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Abstract. We consider the k-osculating varieties Ok,n.d to the (Veronese)
d−uple embeddings of Pn. We study the dimension of their higher secant varieties
via inverse systems (apolarity). By associating certain 0-dimensional schemes Y ⊂
Pn to Os

k,n,d and by studying their Hilbert function we are able, in several cases, to
determine whether those secant varieties are defective or not.

0. Introduction.

Let us consider the following case of a quite classical problem: given a generic form f of degree d in
R := k[x0, ..., xn], what is the minimum s for which it is possible to write f = Ld−k

1 F1 + ... + Ld−k
s Fs, where

Li ∈ R1 and Fi ∈ Rk? When k = 0 this is known as the “Waring problem for forms” (the original Waring
problem is for integers), and it has been solved via results in [AH], e.g. see [IK] or [Ge].

In this generality, the problem is part of what was classically called “finding canonical forms for an
(n + 1)-ary d-ic” (e.g. see [W]). The following examples illustrate cases where the answer to the problem is
not the expected one.

Example 1. One would expect (by a dimension count) that a generic f ∈ (K[x0, . . . , x4])3 could be written
as f = L1F1 +L2F2 with Li ∈ R1 and Fi ∈ R2, but actually we need tree addenda: f = L1F1 +L2F2 +L3F3.

Example 2. We can’t write a generic f ∈ (K[x0, . . . , x5])3 as f = L1F1 + L2F2 + L3F3, but only as
f = L1F1 + · · ·+ L4F4.

Example 3. One would expect that a generic f ∈ (K[x0, . . . , x6])4 could be written as f = L1F1 + L2F2 +
L3F3, with Li ∈ R1 and Fi ∈ R3, but not only is it impossible to write f as a sum of three addenda, but is
it not even possible to write it as a sum of four. In fact f can only be written as f = L1F1 + · · ·+ L5F5.

All the examples above comes from our Proposition 3.4.

Our approach to the problem is via the study of the dimension of higher secant varieties Os
k,n.d to

Ok,n.d, the kth-osculating variety to the (Veronese) d−uple embeddings of Pn, since giving an answer to this
geometrical problem implies getting the solution to the problem on forms.

We would like to notice that those secant varieties can reach a very high defectivity (e.g. see the example
after Prop. 3.4), a phenomenon that does not happen for smooth varieties.

We use inverse system (apolarity) to reduce this problem to the study of the postulation of cer-
tain 0-dimensional schemes Y ⊂ Pn, namely we reduce the evaluation of dim Os

k,n,d to the evaluation of
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dim |OPn(d)⊗IY | where Y = Z1 + ...+Zs is a 0-dimensional subscheme of Pn such that, for each i = 1, ..., s,
(k + 1)Pi ⊂ Zi ⊂ (k + 2)Pi and l(Zi) =

(
k+n

n

)
+ n.

We conjecture that the ”bad behavior” of Y is always related to the scheme given by the fat points
(k + 1)Pi or Zi ⊂ (k + 2)Pi not being regular (see Conjecture 3.13). By using this idea, we are able to
describe the behavior of the sth-secant variety of Ok,n.d for many values of (k, n, d).

In the case of P2, using known results on fat points, we are able to classify all the defective Os
k,2.d for

small values of s (s ≤ 6 and s = 9, see Coroll. 3.16).

1. Preliminaries.

1.1. Notation.

i) In the following we set R := k[x0, ..., xn], where k = k̄ and chark = 0, hence Rd will denote the forms
of degree d on Pn.

ii) If X ⊆ PN is an irreducible projective variety, an m-fat point on X is the (m − 1)th infinitesimal
neighborhood of a smooth point P in X, and it will be denoted by mP (i.e. the scheme mP is defined by
the ideal sheaf Im

P,X ⊂ OX).
Let dimX = n; then, mP is a 0-dimensional scheme of length

(
m−1+n

n

)
.

If Z is the union of the (m− 1)th-infinitesimal neighborhoods in X of s generic points of X, we shall say for
short that Z is union of s generic m-fat points on X.

iii) If X ⊆ PN is a variety and P is a smooth point on it, the projectivized tangent space to X at P is
denoted by TX,P .

iv) We denote by < U, V > both the linear span in a vector space or in a projective space of two linear
subspaces U, V .

v) If X is a 0-dimensional scheme, we denote by l(X) its length, while its support is denoted by suppX.

1.2. Definition. Let X ⊆ PN be a closed irreducible projective variety; the (s− 1)th higher secant variety
of X is the closure of the union of all linear spaces spanned by s points of X, and it will be denoted by Xs.
Let dim X = n; the expected dimension for Xs is

expdimXs := min{N, sn + s− 1}

where the number sn + s− 1 corresponds to ∞sn choices of s points on X, plus ∞s−1 choices of a point on
the Ps−1 spanned by the s points. When this number is too big, we expect that Xs = PN . Since it is not
always the case that Xs has the expected dimension, when dimXs < min{N, sn + s− 1}, Xs is said to be
defective.

A classical result about secant varieties is Terracini’s Lemma (see [Te], or, e.g. [A]), which we give here in
the following form:

1.3. Terracini’s Lemma: Let X be an irreducible variety in PN , and let P1, ..., Ps be s generic points on
X. Then, the projectivised tangent space to Xs at a generic point Q ∈< P1, ..., Ps > is the linear span in
PN of the tangent spaces TX,Pi

to X at Pi, i = 1, ..., s, hence

dim Xs = dim < TX,P1 , ..., TX,Ps
> .
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1.4. Corollary. Let (X,L) be an integral, polarized scheme. If L embeds X as a closed scheme in PN , then

dim Xs = N − dim h0(IZ,X ⊗ L)

where Z is union of s generic 2-fat points in X.

Proof. By Terracini’s Lemma, dim Xs = dim < TX,P1 , ..., TX,Ps
>, with P1, ..., Ps generic points on X.

