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Abstract

A successful rehabilitation process always requires both
medical and infrastructural support. In this paper we fo-
cus on paraplegic wheelchair users, aiming at understand-
ing the correlation between accuracy in guidance and mus-
cular fatigue, while moving on a known training path. In
particular, we study the trajectories performed and the cor-
responding shoulder forces distribution, while changing the
inclination of the seat. At the motor level, the point of inter-
est is the shoulder, as, in the prolonged use of wheelchairs
with manual self-propulsion, it is generally source of pain.
The objective is to demonstrate that there is a potential re-
lationship between trajectory discontinuities and shoulder
pain, and foster the development of best practices aimed
at preventing the raise of shoulder-related pathologies, by
correcting the users movements and the wheelchair setup.
This project is meant to be a first study of the subject, so
far little addressed, and is not meant to be a clinical study.
The experiments have been conducted within the premises
of the Living Lab AUSILIA and validated with the help of
experienced medical personnel.

1. Introduction
People with motor disabilities, whether it is a permanent

or temporary disability, often require continuous assistance.
The project AUSILIA (Assisted Unit for Simulating Inde-
pendent LIving Activities, Fig. 1)1 is a living lab, aimed at
improving the user capabilities, thanks to an advanced tech-
nological infrastructure able to measure the user’s skills and
needs, recommending the most suitable instruments to fos-
tering autonomy and independent living. As described in
[12], within the premises of AUSILIA, users perform small
daily activities in a controlled environment simulating a real
fully furnished house. In this way it is possible to observe
what difficulties they would be facing once back home. The

1http://www.ausilia.tn.it

AUSILIA living lab consists of two main environments: the
home apartment and the gym as shown in Fig. 1. Both the
apartment and the gym are equipped with a multi-sensory
infrastructure, necessary to capture the user motion and
his/her interactions with the environment. The gym is the
reference environment for this work. It is equipped with nu-
merous platforms simulating different pavements and sur-
faces, in which wheelchair users can be monitored and their
capabilities assessed. The goal of this paper is to jointly
analyze trajectory and shoulder fatigue targeting paraplegic
users, using manual self-propulsion wheelchairs, with dif-
ferent inclinations of the seat and in presence of obstacles
in the route. The system is composed of two main modules:
on the one hand we rely on a camera network for tracking
and trajectory analysis; on the other hand we focus on the
muscular activity through the positioning of an electromyo-
graph and an electrogoniometer on the shoulder and arm of
the user. The output of the analysis, conducted in synergy
with the medical personnel, aims at highlighting a potential
correlation between salient points in the trajectories and dis-
continuities in the shoulder movement. The data, as will be
shown in the experiments section, is made available through
an ad-hoc user interface, where doctors and caregivers can
assess the motion and guiding abilities with reference to the
specific wheelchair setup.

At the current stage of development, the presence of
the electromyograph and an electrogoniometer is necessary
mostly to acquire the ground truth, while in the future it
is expected that the analysis is conducted by solely using
video cameras and/or, more in general, non wearable sen-
sors, for an improved user experience and limited invasive-
ness.

2. Related work

In this paper we focus on manual wheelchairs users, as
many studies show the high correlation between the setup
of the wheelchair and shoulder pain [10, 1, 6, 9, 7]. The lit-
erature shows how the force applied to push the wheelchair
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(a) Apartment (b) Gym

Figure 1: Layout of the apartment and gym of the AUSILIA
project.

Figure 2: Image of a user testing all the described equip-
ment: EMG sensors, electrogoniometer, and wheelchair.

relates to the specific type of movement performed and also
to the presence of obstacles in the user’s path, elements that
can be well modeled and described through the trajectory
performed. Studies carried out in this area cover different
topics. The authors in [6] clearly highlight how the raise
of shoulder pain in wheelchairs users during daily activities
is a widespread phenomenon, so that the authors, as a final
goal outcome of their study, define the Wheelchair User’s
Shoulder Pain Index (WUSPI). Using this index, they high-
light an increase in pain in quadriplegic users than para-
plegic users above all, in relation to increasing age [1].

