc dc dcf f f= =                                                     (2.30) 

In case of misregistration, an additional phase 𝜑𝑚𝑖𝑠𝑟𝑒𝑔 will be add to the interferogram: 

2misreg Dcf t =                                                        (2,31) 

The estimation of Δt can be used to retrieve a misregistration of pixel offset, as it includes 

the amplitude and linear phase information of IRF. 

The timing shift Δt is specified by the principle of a linearly varying Doppler centroid. In 

order to specify the timing shift Δt the bandwidth is split into two equal sections and forming 

four sub-images (𝑓1
𝐴, 𝑓1

𝐵, 𝑓2
𝐴 𝑎𝑛𝑑 𝑓2

𝐵), where A and B refer to the sub-band one and two (see 

Figure 2.9), respectively. For each sub-look we will have: 
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Figure 2.9 : (a) band command filter implementation to achieve Ka on a master and slave (the modified 

figure was taken from the training manual (TM-19_ptB) of the European Space Agency (ESA))) 

and (b) Gaussian weighted sub band filter to divide bandwidth SD interferogram [58]. 

 

A complex multiplication is applied to sub-bands (i.e., upper sub-band of ‘a’ and lower sub-

band of ‘b’) of master and its conjugative slave [58]: 

1 2*

1 2 1 2

A AjA A A A

lv c c c c e
 −

= =                                           (2,33a) 

1 2*

1 2 1 2

B BjB B B B

uv c c c c e
 −

= =                                          (2,33b) 

Phase differential of upper (𝜑𝑢 = 𝜑1
𝐴 − 𝜑2

𝐴) and lower (𝜑𝑙 = 𝜑1
𝐵 − 𝜑2

𝐵) sub-bands of 

interferograms yields differential SD: 

SD l u  = −                                                            (2.34) 

After that, the SD phase is converted to timing error (2.35) and then to spatial misalignment 

in pixel offsets by means of azimuth Ka  (2.36) 

(2.34). Finally, the azimuth offset is obtained by multiplying by Pixels Pacing (PS) 

(2.37)[59]:   
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. ax t K =                                                            (2.36) 

.azimuthx x PS =                                                        (2.37) 

The accuracy equation for the SD method is defined [60] as: 
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where 𝛾, N, Bc and Bs refers to coherence, number of independent samples, bandwidth, and 

sub-bandwidth, respectively. 

MAI is a SD-based technique that is used to extract along-track displacements from InSAR 

data [61]. The MAI technique is based on an azimuth sub-aperture processing including 

splitting the SLC images into forward and backward looks and reducing the Doppler band by 

one-half. Then, MAI interferograms are made using multiplying complex conjugate 

multiplication of the forward and backward sub-bands [61] (see Figure 2.10).  

 

 

Figure 2.10 : InSAR imaging geometry for one and two satellites. The parameters ∆𝑟 and ∆𝑥 indicate cross 

and along track displacement, respectively. 𝛿𝑟1 refers to slant range variation between master 

and slave images. 

 

As shown in the Figure 2.10, the InSAR phase of Line Of Sight (LOS) displacement is 

defined as: 
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where 𝜓 is the squint angle and 𝛿𝑟1 can be approximately by 𝛿𝑟1 ≈ −𝐵 sin(𝜃1 − 𝛼)[62] and 

𝛼 is baseline orientation. Due to the zero Doppler geometry (𝜓=0), the InSAR phase can be 

rewritten: 
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The forward and backward interferometric phase (𝜑𝐼𝑛𝑆𝐴𝑅,𝑓 and 𝜑𝐼𝑛𝑆𝐴𝑅,𝑓) are defined as 

follows: 
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where ∆𝐵 is the baseline separation, ∆𝛽 antenna angular beam width, ∆𝛼 is baseline 

orientation [62]. The MAI interferometric phase is achieved by forward and backward phases 

using approximation of 𝜓 ≈ 0 and |∆𝜃 − ∆𝛼| ≈ 0 [63]: 
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where n indicates a normalized squint (which is a fraction of the whole aperture) and la is the 

length of azimuth antenna. By substituting (2.44) in (2.7), the MAI phase is obtained: 
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After removing the flat-Earth and topographic phase, the MAI interferogrm is obtained and 

along track displacement of MAI phase can be derived: 
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According to (2.46), the along track displacement is directly related to the azimuth antenna 

length. For instance, the la=10m antenna length of ERS satellite and ∆𝑥 = 1m along track 

displacement give 0.6 radians of phase difference.  

 

 

2.7     Coherence and intensity SAR-based Offset tracking techniques 

 

Coherent Cross Correlation (CCC) and Incoherent Cross Correlation (ICC) are two common 

methods to estimate the offset of an object on a pair of SAR. The former relies on complex 



  

 

of data (i.e., amplitude and phase), while the later operates on intensity information only (i.e., 

amplitude squared). Image patch cross correlation-based methods can be used as alternative 

solution for ICC to estimate offset with a procedure similar to ICC.  

 

2.7.1 Coherent Cross Correlation (CCC) 

The optimum (maximum-likelihood) estimator (MLE) for differential shift of partially 

correlated circular Gaussian signals can be used as a cross-correlation operation on a complex 

image. In this method, the systematic (non-noise) phase difference between two data , such 

as spectral shift filtering and removal of topographic fringes, must be omitted  prior to cross 

correlation [64]. The obtainable accuracy with ICC is defined in terms of error standard 

deviation as a function of the coherence and the number of independent samples (resolution 

cells) [60][65]: 
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2.7.2 Incoherent Cross Correlation (ICC) 

In contrast with CCC, ICC uses amplitude or intensity of SAR data (which is also known as 

speckle tracking). In the ICC method, SAR data are generally oversampled by a factor of 

two. The result is highly dependent on neighboring pixels. It is argued that since ICC utilizes 

only half of the available information, thus its error could be larger by √2 . It is reported that 

the cross correlation performance of amplitude signal is worse than that of the intensity signal 

for low coherence cases, as amplitude signal needs more oversampling due to the non-

linearity of square root [66]. Accuracy of incoherent cross correlation (or incoherent speckle 

tracking) for circular Gaussian signals is defined as follows:   
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where N is the number of independent samples (for the original complex images) and 𝛾 is 

the coherence. The equation (2.48) plotted as function of 𝛾 in Figure 2.11. 

 

 



  

 

 
Figure 2.11 : Normalized shift estimation error 𝜎√𝑁 versus 𝛾. 

 

A comparison of CCC, ICC and SD methods in the SAR domain is provided in the following. 

The precision equations of the coherent (CCC) (2.33), incoherent (ICC) (2.34) and spectral 

diversity (SD) (2.25) can be analyzed. By assuming γ→1, the variance comparison ratio 

shows that 𝜎𝐼𝐶𝐶
2  is 1.8 times larger than 𝜎𝐶𝐶𝐶

2  (𝜎𝐼𝐶𝐶
2 /𝜎𝐶𝐶𝐶

2 = 9/5 = 1.8) [66]. It means that 

ICC will provide a better precision than CCC when we have good coherence. In the same 

way, the accuracy ratio (𝜎𝑆𝐷
2 /𝜎𝐶𝐶𝐶

2 ) of SD and CCC are equal to 1.06 and 1.15 (assuming 

6% difference in accuracy is neglectable), respectively, for the bandwidth gap of 1/3 and 1/5 

[59].  

In summary, SAR-based Offset Tracking (OT) has been proposed to overcome the LOS 

displacement detection limit of the DInSAR technique. OT uses the cross-correlation to 

estimate relative shifts between two pixels, and to compute filters that shape one signal to 

match another (fast local). Two of the most important advantages of this technique are the 

mapping of 2-D displacements (azimuth and range directions), and the fact that there is no 

need for complex phase unwrapping algorithms which could give wrong results or fail in 

case of decorrelation or fast ground deformations. As sub-pixel offset tracking is highly 

sensitive to the spatial resolution of the data, latest generations of SAR sensors such as 

TerraSAR-X and COSMO-SkyMed providing high resolution data (up to 1m) have great 

potential to become established methods in the field of ground deformation monitoring. The 

performance of OT and MAI techniques to extract the along-tack displacement component 

are presented for several sensors in Table 2.4. 

 

Table 2.4 : Comparison of the empirical accuracies of MAI and Pixel-offset tracking [37], [38], [39], [40]. 
 

 Methods Accuracy 
Azimuth 

resolution % 

pixel-offset for 

ERS 
12 to 15 cm 2.4%–3.0% 

pixel-offset for 

PALSAR 
7.1 cm 1.6% 

MAI for 

PALSAR 

6.3 cm - 3.57 

cm 
1.3% 

 



  

 

2.8     Template matching-based offset tracking techniques  
 

Template matching algorithms are widely used in digital image processing to find and match 

objects in an image with a template image, which is placed under category of area-based 

algorithms). Template matching algorithms are used for image registration and feature 

matching. Generally, template matching algorithms can be classified into three groups [67]:  

 

1) featured-based algorithms, while are well suited to extract the features using their 

spatial relations or descriptors;  

2) patch or area-based algorithms, while consider the intensity of the pixel values 

obtained after cross-correlation-based similarity;  

3) optical-flow or motion tracking algorithms.  

 

The first group is mainly appropriate to match structural information (i.e., features), the 

second one fits for intensity information and the third one is based on the relation between 

photometric correspondence vectors and spatiotemporal derivatives of luminance in an image 

sequence [68]. Template matching relies on either intensity (area-based algorithms) or phase 

information (e.g., phase correlation (PC)) of images. In the following, we will briefly review 

basic of cross correlation, and then address normalized cross correlation (NCC) phase 

correlation (PC) and orientation correlation (OC) methods. 

 The principle of template matching-based methods of area-based algorithms relies on a 

predefined template with a given window size that is moved within the search window area 

to find the highest similarity to match a feature. The template matching-based estimator 

principle is illustrated in Figure 2.12. The theory behind each method that has been used in 

this manuscript and some implementation details related to the data processing are briefly 

described in the following.  

 
Figure 2.12 : Principle of a template matching-based estimator. (a) First acquisition of the geocoded CSK 

data; (b) a selected template including the distinctive CR footprint; (c) search within the moving 

window on the image with a given step and (d) typical example of CC values using NCC (vertical 

axis represents the correlation coefficient values). 



  

 

 

Normalized Cross Correlation (NCC) is a robust and simple method to seek for a particular 

pattern that has probably been shifted in two subsequent (in time) images to find the related 

offset. Generally, NCC is following steps: 1) Calculate cross-correlation in the spatial or the 

frequency domain, depending on size of images, 2) Calculate local sums by precomputing 

running sums, and 3) Use local sums to normalize the cross-correlation to get correlation 

coefficients. In NCC-based offset tracking, a template with function 𝐼2(x,y) and size Nx × Ny 

is moved across an image with the function 𝐼1(𝑥, 𝑦) and size of Mx × My by u step in x-

direction and v step in y-direction pixel-by-pixel. All cross-correlation coefficients are stored 

in the correlation matrix as follows:  
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where 𝑢 ∈ {0, 1, 2, … , 𝑀𝑥 − 𝑁𝑥}, 𝑣 ∈ {0, 1, 2, … , 𝑀𝑦 − 𝑁𝑦}, and 𝑓u̅,v and 𝑡̅ indicate the average 

value of the search 𝑓1(𝑥, 𝑦) and 𝑓2(𝑥, 𝑦) template windows shifting with (u,v) steps. 

Computation of Equation (2.49), especially for a large image, is intensive and needs a number 

of operations in order of (Nx × Ny) × (Mx − Nx) × (My − Ny) [69]. For instance, the 

computational load for an NCC calculation with a template and search windows size of 64 × 

64 and 128 × 128 pixels, respectively, is more than 106 operations. NCC is invariant to linear 

brightness and contrast variations, and its easy hardware implementation. However, 

traditional correlation-based image matching methods will fail when intense changes in 

rotation or scale occur between the two images, as NCC is sensitive to rotation and scale 

changes. A sub pixel accuracy is achievable by interpolation in NCC. 

 

The Phase Correlation (PC) method is a frequency domain technique used to estimate 

the delay or shift between two copies of the same signal [70]. Phase correlation-based 

methods can generally be split into two classes. In the first class, the relative images’ shift is 

recovered by explicitly estimating the linear phase of the images’ cross-spectrum [71]. In the 

second class, the relative displacement is calculated by determining the exact location of the 

correlation peak [26]. In the phase correlation method, f1(x,y) and f2(x,y) are two signals 

corresponding to windows of the first and second images at the time of t1 and t2 that are 

supposed to be matched. The offset (Δx and Δy) presented in the second image (f2) is defined 

by: 

( ) ( )2 1, ,f x y f x x y y= −  −                                          (2.50) 

By applying the Fourier transformation, the normalized phase correlation (known as the 

cross-power spectrum) can be obtained as follows: 
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where F1 and F2 are the FFT of f1 and f2, respectively and * indicates the complex conjugate. 

The phase-only correlation (POC) function CC(u,v) is defined as the inverse Fourier 

transform of R(ω). The shift property of the Fourier transform can determine the offset by 

simply locating the maximum of CC(u,v) [72]. The main drawback of PC, at least in its basic 

form, is that the offset retrieval has pixel accuracy not sub-pixel accuracy. The robustness of 

phase correlation technique is usually evaluated with sensitivity to additive white noise and 

blur, and images phase difference.  

 

Two PC versions were applied to the intensity-based SAR images: (i) the standard PC; and 

(ii) a modified version of PC (MPC). MPC minimizes the weighted residual matrix between 

the computed normalized cross-spectrum and the theoretical one to both reach more 

flexibility on the frequency weighting and to solve the phase wrapping ambiguity. It uses an 

iterative process (re-computing times of frequency mask adaptively) to increase the 

robustness and accuracy, and frequency masking to obtain a bias-free correlation [73]. The 

robustness iteration and mask threshold parameters are firstly set to 2 and 0.9, respectively. 

To investigate the role of the robustness iteration parameter in accuracy improvement of the 

offset estimation, its value is then increased to 4 by a resampling process. 

  

 

Orientation correlation (OC) is an algorithm that has been proposed for translational image 

registration, operating on correlating orientation images. Although OC is considered as a 

feature-based matching algorithm, its matching procedure is based on feature of gradient 

orientation not extracting of available features an image such as corner, line and junction. 

Therefore, in OC algorithm, each pixel in an orientation image is a complex number that 

represents the orientation of intensity gradient., which is invariant to illumination change. 

Angles of gradient orientation are used for matching, Andrews robust kernel function is 

applied to angle differences and correlation computed by Fast Fourier Transforms [74]. 

OC initiates with indexing images using (x,y), where x and y are integers, two images 𝐼1 and 

𝐼2 are matched. The Orientation Intensity Of Gradient (OIOG) of the images 𝐼1 and 𝐼2 are 

computed according to [74]: 
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sgn(x) and i indicate the sign function and complex imaginary unit, respectively. The 

orientation images are then matched using inverse FFT-based correlation. Since OIOG on 



  

 

the images has no gradient (i.e., 0 + 0i) for uniform regions and is equal to 1, hence, OC is 

invariant to offset illumination changes. The registration of I1 and I2 is measured from the 

position of the maximum taken from Inverse Fast Fourier Transform function of the 

orientation correlation matching surface. According to the OC performance analysis [74], it 

is invariant to both scale and offset illumination changes, statistically robust to images 

containing a higher level of noise, low computational complexity (mainly due to two forward 

and one backward FFTs of complex value images) with respect to its counterparts.   

 

2.8.1. Featured-tracking based algorithms (corner-based detector and descriptors) 

A Featured-based algorithm is appropriate when both reference and template images contain 

distinctive features such as points and curves. A pair-wise link is set and matched between 

the two aforementioned images using a feature detectors and descriptors based on spatial 

relations. The feature detectors identify an intended object while feature descriptors match 

the corresponding objects found in the two images. Generally, both approaches use 

decomposing an image into local regions of interest or features to reduce complexity utilizing 

local appearance characteristics [75]. A robust keypoint detector must be able to detect 

distinctive regions despite changes of viewpoint and potential transformations occurred in an 

image (repeatable property), likewise a powerful keypoint descriptor should manage to 

extract the most significant information within the detected instinctive regions (recognizable 

ability). In terms of nature of an object in an image, featured-based detectors and descriptors 

algorithms can be classified into two main categories: corner-based feature including BRISK, 

MEIGEN, HARRIS, FREAK and FAST, and blob-based including SURF.  

 

 

 

Binary Robust Invariant Scalable Keypoints (BRISK) 

Effective and efficient generation of keypoints is a significant challenge in of numerous 

Computer Vision applications. BRISK is a novel method for keypoint detection, description 

and matching, which is BRISK aims to meet two competing objectives: high quality 

description and low computational requirements. BRISK uses scale-space FAST-based 

detector in combination with the assembly of a bit-string descriptor from intensity 

comparisons retrieved by dedicated sampling of each keypoint neighborhood [75]. BRISK 

operates through two main steps: (i) scale-space keypoint detection and scale dimensions in 

the image, and (ii) relying on applying a sampling pattern of the detected keypoints. The 

former uses a saliency criterion (keypoints detection is done by means of octave layers of the 

image pyramid (one-fourth of original area) and the layers in between (see Figure 2.13). The 

latter is based on appropriately scaled concentric circles at the neighborhood of each keypoint 

to retrieve gray values [75] (see Figure 2.14). 

 

 

 



  

 

 

Figure 2.13 : Scale-space point detection. A keypoint is detected at octave ci, analyzing the 

eight neighboring saliency scores in ci [75]. 

 

Figure 2.14 : The BRISK sampling pattern with N = 60 points: the small blue circles denote the sampling 

locations; the bigger, red dashed circles are drawn at a radius σ corresponding to the standard 

deviation of the Gaussian kernel used to smooth the intensity values at the sampling points. The 

pattern shown applies to a scale of t = 1[75]. 

 

The Hamming distance can be used to match two BRISK descriptors, which is based on 

that the dissimilarity measure of the number of bits different in the two descriptors. The 

results of experimental test proved that BRISK provides a dramatically faster alternative at 

comparable matching performance in comparison with well-known Speeded Up Robust 

Features (SURF) and Scale-Invariant Feature Transform (SIFT) [75]. An example of the 

BRISK detection in two images of the Boat sequence is shown up-close in Figure 2.15. 

 



  

 

 

Figure 2.15 : An example of BRISK detection function. The images show two boats with slight changes 

in scale and rotation. The size of the circles and the corresponding radii o indicate the scale 

and orientation of the detected keypoints [75]. 

 

In comparison with available algorithms with proven high performance, such as SIFT and 

SURF, the method at hand offers a dramatically faster alternative at comparable matching 

performance – a statement which we base on an extensive evaluation using an established 

framework. BRISK works an easily configurable circular sampling pattern from which it 

computes brightness comparisons to form a binary descriptor string [75]. 

