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Abstract: We study locally Cohen–Macaulay curves of low degree in the Segre threefold ℙ1 × ℙ1 × ℙ1 and
investigate the irreducible and connected components, respectively, of the Hilbert scheme of them. We also
apply the similar argument to the Segre threefold ℙ2 × ℙ1.
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1 Introduction

In this paperwe study curves in Segre threefolds over the field of complex numbersℂ. There are three types of
Segre threefolds: ℙ3, ℙ2 × ℙ1 and ℙ1 × ℙ1 × ℙ1. In ℙ3 the structure of the Hilbert scheme of curves has been
densely studied by many authors in the last half century. In [11] the connectedness of the Hilbert scheme of
curves is proven for the fixed degree and genus of curves, although it is classically known that the locus of
smooth curves may not be connected. Recently there have been increased interests on the connectedness of
the Hilbert scheme of locally Cohen–Macaulay curves. Up to now, the connectedness has been established
only for very small degree [22] or for very large genus [15]. We recommend to see [14] for further results and
the state of the art on this problem.

Our main concern is on the connectedness of Hilbert schemes of locally Cohen–Macaulay curves
in X = ℙ1 × ℙ1 × ℙ1 with very small degree. Smooth curves are often the first to be studied and by the
Hartshorne–Serre correspondence, globally generated vector bundles on X can have very close relation with
smooth curves in X. There is a classification of globally generated vector bundles on X with low first Chern
class accomplished by the classification of smooth curves in X with very small degree [3]. One of the advan-
tages in the study of curves in X is that some irreducible components that might appear in the Hilbert scheme
inℙ3 may disappear in X, so that we can get simpler description of Hilbert schemes; for example, the Hilbert
scheme of curves in ℙ3 of degree three and genus zero has two irreducible components, one with twisted
cubics and the other with planar cubics plus extra point, see [24]. The latter case cannot occur in X because
X is scheme-theoretically cut out by quadrics.

Our main result is as follows.

Theorem 1.1. LetH(e1, e2, e3, χ)+,red be the reduced Hilbert scheme of locally Cohen–Macaulay curves C in X
with tridegree (e1, e2, e3) and χ(OC) = χ.
(i) H(2, 0, 0, a)+,red is irreducible and rational for a ≥ 2.
(ii) H(2, 1, 0, a)+,red has the two irreducible components for a ≥ 3.
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(iii) H(1, 1, 1, a)+,red is irreducible and rational for a ∈ {1, 3}, while H(1, 1, 1, 2)+,red has the three connected
components that are rational.

(iv) H(2, 1, 1, 1)+,red is irreducible and rational.
The main ingredient in the study of Hilbert schemes of locally Cohen–Macaulay curves with low degree is a
rational ribbon and the Ferrand construction, i.e., a double structure on ℙ1, see the beginning of Section 3
for a brief summary of its usage in this article. Rational ribbons and their canonical embeddings were studied
in [4] and we adopt their results to prove the irreducibility of the Hilbert schemes of double lines in X. Then
we investigate the intersecting property of the double lines with other lines in X to investigate irreducible and
connected components of the Hilbert schemes, respectively. We recommend to see [19, 20] for studies on the
families of double lines in projective spaces. It should be noted that the irreducibility of the space of curves
with fixed cohomology in ℙ3 is investigated in [5]. And the description of the other type of Hilbert scheme is
studied in [1].

Let us summarize here the structure of this paper. In Section 2, we introduce the definitions and main
properties that will be used throughout the paper, mainly those related to Segre threefold, Hilbert tripolyno-
mial and Hilbert schemes of locally Cohen–Macaulay curves. In Section 3, we pay attention to the Hilbert
schemes of curves with tridegree (2, 0, 0) and conclude their irreducibility using the double structure on ℙ1.
We end the section with the description of the intersection of the double lines with other lines in X, which
will be used later on. In Section 4, we move forward to the Hilbert schemes of curves with tridegree (2, 1, 0),(1, 1, 1) and (2, 1, 1), and describe their irreducible and connected components, respectively. In the proof
of irreducibility of H(2, 1, 1, 1)+,red, we use the moduli of stable maps. Finally, in Section 5, we apply our
arguments to the case of Segre threefold ℙ2 × ℙ1.
2 Preliminaries

For three2-dimensional vector spaces V1, V2, V3 over the field of complex numbersℂ, let X ≅ ℙ(V1)×ℙ(V2)×ℙ(V3), which is then embedded intoℙ7 ≅ ℙ(V0) by the Segremap, where V0 = V1 ⊗ V2 ⊗ V3. It is known that
X is the only Del Pezzo with the maximal Picard number ϱ(X) = 3. The intersection ring A(X) is isomorphic
to A(ℙ1) ⊗ A(ℙ1) ⊗ A(ℙ1) and so we have

A(X) ≅ ℤ[t1, t2, t3]/(t21, t22, t23).
Wemay identifyA1(X) ≅ ℤ⊕3 by a1t1 + a2t2 + a3t3 → (a1, a2, a3). Similarly,wehaveA2(X) ≅ ℤ⊕3 by e1t2t3+
e2t3t1 + e3t1t2 → (e1, e2, e3) and A3(X) ≅ ℤ by ct1t2t3 → c.

Let us denote the natural projection of X to the ith factor by πi : X → ℙ1, and we denote π∗1Oℙ1 (a1) ⊗
π∗2Oℙ1 (a2) ⊗ π∗3Oℙ1 (a3) by OX(a1, a2, a3). Then X is embedded into ℙ7 by the complete linear system|OX(1, 1, 1)| as a subvariety of degree6, since (1, 1, 1)3 = 6.We alsodenoteE⊗OX(a1, a2, a3)byE(a1, a2, a3)
for a coherent sheaf E on X. We also let πij : X → ℙ1 × ℙ1 denote the projection to the (i, j)-factor, i.e.,
πij(o1, o2, o3) = (oi , oj) for (o1, o2, o3) ∈ X.
Proposition 2.1. For a one-dimensional sheaf F on X, there exists a tripolynomial χF(x, y, z) ∈ ℚ[x, y, z] of
degree one such that

χ(F(u, v, w)) = χF(u, v, w)
for all (u, v, w) ∈ ℤ⊕3.
Proof. This follows verbatim from the proof of [2, Proposition 2]. Let at + b ∈ ℚ[t] be the Hilbert polynomial
of F with respect to OX(1, 1, 1). Take a divisor D1 ∈ |OX(1, 0, 0)| such that D1 misses any zero-dimensional
components (embedded or isolated) of Supp(F) and does not contain any component of the one-dimensional
reduced scheme associated to Supp(F). Then this gives us an injective map jD1 : F(t, t, t)→ F(t + 1, t, t) and
so we have an exact sequence

0→ F(t, t, t)→ F(t + 1, t, t)→ F(t + 1, t, t) ⊗ OD1 → 0. (2.1)
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Similarly, fix other divisors D2 ∈ |OX(0, 1, 0)|, D3 ∈ |OX(0, 0, 1)| and D ∈ |OX(1, 1, 1)| to define maps jD2 , jD3

and jD with the corresponding exact sequences as in (2.1). Set

l := h0(F(t + 1, t, t) ⊗ OD1 ), m := h0(F(t, t + 1, t) ⊗ OD2 ), n := h0(F(t, t, t + 1) ⊗ OD3 ),
which are independent on t. We claim that χ(F(u, v, w)) = lu + mv + nw + b for all (u, v, w) ∈ ℤ⊕3. From
the exact sequence for D, we have l + m + n = h0(F(t + 1, t + 1, t + 1) ⊗ OD) = a and so the claim is true
if u = v = w. In general, let us assume u ≥ v ≥ w without loss of generality. Then we get χ(F(u, v, w)) =
χ(F(w, w, w)) + l(u − w) + m(v − w), using the exact sequences for D1 and D2 several times.

Definition 2.2. We call the linear tripolynomial in Proposition 2.1 the Hilbert tripolynomial of F for a purely
one-dimensional sheaf F, i.e., χF(x, y, z) = e1x + e2y + e3z + χ for some (e1, e2, e3, χ) ∈ ℤ⊕4. In particu-
lar, the Hilbert polynomial of F with respect to OX(1, 1, 1) is defined to be χF(t) = χF(t, t, t). We also call
χOC (x, y, z) the Hilbert tripolynomial of a curve C.

Let H(e1, e2, e3, χ) be the Hilbert scheme of curves in X with the Hilbert tripolynomial e1x + e2y + e3z + χ,
and let H(e1, e2, e3, χ)sm be the open locus corresponding to smooth and connected curves.

Definition 2.3. A locally Cohen–Macaulay (for short, locally CM) curve in X is a one-dimensional subscheme
C ⊂ Xwhose irreducible components are all one-dimensional and that has no embeddedpoints. Equivalently,
OC is purely one-dimensional.