2.1. Human detection and trajectory analysis

As far as the trajectory analysis is concerned the litera-
ture is very rich. Most of the approaches focus on purely
vision-based approaches, which keep the implementation
and deployment costs low, thus not requiring the adoption
of expensive wearable sensors. The most straightforward
solutions are based on background subtraction techniques
for blob detection, followed by tracking [15, 13]. How-

ever, background subtraction is generally not robust, and
tracking-by-detection algorithms are generally preferable
[3]. From the tracking perspective, the analysis is generally
conducted on the 2D trajectory. Many different solutions
have been proposed. We will adopt the methods proposed
by Piotto et al. [11], in which the authors explore the anal-
ysis and comparison of trajectory subsets: after subdividing
the trajectory into short segments, they look for temporal
discontinuities, as well as spatial discontinuities in terms of
sharp direction variations.

A recent trend in computer vision is to estimate the hu-
man pose through deep networks. Among the most cited
papers in the recent literature, we can find [5], an approach
for real-time 2D multi-person pose estimation, which serves
as a basis for the popular framework OpenPose [4]. 2D hu-
man pose estimation has become popular thanks to its ro-
bustness towards human (self-)occlusions. Moreover, pose
estimation has established a new baseline in terms of perfor-
mances and detection accuracy especially for what concerns
body joint detection, making it a perfect candidate for real-
time trajectory analysis applications. Moreover, a skeleton
(resulting by the connection of the extracted joints) can pro-
vide a much better semantic representation of a person, es-
pecially if compared to a bounding box resulting from a 2D
blob. As an example, Zimmermann et al. [17] trace the
user’s movements through 2D skeleton extraction to teach
robots, how to help the user perform the actions he is willing
to perform.

2.2. EMG signals analysis

The electromyographic (EMG) signal is used to charac-
terize the activity of a muscle. The activation of a particu-
lar muscle can be both voluntary and involuntary [2, 8, 14]
These signals are very complex to handle, since they re-
semble the combination of numerous stimuli and are gener-
ally affected by a considerably large amount of noise, thus
requiring the adoption of signal processing techniques to
highlight the meaningful signal components.

Although the applicable filters may vary depending on
the analysis, an overall good method for cleaning a signal is
proposed by [2]. This method considers four main steps: fil-
tering, rectification, smoothing and features extraction. The
filtering and smoothing steps are signal-dependent, because
every signal is affected by different noise sources and can
have different ranges, depending on the performed move-
ment, as well as the type of muscle being activated. A more
detailed explanation is available in [16], in which the au-
thors have listed possible filtering strategies together with
the corresponding references. An additional feature of the
EMG signal analysis is that it can be performed both in
the time and in the frequency domain, as underlined by
[14, 2, 16] depending on the different physical parameters
[16] analyzed. There are four fundamental physical param-



eters that can be extracted from the temporal and frequency
analysis, namely joint motion, force, velocity, and muscle
fatigue. Those of greater interest, especially with regard to
this work, are muscular force and fatigue. The first one, de-
fined as force or muscle tension, can be extracted in the time
domain analysis, due to the fact that it can be related to the
amplitude of the EMG signal. In addition, for experiments
with constant tension exercise, the average value of the sig-
nal that has been previously rectified, is a measure of ten-
sion. A feature widely used in literature to extract this value
is the Root Mean Square. Instead, the muscle fatigue is gen-
erally measured analyzing the frequency domain, as it has
been found that the fatigue produces changes in the EMG
spectrum. In particular, an increase in fatigue decreases the
high-frequency components of the spectrum.

3. Proposed model
Our focus is to jointly analyze wheelchair users’ trajec-

tories and the development of fatigue, mainly at shoulder
level, in relation to their posture. The analysis has been con-
ducted in the AUSILIA gym, by detecting sudden speed and
direction changes in the path that can be linked to incorrect
movements, to the presence of obstacles, such as steps, or
to variations in the road inclination. For the user detection
phase, we rely on the method described in [5] and [4], com-
bined with a background subtraction motion model, that can
support the algorithm is those cases, in which the skeleton
detection fails, due to severe occlusions of the body details.
For the shoulder and posture analysis instead, we adopt a
mixed approach, that links data from the EMG sensor, the
user’s body pressure distribution, and pose data in terms of
joints position. The main steps of the developed method are
shown in Fig. 3.