Since X is embedded in PN = P(H0(X,L)∗), we can view the elements of H0(X,L) as hyperplanes in PN ;
the hyperplanes which contain a space TX,Pi

correspond to elements in H0(I2Pi,X⊗L), since they intersect X

in a subscheme containing the first infinitesimal neighborhood of Pi. Hence the hyperplanes of PN containing
the subspace < TX,P1 , ..., TX,Ps

> are the sections of H0(IZ,X ⊗L), where Z is the scheme union of the first
infinitesimal neighborhoods in X of the points Pi’s. ut

1.5. Definition. Let X ⊂ PN be a variety, and let P ∈ X be a smooth point; we define the kth osculating
space to X at P as the linear space generated by (k +1)P , and we denote it by Ok,X,P ; hence O0,X,P = {P},
and O1,X,P = TX,P , the projectivised tangent space to X at P .

Let X0 ⊂ X be the dense set of the smooth points where Ok,X,P has maximal dimension. The kth osculating
variety to X is defined as:

Ok,X =
⋃

P∈X0

Ok,X,P .

2. Osculating varieties to Veronesean, and their higher secant varieties.

2.1. Notation.

i) We will consider here Veronese varieties, i.e. embeddings of Pn defined by the linear system of all
forms of a given degree d: νd : Pn → PN , where N =

(
n+d

n

)
− 1. The d-ple Veronese embedding of Pn, i.e.

Imνd, will be denoted by Xn,d.
ii) In the following we set Ok,n,d := Ok,Xn,d

, so that the (s − 1)th higher secant variety to the kth

osculating variety to the Veronese variety Xn,d will be denoted by Os
k,n,d.

2.2. Remark. From now on PN = P(Rd); a form M will denote, depending on the situation, a vector in
Rd or a point in PN .
We can view Xn,d as given by the map (Pn)∗ → PN , where L → Ld, L ∈ R1. Hence

Xn,d = {Ld, L ∈ R1}.

Let us assume (and from now on this assumption will be implicit) that d ≥ k; at the point P = Ld we have
(see [Se], [CGG] sec.1, [BF] sec.2):

Ok,Xn,d,P = {Ld−kF, F ∈ Rk}. (∗)

Notice that Ok,Xn,d,P has maximal dimension dimRk − 1 =
(
k+n

n

)
− 1 for all P ∈ Xn,d. This can also be

seen in the following way: the fat point (k + 1)P on Xn,d gives independent conditions to the hyperplanes
of PN , since it gives independent conditions to the forms of degree d in Pn.
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Hence, Ok,n,d =
⋃

P∈Xn,d
Ok,Xn,d,P .

As we have already noticed, for k = 0 (∗) gives Ok,Xn,d,P = {P} = {Ld} , and for k = 1 it becomes
Ok,Xn,d,P = TXn,d,P = {Ld−1F, F ∈ R1}.

In general, we have:
Ok,n,d = {Ld−kF, L ∈ R1, F ∈ Rk}.

Hence,
Os

k,n,d = {Ld−k
1 F1 + ... + Ld−k

s Fs, Li ∈ R1, Fi ∈ Rk, i = 1, ..., s}.

In the following we also need to know the tangent space TOk,n,d,Q of Ok,n,d at the generic point Q =
Ld−kF (with L ∈ R1, F ∈ Rk ); one has that the affine cone over TOk,n,d,Q is W = W (L, F ) =<

Ld−kRk, Ld−k−1FR1 > (see [CGG] sec.1, [BF] sec.2)).

2.3. Lemma. The dimension of Ok,n,d is always the expected one, that is,

dimOk,n,d = min{N, n +
(

k + n

n

)
− 1}

Proof. By 2.2, dim Ok,n,d = dim W (L,F ) − 1, for a generic choice of L,F , so that we can assume that L

does not divide F . When P(W ) 6= PN , we have dim W = dim Ld−kRk + dim Ld−k−1FR1 − dim Ld−kRk ∩
Ld−k−1FR1 =

(
k+n

n

)
+ (n + 1) − 1 =

(
k+n

n

)
+ n, since there is only the obvious relation between LRk and

FR1, namely LF − FL = 0.

2.4. Consider the classic Waring problem for forms, i.e. “if we want to write a generic form of degree d as
a sum of powers of linear forms, how many of them are necessary?” The problem is completely solved. In
fact, Xs

n,d = {Ld
1 + ... + Ld

s , Li ∈ R1} (see previous remark), hence the Waring problem is equivalent to
the problem of computing dimXs

n,d. By Corollary 1.4 we have that dimXs
n,d = N −dim H0(IZ,Pn ⊗O(d)) =

H(Z, d)− 1, where Z is a scheme of s generic 2-fat points in Pn, and H(Z, d) is the Hilbert function of Z in
degree d. Since H(Z, d) is completely known (see [AH]), we are done.

More generally, one could ask which is the least s such that a form of degree d can be written as Ld−k
1 F1 +

...+Ld−k
s Fs, with Li ∈ R1 and Fi ∈ Rk for i = 1, ..., s; since by Remark 2.2 the variety Os

k,n,d parameterizes
exactly the forms in Rd which can be written in this way, this is equivalent to answering, for each k, n, d, to
the following question:

Find the least s, for each k, n, d, for which Os
k,n,d = PN .

We are interested in a more complete description of the stratification of the forms of degree d parameterized
by those varieties, namely in answering the following question:

Describe all s for which Os
k,n,d is defective, i.e. for which dim Os

k,n,d < expdimOs
k,n,d.
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Notice that, since d ≥ k, one has dim Ok,n,d = N if and only if
(
d+n

n

)
≤ n +

(
k+n

n

)
, hence for all such k, n, d

and for any s we have dim Os
k,n,d = expdimOs

k,n,d = N .
So we have to study this problem when

(
d+n

n

)
> n +

(
k+n

n

)
, s ≥ 2; it is easy to check that whenever n ≥ 2

this condition is equivalent to d ≥ k + 1; on the other hand the case n = 1 (osculating varieties of rational
normal curves) can be easily described (all the Os

k,1,d’s have the expected dimension, see next section), thus
the question becomes:

Question Q(k,n,d): For all k, n, d such that d ≥ k + 1, n ≥ 2, describe all s for which

dim Os
k,n,d < min{N, s(n +

(
k + n

n

)
− 1) + s− 1} = min{

(
d + n

n

)
− 1, s

(
k + n

n

)
+ sn− 1}.