 

 

Minimum Eigenvalue (MEIGEN) proposes a feature selection criterion that is optimal by 

construction, since it relies on how a tracker works. Actually, MEIGEN is a tracking 

algorithm that extends previous Newton-Raphson style search methods to work under affine 

image transformation [76]. MEIGEN monitors the quality of image feature during tracking 

by using a measure of feature dissimilarity that quantifies the change of appearance of the 

feature between the first and the current one. The dissimilarity is the feature’s rms residue 

between the first and the current frame, and when dissimilarity grows too large the feature 

should be abandoned [76]. This method defines a term for feature quality in the sense that a 

good feature is one that can be tracked well. The selection criterion is yielded in the 

following.  Let us consider an image I(x) and a matrix G defined as follows: 
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             (2.55) 

 

A good feature can be detected by analyzing the eigenvalues of G [77]. Three states can 

happen in terms of eigenvalues magnitude: (i) if both eigenvalues are small, the considered 

window has a little intensity variation, (ii) if one eigenvalue is small and the other one is 

large, this can be treated as a one dimensional horizontal and vertical edge, and (iii) if both 

eigenvalues are large, the feature can be identified as corner [78][77]. A window provides a 

good feature through eigenvalues of G (i.e., I1 and I2) if: 

 



  

 

1 2, th                                                           (2.56) 

 

where 𝜆th is a predefined threshold. Since many windows can fulfill the above condition such 

as a slanted edge, thus, optimal image window sizes selection is challenging task. MEIGEN 

is a feature selection that maximize the quality of tracking. Feature monitoring is 

computationally expensive and helps discriminating between good and bad feature based on 

a measure of dissimilarity that uses affine motion as the underlying image change model. A 

good discrimination at the beginning of the processing chain can reduce the remaining bad 

feature to a few outliers, rather than leaving them an overwhelming majority [76].   

 

 

Combined Corner and Edge Detector (HARRIS) 

The HARRIS algorithm [79] relies on recognizing keypoint is by looking through a small 

window in the sense that shifting window in any direction should provide a large change in 

intensity. In his respect, three regions can be defined. “Flat region” means no change in all 

directions, “edge” refers no change along the edge direction and “corner” provides significant 

change in all direction.  (Figure 2.16). The mathematical form of intensity difference for 

displacement of (u, v) in all directions defines as: 
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Rectangular and Gaussian windows can be used as base functions in the above formula 

(Figure 2.16). 

 

 

 

Figure 2.16 : Three statues recognized by HARRIS and Rectangular and Gaussian window functions. 

On the top from left to right, the figures refer to flat, edge and corner regions.  

 

By applying Taylor expansion, we can obtain [79]: 
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As in (2.55), Ix and Iy are image derivatives. The score variable R can be used to understand 

if the window contains a corner feature or not: 

 

( )( )
2

det( )R M k trace M= −                                           (2.59) 

 

where 𝜆1 and 𝜆2 are eigenvalues of M, det(M) equals multiplication of 𝜆1 and 𝜆2 and trace(M) 

is sum of 𝜆1 and 𝜆2. The decision making whether a region is corner, edge or flat is based on 

the following conditions (Figure 2.17): 

• Flat:  when |R| is small, i.e., is when 𝜆1 and 𝜆2 are small. 

• Edge: when R<0, i.e., when 𝜆1>>λ2 or λ2>> 𝜆1. 

• Corner: when R is large, i.e., when 𝜆1 and 𝜆2 are large and with similar 

values 𝜆1∼𝜆2.  

 

  

 

 

Figure 2.17 : Intensity change in shifting window and eigenvalue analysis 

Fast Retina Keypoint (FREAK) 

FREAK is a keypoint descriptor inspired by the human visual system. In FREAK, a cascade 

of binary strings (i.e., 0 and 1) is computed by efficiently comparing image intensities over 

a retinal sampling pattern. FREAK uses a retinal sampling grid that is circular like BRISK 

with a higher density close the center which exponentially declines toward the circular edge 

[80] (see Figure 2.18).  

 



  

 

 
Figure 2.18 : Density of ganglion cells over the retina (on the left) and retina areas (on the right) [80]. 

 

FREAK operates in four following steps [80]: 

 

• Retinal sampling pattern: using different kernels size for every sample point similar 

to BRISK with the difference in using exponential change in size and the overlapping 

receptive fields. 

 
Figure 2.19 : Illustration of the FREAK sampling pattern similar to the retinal ganglion cells distribution 

with their corresponding receptive fields. Each circle represents a receptive field where the 

image is smoothed with its corresponding Gaussian kernel [80]. 

 

• Coarse-to-fine descriptor: 

The FREAK is defined as a binary descriptor F that is a binary string created by a 

sequence of one-bit Difference of Gaussian (DOG): 
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where Pa, N and I (𝑃𝑎
𝑟1) are a pair of respective fields, the desired size of the descriptor and 

the smoothed of the first receptive field of the pair 𝑃𝑎, respectively (Figure 2.20). 

 



  

 

 

Figure 2.20 : Illustration of the coarse-to-fine analysis. The first cluster involves mainly perifoveal receptive 

fields and the last one’s fovea [80]. 

 

• Saccadic search: initiating to mimic the saccadic search by parsing our descriptor in 

several steps. We start by searching with the first 16 bytes of the FREAK descriptor 

representing coarse information. 

• Orientation: estimating the rotation of our keypoint using summation of the 

estimated local gradients over selected pairs similar to BRISK. The latter is using 

long pairs to compute the global orientation whereas we mainly select pairs with 

symmetric receptive fields with respect to the center (see Figure 2.21) [80]. 

 

 

 

Figure 2.21 : Illustration of the pairs selected to computed the orientation [80]. 

 

 In terms of performance evaluation, FREAK is even faster than BRISK, and it is faster of 

two orders of magnitude than SIFT and SURF with [80].  

 

Features from Accelerated Segment Test (FAST) 

FAST is a high-performance tracking system based on the combination of two different 

tracking systems with complementary behavior and very different statistics. FAST is a 

feature detector relying on five main steps as follows [81][82]: 

• Selecting a pixel (P) on an image with intensity Ip ,  



  

 

• Threshold selection (t),  

• Consider a circle of 16 pixels around the considered pixel (see Figure 2.22),  

• Pixel P is a corner if n adjacent pixels (usually 12 pixels) in the circle are brighter than 

Ip+t or darker than Ip-t,  

• Apply a high-speed test to remove non-corners based on the pixels at 1, 9, 5 and 13 

 

Figure 2.22 : Test corner detection using 12 points for the P pixel candidate. The highlighted     pixel 

crossed covered by the circle is used for the corner detection [82]. 

 

The three first bullet points are addressed by using a machine-learning algorithm, and the last 

one by Non-maximal suppression. Although FAST is faster than the other algorithms, its 

counterparts are threshold-dependent and sensitivity to noise [82].   

 

 

 

2.8.2.    Featured-tracking based algorithms (blob-based feature detector and    

descriptor) 

 

Speeded Up Robust Features (SURF) 

SURF is a novel scale- and rotation-invariant interest point detector and descriptor. operates 

integral images at (x,y) (2.61) for image convolution based on the strengths of sophisticated 

existing detectors and descriptors. SURF uses the Hessian matrix as detector due to its good 

performance in terms of computation time and accuracy to determine the location and scale. 

Taking a point x=(x, y) in an image I, the Hessian matrix 𝐻(𝑥, 𝜎) in x at scale 𝜎 is given by 

[83]: 
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 where 𝐿𝑥𝑥(𝑥, 𝜎) is the convolution of the Gaussian second order derivative. SURF then 

approximates Laplacian of Gaussian (LoG) with a Box filter (see Figure 2.23).   

 

 
Figure 2.23 : Gaussian second order partial derivatives in y-direction and xy-direction, and the    approximations 

using box filters (the grey parts are zero) [83]. 

 

SURF relies on two main steps: i) orientation assignment and ii) SURF descriptor. The first 

step is defined a reproducible orientation based on information from a circular region around 

the interest point using wavelet responses in horizontal and vertical direction for a contiguous 

of size 6s. The SURF descriptor uses the same orientation assignment with a contiguous of 

size 20s×20s surrounding the keypoint divided into 4×4 sub-regions and x-y wavelet 

response leads to vector of 𝑣 = (∑ 𝑑𝑥, ∑ 𝑑𝑦, ∑|𝑑𝑥| , ∑|𝑑𝑦|) [83] (see Figure 2.24).   

 

 

Figure 2.24 : Descriptor of sub-regions depicts the underlying intensity pattern. Left: homogeneous region (low 

values). Middle: spatial changes in x direction (the value of ∑|𝑑𝑥| is high and the rest is low). If 

intensity is gradually rising up in x direction, both ∑|𝑑𝑥| and ∑ 𝑑𝑥 are high. SURF performance in 

terms of repeatability, distinctiveness, and robustness, speed and accuracy outperforms other 

existing state-of the art methods [83]. 

 

 

FAST presents a fast and performant interest point detection-description scheme which 

outperforms the current state-of-the art, both in speed and accuracy. The descriptor is easily 

extendable for the description of affine invariant regions [83]. 

  



  

 

Chapter 3 

 

3. ACCURACY IMPROVEMENT OF OFFSET 

TRACKING ESTIMATION ON SAR DATA 

 

The aim of this chapter1 is to provide an analysis of the capability of DInSAR techniques (i.e., 

PSI), Multi-Aperture Interferometry (MAI) and offset tracking techniques to monitor 

landslides and improve displacement accuracy using COSMO-SkyMed data. 27 COSMO-

SkyMed StripMap (HIMAGE) data were selected in the descending orbit mode, which cover 

a period of 464 days (i.e., between 5 April 2014 and 10 August 2015). All the phase and 

intensity-based techniques are applied to the 16 Corner Reflectors (CR) specifically designed 

for X-band and installed on the Corvara landslide which are used as reference points for 

DInSAR and sub-pixel offset tracking. Each CR has been equipped by a GPS antenna for 

validation purposes. Finally, a sensitivity analysis of these techniques applied to CSK data 

provides indications on advantages and disadvantages of each of them.  

 

 

 

3.1     Introduction 

 

Mountainous areas are recurrently affected by active instability processes, such as debris 

flows or landslides that can induce damages and casualties. To reduce the risks, a careful 

assessment and monitoring of slope deformations is required. Over the past two decades, 

capabilities of synthetic aperture radar interferometry (InSAR) have been demonstrated to 

detect and quantify land surface deformations with a precision in the order of millimeters.  

MAI technique, considered as a version of SD in azimuth, operates on the split-beam of 

InSAR using band pass filters into the forward- and backward-looking interferograms. It was 

developed for long-track deformation retrieval [61]. Since the forward- and backward-

looking interferograms are geometrically symmetric, the range and troposphere components 

                                                           
1 Part of this chapter appears in: 

[138]   M. Darvishi, R. Schlögel, L. Bruzzone, and G. Cuozzo, “Integration of PSI, MAI, and intensity-based 

sub-pixel offset tracking results for landslide monitoring with X-band corner reflectors-Italian Alps 

(Corvara),” Remote Sens., vol. 10, no. 3, 2018. 

 



  

 

will nearly appear the same. As a result, the tropospheric phase contribution can be removed 

from the interferograms.  

In offset tracking-based methods, CCC relies on using the complex image patches and can 

be applied to coherent data even without any tangible and traceable scatterer. It uses cross-

correlation operation as an optimum (maximum-likelihood) estimator (MLE) for offset 

determination of partially correlated circular Gaussian signals and some systematic (non-

noise) phase differences such as topographic and flat-earth fringes [65]. CCC operates on the 

formation of small interferograms involving some changes in range and azimuth, the offsets 

is specified by detecting the peak average coherence [84]. Contrary to CCC, ICC only relies 

on amplitude information of image patches and attempts to find offset between traceable 

features (e.g., lines and rocks). It uses cross-correlation of intensity of SLC data and finds the 

peak location to estimate offset.  

Template matching algorithms are widely used for image registration and feature matching. 

Generally, template matching algorithms can be classified into three groups [67]: (i) featured-

based algorithms that are well suited to extract the features using their spatial relations or 

descriptors; (ii) patch or area-based algorithms that consider the intensity of the pixel values 

obtained after cross-correlation-based similarity; and (iii) optical-flow or motion tracking 

algorithms. The first group is mainly appropriate to match structural information (i.e., 

features), the second one fits for intensity information and the third one is based on the 

relation between photometric correspondence vectors and spatiotemporal derivatives of 

luminance in an image sequence [68].  

Feature matching enables finding correspondences between two images based on the local 

interest points. It plays a key role in computer vision applications such as motion estimation, 

image registration, object detection and tracking. Feature-based matching procedures rely on 

local feature detection (mainly based on gradient or intensity variation) and corresponding 

feature descriptors (local image gradient). The local features are usually blobs, corners or 

edge pixels that are extracted by an appropriate feature detection algorithm. Efficiently 

matching features across images is the core of feature-based algorithms in computer vison. 

Repeatability, distinctiveness and localization of features are the three main characteristics 

of a good local feature under varying imaging condition and in the presence of noise [85]. 

Localization refers to how well a detector can locate the exact position of features. Binary 

Robust Invariant Scalable Keypoints (BRISK) [75], Minimum eigenvalue algorithm 

(MEIGEN) [76], Harris [79], Features from Accelerated Segment Test (FAST) [82] and Fast 

Retina Keypoint (FREAK) are often used as corner-based feature detection functions and 

descriptors. Speeded Up Robust Features (SUR) [83] and Scale Invariant Feature Transform 

(SIFT) [86] are the most significant blob-based features descriptors in computer vision field. 

The descriptors of the corner-based features are mainly based on pairs of local intensity 



  

 

differences (e.g., BRISK) while the descriptors of the blob-based features (e.g., SURF and 

SIFT) are based on local gradient. The use of computer vision-based algorithms has not been 

widely investigated with SAR data except for the task of image registration [33,34].  

This research aims to improve the accuracy of offset estimation using computer vision 

techniques, and integrate the PSI, MAI, and offset tracking results to monitor a complex and 

vegetated landslide through X-band CRs. This allows us to overcome or mitigate the 

limitations of some methods. PSI is limited only to 1D LOS displacement detection and an 

upper limit for velocity estimation. Non-LOS displacements are not also retrievable by PSI, 

in such case; MAI could be considered as an alternative technique to overcome this 

limitation. High movement rate leads to phase aliasing in the CCC-based methods and 

dependency of offset estimation accuracy on data pixel size and changes in the features (e.g., 

geometrical distortions) are the main constraints of the ICC-based methods. Low coherence 

problem in vegetated areas, leading to phase unwrapping difficulty, can be tackled by using 

artificial CR.  

 

3.2     Case Study and Dataset 

 

Corvara Landslide 

The case study is the active Corvara landslide, located in the Autonomous Province of Bolzano-

South Tyrol, in the Italian Alps. It is described as a slow-moving complex earth slide-earth 

flow with annual displacement rates of up to 20 m [35,36] (see Figure 3.1c,d). The ongoing 

slope deformation is in the order of a few cm/year in the toe zone, and up to tens of meters 

per year in the most active track and source zones. Since the Corvara is among the most 

popular tourist attractions in the Italian Alps, the area has undergone an intense tourist 

development. The urban settlement has progressively increased since the late 1960s, and a 

dense network of facilities now serves most of the slopes. This development has significantly 

increased both the wealth of the area and risk to slope failures [91]. This landslide frequently 

causes damages to the national road SS 244, the ski infrastructures, and the nearby golf 

course.  

The landslide behavior is characterized such as: retrogressive at the crown and flanks of the 

source areas; slightly enlarging at the sides of the accumulation area; slightly advancing at 

the turn of the landslide into the main valley; and potentially advancing at the toe [92]. The 

Corvara landslide has been monitored for several years with different close and far range 

imagery techniques such as Unmanned Aerial Vehicle (UAVs) [93], SAR data [90] and by 

multi-sensors data integration [94].  

 



  

 

 

 
Figure 3.1: Corvara landslide monitoring system. (a) Periodic GPS measurements (monthly); (b) Permanent 

GPS station fed by solar panel; (c) Corvara landslide extent, its movement direction and CRs 

locations corresponding to the GPS network and (d) Active landslide depletion area (close to CR58). 

 

 

3.3     Artificial Corner Reflectors 

In 2013, 16 Corner Reflectors (CR) specifically designed [95] for X-band were installed on 

the landslide and used as reference points for InSAR and sub-pixel offset tracking (Figure 

3.2). Each CR was equipped with an antenna stand with a GPS station to take monthly and 

hourly (Figure 3.2a) 3D measurements. The reflector consists of a trihedral built of aluminum 

plates with a side length of 56 cm. The plates are connected via screws resulting in a more 

accurate geometry than for welded plates. Each of the faces is perforated with evenly spaced 

3 mm holes for reducing the weight, wind resistance and the tendency for water and snow 

accumulation (Figure 3.3b-c). The entire CR can be dissembled and carried by one person 

(Figure 3.3a). For installation in rock, concrete or ice, the single pole is screwed to the ground 

(Figure 3.3d); for soft ground and earth a concrete foundation ensures stable positioning 

(Figure 3.3h). Assembling the CR in the field requires basic tools, and orientation according 

to the satellite orbits can easily be obtained (Figure 3.3e). The extension behind the trihedral 

reflector can accommodate a GNSS antenna for validation measurements (Figure 3.3f 

illustrates a permanent GPS station on Corvara landslide). Other methods, e.g. total station 

measurements (Figure 3.3g) can also be facilitated. The CR have been built by a company in 

Bolzano and the cost per unit was approximately 1000 EUR. From the CRs distribution 

perspective over the landslide, due to the limitation in the number of the available CRs, the 

priority was dedicated to the active and semi-active part of the landslide with the movement 

directions aligned to LOS. Thereby, it was avoided installing the CRs on a landslide part 

where was not regarded as an active area (according to the GPS observations) with a non-



  

 

LOS movement (e.g., surrounding CR58). GPS measurements and SAR results show 

different motion behaviors in terms of direction and velocity rate. The PSI technique was not 

able to track the high velocity rate CRs and was not considered in past processing [90]. In 

this work, we analyze two different motion categories (i.e., high and low velocity rates) both 

in LOS and non-LOS directions. If the displacement of a CR is higher than 0.5 m (within the 

data time span), it is of “high velocity rate”, while CR displacements less than 0.5 m are of 

“low velocity rate” (see Table 3.1). If the azimuth displacement of a CR derived by GPS locates 

within the ±25° of the Azimuth LOS (ALOS) of the satellite (i.e., 280°), it is placed into the sub-

group of “LOS direction”; otherwise it is labeled as non-LOS direction category. Table 3.1 

shows the GPS measurements of 16 CRs corresponding to the satellite images. The high 

velocity rate CRs are processed and analyzed using offset tracking-based methods, while the 

low velocity rate CRs with displacements in the LOS alignment are processed using InSAR-

based method (i.e., PSI). Since the CR58 displacement is less than 0.5 m according to nearly 

the North-South direction, it is processed using the MAI. The GPS data used here as ground 

truth for validating the results are described in [90].  

 

 

Figure 3.2 : Corner reflectors deployed on the Corvara landslide. (a) design and (b) photo from the field. 



  

 

 

Figure 3.3 : Features of the CRs and field applications. 

 

 

 

 

 

 

 

 

 

 



  

 

Table 3.1: High and low velocity rate CRs including both LOS and non-LOS directions. 

Velocity Rate Type Displacement Direction CR No. Magnitude of 

Displacement 

Azimuth of 

Displacement 

High velocity rate 

CRs 

LOS direction CR53 1.69 m 272° 

CR54 3.41 m 284° 

Non-LOS direction CR51 39.95 m 171° 

CR55 46.17 m 250° 

CR56 3.57 m 167° 

Low velocity rate 

CRs 

LOS direction CR4 12.5 cm 305° 

CR6 13.3 cm 303° 

CR8 32 cm 283° 

CR11 20.7 cm 298° 

CR13 39.1 cm 270° 

CR23 22.7 cm 260° 

CR25 20.1 cm 260° 

CR57 18.3 cm 265° 

CR28 39.1 cm 260° 

CR49 20.3 cm 265° 

Non-LOS direction CR58 34 cm 177° 

 

3.3.1 Dataset 

The 27 COSMO-SkyMed data selected, whose charcteristics are described in Table 3.2, 

covering a time span of 464 days (i.e., between 5 April 2014 and 10 August 2015).  

