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Abstract: We study locally Cohen—-Macaulay curves of low degree in the Segre threefold P! x P! x P! and
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1 Introduction

In this paper we study curves in Segre threefolds over the field of complex numbers C. There are three types of
Segre threefolds: IP3, P2 x P! and P! x P! x IP1. In IP? the structure of the Hilbert scheme of curves has been
densely studied by many authors in the last half century. In [11] the connectedness of the Hilbert scheme of
curves is proven for the fixed degree and genus of curves, although it is classically known that the locus of
smooth curves may not be connected. Recently there have been increased interests on the connectedness of
the Hilbert scheme of locally Cohen—Macaulay curves. Up to now, the connectedness has been established
only for very small degree [22] or for very large genus [15]. We recommend to see [14] for further results and
the state of the art on this problem.

Our main concern is on the connectedness of Hilbert schemes of locally Cohen-Macaulay curves
in X = P! x P! x P! with very small degree. Smooth curves are often the first to be studied and by the
Hartshorne—-Serre correspondence, globally generated vector bundles on X can have very close relation with
smooth curves in X. There is a classification of globally generated vector bundles on X with low first Chern
class accomplished by the classification of smooth curves in X with very small degree [3]. One of the advan-
tages in the study of curves in X is that some irreducible components that might appear in the Hilbert scheme
in IP> may disappear in X, so that we can get simpler description of Hilbert schemes; for example, the Hilbert
scheme of curves in IP? of degree three and genus zero has two irreducible components, one with twisted
cubics and the other with planar cubics plus extra point, see [24]. The latter case cannot occur in X because
X is scheme-theoretically cut out by quadrics.

Our main result is as follows.

Theorem 1.1. LetH(e1, e;, e3, X)+.red be the reduced Hilbert scheme of locally Cohen—Macaulay curves C in X
with tridegree (e1, ez, e3) and x(O¢) = x.

(i) H(2,0,0, a); red is irreducible and rational for a > 2.

(i) H(2, 1,0, a)+,rea has the two irreducible components for a > 3.
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(iii) H(1, 1, 1, @)+ req s irreducible and rational for a € {1, 3}, while H(1, 1, 1, 2) req has the three connected
components that are rational.
(iv) H(2, 1, 1, 1) req is irreducible and rational.

The main ingredient in the study of Hilbert schemes of locally Cohen—Macaulay curves with low degree is a
rational ribbon and the Ferrand construction, i.e., a double structure on P, see the beginning of Section 3
for a brief summary of its usage in this article. Rational ribbons and their canonical embeddings were studied
in [4] and we adopt their results to prove the irreducibility of the Hilbert schemes of double lines in X. Then
we investigate the intersecting property of the double lines with other lines in X to investigate irreducible and
connected components of the Hilbert schemes, respectively. We recommend to see [19, 20] for studies on the
families of double lines in projective spaces. It should be noted that the irreducibility of the space of curves
with fixed cohomology in IP? is investigated in [5]. And the description of the other type of Hilbert scheme is
studied in [1].

Let us summarize here the structure of this paper. In Section 2, we introduce the definitions and main
properties that will be used throughout the paper, mainly those related to Segre threefold, Hilbert tripolyno-
mial and Hilbert schemes of locally Cohen-Macaulay curves. In Section 3, we pay attention to the Hilbert
schemes of curves with tridegree (2, 0, 0) and conclude their irreducibility using the double structure on P1.
We end the section with the description of the intersection of the double lines with other lines in X, which
will be used later on. In Section 4, we move forward to the Hilbert schemes of curves with tridegree (2, 1, 0),
(1,1,1) and (2, 1, 1), and describe their irreducible and connected components, respectively. In the proof
of irreducibility of H(2, 1, 1, 1), req, We use the moduli of stable maps. Finally, in Section 5, we apply our
arguments to the case of Segre threefold P2 x 1.

2 Preliminaries

For three 2-dimensional vector spaces V1, V5, V3 over the field of complex numbers C, let X = IP(V1)xIP(V3)x
P(V3), which is then embedded into IP” = IP(V) by the Segre map, where Vo = V; ® V, ® V3. It is known that
X is the only Del Pezzo with the maximal Picard number g(X) = 3. The intersection ring A(X) is isomorphic
to A(P1) ® A(P') ® A(IP) and so we have

AX) = Z[t1, t, 631/(8, 63, £3).

We mayidentify A1(X) = Z® by a1 t1 + art, + astz — (a1, az, az).Similarly, wehave A2(X) = Z® by e  t2t3+
ertsty + estity — (61, ey, 63) andA3(X) = Zby ctitrt3 — c.

Let us denote the natural projection of X to the ith factor by 71;: X — P!, and we denote 71} Op1(a;) ®
m;0p1(az) ® m30pi(as) by Ox(ay, az, as). Then X is embedded into P7 by the complete linear system
|0x(1, 1, 1)| as a subvariety of degree 6, since (1, 1, 1)> = 6. We also denote £E80x(a1, a, az) by &(ai, az, az)
for a coherent sheaf ¢ on X. We also let m1j: X — P! x P! denote the projection to the (i, j)-factor, i.e.,
mij(01, 02, 03) = (04, 0j) for (01, 02, 03) € X.

Proposition 2.1. For a one-dimensional sheaf F on X, there exists a tripolynomial x5(x, y, z) € Q[x, y, z] of
degree one such that
XF W, v, w)) = xs(u, v, w)

forall (u, v, w) € Z2%3.

Proof. This follows verbatim from the proof of [2, Proposition 2]. Let at + b € Q[t] be the Hilbert polynomial
of F with respect to Ox(1, 1, 1). Take a divisor D; € |Ox(1, 0, 0)| such that D; misses any zero-dimensional
components (embedded or isolated) of Supp(F) and does not contain any component of the one-dimensional
reduced scheme associated to Supp(&). Then this gives us an injective map jp, : F(¢, ¢, t) - F(t + 1, ¢, t) and
so we have an exact sequence

0—-J(tt,t) > TF(t+1,t,6) > F(t+1,t,t)®Op, — 0. (2.1)
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Similarly, fix other divisors D, € |0x(0, 1, 0)|, D3 € |0x(0, 0, 1)| and D € |Ox(1, 1, 1)| to define maps jp,, jp,
and jp with the corresponding exact sequences as in (2.1). Set

L:=h°F(t+1,t,)®Op,), m:=h°F(t, t+1,)®0Op,), n:=h’F(t,t,t+1)®0Op,),

which are independent on t. We claim that x(F(u, v, w)) = lu + mv + nw + b for all (u, v, w) € Z®3. From
the exact sequence for D, we have I+ m+n=ho(F(t+1,t+1,t+1)® Op) = a and so the claim is true
if u =v =w. In general, let us assume u > v > w without loss of generality. Then we get y(F(u, v, w)) =
X(F(w, w, w)) + l(u — w) + m(v — w), using the exact sequences for D; and D, several times. O

Definition 2.2. We call the linear tripolynomial in Proposition 2.1 the Hilbert tripolynomial of F for a purely
one-dimensional sheaf 7, i.e., xy5(X, ¥, z) = e1x + e2y + e3z + x for some (e1, ez, e3,x) € Z**. In particu-
lar, the Hilbert polynomial of F with respect to Ox(1, 1, 1) is defined to be y5(t) = x5(¢, t, t). We also call
Xoc(x,y, z) the Hilbert tripolynomial of a curve C.

Let H(ey, €3, e3, x) be the Hilbert scheme of curves in X with the Hilbert tripolynomial e1x + e,y + e3z + X,
and let H(e1, e,, e3, x)°™ be the open locus corresponding to smooth and connected curves.

Definition 2.3. A locally Cohen—Macaulay (for short, locally CM) curve in X is a one-dimensional subscheme
C c Xwhoseirreducible components are all one-dimensional and that has no embedded points. Equivalently,
Oc is purely one-dimensional.

