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 4 

Rapid advances in DNA sequencing and bioinformatics technologies in the past two decades 5 

have substantially improved our understanding of the microbial world. These include our 6 

growing understanding of the vast diversity of microorganisms; how our microbiota and 7 

microbiomes impact disease
1
 and medical treatment

2
; how microorganisms impact the health of 8 

our planet
3
; and our nascent exploration of the medical

4
, forensic

5
, environmental

6
, and 9 

agricultural
7
 applications of microbiome biotechnology. Much of this work has been driven by 10 

marker gene surveys (e.g., bacterial/archaeal 16S rRNA genes, fungal internal transcribed spacer 11 

(ITS) regions, eukaryal 18S rRNA genes), which profile microbiota with varying degrees of 12 

taxonomic specificity and phylogenetic information. The field is now transitioning to integrate 13 

other data types, such as metabolite
8
, metaproteome

9
, or metatranscriptome

910
 profiles. 14 

The QIIME 1 microbiome bioinformatics platform has supported many microbiome 15 

studies and gained a broad user and developer community. Interactions with QIIME 1 users in 16 

our online support forum, our workshops, and direct collaborations showed the potential to better 17 

serve an increasingly diverse array of microbiome researchers in academia, government, and 18 

industry. Here, we present QIIME 2, a completely reengineered and rewritten system that will 19 

facilitate reproducible and modular analysis of microbiome data to enable the next generation of 20 

microbiome science. 21 

QIIME 2 is developed based on a plugin architecture (Supplementary Figure 1) that 22 

allows third parties to contribute functionality (see https://library.qiime2.org). QIIME 2 plugins 23 

exist for latest generation tools for sequence quality control from different sequencing platforms 24 

(DADA2 (ref. 11) and Deblur
12

), taxonomy assignment
13

, and phylogenetic insertion
14

, that 25 

quantitatively improve results over QIIME 1 and other tools (detailed in the corresponding tool-26 

specific publications). Plugins also support qualitatively new functionality, including 27 

microbiome paired sample and time-series analysis
15

 (critical for studying the impact of 28 

treatment on the microbiome) and machine learning
16

, with the ability to save trained models to 29 

not only apply them to new data but also interrogate models to identify important microbiome 30 

features. Several recently released plugins, including q2-cscs
17

, q2-metabolomics
18

, q2-shogun
19

, 31 

https://library.qiime2.org/


q2-metaphlan2 (ref. 20), and q2-picrust2 (ref. 21), provide initial support for analysis of 32 

metabolomics and shotgun metagenomics data. We are currently working with teams developing 33 

bioinformatics tools for metatranscriptomics and metaproteomics, and expect to add new plugins 34 

supporting these data types to the ecosystem shortly. Additionally, many of the existing 35 

‘downstream’ analysis tools, such as q2-sample-classifier
16

, can already work with these data 36 

types individually or in combination if they are provided in a feature table. This marks the 37 

potential of QIIME 2 to serve not only as a marker gene analysis tool, but also a 38 

multidimensional and powerful data science platform that can be rapidly adapted to analyze 39 

diverse microbiome features.  40 

QIIME 2 provides many new interactive visualization tools facilitating exploratory 41 

analyses and result reporting. Static versions of interactive visualizations resulting from four 42 

worked examples are provided in Figure 1. QIIME 2 View (https://view.qiime2.org) is a unique 43 

new service (see Supplementary Methods) that allows users to securely share and interact with 44 

results without installing QIIME 2. The QIIME 2 visualizations presented in Figure 1 are 45 

provided in Supplementary File 1 for readers to interact with using QIIME 2 View. 46 

Corresponding worked QIIME 2 example code is provided in Supplementary Methods. 47 

Reproducibility, transparency, and clarity of microbiome data science are guiding 48 

principles in the QIIME 2 design. Toward this end, QIIME 2 includes a decentralized data 49 

provenance tracking system: details of all analysis steps with references to intermediate data are 50 

automatically stored in the results. Users can thus retrospectively determine exactly how any 51 

result was generated (Figure 2 illustrates a simplified provenance graph derived from the data 52 

provenance of Figure 1c). QIIME 2 also detects corrupted results, indicating that provenance is 53 

no longer reliable and the results no longer contain information enabling reproducibility. 54 