 

Table 3.2  Sentinel-1 data specification. The following acronyms were used in the table: polarization (Pol), 

incident (Inc), azimuth (track) (Az), revisit time (Rtime), range (Rg), and wavelength (W.L.). 

Product 

Type 
Mode Pass Pol. Inc/Az angle Rtime 

Rg × Az 

spacing 
W.L. 

StripMap  HIMAGE Descending VV 42°/185° 16 day 1.5 m × 1.9 m 3.1 cm 

 

Two DEMs were available for the Corvara area: (i) SRTM DEM (30 m) in 2000; and (ii) 

laser airborne DEM (2.5 m) acquired in 2006 by the autonomous Province of Bolzano. The 

airborne DEM was used in the InSAR processing, because it is more recent and has a finer 

resolution than SRTM DEM. 

 

3.4     Maximum Detectable LOS Displacement 
 

To estimate the CRs displacements several considerations must be considered in the InSAR 

processing. To have a reliable phase unwrapping, the unmolded phase such as atmospheric 

contribution must be smaller than 0.6 rad, meaning that PS pixels density must be more than 3–

4 per km2, for common atmospheric conditions [96]. To consider this PS range constraint, 

especially for vegetated landslides, artificial corner reflectors can be used as PSs to fill the 

gap between the PSs network. In addition to the above-mentioned limitations, the 

deformation phase cannot be retrieved unambiguously when the displacement phase between 

two successive acquisitions goes beyond ±π [21], which refers to the Maximum Detectable 

LOS Displacement (MDLD) (3.1). The MDLD of each adjacent pixel in a wrapped 

interferogram and during the phase unwrapping cannot exceed λ/2 and λ/4 (less than 0.5 



  

 

interferometric fringes per pixel), respectively (3.2)  [43,44]. Therefore, the maximum range 

of displacement rate can be theoretically defined either in terms of wavelength-revisit time 

or in terms of wavelength-pixel size of SAR data:  
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where ΔT, λ and sp indicate the time interval of two successive acquisitions, the sensor 

wavelength and the pixel size of the SAR image, respectively. Based on (3.1), the theoretical 

MDLD rates for TerraSAR-x with revisit time of 11 days, COSMO-SkyMed with the 

nominal repeat cycle of 16 days and Sentinel-1A/B with revisit of 6 days are 25.7 cm/year, 

17.6 cm/year and 85.2 cm/year, respectively. According to (3.2), the MDLD for TerraSAR-

X (pixel size: 1 m × 1 m with 1 look), COSMO-SkyMed (pixel size: 2 m × 2 m with 1 look) 

and Sentinel-1A/B (pixel size 13 m × 13 m with 1 × 4 looks) will be 1.55 × 10−2, 7.75 × 10−3 

and 2.1 × 10−3, respectively. The MDLD upper limit does not consider the noise caused by 

the various decorrelation sources. 

 

Data Pre-Processing 

Before starting data processing, we first performed a quality assessment analysis on the CR 

footprints. In fact, knowing the quality and evolution of the CR signals over the time span is 

useful to interpret InSAR results. Then, we prepared the data for offset tracking processing.  

 

3.5     CR Response Quality Assessment 

When a SAR system response to a CR is reliable and stable (intensity and phase) in the time 

series, the CR orientation (i.e., azimuth and elevation angles) has been properly aligned 

toward the satellite. The Impulse Response Function (IRF) characteristic of a received signal 

is a significant indicator for data quality check. If a CR has been installed optimally, the 

footprint of a CR on a SAR image should show a cross-like shape and its IRF should be 

similar to an ideal IRF (i.e., a Sinc function, see Figure 3.4d). Several parameters can 

determine the quality of the SAR response to a CR including: (i) the Peak Side Lobe Ratio 

(PSLR) refers to the ratio between the peak elevation of the side lobe (Is) and the peak 

elevation of the main lobe (Im); and (ii) the Integrated Side Lobe Ratio (ISLR) indicates the 

ratio between the power in the main lobe and the total power in all the side lobes. In Figure 

2d, the area below the 3 dB intensity points in the main lobe specifies Spatial Resolution (SR) 

of SAR data. Table 3.3 lists the PSLR in range and azimuth (i.e., RPLSR and APSLR) and 



  

 

the ISLR for each CR extracted. As an example, we show the IRF and intensity value of 

CR13 providing the highest backscattering signal (see Figure 3.4a–c). This quality check 

procedure helps in understanding whether the CRs have been tilted by the landslide 

movement or not. If so, the CR orientation changes could considerably influence InSAR and 

offset tracking results.  

 
Figure 3.4: The SAR response to CR13 and IRF extraction. (a) Intensity of Single Look Complex (SLC) 

data in SAR geometry with the location of CRs (green crosses) and the CR13 position (green 

square); (b) Zoom view of the green box containing the CR13 footprint (red square) and its 

corresponding IRF (the red line refers to −3 dB value) in the range/azimuth direction (dB unit), 

the clutter region (the area between yellow and the red squares); (c) Intensity peak of the CR13 in 

3D and (d) Ideal IRF with the related parameters. 

 

Table 3.3: CRs impulse response changes from the first and the last acquisitions. The related IRF parameters of 

all CRs derived from 5 April 2014 and 8 October 2015. Backscattering (Bsc) values of the CRs were 

directly extracted from the center of CRs footprints on the SLC data.  

CR No. 
CSK-05 April 2014 CSK-08 October 2015 

Bsc RPSLR (dB) APSLR (dB) ISLR (dB) Bsc RPSLR (dB) APSLR (dB) ISLR (dB) 

CR4 502 −11 −11.1 0.72 743 −9.9 −10.6 1.67 

CR6 473 −10.8 −9.9 0.54 654 −11.1 −10 1.55 

CR8 574 −10.8 −10.2 1.4 677 −10.2 −9.9 1.52 

CR11 462 −10.3 −10.8 0.39 475 −9.7 −10.7 1.51 

CR13 453 −10.2 −12.2 0.47 821 −10.1 −12.1 1.44 

CR23 435 −10.9 −10.2 0.46 668 −10.8 −10.1 1.57 

CR25 518 −9.7 11.6 1.43 631 −10.4 −11.5 0.76 

CR28 443 −9.8 −11 0.48 654 −9.7 −10.6 1.6 

CR49 486 −11.2 −11.2 0.5 741 −10.2 −11.1 1.46 

CR51 492 −11 −11 0.53 413 −12 −9.1 1.93 

CR53 426 −10.4 −10.5 1.66 831 −10.3 −11.7 1.74 

CR54 512 −10.8 −12.6 1.87 671 −11.9 −16.6 −0.52 

CR55 464 −11.2 −11.5 0.51 635 −10.1 −10 1.69 

CR56 499 −11.1 −10.1 1.44 580 −10.1 −11.1 1.18 

CR57 525 −10.1 −11.2 1.35 600 −9.8 −10.1 1.6 

CR58 476 −10.2 −11.1 0.37 746 −10.1 −10.6 1.67 

 

 

 



  

 

Data Pre-Processing 

The data pre-processing was performed in two steps to use the intensity information of CSK 

data for offset tracking processing. First, the data were calibrated into the sigma naught (i.e., 

backscatter coefficients) and then georeferenced in the UTM coordinate system. To reduce 

the speckle, the Anisotropic Non-Linear Diffusion (ANLD) filter was applied to both images 

considering Gaussian blur kernel variance equal to 0.5, anisotropy equal to 5, and step size 

equal to 100. Attention was paid to avoid truncating high intensity values of the image pixels 

to a fixed value in the calibration step. Pixels with a high sigma naught are truncated to 5 in 

SARscape software [99]. If that happens, the CR footprints will have several pixels with 

identical values (i.e., 5) that affect offset estimation at the sub-pixel level. It should be noted 

that the aforementioned pre-processing has been applied only to the OT processing, whereas for the 

InSAR processing the SAR data were analyzed by the SAR geometry (slant range). 

 

3.6     Methodology 

 

The low velocity rate CRs corresponding to displacements in the MDLD range were 

processed using the PSI and MAI (only CR58) techniques over the time series. The high 

velocity rate CRs having displacements beyond the MDLD range were processed by offset 

tracking-based techniques. To investigate the performance of different offset tracking 

techniques several matching algorithms (i.e., area and feature-based matching methods) were 

applied to one CSK pair according to the first and last acquisition dates. This aims to estimate 

the CRs offsets between these two SAR images. 

The area-based matching algorithms investigated in this study are (1) the Phase Correlation 

(PC); (2) the Modified PC (MPC) implemented by ImGRAFT [100] and COSI-Corr [47,48], 

respectively; (3) the Orientation Correlation (OC) implemented by ImGRAFT and CIAS 

[49,50], concurrently; and (4) the NCC and Statistical Correlation (SC) implemented by 

CIAS and COSI-Corr. In addition, the feature-based matching algorithms taken from 

computer vision are as follows: (1) BRISK (FREAK as descriptor); (2) HARRIS; (3) 

MEIGEN; (4) FAST; (5) SURF; (6) the combination of BRISK, HARRIS and MEIGEN 

detectors with SURF as a descriptor. All feature-based matching algorithms were 

implemented in MATLAB [104]. Although OC is practically a feature-based algorithm, we 

put it in the area-based matching category, because it uses a correlation operator for matching 

and a moving window-based approach. The methodology flowchart is divided into two 

branches according to the landslide velocity rate and the related methods for estimating it 

(see Figure 3.5).   

 

 



  

 

 
Figure 3.5 : Methodological flowchart including InSAR-based and offset tracking-based techniques in addition 

to the validation. Comb. refers to the combination of the corner-based feature detection functions 

(i.e., BRISK, HARRIS and MEIGEN) with the SURF descriptor. 

 

3.6.1 Phase-Based Estimation (InSAR - PSI) 

To overcome the decorrelation problem due to the vegetation observed on the Corvara 

landslide, the PSI technique has been applied to the installed CRs. The main goal of PSI 

processing is the extraction of the phase displacement component without any other residual 

phase components especially the noise. Figure 3.6 shows the SAR data pairs combination 

and connection graph with 27 CSK images as well as the rainfall data taken from the Piz la 

Ila station. 

 

Figure 3.6 : Perpendicular and temporal baseline information of the CSK acquisitions according to the master 

image and daily precipitations measured at the Piz la Ila rain gauge station nearby Corvara. 

 



  

 

The master and slaves chosen according to (2.17). The minimum and maximum 

perpendicular baselines are of 42 m and 976 m, respectively to the master image, which are 

smaller than the critical baseline.  

The PSI processing [105] was run with the SARscape software following five steps: (1) single 

master connection network creation; (2) images co-registration, interferogram generation and 

flattening; (3) first inversion; (4) second inversion and (5) displacement geocoding. First, all 

slaves are co-registered to the master image with an oversampling factor of 4 in range to 

avoid aliasing. None of Doppler separation of each slave and master was beyond the critical 

𝑓𝑑𝑐, hence, no Doppler filtering was applied. Since the perpendicular baselines of all pairs 

are much lower than the critical baseline (45% of the critical baseline), the spatial 

decorrelation is very limited. No spectral filtering is applied in order to keep the data at the 

highest resolution possible and increasing pixel probability to be dominated by one scatterer 

[106]. Initial PS pixels selection was performed by using the ratio of the standard deviation 

to its intensity average, known as the amplitude dispersion index (DA). In the first inversion 

step, the residual height and displacement velocity were obtained by considering the 

reliability of phase history of selected PS pixels using the linear model. The phase offset 

retrieved from the interferograms was removed using the highest coherent pixel selected 

within a predefined area (5 sqkm) as a reference point. The second inversion estimated the 

atmospheric phase components by using the previous model and the second linear model to 

fit the final displacement after removing the atmospheric phase. Low and high band pass 

filtering with window sizes of 1000 and 365 (days) were then applied to remove the spatial 

and temporal distributions of the atmospheric variations. 

In the validation step, the GPS measurements have been projected into the LOS direction to 

be compared with PSI results.  

 

3.6.2     Phase-Based Estimation (InSAR - MAI)  

MAI is an advanced InSAR technique based on the split-beam of InSAR processing using a 

modification of the Doppler centroid into forward (𝜑𝑓) and backward (𝜑𝑏) looking 

interferograms [61]. The resultant phase difference between two SAR pairs can be used for 

estimating a long-track displacement. The MAI phase (3.7) and its accuracy (3.8) are defined 

as:  

 , ,

4
MAI InSAR f InSAR b

n
r

l


  = − =                                                (3.7) 

4
MAI r

n

l


 =                                                      (3.8) 



  

 

where l is the length of the antenna, n is a normalized squint (fraction of the full aperture 

width), 𝜎∆𝑟 and 𝜎𝑀𝐴𝐼 are the standard deviations of the phase and displacement measurements, 

respectively [20,21]. Since the movement direction of the CR58 is approximately aligned to 

the azimuthal direction (nearly N–S) with a magnitude of about 34 cm, for reducing the 

computational load of the data processing, MAI was applied to half of the SAR data over the 

full time series. Moreover, different multi-looking factors (4 × 4, 16 × 16 and 64 × 64) and n 

parameters (i.e., 1/2 and 1/4) were tested.  

 

3.6.3     Intensity-Based Estimation (offset tracking - area-based) 

 

Phase Correlation (PC) 

Image matching can be performed in the frequency domain referring to phase correlation.  

Two PC versions were applied to the intensity-based SAR images: (i) the standard PC; and 

(ii) a modified version of PC (MPC). MPC minimizes the weighted residual matrix between 

the computed normalized cross-spectrum and the theoretical one to both reach more 

flexibility on the frequency weighting and to solve the phase wrapping ambiguity. It uses an 

iterative process (re-computing times of frequency mask adaptively) to increase the 

robustness and accuracy, and frequency masking to obtain a bias-free correlation [73]. The 

robustness iteration and mask threshold parameters are firstly set to 2 and 0.9, respectively. 

To investigate the role of the robustness iteration parameter in accuracy improvement of the 

offset estimation, its value is then increased to 4 by a resampling process. 

 

Orientation Correlation (OC) 

OC is a template-matching algorithm in the featured-based matching category and relies on 

orientation of image intensity gradients [74]. The orientation images are then matched using 

inverse FFT-based correlation. Since Orientation Intensity Of Gradient on the images has no 

gradient (i.e., 0 + 0i) for uniform regions and is equal to 1, hence, OC is invariant to offset 

illumination changes [74].   

 

Normalized Cross Correlation (NCC)  

NCC is a robust and simple method to seek for a particular pattern that has probably been 

shifted in two subsequent (in time) images to find the related offset. NCC algorithm was 

applied to one SAR pair using CIAS and COSI-Corr. SC in COSI-Corr uses the statistical 

approach based on the cross correlation. To evaluate the effect of using different templates 

and search windows on the accuracy of the offset estimation, several windows were defined 

based on an initial guess of the CRs displacements (i.e., with 64 × 64, 32 × 32 and 16 × 16 



  

 

search windows, 16 × 16 and 8 × 8 template windows and according to 2, 4 and 8 pixels 

during the moving window step). This procedure is used for each area-based estimator.  

 

3.6.4 Intensity-Based Estimation (offset tracking - feature-based) 

Generally, the BRISK algorithm includes three main parts: (i) sampling pattern; (ii) 

orientation compensation; and (iii) sampling pairs [75]. The features in BRISK are extracted 

in octave layers and layers in-between of the image pyramid, and then the location and the 

scale of each feature is acquired in the continuous domain via quadratic function fitting [75]. 

The BRISK descriptor uses Hamming distance instead of Euclidean distance to match 

features utilizing the sum of XOR operation between two binary descriptors [75]. HARRIS 

operates on the second moment matrix (auto-correlation matrix) to detect the features using 

the gradient distribution in a local vicinity of a point-like target [79]. MEIGEN is a feature 

detector that extracts the point feature using a measure of feature dissimilarity to quantify the 

changes between two images [76]. FAST detector uses comparing of pixels where those have 

only been located on a circle of fixed radius around the point (i.e., 16 pixels) to consider the 

object as a corner candidate [82]. SURF detector considers integral images for image 

convolutions and Fast-Hessian matrix. The SURF descriptor is based on dividing the 

neighborhood region of each feature into sub-square regions (i.e., 4 × 4) and then calculating 

the response of a 2-dimenssions Haar wavelet for each sub-region [83]. FREAK, as a binary 

descriptor, was also used by the BRISK detector for describing the detected BRISK-based 

features. FREAK is a cascade of binary strings computed by efficiently comparing image 

intensities over a retinal sampling pattern [80]. To utilize the high capability of SURF in 

localization, four corner-based detectors (i.e., BRISK, HARRIS, MEIGEN FAST) were 

combined with the SURF descriptor in the feature matching step. In this way, the 

improvement potential of the offset estimation accuracy could be investigated and compared 

with the previous status (i.e., the corner-based algorithms as either detector or descriptor). 

The set of parameters for the feature detection function were presented in Table 3.4.  

Table 3.4: Set of parameters used for the processing of the feature detection functions and descriptors. 

Parameters BRISK HARRIS MEIGEN FAST SURF 

Minimum intensity * 0.2 - - - 0.2 

Minimum quality 0.1 0.01 0.01 0.1 - 

Gaussian filter size  5 5 - - 

Number of octaves 4 - - - 4 

Number of scale ** - - - - 4 

* Minimum intensity difference between corner and surrounding region. ** Number of scale levels per octave. 



  

 

3.7     Results  
 

3.7.1 InSAR results (PSI and MAI) 

The PSI accumulative displacement is represented in Figure 6. In the plots, the GPS 

measurements are projected to the LOS for the PSI results and to the satellite azimuth for the 

MAI results using (3.7) and (3.8), respectively. As GPS measurements were not acquired 

exactly at the same time (i.e., there were few days of difference) that the CSK acquisitions, 

the GPS measurements were approximated by a linear curve to make them comparable with 

the PSI results. The goodness of fit parameter (i.e., the R-square) for each fitted line is 

reported in Table 3.5. Figure 3.7 shows that the deviation of the PSI results from the GPS 

line varies for each CR. CR6, 23 and 57 present a variable agreement, CR4, 13, 28, 25 and 

49 have a moderate agreement, and CR8 and 11 have a good agreement with the GPS 

measurements. 

The PSI and MAI results (including comparison of the velocity rates between PS, MAI and 

GPS, and accuracy assessment) are presented in Table 3.5. The Multi-temporal coherence 

(Mc) parameter shows how well a CR displacement trend fits with the linear model that was 

already selected for PSI processing. More Mc is close to 1 value, more the related PSI results 

fit the linear model. According to Table 3.5, CR8 and 11 presented the lowest Standard 

deviation (Std) and RMSE among the other CRs, and CR28, 49, 25, 23 and 57 (which are in 

the most active part of the landslide with different displacements in azimuth with respect to 

the LOS) presented the highest Std and RMS. The CR6 and CR28 provided the minimum (8 

cm/year) and maximum (28 cm/year) velocity rates, respectively. The displacement of CR58 

was the only one derived by MAI and the displacements of the high velocity rate CRs cannot 

be estimated by MAI due to the MDLD restriction. 