3.1. Sensors positioning, calibration, and recording

Four cameras have been installed on the gym perimeter
so as to guarantee the coverage of the whole area of interest.
The approximate coverage on the ground by each camera is
shown in Fig. 4.

Cameras are subject to distortions of various kinds and
therefore require calibration, to determine both the intrinsic
and extrinsic parameters. As we are working with a small
camera network, it is also necessary to relate each camera to
the others in the network, via the computation of the funda-
mental matrix, as well as linking the cameras with the real
world through the computation of the homography matrix.

With the camera network fully calibrated, it is possible
to start collecting data. Since it is not convenient, in terms
of required storage space, to record all the videos from all
the cameras in the gym simultaneously, the goal is to trigger
the recording of each camera based on the user’s position,
automatically handling the hand-off. The final video con-
sists then of the concatenation of the single views. How-

ever, in order to guarantee that no relevant data is lost, the
entire videos for each camera are also temporarily stored,
until the medical personnel confirms that no salient event
has been missed.

3.2. Trajectory analysis through skeleton detection

In order to determine the users’ trajectory, the first step
consists of determining the position of the skeleton. For this
phase, we rely on the OpenPose library [4], which allows
for a good detection also in presence of partial occlusions.
Only in case the skeleton is not found, we backtrack to
background subtraction, so as to ensure a continuous track-
ing over time (Fig. 6).

We can now define a bounding box that resembles the
position of the users at a given time instant. At each frame
pG represents the ground point. When the pose estimation
succeeds, pG can be identified as the median point of the
11th and 14th skeleton joints (heels joints). When pose es-
timation fails, pG is located at the lower median point of the
bounding box obtained via background subtraction.

At this stage, the trajectory is still noisy and uneven. As
a consequence, a filtering and smoothing phases are nec-
essary to obtain a more uniform and meaningful trajectory.
Therefore, we employ a two-step filtering approach: first,
we apply a Kalman filter; we then refine the obtained tra-
jectory with a moving average filter. The outcome of the
trajectory filtering is shown in Fig. 7.

All the extracted points that contribute to the definition of
the trajectory can now be mapped to the ground plane in the
real world coordinates thanks to the calibration procedure
described above.

Velocity and acceleration are then extracted by comput-
ing the values over a one-second window, so as to cope
also with minor irregularities that might occur at smaller
time scales. In addition, the speed value for each frame is
also used to graphically indicate on the map the exact points
where a change in speed occurs, using an ad-hoc colormap
changing from green (slow) to red (fast). Following the pro-
cedure described in [11], the trajectory is analyzed to look
for possible temporal breakpoints, defined as sudden stops
and re-starts. Such discontinuities happen when the posi-
tion of the object of interest at the beginning and end of a
defined time interval [tk, tk+1] is within a predefined range
∆. Mathematically, and according to [11], this implies:

P i
k+1 = P i

k ±∆ where P i
k = (xik, z

i
k, tk)

A temporal breakpoint is inserted when, within a second,
the position of the wheelchair varies less than 30cm. In [11],
also spatial breakpoints are extracted to describe the trajec-
tory, defined as sudden variations of the motion direction.
This means computing the angle between two segments of



Figure 3: Pipeline of the proposed method: sensor positioning, camera calibration, video recording, real-time trajectory
analysis, posture and arm fatigue analysis

Figure 4: Layout of the AUSILIA gym. The environment
is currently covered by four IP cameras, necessary to mon-
itor the wheelchair path. The approximate coverage of the
cameras is highlighted in light blue.