We denote by H(e1, e2, e3, χ)+ the subset of H(e1, e2, e3, χ) parametrizing the locally CM curves with no
isolated point. In particular, we have H(e1, e2, e3, χ)sm ⊂ H(e1, e2, e3, χ)+.
Remark 2.4. Let C be an integral projective curve. By the universal property of fibered product, there is a
bijection between the morphisms u : C → X and the triples (u1, u2, u3), with ui : C → ℙ1 any morphism.
The image u(C) is contained in a two-dimensional factor of X if and only if one of the u1, u2, u3 is con-
stant. We say that a constant map has degree zero. With this convention we may associate to any u a triple(deg(u1), deg(u2), deg(u3)) ∈ ℤ⊕3≥0, and u(C) is a curve if and only if (deg(u1), deg(u2), deg(u3)) ̸= (0, 0, 0).
Now assume that u is birational onto its image. With this assumption for all (a1, a2, a3) ∈ ℤ⊕3, we have

u(C) ⋅ OX(a1, a2, a3) = a1 deg(u1) + a2 deg(u2) + a3 deg(u3).
In particular, the degree of the curve u(C) is deg(u1) + deg(u2) + deg(u3).
Lemma 2.5. Let C ⊂ X be a locally CMcurvewith the tridegree (e1, e2, e3). If the tridegree of Cred is (b1, b2, b3),
with bi = 0 for some i, then we have ei = 0.
Proof. In general, if ui : C → ℙ1 is the ith-projection, with fi the length of the generic fibre of ui, then C has
tridegree (f1, f2, f3). Now let us assume i = 3, i.e., b3 = 0. The restriction of the projection π3|C : C → ℙ1 has
degree e3. Similarly, π3|Cred : Cred → ℙ1 has degree b3 = 0. Thus, π3|Cred has finite image and so does π3|C. In
particular, we have e3 = 0.
Now we end this section by recalling the two major concepts that are used in this article: the ribbons and the
Ferrand construction.

For a reduced connected variety Y, a ribbon on Y is a scheme Z equipped with an isomorphism
Y → Zred such that the ideal sheaf L of Y in Z is locally free with the condition L⊗2 = 0 satisfied. A ribbon
is simply a scheme Z which is a ribbon on Zred, see [4, Section 1].

On the other hand, let X be a smooth threefold and Y ⊂ X a smooth and irreducible curve. For a fixed
positive integer μ, a multiple structure on Y with multiplicity μ is a locally Cohen–Macaulay scheme Z ⊂ X
such that Zred = Y and Z has multiplicity μ, i.e., forOX (1) ⋅ Z = μ(OZ (1) ⋅ Y) for one (or for all) ample line
bundle(s) OX (1) on X. Throughout this article we only need the case μ = 2, i.e., double structures on the
smooth curve Y and all these double structures are obtainedusing the following constructiondue to Ferrand.
More generally, let Y ⊂ X be a locally complete intersection of codimension 2. A surjection β : N∨Y|X → L

from the conormal bundle to a line bundle L on Y defines a closed subscheme Z for which there exists an
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exact sequence
0→ IZ/I2Y → N∨Y|X → L→ 0.

The fact is that Z is a locally CM curve with (Z)red = Y with multiplicity two. We also have L ≅ IY ,X/IZ ,X
so that L2 ≅ I2Y ,X/IY ,XIZ ,X . This induces an exact sequence of vector bundles on Y:

0→ L⊗2 → (NZ|X )∨|Y → IZ/I2Y → 0,

see [6, Section 1]. This construction is called the Ferrand construction. In particular, it is a ribbon in the sense
of [4], because the line bundle L ≅ IY ,X/IZ ,X satisfies L⊗2 ≅ 0.
3 Double lines

Notation 3.1. Throughout this article by a line on X = ℙ1 × ℙ1 × ℙ1 wemean a CM curve on X with tridegree(1, 0, 0), (0, 1, 0) or (0, 0, 1). A double line is by definition a double structure on a line. For each a ∈ ℤ, let
Da be the subset of H(2, 0, 0, a)+ parametrizing the double lines.

For themoment we takeDa as a set. In each case it would be clear which scheme-structure is used on it. Since
X is a smooth threefold, [6, Remark1.3] says that each [B] ∈ Da is obtainedby the Ferrand construction, and it
is a ribbon in the sense of [4]with a line of tridegree (1, 0, 0). Let Ca be theunique split ribbonwith χ(OCa ) = a,
and every ribbon is split for a ≥ 1 by [4, Theorem 1.2]. Each f ∈ Aut(Ca) induces an automorphism f̃ of ℙ1
and the map f → f̃ is surjective. Thus, we get dimAut(Ca) ≥ 3. Since Ca is equipped with a specification of a
normal direction at each point of ℙ1, we have Aut(Ca) ≅ Aut(ℙ1). In particular, dimAut(Ca) = 3.
Remark 3.2. Fix [A] ∈ Da and set L := Ared. The curve A is a locally CM curve of degree two with L ≅ ℙ1 as its
support (see [6, Remark 1.3]) and so it is a ribbon in the sense of [4], as mentioned in the beginning of this
section. Theprojection π1 induces amorphism π1|A : A → ℙ1whose restriction to L = Ared is the isomorphism
π1|L : L → ℙ1. Thus, A is a split ribbon, see [4, Corollary 1.7]. Hence, OA fits into an exact sequence

0→ OL(a − 2)→ OA → OL → 0, (3.1)

which splits as an exact sequence of OL-modules. Since L is a complete intersection in X of two planes of
type (0, 1, 0), (0, 0, 1) ∈ Pic(X), the Koszul resolution for IL shows that IL/I2L ≅ O⊕2L . In particular, the nor-
mal bundle NL|X is trivial and double lines supported on L are parametrized by the surjective morphism in
Hom(O⊕2L ,OL(a − 2)), as in [19, Introduction] and [21, Proposition 1.4].
Theorem 3.3. The description on Da is as follows:
(i) Da is non-empty if and only if a ≥ 2. It is parametrized by an irreducible and rational variety of dimension

2a − 1.
(ii) We have Da = H(2, 0, 0, a)+ for a ≥ 3.
(iii) H(2, 0, 0, 2)+ is isomorphic toHilb2(ℙ1 × ℙ1), the Hilbert scheme of two points inℙ1 × ℙ1. In particular, it

is smooth, irreducible, rational and of dimension four.

Proof. Part (i) holds byRemark3.2 andpart (ii) followsbecause twodisjoint lineshavegenus−1. For theproof
of part (iii), note that the maps in (3.1) split when a = 2, showing that A is a complete intersection. Let 𝔼 be
the subset of H(2, 0, 0, 2)+ parametrizing two disjoint lines of tridegree (1, 0, 0). Since h1(NC) = 0 for every[C] ∈ 𝔼, we have thatH(2, 0, 0, 1)+ is smooth at each point of 𝔼 and of dimension h0(NC) = 4. Obviously, we
have

H(2, 0, 0, 2)+,red = 𝔼 ∪ D2,

and 𝔼 is irreducible and rational. We have dim(D2) = 3 and so it is sufficient to prove that at each [B] ∈ D2
the scheme H(2, 0, 0, 2)+ is smooth and it has dimension four. Fix [B] ∈ D2. Since B has only planar singu-
larities, it is locally unobstructed, see [17, 2.12.1]. Hence, H(2, 0, 0, 2)+ has dimension at least χ(NB) at [B]
by [17, Theorem 2.15.3]. Since D2 is irreducible, we get χ(NA) = χ(NE) for all [A], [E] ∈ D2. If B is contained
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in a smooth quadric surface T ∈ |OX(1, 1, 0)|, then NB ≅ O⊕2B and so χ(NB) = 4. In this case we also have
h1(NB) = 0 by (3.1). Note that there is a connected zero-dimensional subscheme Z ⊂ ℙ1 × ℙ1 of degree two
such that B ≅ L × Z: indeed, for each connected zero-dimensional subscheme Z ⊂ ℙ1 × ℙ1 of degree two, we
have L × Z ∈ D2, and the set of all such Z is smooth, irreducible, complete and three-dimensional. There are
two types of connected zero-dimensional subscheme Z ⊂ ℙ1 × ℙ1 of degree two: the ones are contained in
a ruling of ℙ1 × ℙ1 and the other ones are the complete intersection of two elements of |Oℙ1×ℙ1 (1, 1)|. Thus,
our double lines B’s are the complete intersection of two elements of |OX(0, 1, 1)|. Hence, even for these B’s
we have h1(NB) = 0, concluding the proof of the smoothness of H(2, 0, 0, 2)+.

The same argument works also for the reduced [C] ∈ H(2, 0, 0, 2)+ with Z a reduced subscheme ofℙ1 × ℙ1 of degree two. Thus, we getH(2, 0, 0, 2)+ ≅ Hilb2(ℙ1 × ℙ1), and this is isomorphic to the blow-up of
the symmetric product Sym2(ℙ1 × ℙ1) along the diagonal.
Remark 3.4. From the proof of Theorem 3.3, each double line in Da is associated to the triple (L, f, g) with
L ⊂ X a line of tridegree (1, 0, 0) and f, g ∈ ℂ[x0, x1]a−2 with no common zero, where x0 and x1 are homoge-
neous linear forms on L.