2.5. Remark. Terracini’s Lemma 1.4 says that dim Os
k,n,d = N − h0(IX ⊗OPN (1)), where X is a generic

union of 2-fat points on Ok,n,d; we are not able to handle directly the study of h0(IX⊗OPN (1)), nevertheless,
Terracini’s Lemma 1.3 says that the tangent space of Os

k,n,d at a generic point of < P1, ..., Ps >, Pi ∈ Ok,n,d ,
is the span of the tangent spaces of Ok,n,d at Pi; if TOk,n,d,Pi = P(Wi), then

dim Os
k,n,d = dim < TOk,n,d,P1 , ..., TOk,n,d,Ps

>= dim < W1, ...,Ws > −1

We want to prove, via Macaulay’s theory of “inverse systems”, (see [I], [IK], [Ge], [CGG], [BF]) that, for a
single Wi, dim Wi = N +1−h0(Pn, IZ(d)) where Z = Z(k, n) is a certain 0-dimensional scheme that we will
analyze further, and dim < W1, ...,Ws >= N + 1− h0(Pn, IY (d)) where Y = Y (k, n, s) is a generic union in
Pn of s 0-dimensional schemes isomorphic to Z. Hence,

dim Os
k,n,d = dim < W1, ...,Ws > −1 = N − h0(Pn, IY (d)).

So, one strategy in order to answer to the question Q(k, n, d) for a given (k, n, d) is the following:
1st step: try to compute directly dim < W1, ...,Ws >; if this is not possible, then

2nd step: use the theory of inverse systems (classically apolarity):
Compute W⊥ ⊂ Rd, with respect to the perfect pairing φ : Rd ×Rd → k, where:

- W is a vector subspace of Rd,
- φ(f, g) := ΣI∈An,d

fIgI , where An,d := {(i0, ..., in) ∈ Nn+1,Σjij = d}, with any fixed ordering; this gives a
monomial basis {xi0

0 · ... · xin
n } for the vector space Rd; if f ∈ Rd, f = Σ

i0,...,in∈An,d
fi0,...,inxi0

0 · ... · xin
n , we

write for short f = ΣfIxI , with I = (i0, ..., in).
Then, consider Id := W⊥ ⊂ Rd. It generates an ideal (Id) ⊂ R; in this way we define the scheme Z(k, n, d) ⊂
Pn by setting: IZ(k,n,d) := (Id)sat. We will show that these schemes do not depend on d.

3rd step, compute the postulation for a generic union of s schemes Z(k, n, d) in Pn.

Recall that [< W1, ...,Ws >]⊥ = W⊥
1 ∩ ... ∩W⊥

s .

2.6. Lemma. For all k, n and d ≥ k + 2, we have:

(k + 1)O ⊂ Z(k, n, d) ⊂ (k + 2)O,
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where Z(k, n, d) was defined in 2.5, and O = supp Z(k, n, d) ∈ Pn.

Proof. Let W =< Ld−kRk, Ld−k−1FR1 >⊂ Rd be the affine cone over TOk,n,d,Q at a generic point
Q = Ld−kF , with L ∈ R1, F ∈ Rk . Without loss of generality we can choose L = x0, so that W =
xd−k−1

0 (x0Rk + FR1) , hence xd−k
0 Rk ⊂ W ⊂ xd−k−1

0 Rk+1 . So, for any (k, n, d),

(xd−k−1
0 Rk+1)⊥ ⊂ W⊥ ⊂ (xd−k

0 Rk)⊥. (∗∗)

Now, denoting by p the ideal (x1, ..., xn), we have:

(xd−t
0 Rt)⊥ =< {xi0

0 · ... · xin
n |Σjij = d, i0 ≤ d− t− 1} >=

< (pd)d, x0(pd−1)d−1, ..., x
d−t−1
0 (pt+1)t+1 >= (pt+1)d.

Now let us view everything in (∗∗) as the degree d part of a homogeneous ideal; we get:

(pk+2)d ⊂ (IZ(k,n,d))d
⊂ (pk+1)d.

Let (x1, ..., xn) be local coordinates in Pn around the point O = (1, 0, ..., 0); the above inclusions give, in
terms of 0-dimensional schemes in Pn:

(k + 1)O ⊂ Z(k, n, d) ⊂ (k + 2)O.

2.7. Lemma. For any k, n, d with d ≥ k + 2, the length of Z = Z(k, n, d) is:

l(Z) = dimW =
(

k + n

n

)
+ n.

Proof. One (k +2)-fat point always imposes independent conditions to the forms of degree d ≥ k +1. Since
Z ⊂ (k + 2)O, then h1(IZ(d)) = 0 immediately follows.

Now we have seen that our problem can be translated into a problem of studying certain schemes
Z(k, n, d) ⊂ Pn; we want to check that actually these schemes are the same for all d ≥ k +2, say Z(k, n, d) =
Z(k, n).

2.8. Lemma. For any k, n and d ≥ k + 2, we have Z(k, n, d) = Z(k, n, k + 2). Henceforth we will denote
Z(k, n) = Z(k, n, d), for all d ≥ k + 2.

Proof. By the previous lemmata we already know that Z(k, n, d) and Z(k, n, k + 2) have the same support
and the same length, hence it is enough to show that Z(k, n, d) ⊂ Z(k, n, k + 2) (as schemes) in order to
conclude. This will be done if we check that I(Z(k, n, k + 2))d ⊂ I(Z(k, n, d))d; in fact, since both ideals are
generated in degrees ≤ d, this will imply that I(Z(k, n, k + 2))j ⊂ I(Z(k, n, d))j , ∀j ≥ d, hence the inclusion
will hold also between the two saturations, implying Z(k, n, d) ⊂ Z(k, n, k + 2).