Figure 5: Computation of the fundamental and homog-
raphy matrices

the trajectory in order to search for sharp direction varia-
tions:

βk =

∣∣∣∣ mk−1 −mk

1−mk−1mk

∣∣∣∣ > βth

where
{
rk−1(x) = mk−1x+ qk−1

rk(x) = mkx+ qk

In our case, we use a temporal reference of two seconds

(a) Extraction of the skeleton through OpenPose [4]

(b) Motion detection via background subtraction

Figure 6: Example of skeleton extraction and motion detec-
tion through background subtraction.

in order to calculate the angle of rotation performed by the
users at a precise instant.



(a) Smoothed trajectory in the real world

(b) Projected smoothed trajectory

Figure 7: Trajectory filtering: the green line represents the
output of the Kalman filter, while the red line is the result
of the moving average filter.

Figure 8: Trajectory performed by a test user projected on
the gym map showing: speed changes, spatial breakpoints
and temporal breakpoints.

3.3. Shoulder forces and posture analysis

In addition to the extraction of the trajectory of the
wheelchair, our aim is to also study the posture and the
arm movement while pushing the wheelchair. In partic-
ular, the shoulder movement is analyzed in detail as the
prolonged use of wheelchairs with manual self-propulsion
causes shoulder disorders in most users. As a consequence,
the pushing force distribution is analyzed to understand if
there are discontinuities that, in the long period, can be a

potential source of pain. To achieve this second objective,
several tools have been used: five EMG sensors to detect
the muscular activity of the shoulder, the angle of the el-
bow extracted from the skeleton, and an electrogoniometer,
mostly used as a ground truth to measure the reliability of
the OpenPose joint extraction. Each user is asked to test
three different types of wheelchairs (Fig. 11). The EMG
and the electrogoniometer are used to directly analyze the
user’s movement. The motivation for using three differ-
ent wheelchairs, instead, is necessary to evaluate the per-
formances while changing on the one hand the weight of
the wheelchair itself, and on the other hand the responsive-
ness of the wheelchair when a force is applied to the wheels.
This second difference mostly depends on the different in-
clination of the seat and, consequently, the different posture
of the user. For this reason, in addition to the analysis of the
shoulder, the objective is also to understand if such different
postures can help in preventing shoulder pain.

The most significant data for the study of user move-
ment, and in particular the shoulder movement, is obtained
from the EMG sensors. A common framework to analyze
these data is MOKKA 2, which is is provided by the open-
source Biomechanical ToolKit (BTK) 3.

The EMG sensors measure the muscle activity, including
both voluntary and involuntary movements performed by
muscle fibers.

The amplitude of the signal is analyzed in the time do-
main, as it reflects the force used by the muscle, i.e. its
muscle activation. In the frequency domain, it is possible to
extract values related to the fatigue.

In our implementation the EMG signals have been ana-
lyzed and processed in the time domain through the follow-
ing steps (Fig. 9): data extraction, filtering, rectification and
RMS (Root Mean Square) envelope.

Figure 9: EMG signal processing: raw signal (red), band-
pass filtered signal (blue), rectified signal (green) and the
RMS envelope (violet). The signal amplitude is reported in
Volt.

2 http://biomechanical-toolkit.github.io/mokka/
3 https://code.google.com/archive/p/b-tk/



Since the signal analyzed in the time domain is a rep-
resentation of the muscular force, that is the muscular ac-
tivation, it is possible to define the mean muscle activation
by computing the mean of the signal. This average value
is extracted for every signal and for every trial using the
different wheelchair. Consequently, by calculating the ra-
tio between the average values of each signal passing from
one wheelchair to another, it is possible to understand if and
how the muscular activation changes if the seat is changed.

Together with the EMG information, the angle of open-
ing and closing of the elbow is also extracted, to have
an additional data on the control on the movement of the
arm. However, the electrogoniometer is rather invasive and
we preferred using the joints of the skeleton, providing
a weak replacement for the electrogoniometer data, for a
more comfortable experience for the user, who will not be
required to wear invasive sensors during the experiments.
From the skeleton extracted at each frame, the positions
(x, y) of three joints are extracted: the shoulder, the elbow
and the wrist. These positions are stored so that they can
be used and processed later to evaluate the variations of the
angle at the elbow level. The procedure used for the calcu-
lation of the opening and closing of the elbow, relies on the
same strategy adopted for the identification of spatial and
temporal breakpoints in the trajectory analysis.