  

  



  

 

  

  

  
 

Figure 3.7 : Cumulative displacement plot for each CR. The CR labels are mentioned at the top of the plots and 

the blue lines are the fitted linear lines related to the GPS measurements (corresponding R2 values 

for each fitted line are presented in Table 3.5). 

  



  

 

Table 3.5: InSAR results summary in terms of: Amplitude Dispersion index (DA = σ/μ), Multitemporal coherence 

(Mc), Total Displacement of PSI and GPS measurements (TDPSI and TDGPS), Std of the PSI measurements 

and Root Mean Square Error (RMSETD) values between GPS and PSI and MAI measurements. VR refers 

to the percentage ratio of GPS and PSI velocities and R2 indicates R-squared values of the linear curve 

fitting to the GPS measurements (Figure 3.7). 

CR No. Da Mc Azimuth. TDPSI (cm) TDGPS (cm) StdPSI (cm) RMSEd (cm) VPSI (cm/year) VGPS (cm/year) R2 (GPS) 

4 0.12 0.61 305° 12.4 12.5 3.87 1.04 9.20 9.58 0.98 

6 0.06 0.62 303° 11.8 13.3 3.75 1.62 8.83 10.77 0.97 

8 0.13 0.56 283° 31.7 32 2.15 0.85 23.55 23.89 0.99 

11 0.08 0.62 298° 20 20.7 2.20 0.50 15.45 15.9 0.96 

13 0.19 0.57 270° 37.5 39.1 4.00 4.07 27.84 29.97 0.98 

28 0.12 0.53 260° 44.8 39.1 6.00 2.68 28 30.03 0.96 

49 0.21 0.51 265° 21.2 20.3 6.68 1.83 16.46 15.67 0.97 

25 0.12 0.56 265° 20.3 20.1 6.23 2.47 17.74 16.21 0.96 

23 0.19 0.52 260° 20.9 22.7 6.66 4.28 19.14 17.45 0.96 

57 0.11 0.58 265° 19.5 18.3 5.99 3.16 14.50 14.15 0.89 

58 * 0.14 - 177° 29 34 4.1 3.2 19 23.1 - 

* The displacement of CR58 is derived by MAI. The MAI and GPS measurements for CR58 are in the satellite 

azimuth geometry. 

 

3.7.2 Offset Tracking Results (area and feature-based matching)  

The displacements of the high velocity rate CRs were extracted by the offset tracking 

estimators. The displacements maps and the corresponding SNR are shown in Figure 3.8. 

The CRs offsets extracted by each estimator at the center of each CRs footprint (red points). 

The 2-dimension offset (dx and dy) and SNR values for each CRs are provided in Table 3.6.  

According to Table 3.6, the best-offset estimations are obtained by the PC (for CR53, 51 and 

58) and the OC (for CR54, 56 and 55) with respect to the GPS measurements. As OC results 

derived from CIAS and ImGRAFT are similar, only OC result obtained by ImGRAFT are 

presented. 

The accuracy assessment of the offset tracking results is given in Table 3.7. The error of the 

extracted offsets in x (i.e., %Px = (dxGPS − dxestimator)/2 × 100) and y (i.e., %Py = (dyGPS − 

dyestimator)/2 × 100) directions are given in terms of the percentage of the pixel size of the 

image (i.e., 2 m). For instance, %Px of %0, %50 and %100 indicate a correct estimation, one 

and a half pixel and one-pixel size. The summation of x-y accuracy (i.e., SPxy = %Px + %Py) 

is an index that shows the performance of each estimator with respect to its counterparts. A 

lower index (i.e., lower error) means that a higher accuracy has been achieved by the related 

estimator in x and y directions. 

The accuracy obtained by the area-based matching (see Table 3.7) shows that all estimators 

can extract a sub-pixel accuracy in the estimation of displacement in the x and y directions in 

most cases. Based on SPxy index, OC and PC presented the absolute highest accuracy among 

other estimators (i.e., OC for CR54, CR56, CR55, and PC for CR53 and CR51). Although 

the PC showed the highest accuracy for CR53 and CR51, MPC has generally better 

performance than PC for all CRs. Using a higher robustness iteration parameter (i.e., 4) and 

applying the resampling process, simultaneously, we observed a small increase of accuracy 

in the MPC results. Both the NCC-based estimators (i.e., SC by COSI-Corr and NCC by 



  

 

CIAS) yielded similar results with a relative superiority of SC. Since both use the NCC 

function to estimate the offset, these results suggest differences in their algorithm 

implementation. For the CR51, NCC was not able to estimate the displacement. 

 

Table 3.6: Comparison of dx and dy offsets (in meter) with the related SNR for four area-based offset 

tracking and OC algorithms. 

CR 

No. 
GPS SC NCC MPC OC PC 

dx dy dx dy SN
R 

dx d
y 

SNR d
x 

dy SN
R 

d
x 

dy SNR dx dy SNR 

53 1.6 0.3 0.3 0.2 0.8
9 

0.2 0.
3 

0.96 0.
5 

0.0
6 

0.9
9 

0.
5 

1.2 0.79 2.0
6 

0.16 0.47 

54 3.2 1.1 2.4 1.3 0.8

7 

1.2 2.

7 

0.92 2.

4 

0.6 0.9

9 

2.

2 

1.2 0.77 3.0

2 

2.8 0.41 

56 0.7 3.4 2.2 3.7 0.9
2 

2.2 3.
7 

0.98 2.
1 

3.7 0.9
8 

2.
2 

3.7 0.96 1.9 4 0.7 

51 6.1 39.4 7 39.
3 

0.7
8 

- - - 6.
8 

39.
5 

0.7
8 

7 39.
2 

7.9 6.1
2 

39.9 0.5 
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7 
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8 

0.8 40.

7 

1
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7 

0.85 4

0.
7 

14.

4 

0.9
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0.
2 

14.

2 

0.81 39.

7 

15.8 0.41 

58 0.01

6 

0.35 0.4

5 

0.1

2 

0.9 0.5 0.

2
5 

0.98 0.

4
3 

0.0
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0.9
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0.

2
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Table 3.7: Accuracy of the extracted offsets (i.e., %Px and %Py) in terms of the pixel size percentage. 

SPxy is an indicator showing the total accuracy for each CR. 

CR 

No. 
SC NCC MPC OC PC 

%Px %Py SPxy %Px %Py SPxy %Px %Py SP

xy 
%P

x 
%P

x 
SP

xy 
%P

x 
%Px SP

xy 

53 50 5 55 70 0 70 55 12 67 55 45 10

0 

23 7 30 

54 40 95 135 95 80 175 40 25 65 50 5 55 10 85 95 

56 75 15 90 75 15 90 70 15 85 65 12 77 60 30 90 

51 45 5 50 - - - 35 5 40 45 10 55 1 31 32 

55 35 40 75 35 35 70 35 20 55 10 10 20 14 90 10

4 

 



  

 

 
 

Figure 3.8 : Displacement maps of the CRs. The offsets derived by the offset tracking estimators are superimposed 

on the hill-shaded DEM of the Corvara. (a) SC displacements; (b) correlation coefficients (SNR) of SC 

measurements; (c) NCC displacements; (d) correlation coefficients (SNR) of NCC measurements; (e) 

PC displacements; (f) SNR of PC measurements; (g) MPC displacements; (h) SNR of MPC 

measurements: (i) OC displacements; and (j) SNR of OC measurements. 



  

 

Feature-Based Matching Results  

The results of the CRs offsets derived by the feature-based matching algorithms with respect to 

the GPS measurements are presented in Table 3.9. The best-offset estimations are obtained by: 

the BRISK for CR53, the HARRIS for CR54, the BRISK_S for CR54, the MEIGEN and 

MEIGEN_S for CR58, and, the HARRIS and MEIGEN (with SURF descriptor as well) for CR51 

and 55 (see Table 3.9). 

The corner-based detectors were completely able to find all CRs on the images (except using 

FAST for CR53, 51 and 58). After running the corner and blob-based algorithms on the SAR 

data, all corner-based detectors (except FAST for CR53, 51 and 58) could detect all the CRs 

positions properly (e.g., BRISK in Figure 3.9a), whereas the blob-based detector (i.e., SURF) 

was not able to detect none of the CRs positions (Figure 3.9b). 

 

  

Figure 3.9: CRs detection. The high velocity rate CRs detected by (a) BRISK function as corner-based feature 

detector and (b) SURF function as blob-based feature detector. The detected features of both 

algorithms were superimposed on the SAR data in 5 April 2014 (only for the high velocity rate CRs 

region). 

 

After finding the desired features (CRs), they have matched by the relevent descripors. For 

example, the CRs extrected by BRISK detector in Figure 3.9a have been matched using the 

FREAK descriptor to the pair of SAR data (see Figure 3.10). Random sample consensus 

(RANSAC) [107] was used to only keep the inlier matched connections and remove the outliers 

when the features matched wrongly. 



  

 

 

Figure 3.10 : Final feature-based matching results. The feature matching was performed by FREAK descriptor and 

all matched connections apart from the high velocity rate CRs were removed from the image. 

 

The offset accuracies of the feature-based algorithms are shown in Table 3.9. Based on SPxy 

index, BRISK, HARRIS, MEIGEN and their combination with SURF presented the absolute 

highest accuracy. HARRIS, BRISK and MEIGEN generally presented more accurate results, 

respectively, and the FAST showed the worst accuracy.  

 

Table 3.8: The dx and dy offsets (in meter) for four corner-based feature matching algorithms and the combination 

of BRISK with FREAK, and HARRIS, MEIGEN and FAST with SURF. 

CR No. GPS BRISK HARRIS MEIGEN FAST BRISK_S HARRIS_S MEIGEN_S 

dx dy dx dy dx dy dx dy dx dy dx dy dx dy dx dy 

53 1.6 0.3 1.3 0.4 0.9 0 1.1

4 

0.2 - - 3.0

6 

0.4 0.9 0 1.14 0.2 

54 3.2 1.1 2.4 2.8 2.6 1.4 2.4 1.4 6 6 4.8 1.6 2.6 1.4 2.4 1.4 

56 0.7 3.4 2.0 3.6 2.4 3.8 2.2 3.6 0 4 0.8 3.6 2.4 3.8 2.2 3.6 

51 6.1 39.

4 

7.4 38.

0 

7 39.4 7 39.

4 

- - 9 37 7 39.4 7 39.

4 
55 40 14 37.

4 

14.

6 

41 14.8 41 14.

8 

36 14 37.

4 

14.6 41 14.8 41 14.

8 

58 0.016 0.3
5 

0.4 0.9 0.8 0 0.8 0.0
4 

- - 0.4 0.86 0.8 0 0.8 0.0
4 

 

Table 3.9: Extracted offsets accuracy (i.e., %Px and %Py) in terms of pixel size percentage. SPxy is an indicator 

showing the total accuracy for each CR. 

CR 

No. 

BRISK HARRIS MEIGEN FAST BRISK_S HARRIS_S MEIGEN_S 
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53 15 4 19 35 16 51 23 6 29 - - - 73 4 77 35 16 51 23 6 29 

54 40 82 
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2 
30 12 42 40 12 52 

14

0 

24

2 
382 80 22 102 30 12 42 40 12 52 

56 65 6 71 85 16 
10
1 

75 6 81 35 26 61 5 6 11 85 16 
10
1 

75 6 81 

51 65 70 
13

5 
44 0 44 44 0 44 - - - 

14

5 
120 265 44 0 44 45 0 44 

55 
13

0 
30 

16

0 
50 40 90 50 40 90 

20

0 
0 200 

13

0 
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3.8    Discussion 
 

3.8.1 InSAR (Non-Linearity Effect in PSI) 

According to the CR quality assessment results, we observed that the footprints of the CR13 

(Figure 2.2b) and CR58 (Figure 2.4c) do not correspond to a cross-like shape, meaning that their 

IRFs are not the ideal ones (as presented in Figure 2.2d). A comparison of the RPSLR, APSLR 

and ISLR parameters between the first and last acquisitions (Table 2.2) clearly shows variations 

of the values. These changes indicate that CRs did not keep the optimal orientation during the 

data acquisition time span. This problem has probably occurred due to the landslide movement 

tilting the CRs. The tilts led to un-correlated signal in the clutter region (i.e., the grass 

surrounding the CRs) and induced a phase error. The probability density function (pdf)                         

(3.15) of phase error (𝜑𝑒) (3.16) for a Point Scatterer (PS) shows that the amplitude of the phase 

error depends on the Signal to Clutter Ratio (SCR) (3.17) [108]: 
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where 𝜎𝑇, 𝜎𝐶, 𝜎° and A indicate SCR of PS, average of SCR clutter, sigma naught and surface 

around the PS, respectively [109]. Equations (3.15) and (3.16) imply that by increasing the SCR 

the width of the pdf of the phase error narrows and the phase error decreases. Some 

considerations are also inferred by investigating the PSI results accuracy assessment of each CR 

(Table 3.5). 𝐷𝐴 of all CRs have values smaller than 0.25 leading to a high coherence of the SAR 

signals that indicates that CR backscattering values allow them to be considered as PS despite 

the accrued tilting. Mc  values vary between 0.51 (the lowest for CR57) and 0.62 (the highest for 

the CR6 and CR11), which implies a deviation of CRs motion type from the linear behavior. The 

GPS measurements showed a not-steady status and some irregular patterns (i.e., sudden vertical 

changes for some given time) in the CRs movements. The vertical changes of CR6 and CR28 

(measured by GPS) are here represented as examples of non-linear and linear CRs behaviors (see 

Figure 3.11). The effect of this non-linearity can be observed in PSI results. If we compare the 

cumulative displacements of CR28 with CR6 (Figure 3.7), CR28 shows clearly a better 

agreement than CR6 with the GPS line.  

 



  

 

 
Figure 3.11 : Linear and non-linearity behaviors of CRs. Elevation changes of CR28 and CR6 are derived by the 

GPS measurements. 

 

These sudden and irregular changes are mainly related to the landslide movement itself probably 

trigged by specific meteorological conditions. Since the conventional PSI technique is based on 

a predefined linear model, the effect of non-linearity appears as a bias in the precision assessment 

step (e.g., high RMSE value). Different quadratic, cubic and stepwise models can be used as pre-

defined models to mitigate the effect of non-linearity. However, adapting a function that perfectly 

represents the motion type of natural phenomena (e.g., landslide) is not straightforward, due to 

their unpredictability and complexity. Therefore, non-predefined model-based techniques, which 

relies on spatial-correlation filtering, turn out more appropriate for monitoring complex natural 

terrain [106]. 

While deformation information derived by the PSI technique is limited to LOS direction, an 

increase of the uncertainty is expected for non-LOS displacements. However, a meaningful trend 

is generally observed by assessing the Std of PSI results and azimuth displacements of each CR 

(Table 3.5). The Std and RMSE decrease at the CRs with the displacement azimuth close to LOS 

in comparison to other CRs. Since the azimuth displacement of CR8 (i.e., 283°) is very close to 

the azimuth of LOS (i.e., 280°), we assume that the Std of its measurement equals LOS precision 

(corresponding to 3.17 cm displacement). Therefore, the precision of the vertical and horizontal 

displacements was calculated using (2.9) based on this assumption (Figure 3.12). The Std values 

increase (i.e., decrease in precision) by getting away from the LOS direction shown on the circle 

in Figure 3.12c. 

Another key factor that could potentially lead to a bias in the GPS measurements, which in turn 

increases Std values in Table 3.5 is CR tilting. Since the phase center variation (PCV) of GPS 

antenna is computed in the horizontal position, any slight changes (e.g., tilting) in the antenna 

statues causes the PCV estimation are not valid anymore and the measurements are biased 

corresponding to the degree of the antenna tilting.  

With respect to the InSAR-PSI results, a lower LOS Std for C-band CR displacement (i.e., 5 

mm) has been reported with a related sensitivity analysis for urban areas [110] [111]. Several 

main reasons can justify the higher Std values of our results including lack of an optimal 



  

 

orientation of the CRs and the errors propagated in the measurement caused by the non-linearity 

behavior of CR motion type installed in the natural terrain. In summary, many error sources can 

contribute to PSI measurements leading to the increase of Std and RMSE. They can be categorized 

into three main categories: (i) CR-related error sources such as manufacturing, optimal size, and 

CR orientation; (ii) GPS measurement error (in the PCV computation due to the CRs tilting); 

(iii) performance of the used InSAR algorithm for the intended application (i.e., predefined 

model-based or non-model-based); and (iv) other external noise (e.g., atmosphere).  

 

 

Figure 3.12: Sensitivity analysis of the CRs displacements. (a) Azimuth angles of CRs displacements (the low 

velocity rate category) with the vectors of the LOS and heading of the satellite; (b) Precision of CRs 

displacements in LOS direction for the vertical and horizontal displacements in the Zero-Doppler plane 

and (c) Precision of the CRs displacement measurements in the East and North plane. 

 

3.8.2 InSAR (MAI Challenges and Limitations) 

The precision of the MAI phase is a function of n (normalized squint) in (3.8) and MAI phase is 

determined by the following equation [112]: 
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where Nl and 𝛾  refer to the effective number of looks and total correlation (forward 𝛾𝑓 and 

backward 𝛾𝑏), respectively. The NL.MAI is determined by the system parameters: the multi-looking 

factor in azimuth (Na) and range (Nr), the chirp bandwidth (Bc), the sub-aperture Doppler 

bandwidth (Bs), the sampling frequency (fs), the pulse repetition frequency (PRF) and the noise 

reduction factor by an adaptive filtering (Ws) [112].  



  

 

According to (3.8) and (3.18), the MAI phase precision can be improved by increasing n and 

NL.MAI. When we increased Na and Nr (i.e., 4 × 4, 8 × 8 and 16 × 16) the coherence considerably 

deceased. As CRs represent clusters of coherent pixels, surrounded by low coherence ones (i.e., 

vegetation), increasing the multi-looking factor spatially averages the coherence values 

decreasing the coherence. Therefore, this limitation does not make it possible to increase the 

MAI phase precision by increasing the multi-looking factor. Regarding increasing the “n” 

parameter, an increase of “n” did not improve the MAI results in terms of displacement precision. 

Since the satellite observes the CR as a point-like target, at least within a quite wide range of 

angles, it does not matter how much the separation width of the aperture is, in any case the CR 

will be viewed by satellite as a point target depart from any change in the squint angle. In the 

high velocity rate CRs category, only the CR58 displacement (about 34 cm) was in the range of 

MAI maximum detectable displacement and other CRs experienced a displacement of more than 

one meter in the time span. As the CR58 displacement azimuth (i.e., 177°) was nearly along the 

satellite azimuth (i.e., 190°), the displacement accuracy derived by the MAI technique provided 

higher accuracy (i.e., 2.5%-pixel size) than with offset tracking techniques (see Table 9). 

Although MAI measurement precision up to approximately 1% of the azimuth resolution has 

been reported [112] in a high coherent region and applying a high multi-looking factor, the 

restriction of multi-looking factor (leading to a decrease in coherency) does not improve the 

precision for the CR displacement. Despite this limitation, the estimated displacement using the 

MAI technique outperformed the offset-based techniques in the azimuth direction.  