Let f ∈ I(Z(k, n, k + 2))d, then f = h1g1 + ... + hrgr, where hj ∈ Rd−k−2 and gj ∈ I(Z(k, n, k + 2))k+2;
since I(Z(k, n, d))d is the perpendicular to W =< Ld−kRk, Ld−k−1FR1 >, it is enough to check that hjgj ∈
W⊥, j = 1, ..., r. Without loss of generality we can assume L = x0; hence, since gj ∈< L2Rk, LFR1 >⊥,
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gj = x0g
′ + g′′, with g′, g′′ ∈ k[x1, ..., xn] and g′ ∈ (FR1)⊥. It will be enough to prove xi0

0 ...xin
n gj =

xi0+1
0 ...xin

n g′+xi0
0 ...xin

n g′′ ∈ W⊥, ∀i0, ..., in such that i0+ ...+in = d−k−2. It is clear that xi0
0 ...xin

n g′′ ∈ W⊥,
since i0 ≤ d − k − 2; on the other hand, xi0+1

0 ...xin
n g′ ∈ (xd−k

0 Rk)⊥ again by looking at the degree of x0,
while xi0+1

0 ...xin
n g′ ∈ (xd−k−1

0 FR1)⊥ since g′ ∈ (FR1)⊥.

2.9. Remark. From the lemmata above it follows that in order to study the dimension of Os
k,n,d, ∀d ≥ k+2,

we only need to study the postulation of unions of schemes Z(k, n). For d = k + 1, we will work directly on
W , see Proposition 3.4.

What we got is a sort of “generalized Terracini” for osculating varieties to Veronesean, since the formula
dim Os

k,n,d = N − h0(IY (d)) reduces to the one in Corollary 1.4 for k = 0. Instead of studying 2-fat points
on Ok,n,d (see Remark 2.5), we can study the schemes Y ⊂ Pn.

2.10. Notation. Let Y ⊂ Pn be a 0-dimensional scheme; we say that Y is regular in degree d, d ≥ 0, if the
restriction map ρ : H0(OPn(d)) → H0(OY (d)) has maximal rank, i.e. if h0(IY (d)).h1(IY (d)) = 0. We set
exp h0(IY (d)) := max {0,

(
d+n

n

)
− l(Y )}; hence to say that Y is regular in degree d amounts to saying that

h0(IY (d)) = exp h0(IY (d)).
Since we always have h0(IY (d)) ≥ exp h0(IY (d)), we write

h0(IY (d)) = exp h0(IY (d)) + δ,

where δ = δ(Y, d); hence whenever
(
d+n

n

)
− l(Y ) ≥ 0, we have δ = h1(IY (d)), while if

(
d+n

n

)
− l(Y ) ≤ 0,

δ =
(
d+n

n

)
− l(Y ) + h1(IY (d)); in any case, by setting exp h1(IY (d)) := max {0, l(Y ) −

(
d+n

n

)
}, we get:

h1(IY (d)) = exp h1(IY (d)) + δ.

2.11. Remark. For any k, n, d such that d ≥ k + 1, let Y = Y (k, n, s) ⊂ Pn be the 0-dimensional scheme
defined in 2.5 for Z = Z(k, n), and δ = δ(Y, d). Then

dim Os
k,n,d = expdimOs

k,n,d − δ.

In particular, dim Os
k,n,d = expdimOs

k,n,d if and only if:

h0(IY (d)) = 0, when
(
d+n

n

)
≤ s

(
k+n

n

)
+ sn;

h0(IY (d)) = N + 1− l(Y ) =
(
d+n

n

)
− s

(
k+n

n

)
− sn (i.e. h1(IY (d)) = 0), when

(
d+n

n

)
≥ s

(
k+n

n

)
+ sn.

3. A few results and a conjecture.

First let us consider the cases where the question Q(k,n,d) has already been answered.

Q(k,1,d). In this case every Os
k,1,d, with d ≥ k + 2, has the expected dimension; in fact here Z(k, 1) =

(k+2)O, and the scheme Y = {s (k+2)-fat points} ⊂ P1 is regular in any degree d. Notice that for d = k+1
we trivially have Ok,1,k+1 = PN .
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Q(1,n,d). Here the variety O1,n,d is the tangential variety to the Veronese Xn,d. It is shown in [CGG] that
Z(1, n) is a “(2, 3)−scheme” (i.e. the intersection in Pn of a 3-fat point with a double line); this is easy to
see, e.g. by choosing coordinates so that L = x0, F = x1.
The postulation of generic unions of such schemes in Pn, and hence the defectivity of Os

1,n,d, has been studied.
Moreover, a conjecture regarding all defective cases is stated there:

Conjecture ( [CGG]). Os
1,n,d is not defective, except in the following cases:

1) for d = 2 and n ≥ 2s, s ≥ 2;
2) for d = 3 and n = s = 2, 3, 4.

In [CGG] the conjecture is proved for s ≤ 5 (any d, n), for s ≥ 1
3

(
n+2

2

)
+ 1 (any d, n); for d = 2 (any

s, n), for d ≥ 3 and n ≥ s + 1, for d ≥ 4 and s = n. In [B], the conjecture is proved for n = 2, 3 (any s, d).

Q(2,2,d). In [BF] it is proved that, for any (s, d) 6= (2, 4), Os
2,2,d has the expected dimension.

Now we are going to prove some other cases.