3.4. Results correlation and displaying

At this point of the study, the data is processed, and can
be viewed by the medical personnel in order to correlate the
information coming from the different information sources,
bearing in mind that each source has different temporal res-
olutions requiring an additional effort in synchronization.
An overview of the final layout of the interface is shown in
Fig. 10b.

4. Results

The main objective of this study is to find a correlation
between the development of shoulder pain in users and the
prolonged or incorrect usage of the wheelchair. Considered
that the study presented is pioneering in its nature and not a
proper clinical study, we involved six healthy users of dif-
ferent age, musculature and gender, as shown in Table 1. In
the considered environment, users are subject to clinical tri-
als and are constantly monitored by therapists and nursing
staff on a daily basis, in order to optimize the choice of the
most suitable wheelchair.

In the tests, users were asked to perform an established
route three times, each time using a different wheelchair
model. At the end of each trial, users were required to fill
in a questionnaire to collect their direct feedback about the
level of fatigue.

(a) Graphical interface

(b) An example of extracted data

Figure 10: Graphical interface developed to display all data
at the same time. A play / pause button is present to be able
to observe in detail all the signals at a precise moment. The
displayed data includes the mean value of muscular activa-
tion for every EMG sensor, the mean and maximum velocity
of the user as well as the entire duration of the trial.

Gender Musculature Experience
with wheelchairs

User 1 male well-developed 3
User 2 female normal 2
User 3 female normal 1
User 4 female normal 4
User 5 male normal 2
User 6 female normal 1

Table 1: Users involved in the experiments, with experience
level between 1 (beginner) and 5 (expert).

4.1. Trajectory analysis

For what concerns the trajectory analysis, the obtained
results confirm our initial hypotheses, showing how the
speed and the motion properties of users change in presence
of obstacles and turns, while maximum speed is reached
in presence of straight paths and descents. An example of
the salient interest points, represented through the tempo-
ral and spatial breakpoints, can be seen in Fig. 12. It is
shown how User 6, with a Level 1 (beginner) wheelchair



(a) ”Vega”: super light, responsive. (b) ”Ministar”: light, responsive. (c) ”Meyra”: light.

Figure 11: Characteristics of the three types of wheelchair, which vary in terms of weight and responsiveness.

usage experience, encountered severe difficulties in facing
obstacles in the pre-determined path, as also highlighted by
the breakpoints plot in Fig. 12b. The user also encounters
difficulties while getting on the ramp in Fig. 12a. To con-
tinue along the path, the user suddenly changes the motion
direction to reach for the handrail, which was not in range
along the path. We can notice that a set of useful infor-
mation can be inferred from the trajectory plot in 12b, in
particular: (i) the speed has decreased significantly (light
green) during the ascent, as shown by the presence of tem-
poral breakpoints; (ii) when the user continues the test with
the help of the handrail, a spatial interruption is drawn on
the map due to an abrupt change in direction. Such break-
points are successfully detected by our trajectory analysis
and they also match the answers that users gave in the ques-
tionnaire. Moreover, users identified the climbs, descents
and also the different terrain types as the most difficult parts
along the path, which is in line with the data observed in our
arm movement and posture analysis.

From the analysis it turned out that the results of the
trajectory analysis in relation with the different wheelchair
models were less relevant than expected. By changing the
wheelchair model from the most responsive to the less re-
sponsive one (Fig. 11), a progressive increase in the em-
ployed force was expected, associated to a decrease in
speed. However, this trend was not evident in every test,
as can be seen in Fig. 13. This might be due to the fact that
users have not been pushed to maximum strain, and only
a limited number of trials has been performed. However,
despite the small number of samples used to perform the
analysis, both the quantitative results and the user question-
naires show how the wheelchair weight is not the main fac-
tor linked to speed variations along the path. In fact, from
such a preliminary analysis, it appears from the trajectory
data, that the inclination of the wheelchair along the path
has a far more relevant influence than the weight variation
of the wheelchair itself.