 

3.8.3 Offset tracking (potentials of the area-based matching algorithms) 

To evaluate the performance of each estimators in details, the evolution of the footprint of each 

CR and its pixel values must be investigated. For instance, the footprint of CR53 and CR55 (with 

related pixel values) show the slight and drastic pixel values changes between the first and last 

data acquisition, respectively (Figure 3.13). According to the PSLR and ISLR parameters of the 

CRs (Table 2.2), the tilts on the CRs triggered by the landslide movement caused some changes in 

those parameters. The CRs tilting have modified data pixel values leading difficulties for similarity-

based or variant-sensitive estimators to find the exact position of the signal peak for an accurate offset 

estimation (see Figure 3.13).  

 
Figure 3.13: Changes of the footprints shape and pixel values of CRs. The footprints of the CR53 and CR55 with 

the corresponding pixel values on the CSK data for the first and last data acquisitions are given. 



  

 

 

The function behavior of each estimator of the CR footprint could be an appropriate indicator to 

understand why some estimators provide more precise results than others for a given CR. Figure 

3.14 reports three functions of the used estimators from three template matching categories (i.e., 

phase-based (PC), feature-based (OC) and cross correlation-based (NCC)) depicted. The NCC 

response to the CRs corresponding to stable pixels values (i.e., CR53 and CR54) between two 

data acquisitions is nearly flat, whereas those with highly changing pixel values due to tilting 

(i.e., CR51 and CR55) have uneven or semi-flat surface. PC response provides a single sharp 

peak for the nearly fixed CRs (i.e., CR53 and CR54) and multiple sharp peaks for the tilted CRs 

(i.e., CR51 and CR55). OC, as a feature-based method, seeks for a distinctive feature (the CRs 

footprint) using a pre-defined descriptor (i.e., OIOG). The results show that PC and OC 

outperform NCC and OC is relatively superior to PC.  

Despite reliability and simplicity of CC-based methods, such as Normalized CC (NCC), several 

downsides have been reported [64,65] . In this study, we noticed that the NCC accuracy of offset 

estimation is sensitive to noise and limited to the data pixel size. In addition, changing scale, 

rotation or shearing of image features lead to decrease the correlation coefficient. Some drawbacks 

of CC-based matching related to the geometrical changes could also be mitigated using the 

generalized versions of CC-based methods [66,67,68].  

 



  

 

 

Figure 3.14: Estimator function trends. Behavior of the estimator functions (i.e., NCC, PC and OC) at the CR51, 53, 

54 and 55 positions. Since the range of R or SNR values of OC were small, for better visualization the 

values have been multiplied by 1000. 

 

3.8.4 Offset tracking (potential of the feature-based matching algorithms)  

For CR53, CR54 and CR56 that are slightly tilted (small changes in pixel values and shape) 

comparing to CR51 and CR55 (drastic changes in pixel values and shape) by the landslide 

movement, feature-based matching results outperformed the area-based ones. This means that 

the feature-based matching algorithms (as invariant detectors/descriptors to feature deformation) 

managed to cope with some degrees of the distortion caused by CR tilting. While in the case of 

drastic changes in pixel values (e.g., CR51 and CR55), they were not able to remain invariant to 

the pixel value variations.  



  

 

The comparison of the area and feature-based results in Table 3.11 show that the PC from the 

area-based and OC from feature-based categories provided better results than feature-based 

algorithms (see SPxy indexes). HARRIS and MEIGEN detectors generally provided more 

accurate results than BRISK and FAST, whereas FAST had the worst performance among the 

all corner-based detectors. In cases of CR54, CR51 and CR55, the HARRIS and EIGEN results 

were identical when combined with the SURF descriptor. This means that in case of high pixel 

value changes, the detector and descriptor combination does not effect on the results.  

To evaluate the performance of the feature-based matching algorithms, some evaluation metrics 

have been proposed. Ref. [118] defined the 1-accuracy and recall values of each image to assess 

the matching performance. The 1-accuracy and recall refer to the number of false matches 

relative to the total number of matches and the number of correctly matched regions with respect 

to the number of corresponding regions between two images of the same scene, respectively. 

According to [119], five different metrics are proposed to evaluate the detector and descriptor 

performance: putative match ratio, accuracy, matching score, recall and entropy. Since we used 

only one pair of the SAR images and the intended features on the images were only 16 CRs, we 

compared the achieved offsets with GPS measurements as Ground Control Point (GCP) to 

validate the performance of each algorithm. More information concerning a quantitative and 

qualitative comparison of the area and feature-based matching can be found in [120], while 

feature-based matching algorithms and performance comparison are described in [72,73,69]. A 

summary of the advantages and disadvantages of both area and feature-based matching are 

presented in Table 3.12 and Table 3.13. 

Finally, the velocity map of the CRs using integration of PSI, MAI, and offset tracking 

displacements (using the most accurate results derived by the related algorithms) is presented in 

Figure 14. The minimum 8.8 cm/year and maximum 31.6 m/year velocity rates were derived for 

CR6 and CR55, respectively, by the PSI and OC techniques. Based on the velocity map provided 

in Figure 3.15, three different geomorphological zones can be distinguished: (i) Accumulation 

zone including CRs4, 6, 8, 11; (ii) track zone including CRs13 and 53; and (iii) source zone 

including CRs23, 25, 28, 49, 57 and 58 [92]. 

 



  

 

 
 

Figure 3.15: Velocity of the CRs derived by PSI, MAI, and Offset tracking-based algorithms. The movement rate of 

the low velocity CRs derived by PSI, the high velocity CRs by the Offset tracking algorithms (i.e., boded 

value in Table 10) and CR58 by MAI. 

 

 

 

Table 3.10 : The offsets and error %P (i.e., P = (Dgps − Dest)/2 × 100) for CR58 (unit in meter). All the offsets 

obtained by the estimators and GPS measurements were projected to the satellite azimuth direction 

using Error! Reference source not found.. 
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Table 3.11: SPxy index comparison between area and feature-based matching algorithms. Bolds values indicate 

higher accuracy achieved by a particular estimator for one specific CR. 

CR 

No. 

SPxy Index 

Area-Based Matching Feature-Based Matching 

SC NCC MPC OC PC BRIS
K 

HARRI
S 

MEIGEN FAST BRISK_S HARRIS
_S 

MEIGEN_
S 

53 55 70 55 100 30 19 51 29 - 77 51 29 

54 135 175 65 55 95 122 42 52 382 102 42 52 

56 90 90 85 77 90 71 101 81 61 11 101 81 

51 50 - 40 55 32 135 44 44 - 265 44 44 

55 75 70 55 20 104 160 90 90 200 160 90 90 

 

 



  

 

Table 3.12: Advantages and disadvantages of the area and feature-based matching techniques. 

Matching 

Methods 

                Patch or Area-Based Featured-Based 

Image 

domain 

           spatial domain frequency domain 

 

Techniques CC NCC PC OC 

Accuracy Up to sub-pixel 

(by interpolation) 

Up to sub-pixel (by 

interpolation) 

Up to sub-pixel 

(by over 

sampling) 

Up to sub-pixel 

Function Similarity Similarity Similarity—FFT Orientation of 

intensity and FFT 

Advantages Simple and easy 

computation 
‐ Invariant to linear 

brightness and contrast 

variations 

‐ Not too sensitive to 

translation and small 

rotation and scale changes 

‐ Less 

sensitive to 

frequency 

dependent 

noise and 

varying 

illumination 

‐ Invariant to 

linear 

changes in 

brightness 

‐ Invariant to 

rotation 

‐ Statistically 

robust 

‐ Illumination 

and scale 

invariant 

‐ Fast 

Shortcoming ‐ Biased by 

changes in 

global 

brightness 

‐ Sensitive to 

intensity 

changes 

(varying 

Illumination) 

‐ Sensitive to rotation, scale 

changes, different 

illumination, viewing angle 

and temporal changes 

‐ Flatness of peak 

‐ Sensitive to 

spatial 

dependent 

noise and 

illumination 

‐ conditions 

‐ More 

sensitive to 

local 

structural 

than 

intensity 

information 

 

Table 3.13 : Advantages and disadvantages of the feature-based matching algorithms regarding offset estimation. 

Matching 

Method 

Featured-Based 

Feature 

style 

Corner-based Blob-based 

Detector BRISK HARRIS MEIGEN FAST SURF 

Feature 

type 
‐ Point tracking 

‐ Corners 

‐ multi-scale 

detection 

‐ Point 

tracking 

‐ Corners 

‐ Single-

scale 

detection 

‐ Point 

tracking 

‐ Corners 

‐ Single-

scale 

detection 

‐ Point 

tracking 

‐ Corners 

‐ Single-

scale 

detection 

‐ Blob 

‐ Multiscale 

detection 

Scale-

Rotation 

Invariant-Invariant Variant-Invariant Variant (scale) Variant-Invariant Invariant-Invariant 

Descriptor ‐ Binary-based 

‐ Fast but Less 

accurate 

(localization) 

- - - ‐ Distribution-

based 

‐ Slower 

‐ More accurate 

(localization) 

 



  

 

3.9     Conclusions 
 

Although the Corvara landslide has been the subject of the previous studies [36,39], they have 

faced with the intrinsic limitations of the techniques used. For example, PSI was not able to 

estimate the high velocity rate and non-LOS CRs and the differential DEM (UAV-based 

photogrammetry) derived from two subsequent acquisitions was only able to detect the vertical 

deformation limited only to the small part of the landslide (i.e., left-down side of CR58) due to 

the large extend of the landslide. In this research, these limitations have been overcome by using 

the integration of PSI, MAI, and offset tracking results, allowing the estimation of the 

displacements of the CRs over the whole part of the landslide.  

The PSI results showed that the proper orientation and quality assessment parameters of CRs 

(i.e., PSLR; ISLR and IRF) have a key role in the noise error reduction. The provided sensitivity 

analysis model indicated that the uncertainty of the PSI measurements increases by deviating 

from the displacements azimuth with respect to the LOS azimuth. When displacement is aligned 

to the satellite azimuth, the displacement estimation is impossible (infinitive Std). Moreover, 

non-linearity behavior of the CRs motion in natural terrain could propagate some errors in the 

final extracted displacements when a pre-defined-based model of the PSI technique is used. In 

such case, non-predefined model methods should be considered.  

The MAI result obtained for CR58 demonstrated that MAI provided the best-offset estimation 

among other offset-based estimators. This means that if displacement is aligned to N–S direction 

(nearly satellite path), MAI provides the highest accuracy up to 2.5% of the pixel size of CSK 

data (i.e., 2 m). This result could even be improved in case of having data with a higher 

coherence. Low coherence or a high coherent target surrounded by low coherent surface (in our 

case CR surrounded by vegetation) are the limiting factors to use higher multi-looking factors to 

increase MAI precision.  

The accuracy of the amplitude offset tracking technique have been empirically estimated 

between about 1/10 to 1/30 of the pixel size for typical SAR systems. This accuracy corresponds 

to 20 cm and 6.6 cm of the pixel size of CSK data (i.e., 2 m) or 10% and 3.3% of the pixel size. 

The offset accuracy varied in xy directions, achieving from 0% of the pixel size (i.e., correct 

estimation) using a combination of the feature-based algorithms (e.g., MEIGEN_S for y offset 

of CR51) up to 1% of the pixel size using the phase correlation (e.g., PC for x offset of CR51). 

According to the results, not only the main objective of the paper was fulfilled (i.e., sub-pixel 

accuracy of offset estimation) but also a higher accuracy was obtained. The results were obtained 

when the random changes in pixel values occurred by CR tilting between two data acquisitions 

(i.e., at the worst-case scenario). Meanwhile, area and feature-based algorithms have been mainly 

developed to take into account the common geometric distortions (e.g., scale, rotation, and 

translation). Therefore, in normal conditions (with common distortions), the proposed 

approaches should provide more accurate and reliable results. 



  

 

Chapter 4 

 

 

4. LANDSLIDE MONITORING USING 

SENTINEL-1 AND GROUND-BASED 

SENSORS  
 

This chapter 1 focuses both on evaluating the performance of DInSAR using the SBAS algorithm 

by changing unwrapping and coherence parameters with Sentinel-1 imagery, and on applying 

DInSAR together with DGNSS measurements to monitor an active and complex landslide. To 

this end, 41 Sentinel-1A/B images covering the period from January 2015 to October 2016 were 

processed by using the SBAS algorithm. Changing in the selection of the coherence thresholds, 

2D and 3D unwrapping processes give various results (compared with GPS data) in terms of 

reliability and accuracy, supporting the understanding of the landslide velocity field. Evolutions 

of phase changes are analyzed according to the coherence and the monitored ground-based 

displacements. 
 

 

 

4.1 Introduction 

 

DInSAR has the capability to precisely monitor surface displacements over time (temporal 

sampling rate up to 6 days for Sentinel-1A/B) with a wide coverage in a labour-saving, time- and 

cost-efficient manner [14]. Two main categories of advanced DInSAR processing techniques for 

displacement time-series generation exist: persistent scatterer interferometry (PSI) and small 

baseline subsets (SBAS) techniques [123][22][124]. Both approaches can be also merged 

together [24]. Whilst these methods have shown great potential for landslide monitoring and 

detection [125], some limitations remain, especially in the detection and estimation of significant 

changes in vegetated terrains [126]. According to [127], a common challenge to be faced in both 

PSI and  SBAS algorithms is the phase unwrapping (PhU) operation that represents the retrieval 

process of the absolute phase signals from their (measured) modulo-2π restricted components, 

                                                           
1 Part of this chapter appears in: 

[147] M. Darvishi et al., “Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara   

Landslide (South Tyrol, Italy),” Remote Sens., vol. 10, no. 11, p. 1781, 2018. 



  

 

i.e. interferometric fringes. The unwrapping operator estimates an ambiguity that is an integer 

number of 2π radians in wrapped data. Several approaches have been used to remove this 

ambiguity and minimize the total length of discontinuities in the unwrapped phase. Branch cut 

[128], relying on restriction of integration over image to paths with local phase differences within 

2π. Minimum Cost Flow (MCF) is a statistical-based approach to optimize flow in each of the 

arcs that minimize the total cost [129]. Least square-based methods [130] are based on two-

dimensional partial differential equation.  

Temporal and spatial decorrelation, as well as atmospheric and ionospheric noises are often 

present in  DInSAR-based results [17], [27]. However, the area-wide coverage of SAR data can 

compensate the low spatial sampling of ground-based data while high temporal sampling rates 

of ground-based data overcomes the low temporal sampling rates of SAR data. Accordingly, 

DGNSS and DInSAR could be utilized as complementary methods to fully quantify surface 

displacement and not only for validation purposes. DGNSS data for instance can reach a 

precision in the order of millimeters at high temporal sampling rates (depending on the 

configuration mode) on one single point. The combination of DGNSS and DInSAR estimated 

displacements (e.g. PSI and DGNSS), derived by using well-known interpolation techniques 

such as minimum curvature [131], Kriging [132] or least-squares collocation [133], can provide 

an area-wide displacement map and a 3D displacement map [134]. DGNSS data could also assist 

to mitigate the atmospheric artifacts and correct water vapor effects from the SAR data [135], 

[136].  

PSI using COSMO-SkyMed data has only been applied successfully to the Corvara landslide to 

the X-band corner reflectors (CRs) installed there, while SBAS failed to produce a spatial 

displacement map due to high sensitivity of X- band data to vegetation [90]. The recent 

availability of C-band data such as S1 data, also characterized by frequent and constant 

acquisitions, gives a promising opportunity to highlight the feasibility and accuracy of 

monitoring a complex and vegetated continuously moving landslide applying the SBAS 

algorithm to S1 data. At this aim, the ground-based and remote sensing data are presented as 

well as the methodological workflow in the following sections. Afterwards, DInSAR results are 

analyzed and compared with DGNSS data in order to discuss potentials and limitations of the 

new S1-mission for a continuous spatial monitoring of complex and vegetated landslides. 

 

4.2 Materials 

 
4.2.1 Data 

The remote sensing data consists of 41 S1 scenes covering the period from January 2015 to 

October 2016 (Table 4.1). S1 imagery are processed by the SBAS algorithm [22] as described in 

the next section. 

 

 

 



  

 

Table 4.1: Sentinel-1 data specification. The following acronyms were used in the table: polarization (Pol), incident (Inc), 

azimuth (track) (Az), revisit time (Rtime), range (Rg), and wavelength (W.L). 

Product Type Mode Pass Pol. Inc/Az angle Rtime Rg × Az spacing W.L 

S1-A/B IW Descending VV 42°/−165° 12/6 day 3.8 m × 13.8 m 5.6 cm 

 

We were used the rainfall data from the meteorological station located in the North of the 

landslide (Figure 4.1A) and DGNSS measurements. A DGNSS reference station (Ciampai), 

operated by the South Tyrolean Positioning Service (STPOS), and delivers the data to correct 

the measured raw DGNSS data to an accuracy in the millimetre range. Raw data measured during 

monthly field campaigns is processed with the Leica© Geo Office software. The processing of 

permanent DGNSS data has recently been operationalized with the Leica© Spider software. The 

current DGNSS monitoring network was established in 2013 and consists of three permanent 

DGNSS stations and 13 periodically measured benchmarks (landslide movement destroyed the 

stations 51 and 55), which are equipped with a Leica GM10 receiver and an AS10 antenna. The 

13 benchmarks are surveyed during field visits with DGNSS devices (Leica© GS10 receiver and 

AS10 antenna) once a month with a measurement time of at least 90 minutes allowing a precision 

of 1 mm (1 standard deviation). The DGNSS-monitoring network (Figure 4.1A) collects 

pointwise information about the landslide displacement and can also be used for validation 

purposes of the results obtained by DInSAR processing. At each DGNSS-surveyed point, both 

permanently and monthly, a corner reflector with a support system for the DGNSS antenna is 

installed (Figure 4.1B). The CRs are of different sizes in order to be captured by SAR-sensors of 

different wavelengths. X-band CRs were installed in 2013 and ground surface displacement s 

were measured by multi-temporal imagery coming from the Cosmo Sky-Med satellite [90]. 

  



  

 

 

Figure 4.1: Landslide monitoring network location and field impressions: (A) Landslide monitoring network; 

(B) monthly measurement station consisting of an X-band corner reflector and a support for the 

DGNSS antenna; (C) permanent DGNSS station, solar panel for power supply, and X-band corner 

reflector. DGNSS: differential global navigation satellite system. 

 

4.3 Methods 

 

The selected parameters and processing steps carried out with the software SARscape [99] to 

estimate the quantitative landslide movement are summarized in Figure 4.2. First, the diagram 

of connections to selected S1 image pairs was created before the generation of the 

interferograms. It defines the combination of SAR pairs to be processed choosing the appropriate 

master and slave images, after calculating their normal and temporal baselines. 

 



  

 

 

Figure 4.2: Workflow of the Small BAseline Subsets (SBAS) processing for the slope displacement analysis. 