Remark 3.5. Fix an integer a ≥ 2 and any [A] ∈ Da. Since h1(OL(a − 2)) = 0, the exponential sequence asso-
ciated to (3.1)

0→ OL(a − 2)→ O∗A → O∗L → 1

gives that the restrictionmapPic(A)→ Pic(L) is bijective, as in the proof of [4, Proposition 4.1]. Thus,wehave
OA(t, u, v) ≅ OA(t, t, t) for all (t, u, v) ∈ ℤ⊕3 andOA(t, t, t) is the only line bundle on A whose restriction to L
is OL(t, t, t). Hence, the following table computes the cohomology groups of all line bundles on A:

h0(OA(t, t, t)) h1(OA(t, t, t)) h2(IA(t, t, t))
−1 ≤ t 2t + a 0 0

−a + 1 ≤ t ≤ −2 t + a − 1 −t − 1 −t − 1
t ≤ −a 0 −2t − a −2t − a

Indeed, we have h2(IA(t, t, t)) = h1(OA(t, t, t)) from h1(OX(t, t, t)) = h2(OX(t, t, t)) = 0 for all t. Now the
table follows from (3.1) by setting L := Ared, because it is a split exact sequence as OL-sheaves.
Remark 3.6. Take [A] ∈ D2. We saw in the proof of part (3) in Theorem 3.3 that A is either the complete
intersection of two elements of |OX(0, 1, 1)|, the case in which Z is not contained in a ruling of ℙ1 × ℙ1, or a
complete intersection of an element of |OX(0, 0, 1)| (resp. |OX(0, 1, 0)|) and an element of |OX(0, 2, 0)| (resp.|OX(0, 0, 2)|), the case in which Z is contained in a ruling ofℙ1 × ℙ1. In both cases, we have h1(IA(t, t, t)) = 0
for all t ̸= 0 and h1(IA) = 1.
4 Irreducibility of Hilbert schemes

In this section we discuss the topology of H(e1, e2, e3, χ)+,red for small ei, mainly on the irreducible compo-
nents. The main strategy is to describe an irreducible sublocus of H(e1, e2, e3, χ)+,red consisting of a special
type of curves via double line structures and to determine if its closure is an irreducible component by var-
ious methods, including deformation theory. The case (e1, e2, e3, χ) = (2, 1, 1, 1) is exceptional in a sense
that one further needs the irreducibility of a certain moduli space of stable maps and deformation theory on
it to prove the irreducibility of H(2, 1, 1, 1)+,red, see Theorem 4.26.

Lemma 4.1. Fix [A] ∈ Da with a ≥ 2 and set L := Ared.
(i) For a line L ⊂ X different from L, we have deg(A ∩ L) ≤ 2. Moreover, we have A ∩ L = 0 if and only if

L ∩ L = 0.
(ii) The following set is a non-empty irreducible and rationally connected variety of dimension 2a + 1:{(B, L) | [B] ∈ Da , L is a line of tridegree (0, 1, 0) with B ∩ L = 0}.
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(iii) The tangent plane TpA at a point p ∈ L is a plane containing L and contained in the three-dimensional
tangent space TpX.

(iv) TpA ∩ X is the union of three lines L, L1, L2 of X through p, with L1 of tridegree (0, 1, 0) and L2 of tridegree(0, 0, 1). We have deg(A ∩ Li) = 2 if and only if TpA is the plane spanned by L ∪ Li.
Proof. Since L and L are different, so deg(A ∩ L) is a well-defined non-negative integer, we have that
deg(A ∩ L) = 0 if and only if A∩L = 0, i.e., L∩L = 0. Since L has tridegree (1, 0, 0), there is (o, o) ∈ ℙ1×ℙ1
such that L = ℙ1 × {(o, o)}. The complement of ℙ1 × {o} in ℙ1 × ℙ1 parametrizes the set of all lines T of
tridegree (0, 1, 0) with T ∩ L = 0. The other assertions are obvious.
Lemma 4.2. For [A] ∈ H(2, 0, 0, 2)+, there exists a line R ⊂ X of tridegree (0, 1, 0) with deg(A ∩ R) ≥ 2, i.e.,
deg(A ∩ R) = 2 if and only if there exists Q ∈ |OX(0, 0, 1)| that contains A. In this case, Q is unique, A ∪ R ⊂ Q
and there is a one-dimensional family of such lines R.

Proof. The lemma is obvious if A is a disjoint union of two lines, say A = ℙ1 × {(o2, o3)} ∪ ℙ1 × {(p2, p3)},
because the existence of R is equivalent to o3 = p3. Now assume [A] ∈ D2, say associated to (L, f, g) with
L := Ared and (f, g) ∈ ℂ2 \ {(0, 0)}. Write L = ℙ1 × {(p2, p3)}. Since ℙ1 × ℙ1 × {p3} is the only element of|OX(0, 0, 1)| containing L, the uniqueness part is obvious. Assume the existence of a line R ⊂ X of tride-
gree (0, 1, 0) with deg(A ∩ R) ≥ 2. By Lemma 4.1, we have deg(A ∩ R) = 2 and R ∩ L contains a point, say
p = (p1, p2, p3). For each point q = (q1, p2, p3) ∈ L, the pull-backs via the projections πi, for i = 2, 3, of a
non-zero tangent vector of ℙ1 at pi form a basis of NL,q ≅ ℂ2. Since A has tridegree (2, 0, 0), the map π2|A is
induced by an element of H0(OA), i.e., by an element c ∈ H0(OL), due to (3.1), with a = 2 and π2(L) = {p2}.
The condition deg(A ∩ R) = 2 is equivalent to saying that π2|A vanishes at p. Since c is a constant, π2|A
vanishes at all points of L, i.e., A ⊂ ℙ1 × ℙ1 × {p3}.
Theorem 4.3. We have H(2, 1, 0, 1)+ ≅ ℙ5 × ℙ1.
Proof. It is sufficient to prove that for each [C] ∈ H(2, 1, 0, 1)+, there exists Q ∈ |OX(0, 0, 1)| such that
C ∈ |OQ(1, 2)|, which would give us a morphism from H(2, 1, 0, 1)+ to ℙ5 × ℙ1. Its inverse map is obvi-
ously defined. If C is reduced, then π2|C shows that each irreducible component of C is smooth and rational.
Since χ(OC) = 1, C is connected. Since C is reduced, connected and of tridegree (2, 1, 0), the scheme π3(C)
is a point and so there is a point o ∈ ℙ1 such that C ⊂ ℙ1 × ℙ1 × {o}. Now assume that C is not reduced. By
Lemma 2.5 and Theorem 3.3, we see that C = A ∪ Rwith [A] ∈ Da for a ≥ 2 and R a line. Since deg(A ∩ R) ≤ 2
and χ(OC) = χ(OA) + 1 − deg(A ∩ R), we get a = 2 and deg(A ∩ R) = 2. We may now apply Lemma 4.2.

Remark 4.4. The proof of Theorem 4.3 shows that for each [C] ∈ H(2, 1, 0, 1)+, there is Q ∈ |OX(0, 0, 1)|
such that C ∈ |OQ(1, 2)|. This observation gives a way to describe C as follows. We first fix a point o ∈ ℙ1
such that Q = ℙ1 × ℙ1 × {o} and then we describe C inside Q by an equation of bidegree (1, 2). Writ-
ing OC(u, v) := OQ(u, v)|C, we have OC(u, v) ≅ OC(u, v, w) for any (u, v, w) ∈ ℤ⊕3. Note that IC,Q(u, v) ≅
OQ(u, v)(−C) ≅ OQ(u − 1, v − 2). In particular, for another [C] ∈ H(2, 1, 0, 1)+ and Q ∈ |OX(0, 0, 1)| with
C ⊂ Q, we have hi(Q, IC,Q(u, v)) = hi(Q, IC ,Q (u, v)) for any (u, v) ∈ ℤ⊕2 and each i = 0, 1, 2. On the other
hand, we have the exact sequence

0→ OQ(u − 1, v − 2)→ OQ(u, v)→ OC(u, v)→ 0. (4.1)

First assume that either u ≥ 1, v ≤ −2 or u ≤ −2, v ≥ 2. Then we have h0(OQ(u, v)) = h2(OQ(u − 1, v − 2)) = 0
and the sequence (4.1) gives

0→ H0(OC(u, v))→ H1(OQ(u − 1, v − 2))→ H1(OQ(u, v))→ H1(OC(u, v))→ 0.