The following (quite immediate) lemma describes what can be deduced about the postulation of the
scheme Y from information on fat points:

3.1 Lemma. Let P1, ..., Ps be generic points in Pn, and set X := (k + 1)P1 ∪ ... ∪ (k + 1)Ps, T :=
(k+2)P1∪ ...∪(k+2)Ps. Now let Zi be a 0-dimensional scheme supported on Pi , (k+1)Pi ⊂ Zi ⊂ (k+2)Pi,
with l(Zi) = l((k + 1)Pi) + n for each i = 1, ..., s, , and set Y := Z1 ∪ ... ∪ Zs. Then:

Y is regular in degree d if one of the following a) or b) holds:

a) h1(IT (d)) = 0 (hence
(
d+n

n

)
≥ s

(
k+n+1

n

)
) ;

b) h0(IX(d)) = 0 (hence
(
d+n

n

)
≤ s

(
k+n

n

)
).

Y is not regular in degree d, with defectivity δ, if one of the following c) or d) holds:

c) h1(IX(d)) > exp h1(IY (d)) = max{0, l(Y )−
(
d+n

n

)
}; in this case δ ≥ h1(IX(d)))− exp h1(IY (d).

d) h0(IT (d)) > exp h0(IY (d)) = max{0,
(
d+n

n

)
− l(Y )}; in this case δ ≥ h0(IT (d))− exp h0(IY (d)).

Proof. The statement follows by considering the cohomology of the exact sequences:

0 → IT (d) → IY (d) → IY,T (d) → 0

and
0 → IY (d) → IX(d) → IX,Y (d) → 0

where we have: h1(IY,T (d)) = h1(IX,Y (d)) = 0 since those two sheaves are supported on a 0-dimensional
scheme.

3.2. Lemma. Let s ≥ n + 2 and d < k + 1 + 2k+1
n . Then Os

k,n,d is not defective and Os
k,n,d = PN .

Proof. Let Y ⊂ Pn be as in 2.5; we have to prove that h0(IY (d)) = 0 in our hypotheses.
Let P1, ..., Ps be the support of Y ; we can always choose a rational normal curve C ⊂ Pn containing

n + 2 of the Pi’s . For any hypersurface F given by a section of IY (d), since nd < (k + 1)(n + 2), by Bezout
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we get C ⊂ F . But we can always find a rational normal curve containing n + 3 points in Pn, so this would
imply that any P ∈ Pn is on F , i.e. IY (d) = 0.

3.3. Lemma. Assume s = n + 1; if d ≤ k + 1 + k+2
n , then Os

k,n,d = PN .

Proof. Since d ≥ k + 1, we can set d = k + j with j > 0; let Wi =< Lj
iRk, Lj−1

i FiR1 > with Fi ∈ Rk for
i = 1, ..., s; since s = n + 1, without loss of generality we can assume that L1 = x0, ..., Ln+1 = xn.
Hence W1 + ... + Ws contains U := xj

0Rk + ... + xj
nRk; now in U the missing monomials are xi0

0 · ... ·xin
n with

il ≤ j − 1 for each l = 0, ..., n, and d = deg (xi0
0 · ... · xin

n ) ≤ (n + 1)(j − 1). Hence if d ≥ (n + 1)(j − 1), i.e.
d < k + 1 + k+1

n , we get U = Rd.
If d = (n + 1)(j − 1) the only missing monomial in U is xj−1

0 · ... · xj−1
n , hence it is enough to choose one of

the Fi’s in a proper way to get W1 + ... + Ws = Rd.
If d = (n + 1)(j − 1)− 1, i.e. d = k + 1 + k+2

n , the n + 1 missing monomials in U are xj−1
0 · ... · xj−2

i ... · xj−1
n

with i = 0, ..., n and again it is possible to choose the Fi’s so that W1 + ... + Ws = Rd.

Case Q(k,n,k+1). The description for k = 1 given in [CGG], together with following proposition, describe
this case completely.

3.4. Proposition. If s ≥ 2, k ≥ 2 and d = k + 1, consider the secant variety Os
k,n,d ⊂ PN ; then:

A) if s ≤ n− 1 and its expected dimension is s
(
k+n

n

)
+ sn− 1, then Os

k,n,k+1 is defective with defect
δ = s2 − s + s

(
k+n

n

)
+

(
n−s+d

d

)
−N ;

B) if s ≤ n− 1 and the expected dimension is N =
(
d+n

n

)
− 1 then

i) Os
d−1,n,d is defective with defect δ =

(
n−s+d

d

)
− s(n− s + 1) if s < 1

d

(
n−s+d

d−1

)
;

ii) Os
d−1,n,d = PN if s ≥ 1

d

(
n−s+d

d−1

)
;

C) if s ≥ n then Os
d−1,n,d = PN .

Proof.

A) We have that W = W1 + . . . + Ws =< x0Rk, . . . , xs−1Rk;F1R1, . . . , FsR1 > in Rd. We can suppose
that the Fi’s, i = 1, . . . , s are generic in K[xs, . . . , xn]d := Sd, and we have that Rd

W
∼= Sd

(F1,...,Fs)d
. Then, since

(F1, ..., Fs)d =< F1S1, . . . , FsS1 > and the Fi’s are generic, dim(F1, ..., Fs)d = min
{(

n−s+d
d

)
, s(n− s + 1)

}
.

¿From this, and from our hypothesis about the expected dimension, we immediately get that dim W =
N −

(
n−s+d

d

)
+ s(n− s + 1), and hence that the defectivity is δ = s2 − s + s

(
k+n

n

)
+

(
n−s+d

d

)
−N .

B) If s
(
n+d−1

n

)
+ns ≥

(
n+d

n

)
we expect that Os

d−1,n,d = PN . Proceeding as in the previous case, in order
to compute dim W we can actually just consider the vector space < F1S1, . . . , FsS1 >; whose dimension is
min

{(
n−s+d

d

)
, s(n− s + 1)

}
; so we get that

i) if s(n − s + 1) <
(
n−s+d

d

)
, then Os

d−1,n,d is defective. This happens if and only if s < 1
d

(
n−s+d

d−1

)
, in

this case the defect is δ =
(
n−s+d

d

)
− s(n− s + 1).

ii) if s(n− s + 1) ≥
(
n−s+d

d

)
, then Os

d−1,n,d = PN (for example this is always true for d ≥ n);

C) It suffices to prove that Os
d−1,n,d = PN for s = n.