Atm. and IFG refer to atmospheric and interferograms, respectively. UTM: Universal Transverse 

Mercator 

 

In the interferometric processing section, coregistration, interferogram generation, multi-

looking, filtering, and phase unwrapping were performed successively. The slave images were 

coregistered with the master using a 2.5-m resolution digital elevation model (DEM) provided 

by the Autonomous Province of Bolzano. In the coregistration step, (1) a local nonparametric 

shift estimate is calculated by using DEM and orbital information, (2) a set of windows (64 × 64 

in range and 128 × 128 in azimuth) was defined on the master image to compute the cross-

correlation function, and (3) the residual parametric shift was estimated and the proper shifts 

were applied. To increase the signal-to-noise ratio (SNR) of the interferograms (more reliable 

coherence estimation) and obtain squared pixels, a multi-looking factor of 4 × 1, leading to the 

pixel size of 13.27 m × 13.8 m, was used. To smoothen the interferograms, the Goldstein filter 

was applied before the final interferograms’ unwrapping. Two coherence thresholds (CC) of 0.2 

and 0.35 were used for phase unwrapping (PhU). The 2D PhU is based on the MCF algorithm 

with a regular grid covering the data extent [46], while the Delaunay MCF (hereafter named 3D 



  

 

PhU) utilizes a Delaunay triangular network, only considering pixels with coherence values 

above the unwrapping (CC) set in the unwrapping step. To this end, 3D PhU is performed 

through two steps: (1) a “temporal” unwrapping operation based on the MCF approach for each 

arc, connecting neighboring pixels on the perpendicular baseline and time grid (𝐵𝑝𝑒𝑟𝑝 × T), and 

(2) utilizing the results of the first step to operate a “spatial” unwrapping on each single 

interferogram on the range and azimuth grid (R×A) [47]. In the 3D PhU, each pixel is unwrapped 

if its coherence value is above the CC in at least 75% of the pairs in the Delaunay connections, 

leading to an increase in the robustness and reliability of the unwrapping process. In order to 

reduce unwrapping error due to the low coherence area, a decomposition level (DL) processing 

was exploited. The DL operates data multi-looking and under-sampling in an iterative way to 

unwrap the interferograms at a lower resolution and then reconstruct them back at the original 

resolution [45]. A third-degree polynomial was applied to the selected 30 reference points to 

estimate and remove the phase constant and ramp during the refinement and reflattening steps. 

The reference points were selected outside the actively moving landslide area on highly coherent 

pixels (i.e., more than 0.8), where unwrapped values showed no residuals and jumps. The 

selected points were mainly located in the permanent settlement area of Corvara and on the 

surrounding mountains of the landslide, where no displacement is expected. Then, 15 out of the 

30 points (including 12 points over the urban area) were chosen as stable points. Finally, the 

pixel values were interpolated using a 4th cubic convolution interpolation, considering 16 

surrounding pixels with interpolation and mean window sizes of 7 and 3, respectively, to derive 

an area-wide spatially comprehensive displacement map.  

Two steps of inversion were performed in order to estimate the landslide velocity field. In the 

first inversion step, the SBAS inversion kernel was implemented to retrieve the first estimate of 

the displacement rate and residual topography (topo) using a linear model [16]. In the second 

inversion step, after the initial estimation of the displacement time series, a custom atmospheric 

filtering was defined and applied to the results of the previous step in order to estimate and 

remove the atmospheric contribution (atm). with The filter window sizes of 1200 m and 365 

(days) were set to take into account spatial and temporal atmospheric variations, respectively. 

Finally, the displacement time series and mean displacement map obtained were geocoded 

according to the UTM reference system. 

Finally, the spatial displacement patterns were analyzed and compared to DGNSS data from field 

observations. Based on the DGNSS time series, 3D displacements were computed and projected 

in the 1D line of sight (LOS) of the satellite, enabling direct comparison with DInSAR results. 

The decomposition of the LOS displacement vector described in the East–North–Up reference 

system is [0.64, 0.17, 0.74], according to a descending S1 incidence angle θ1 = 42.2° and a 

satellite path azimuth α = −165° (counter-clockwise to the North) [48]. As the decomposition 

LOS vector shows, the InSAR system is more sensitive to the Up component (i.e., 0.74) rather 

than East one (i.e., 0.64) and presents the least sensitivity to the North component, whereas 

DGNSS system indicates more sensitivity to the East–North plane rather than the Up component. 
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4.4 Results 

 
4.4.1 Sentinel-1 DInSAR Analysis 

S1 acquisitions were analysed according to meteorological data and perpendicular baseline 

values for reducing the temporal decorrelation of the DInSAR results. Area-wide snow cover 

was observed before January 10, 2015 and between January 15 and May 15, 2016 in the 

meteorological time series. Figure 4.3A-D presents the S1 images at their particular acquisition 

date and their connections between each other to create interferometric pairs. The selected 

acquisitions are displayed as slave datasets (green points) and the master (yellow point). Due to 

the difficulty retrieving phase information from pixels with coherence values lower than 0.2, the 

pairs with a mean coherence lower than 0.2 (calculated within the landslide boundary) were 

removed from the graph presented in Figure 4.3A. Six acquisitions were identified as snowy data 

including 28 January 2015, 04-28 February 2016, 11-23 March 2016 and 04 April 2016 and the 

final connection graph is obtained (Figure 4.3C). After applying the mean coherence threshold 

of 0.2 for discarding the incoherent pairs and removing the snowy acquisitions (end of 2015 and 

spring 2016), we observed a few connections at this part of the network (red points in the Figure 

4.3C), which could potentially lead to phase ambiguity in the phase unwrapping step. To 

overcome this problem as best as possible with the data available we needed to have more 

connections with respect to the other part of the network due to the longer temporal baseline 

caused by removing the snowy data. To this end, we decided in this time interval to lose the 

constraints (i.e., 0.2 threshold) in order to preserve more connections. Therefore, the connections 

with a mean coherence value lower than 0.2 (i.e., 0.18 up to 0.2 within the landslide boundary) 

were used (Figure 4.3C). Delaunay connections for 3D phase unwrapping has shown in Figure 

4.3B. 

 



  

 

  

  
Figure 4.3: S1 SAR acquisition connections. (A) Perpendicular baselines (indicating a maximal spatial 

baseline of 174 m) between different image acquisitions according to their relative position (570 

interferograms; yellow and green points indicate the master and slaves, respectively); (B) Delaunay 

connections for 3D phase unwrapping; (C) final connection graph after discarding pairs with a mean 

coherence less than 0.2 (the gray dashed lines present the snow time span, the black lines between 

acquisitions show the remaining connections, and the red dots indicate the discarded data); and (D) 

min/max (orange/red colors), mean-Std/mean+Std (green colors), and mean (blue color) coherence 

(within the landslide boundary) of the remaining pairs (i.e., 60 interferograms) after the graph 

editing. 

 

The positive effect of using a shorter temporal baseline (6 days obtained by adding the Sentinel-

1B data) in increasing the interferogram quality and coherence is observed in Figure 4.4A and 

B. The low coherence values observed in the Corvara area shows the negative effects of 

decorrelation caused by vegetation (Figure 4.4C and D) and snow (Figure 4.4E and F).  

  



  

 

 

Figure 4.4: The effect of seasonal, temporal baseline, and surface scatterers’ decorrelation on phase (left) and 

coherence (right). (A) Coherent interferogram showing the effect of the short baseline (i.e., 6 days) on 

the phase and (B) coherence related to the pair of 19–25 Oct 2016. (C) Phase values affected by 

decorrelation caused by vegetation and (D) coherence related to the pair of 6 June–3 July 2015. (E) Phase 

values affected by decorrelation caused by snow and (F) coherence related to the pair of 2–28 February 

2016. The white polygon shows the boundary of the Corvara landslide. All images are presented in the 

SAR geometry. 

 

Figure 4.5A and B present the coherence (with a threshold of 0.2) and displacement maps along 

with the locations of 8 GNSS stations and 30 reference points. The following convention for 

presenting displacement values is used in Figure 4.5B: i) the negative values refer to an increase 

of sensor-to-ground distance and ii) the positive values indicate a decrease of sensor-to ground 

distance. The stations no. 13, 28, 53, 54 and 56 were excluded from SBAS processing because 

their displacement rate is too high to be quantified using the presented data and SBAS technique. 

The results show the spatial dispersion of phase and coherence values mainly located on the toe 

of the landslide and urban areas where no data are represented in black color (Figure 4.5A and 

B). 



  

 

 

Figure 4.5: Coherence and displacement maps before the geocoding step. (A) Coherence map (threshold of 0.2). 

(B) Coherence map (threshold of 0.35). The positions of 8 DGNSS stations and 30 reference points 

selected for the refinement step (ramp and phase constant removal) are presented on the coherence map. 

(C) Cumulative line of sight (LOS) displacement map and (D) mean LOS velocity map (both created 

with the coherence threshold of 0.2 and 2D unwrapping method). The locations of 8 DGNSS stations 

and 30 reference points are presented on the displacement map. The images are presented in the SAR 

geometry. 

 

Figure 4.6 shows the differences of mean LOS velocities obtained with four combinations of CC 

and PhU techniques. Spatial displacement patterns are similar at the middle part of the landslide 

(blue colour) and differ at the depletion areas (eastern part of the landslide in Figure 4.6), 

depending on the chosen processing parameters. According to negative velocity difference 

values, the propagation of the displacement flow from East to West is clearly visible in Figure 

4.6A-D. Whilst a higher velocity peak (i.e. around 120 mm/year) is obtained with the lower CC 

and a 3D PhU processing, warm colours are visible on the northern depletion area and very little 

displacement is observed in the eastern depletion area (Figure 4.6). However, the frequency of 

negative values (mainly considering western direction displacement) is more pronounced 

considering a higher CC and a 2D PhU (Figure 4.6A and C).  It seems that “more successful” is 

due to “frequency of negative values”, in reality, the motivation is the agreement with GNSS 

measurements: “frequency of negative values” is a consequence of that point. The a-b cross-

section comparison of interferograms confirms that using 2D PhU (followed tightly by 3D PhU) 

induced higher frequency of negative values, especially in the eastern depletion area, while 

considering a higher CC (green line in Figure 4.7).  

 



  

 

  

  
Figure 4.6: Comparison of interpolated SBAS LOS velocity maps (A) with an unwrapping coherence threshold 

(CC) of 0.35 and 2D PhU, (B) with CC of 0.35 and 3D PhU, (C) with CC of 0.2 and 2D PhU, and (D) 

with CC of 0.2 and 3D PhU. The spatial interpolation applied to the results of the DInSAR processing 

chain is meant to spatially preserve the results’ continuity, avoiding discontinuities between pixels of 

low coherence. The figures show the terrain-corrected results in the UTM reference system. 

 

 

Figure 4.7: Cross-section comparison of DInSAR results and landslide movement rates. CC represents the 

coherence thresholds and PhU the phase unwrapping process. The topography profile a–b is divided 

into (1) an accumulation area, (2) a first transition, (3) a transit area, (4) a second transition, and (5) 

a source area. Since the movement direction of the right side of the landslide, corresponding to the 

“b” profile, is not aligned to LOS (based on the DGNSS measurements of Figure 8), the SBAS 

velocity for this part of the landslide was projected to the “b” profile alignment to avoid 

underestimating the velocity. The green and purple lines overlapped each other at the left part and 

then separated at the distance of 1500 m. 



  

 

4.4.2 DGNSS Monitoring Results  

Figure 4.8 shows the mean annual horizontal and vertical velocity as well as the azimuth angle 

of the DGNSS benchmarks on the Corvara landslide. Station number 8 has been disturbed several 

times between October 2015 and November 2016 and therefore it had to be excluded. Time series 

of measured 3D displacements at 13 stations from the source, track and accumulation zone are 

plotted in two different charts (Figure 4.8). The 3D displacements measured in 2015 and 2016 

range from 176 mm (at station 6 in the accumulation zone of the landslide) to 4956 mm (at station 

56 in the source zone of the landslide).  

 

 

Figure 4.8: Vector direction and velocity rate of DGNSS benchmarks for 2015 and 2016. 

 

For the DGNSS stations in the source zone (23, 28, 49, 56, 57, and 58), a deceleration during 

winter and an acceleration during spring and summer months can be observed (Figure 4.9). The 

displacement follows the rainfall rates, which could be explained by the fact that at the upper 

zone of the landslide, [92] found the groundwater table to be close to the surface. It can be 

assumed that this favors a quick response of the terrain to rainfall in terms of movement. 

Regarding the track zone, the movement pattern of the stations 13, 53 and 54 does not follow a 

seasonal trend but shows a steadier movement behavior. 



  

 

 

Figure 4.9: Cumulative monthly 3D displacement measured at permanent DGNSS stations (lines) compared 

with measured mean precipitation (bars). 

 

Figure 4.10 shows a decreasing trend of velocity measured at some benchmarks (e.g. station 54). 

This might be attributed to the excavation of a drainage channel network, which was initiated in 

2014 by the Corvara municipality and repeated on a yearly basis. However, more detailed 

surveys would be necessary to provide empirical evidence on the effectiveness of this drainage 

system. For many stations, with exception of 56, a trend of deceleration can be observed over 

the shown period. Already [90] noticed that the landslide kinematic intensity has decreased in 

general. 



  

 

 

Figure 4.10: 3D displacement velocities between September 2013 and December 2016 at selected DGNSS 

stations. 

 

4.4.3 DInSAR and DGNSS Results Comparison 

As an indication of measurement differences by ground-based instruments and DInSAR, the 

cumulative displacement of the stations 4 (located at the toe of the landslide) and 57 (located in 

the eastern depletion area) are represented in Figure 4.11. The CC of 0.35 with 2D and 3D PhU 

methods was used to create the plots. The frequency and acquisition dates of monthly GNSS and 

SAR data were not identical. Therefore, the DGNSS measurements were approximated by a 

linear model to make them comparable with the SBAS results. Such as observed previously, the 

2D PhU gives measurements closer to the ground truth (red and green triangles in Figure 4.11). 

 

 

 



  

 

 

Figure 4.11: Comparison of SBAS and DGNSS time series results. LOS cumulative displacement of the stations 

4 and 57 is with a coherence threshold of 0.35. The DGNSS-fitted line (DGNSSL) is indicated in 

the figure, and the data-free area (i.e., from December 2015 to April 2016) indicates the snow period. 

SBAS-2D and -3D present the phase unwrapping method applied to the SBAS processing. 

 

The cumulative LOS displacement and the validation plot for the estimated velocity using 

different coherence thresholds and PhU parameters are presented in Figure 4.12A and B, 

respectively. SBAS results underestimate the displacements of the stations 4 and 58, estimated 

the displacements of the stations 6, 49 and 57 with a close agreement and estimated the 

displacements of the stations 11, 23 and 25 with a relatively low accuracy (Figure 4.12A). 

Generally, 2D and 3D PhU with the CC of 0.35 outperformed among other setting used, 

respectively. Compared to other parametric configurations, a 2D unwrapping in higher coherence 

areas (i.e. blue points in Figure 4.12B) represents better the real displacement of 8 selected 

DGNSS benchmarks according to measurement accuracy while located closer to the 1:1 line. 

 

 



  

 

 

Figure 4.12: Comparison of SBAS and DGNSS time series results. LOS cumulative displacement of the station 

4 and 57 with a coherence threshold of 0.35. The DGNSS-fitted line (DGNSSL) indicated in the 

figure and the data-free area (i.e., from December 2015 to April 2016) indicates the snow period. 

2D and 3D present the phase unwrapping method applied to the SBAS processing. 

 

The comparison between DGNSS and SBAS displacement values projected in the LOS direction 

is presented in Table 2. The RMSE value is maximal (i.e. equal to 9) when considering a CC of 

0.2 and 2D PhU and minimal (i.e. of 6.1) when considering a CC of 0.35 and 2D PhU. The 

RMSE value of 3D PhU with CC =0.2 (i.e., 7.8 mm) is lower than 3D PhU with CC =0.35 (i.e., 

7.9 mm). This implies that from the PhU method point of view, 2D PhU generally outperformed 

3D PhU, where a higher coherence threshold was used, while 3D PhU nearly provided an 

identical result for both CC threshold thresholds with a relative superior of CC=0.2. This means 

that 2D PhU is a coherence-sensitive operator (refer to quality of pixel phase information) and 

3D PhU is a pixel-dependent operator (refer to quantity of pixel numbers), where the number of 

pixels is masked by setting the lower coherence threshold. 

 
 

Table 4.2 : Comparison of DGNSS and SBAS LOS Displacement (D) in mm. RMSE value shows accuracy of each 

unwrapping methods with the different coherence threshold. 

CR No. DGNSS  DSBAS (0.35; 3D) DSBAS (0.2;3D) DSBAS (0.2;2D) DSBAS (0.35;2D) 

4M -116.1 -71.24 -98.25 -55.52 -89.88 

6H -108.3 -52.87 -94.09 -32.79 -98.18 

11H -211.5 -57.92 -120.14 -29.3 -103.75 

23 -213.4 -74.49 -49.08 -54.44 -143.7 

25 -210.3 -107.44 -83.58 -72.22 -124.35 

49H -146.2 -110.57 -68.13 -70.65 -142.5 

57M -105.9 -38.04 -80.71 -92.02 -112.74 

58H -27.1 -5.45 30.5 22.28 -49.17 

RMSE  7.9 7.8 9.0  6.1 



  

 

4.5 Discussion 
 

DGNSS measurements show different mean velocities in (i) the area of depletion (e.g. 174-2633 

mm/yr) with acceleration phases observed in late summer/fall 2015 and spring 2016, (ii) the 

track zone (e.g. 356-814 mm/yr) with a relatively constant displacement behavior and (iii) the 

accumulation zone (e.g. 231-261 mm/yr) with an acceleration phase during the first half of 2016. 

This variation of the landslide displacement in relation to snowmelt, precipitation and 

groundwater conditions should be investigated more in depth. 

The application of 2D PhU provided results closer to the ground truth measurements while 3D 

PhU has proven to avoid phase jumps [127]. Hooper and Zebker [137] also used a stepwise 3D 

PhU algorithm finding reasonable results, whereas for cases without multiple cycle of phase 

discontinuities (or jumps), no improvement was measured with 3D PhU. In this research, many 

pairs in the connection graph were discarded (Figure 4.3) due to the low coherence found in the 

landslide area (e.g. Figure 4.4F). Therefore, the 3D PhU, including temporal information to help 

unwrapping in low coherent interferogram areas, was not beneficial due to the low redundancy 

of the connection graph. Hence, the standard 2D unwrapping with a coherence threshold of 0.35 

leads to fewer pixels but to a more reliable pixel selection. A resulting lower effect of the eventual 

phase jumps leads to measurements closer to the ground truth. 

The RMSE values indicate a low accuracy in several points and SBAS results affected by the 

considerable errors, leading to an overall underestimation and a failure to detect fast moving 

areas. Several factors led to propagating the error into the results, which could considerably affect 

the precision of the GNSS measurements and accuracy of the SBAS results. These error sources 

can be expressed as three following categories: i) DGNSS–related error, ii) non-LOS landslide 

displacement and iii) atmospheric artifact. As the DGNSS antenna was mounted on the metal 

bar of the CR structure, slight changes results from the landslide movement led to an antenna 

tilting within the span time of our study. Since the Phase Center Variation (PCV) of GNSS 

antenna is calculated in the vertical position; any deviations from the vertical position of the 

antenna induce a bias in the measurement leading to a low precision. This bias could manifest 

itself as a higher discrepancy (low accuracy) between SBAS and GNSS results (i.e. lower 

accuracy or higher RMSE values). This could be explained the low accuracy obtained from 

SBAS results (e.g., stations 4, 11, 23 and 25). 