We denote by H(es, ez, e3, )+ the subset of H(e1, e3, e3, x) parametrizing the locally CM curves with no
isolated point. In particular, we have H(e1, ez, es, x)S™ c H(ey, e2, €3, X)+-

Remark 2.4. Let C be an integral projective curve. By the universal property of fibered product, there is a
bijection between the morphisms u: C — X and the triples (u1, u», u3), with u;: C — P! any morphism.
The image u(C) is contained in a two-dimensional factor of X if and only if one of the uq, u,, usz is con-
stant. We say that a constant map has degree zero. With this convention we may associate to any u a triple
(deg(uq), deg(u»), deg(uz)) € Z‘:g, and u(C) is a curve if and only if (deg(u1), deg(uz), deg(us)) # (0, 0, 0).
Now assume that u is birational onto its image. With this assumption for all (a1, a», as) € Z®3, we have

u(C) - Ox(ay, az, as) = a; deg(uy) + a, deg(uy) + as deg(us).

In particular, the degree of the curve u(C) is deg(uy) + deg(u;) + deg(us).

Lemma 2.5. Let C c X be alocally CM curve with the tridegree (e1, ez, e3). If the tridegree of Cyeq is (b1, b2, b3),
with b; = 0 for some i, then we have e; = 0.

Proof. In general, if u;: C — P! is the ith-projection, with f; the length of the generic fibre of u;, then C has
tridegree (f1, f2, f3). Now let us assume i = 3, i.e., b3 = 0. The restriction of the projection m3;c: C — P! has
degree es. Similarly, 713)c,,, : Crea — P! has degree b3 = 0. Thus, 713c,,, has finite image and so does 713;c. In
particular, we have e3 = 0. O

Now we end this section by recalling the two major concepts that are used in this article: the ribbons and the
Ferrand construction.

For a reduced connected variety Y', a ribbon on Y’ is a scheme Z’' equipped with an isomorphism
Y' — Z!, such that the ideal sheaf £ of Y in Z' is locally free with the condition £*2 = 0 satisfied. A ribbon
is simply a scheme Z' which is a ribbon on Z]_, see [4, Section 1].

On the other hand, let X’ be a smooth threefold and Y’ ¢ X' a smooth and irreducible curve. For a fixed
positive integer u, a multiple structure on Y’ with multiplicity u is a locally Cohen—-Macaulay scheme Z' ¢ X’
such that Z; , = Y’ and Z' has multiplicity y, i.e., for Ox/(1) - Z' = u(0z(1) - Y') for one (or for all) ample line
bundle(s) Ox (1) on X’'. Throughout this article we only need the case u = 2, i.e., double structures on the
smooth curve Y’ and all these double structures are obtained using the following construction due to Ferrand.
More generally, let Y’ ¢ X’ be a locally complete intersection of codimension 2. A surjection f: N¥,l x — L
from the conormal bundle to a line bundle £ on Y’ defines a closed subscheme Z' for which there exists an
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exact sequence
0= Jz/T3 — Ny — £ — 0.

The fact is that Z' is a locally CM curve with (Z')eq = Y’ with multiplicity two. We also have £ = Jyr x//Jz x
so that £2 = J%,, /9y x Iz xr. This induces an exact sequence of vector bundles on Y':

0— £%2 (Nzix)Yy — I2/3%, — 0,

see [6, Section 1]. This construction is called the Ferrand construction. In particular, it is a ribbon in the sense
of [4], because the line bundle £ = Jys y/Jz x satisfies £%2 = 0.

3 Double lines

Notation 3.1. Throughout this article by a line on X = P! x P! x P! we mean a CM curve on X with tridegree
(1,0,0), (0,1,0) or (0, 0, 1). A double line is by definition a double structure on a line. For each a ¢ Z, let
D, be the subset of H(2, 0, 0, a), parametrizing the double lines.

For the moment we take D, as a set. In each case it would be clear which scheme-structure is used on it. Since
X is asmooth threefold, [6, Remark 1.3] says that each [B] € D, is obtained by the Ferrand construction, and it
isaribbon in the sense of [4] with a line of tridegree (1, O, 0). Let C, be the unique split ribbon with y(O¢,) = a,
and every ribbon is split for a > 1 by [4, Theorem 1.2]. Each f € Aut(C,) induces an automorphismfr of P!
and the map f — f is surjective. Thus, we get dim Aut(C,) > 3. Since C, is equipped with a specification of a
normal direction at each point of P!, we have Aut(C,) = Aut(IP'). In particular, dim Aut(C,) = 3.

Remark 3.2. Fix [A] € Dy and set L := Aeq. The curve A is a locally CM curve of degree two with L = P! asiits
support (see [6, Remark 1.3]) and so it is a ribbon in the sense of [4], as mentioned in the beginning of this
section. The projection 71 induces amorphism my)4: A — P! whose restriction to L = Aeq is the isomorphism
myL: L — PL. Thus, A is a split ribbon, see [4, Corollary 1.7]. Hence, O, fits into an exact sequence

0—-0ra-2)— 04 - 0O =0, (3.1)

which splits as an exact sequence of O;-modules. Since L is a complete intersection in X of two planes of
type (0, 1, 0), (0, 0, 1) € Pic(X), the Koszul resolution for J; shows that J; /J? = sz. In particular, the nor-
mal bundle Ny x is trivial and double lines supported on L are parametrized by the surjective morphism in
Hom(0%?, Or(a - 2)), as in [19, Introduction] and [21, Proposition 1.4].

Theorem 3.3. The description on Dy, is as follows:

(i) Dg is non-empty if and only if a > 2. It is parametrized by an irreducible and rational variety of dimension
2a - 1.

(i) We haveD, = H(2,0,0, a), for a > 3.

(iii) H(2, 0, 0, 2), is isomorphic to Hilb? (P! x P), the Hilbert scheme of two points in P! x PL. In particular, it
is smooth, irreducible, rational and of dimension four.

Proof. Part (i) holds by Remark 3.2 and part (ii) follows because two disjoint lines have genus —1. For the proof
of part (iii), note that the maps in (3.1) split when a = 2, showing that A is a complete intersection. Let IE be
the subset of H(2, 0, 0, 2), parametrizing two disjoint lines of tridegree (1, 0, 0). Since h'(N¢) = 0 for every
[C] € E, we have that H(2, 0, 0, 1), is smooth at each point of IE and of dimension h°(N¢) = 4. Obviously, we
have

H(Z, 0,0, 2)+,red =Eu DZ,

and E is irreducible and rational. We have dim(D,) = 3 and so it is sufficient to prove that at each [B] € D,
the scheme H(2, 0, 0, 2), is smooth and it has dimension four. Fix [B] € D,. Since B has only planar singu-
larities, it is locally unobstructed, see [17, 2.12.1]. Hence, H(2, 0, 0, 2), has dimension at least y(Ng) at [B]
by [17, Theorem 2.15.3]. Since D5 is irreducible, we get x(Na) = x(Ng) for all [A], [E] € D,. If B is contained
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in a smooth quadric surface T € |Ox(1, 1, 0)|, then Ng = 022 and so y(Np) = 4. In this case we also have
h1(Ng) = 0 by (3.1). Note that there is a connected zero-dimensional subscheme Z c P! x P! of degree two
such that B = L x Z: indeed, for each connected zero-dimensional subscheme Z c P! x P! of degree two, we
have L x Z € D,, and the set of all such Z is smooth, irreducible, complete and three-dimensional. There are
two types of connected zero-dimensional subscheme Z c P! x P! of degree two: the ones are contained in
a ruling of P! x P! and the other ones are the complete intersection of two elements of |Op1,p1 (1, 1)|. Thus,
our double lines B’s are the complete intersection of two elements of |0x(0, 1, 1)|. Hence, even for these B’s
we have h!(Np) = 0, concluding the proof of the smoothness of H(2, 0, 0, 2)..

The same argument works also for the reduced [C] € H(2, 0, 0, 2), with Z a reduced subscheme of
P! x P! of degree two. Thus, we get H(2, 0, 0, 2), = Hilb?(IP! x P!), and this is isomorphic to the blow-up of
the symmetric product Sym? (P! x P') along the diagonal. O

Remark 3.4. From the proof of Theorem 3.3, each double line in D, is associated to the triple (L, f, g) with
L c X aline of tridegree (1, 0, 0) and f, g € C[xg, X1]4_2 With no common zero, where x, and x; are homoge-
neous linear forms on L.