Provenance of the visualizations presented in Figure 1 can be interactively reviewed by loading 55 

the contents of Supplementary File 1 with QIIME 2 View, providing far more detailed 56 

information than can typically be provided in Methods text. QIIME 2 results are also 57 

semantically typed (Fig. 2) and actions indicate acceptable input types, clarifying the data that 58 

actions should be applied to and making complex workflows less error-prone. Complex 59 

workflows can be created and shared using Jupyter Notebooks
22

 or Common Workflow 60 

Language (CWL)
23

, and support for other workflow engines is currently in development.  61 



Finally, QIIME 2 provides a software development kit (see https://dev.qiime2.org) that 62 

can be used to integrate it as a component of other systems (e.g., such as Qiita
24

 or Illumina 63 

BaseSpace) and to develop interfaces targeted toward users with different levels of 64 

computational sophistication (Supplementary Figure 2). QIIME 2 provides the QIIME 2 Studio 65 

graphical user interface and QIIME 2 View, interfaces designed for end-user biologists, 66 

clinicians, and policymakers; the QIIME 2 application programming interface, designed for data 67 

scientists who want to automate workflows or work interactively in Jupyter Notebooks
22

; and 68 

q2cli and q2cwl, providing a command line interface and CWL
23

 wrappers for QIIME 2, 69 

designed for high-performance computing experts. At present, computationally expensive steps 70 

support parallel computing at the individual action level (for example, many actions including 71 

de-noising and taxonomy assignment support multiple threads). We are currently developing 72 

deeper integration with parallelism strategies available in third-party workflow engines, and 73 

workflow-level parallelism is currently possible through CWL.  74 

There are many other powerful open-source software tools for microbiome data science, 75 

including mothur
25

, phyloseq
26

 and related tools available through Bioconductor
27

, and the 76 

biobakery suite
20,21,28

. The microbiome bioinformatics platform mothur is often compared to 77 

QIIME 1 and QIIME 2. A major difference between mother and QIME lies in the interactive 78 

visualizations: QIIME 2 provides many interactive visualization tools (several examples are 79 

provided in Figure 1), whereas mothur focuses on generating data that can be easily loaded and 80 

visualized with other tools. The phyloseq tool focuses on microbiome statistical analysis and 81 

generating publication-ready visualizations but, unlike QIIME 2, begins with a feature or OTU 82 

table, leaving ‘upstream’ processing steps, such as sequence demultiplexing and quality control, 83 

to other processing pipelines, many of which (like phyloseq) are available through Bioconductor. 84 

The biobakery suite provides analytic functionality that complements that of QIIME 2, and we 85 

are actively working with biobakery developers to support interoperability by making their tools 86 

accessible as QIIME 2 plugins (for example, the q2-metaphlan2 plugin allows users to run 87 

MetaPhlAn2 through QIIME 2). QIIME 2 provides the only Python-based microbiome data-88 

science platform that supports retrospective data provenance tracking to ensure reproducibility, 89 

multi-omics analysis support, interfaces geared toward different user types to enhance usability, 90 

and an extensibility-focused design through the plugin architecture and software development 91 



kit. We share feedback from users of QIIME 2 on these and other features in Supplementary 92 

Methods. 93 

The tools described in the preceding paragraph are all interoperable through plugins, 94 

exchange of files in standard formats, or using multi-language environments, such as Jupyter 95 

Notebooks
22

. For example, the BIOM format
29

 is supported by all of them. A diverse ecosystem 96 

of interoperable software is beneficial for the field, as it allows experienced users to get multiple 97 

perspectives on their data and novice bioinformaticians to work in programming environments 98 

that they are most comfortable with (e.g., phyloseq allows users to work in R, whereas QIIME 2 99 

allows users to work in Python). We plan to continue working with the developers of these tools, 100 

and organizations such as the Genomics Standards Consortium, on plugins and standards to 101 

ensure interoperability, as well as on developing tools to automatically import data from 102 

microbiome data sharing platforms such as Qiita, the European Bioinformatics Institute (EBI) 103 

European Read Archive, and the National Center for Biotechnology Information (NCBI) Short 104 

Read Archive. 105 

Advances in microbiome research promise to improve many aspects of our health and our 106 

world, and QIIME 2 will help drive those advances by enabling accessible, community-driven 107 

microbiome data science. 108 

 109 

Code availability 110 

QIIME 2 is open source and free for all use, including commercial. It is licensed under the BSD 111 

three-clause license. Source code is available at https://github.com/qiime2 . To get help with 112 