If s = n and d = k+1, the subspace W1+· · ·+Ws can be written as < x0Rk, F1R1, . . . , xn−1Rk, FnR1 >,
which turns out to be equal to < x0Rk, . . . , xn−1Rk, xk+1

n >= Rk+1 so On
d−1,n,d = PN .
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Example: The osculating 4th-variety of X6,5 ⊂ P461

Let us consider the secant varieties of the 4th-osculating variety O4,6,5. We begin with O2
4,6,5; we are in

case A of Prop. 3.4, and we expect that dim O2
4,6,5 = 431, but we get that the defectivity is δ = 86 so that

dim O2
4,6,5 = 345.

When s = 3, 4 we are in case B of Prop. 3.4, and δ = 44 for O3
4,6,5, while δ = 9 for O4

4,6,5. Eventually,
O5

4,6,5 = P461

So, even if we expect that O3
4,6,5 should fill up PN , even the 4-secant variety doesn’t.

In terms of forms we get that neither we can write a generic f ∈ (K[x0, . . . , x6])5 as f = L1F1 +L2F2 +
L3F3 with Li ∈ R1 and Fi ∈ R4 (as we expect), nor as f = L1F1 + · · ·+ L4F4, but we need five addenda.

Case Q(k,2,k + 2):

3.5. Corollary. Assume d = k + 2 and n = 2. Then, Os
k,2,k+2 is not defective for s ≥ 3 and k ≥ 1, and

Os
k,2,k+2 is defective for s = 2 and k ≥ 1.

Proof. By 3.2 and 3.3, Os
k,2,k+2 is not defective for s ≥ 3 and d ≥ 3, i.e. k ≥ 2; the case k = 1 is already

known by [B].
For s = 2 and k ≥ 1, let Y = Y (k, 2) ⊂ P2 be the 0-dimensional scheme defined in 2.5; it is easy to check
that exp h0(IY (d)) = exp h0(IT (d)) = 0, T denoting the generic union of two (k +2)-fat points in P2. Since
T is not regular in degree d = k + 2 for any k ≥ 1, we conclude by lemma 3.1 d) that Os

k,n,k+2 is defective
with defectivity ≥ h0(IT (d)) = 1 (the only section is given by the (k + 2)-ple line through the two points).

Case Q(k,3,k + 2) :

3.6. Corollary. Assume d = k + 2 and n = 3. Then, Os
k,3,k+2 = PN for s ≥ n + 1 = 4 and k ≥ 1, while

Os
k,3,k+2 is defective for s ≤ 3.

Proof. The case s ≤ 3 will be treated in Prop.3.10.
If s = 4 and k = 1, O4

1,3,3 = PN by [CGG], (4.6). If s = 4 and k = 2, we have O4
2,3,4 = PN by lemma 3.3.

If s ≥ 5 and k ≥ 1, or s = 4 and k ≥ 3, the thesis follows by lemmata 3.2 and 3.3, respectively.

Case Q(k,4,k + 2) :

3.7. Corollary. Assume d = k + 2 and n = 4. Then, Os
k,4,k+2 = PN for s ≥ 5 and k ≥ 1, while Os

k,4,k+2

is defective for s ≤ 4.

Proof. The case s ≤ 4 will be given by Prop.3.10.
If s ≥ 5 and k = 1, Os

1,4,3 = PN by [CGG], (4.6) and (4.5). If s = 5 and k = 2, 3, we have O5
k,4,k+2 = PN

by Lemma 3.3.
If s ≥ n + 2 = 6 and k ≥ 2, or s = 5 and k ≥ 4, thesis follows by Lemmata 3.2 and 3.3, respectively.

Case Q(k,2,k + 3) :

3.8. Corollary. Assume d = k + 3 and n = 2. Then:
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i) for s = 2 and k = 1, 2: dim O2
k,2,k+3 = s

(
k+2
2

)
+ 2s− 1 (the expected one);

ii) for s = 2 and k ≥ 3: O2
k,2,k+3 is defective;

iii) for s ≥ 3 and k ≥ 1: Os
k,2,k+3 = PN .

Proof.

If s ≥ n + 2 = 4 and k ≥ 2, or s = 3 and k ≥ 4, the thesis follows by Lemmata 3.2 and 3.3, respectively.
If s ≥ 3 and k = 1, Os

1,2,k+3 = PN by [CGG], (4.5).
If s = 3 and k = 2, 3, we have O2

k,2,k+3 = PN by lemma 3.3.
If s = 2 and k = 1, or s = 2 and k = 2, O2

k,2,k+3 6= PN is not defective by [CGG], (4.6) and [BF], Theorem
1, respectively.
If s = 2 and k ≥ 3, then, in the notations of lemma 3.1, we have :
for k = 3, 4 exp h1(IX(d)) = exp h1(IY (d)) = 0, and the union X of 2 (k + 1)-fat points is not regular in
degree d = k + 3;
for k ≥ 5 exp h0(IY (d)) = exp h0(IT (d)) = 0, and the union T of 2 (k + 2)-fat points is not regular in
degree d = k + 3;
so we conclude by 3.1, c) and d).