Remark 3.5. Fix an integer a > 2 and any [A] € D,. Since h' (O (a - 2)) = 0, the exponential sequence asso-
ciated to (3.1)

0-01(a-2)—-0;, -0] -1
gives that the restriction map Pic(A) — Pic(L) is bijective, as in the proof of [4, Proposition 4.1]. Thus, we have
Oalt,u,v) = O04(t, t, t) forall (¢, u, v) € Z% and O4(t, t, t) is the only line bundle on A whose restriction to L
is Or(¢, t, t). Hence, the following table computes the cohomology groups of all line bundles on A:

ho(Oa(t, t, 1))  h'(Oa(t,t, 1))  h2(Ja(t, t, 1)

-1<t 2t+a 0 0
-a+1<t<-2 t+a-1 -t-1 -t-1
t<-a 0 -2t-a -2t-a

Indeed, we have h2(J4(t, t, t)) = h1(O4(t, t, t)) from h1(Ox(t, t, t)) = h2(Ox(t, t, t)) = O for all t. Now the
table follows from (3.1) by setting L := Areq, because it is a split exact sequence as O -sheaves.

Remark 3.6. Take [A] € D,. We saw in the proof of part (3) in Theorem 3.3 that A is either the complete
intersection of two elements of |Ox(0, 1, 1), the case in which Z is not contained in a ruling of P! x P!, or a
complete intersection of an element of |0x(0, 0, 1)| (resp. |Ox(0, 1, 0)|) and an element of |Ox(0, 2, 0)| (resp.
|0x(0, 0, 2)|), the case in which Z is contained in a ruling of P! x P!, In both cases, we have h'(J4(¢, t, t)) = 0
forallt #+ 0and h'(Jy) = 1.

4 Irreducibility of Hilbert schemes

In this section we discuss the topology of H(e1, e2, €3, X)+.red for small e;, mainly on the irreducible compo-
nents. The main strategy is to describe an irreducible sublocus of H(ey, €3, €3, X)+,red cOnsisting of a special
type of curves via double line structures and to determine if its closure is an irreducible component by var-
ious methods, including deformation theory. The case (e1, €2, e3,) = (2,1, 1, 1) is exceptional in a sense
that one further needs the irreducibility of a certain moduli space of stable maps and deformation theory on
it to prove the irreducibility of H(2, 1, 1, 1), red, See Theorem 4.26.

Lemma 4.1. Fix[A] e D, witha > 2 and set L := Ayeq.

(i) For a line L' c X different from L, we have deg(AnL') < 2. Moreover, we have AnL' =0 if and only if
LnL' =¢.

(ii) The following set is a non-empty irreducible and rationally connected variety of dimension 2a + 1:

{(B,L") | [B] € Dg, L' is aline of tridegree (0, 1, 0) with BN L' = @}.
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(iii) The tangent plane T,A at a point p € L is a plane containing L and contained in the three-dimensional
tangent space Ty X.

(iv) TpA n X is the union of three lines L, L1, L, of X through p, with L, of tridegree (0, 1, 0) and L, of tridegree
(0,0, 1). We have deg(A N L;) = 2 if and only if TpA is the plane spanned by L U L;.

Proof. Since L and L' are different, so deg(A nL') is a well-defined non-negative integer, we have that
deg(AnL')=0ifandonlyif AnL' = ¢,i.e., LnL' = 0. Since L has tridegree (1, 0, 0), thereis (0, 0') € P! x P!
such that L = P! x {(0, 0")}. The complement of P! x {0’} in P! x P! parametrizes the set of all lines T of
tridegree (0, 1, 0) with T n L = 0. The other assertions are obvious. O

Lemma 4.2. For [A] € H(2,0, 0, 2),, there exists a line R c X of tridegree (0, 1, 0) with deg(ANR) > 2, i.e.,
deg(A N R) = 2 if and only if there exists Q € |0x(0, 0, 1)| that contains A. In this case, Q is unique, AUR c Q
and there is a one-dimensional family of such lines R.

Proof. The lemma is obvious if A is a disjoint union of two lines, say A = P! x {(0,, 03)} UP! x {(p2, p3)},
because the existence of R is equivalent to 03 = p3. Now assume [A] € D,, say associated to (L, f, g) with
L :=Awq and (f, g) € C>\ {(0,0)}. Write L = P! x {(p,, p3)}. Since P! x P! x {p3} is the only element of
|0x(0, 0, 1)| containing L, the uniqueness part is obvious. Assume the existence of a line R ¢ X of tride-
gree (0, 1, 0) with deg(A N R) > 2. By Lemma 4.1, we have deg(A N R) = 2 and R n L contains a point, say
p = (p1, P2, p3). For each point q = (g1, p2, p3) € L, the pull-backs via the projections m;, for i = 2, 3, of a
non-zero tangent vector of P! at p; form a basis of Ny 4 = C2. Since A has tridegree (2, 0, 0), the map 714 is
induced by an element of H°(Oy,), i.e., by an element ¢ € H°(Oy), due to (3.1), with a = 2 and m>(L) = {p>}.
The condition deg(A N R) = 2 is equivalent to saying that ;)4 vanishes at p. Since c is a constant, ;|4
vanishes at all points of L, i.e., A ¢ P! x P! x {p3}. O

Theorem 4.3. We have H(2, 1,0, 1), = P> x PL.

Proof. 1t is sufficient to prove that for each [C] € H(2, 1,0, 1),, there exists Q € |Ox(0, 0, 1)| such that
C € |0q(1, 2)|, which would give us a morphism from H(2, 1,0, 1), to P> x P, Its inverse map is obvi-
ously defined. If C is reduced, then m;|c shows that each irreducible component of C is smooth and rational.
Since x(O¢) = 1, C is connected. Since C is reduced, connected and of tridegree (2, 1, 0), the scheme 73(C)
is a point and so there is a point o € P! such that C ¢ P! x P! x {0}. Now assume that C is not reduced. By
Lemma 2.5 and Theorem 3.3, we see that C = A U Rwith [A] € D, fora > 2 and R aline. Sincedeg(ANR) <2
and x(O¢) = x(0a) + 1 — deg(A N R), we get a = 2 and deg(A N R) = 2. We may now apply Lemma 4.2. O

Remark 4.4. The proof of Theorem 4.3 shows that for each [C] € H(2, 1,0, 1),, there is Q € |0x(0, 0, 1)|
such that C € |0q(1, 2)|. This observation gives a way to describe C as follows. We first fix a point o € P!
such that Q = P! x P! x {0} and then we describe C inside Q by an equation of bidegree (1, 2). Writ-
ing Oc(u, v) := Oq(u, v)|c, we have Oc(u, v) = Oc(u, v, w) for any (u, v, w) € Z*>. Note that I¢c o(u,v) =
O, v)(-=C) = Oq(u - 1,v - 2). In particular, for another [C'] € H(2, 1,0, 1), and Q' € |0x(0, 0, 1)| with
C' c Q', we have hi(Q, Jc,q(u, v)) = hi(Q', I¢r, o (u, v)) for any (u, v) € Z® and each i = 0, 1, 2. On the other
hand, we have the exact sequence

0—- 0g(u-1,v-2) - O0q(u,v) - Oc(u,v) — 0. (4.1)

First assume that eitheru > 1, v < -2 oru < -2, v > 2. Then we have hO(OQ(u, V) = hz(OQ(u -1,v-2))=0
and the sequence (4.1) gives

0 — H°(Oc(u, v)) —» H (Oq(u - 1,v - 2)) — H (Oq(u, v)) — H (Oc(u, v)) — 0.