If C is reduced, then it is a connected curve of arithmetic genus zero so that each component of C is smooth
and rational: C is either a rational normal curve of degree three or a union of three lines. In the former case
,we have h0(OC(u, v)) = h0(Oℙ1 (2u + v)). In the latter case, from the exact sequence

0→ OC(u, v)→ OL(u, v) ⊕ OL1 (u, v) ⊕ OL2 (u, v)→ OL∩L1 ⊕ OL∩L2 → 0,
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with L ∈ |OQ(1, 0)| and Li ∈ |OQ(0, 1)| for i = 1, 2, we get an exact sequence
0→ H0(OC(u, v))→ H0(OL(u, v)) ⊕ ( 2⨁

i=1
H0(OLi (u, v))) η→ ⊕2i=1H0(OL∩Li ),

where the rank of themap η is determined only by (u, v); for example, if (u, v) ∈ ℤ⊕2>0, then η is surjective. If C
is not reduced, then we have C = A ∪ R, with A ∈ |OQ(0, 2)| a line with multiplicity two and R ∈ |OQ(1, 0)|
with deg(A ∩ R) = 2. From (3.1), we have h0(OA(u, v)) = 2u + 2 (resp. 0) if u ≥ 1 (resp. u ≤ −2). Note also that
h0(OR(u, v)) = h0(Oℙ1 (v)) = max{0, v + 1}. From the exact sequence

0→ OC(u, v)→ OA(u, v) ⊕ OR(u, v)→ OA∩R → 0,

we have an exact sequence

0→ H0(OC(u, v))→ H0(OA(u, v)) ⊕ H0(OR(u, v)) ρ→ H0(OA∩R)→ ⋅ ⋅ ⋅ .
Here, the map ρ is (resp. not) surjective if u ≥ 1 (resp. u ≤ −2). Indeed, in case when u ≤ −2, ρ is the zero map
if and only if v ≤ −1. In particular, h0(OC(u, v)) is determined only by (u, v), and so is h1(OC(u, v)). For the
other choices for (u, v) ∈ ℤ⊕2, we have either h1(OQ(u − 1, v − 2)) = 0 or h1(OQ(u, v)) = 0. This implies from
the sequence (4.1) that hi(OC(u, v)) depends only on (u, v) for each i = 0, 1. As a summary, we can conclude
that hi(OC(u, v)) = hi(OC (u, v)) for any (u, v) ∈ ℤ⊕2 and i = 0, 1.
Lemma 4.5. For a fixed [A] ∈ Da with a ≥ 3, define S to be the set of all lines R ⊂ X with tridegree (0, 0, 1) and
deg(A ∩ R) ≥ 2. Then S is a non-empty finite set and we have deg(A ∩ R) = 2 for all R ∈ S.
Proof. Set L := Ared. We have χ(OB) = 2 < a for every B ∈ |Oℙ1×ℙ1 (0, 2)| and so π12|A : A → ℙ1 × ℙ1 is not an
embedding by [12, Proposition II.2.3]. Thus, we have S ̸= 0. Fix R ∈ S. Lemma 4.1 gives deg(A ∩ R) = 2 and
so there is a unique point o ∈ L ∩ R. R is the unique line of tridegree (0, 0, 1) containing o. The condition
deg(A ∩ R) = 2 is equivalent to the condition that the plane ⟨L ∪ R⟩ is the tangent plane of A at o. Hence, we
have deg(A∩L1) = 1 only for the line L1 of tridegree (0, 1, 0) containing o. Set Q := π12(L)×ℙ1 ∈ |OX(0, 1, 0)|.
Assume that S is infinite. We get that Q contains infinitely many tangent planes of A and so each tangent
plane of A is contained in Q. Therefore, we have deg(A ∩ T) ≤ 1 for all lines T ⊂ X of tridegree (0, 1, 0) and
so π13|A : A → ℙ1 × ℙ1 is an embedding by [12, Proposition II.2.3]. We saw that this is false.

Remark 4.6. Let us fix a double line [A] ∈ Da, with a ≥ 3, that is associated to the triple (L, f, g), with L ⊂ X
a line of tridegree (1, 0, 0) and f, g ∈ ℂ[x0, x1]a−2 with no common zero. For a fixed point p = (o1, o2, o3) ∈ L
and the line R ⊂ X of tridegree (0, 1, 0) passing through p, we have 1 ≤ deg(R ∩ A) ≤ 2. Indeed, we have
deg(R ∩ A) = 2 if and only if f vanishes at p. Since a > 2, there exists at least one line R with this property
and atmost (a − 2) such lines exist. If f is general (and in particular if A is general), then f has (a − 2) distinct
zeros and so there are exactly (a − 2) lines R of tridegree (0, 1, 0) with deg(A ∩ R) = 2.
Proposition 4.7. For each integer a ≥ 4, we have H(2, 1, 0, a)+,red = S0 ∪ S1 ∪ S2, where we have [C] ∈ Si
for each i = 0, 1, 2 if and only if C = A ∪ R, where [A] ∈ Da+i−1 and R is a line of tridegree (0, 1, 0) with
deg(A ∩ R) = i. Furthermore, we get that Si is irreducible with dim(Si) = 2a − 1 + i for each i = 0, 1, 2.
Proof. Fix [C] ∈ H(2, 1, 0, a)+,red and then C is not reduced, because we assumed a ≥ 4. By Lemma 2.5 and
Theorem 3.3, we have C = A ∪ R, where [A] ∈ Dc for some c ≥ 2 and R is a line of tridegree (0, 1, 0) with
deg(A ∩ R) = c + 1 − a. Since 0 ≤ deg(A ∩ R) ≤ 2, we have c ∈ {a − 1, a, a + 1} and so we get a set-theoretic
decomposition H(2, 1, 0, 1)+,red = S0 ∪ S1 ∪ S2.

Now we first check that S0 and S1 are irreducible. For [A] ∈ Da−1, the set of all lines R with R ∩ A = 0 is a
non-empty open subset of ℙ1 × ℙ1. By Theorem 3.3, S0 is non-empty, irreducible, rational and of dimen-
sion 2(a − 1) − 1 + 2 = 2a − 1. For [A] ∈ Da, set L := Ared and then a line R of tridegree (0, 1, 0) satisfies
deg(A ∩ R) > 0 if and only if R ∩ L ̸= 0. By Lemma 4.5, the set of all such lines R is a non-empty smooth
rational curve. Hence, S1 is rationally connected, irreducible and of dimension 2a.

For [A] ∈ Da+1, Remark 4.6 shows that the set of all lines of tridegree (0, 1, 0)with deg(A ∩ R) = 2 is non-
empty and finite. So we get S2 ̸= 0 and each irreducible component of S2 has dimension 2a + 1. Let 𝕀 be the
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set of all pairs (A, p) with [A] ∈ Da+1, p ∈ Ared, and there is a line R ⊂ X of tridegree (0, 1, 0) with p ∈ R and
deg(R ∩ A) = 2. Then it is sufficient to prove that 𝕀 is irreducible. For a fixed line L ⊂ X of tridegree (1, 0, 0) and
g ∈ ℂ[x0, x1]a−1 with g ̸= 0, we define U(L, g) to be the set of all [A] ∈ Da+1 associated to a triple (L, f, g) for
some f , and let 𝕀L,g be the set of all pairs (A, p)with [A] ∈ U(L, g), p ∈ L and there is a line R ⊂ X of tridegree(0, 1, 0)with deg(R ∩ A) = 2. The irreducibility of 𝕀L,g is equivalent to the well-known irreducibility of the set
of all pairs (f, p) with p ∈ ℙ1, f ∈ ℂ[x0, x1]a−1 \ {0} vanishing at p. Thus, 𝕀 is irreducible and so is S2.
Theorem 4.8. For a ≥ 4, S0 and S2 are the irreducible components of H(2, 1, 0, a)+,red.
Proof. Since the support of each element of S1 ∪ S2 is connected, we have S0 ⊈ S1 ∪ S2, and so S0 is an irre-
ducible component ofH(2, 1, 0, a)+,red. Now it remains to prove that S1 ⊂ S2. Fix a general A ∪ R ∈ S1 with A
associated to a triple (L, f, g) and set {p} := R ∩ L. Since deg(R ∩ A) = 1, we have f(p) ̸= 0. For a general A ∪ R,
wemay assume that g(p) ̸= 0. Let S ⊂ L be a finite set containing all zeros of f and g and the point x0 = 0, but
with p ∉ S. Set z := x1/x0 and let f1, g1 be the elements of ℂ[z] obtained by dehomogenizing f and g. For a
general A, we may assume that deg(f1) = deg(g1) = a − 2. Let ∆ denote the diagonal of (L \ S) × (L \ S). For
all (u, v) ∈ ((L \ S) × (L \ S)) \ ∆, set fu,v := (z − u)f1 and gu,v := (z − v)g1. Let ̃fu,v(x0, x1) (resp. g̃u,v(x0, x1))
be the homogeneous polynomial associated to fu,v (resp. gu,v). Let Au,v denote the element ofDa+1 associated
to (L, ̃fu,v , g̃u,v) and let Ru be the line of tridegree (0, 1, 0) passing through the point of L associated to u. We
got a flat family {Au,v ∪ Ru}u∈∆ of elements of S2. As (u, v) tends to (p, p), we get that A ∪ R is a flat limit of
this family.

Proposition 4.9. We have
H(2, 1, 0, 3)+,red = T ∪ T1 ∪ T2,

where each curve [C] ∈ Ti for i ∈ {1, 2} is of the form A ∪ R, where [A] ∈ Di+2 and R is a line of tridegree (0, 1, 0)
with deg(A ∩ R) = i. A general element of T is a disjoint union of three lines. Furthermore, we get that T, T1 and
T2 are all irreducible with dimension 6, 7 and 6, respectively.

Proof. Fix [C] ∈ H(2, 1, 0, 3)+,red and then C is reduced if and only if it is the disjoint union of three lines, two
of tridegree (1, 0, 0) and one of tridegree (0, 1, 0). The setA of all such curves is a non-empty open subset ofℙ2 × ℙ2 × ℙ2 and soA is smooth, irreducible and rational with dim(A) = 6. Note thatA is not complete since
A ⊊ ℙ2 × ℙ2 × ℙ2.