For s ≤ n + 1, we have several partial results:

3.9. Proposition. If s ≤ n + 1, d ≥ 2k + 1 and k ≥ 2 then Os
k,n,d is regular.

Proof. We have to study the dimension of the vector space W1 + · · · + Ws =< Ld−k
1 Rk, Ld−k−1

1 F1R1, . . . ,

Ld−k
s Rk, Ld−k−1

s FsR1 >, where L1, . . . , Ls are generic in R1 and F1, . . . , Fs are generic in Rk. Since s ≤ n+1,
without loss of generality we may suppose Li = xi−1 for i = 1, . . . , s. Since d ≥ 2k + 1, for β = d − k ≥ 3,
the vector space W1 + · · ·+ Ws can be written as < xβ

0Rk, xβ−1
0 F1R1, . . . , x

β
s−1Rk, xβ−1

s−1 FsR1 >. If we show
that for a particular choice of F1, . . . , Fs ∈ Rk the dimension of W1 + · · ·+ Ws = expdim(Os

k,n,d) + 1 we can
conclude by semi-continuity that Os

k,n,d has the expected dimension. Let us consider the case Fi = xixi+1F̃i

for i = 1, . . . , s − 2, Fs−1 = xs−1x0F̃s−1 and Fs = x0x1F̃s, where the F̃j ’s are generic forms in Rk−2,
j = 1, . . . , n + 1. Let < xβ

i Rk >=: Ai and < xβ−1
i Fi+1R1 >=: A′

i, i = 0, . . . , s − 1; then we get A′
i =<

xβ−1
i xi+1xi+2F̃i+1R1 >, i = 0, . . . , s − 3; A′

s−2 =< xβ−1
s−2 xs−1x0F̃s−1R1 > and A′

s−1 =< xβ−1
s−1 x0x1F̃sR1 >.

Now W1 + · · · + Ws =
∑s−1

j=0 Aj +
∑s−1

j=0 A′
j . We can easily notice that A′

i ∩ (
∑s−1

j=0 Aj +
∑s−1

j=0,j 6=i A′
j) =

Ai ∩ (
∑s−1

j=0,j 6=i Aj +
∑s−1

j=0 A′
j) = Ai ∩A′

i =< xβ
i Rk > ∩ < xβ−1

i xi+1xi+2F̃i+1R1 >=< xβ
i xi+1xi+2F̃i+1 > for

any fixed i = 0, . . . , s− 3 (analogously if i = s− 2, s− 1). So we have found exactly s relations and we can
conclude that dim(W1 + · · ·+ Ws) = dim(

∑s−1
j=0 Aj) + dim(

∑s−1
j=0)A

′
j)− s = s

(
k+n

n

)
+ s(n + 1)− s, which is

exactly the expected dimension.

3.10. Proposition. If s ≤ n and k + 2 ≤ d ≤ 2k then Os
k,n,d is defective with defect δ such that:

A) δ ≥
(
n−s+d

d

)
if the expected dimension is

(
d+n

n

)
− 1;

B) δ ≥
(

s
2

)(
2k−d+n

n

)
if the expected dimension is s

(
k+n

n

)
+ sn− 1.

Proof. Let β := d− k ≥ 2; we can rewrite the vector space W1 + · · ·+ Ws as follows: < xβ
0Rk, xβ−1

0 F1R1,

. . . , xβ
s−1Rk, xβ−1

s−1 FsR1 >.
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A) We can observe that k[xs, ..., xn]d ∩ (W1 + · · ·+ Ws) = {0}, so if we expect that Os
k,n,d = PN we get

a defect δ ≥
(
n−s+d

d

)
.

B) Suppose now that s
[(

k+n
n

)
+ n

]
<

(
d+n

n

)
. If Os

k,n,d were to have the expected dimension we would

not be able to find more relations among the Wi’s other than xβ
i Fi+1 ∈< xβ

i Rk > ∩ < xβ−1
i Fi+1R1 >, for

i = 0, . . . , s− 1 (as it happens in Proposition 3.9). But it’s easy to see that xβ
i xβ

j F ∈< xβ
i Rk > ∩ < xβ

j Rk >

with i 6= j and F ∈ Rk−β . We have exactly
(

s
2

)
such terms for any choice of F ∈ Rk−β . We can also

suppose that the Fi ∈ Rk that appear in W1 + · · · + Ws are different from xβ
j F for any F ∈ Rk−β and

j = 0, . . . , s − 1, because F1, . . . , Fs are generic forms of Rk. Then we can be sure that the form xβ
i xβ

j F

belonging to < xβ
i Rk > ∩ < xβ

j Rk > isn’t one of the xβ
i Fi+1 that belongs to < xβ

i Rk > ∩ < xβ−1
i Fi+1R1 >.

Now dim(Rk−β) =
(
k−β+n

n

)
so we can find

(
s
2

)(
k−β+n

n

)
independent forms that give defectivity. Hence in

case s
[(

k+n
n

)
+ n

]
<

(
d+n

n

)
we have dim(Os

k,n,d) ≤ expdim−
(

s
2

)(
k−β+n

n

)
= expdim−

(
s
2

)(
2k−d+n

n

)
.

3.11. Proposition. If s = n+1, k +2 ≤ d ≤ 2k and expdim(On+1
k,n,d) = (n+1)

((
k+n

n

)
+ n

)
−1 then On+1

k,n,d

is defective with defect δ ≥
(
n+1

2

)(
2k−d+n

n

)
.

Proof. The proof of this fact is the same as case B) of the previous proposition.

3.12. Proposition. If s = n + 1, n ≥ k+2
d−k−2 , k + 2 < d ≤ 2k and expdim(On+1

k,n,d) = N then On+1
k,n,d is

defective with defect δ ≥
(
(n+1)(d−k−1)−(d+1)

n

)
.

Proof. If k+2 < d ≤ 2k, then 2 < β := d−k ≤ k and we have to study the dimension of W1+· · ·+Wn+1 =<

xβ
0Rk, xβ−1

0 F1R1, . . . , x
β
nRk, xβ−1

n Fn+1R1 >. It is easy to see that a monomial of the form f = xβ0
0 · · ·xβn

n

with
∑n

i=0 βi = d and 0 ≤ βi ≤ β − 2 for all i ∈ {0, . . . , n} is a form of degree d which does not belong to
W1 + · · ·+Wn+1. In fact f can be written as x

d−(γ0+k+2)
0 · · ·xd−(γn+k+2)

n with
∑n

i=0 γi = nd− (n+1)(k +2)
and γi ≥ 0 for all i = 0, . . . , n and these forms are exactly

(
n+(n+1)(d−k−2)−d

n

)
=

(
(n+1)(d−k−1)−(d+1)

n

)
. In

order for these forms to exist, one needs that (n+1)(d−k−2)−d ≥ 0, i.e. that n ≥ k+2
d−k−2 . This is sufficient

to show that if we expect that On+1
k,n,d = PN , and if n ≥ k+2

d−k−2 and k + 2 < d ≤ 2k, then On+1
k,n,d is defective.