If C is reduced, then it is a connected curve of arithmetic genus zero so that each component of C is smooth
and rational: C is either a rational normal curve of degree three or a union of three lines. In the former case
we have h%(O¢(u, v)) = h°(Op1 (2u + v)). In the latter case, from the exact sequence

0 — Oc(u,v) - Or(u,v)® Or, (u, v) ® O, (u, v) > Ornr, ® Orar, — 0,
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with L € [Oq(1,0)| and L; € |0q(0, 1)| fori = 1, 2, we get an exact sequence

2
0 = HO(Oc(u, v)) = Ho©O1@, v) o ( D HO,,v)) b o, HOrar,),
i=1
where the rank of the map 7 is determined only by (u, v); for example, if (u, v) € Zf(z), then n is surjective. If C
is not reduced, then we have C = A UR, with A € |O¢(0, 2)| a line with multiplicity two and R € |Oq(1, 0)|
with deg(4 N R) = 2. From (3.1), we have h°(O4(u, v)) = 2u + 2 (resp. 0) if u > 1 (resp. u < —2). Note also that
h°(Or(u, v)) = h°(Op1(v)) = max{0, v + 1}. From the exact sequence

0 — Oc(u,v) = O0a(u,v)® Or(u, v) = Ognr — O,
we have an exact sequence
0 — HO(Oc(u, v) = H(O(u, v)) & HO(Og(u, v)) 2 HO(Opng) — -

Here, the map p is (resp. not) surjective if u > 1 (resp. u < -2). Indeed, in case when u < -2, p is the zero map
if and only if v < —1. In particular, h®°(O¢(u, v)) is determined only by (u, v), and so is h*(O¢(u, v)). For the
other choices for (u, v) € Z®2, we have either h' (Og(u — 1, v - 2)) = 0 or h*(Oq(u, v)) = 0. This implies from
the sequence (4.1) that hi(O¢(u, v)) depends only on (u, v) for each i = 0, 1. As a summary, we can conclude
that hi(O¢(u, v)) = hi(O¢ (u, v)) for any (u, v) € 22 andi =0, 1.

Lemma 4.5. For a fixed [A] € D, with a > 3, define 8 to be the set of all lines R ¢ X with tridegree (0, 0, 1) and
deg(A NR) > 2. Then 8§ is a non-empty finite set and we have deg(A N R) = 2 for all R € 8.

Proof. Set L := Ayeq. We have y(Op) = 2 < a for every B € |Opi1,p1(0, 2)| and so mypj4: A — P! x P! is not an
embedding by [12, Proposition II.2.3]. Thus, we have § # 0. Fix R € 8. Lemma 4.1 gives deg(A N R) = 2 and
so there is a unique point 0 € L N R. R is the unique line of tridegree (0, 0, 1) containing o. The condition
deg(A N R) = 2 is equivalent to the condition that the plane (L U R) is the tangent plane of A at 0. Hence, we
have deg(ANnL1) = 1 only for theline L, of tridegree (0, 1, 0) containing 0. Set Q := m>(L)xP! € |0x(0, 1, 0)|.
Assume that § is infinite. We get that Q contains infinitely many tangent planes of A and so each tangent
plane of A is contained in Q. Therefore, we have deg(A N T) < 1 for all lines T c X of tridegree (0, 1, 0) and
so i34 A — P! x P! is an embedding by [12, Proposition I1.2.3]. We saw that this is false. O

Remark 4.6. Let us fix a double line [A] € D,, with a > 3, that is associated to the triple (L, f, g), with L ¢ X
a line of tridegree (1, 0, 0) and f, g € C[xg, x1]4_> With no common zero. For a fixed point p = (01, 02, 03) € L
and the line R c X of tridegree (0, 1, 0) passing through p, we have 1 < deg(Rn A) < 2. Indeed, we have
deg(Rn A) = 2 if and only if f vanishes at p. Since a > 2, there exists at least one line R with this property
and at most (a — 2) such lines exist. If f is general (and in particular if A is general), then f has (a — 2) distinct
zeros and so there are exactly (a — 2) lines R of tridegree (0, 1, 0) with deg(A N R) = 2.

Proposition 4.7. For each integer a > 4, we have H(2, 1,0, @) red = So U 81 US,, where we have [C] € §;
for each i =0,1,2 if and only if C = AUR, where [A] € Dg4i—1 and R is a line of tridegree (0, 1, 0) with
deg(A N R) = i. Furthermore, we get that 8; is irreducible with dim(8;) = 2a — 1 + i foreachi =0, 1, 2.

Proof. Fix [C] € H(2, 1, 0, a)+ req and then C is not reduced, because we assumed a > 4. By Lemma 2.5 and
Theorem 3.3, we have C = A U R, where [A] € D, for some ¢ > 2 and R is a line of tridegree (0, 1, 0) with
deg(ANR)=c+1-a.Since 0 <deg(ANR) <2,wehave ce{a-1,a,a+ 1} and so we get a set-theoretic
decomposition H(2, 1, 0, 1) red = So U S1 U S,.

Now we first check that 8¢ and 8, are irreducible. For [A] € D,_1, the set of all ines Rwith RN A =0isa
non-empty open subset of P! x P1. By Theorem 3.3, Sy is non-empty, irreducible, rational and of dimen-
sion 2(a-1)-1+2 =2a- 1. For [A] € Dg, set L := A;eq and then a line R of tridegree (0, 1, 0) satisfies
deg(ANR) >0 if and only if RN L # @. By Lemma 4.5, the set of all such lines R is a non-empty smooth
rational curve. Hence, 8; is rationally connected, irreducible and of dimension 2a.

For [A] € D441, Remark 4.6 shows that the set of all lines of tridegree (0, 1, 0) with deg(A N R) = 2 isnon-
empty and finite. So we get S, # 0 and each irreducible component of $, has dimension 2a + 1. Let I be the
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set of all pairs (A4, p) with [A] € Dg,1, p € Ared, and there is a line R ¢ X of tridegree (0, 1, 0) with p € R and
deg(R n A) = 2. Thenitis sufficient to prove that I is irreducible. For a fixed line L ¢ X oftridegree (1, 0, 0) and
g € Clxg, x1]q-1 With g # 0, we define U(L, g) to be the set of all [A] € D41 associated to a triple (L, f, g) for
some f, and let I ¢ be the set of all pairs (A4, p) with [A] € U(L, g), p € L and thereisaline R c X of tridegree
(0, 1, 0) with deg(R n A) = 2. The irreducibility of I g is equivalent to the well-known irreducibility of the set
of all pairs (f, p) with p € P!, f € C[xo, x1]a-1 \ {0} vanishing at p. Thus, I is irreducible and so is S,. O

Theorem 4.8. For a > 4, S and 8, are the irreducible components of H(2, 1,0, @), req.

Proof. Since the support of each element of $; U 8, is connected, we have §¢ ¢ 81 U 85, and so 8o is an irre-
ducible component of H(2, 1, 0, a)+ req. Now it remains to prove that 81 ¢ $,.Fixa general AUR € 8§; with A
associated to a triple (L, f, g) and set {p} := Rn L. Sincedeg(R n A) = 1, we have f(p) # 0. For a general A UR,
we may assume that g(p) # 0. Let S ¢ L be a finite set containing all zeros of f and g and the point xo = 0, but
with p ¢ S. Set z := x1/x0 and let f;, g1 be the elements of C[z] obtained by dehomogenizing f and g. For a
general A, we may assume that deg(f;) = deg(g1) = a — 2. Let A denote the diagonal of (L \ S) x (L \ S). For
all (u,v) € (L\S) x (L\S)\ A, set fu,y == (z - w)fi and gy,y = (z - v)g1. Let fuy (X0, x1) (resp. Zu,v(xo, X1))
be the homogeneous polynomial associated to f; v (resp. g,,v). Let A, denote the element of D4, associated
to (L, fu,v, 8u,v) and let R, be the line of tridegree (0, 1, 0) passing through the point of L associated to u. We
got a flat family {A,,v U Ry }uen of elements of S,. As (u, v) tends to (p, p), we get that A UR is a flat limit of
this family. O

Proposition 4.9. We have

H(Z, 1,0, 3)+,red =TUT1UTy,
where each curve [C] € T; fori € {1, 2} is of the form A U R, where [A] € D;,» and R is a line of tridegree (0, 1, 0)
with deg(A N R) = i. A general element of T is a disjoint union of three lines. Furthermore, we get that T, T, and
T, are all irreducible with dimension 6, 7 and 6, respectively.