Now assume that C is not reduced. By Lemma 2.5 and Theorem 3.3, we have C = A ∪ R, where [A] ∈ Dc
with c ≥ 2 and R a line of tridegree (0, 1, 0) with deg(A ∩ R) = c − 2. Since 0 ≤ deg(A ∩ R) ≤ 2, we have
c ∈ {2, 3, 4}. Let Ti be the set of all C = A ∪ R with deg(A ∩ R) = i. As in the proof of Theorem 4.8, we see
that Ti ̸= 0 for all i. Set T := A ∪ T0 to be the set of all disjoint unions of an element ofH(2, 0, 0, 2)+,red and a
line of tridegree (0, 1, 0). By the case a = 2 of Theorem 3.3, T0 is in the closure of A and so T is irreducible.
Similarly, as in the proof of Theorem 4.8, we get that Ti is also irreducible for each i = 1, 2. The dimension
counting is clear.

Theorem 4.10. T and T2 are the irreducible components of H(2, 1, 0, 3)+,red.
Proof. As in the proof of Theorem 4.8, we get that T ̸⊆ T1 ∪ T2 and T1 ⊂ T2, which prove the assertion.
In H(1, 1, 1, 1) we have a family of curves formed by three lines through a common point. Denote the locus
of such curves by D and we have X ≅ D ⊂ H(1, 1, 1, 1).
Remark 4.11. For [C] ∈ D, one can check h1(OC(u, v, w)) = 0 for all (u, v, w) ∈ ℤ⊕3>0. Moreover, we have
h0(IC(1, 1, 1)) = 5, h0(IC(u, v, w)) = 0 if uvw = 0 and h1(IC(u, v, w)) = 0 if (u, v, w) ∈ ℤ⊕3>0. Note also that
for all [C], [C] ∈ D, there is f ∈ Aut(X) with f(C) = C.
Proposition 4.12. H(1, 1, 1, 3)+,red is irreducible, smooth and rational of dimension six.
Proof. Fix a curve [C] ∈ H(1, 1, 1, 3)+ and then C is reduced by Lemma 2.5. We also have χ(OC) = −2 and
so C has at least three connected components. Thus, C is a disjoint union of three lines, one line for each
tridegree (1, 0, 0), (0, 1, 0) and (0, 0, 1). Hence, set-theoretically,H(1, 1, 1, 3)+,red is irreducible, rational and
of dimension six. Since NC ≅ O⊕2C , we have h1(NC) = 0 and so H(1, 1, 1, 3)+ is smooth.
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Proposition 4.13. H(1, 1, 1, 2)+ has three connected components and each of them is smooth and rational of
dimension seven.

Proof. Fix [C] ∈ H(1, 1, 1, 2)+ and then C is reduced again by Lemma2.5.We have χ(OC) = −1 and so C has at
least two connected components. One of these connected components must be a line. Since χ(OC) ̸= −2 and
deg(C) = 3, C is not the union of three disjoint lines. Hence, C has a unique connected component of degree
one. The three connected components ofH(1, 1, 1, 2)+ are distinguished by the tridegree of their degree one
component.

Without loss of generality, we may assume that C has a line L of tridegree (1, 0, 0) as a connected
component, say C = L ⊔ D with D of tridegree (0, 1, 1). We have D = {o} × D for a point o ∈ ℙ1 and a
conic D ∈ |Oℙ1×ℙ1 (1, 1)|. Since |Oℙ1×ℙ1 (1, 1)| is irreducible and of dimension three, we get that each con-
nected component of H(1, 1, 1, 2)+,red is irreducible, rational and of dimension seven. Since NL ≅ O⊕2L and
ND ≅ OD ⊕ OD(1, 1) with L ∩ D = 0, we get h1(NC) = 0 and so H(1, 1, 1, 2)+ is smooth.

Remark 4.14. As in the proof of Proposition 4.13, set C = L ⊔ D with L of tridegree (1, 0, 0) and D of tride-
gree (0, 1, 1), so that D = {o} × D for a point o ∈ ℙ1 and a conic D ∈ |Oℙ1×ℙ1 (1, 1)|. As an abstract scheme,
the isomorphism class of C depends only on the rank of D as a conic. Take two points o2 and o3 on ℙ1
such that L = ℙ1 × {o2} × {o3}. The assumption L ∩ D = 0 is equivalent to (o2, o3) ∉ D. Setting ν : X → ℙ7
the Segre embedding, ν(L) is a line, ν(D) is a reduced conic and ν({o} × ℙ1 × ℙ1) is a smooth quadric with
dim⟨ν({o} × ℙ1 × ℙ1)⟩ = 3, where ⟨ ⟩ denotes the linear span inℙ7. Since ν(X) is scheme-theoretically cut out
by quadrics and X contains no plane, we have ν(X) ∩ ⟨D⟩ = D. Since L ∩ D = 0, we get ν(L) ∩ ⟨ν(D)⟩ = 0, i.e.,
dim⟨ν(C)⟩ = 4, and, in particular, h1(IC(1, 1, 1)) = 0. Now one can check that this implies h1(IC(u, v, w)) = 0
for all positive integers u, v, v.

Lemma 4.15. Each curve in H(1, 1, 1, 1) is connected and reduced.
Proof. Let us fix [C] ∈ H(1, 1, 1, 1). By Lemma 2.5 every one-dimensional component of C is generically
reduced, i.e., the purely one-dimensional subscheme E of Cred has tridegree (1, 1, 1). We have χ(OC) ≥ χ(OD)
for each connected component D of E and equality holds if and only if D = C. Since we have χ(OD) ≥ 1, we
get C = D, and so C is connected and reduced.
Lemma 4.16. H(1, 1, 1, 1)sm is irreducible, unirational of dimension six.

Proof. Let us fix [C] ∈ H(1, 1, 1, 1) irreducible. Since π1|C : C → ℙ1 has degree one, C is smooth and rational.
In particular,weget [C] ∈ H(1, 1, 1, 1)sm. Since πi|C : C → ℙ1, for i = 1, 2, 3, is inducedby the complete linear
system |Oℙ1 (1)|, H(1, 1, 1, 1)sm is homogeneous for the action of the group

Aut0(X) = PGL(2) × PGL(2) × PGL(2).
Thus, the algebraic set H(1, 1, 1, 1)smred is irreducible and unirational. To show that H(1, 1, 1, 1)sm is smooth
and of dimension six, it is sufficient to prove that h1(NC) = 0 and h0(NC) = 6. Note that we have χ(NC) = 6.
Since X is homogeneous, its tangent bundle TX is globally generated and so is TX|C. Since NC is a quotient of
TX|C, NC is also globally generated. Since C ≅ ℙ1, we get h1(NC) = 0. Indeed, we have NC ≅ Oℙ1 (2) ⊕ Oℙ1 (2).
The normal bundle NC is a direct sum of two line bundles, say of degree z1 ≥ z2 with z1 + z2 = 4. Since NC is
a quotient of TX|C, which is the direct sum of three line bundles of degree two, we get z1 = z2 = 2.
Proposition 4.17. H(1, 1, 1, 1) is irreducible, unirational of dimension six and smooth outside D.
Proof. By Lemma 4.16 it is sufficient to prove thatH(1, 1, 1, 1) is smooth at each reducible curve [C] ̸∈ D and
that each reducible element of H(1, 1, 1, 1) is in the closure of H(1, 1, 1, 1)sm.

(a) Now assume that C has two irreducible components, say C = D1 ∪ D2 with D1 a line. Since χ(OC) = 1
and the scheme C is reduced with no isolated point and arithmetic genus 0, it follows that C is connected.
Since pa(C) = 0, we get deg(D1 ∩ D2) = 1. In particular, C is nodal and so NC is locally free. Without loss of
generality, wemay assume that D1 has tridegree (1, 0, 0) and so D2 is a smooth conic with tridegree (0, 1, 1).
We have ND1 ≅ O⊕2D1

and ND2 ≅ OD2 ⊕ OD2 (0, 1, 1). Since NC is locally free, we have a Mayer–Vietoris exact
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sequence
0→ NC → NC|D1 ⊕ NC|D2 → NC|D1∩D2 → 0. (4.2)

Since deg(D1 ∩ D2) = 1 and C is nodal, the sheaf NC|D1 (resp. NC|D2 ) is a vector bundle of rank two obtained
from ND1 (resp. ND2 ) by making one positive elementary transformation at D1 ∩ D2 (see [13, §2], [26,
Lemma 5.1] and [25]), i.e., NDi is a subsheaf of NC|Di and its quotient NC|Di /NDi is a skyscraper sheaf
of degree one supported on the point D1 ∩ D2. Since h1(D2, ND2 ) = 0, we get h1(NC|D2 ) = 0. We also get
h1(D1, NC|D1 ) = 0 and that NC|D1 is spanned. Since deg(D1 ∩ D2) = 1 and NC|D1 is spanned, the restriction
map H0(D1, NC|D1 )→ H0(D1 ∩ D2, NC|D1∩D2 ) is surjective. Thus, (4.2) gives h1(NC) = 0 and so H(1, 1, 1, 1) is
smooth of dimension six at [C]. Since the set of all such curves C has dimension five, [C] is in the closure of
H(1, 1, 1, 1)sm.