QIIME 2, visit https://forum.qiime2.org . 113 

 114 

Data availability 115 

Data for the analyses presented in Figure 1 are available as follows: Earth Microbiome Project 116 

data in panel (a) was obtained from ftp://ftp.microbio.me/emp/release1, and the American Gut 117 

Project (AGP) data was obtained from Qiita (http://qiita.microbio.me) study ID 10317. Sequence 118 

data in panel (b) are available in Qiita under study ID 10249 and EBI under accession number 119 

ERP016173. Sequence data in panel (c) are available in Qiita under study ID 925 and the 120 

European Bioinformatics Institute (EBI) under accession number ERP022167. Data in panel (d) 121 



are available in the q2-ili GitHub repository (https://github.com/biocore/q2-ili). Interactive 122 

versions of the Figure 1 visualizations can be accessed at https://github.com/qiime2/paper1 .  123 
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Figure 1: QIIME 2 provides many interactive visualization tools. The products of four worked 353 

examples are presented here, and interactive versions of these screen captures are available in 354 

Supplementary File 1 and at https://github.com/qiime2/paper1 . Detailed descriptions and 355 

methods, including the commands used to generate each of these visualizations, are provided in 356 

Supplementary Methods. (a) Unweighted UniFrac PCoA plot containing 37,680 samples, 357 

illustrating the scalability of QIIME 2. Colors indicate sample type, as described by the Earth 358 

Microbiome Project ontology (EMPO). (b) A feature volatility plot 359 

(https://msystems.asm.org/content/3/6/e00219-18) illustrating change in Bifidobacterium 360 

abundance over time in breast-fed and formula-fed infants. Temporally interesting features can 361 

be interactively discovered with this visualization. Bar charts rank the importance (predictive 362 

power for time point) and mean abundance of all microbial features. These bar charts provide an 363 

interface for visualizing volatility plots (line plots) of individual features in the context of their 364 

importance and abundance; clicking on a bar will display the volatility plot of that feature and 365 

highlight in blue that feature's importance and abundance in the bar charts below. (c) Interactive 366 

taxonomic composition bar plot illustrating phylum-level composition of microbial mat samples 367 

collected along a temperature gradient in Yellowstone National Park Hot Spring outflow 368 

channels (Steep Cone Geyser). The many interactive controls available in this plot vastly reduce 369 

the burden of exploratory analysis over QIIME 1. (d) Molecular cartography of the human skin 370 

surface. Colored spots represent the abundance of the small molecule cosmetic, sodium laureth 371 

sulfate, on the human skin. Sample data can be interactively visualized on three-dimensional 372 

models, supporting the discovery of spatial patterns. 373 
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Figure 2: QIIME 2 iteratively records data provenance, ensuring bioinformatics reproducibility. 375 

This simplified diagram illustrates the automatically tracked information about the creation of 376 

the taxonomy barplot presented in Figure 1c. QIIME 2 results (circles) contain network diagrams 377 

illustrating the data provenance stored in the result. Actions (quadrilaterals) are applied to 378 

QIIME 2 results and generate new results. Arrows indicate flow of QIIME 2 results through 379 

actions. TaxonomicClassifier and FeatureData[Sequence] inputs contain independent provenance 380 

(red and blue, respectively) and are provided to a classify action (yellow), which taxonomically 381 

annotates sequences. The result of the classify action, a FeatureData[Taxonomy] result, 382 

integrates the provenance of both inputs with the classify action. This result is then provided to 383 

the barplot action with a FeatureTable[Frequency] input, which shares some provenance with the 384 

FeatureData[Sequence] input as they were generated from the same upstream analysis. The 385 

resulting Visualization (Figure 1c), has the complete data provenance and correctly identifies 386 

shared processing of inputs. This simplified representation was created manually from the 387 

complete provenance graph for the purpose of illustration. An interactive and complete version 388 

of this provenance graph (as well as those for other Figures 1 panels) can be accessed through 389 

Supplementary File 1. 390 

 391 

ESM 
(reporting summaries 
should always come 
second, unless there is 
no other ESM file) 

 
File type: PDF 
Title: Supplementary Information 
Description: Supplementary Figures 1–3 and Supplementary 
Methods 
 
File type: ZIP 
Title: Supplementary File 1 
Description: Interactive versions of the visualizations presented 
in Figure 1. These can be viewed using QIIME 2, for example at 
https://view.qiime2.org. 
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