Proof. Fix [C] € H(2, 1, 0, 3)4 req and then C is reduced if and only if it is the disjoint union of three lines, two
of tridegree (1, 0, 0) and one of tridegree (0, 1, 0). The set A of all such curves is a non-empty open subset of
P2 x P? x IP? and so A is smooth, irreducible and rational with dim(A) = 6. Note that A is not complete since
A ¢ P2 x P2 x P2,

Now assume that C is not reduced. By Lemma 2.5 and Theorem 3.3, we have C = A U R, where [A] € D,
with ¢ > 2 and R a line of tridegree (0, 1, 0) with deg(A N R) = ¢ — 2. Since 0 < deg(A N R) < 2, we have
c € {2, 3, 4}. Let J; be the set of all C = A UR with deg(A N R) =i. As in the proof of Theorem 4.8, we see
that 7; # 0 for all i. Set T := A U T to be the set of all disjoint unions of an element of H(2, 0, 0, 2), req and a
line of tridegree (0, 1, 0). By the case a = 2 of Theorem 3.3, Ty is in the closure of A and so T is irreducible.
Similarly, as in the proof of Theorem 4.8, we get that T; is also irreducible for each i = 1, 2. The dimension
counting is clear. O

Theorem 4.10. T and T, are the irreducible components of H(2, 1, 0, 3); req.
Proof. As in the proof of Theorem 4.8, we get that T ¢ T; U T, and T; ¢ T,, which prove the assertion. [

In H(1, 1, 1, 1) we have a family of curves formed by three lines through a common point. Denote the locus
of such curves by D and we have X = D c H(1, 1, 1, 1).

Remark 4.11. For [C] € D, one can check h'(O¢(u, v, w)) =0 for all (u,v,w) € ng. Moreover, we have
h°(Jc(1,1,1)) = 5, h°(Ic(u, v, w)) = 0 if uvw = 0 and h'(Jc(u, v, w)) = 0 if (u, v, w) € Z23. Note also that
forall [C], [C'] € D, thereis f € Aut(X) with f(C') = C.

Proposition 4.12. H(1, 1, 1, 3)4 req is irreducible, smooth and rational of dimension six.

Proof. Fix a curve [C] € H(1, 1, 1, 3), and then C is reduced by Lemma 2.5. We also have y(O¢) = -2 and
so C has at least three connected components. Thus, C is a disjoint union of three lines, one line for each
tridegree (1, 0, 0), (0, 1, 0) and (0, 0, 1). Hence, set-theoretically, H(1, 1, 1, 3), req is irreducible, rational and
of dimension six. Since N¢ = (‘)?z, we have h!(N¢) = 0 and so H(1, 1, 1, 3), is smooth. O
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Proposition 4.13. H(1, 1, 1, 2), has three connected components and each of them is smooth and rational of
dimension seven.

Proof. Fix[C] € H(1, 1, 1, 2), and then Cisreduced again by Lemma 2.5. We have y(O¢) = -1 and so C has at
least two connected components. One of these connected components must be a line. Since y(O¢) + -2 and
deg(C) = 3, C is not the union of three disjoint lines. Hence, C has a unique connected component of degree
one. The three connected components of H(1, 1, 1, 2), are distinguished by the tridegree of their degree one
component.

Without loss of generality, we may assume that C has a line L of tridegree (1, 0,0) as a connected
component, say C = L uD with D of tridegree (0,1, 1). We have D = {0} x D' for a point 0 € P! and a
conic D' € |Opiyp1(1, 1)|. Since |Opip1(1, 1)| is irreducible and of dimension three, we get that each con-
nected component of H(1, 1, 1, 2), req is irreducible, rational and of dimension seven. Since N, = O‘fz and
Np = Op®Op(1,1)withLnD =0, we get h' (N¢) = 0 and so H(1, 1, 1, 2), is smooth. O

Remark 4.14. As in the proof of Proposition 4.13, set C = L U D with L of tridegree (1, 0, 0) and D of tride-
gree (0, 1, 1), so that D = {o} x D' for a point 0 € P! and a conic D’ € |Opixp1(1, 1)|. As an abstract scheme,
the isomorphism class of C depends only on the rank of D’ as a conic. Take two points 0, and o3 on P!
such that L = P! x {0,} x {03}. The assumption L n D = @ is equivalent to (0,, 03) ¢ D'. Setting v: X — 7
the Segre embedding, v(L) is a line, v(D) is a reduced conic and v({o} x P* x IP1) is a smooth quadric with
dim(v({o} x P! x P1)) = 3, where ( ) denotes the linear span in IP”. Since v(X) is scheme-theoretically cut out
by quadrics and X contains no plane, we have v(X) n (D) = D. Since L n D = 0, we get v(L) n (v(D)) = 0, i.e.,
dim(v(C)) = 4, and, in particular, h'(J¢(1, 1, 1)) = 0. Now one can check that this implies h*(J¢(u, v, w)) = 0
for all positive integers u, v, v.

Lemma 4.15. Each curveinH(1, 1, 1, 1) is connected and reduced.

Proof. Let us fix [C] € H(1, 1,1, 1). By Lemma 2.5 every one-dimensional component of C is generically
reduced, i.e., the purely one-dimensional subscheme E of Cyeq has tridegree (1, 1, 1). We have y(O¢) > x(Op)
for each connected component D of E and equality holds if and only if D = C. Since we have x(Op) > 1, we
get C = D, and so C is connected and reduced. O

Lemma 4.16. H(1, 1, 1, 1)™ is irreducible, unirational of dimension six.

Proof. Letusfix [C] € H(1, 1, 1, 1) irreducible. Since 711c: C — P! has degree one, C is smooth and rational.
In particular, we get [C] € H(1, 1, 1, 1)*™. Since mjic: C — P, fori = 1, 2, 3, isinduced by the complete linear
system |Op1(1)], H(1, 1, 1, 1)™ is homogeneous for the action of the group

Aut®(X) = PGL(2) x PGL(2) x PGL(2).

Thus, the algebraic set H(1, 1, 1, 1);3; is irreducible and unirational. To show that H(1, 1, 1, 1)*™ is smooth
and of dimension six, it is sufficient to prove that h’(N¢) = 0 and h°(N¢) = 6. Note that we have y(N¢) = 6.
Since X is homogeneous, its tangent bundle TX is globally generated and so is TX|c. Since N¢ is a quotient of
TXc, Nc is also globally generated. Since C = P!, we get h!(N¢) = 0. Indeed, we have N¢ = Op1(2) & Op1(2).
The normal bundle N¢ is a direct sum of two line bundles, say of degree z; > z, with z1 + z, = 4. Since N¢ is

a quotient of TX|¢, which is the direct sum of three line bundles of degree two, we getz; = z; = 2. O
Proposition 4.17. H(1, 1, 1, 1) is irreducible, unirational of dimension six and smooth outside D.

Proof. By Lemma 4.16 it is sufficient to prove that H(1, 1, 1, 1) is smooth at each reducible curve [C] ¢ D and
that each reducible element of H(1, 1, 1, 1) is in the closure of H(1, 1, 1, 1)5™,

(a) Now assume that C has two irreducible components, say C = D; U D, with D; a line. Since y(O¢) = 1
and the scheme C is reduced with no isolated point and arithmetic genus 0, it follows that C is connected.
Since p,(C) = 0, we get deg(D; N D,) = 1. In particular, C is nodal and so N¢ is locally free. Without loss of
generality, we may assume that D, has tridegree (1, 0, 0) and so D, is a smooth conic with tridegree (0, 1, 1).
We have Np, = O}'f and Np, = Op, ® Op,(0, 1, 1). Since N¢ is locally free, we have a Mayer—Vietoris exact
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sequence
0— NC - NCID1 éBNClDZ - NCIDsz — 0. (4.2)

Since deg(D1 N D) = 1 and C is nodal, the sheaf Ney, (resp. NQDZ) is a vector bundle of rank two obtained
from Np, (resp. Np,) by making one positive elementary transformation at D; n D, (see [13, §2], [26,
Lemma 5.1] and [25]), i.e., Np, is a subsheaf of Nc,, and its quotient N¢,, /Np, is a skyscraper sheaf
of degree one supported on the point Dy N D,. Since h'(D,, Np,) = 0, we get h'(Nc,,) = 0. We also get
hl(Dq, Nle) =0 and that NClD1 is spanned. Since deg(D1 N D;) =1 and NClD1 is spanned, the restriction
map H°(D1, N¢,,, ) — H°(D1 N Dy, Ng,y, ) is surjective. Thus, (4.2) gives h'(N¢) = 0 and so H(1, 1, 1, 1) is
smooth of dimension six at [C]. Since the set of all such curves C has dimension five, [C] is in the closure of
H(1, 1,1, 1)s™,