(b) Now assume that C has at least three components, i.e., C = D1 ∪ D2 ∪ D3 with each Di a line. First
assume that C is nodal. In this case, one of the lines, say D2, meets the other lines. As in step (a) we first get
h1(ND2∪D3 ) = 0 and then h1(NC) = 0. Thus,H(1, 1, 1, 1) is smooth of dimension six at [C]. Since the set of all
such C has dimension four, we get that [C] is in the closure of H(1, 1, 1, 1)sm. Now assume that [C] ∈ D, say
C = A1 ∪ A2 ∪ A3 with a common point p. We can deform A1 in a family of lines intersecting A2 at a point
different from p and not intersecting A3. Thus, even in this case [C] is in the closure of H(1, 1, 1, 1)sm.
Remark 4.18. By Lemma 4.15 every curve C inH(1, 1, 1, 1)+ is connected and reducible. If C is smooth, then
ν(C) is a rational normal curve of degree 3 in its linear span and h1(IC(u, v, w)) = 0 for all (u, v, w) ∈ ℤ⊕3>0. The
homogeneous ideal of ν(C) inside ⟨ν(C)⟩ ≅ ℙ3 is generated by three quadrics; one may use the Castelnuovo–
Mumford regularity lemma with h1(Iν(C)(1)) = 0 and h1(Oν(C)) = 0. All these observations are still valid even
for C reducible; ν(C) is either (a) the union of a line and smooth conic or (b) the union of three lines. Thus,
in all cases the homogeneous ideal of ν(C) in ℙ7 is generated by 4 linear forms and 3 quadratic forms, while
none of these7 equationsmaybe omitted. As a curve in X, the curve Cmaybe cut out by two forms of tridegree(1, 1, 1) and two forms of tridegree (2, 2, 2).
Lemma 4.19. H(2, 1, 1, 1)sm is irreducible, unirational and smooth with dimension eight. In addition, [C] ∈
H(2, 1, 1, 1)sm is a smooth and connected rational curve with tridegree (2, 1, 1).
Proof. Since no plane cubic curve is contained in X and the intersection of two quadric surfaces in ℙ3 has 4t
as its Hilbert polynomial, [C] ∈ H(2, 1, 1, 1)sm is a quartic rational curve. By Remark 2.4, a general element
in

V = H0(Oℙ1 (2))⊕2 × H0(Oℙ1 (1))⊕2 × H0(Oℙ1 (1))⊕2
gives an isomorphism α : ℙ1 → X onto its image and so there is an open subset V0 ⊂ V with the universal
family V0 ⊂ V0 × X. Since V0 is flat, it gives a surjection Y0 → H(2, 1, 1, 1)sm by the universal property of the
Hilbert scheme. Since V0 is rational,H(2, 1, 1, 1)sm is unirational. Nowfix a curve [C] ∈ H(2, 1, 1, 1)sm. Since
C is a twisted cubic curve, by adjunction, we have

Oℙ1 (−2) ≅ ωC ≅ det(NC) ⊗ OX(−2, −2, −2)
and so det(NC) ≅ Oℙ1 (6). This implies that NC ≅ Oℙ1 (a) ⊕ Oℙ1 (b) with a + b = 6. Now from the surjection
TX|C → NC, we get that NC is globally generated and so a, b ≥ 0. In particular, we have h0(NC) = 8 and
h1(NC) = 0. Indeed, we have NC ≅ Oℙ1 (4) ⊕ Oℙ1 (2).
Let us write H(2, 1, 1, 1)+,red = Γ1 ⊔ Γ2, where Γ1 consists of the reduced curves and Γ2 consists of the non-
reduced curves.

Lemma 4.20. Each curve in Γ1 is connected and its irreducible components are all smooth and rational.

Proof. For a fixed curve [C] ∈ Γ1, let T be any irreducible component of C. Since either T is a fiber of π12
or π3|T has degree one, we have that T is smooth and rational. Assume for the moment the existence of a
connected curve C ⊆ C with pa(C) > 0. Since pa(C) = 0, we have deg(C) ≤ 3. Since C is reduced, we get
that C is a plane cubic, contradicting the fact that X contains no plane and it is cut out by quadrics in ℙ7.
The non-existence of C implies that C is connected.
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Proposition 4.21. Γ1 is irreducible with H(2, 1, 1, 1)sm as its open subset. In particular, each [C] ∈ Γ1 is con-
nected, and the irreducible components of C are smooth rational curves.

Proof. Fix a curve [C] ∈ Γ1. By Lemma 4.20, we may let C1, . . . , Ch be the irreducible components of C with
h ≥ 2 in an ordering so that if h ≥ 3, then Ei := C1 ∪ ⋅ ⋅ ⋅ ∪ Ci is connected for all 2 ≤ i ≤ h − 1. Fix an integer
i with 1 ≤ i ≤ h − 1. Since Ei and Ei+1 are connected with arithmetic genus zero, we have deg(Ci+1 ∩ Ei) = 1.
Since TX ≅ OX(2, 0, 0) ⊕ OX(0, 2, 0) ⊕ OX(0, 0, 2), the Mayer–Vietoris exact sequence

0→ TX|Ei+1 → TX|Ei ⊕ TX|Ci+1 → TX|Ei∩Ci+1 → 0

and induction on i give h1(TX|C) = 0. Since the natural map TX|C → NC has cokernel supported on the finite
set Sing(C), we have h1(NC) = 0 and so H(2, 1, 1, 1)+ is smooth at [C]. If C is nodal, by induction on i, we
get that each Ei is smoothable and, in particular, C is smoothable in X, i.e., [C] is contained in the closure of
H(2, 1, 1, 1)sm in H(2, 1, 1, 1).

Now assume that C is not nodal and then we get 3 ≤ h ≤ 4. If h = 3, we may find an ordering so that
deg(C1) = 2, deg(C2) = deg(C3) = 1 and C1, C2, C3 contain a common point, say p, and neither C2 nor C3 is
the tangent line of C1 at p. Since p ∈ C2 ∩ C3, the lines C2 and C3 have different tridegree and so we may fix
C1 ∪ C2 andmove C3 in the family of all linesmeeting C2 andwith the tridegree of C3. Thus, wemay deform C
to a nodal curve andhence againweget that [C] is contained in the closure ofH(2, 1, 1, 1)sm inH(2, 1, 1, 1). If
h = 4, then each irreducible component of C is a line. Since two of these components have the same tridegree,
C has a unique triple point and we may use the argument above for the case h = 3.
Proposition 4.22. For [C] ∈ Γ1, we have h1(IC(t)) = 0 for all t ∈ ℤ.
Proof. The Mayer–Vietoris exact sequence gives h0(OEi (1)) = deg(Ei) + 1 for all i even in the non-nodal
case. In particular, we get h0(OC(1)) = 5. Let M ⊂ ℙ7 be the linear span of C. Since h0(OC(1)) = 5, we have
dim(M) ≤ 4. Let H ⊂ M be a general hyperplane. Assume for the moment dim(M) = 4. In this case, C is lin-
early normal in M. The scheme H ∩ C is the union of four points. Since C is connected and linearly normal
in M, we have h1(M, IC(t)) = 0 for all t ≤ 1. The case t = 1 of the exact sequence

0→ IC,M(t − 1)→ IC,M(t)→ IC∩H,H(t)→ 0 (4.3)

gives that C ∩ H is formed by four points of H spanning H. This implies that h1(H, IC∩H,H(t)) = 0 for all
t > 0. By induction on t, (4.3) gives h1(M, IC,M(t)) = 0 for all t ≥ 2. To conclude we only need to exclude
that dim(M) < 4. We have dim(M) > 2, because X is cut out by quadrics and contains no plane. Now assume
dim(M) = 3. Since X contains no plane and no quadric surface, X ∩M is an algebraic set cut out by quadrics
and with connected components of dimension at most one. X ∩M is not the complete intersection of two
quadrics of M, because X ∩M contains C of degree four and pa(C) = 0. Since h0(M,OC) = 1, the case t = 1
of (4.3) gives that C ∩ H spans the plane H. Hence, h1(H, IC∩H,H(2)) = 0. Since h1(M, IC,M(1)) = 1 and H ∩ C
is formed by four points spanning the plane H, the case t = 2 of (4.3) gives h1(M, IC,M(2)) ≤ 1 and hence
h0(M, IC,M(2)) ≤ 2, a contradiction.
Remark 4.23. Fix [C] ∈ Γ2, i.e., C is not reduced. By Lemma 2.5, Cred has tridegree (1, 1, 1) and the nilradical
of OC is supported by a line L of tridegree (1, 0, 0). There is a unique reduced curve E ⊂ C with E of tridegree(0, 1, 1); E is either a disjoint union of two lines or a reduced conic. Set J := AnnOC (IE,C). TheOC-sheaf J is the
ideal sheaf of a degree two structure supported by L, possiblywith embedded components. Let C be the curve
with J as its ideal sheaf and A the maximal locally CM subcurve of C, which is obtained by taking as its ideal
sheaf in C the intersection of the non-embedded components of a primary decomposition of IC . The curve
A is a locally CMcurve of degree twowith L := ℙ1 as its support, i.e., [A] ∈Da for some a ≥ 2.Wehave χ(OA)= a.
Lemma 4.24. If C = A ∪ E ∈ Γ2 with [A] ∈ Da for some a ≥ 2 and E is a reduced conic of tridegree (0, 1, 1), then
it is contained in Γ1.