(a) User 6 that stops on the ascent and continue the path clings to the
parapet

(b) Temporal and spatial breakpoints on the map caused by the difficul-
ties encountered

Figure 12: Example of difficulty caused by obstacles (user
6).

4.2. Arm movement and posture analysis

We conducted a similar analysis also for the shoulder
movement and user posture, relating them with the presence
of obstacles along the path and the wheelchair type. As re-
gards the comparison with the different types of wheelchair,
we calculate the mean value µp : p ∈ P of each users mus-
cular activity, as extracted by the EMG sensor, and compare



Figure 13: Average growth ratio of the mean muscular acti-
vation for the 6 users on the three wheelchair models. No-
tice how the muscular fatigue changes based on user expe-
rience and how in our tests it is not strictly linked just to the
wheelchair weight.

with the rest of the user population P . Then, by calculating
the ratio of the mean value in passing from one wheelchair
model to the other, it was possible to quantify the change
in the force applied ∆f , as performed by the user. The
data obtained from this analysis are shown in Table 2. Also
in this case the idea is that when the wheelchair changes,
the users force increases proportionally to the difficulty of
the path. During the evaluation of these parameters, while
speed seems to be more related to the wheelchair inclina-
tion, the required force is more related to weight. In fact, an
increase in muscle activity occurred for five out of six users,
when switching from a super-light to a light wheelchair, but
both tilted. Instead, only half of the users in the panel has
increased the muscular force by varying the inclination of
the seat.

4.3. Results correlation

By visualizing and integrating all the data together
through the developed graphical interface (Fig. 10a), it is
possible to have a complete and detailed view of the entire
trial. Through the video and the projection of the trajec-
tory on the gym map, it is possible to observe when and
where the user’s difficulties occur, and understand how spe-
cific obstacles in the path can lead to an increasing fatigue.
At the same time, in addition to visualizing spatial and tem-
poral breakpoints in the path thanks to the trajectory anal-
ysis, it is possible to also visually correlate the EMG sig-
nals of each muscle at every precise moment. Observing
the signal during the various phases of the route, it is possi-
ble to notice how, in presence of situations considered crit-
ical by the users (ascent, as well as different surfaces like
grass and stone), muscle activity increases with numerous

L+/SL L-/L+ L-/SL
User 1 90% 94% 86%
User 2 127% 84% 105%
User 3 107% 101% 98%
User 4 142% 93% 130%
User 5 104% 104% 108%
User 6 135% 101% 125%

Table 2: Average growth ratio of the mean muscular acti-
vation between pairs of wheelchairs: super light, respon-
sive (SL), light, responsive (L+), light (L-). A 100% ra-
tio indicates that with the second wheelchair the user em-
ployed 100% of the average force used with the previous
wheelchair, therefore a constant muscle activity (ratio equal
to 1). While a 90% ratio indicates that with the second
wheelchair only 90% of the previous force was used, i.e.
there was a 10% decrease. A value greater than 100% there-
fore indicates an increase in muscle activity.

peaks. This allows the medical personnel to improve their
knowledge about the user’s fatigue, which would be other-
wise difficult to gather, clearly showing the benefits of hav-
ing a distributed sensing framework like the one available
in AUSILIA.

5. Conclusions

In this paper, we propose an approach for joint trajectory
and fatigue analysis in wheelchair users. We combine the
state-of-the-art skeleton-based pose estimation techniques,
classic computer vision algorithms and data from wearable
sensors to provide the medical personnel with a complete
solution that enables them to evaluate an ensemble of pa-
rameters jointly, while performing a pre-defined task. Our
study shows that a relationship exists between the trajec-
tory data and the EMG signals, both in terms of velocity,
and temporal and spatial breakpoints. Furthermore, our
method takes into account different wheelchairs, showing
how many different factors, including the user experience
and the terrain slope and type of surface, all contribute to
the user’s fatigue at different levels.