(b) Now assume that C has at least three components, i.e., C = D1 U D, U D3 with each D; a line. First
assume that C is nodal. In this case, one of the lines, say D,, meets the other lines. As in step (a) we first get
hl(NDZUm) = 0 and then h*(N¢) = 0. Thus, H(1, 1, 1, 1) is smooth of dimension six at [C]. Since the set of all
such C has dimension four, we get that [C] is in the closure of H(1, 1, 1, 1)*™. Now assume that [C] € D, say
C=A; UA; U A5 with a common point p. We can deform A; in a family of lines intersecting A, at a point
different from p and not intersecting As. Thus, even in this case [C] is in the closure of H(1, 1, 1, 1)™. O

Remark 4.18. By Lemma 4.15 every curve Cin H(1, 1, 1, 1), is connected and reducible. If C is smooth, then
v(C) is a rational normal curve of degree 3 in its linear span and h'(J¢(u, v, w)) = O forall (u, v, w) € Z‘fg. The
homogeneous ideal of v(C) inside (v(C)) = IP3 is generated by three quadrics; one may use the Castelnuovo—
Mumford regularity lemma with h! (Jv(c)(1)) =0and hl(Ov(c)) = 0. All these observations are still valid even
for C reducible; v(C) is either (a) the union of a line and smooth conic or (b) the union of three lines. Thus,
in all cases the homogeneous ideal of v(C) in P’ is generated by 4 linear forms and 3 quadratic forms, while
none of these 7 equations may be omitted. As a curve in X, the curve C may be cut out by two forms of tridegree
(1, 1, 1) and two forms of tridegree (2, 2, 2).

Lemma 4.19. H(2, 1, 1, 1)™ is irreducible, unirational and smooth with dimension eight. In addition, [C] €
H(2, 1, 1, 1)™ is a smooth and connected rational curve with tridegree (2, 1, 1).

Proof. Since no plane cubic curve is contained in X and the intersection of two quadric surfaces in IP? has 4t
as its Hilbert polynomial, [C] € H(2, 1, 1, 1)S™ is a quartic rational curve. By Remark 2.4, a general element
in
V = H2(0p1(2))®% x HO(Op1(1))®? x HO(Op1(1))®?

gives an isomorphism a: P! — X onto its image and so there is an open subset V, ¢ V with the universal
family Vo ¢ Vo x X. Since Vy is flat, it gives a surjection Yo — H(2, 1, 1, 1)™ by the universal property of the
Hilbert scheme. Since Vj isrational, H(2, 1, 1, 1)5™ is unirational. Now fix a curve [C] € H(2, 1, 1, 1)S™. Since
C is a twisted cubic curve, by adjunction, we have

Op1(=2) = wc = det(N¢) ® Ox(-2, -2, -2)

and so det(N¢) = Op:1(6). This implies that N¢ = Op1(a) ® Op1(b) with a + b = 6. Now from the surjection
TX,. — N¢, we get that N¢ is globally generated and so a, b > 0. In particular, we have h°(N¢) = 8 and
h'(N¢) = 0. Indeed, we have N¢ = Op1(4) ® Op1(2). O

Let us write H(2, 1, 1, 1) req = I'1 U T2, where I'; consists of the reduced curves and I', consists of the non-
reduced curves.

Lemma 4.20. Each curve in T'; is connected and its irreducible components are all smooth and rational.

Proof. For a fixed curve [C] € T'y, let T be any irreducible component of C. Since either T is a fiber of 1,
or 7137 has degree one, we have that T is smooth and rational. Assume for the moment the existence of a
connected curve C' ¢ C with p,(C') > 0. Since p,(C) = 0, we have deg(C’) < 3. Since C’' is reduced, we get
that C’ is a plane cubic, contradicting the fact that X contains no plane and it is cut out by quadrics in P’.
The non-existence of C' implies that C is connected. O
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Proposition 4.21. T, is irreducible with H(2, 1, 1, 1)™ as its open subset. In particular, each [C] € T'; is con-
nected, and the irreducible components of C are smooth rational curves.

Proof. Fix a curve [C] € T';. By Lemma 4.20, we may let Cq, ..., Cp be the irreducible components of C with
h > 2 in an ordering so that if h > 3, then E; := C; U--- U C; is connected for all 2 < i < h - 1. Fix an integer
iwith 1 <i < h-1.Since E; and Ej;, are connected with arithmetic genus zero, we have deg(Ci;1 N E;) = 1.
Since TX = 0x(2, 0, 0) ® Ox(0, 2, 0) ® Ox(0, 0, 2), the Mayer—Vietoris exact sequence

0 — TXig,,, — TXig; ® TX|c,,, = TXEinciys — O

and induction on i give h'(TX|c) = 0. Since the natural map TX,c — N¢ has cokernel supported on the finite
set Sing(C), we have h'(N¢) = 0 and so H(2, 1, 1, 1), is smooth at [C]. If C is nodal, by induction on i, we
get that each E; is smoothable and, in particular, C is smoothable in X, i.e., [C] is contained in the closure of
H(2,1,1,1)*inH(2, 1,1, 1).

Now assume that C is not nodal and then we get 3 < h < 4. If h = 3, we may find an ordering so that
deg(Cy) = 2, deg(C,) = deg(C3) = 1 and Cy, C», C5 contain a common point, say p, and neither C, nor Cs is
the tangent line of C; at p. Since p € C, n C3, the lines C, and C3 have different tridegree and so we may fix
C1 U C, and move Cs in the family of all lines meeting C, and with the tridegree of C5. Thus, we may deform C
toanodal curve and hence again we get that [C] is contained in the closure of H(2, 1, 1, 1)™in H(2, 1, 1, 1).If
h = 4, then each irreducible component of C is a line. Since two of these components have the same tridegree,
C has a unique triple point and we may use the argument above for the case h = 3. O

Proposition 4.22. For [C] € Ty, we have h'(J¢(t)) = O forall t € Z.

Proof. The Mayer—Vietoris exact sequence gives hO(OEi(l)) = deg(E;) + 1 for all i even in the non-nodal
case. In particular, we get h°(O¢(1)) = 5. Let M c P’ be the linear span of C. Since h°(O¢(1)) = 5, we have
dim(M) < 4. Let H ¢ M be a general hyperplane. Assume for the moment dim(M) = 4. In this case, C is lin-
early normal in M. The scheme H n C is the union of four points. Since C is connected and linearly normal
in M, we have h' (M, J¢(t)) = O forall t < 1. The case t = 1 of the exact sequence

00— jC’M(t -1)— jC,M(t) — jCﬂH’H(t) -0 (43)

gives that C n H is formed by four points of H spanning H. This implies that h'(H, Jenm,u(t)) = 0 for all
t > 0. By induction on ¢, (4.3) gives h'(M, I¢m(t)) = O for all ¢ > 2. To conclude we only need to exclude
that dim(M) < 4. We have dim(M) > 2, because X is cut out by quadrics and contains no plane. Now assume
dim(M) = 3. Since X contains no plane and no quadric surface, X N M is an algebraic set cut out by quadrics
and with connected components of dimension at most one. X N M is not the complete intersection of two
quadrics of M, because X N M contains C of degree four and p,(C) = 0. Since h°(M, O¢) = 1, the case t = 1
of (4.3) gives that C n H spans the plane H. Hence, h'(H, J¢cng,x(2)) = 0. Since h*(M, J¢ »(1)) = 1and HNn C
is formed by four points spanning the plane H, the case t = 2 of (4.3) gives h'(M, J¢,»(2)) < 1 and hence
ho(M, Jc,m(2)) < 2, a contradiction. O

Remark 4.23. Fix [C] € T',, i.e., Cis notreduced. By Lemma 2.5, Cyeq has tridegree (1, 1, 1) and the nilradical
of O¢ is supported by a line L of tridegree (1, 0, 0). There is a unique reduced curve E c C with E of tridegree
(0, 1, 1); Eis either a disjoint union of two lines or a reduced conic. Set J := Anny.(Jg,c). The O¢-sheaf J is the
ideal sheaf of a degree two structure supported by L, possibly with embedded components. Let C’ be the curve
with J as its ideal sheaf and A the maximal locally CM subcurve of C', which is obtained by taking as its ideal
sheaf in C the intersection of the non-embedded components of a primary decomposition of J¢. The curve
Aisalocally CM curve of degree two with L := P! asits support, i.e., [A] € D, for some a > 2. We have y(94) = a.