Proof. Let ⟨E⟩ be the plane spanned by E. Since X contains no plane cubic, we have deg(L ∩ ⟨E⟩) ≤ 1. Consid-
ering a general hyperplaneH ⊂ ℙ7 containing ⟨E⟩with L ⊈ H, we get deg(A ∩ ⟨E⟩) ≤ 2 and so deg(A ∩ E) ≤ 2.
Thus, we have χ(OA) ≥ a − 1 and so a = 2 = deg(A ∩ E). This implies that deg(L ∩ E) = 1.
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Set Z := A ∩ E. Since E is connected, there is o ∈ ℙ1 such that E ⊂ {o} × ℙ1 × ℙ1 and so E = {o} × E with
E ∈ |Oℙ1×ℙ1 (1, 1)|. Since Z ⊂ E ⊂ {o} × ℙ1 × ℙ1, there is a zero-dimensional subscheme Z ⊂ E of degree two
such that Z = {o} × Z. Since deg(A) = 2, Z is the scheme-theoretic intersection of A and {o} × ℙ1 × ℙ1. By
Theorem 3.3, A is smoothable, i.e., there are an integral curve ∆ with o ∈ ∆ and a flat family {At}t∈∆ with
A = Ao andAt adisjoint unionof two lines for all t ∈ ∆ \ {o}. Set Zt := At ∩ {o} × ℙ1 × ℙ1.Wehave Zt = {o} × Zt
for a zero-dimensional subscheme Zt ⊂ ℙ1 × ℙ1 of degree two with Zo = Z and Zt reduced for all t ∈ ∆ \ {o}.
Fix a general q ∈ E. Decreasing ∆ if necessary, wemay assume q ∉ Zt for any t and so |OZt∪{q}(1, 1)| contains
a unique curve, say Et. Since q ∈ E, we have Eo = E. Set Et = {o} × Et. The algebraic family {At ∪ Et}t∈∆ is a
flat family. Since [At ∪ Et] ∈ Γ1 for t ̸= o, we have [Ao ∪ Eo] ∈ Γ1.
Nowwe are ready to prove ourmain result on the irreducibility ofH(2, 1, 1, 1)+,red in Theorem4.26. Themain
technical ingredient is to use the deformation theory ofmaps and elementraymodification of sheaves. In gen-
eral, let Y be a smooth projective variety. Amap f : C → Y is called stable if C has at worst nodal singularities
and |Aut(f)| <∞. LetM(Y, β)be themoduli space of isomorphism classes of stablemaps f : C → Xwith genus
g(C) = 0 and f∗[C] = β ∈ H2(X,ℤ). Note that if Y is a projective homogeneous variety, then the spaceM(Y, β)
is irreducible, see [16]. The local structure of the spaceM(Y, β)was well-studied in [18, Proposition 1.4, 1.5].
Proposition 4.25. Fix [f : C → Y] ∈ M(Y, β). Then the tangent space (resp. the obstruction space) ofM(Y, β) at[f] is given by

Ext1([f∗Ω1
Y → Ω1

C],OC) (resp. Ext2([f∗Ω1
Y → Ω1

C],OC)),
where [f∗Ω1

Y → Ω1
C] is thought of as a complex of sheaves of the degrees −1 and 0.

Let E be a flat family of sheaves on Y parameterized by a smooth variety S. Let Z be a smooth divisor of S such
that E|Z has a flat familyA of quotient sheaves. Then the kernel ker{E  E|Z×Y  A} of the composition map
is called an elementary modification of the sheaf E along Z. The effect of elementary modification at Z is the
interchange of the sub and quotient sheaves (cf. [8, Example 2.9]).

Theorem 4.26. H(2, 1, 1, 1)+,red is irreducible.
Proof. By Proposition 4.21, it is enough to show that Γ2 ⊂ Γ1. By Remark 4.23 and Lemma 4.24, we may
assume that C = A ∪ E ∈ Γ2 with [A] ∈ Da for some a ≥ 2 and E a disjoint union of two lines, say L1 of tride-
gree (0, 1, 0) and L2 of tridegree (0, 0, 1). Let us show that the locus Γ2b of these types of curves, is con-
tained in Γ1 (cf. [7, Proposition 5.10]). Note that the space Γ2b is a ℙ1 (or its open subset)-bundle over(ℙ1 × ℙ1) × ((ℙ1 × ℙ1) \ D), whereD is thediagonal.Here, the firstℙ1 × ℙ1 parameterizes the supporting lines
of the double lines A and the second (ℙ1 × ℙ1) \ D parameterizes the ordered pairs (L1, L2) of two lines. Also
the fiber ℙ1 ≅ ℙExt1(OC0 ,OL(−1)) parameterizes the non-split extensions:

0→ OL(−1)→ F → OC0 → 0, (4.4)

where C0 = L ∪ L1 ∪ L2.
Consider the moduli spaceM(X, β) of stable maps f : C0 → X of genus zero and f∗[D] = β ∈ H2(X,ℤ) of

tridegree (2, 1, 1). Let Θ2b be the locus of stable maps

f : C0 = L ∪ L1 ∪ L2 → X

with f(C0) = C0 = L ∪ L1 ∪ L2 such that deg(f|L ) = (2, 0, 0), deg(f|L1 ) = (0, 1, 0) and deg(f|L2 ) = (0, 0, 1).
Then one can easily see that Θ2b is aℙ2-bundle over (ℙ1 × ℙ1) × ((ℙ1 × ℙ1) \ D), whereℙ2 parameterizes the
stablemaps of degree two on L. To apply themodificationmethod as in [9], we need to choose a smooth chart
ofM(X, β) at [f]. In fact, from [23, Theorem 0.1], the space of maps inM(X, β) around [f] can be obtained as
the SL(2)-quotient

M(X, β) ≅ M(ℙ1 × X, (1, β))/Aut(ℙ1)
of the moduli space M(ℙ1 × X, (1, β)) of stable maps in ℙ1 × X of bidegree (1, β), where Aut(ℙ1) = SL(2)
canonically acts on M(ℙ1 × X, (1, β)), see [8, §3.1]. Among the fiber over [f] along the GIT-quotient map,
if we choose a graph map f  such that the restriction on L is of bidegree (1, (2, 0, 0)) which doubly cov-
ers ℙ1 × L ⊂ ℙ1 × X, then f  has the trivial automorphism. Hence, around [f], the space M(ℙ1 × X, (1, β)) is

Brought to you by | Università degli Studi di Trento
Authenticated

Download Date | 1/20/20 3:37 PM



E. Ballico, K. Chung and S. Huh, Curves on Segre threefolds | 75

a smooth chart, compatible with the SL(2)-action. Thus, the argument in [9, Lemma 4.6] about the construc-
tion of the Kodaira-Spencer map of the space of maps can be naturally applied in our situation.

Now let us compute the normal space of Θ2b. Consider the long exact sequence:

0→ Ext0(Ω1
C0 ,OC0 )→ Ext0(Ω1

X ,OC0 )→ Ext0(N∨C0|X ,OC0 ) ψ→ Ext1(Ω1
C0 ,OC0 )→ Ext1(Ω1

X ,OC0 ) = 0.
The last term is zero by the convexity of X and Ext0(N∨C0|X ,OC0 ) ≅ H0(NC0|X) ≅ ℂ6 because of the smoothness
of H(1, 1, 1, 1). Since C0 has two node points, we get Ext1(Ω1

C0 ,OC0 ) = ℂ2. Therefore, ker(ψ) in the above
means the deformation of C0, while keeping the two node points. That is, this is the deformation space of the
base space of Θ2b. On the other hand, as a similar computation did in the proof of [9, Lemma 4.10], we obtain
the following commutative diagram

0 // ker(ψ) //

ζ
��

Ext0(N∨C0|X ,OC0 ) //

��

Ext1(Ω1
C0 ,OC0 ) //

≅
��

0

0 //
T[f]M(X,β)
T[f]M(C0 ,β) // Ext0(f∗N∨C0|X ,OC0 ) // Ext2([f∗Ω1

C0 → Ω1
D],OC0 ) // 0.

Hence, the normal space of Θ2b is coker(ζ), which is isomorphic to Ext0(N∨C0|X ,OL(−1)) obtained from the
exact sequence

0→ OC0 → f∗OC0 → OL(−1)→ 0.

Moreover, the Kodaira–Spencer map T[f]M(ℙ1 × X, (1, β))→ Ext1X(f∗OC0 , f∗OC0 ) in [9, Equation (4.11)]
descends to the normal space, which is compatible with the map

NΘ2b |M(X,β),[f] = Ext0(N∨C0|X ,OL(−1)) ≅ Ext0(IC0 ,OL(−1)) ≅ Ext1(OC0 ,OL(−1)).
This implies that if we do themodification of f∗OC0 along the normal direction, themodified sheaf must lie in
Ext1(OC0 ,OL(−1)) bijectively, see[9, Lemma 4.6]. SinceM(X, β) is irreducible by [16] and Γ1 can be regarded
as an open subset ofM(X, β) due to Lemma 4.21 and [10, Theorem 2], we get that Γ2b ⊂ Γ1.
5 Segre threefold ℙ2 × ℙ1
In this section we take X := ℙ2 × ℙ1 and set ν : X → ℙ5 to be the Segre embedding; in most cases we adopt
the same notations as in the case of X = ℙ1 × ℙ1 × ℙ1. For a locally CM curve C ⊂ X with pure dimen-
sion one, the bidegree (e1, e2) ∈ ℤ⊕2 is defined to be the pair (e1, e2) of integers e1 := deg(OC(1, 0)) and
e2 := deg(OC(0, 1)), where the degree is computed using the Hilbert function of the OX-sheaves OC(1, 0)
and OC(0, 1) with respect to the ample line bundle OX(1, 1). We also say that C = 0 has bidegree (0, 0).
Since OC(1, 0) and OC(0, 1) are spanned, we have e1 ≥ 0 and e2 ≥ 0, i.e., (e1, e2) ∈ ℕ⊕2. We have deg(C) =
deg(OC(1, 1)) = e1 + e2. Note that the bipolynomial of OC is of the form e1x + e2y + χ for some χ ∈ ℤ and
χ = χ(OC).