This confirms that the setup we have envisaged and the
multi-sensory environment we have defined can indeed be
of help in correlating the muscular activity to the trajectory.
We believe that the main limitation we have been facing so
far is mostly due to the small number of users involved and
trials performed. This issue is currently being addressed via
the definition of an ad-hoc clinical study.

References
[1] M. Alm, H. Saraste, and C. Norrbrink. Shoulder pain in per-

sons with thoracic spinal cord injury: prevalence and charac-



teristics. Journal of rehabilitation medicine, 40(4):277–283,
2008.

[2] L. R. Altimari, J. L. Dantas, M. Bigliassi, T. F. D. Kanthack,
A. C. de Moraes, and T. Abrão. Influence of different strate-
gies of treatment muscle contraction and relaxation phases
on emg signal processing and analysis during cyclic exer-
cise. In Computational Intelligence in Electromyography
Analysis-A Perspective on Current Applications and Future
Challenges. IntechOpen, 2012.

[3] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple
online and realtime tracking. In 2016 IEEE International
Conference on Image Processing (ICIP), pages 3464–3468,
2016.

[4] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh.
Openpose: realtime multi-person 2d pose estimation using
part affinity fields. arXiv preprint arXiv:1812.08008, 2018.

[5] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. In CVPR,
2017.

[6] K. Curtis, K. Roach, E. B. Applegate, T. Amar, C. Benbow,
T. Genecco, and J. Gualano. Development of the wheelchair
user’s shoulder pain index (wuspi). Spinal Cord, 33(5):290,
1995.

[7] K. A. Curtis, G. A. Drysdale, R. D. Lanza, M. Kolber, R. S.
Vitolo, and R. West. Shoulder pain in wheelchair users with
tetraplegia and paraplegia. Archives of physical medicine and
rehabilitation, 80(4):453–457, 1999.

[8] C. J. De Luca, L. D. Gilmore, M. Kuznetsov, and S. H.
Roy. Filtering the surface emg signal: Movement artifact
and baseline noise contamination. Journal of biomechanics,
43(8):1573–1579, 2010.

[9] M. A. Finley and M. M. Rodgers. Prevalence and iden-
tification of shoulder pathology in athletic and nonathletic
wheelchair users with shoulder pain: A pilot study. Journal
of Rehabilitation Research & Development, 41, 2004.

[10] J. L. Mercer, M. Boninger, A. Koontz, D. Ren, T. Dyson-
Hudson, and R. Cooper. Shoulder joint kinetics and pathol-
ogy in manual wheelchair users. Clinical Biomechanics,
21(8):781–789, 2006.

[11] N. Piotto, N. Conci, and F. G. De Natale. Syntactic matching
of trajectories for ambient intelligence applications. IEEE
Transactions on Multimedia, 11(7):1266–1275, 2009.

[12] T. Pisoni, N. Conci, F. G. De Natale, M. De Cecco, G. Nollo,
A. Frattari, and G. M. Guandalini. Ausilia: assisted unit
for simulating independent living activities. In Smart Cities
Conference (ISC2), 2016 IEEE International, pages 1–4.
IEEE, 2016.

[13] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah. Visual tracking: An experimental
survey. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1442–1468, 2013.

[14] M. L. Systems. Motion lab systems- a software user guide for
emg graphing and emg analysis. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 11–
45. Motion Lab Systems, 2009.

[15] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. Acm computing surveys (CSUR), 38(4):13, 2006.

[16] T. N. S. T. Zawawi, A. R. Abdullah, M. H. Jopri, T. Sutikno,
N. M. Saad, and R. Sudirman. A review of electromyogra-
phy signal analysis techniques for musculoskeletal disorders.
Indonesian Journal of Electrical Engineering and Computer
Science, 11(3):1136–1146, 2018.

[17] C. Zimmermann, T. Welschehold, C. Dornhege, W. Burgard,
and T. Brox. 3d human pose estimation in rgbd images for
robotic task learning. In 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1986–1992.
IEEE, 2018.