Lemma 4.24. IfC = AUE e I', with[A] € D, forsome a > 2 and E is a reduced conic of tridegree (0, 1, 1), then
it is contained in T1.

Proof. Let (E) be the plane spanned by E. Since X contains no plane cubic, we have deg(L n (E)) < 1. Consid-
ering a general hyperplane H ¢ IP7 containing (E) with L ¢ H, we get deg(4 n (E)) < 2 and sodeg(A N E) < 2.
Thus, we have x(04) > a - 1 and so a = 2 = deg(A n E). This implies that deg(L N E) = 1.
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Set Z := A n E. Since E is connected, there is 0 € P! such that E c {0} x P! x P! and so E = {0} x E' with
E' € |Opixp1(1,1)]. Since Z ¢ E c {0} x P! x PL, there is a zero-dimensional subscheme Z’ ¢ E of degree two
such that Z = {0} x Z'. Since deg(A) = 2, Z is the scheme-theoretic intersection of A and {0} x P! x P1. By
Theorem 3.3, A is smoothable, i.e., there are an integral curve A with o € A and a flat family {A¢}¢ca With
A = A, and A adisjoint union of twolines forall t € A\ {o}.Set Z; := A; n {0} x P! x P1. We have Z; = {0} x Z;
for a zero-dimensional subscheme Z; ¢ P! x P! of degree two with Z! = Z' and Z; reduced forall t € A\ {o}.
Fix a general g € E'. Decreasing A if necessary, we may assume g ¢ Z; for any ¢t and so |0 zlu(gy(1, 1)| contains
a unique curve, say E;. Since g € E', we have E, = E'. Set E; = {0} x E}. The algebraic family {A; U E¢}¢en is a
flat family. Since [A¢ U E¢] € T'; for t # o, we have [A, U E,] € T;. O

Now we are ready to prove our main result on the irreducibility of H(2, 1, 1, 1), req in Theorem 4.26. The main
technical ingredient is to use the deformation theory of maps and elementray modification of sheaves. In gen-
eral, let Y be a smooth projective variety. Amap f: C — Y is called stable if C has at worst nodal singularities
and |Aut(f)| < co. Let M(Y, ) be the moduli space of isomorphism classes of stable maps f: C — X with genus
g(C) =0and f.[C] = B € Hy(X, Z). Note that if Y is a projective homogeneous variety, then the space M(Y, 3)
isirreducible, see [16]. The local structure of the space M(Y, 8) was well-studied in [18, Proposition 1.4, 1.5].

Proposition 4.25. Fix[f: C — Y] € M(Y, B). Then the tangent space (resp. the obstruction space) of M(Y, B) at
[f] is given by
Ext!([f*Q} — Q11,0¢)  (resp. Ex*([f*Q} — QFl, 0¢)),

where [f* Q%, - Qé] is thought of as a complex of sheaves of the degrees —1 and 0.

Let € be a flat family of sheaves on Y parameterized by a smooth variety S. Let Z be a smooth divisor of S such
that €,z has a flat family A of quotient sheaves. Then the kernel ker{€ — |z«y — A} of the composition map
is called an elementary modification of the sheaf & along Z. The effect of elementary modification at Z is the
interchange of the sub and quotient sheaves (cf. [8, Example 2.9]).

Theorem 4.26. H(2, 1, 1, 1), req is irreducible.

Proof. By Proposition 4.21, it is enough to show that I', ¢ T;. By Remark 4.23 and Lemma 4.24, we may
assume that C = A UE € T', with [A] € D, for some a > 2 and E a disjoint union of two lines, say L; of tride-
gree (0, 1, 0) and L, of tridegree (0, O, 1). Let us show that the locus I'y; of these types of curves, is con-
tained in T; (cf. [7, Proposition 5.10]). Note that the space I, is a P! (or its open subset)-bundle over
(P! x P1) x (P! x P1) \ D), where D is the diagonal. Here, the first P! x IP* parameterizes the supporting lines
of the double lines A and the second (P! x P!) \ D parameterizes the ordered pairs (L1, L,) of two lines. Also
the fiber P! = P Extl(OCO, 01 (-1)) parameterizes the non-split extensions:

0-01(-1) > F - O¢, — 0, (4.4)

where Co =LUL;UL,.
Consider the moduli space M(X, f3) of stable maps f: C{, — X of genus zero and f..[D] = € Hy(X, Z) of
tridegree (2, 1, 1). Let ©,5 be the locus of stable maps

f:Co=L'ULjuL), > X

with f(C(’)) =Co=LUL; UL, such that deg(fi.’) = (2,0, 0), deg(f|Lrl) =(0,1,0) and deg(ﬂL;) =(0,0,1).
Then one can easily see that 8, is a IP>-bundle over (P! x P1) x ((P! x P1) \ D), where IP? parameterizes the
stable maps of degree two on L. To apply the modification method as in [9], we need to choose a smooth chart
of M(X, B) at [f]. In fact, from [23, Theorem 0.1], the space of maps in M(X, ) around [f] can be obtained as
the SL(2)-quotient

M(X, B) = M(P! x X, (1, B))/ Aut(P!)

of the moduli space M(P! x X, (1, B)) of stable maps in P* x X of bidegree (1, 8), where Aut(IP!) = SL(2)
canonically acts on M(PP! x X, (1, B)), see [8, §3.1]. Among the fiber over [f] along the GIT-quotient map,
if we choose a graph map f’ such that the restriction on L' is of bidegree (1, (2, 0, 0)) which doubly cov-
ers P! x L ¢ P! x X, then f’ has the trivial automorphism. Hence, around [f], the space M(PP! x X, (1, B)) is
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a smooth chart, compatible with the SL(2)-action. Thus, the argument in [9, Lemma 4.6] about the construc-
tion of the Kodaira-Spencer map of the space of maps can be naturally applied in our situation.
Now let us compute the normal space of ©,;. Consider the long exact sequence:

0 — Ext°(Qg, , Oc,) — Ext®(Qy, O¢,) — Ext’(NY, x> Oc,) s, Ext'(Q¢,, Oc,) — Ext!(Qg, O¢,) = 0.

The last term is zero by the convexity of X and Ext® (N\C’OI % O0c,) = H°(N¢,x) = C° because of the smoothness
of H(1, 1, 1, 1). Since Cp has two node points, we get Extl(Qlo, Oc¢,) = C?2. Therefore, ker(1) in the above
means the deformation of Cyp, while keeping the two node points. That is, this is the deformation space of the
base space of ©,;. On the other hand, as a similar computation did in the proof of [9, Lemma 4.10], we obtain
the following commutative diagram

0 ker (i) Ext®(NY, x> Oc,) — Ext'(Qg, , O¢,) ———— 0

C [

T Ext(f*NY, 2 Ocr) —— EX([f*QE, — Q5] 0¢1) —— 0.

0 TisM(Co,pB)

Hence, the normal space of ©;}, is coker({), which is isomorphic to ExtO(N‘C’OI x» OL(-1)) obtained from the
exact sequence
0 — Oc, —’f*OCg — 0r(-1) - 0.

Moreover, the Kodaira-Spencer map TyyM(P! x X, (1, B)) — Ext}((f*oc(r), f*oc{)) in [9, Equation (4.11)]
descends to the normal space, which is compatible with the map

Noy, ez, i1 = EXC (N, 1y, Or(-1)) = Ext°(Jc,, Or(-1)) = Ext'(Oc,, Or(-1)).

This implies that if we do the modification of f, Oct along the normal direction, the modified sheaf must lie in
Ext!(O¢,, O1(~1)) bijectively, see[9, Lemma 4.6]. Since M(X, f) is irreducible by [16] and T'; can be regarded
as an open subset of M(X, 8) due to Lemma 4.21 and [10, Theorem 2], we get that ', c T. O

5 Segre threefold P? x IP?

In this section we take X := P? x P! and set v: X — IP° to be the Segre embedding; in most cases we adopt
the same notations as in the case of X = P! x P! x P!, For a locally CM curve C c X with pure dimen-
sion one, the bidegree (e1, e;) € Z#? is defined to be the pair (e1, e») of integers e; := deg(O¢(1, 0)) and
e, :=deg(0¢(0, 1)), where the degree is computed using the Hilbert function of the Ox-sheaves O¢(1, 0)
and O¢(0, 1) with respect to the ample line bundle Ox(1, 1). We also say that C = ¢ has bidegree (0, 0).
Since O¢(1, 0) and O¢(0, 1) are spanned, we have e; > 0 and e> > 0, i.e., (eq, e») € N®2, We have deg(C) =
deg(O¢(1, 1)) = ey + e,. Note that the bipolynomial of O¢ is of the form e1x + e,y + x for some y € Z and
X =x(O¢).
As in the proof of Lemma 2.5 we get the following.