Let’s notice that what we just saw is not sufficient to say that the defect δ is exactly equal to(
(n+1)(d−k−1)−(d+1)

n

)
, because in Rd\ < W1 + · · ·Wn+1 > we can find also monomials like xβ0

0 · · ·xβn
n with∑n

i=0 βi = d, at least one βi = β − 1 and each of the others βj ≤ β − 2. Hence δ ≥
(
(n+1)(d−k−1)−(d+1)

n

)
.

All the results on defectivity lead us to formulate the following:

3.13 Conjecture. Os
k,n,d is defective only if Y is as in case c) or d) of Lemma 3.1.

The conjecture amounts to say that the defectivity of Y can only occur if defectivity of the fat points
schemes X or T imposes it.

3.14. Remark. In many examples the defectivity of Y is exactly the one imposed by X or by T (i.e. the
inequalities on δ in Lemma 3.1 are equalities), but this is not always the case: for example if we consider
the variety O2

4,5,6 (see the example after Prop. 3.4), here we get that the corresponding scheme Y has
defectivity 86 in degree 5. Here we have that X is given by two 5-fat points in P6, and it is easy to check
that h0(IX(5)) = 126 (all 5-tics through X can be viewed as cones over a 5-tic of a P4), so that its defectivity
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is 84. Hence, even if Y is “forced” to be defective by X, its defectivity is bigger, i.e. Y should impose to
5-tics 12 conditions more than X, but it imposes only ten conditions more.

It is easy to find similar behavior if d = k + 1, for instance for n = 8, s = 3, d = k + 1 = 2 or n = 10,
s = 3, d = k + 1 = 2.

In the case of P2, we are able to prove our conjecture for small values of s:

3.15. Theorem. Let X, Y be as above, n = 2 and s = 3, 4, 5, 6 or 9; then:

H(Y, d) = min{H(X, d) + 2s,

(
d + 2

2

)
}.

The proof mainly uses la méthode d’Horace (e.g. see [Hi]) on the scheme Y . For a detailed proof, see
[Be] and [BC].

Notice that this result implies that Y can be defective only when X is.
In general, it is quite a hard problem to determine, and even to give a conjecture upon, the postulation

for an union of s m-fat points in Pn.
For what concerns P2, there is a conjecture for the postulation of a generic union of fat points (e.g. see

[Ha]). For a generic union A ⊂ P2 of s m-fat points with s ≥ 10, the conjecture says that A is regular in
any degree d. This has been proved for m ≤ 20 in [CCMO]. For s ≤ 9 all the defective cases are known
(e.g. see [Ha] or [CCMO] for a complete list).

This allows us to list all the defective cases for some values of s (for related results see also [BF2]):

3.16 Corollary. Let n = 2, s ≤ 6 or s = 9. Then Os
k,2,d is defective if and only if:

s = 2, k = 1 and d = 3, or k ≥ 2 and k + 2 ≤ d ≤ 2k.
s = 3, 3k+5

2 ≤ d ≤ 2k.
s = 5, 2k + 4 ≤ d ≤ 5k+3

2 .
s = 6, k ≡ 2 (mod 5) and 12(k+1)

5 ≤ d ≤ 5k+3
2 , or k 6≡ 2 (mod 5) and 12(k+1)

5 + 1 ≤ d ≤ 5k+3
2 .

The case s = 2 is given by Propositions 3.4, 3.8, 3.9 and 3.10, while the other cases follow from Theorem
3.15 and the classification in [CCMO]. Notice that there are no defective cases for s = 4 or s = 9. In case
s = 2 defectivity is forced exactly by defectivity of X or T .
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[A]: B.Ådlandsvik. Varieties with an extremal number of degenerate higher secant varieties. J. Reine Angew.
Math. 392 (1988), 16-26.

[AH ]: J. Alexander, A. Hirschowitz. Polynomial interpolation in several variables. J. of Alg. Geom. 4

(1995), 201-222.

13



[B]: E. Ballico, On the secant varieties to the tangent developable of a Veronese variety. Preprint.

[BF]: E. Ballico, C.Fontanari,On the secant varieties to the osculating variety of Veronese surfaces. Central
Europ. J. of Math. 1 (2003), 315-326.

[BF2]: E. Ballico, C.Fontanari, A Terracini Lemma for osculating spaces with applications to Veronese
surfaces. To appear, J. Pure and Appl. Algebra.

[Be]: A. Bernardi, Tesi di Dottorato, Univ. di Milano, work in progress.

[BC]: A. Bernardi, M.V. Catalisano, Some defective secant varieties to osculating varieties of Veronese
surfaces. Scientific Technical Notes, Sez. M, DIPEM. Univ. di Genova. To appear.

[CGG]: M.V.Catalisano, A.V.Geramita, A.Gimigliano. On the Secant Varieties to the Tangential Varieties
of a Veronesean. Proc. A.M.S. 130 (2001), 975-985.
[CCMO]: C.Ciliberto, F.Cioffi, R.Miranda, F.Orecchia. Bivariate Hermite interpolation and linear systems
of plane curves with base fat points. Proc. ASCM 2003, Lecture notes series on Computing 10, World
Scientific Publ. (2003), 87-102.

[Ge]: A.V.Geramita. Inverse Systems of Fat Points, Queen’s Papers in Pure and Applied Math. 102, The
Curves Seminar at Queens’, vol. X (1998).
[Ha] : B.Harbourne. Problems and progress: A survey on fat points in P2. Queen’s Pap. Pure Appl. Math.
(Queen’s University, Kingston, CA), 123 (2002), 87-132.
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