The second error source is related to the SAR system geometry in relation to the real 

displacement field. The SBAS displacement has been estimated along the LOS of the satellite, 

while the direction of the landslide movement of depletion areas (in the Eastern and Northern 

parts) is not aligned to the LOS. Therefore, only a fraction of the occurred displacement is 

retrieved by SAR system (e.g., stations 23 and 25). In particular, North-South oriented 

movements of the North-Eastern part of the landslide are barely detectable by DInSAR technique 

(e.g., station 58). Due to the complexity of the motion pattern, Multi Aperture Interferometry 

(MAI) techniques could be an alternative method to extract nearly North-South movements to 

be integrated to the LOS-based results [138].  



  

 

Another important error source propagated in SBAS results is the phase delay caused by the 

atmosphere that often affects the displacement signal. Indeed, the spatial and temporal variations 

of atmospheric properties over the case study cannot be precisely known by the temporal and 

spatial window sizes of the high and low pass filter in the SBAS processing. Therefore, the delay 

cannot be fully estimated and removed from interferograms by filtering approach, especially in 

high topographic region like Alpine, whereas the turbulent and stratified components of 

atmosphere are constantly changed in time and space. In such circumstances, some sophisticated 

methods for atmospheric correction can be used such as phase-based (e.g., linear model) and 

using auxiliary weather data such as Moderate Resolution Imaging Spectroradiometer (MODIS) 

and ERA data provided by ECMWF (European Center for Medium-Range Weather Forecasts) 

to mitigate the atmospheric artifacts. 

 

4.6 Conclusions 

 

Multi-temporal SBAS using Sentinel-1 imagery works relatively well for recognizing recent 

moving areas even if decorrelation might be high, mostly due to vegetation and changing 

meteorological conditions in mountainous environments. The combination of a coherence 

threshold of 0.35 and 2D PhU gives results closer to the ground-truth measurements with 

maximal velocities of around 115 mm/yr. Therefore, using 2D PhU seems to minimize the total 

length of discontinuities in the unwrapped phase for this landslide site. However, no reliable 

SAR velocities were detectable on south-facing slopes because the displacement orientation is 

nearly perpendicular to the LOS direction. 

During the period investigated, it was not possible to completely exploit both S1A and B, while 

S1B was not operational yet (at the data processing time). Further analyses are ongoing 

combining both SBAS and PSI with complete Sentinel-1A/B time series in order to reduce 

decorrelation occurring over time. New artificial 1-m edge CRs were installed on the landslide 

in late summer 2017. Despite an initial backscattering signal of 6.9 dB and monthly field 

campaigns to verify their orientations, their unavoidable tilting seems spoils their systematic 

recognition over time what makes challenging further PSI processing. Integration of proximal 

data covering parts for the landslide with remote sensing data are also tested for representing the 

complex changing slope kinematics assessment in (near) real time. 

  



  

 

Chapter 5 

 

5. INSAR ATMOSPHERIC CORRECTION 

USING PHASE AND WEATHER-BASED 

MODELS  

 
The aim of this chapter 1 is to evaluate the performance of four numerical weather models  

(i.e., ERA-Interim, ERA5, MERRA2 and WRF) and two phase-based techniques (i.e., linear and 

power law) to estimate phase delay using Sentinel-1A/B data acquired over the Corvara 

landslide located in the Alps. Eighteen Sentinel-1A/B images in descending orbit and 

Interferometric Wide swath (IW) mode covering a time period from July 22 to November 1 2017 

at the same acquisition time (5:18 A.M. UTC) were collected over the Corvara landslide. The 

displacement map has been generated using the PSI technique. Then, the GPS data and the 

GACOS product are used to validate the results. In the end, two indicators metrics; phase std 

reduction and correlation between phase and InSAR estimated tropospheric delay, were used to 

determine the performance and robustness of each model 

 

5.1 Introduction 

 

Tropospheric variation in time and space of water vapor, pressure and temperature causes a phase 

delay [17]. Spatio-temporal variations of only 20% in relative humidity lead to 10 cm errors and 

variations in pressure, temperature, and relative humidity in the lower part of the troposphere (< 

5 km) could potentially induce up to 15–20 cm  interferometric phase delay [17][139][44].   

This phase delay could reach approximately several centimeters and often affects the 

deformation signal [15]. This additional contribution in interferogram results from a turbulent 

component affected by troposphere dynamics (also called wet delay) and stratification or a long-

wavelength component induced by the lower atmosphere parameters such as pressure, 

                                                           
1 Part of this chapter appears in: 

[148]   M. Darvishi, G. Cuozzo, L. Bruzzone, F. Nilfouroushan, “Performance evaluation of phase and weather-

based models in atmospheric correction with Sentinel-1data: Corvara landslide in the Alps,” IEEE Journal 

of Selected Topics in Applied Earth Observations and Remote Sensing, 2018. (under review) 

 



  

 

temperature, and relative humidity (also called dry delay) [15][140]. Many studies have been 

developed to mitigate the negative effects of the turbulent component as random component in 

space and time in interferograms by applying the temporal and spatial filtering [105][22][106] 

to time series of SAR data.  

In this study, we use phase-based models, including linear and non-linear (power law) models, 

NWM models including ERA-Interim, ERA5, MERRA2 and WRF, multi-spectral data 

(MODIS) and GPS data to estimate phase delay on Sentinel-1A/B data and evaluate the 

performance of them. Three steps are carried out: 1) cross-comparison between the ZTD, ZWD 

and TWD derived by GPS with its counterparts obtained by NWM-based models, 2) cross-

comparison between the InSAR tropospheric phase delays estimated by phase and NWM-based 

models in a regional scale and 3) cross-comparison between the GPS stations velocity and the 

velocity corrected by the phase and NWM-based models in a local scale (i.e., the active Corvara 

landslide in Italy). In addition to the GPS data, we used the GACOS product as reference to cross 

validate the results in all steps. 

 

5.2 Dataset 

 

Eighteen Sentinel-1A/B images in descending orbit and Interferometric Wide swath (IW) mode 

covering from July 22 to November 1 in 2017 at the same acquisition time (5:18 A.M.  UTC) 

were collected over the Corvara landslide. Due to the course resolution of weather data and in 

order to have a better understanding of the tropospheric turbulent and stratified changes, a larger 

extent of the study area was selected (i.e., 15×15 km) than the portion of the landslide area only 

(i.e., 3×1.5 km). Figure 5.1 shows the extent of Sentinel-1 data used for tropospheric correction 

purpose and the boundary of the Corvara landslide. We used four permanent GPS stations as 

references for both the tropospheric delay estimation and the results validation. The stations No. 

8, 54 and 58 located within the landslide boundary were used to estimate the landslide velocity, 

while CIAM GPS station was utilized to estimate Zenith Total Delay (ZTD), Zenith Wet Delay 

(ZWD) and Zenith Hydrostatic Delay (ZHD) components of the troposphere in a 2-hourly time 

span (herein between 4 and 6 A.M.) (Figure 5.1a, b and d). The characteristics of the weather 

data used in the tropospheric correction are presented in Table I. NWM models involving Era-

Interim and ERA5, GFS data (http://rda.ucar.edu/datasets/ds335.0/) and MERRA-2 data 

(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/) were utilized to compute phase delay 

through pressure, temperature and relative humidity parameters extracted from the NWM models 

using (2.19). The ZDT was derived from the GACOS service (http://ceg-

research.ncl.ac.uk/v2/gacos/), which relies on the HRES data [46]. 

The total perceptible water vapor parameter derived from MODIS data was used to estimate the 

wet component of tropospheric delay. A GPS permanent station (CIAM) of South Tyrolean 



  

 

POsitioning Service (STPOS) managed by Bolzano/Bozen Province were utilized to retrieve the 

tropospheric parameters. Table 5.1 summarizes the specifications of the data used in this study. 

Sounding data providing height profile of atmospheric characteristics such as temperature, 

pressure and relative humidity were used to estimate refractivity with the power law method. 

These data were derived from the Rivolto station provided by the Department of Atmospheric 

Science of the University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html). 

 

5.3 Data Processing and Methodology 

 

5.3.1 SAR data processing 

The Sentinel-1A/B interferograms were generated by using the software SNAP v6 (ESA Sentinel 

Application Platform v6), the Permanent Scatterers Processing (PS) was performed by StaMPS 

v3.3 (Stanford Method for Persistent Scatterers) [141] and the phase and NWM-model 

tropospheric corrections were carried out by TRAIN v3 (Toolbox for Reducing Atmospheric 

InSAR Noise) [47].  

In the PS processing, 6 main steps were performed: 1) initial PS pixel selection by setting 0.4 

and 3×2 values for the amplitude dispersion index and the range/azimuth patch sizes, 

respectively; 2) estimation of phase noise value for each candidate PS pixel (filter window size 

of 32x32 pixels with spatial wavelength of 800 m) using the iterative approach; 3) PS pixel 

selection based on its noise characteristics; 4) refinement of the previously selected pixels using 

a standard deviation threshold of 1; 5) correction of spatially-uncorrelated look angle error [141]. 

 

   
 

 

Figure 5.1: Study area and GPS stations. (a) Extent of the Sentine1-A/B image used for data processing and (b) 

The imaged DEM fom SRTM (30 m) data for the study area. In the both Figs., the extent of the Corvara 

landslide (with the red boundary), three permenant GPS stations (No. 8, 54 and 58 within the red 

boundary) and one permanent GPS station belonging to the Bolzano Province (the CIAM located out 

of the landslide border) are indicated. (c) A photograph showing the CR58 equipments including the 

battery, GPS receiver and solar panel. The recorded data of each permanent GPS station are transmitted 

by the mobile network to the servers of the Eurac Institute for Earth Observation.  

http://weather.uwyo.edu/upperair/sounding.html


  

 

 

 

 

Table 5.1: Characteristics of GPS, NWM models, sounding and MODIS data  

Data/models Type Temporal Res. Spatial 

Res. 

P. 

lev.  

H-delay W-delay H+W Latency  

ERA-Interim weather 6-hourly 79km 37  Yes Yes Yes several months 

ERA-5 weather Hourly 31km 37  Yes Yes Yes near real-time 
GACOS (HRES) weather 6-hourly 9-12km 137 - - Yes near real-time 

GFS weather 3-hourly 5km 37 Yes Yes Yes near real-time 

MERRA-2 weather 3-hourly 50km 42  Yes Yes Yes 5 months lag 
MODIS  

Sounding data 

spectrometer 

weather 

daily 

6-hourly 

1km 

1 station 

- 

115 

- 

Yes 

Yes 

Yes 

Yes 

Yes 

60 - 125 minutes 

near real time 
GPS pointwise 30 second 4 stations - Yes Yes Yes real-time 

H and W indicate the hydrostatic and wet components, respectively, while Res. and P. lev. indicate the resolution and pressure level, 

respectively. 

 

The weather-based models such as ERA-Interim and ERA5 were directly downloaded and the 

aforementioned parameters were extracted. The GFS data first processed by WRF model using 

WRFv3 and WPS packages and the parameters of the domain and parent grid ratio were set 2 

and 1/5, respectively, leading to nesting a spatial resolution of 5 km [142]. Four weather 

parameters including temperature (K), pressure levels (P), relative humidity (in %) and 

geopotential (m) were extracted from all weather-based models to estimate refractivity. Since 

the hydrostatic components could be calculated up to 25-30 km height to compare the NWM 

model results with GPS-derived atmospheric parameters, we set 30 km as reference height to 

estimated refractivity by (2.21). In the case of MODIS data, water vapor infrared band from 

MOD05_L2 product was used to estimate the wet component of the refractivity. Since the water 

vapor information in cloudy conditions is not valid, the water vapor infrared bands were masked 

with the cloud-cover band provided by MODIS data with a probability of 95%. We then applied 

the threshold of 80% minimum free-cloud coverage to the water vapor infrared band. It turned 

out that most of MODIS data were rejected under the defined threshold due to the frequent cloud 

coverage over the study area. This situation did not allow us to go further and estimate 

interferometric phase delay. Nevertheless, we will present the interferometric phase delay 

obtained from the non-free cloud MODIS data in the result section.    

The same four weather variables were extracted from the sounding data to approximate the 

parameters of the power law in (2.25). In power law processing, the scaled topography and phase 

were filtered in different bands using 1D and 2D Fourier band filtering including 9 bands from 

500 m to 10 km [43]. As the landslide area is small, we set only one patch to estimate the spatial 

variable of the power law.  

 

5.3.2 GPS data processing 

The CIAM GPS-station data provided by South Tyrolean Positioning Service (STPOS) and 

corresponding to the Sentinel-1 acquisition days was processed. We processed the data by 



  

 

GAMIT-GLOBK v10.61 software [143] and used the VMF1 mapping function to estimate 

tropospheric delay parameters for the time span of 4-6 A.M. corresponding to Sentinel-1 data 

acquisition time (i.e., 5:18 A.M.). The VMF1 numerical weather model as computed by TU 

Vienna [144] provides six-hour intervals surface pressure data gridded by MIT in yearly grid 

files for GAMIT users. The VMF1 mapping function is used to compute the “dry” part of the 

troposphere ZHD. The ZWD due to water vapor and the local gradient parameters were estimated 

for CIAM station and for every two hours using GAMIT software. The methodology used in this 

study is presented in Figure 5.2.  

 

 

Figure 5.2: Flowchart of the methodology used in the study. PDE refers to Phase Delay Estimation. 

 

 

5.4 Results 

 
5.4.1 GPS vs. Weather-based model (zenith delay) 

In order to evaluate the performance (i.e., accuracy and precision) of NWM models in 

tropospheric PDE estimation, ZTD, ZHD and ZWD derived by CIAM GPS station were cross-

correlated with the same parameters estimated by five NWM models and GACOS result. Since 

the GACOS provides only ZTD (ZH+ZW) product, hence, only GACOS-ZTD has been 

compared with ZTD of GPS. Three statistical parameters including: i) root mean square error 



  

 

(rmse), ii) correlation coefficient (R) and iii) standard deviation (std) were used for performance 

assessment based on the following simple linear models (see (5.4) and Figure 5.3):  

 

GPS Z(THW)D =Slope × Weather Models Z(THW)D +Intercept                        (5.4) 

 

 

 

Figure 5.3: The ZTD, ZHD and ZWD parameters of CIAM station vs. ZDT, ZHD and ZWD parameters derived 

by five NWM models including ERA-Interim (EI), ERA5 (E5), MERRA2 (M), WRF (W) and GACOS 

(G) (only ZDT). The slope and intercept values (the blue line) of the linear equation and statistical 

parameters have been estimated for each model. The red line shows the 1:1 line. 

 



  

 

In terms of std and rmse parameters of ZTD, ERA5 with the std of 2.8cm and GACOS with the 

rmse of 0.8cm presented the most precise and accurate results among other NWM models. In 

terms of std and rmse of ZWD and ZHD parameters, ERA5 generally provided the most precise 

and accurate results. In all cases, ERA5 presented the highest correlation among other its 

counterparts.  

 

5.4.2 GPS vs. NWM models (InSAR delay) 

To estimate InSAR tropospheric delay, we first projected ZTD on the slant range of SAR 

geometry by applying the factor of 1/Cosθ, and then applying the factor of -4π/λ to convert from 

pseudo-range increase to phase delay [15], where θ and λ indicate the incident angle and 

wavelength, respectively. To achieve the interferometric tropospheric delay the subtraction of 

tropospheric delay between master and slave acquisition times was used (i.e., ∆𝜑𝑡𝑟𝑜𝑝= ∆𝜑𝑡𝑟𝑜𝑝
𝑠𝑙𝑣  - 

∆𝜑𝑡𝑟𝑜𝑝
𝑚𝑠𝑡 ). This procedure was employed on ZTD derived from the GPS data corresponding to the 

master and slave dates (Figure 5.4). 

 

 

 

Figure 5.4: Total InSAR Delay (TD-InSAR) vs. GPS (TD-InSAR) for ERA-Interim, ERA5, MERRA2, WRF 

and GACOS. The TD-InSAR value of WRF model in the interferogram no. 17 appeared as outlier and 

therefore, it was eliminated from the results. 

 

The map of InSAR tropospheric corrections for 18 interferograms using five NWM models and 

MODIS data are presented in Figure 5.5. The estimated InSAR tropospheric correction maps for 

all NWM models generally present a relative qualitative agreement respect to each other and 

show a high correlation with the elevation in most of the interferograms. Since the wet 

component obtained by MODIS was under non-free cloud conditions, the related result is not 

reliable to consider it in the rest of our study. 



  

 

 

5.4.3 Phase-based model (linear) 

The linear relation between the unwrapped phase and height is plotted in Figure 5.6. The DEM-

correlated errors (i.e., correlation between perpendicular baseline and unwrapped phase) were 

already subtracted from the unwrapped phase. The tropospheric linear delay map estimated using 

(2.24) is presented in Figure 5.7. 

5.4.4 Phase-based model (non-linear) 

In the power law model, the power law decay (αd) and reference height (h0) parameters were 

calculated from the sounding data using (2.25) and (2.26) to estimate the interferometric phase 

delay (see Figure 5.8). 

 

a) Unwrapped phase (U-do) 
 

 
b) Estimated tropospheric delay- ERA-I 
 

 
c) Estimated tropospheric delay- ERA5 
 

 
d) Estimated tropospheric delay- MERRA2 
 



  

 

 
 
e) Estimated tropospheric delay- WRF 
 

 
f) Estimated tropospheric delay- GACOS 
 

 
g) Estimated tropospheric delay- MODIS 
 

 

 

Figure 5.5: Interferometric phase delays of the NWM models and MODIS. The total InSAR tropospheric delays 

(T=H+W) corresponding to each interferogram of Sentinel-1 data after the DEM and orbital ramp 

removal (U-do) are shown. The delays derived by MODIS only show the wet component (non-free 

cloud). The master data (8th interferogram) has no delay (zero). Line Of Sight (LOS) and Satellite Pass 

(S.P) of Sentinel-1 over the case study are shown in Fig. (a). A same color bar was set for all Figs. to 

facilitate the comparison, except for the MODIS where the color bar limits went beyond the limits of 

the others Figs. 

  



  

 

 
Figure 5.6: The linear relation between phase and topography. The relation between height (km) and phase (cm) 

(green dots), and height and correlated delay estimated from the linear relationship (red line) depicted 

for each interferogram. The 8th Fig. in the first row indicates the master data. 

 

 
Figure 5.7: Interferometric tropospheric delay estimated based on the linear relation between phase and 

topography. 

 

Figure 5.8: Tropospheric-related phase delay parameters computed by the balloon-sounding data for 18 days 

(00-12 UTC) from January 22 to November 1. (a) Refractivity (wet) component calculated based on 

(1). (b) LOS phase delay obtained by integrating refractivity (wet+dry) over the LOS signal path up 

to height of 27.2 km that the phase delay reaches to zero (the solid line refers to mean delay). (c) 

Relative LOS phase delay presents 400 combinations of the difference between tropospheric delays at 

two different days to estimate h0 (dash line). All relative LOS delay converged to zero at height h0= 

27.2 km in which the standard deviations of relative delay are less than 0.05 cm. There is no relative 

delay between acquisitions above the dash-line (i.e., at 27.2 km).   

 

In the spatial band selection step, a band of 8-9 km was selected as its correction presented the 

smallest rmse and mean rmse (i.e., 2 rad equals to 0.8cm) compared to the ERA5 phase delay to 

avoid contaminating tropospheric signal with the deformation signal (the landslide extent of 

1.5×3 km) (Figure 5.9). The ERA5 was used here as the reference due to its high accuracy 

derived among other NWM models. After applying the 9th band (i.e., 8-9km), the tropospheric 

InSAR phase delay was estimated (Figure 5.10). 