Lemma 5.1. Let C c X be a locally CM curve with the bidegree (e1, e3). If the bidegree of Cyeq is (b1, by) with
b; = 0 for some i, then we have e; = 0.

Proposition 5.2. H(1, 1, 1) is smooth and irreducible of dimension five, and all its elements are reduced.

Proof. Let us fix [C] € H(1, 1, 1). By Lemma 5.1, every one-dimensional component of C is generically
reduced, i.e., the purely one-dimensional subscheme E of Cieq has bidegree (1, 1). We have x(O¢) = x(Op)
for each connected component D of E and equality holds if and only if D = C. Since we have y(Op) > 1, we
get C = D and that C is connected. If C is irreducible, then it is a smooth conic. Since N¢ is a quotient of TXc,
we get h'(N¢) = 0. This implies that H(1, 1, 1) is smooth at [C] and of dimension h°(N¢) = deg(N¢) + 2 =
deg(TX|c) = 5. Indeed, we have N¢ = Op:(2) ® Op1(1).
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Now assume that C is reducible, say the union of a line D; of bidegree (1, 0) and a line D, of bide-
gree (0, 1). Since deg(D, N D,) <1 and [C] € H(1, 1, 1),, we get deg(D1 N D) = 1 and that C is nodal. Since
h1(TX,c) = 0 and the natural map TX,c — N is supported at the point D; n D>, we have H'(N¢) = 0. Hence,
H(1, 1, 1)isagain smooth at [C] and of dimension deg(N¢) + 2 = 5. Since the set of all such reducible curves is
four-dimensional, each such curve is in the closure of the open subset of H(1, 1, 1) parametrizing the smooth
curves. O

Remark 5.3. Anycurvein H(1, 1, 1) is a reduced conic and so it is arithmetically Cohen—Macaulay. Note also
that C as a curve in X is cut out by two forms of bidegrees (1, 0) and (1, 1), respectively. Thus, one can compute
the cohomology of the twists of J¢ from the exact sequence

0 — 0x(-2,-1) - 0x(-1,0) ® Ox(-1,-1) - J¢c — O;
for example, h°(Jc(1, 0)) = 1, h°(I¢(0, 1)) = 0 and h'(Ic(u, v)) = O for all (u, v) € Z%;.

Proposition 5.4. H(1, 1, 2) is smooth and irreducible of dimension five. It parametrizes the disjoint unions of
two lines, one of bidegree (1, 0) and the other of bidegree (0, 1).

Proof. By Lemma 5.1, any curve [C] € H(1, 1, 2), is reduced. If C is irreducible, we get y(O¢) = 1, a contra-
diction. If C = D, U D, with lines D, of bidegree (1, 0) and D, of bidegree (0, 1), we get D1 N D, = 0. Then we
have h!(N¢) = 0 and

h°(N¢) = h°(Np,) + h°(Np,) = deg(TXp,) + deg(TXp,) = 5. O

Remark 5.5. For a curve [C] € H(1, 1, 2), the homogeneous ideal of v(C) in IP® is generated by 2 forms of
degree one (corresponding to elements of |Ox(1, 1, 1)|) and 4 forms of degree two (corresponding to ele-
ments of |Ox(2, 2, 2)|). We also have h°(JI¢(1, 0)) = h°(I¢(0, 1)) = 0, h1(J¢c) = 1 and h(Ic(u, v)) = O for all
(u,v) € 2%,

Remark 5.6. Using the argument in the proof of Proposition 5.2, we get that H(1, 1, x), = 0 if either y <0
ory > 3.

In the case of Segre threefold P! x IP! x P!, the main ingredient is the knowledge on the Hilbert scheme of
double lines. So we suggest the following results for the Segre threefold P? x P!, as in Theorem 3.3. As in the
case of P! x P! x P, let D, be the subset of H(0, 2, a), parametrizing the double lines whose reduction is a
line of bidegree (0, 1) in X = P> x IP! for each a € Z. For the moment, we take D, as a set and it would be clear
in each case which scheme-structure is used on it. Since X is a smooth threefold, [6, Remark 1.3] says that
each [B] € D, is obtained by Ferrand’s construction and, in particular, it is a ribbon in the sense of [4] with a
line of bidegree (1, 0) as its support. Let R, be the subset of H(2, 0, a), parametrizing the double structures
on lines of bidegree (1, 0).

Proposition 5.7. The description on R, is as follows:

(i) Rgisnon-empty if and only if a > 2. It is parametrized by an irreducible and rational variety of dimension
2a-1.

(i) We haveR, =H(2,0, a), fora > 3.

(iii) H(2, 0, 2), is smooth, irreducible, rational and of dimension four.

Proof. Each element of R, is a ribbon in the sense of [4]. For any line L ¢ X of bidegree (1, 0), let R;(L) denote
the set of all [A] € R, such that Aeq = L. The set of all lines of X with bidegree (1, 0) is isomorphic to P1. Any
line L c X of bidegree (1, 0) has trivial normal bundle and so R;(L) is parametrized by the pairs (f, g) with
f e H°(Or(a - 2))and g € H°(O1(a - 2)) with no common zero. Here we have the convention that (L, f1, g1)
and (L, f>, g-) give the same element of R, (L) if and only if there is t ¢ C* with f; = tg; and f, = tg,. Hence,
we get parts (1) and (2) of Proposition 5.7 for a > 3, and for any a > 2, each element of R, is a split ribbon.
The set H(2, 0, 2), is the disjoint union of R, and the set T of all disjoint unions of two different lines
of bidegree (1, 0). T is isomorphic to the symmetric product of two copies of P? and so it is smooth and
rational with dim(7) = 4.Fixaline L c X ofbidegree (1, 0)suchthatL = P! x {0} witho € P?,and [A] € Ry(L)
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determined by (f, g) € €2\ {(0, 0)}, up to a non-zero scalar. The pair (f, g) defines a zero-dimensional scheme
v ¢ P? of degree two with vyeq = {0}. Let R ¢ IP? be the line spanned by v and then A is contained in L x R as
a curve of bidegree (2, 0), and hence it is a flat deformation of a family of pairs of disjoint lines of L x R and
so of X. We also get that the normal sheaf N4 of A in X is isomorphic to O; ® O;(1). Hence, we get h1(N4) = 0
and so H(2, 0, 2), is smooth at [A]. O

Remark 5.8. For a fixed [C] € H(2, 0, 2),, we see that the linear span (v(C)) is isomorphic to P> and the
homogeneous ideal of v(C) in P° is generated by 2 linear forms and 4 quadratic forms. One can also compute
h'(J¢) = 1and h'(Ic(u, u)) = 0 for all u > 0. Now we have C ¢ W with W € |0x(0, 2)|. If C ¢ R,, then v(W) is
embedded as a disjoint union of two planes and so it spans IP°; in this case, we have v(C) = v(W) n H, where
H is one hyperplane in the pencils of hyperplanes containing the two lines v(C). Indeed, any hyperplane in
the pencil cut out C inside W.

Below we give a description on D, as in Theorem 3.3 and Proposition 5.7, which can be proven by the same
way.

Proposition 5.9. The description on D is as follows:

(i) D, is non-empty if and only if a > 2. It is parametrized by an irreducible variety of dimension 2a - 1.
(i) We haveD, = H(0, 2, a), fora > 3.

(iii) H(O, 2, 2), is smooth, irreducible, rational and of dimension four.

Remark 5.10. Similarly, asin H(2, 0, 2),, any curve C in H(0, 2, 2), is a union of two disjoint lines. Then the
homogeneous ideal of v(C) in IP® is generated by 2 linear forms and 4 quadratic forms. One can also compute
h'(Jc) = 1and h*(JIc(u, v)) = O for all (u, v) € Z22.
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