As in the proof of Lemma 2.5 we get the following.

Lemma 5.1. Let C ⊂ X be a locally CM curve with the bidegree (e1, e2). If the bidegree of Cred is (b1, b2) with
bi = 0 for some i, then we have ei = 0.
Proposition 5.2. H(1, 1, 1) is smooth and irreducible of dimension five, and all its elements are reduced.
Proof. Let us fix [C] ∈ H(1, 1, 1). By Lemma 5.1, every one-dimensional component of C is generically
reduced, i.e., the purely one-dimensional subscheme E of Cred has bidegree (1, 1). We have χ(OC) ≥ χ(OD)
for each connected component D of E and equality holds if and only if D = C. Since we have χ(OD) ≥ 1, we
get C = D and that C is connected. If C is irreducible, then it is a smooth conic. Since NC is a quotient of TX|C,
we get h1(NC) = 0. This implies that H(1, 1, 1) is smooth at [C] and of dimension h0(NC) = deg(NC) + 2 =
deg(TX|C) = 5. Indeed, we have NC ≅ Oℙ1 (2) ⊕ Oℙ1 (1).
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Now assume that C is reducible, say the union of a line D1 of bidegree (1, 0) and a line D2 of bide-
gree (0, 1). Since deg(D1 ∩ D2) ≤ 1 and [C] ∈ H(1, 1, 1)+, we get deg(D1 ∩ D2) = 1 and that C is nodal. Since
h1(TX|C) = 0 and the natural map TX|C → NC is supported at the point D1 ∩ D2, we have H1(NC) = 0. Hence,
H(1, 1, 1) is again smooth at [C] andof dimensiondeg(NC) + 2 = 5. Since the set of all such reducible curves is
four-dimensional, each such curve is in the closure of the open subset ofH(1, 1, 1) parametrizing the smooth
curves.

Remark 5.3. Any curve inH(1, 1, 1) is a reduced conic and so it is arithmetically Cohen–Macaulay. Note also
that C as a curve in X is cut out by two forms of bidegrees (1, 0) and (1, 1), respectively. Thus, one can compute
the cohomology of the twists of IC from the exact sequence

0→ OX(−2, −1)→ OX(−1, 0) ⊕ OX(−1, −1)→ IC → 0;

for example, h0(IC(1, 0)) = 1, h0(IC(0, 1)) = 0 and h1(IC(u, v)) = 0 for all (u, v) ∈ ℤ⊕2≥0.
Proposition 5.4. H(1, 1, 2) is smooth and irreducible of dimension five. It parametrizes the disjoint unions of
two lines, one of bidegree (1, 0) and the other of bidegree (0, 1).
Proof. By Lemma 5.1, any curve [C] ∈ H(1, 1, 2)+ is reduced. If C is irreducible, we get χ(OC) = 1, a contra-
diction. If C = D1 ∪ D2 with lines D1 of bidegree (1, 0) and D2 of bidegree (0, 1), we get D1 ∩ D2 = 0. Then we
have h1(NC) = 0 and

h0(NC) = h0(ND1 ) + h0(ND2 ) = deg(TX|D1 ) + deg(TX|D2 ) = 5.
Remark 5.5. For a curve [C] ∈ H(1, 1, 2), the homogeneous ideal of ν(C) in ℙ5 is generated by 2 forms of
degree one (corresponding to elements of |OX(1, 1, 1)|) and 4 forms of degree two (corresponding to ele-
ments of |OX(2, 2, 2)|). We also have h0(IC(1, 0)) = h0(IC(0, 1)) = 0, h1(IC) = 1 and h1(IC(u, v)) = 0 for all(u, v) ∈ ℤ⊕2>0,
Remark 5.6. Using the argument in the proof of Proposition 5.2, we get that H(1, 1, χ)+ = 0 if either χ ≤ 0
or χ ≥ 3.
In the case of Segre threefold ℙ1 × ℙ1 × ℙ1, the main ingredient is the knowledge on the Hilbert scheme of
double lines. So we suggest the following results for the Segre threefoldℙ2 × ℙ1, as in Theorem 3.3. As in the
case of ℙ1 × ℙ1 × ℙ1, let Da be the subset of H(0, 2, a)+ parametrizing the double lines whose reduction is a
line of bidegree (0, 1) in X = ℙ2 × ℙ1 for each a ∈ ℤ. For themoment, we takeDa as a set and it would be clear
in each case which scheme-structure is used on it. Since X is a smooth threefold, [6, Remark 1.3] says that
each [B] ∈ Da is obtained by Ferrand’s construction and, in particular, it is a ribbon in the sense of [4] with a
line of bidegree (1, 0) as its support. Let Ra be the subset of H(2, 0, a)+ parametrizing the double structures
on lines of bidegree (1, 0).
Proposition 5.7. The description on Ra is as follows:
(i) Ra is non-empty if and only if a ≥ 2. It is parametrized by an irreducible and rational variety of dimension

2a − 1.
(ii) We have Ra = H(2, 0, a)+ for a ≥ 3.
(iii) H(2, 0, 2)+ is smooth, irreducible, rational and of dimension four.
Proof. Each element ofRa is a ribbon in the sense of [4]. For any line L ⊂ X of bidegree (1, 0), letRa(L) denote
the set of all [A] ∈ Ra such that Ared = L. The set of all lines of X with bidegree (1, 0) is isomorphic toℙ1. Any
line L ⊂ X of bidegree (1, 0) has trivial normal bundle and so Ra(L) is parametrized by the pairs (f, g) with
f ∈ H0(OL(a − 2)) and g ∈ H0(OL(a − 2)) with no common zero. Here we have the convention that (L, f1, g1)
and (L, f2, g2) give the same element of Ra(L) if and only if there is t ∈ ℂ× with f1 = tg1 and f2 = tg2. Hence,
we get parts (1) and (2) of Proposition 5.7 for a ≥ 3, and for any a ≥ 2, each element of Ra is a split ribbon.

The set H(2, 0, 2)+ is the disjoint union of R2 and the set T of all disjoint unions of two different lines
of bidegree (1, 0). T is isomorphic to the symmetric product of two copies of ℙ2 and so it is smooth and
rationalwithdim(T) = 4. Fix a line L ⊂ X of bidegree (1, 0) such that L = ℙ1 × {o}with o ∈ ℙ2, and [A] ∈ R2(L)
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determined by (f, g) ∈ ℂ2 \ {(0, 0)}, up to a non-zero scalar. The pair (f, g) defines a zero-dimensional scheme
v ⊂ ℙ2 of degree two with vred = {o}. Let R ⊂ ℙ2 be the line spanned by v and then A is contained in L × R as
a curve of bidegree (2, 0), and hence it is a flat deformation of a family of pairs of disjoint lines of L × R and
so of X. We also get that the normal sheaf NA of A in X is isomorphic toOL ⊕ OL(1). Hence, we get h1(NA) = 0
and so H(2, 0, 2)+ is smooth at [A].
Remark 5.8. For a fixed [C] ∈ H(2, 0, 2)+, we see that the linear span ⟨ν(C)⟩ is isomorphic to ℙ3 and the
homogeneous ideal of ν(C) inℙ5 is generated by 2 linear forms and 4 quadratic forms. One can also compute
h1(IC) = 1 and h1(IC(u, u)) = 0 for all u > 0. Now we have C ⊂ W withW ∈ |OX(0, 2)|. If C ∉ R2, then ν(W) is
embedded as a disjoint union of two planes and so it spans ℙ5; in this case, we have ν(C) = ν(W) ∩ H, where
H is one hyperplane in the pencils of hyperplanes containing the two lines ν(C). Indeed, any hyperplane in
the pencil cut out C insideW.

Below we give a description on Da as in Theorem 3.3 and Proposition 5.7, which can be proven by the same
way.

Proposition 5.9. The description on Da is as follows:
(i) Da is non-empty if and only if a ≥ 2. It is parametrized by an irreducible variety of dimension 2a − 1.
(ii) We have Da = H(0, 2, a)+ for a ≥ 3.
(iii) H(0, 2, 2)+ is smooth, irreducible, rational and of dimension four.
Remark 5.10. Similarly, as inH(2, 0, 2)+, any curve C inH(0, 2, 2)+ is a union of two disjoint lines. Then the
homogeneous ideal of ν(C) inℙ5 is generated by 2 linear forms and 4 quadratic forms. One can also compute
h1(IC) = 1 and h1(IC(u, v)) = 0 for all (u, v) ∈ ℤ⊕2>0.
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