  

 

      (a) 

 
 

                       

                             (b)                

 
Figure 5.9: Spatial band filter selection for the power law model. (a) rmse of the different bands obtained from 

all interferograms and (b) mean rmse of the different spatial bands (on the bottom). The ERA5 phase 

delays were used to calculate the rmse as reference. 

 

 

Figure 5.10 : Interferometric tropospheric phase delay derived by using the power law model. 

 

The estimated InSAR tropospheric delay maps obtained by power law do not show a good 

agreement with the other models. This means that the weather parameters used from sounding 

data do not reflect the real atmospheric conditions over the case study. The reason is probably 

be related to the distance between balloon-sounding station and our case study (nearly 100km 

apart). Hence, the power low parameters (i.e., α and h0) have been updated by estimating the 

refractivity using the ERA5 model instead.  

In order to assess the performance of the models used in InSAR tropospheric correction, we 

generated the velocity maps of the study area before and after tropospheric correction of the 

entire scene of the local area (i.e., the landslide extent) (Figure 5.11 and Figure 5.12). According 

to the velocity maps, some areas especially the residential region (which could considered at 

approximately zero velocity) in the valley (the blue λ-like-shape region in Figure 2.1b) are 

completely contaminated by tropospheric artifacts (‘V’ and ‘V-do’ in Figure 5.11). After the 



  

 

tropospheric correction, the velocity values in the aforementioned valley appeared as green color 

referring to zero displacement. The velocity maps can be visually categorized into three groups 

in terms of the patterns similarity: 1) ERA-Interim, ERA5 and MERRA2, 2) WRF, GACOS and 

Linear and 3) power law. To quantify the performance of each model in presence of the known 

deforming values (determined by the GPS measurements) the velocity map of the Corvara 

landslide before and after tropospheric correction was investigated. To this end, a magnified 

view of the velocity map of the Corvara landslide is provided in Figure 5.12. 

 

 

 

 

Figure 5.11: Mean LOS Velocity (MLV) maps. The acronyms in the Figs. indicate MLV without tropospheric 

correction (‘V’), after DEM error and orbital ramp removal (‘V-do’), after tropospheric correction 

using Entrim-I (‘V-EI’), ERA5 (‘V-E5’), GACOS (‘V-G’), MERRA2 (‘V-M’), WRF (‘V-W’), power 

law (‘V-P’) and linear (‘V-L’). Negative values refers to a movement away from the satellite and 

positive values indicate a motion  toward the satellite. The black shape in the middle of the scene 

indicates the Corvara landslide location. 

 

 
 



  

 

To assess the performance of each model the velocities of two GPS stations (i.e., no. 8 and 54) 

were compared with the corresponding points in the velocity map of the landslide after 

tropospheric correction within the same time span (see Figure 5.12). 

 

 

 

 

Figure 5.12: Velocity maps before ('V') and after tropospheric correction ('V-Models) for Corvara landslide. 

Power law parameters in 'V-P1' were approximated by the sounding data and their parameters were 

updated by the ERA5 model and the power law re-estimated ('V-P2'). The black triangles present the 

GPS stations in the first Fig. 

 

The main movement direction of the landslide derived by GPS observations in Figure 2.1d can 

be compared with the movement direction obtained by InSAR in the velocity maps. For instance, 

the left part of landslide leading to the urban area that must have a near zero velocity (green 

color) can be used as a visual indicator to evaluate the models performance. In this respect, 

ERA5, MERRA2 and ERA-Interim indicate the highest agreement with a near zero velocity 

corresponding the urban area. Since the movement direction of GPS no. 58 is aligned to North-

to-South (which is not detectable by the SAR imaging systems), this GPS station was excluded 

from our validation procedure. The velocity map corrected by the power law (‘V-P1’) presents 

a relative high disagreement with respect to the other models. Thereby, its parameters were 

updated using the ERA5 model in (2.26) and the velocity map recreated (‘V-P2’). A significant 

improvement was obtained especially in the left part of the velocity map. The quantitative values 

for GPS velocity and the corresponding values in the velocity maps for all the tropospheric 

correction models are presented in the Table 5.2.  

 

 
 

 



  

 

The error values in the 0 show that ERA5 has the lowest error among all models for both GPS 

stations. The errors values for GPS no. 8 are generally smaller than for GPS no. 54 for all models. 

This is most probably due to a velocity underestimation caused in the non-LOS motion region 

corresponding to the GPS station no. 54 (see Figure 2.1). 

 

 

5.5 Discussion 
 

Although the NWM data generally suffer from a coarse spatial and temporal resolution, a relative 

good agreement exists between GPS-derived ZTD, ZWD and ZHD and their counterparts 

obtained by NWM models (Figure 5.3). In the case of ZTD parameter, GACOS and ERA5 

exhibited the highest accuracy and precision among other NWMs. The GACOS yielded better 

accuracy (rmse=0.8 cm) than ERA5 (rmse=1 cm), but ERA5 provided better precision and higher 

correlation (std=2.7 cm and R=0.97) than GACOS (std=2.8 cm and R=0.95). To have a proper 

judgment about the GACOS and ERA5 performance, it is required that those have been 

computed with the same processing parameters. The most important parameter is the reference 

height (i.e., h) in (2.20), because the refractivity is computed up to that elevation. We set the 

reference height of 30 km in refractivity processing, but we do not know what reference height 

has been used in GACOS product. In the case of HTD and WTD parameters, ERA5, ERA-

Interim, MERRA2 and WRF provided the highest accuracy, precision and correlation, 

respectively (see Figure 5.2).  

In the estimation of total InSAR phase delay, which refers to temporal changes of refractivity 

rather than total refractivity (Figure 5.3), ERA5 with an accuracy and correlation of 0.9 cm and 

0.97, respectively, and MERRA2 with a precision of 3.1 cm provided the best performance 

among other NWM models in comparison with GPS measurements (see Figure 5.4).  

In order to discover the cause of the different results in ZTD and InSAR-TD estimations among 

NWM models (which could be potentially attributed to quality and spatio-temporal of the NWM 

models), the data quality investigation procedure should be performed for all NWM models. To 

this end, the weather parameters of the NWM models, which were used to estimate the 

refractivity, should be individually investigated. Temperature (which is the common variable in 

both hydrostatic and wet components of refractivity) and water vapor as a function of 

temperature and relative humidity were assessed and compared using (2.19). For instance, Figure 

5.13 shows temperature and water vapor of ERA5 model obtained for the lower and upper part 

of the atmosphere. The lower atmosphere refers to the first pressure level (equal to the height of 

205 m) and the upper atmosphere indicates the 37th pressure level (equal to the height of 40700 

m). For the temperature parameter, at the upper atmosphere a regular smooth and homogeneous 

changes from -21° to -9° can be observed (Figure 5.13a), while an irregular sudden and 

heterogeneous changes from 6° to 35° can be seen at the lower atmosphere (Figure 5.13b). The 

water vapor presented the same temperature-like pattern for the lower and upper atmosphere 



  

 

(Figure 5.13c and d). The water vapor estimated using two parameters: 1) water vapor pressure 

(svp) and 2) relative humidity. The svp calculation is based on the svp for water [145] and svp 

for ice [146]. Comparison of weather parameter values shows that the most of the delays on 

InSAR phase mainly occurs at the lower part of troposphere, where the tropospheric dynamics 

is intensely and frequently variable.   

Comparison of the temperature parameter values of the NWM models pointed outed several 

significant items. The ERA-I and ERA5 exhibited a similar pattern with a difference in spatial 

resolution at all pressure levels while the temperature patterns of WRF and MERRA2 provided 

more discrepancy compared to ERA-I and ERA5 (Figure 5.14). ERA-I and ERA5 contained the 

NaN-pixels-free data, whereas WRF and MERRA2 contained the NaN pixels data at several 

pressure levels. The number of NaN-pixels in MERRA2 model decreases from pressure level 1 

toward pressure level 10 and the pressure levels from 10 to 42 data show lack of NaN-pixels. In 

WRF, the data mostly contained the NaN-pixels, especially from pressure level 1 to 10 (even in 

some cases completely NaN-pixels data), the pressure levels between 10 and 27 did not content 

NaN-pixels and at the pressure levels between 27 and 37 NaN-pixels were observed to some 

extent randomly (Figure 5.14).   

Since interpolation was used to fill out the NaN-pixels, the interpolated pixels increased the 

uncertainty and impaired the refractivity estimation. This fact indicates the reason for which 

WRF generally provided a lower accuracy and precision results with respect to other NWM 

models (Figure 5.3Figure 5.4). Departing from GPS data cross-validation, we utilized two 

metrics as performance indicators to evaluate the models performance: 1) comparison between 

phase std of the original interferograms (IFGs) and corrected IFGs using the models (i.e., 

reduction rate of the IFG phase std), and 2) correlation between IFGs phase and InSAR estimated 

tropospheric delay. Figure 5.15 depicts the phase std of all IFGs before and after phase correction 

and NWM-based models including wet, hydrostatic and total delays. The phase std reduction 

was then calculated for all models and IFGs (Figure 5.15). 

 

 



  

 

 

 

Figure 5.13: The Temperature (T) and Water Vapor (WV) of the ERA5 model. The T and WV parameters 

corresponding to the extent of each interferogram presented for the lower and upper atmosphere. 

 

 

Figure 5.14: Data quality check of the NWM models. Temperature parameter is shown for four NWM models at 

18th pressure level (7300 m), WRF at 30th pressure level (23000 m) and MERRA2 at 30th pressure 

level (1000 m). The white regions in WRF and MERRA2 data are shown the NaN-pixels. 

 

 



  

 

 

 

Figure 5.15: The phase standard deviation reduction of wet, hydrostatic and total components after InSAR 

tropospheric correction for 17 IFGs. In the legend, UW indicates the unwrapped interferograms and 

the rest refers to the models used in tropospheric correction.  

 

The quantitative values of total phase std reduction for all IFGs are presented in Table 5.22. As 

the Table shows, ERA5 with 77.7% and linear with 80.2% presented the highest phase std 

reduction for the phase and NWM-based models, respectively. The phase std reduction results 

generally agrees with the results of the velocity values presented in Table II except for the linear 

case.  

 

Table 5.2: Units for Magnetic Properties Velocity cross validation using GPS stations as references points (on 

the left side of the black solid line). Phase standard deviation reduction (on the right side of the black 

solid line). 

GPS&Models GPS 8 %Error 8 GPS 54 %Error 54  T-std red. 

(%) 

Models 

V_GPS -155 - -53 -  77.3 ERA-I 

Vel -113 27 -4 92.4  77.7 ERA5 

V_EI -144 7 -36 32  76.2 GACOS 

V_E5 -148 4.5 -41 22.6  76.9 MERRA2 

V_M -145 6.4 -38 28.3  77.1 WRF 

V_W -138 10.9 -31 41.5  80.2 Linear 

V_G -143 7.7 -35 33.9  72.4 Power law 

V_L -143 7.7 -35 33.9  - - 

V_Pl 1 -133 14.1 -23 56.6  - - 

V_Pl 2 -135 12.9 -33 47.1  - - 
Line Of Sight (LOS) Velocity derived by GPS (V_GPS), Velocity before tropospheric correction (Vel) and velocity after tropospheric 

correction with the phase and NWM -based models (V_Models) corresponding to the GPS stations no. 8 and 54 are provided. The absolute 

percent error was calculated for all cases. The values were rounded and the unit is in millimeter per year (mm/yr). Total phase standard deviation 
reduction (T-std red.) of 17 unwrapped IFGs derived after tropospheric correction indicated for the phase and NWM-based models. 

 

The correlation (R) between IFGs Phase and InSAR estimated tropospheric delay is presented in 

Figure 5.16 as the second metrics of the performance indicator. The correlation values 

demonstrate how successful each intended model was in capturing tropospheric changes. 

MERRA2 with correlation of 0.88 and ERA5 with correlation of 0.86 provided the highest 

correlation coefficients among other models, corresponding to 76.9% and 77.7% in terms of 

phase std reduction, respectively. Considering the indicator, linear model did not present a high 

correction whereas for the first indicator it provides the maximum phase std reduction. This fact 



  

 

implies that a single performance indicator is not able to reflect fully the performance of a model 

in tropospheric corrections. Therefore, the performance of models should be evaluated through 

several indicator metrics simultaneously. 

Generally, the cross-validation results (see Figure 2.1) and two indicator metrics show that ERA5 

relatively outperformed other models. ERA5 has the highest temporal resolution among all the 

NWM models (i.e., hourly), but its spatial resolution ranks in the third place after WRF and 

HRES-ECMWF (GACOS) (as shown in Table 5.1). As a result, the higher performance of ERA5 

implies that the role of temporal variation in tropospheric constituent has more effect on phase 

delay estimation than the spatial resolution. Since a NWM model with a low temporal resolution 

has to be interpolated (due to the difference in acquisition time between NWM model and SAR 

data), hence, this leads to increase uncertainty. EAR5 with the hourly resolution could effectively 

reduce the uncertainty and increase the accuracy and precision of phase delay estimation. 

 

 

Figure 5.16: Estimated tropospheric delay and elevation versus InSAR phase (unwrapped interferogram). The red 

line is the 1:1 line.  

 

 

5.6 Conclusion 

 

In this thesis, we investigated the performance of two main common models in InSAR and ZTD 

tropospheric correction including phase-based (i.e., linear and power law) and NWM-based (Era-

Interim, ERA5, MERA2 and WRF) models. We used GACOS product and GPS data as 

references to validate the results. The GPS-ZTD cross-validation showed that ERA5 and 

GACOS have the highest precision (std=2.7cm) and accuracy (rmse=0.8cm) among other NWM 

models, respectively. The GPS-InSAR cross-validation pointed out that ERA5 and MERRA2 

have the highest accuracy (std=0.9cm) and precision (rmse=3.1cm) respectively. In addition to 

that, two indicators metrics, phase std reduction and correlation between phase and InSAR 

estimated tropospheric delay, were used to determine the performance and robustness of each 

model. Both indicators confirmed that ERA5 generally and relatively outperformed other 

models.  



  

 

6. CONCLUSION 
 

The complex nature of Corvara landslide displacements (i.e. N-S and E-W direction), which are 

partially along of LOS, covered with dense vegetation and contaminated by atmospheric artifacts 

have made difficult to investigate by conventional InSAR techniques. In addition, lack of enough 

natural permanent scaterers on the landslide is another main obstacle to use advanced DInSAR 

technique such as PSI. In such circumstance, taking a synergistic hybrid approach (i.e. 

integration of PSI, SBAS, MAI and OT results) and mitigating the atmospheric artifacts using 

phase and NW models allow us to produce an accurate displacement map of the Corvara 

landslide. 

The experimental results of chapter 3 leads us to draw the conclusion that the feature-based 

matching algorithms outperformed the area-based matching ones, which are usually used for 

offset estimation in the SAR data domain (e.g., corner reflectors). The modularity of the feature-

based algorithms allows us to combine each of corner and blob-based feature detection functions 

and descriptors. The combination of different algorithms in a hybrid technique leads to benefits 

from the capability of a given detector/descriptor (e.g., high localization accuracy of SURF 

descriptor), to compensate the weakness of other one (e.g., less localization accuracy of BRISK 

descriptor) or vice versa. Upon inspecting the results, the provided survey on the offset tracking 

techniques shows that a single all-purpose algorithm to be able to extract offsets in all situations 

does not exist. Each of the different approaches has relative advantages and drawbacks, 

dependent on data properties, features and application. In summary, although the InSAR-based 

techniques could provide more precise results, in cases of low coherence, high velocity rate and 

non-LOS movement they are not applicable. In these conditions, the area and feature-based 

matching techniques could be used as a robust alternative candidate for offset estimation.  

 

The experimental results of chapter 4 provides the conclusion that 2D PhU yielded results closer 

to the ground truth measurements (GNSS) and the standard 2D unwrapping with a coherence 

threshold of 0.35 leads to fewer pixels but to a more reliable pixel selection. The RMSE values 

indicated a low accuracy in several points and SBAS results affected by the several possible error 

sources, leading to an overall underestimation and a failure to detect fast moving areas. The main 

error sources including GPS-related error, non-LOS displacements and atmospheric artifacts led 

to propagate considerable the errors in our results. The correction of the tilted GPS antenna (due 

to the landslide movements) will decrease the measurement error and lead to a reduction in 

RMSE between GPS and SBAS result. In addition to that, using sophisticated atmospheric 

correction techniques allow us to have more an accurate SBAS results. Finally, the use of 

Sentinel-A/B will considerably mitigate the negative effect of temporal decorrelation, due to the 

shorter revisit time of the data acquisition, which manifested itself in the mean coherence value 

at the end part of the connection graph. 



  

 

From the experimental results of chapter 5 we can conclude that the high temporal resolution of 

ERA5 (hourly) seems the main reason for this good performance. The data quality check 

procedure demonstrated that NaN-pixels in MERRA2 and WRF models, induced a large bias in 

tropospheric refractivity estimation especially in the WRF model. In the phase-based models 

part, the linear model presented a higher performance than power law (non-linear model) in both 

indicators. Although re-estimation of power law parameters using ERA5 data improved the 

power law’s performance, the proper spatial band selection is still a main challenge. In summary, 

the results illustrate that no single model and indicator metrics are able to fully estimate the phase 

delay and evaluate the performance model properly. Therefore, a combination of different 

data/models and the use of a set of indicator metrics should be considered simultaneously.  

 

 

6.1     Future developments  
 

The latest generations of the high-resolution SAR sensors, such as the ones on board TerraSAR-

X and COSMOSkyMed, open interesting perspectives to test and develop more accurate offset 

tracking methods. Spatial resolutions close to 1 meter can allow detecting more features and to 

obtain more precise offset measurement. Therefore, the possibility to exploit this data should be 

investigated for either testing the current techniques and/or developing news one for specific 

types of land coverage accordingly. 

 

The possibility of acquiring data with different incidence angles and geometry modes (i.e., 

ascending and descending) may allow us to decrease uncertainty caused by only LOS movement 

detection in complex cases such the Corvara landslide. Thus, the generation of 3D displacement 

map using different satellite modes should be addressed. 

 

The Copernicus Sentinel-1A/B mission provides SAR acquisitions with the same configuration 

over large areas with high temporal and good spatial resolutions. This new generation of 

satellites, providing open-data products has enhanced the capabilities for continuously studying 

Earth surface changes especially in-vegetated areas. The short revisit time of Sentinel-1A/B data 

acquisition (i.e., 6 days since October 2017) provides a promising opportunity to mitigate the 

temporal decorrelation especially for SBAS technique. Installation of the C-band CR for the 

Sentinel-1A/B data enable us to use PSI in vegetated natural terrain. 

 

The high potential of new generation of the numerical weather data with a high spatial and 

temporal resolution should be investigated to develop more robust InSAR atmospheric correction 

methods. The high quality of weather parameters of the recent numerical weather data is 

fundamental to develop more accurate physical-based models to estimate InSAR phase delay 

especially by using a hybrid approach.  

 

New invariant feature and descriptor matching algorithms based on either phase or intensity 

information of SAR data should be developed for different applications to be resisted against 

various kind of geometrical distortions and speckle presence in SAR data.     

 



  

 

The development of new L-band SAR sensors (e.g. SAOCOM-1A launched in October 2018), 

could be useful for interferometric applications to vegetated area as the landslides, due to lower 

sensitivity respect to decorrelation in case of signal with higher wavelength. 
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