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Abstract. A robust algorithm for the numerical computation of biarcs, i.e. G1 curves com-
posed of two arcs of circle, is presented. Many algorithms exist, but are based on geometric
constructions, which must consider di�erent geometrical con�gurations. The proposed algo-
rithm uses an analytic construction, which explicitly states the solution and does not require
the identi�cation of geometric cases. Moreover, singular angles con�gurations are treated
smoothly.

The proposed algorithm is compared with the Matlab's routine rscvn that solves geo-
metrically the same problem. Numerical experiments show that Matlab's routine sometimes
fails near quasi singular con�gurations. Moreover, Matlab's routine has a non natural choice
of the solution for large angles. Finally, the proposed solution depends smoothly on the ge-
ometrical parameters, so that it can be easily included in more complex algorithms involving
splines of biarcs or least squares data �tting.
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1 Introduction

In the industrial applications of curves there are two philosophies: one is the use of highly sophisticated
polynomial splines or transcendental curves like high degree Bèzier curves [7], rational functions [28, 35, 12],
clothoid curves [3, 23, 30, 21, 32], hodographs [11, 16], etc., which can produce continuous paths up to
the curvature or higher derivatives, but at a relatively expensive computational cost, usually because there
are no closed form solutions and a system of nonlinear equations must be numerically solved. The other
side of the coin is the employment of low degree polynomials, for instance piecewise linear interpolants or
circular arc splines. The advantage of using this family of curves is that, at the price of losing some precision
and smoothness, the computational times required to produce a path are in practice negligible, because the
associated interpolation problem can be solved with elementary actions. Moreover, sometimes it is simply not
necessary to go beyond G1 continuity, a typical case is represented by real time applications.
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In this paper we discuss an improvement of the algorithm for G1 biarc �tting used in Matlab. A biarc is
a curve obtained by connecting two circle arcs that match with G1 continuity and interpolate two given
points and two tangent directions expressed as angles. Biarcs have several interesting properties, �rst of all,
they are easy to understand and to use: in fact the arclength computation is straightforward, the tangent
vector �eld is continuous and de�ned everywhere, the curvature is de�ned almost everywhere and is piecewise
constant. Moreover, they are very useful in several applications, for instance, they are e�ectively used in the
approximation of higher degree curves [26, 18, 10] or spirals [23], they easily produce curves particularly used
in CNC machining and milling, where the cutting devices follow the so called G-code, i.e. a path composed
of straight lines and circles. Other applications of biarcs are in Computer Aided Design or Manufacturing
(CAD-CAM), where they are used to specify the path [33] or the o�set of a more general curve, [13] or
approximating NURBS and data [25, 26, 34, 15].

Related work. Biarcs were originally proposed in an industrial environment rather than in an academic
one, and from the 1970s they have been studied extensively by Bèzier [7], Bolton [8] and Sabin [27]. A
general theoretical framework for a complete classi�cation of the biarcs, in the Möbius plane, is proposed
in [17]. The solution of the biarc interpolation problem is not unique because the imposed constraints leave
one degree of freedom, thus there is a one-dimensional family of interpolating biarcs to general planar G1

Hermite data. Di�erent choices of this free parameter give origin to di�erent interpolation schemes. The most
used construction techniques build the biarc by equal chord or by parallel tangent [31], other constructions
minimize the distance between a supporting polygon and the biarc [24]. In the �rst case the length of the two
arcs is chosen equal, in the second case the tangent at the joint point is chosen parallel to the segment that
connects the initial with the �nal point, [20, 22, 23]. In all cases, it can be shown, see for instance [31], all
the possible joint points must be on a certain circle. These solutions are based on a geometric approach and
consider many di�erent cases, as detailed in [17] and in the references therein contained. Typical cases are
the C-shaped, S-shaped and J-shaped biarcs [14, 17, 9].

Paper contribution. The algorithm herein proposed extends the range of Hermite data of Matlab's
implementation which fails or gives a non-consistent solution in certain con�gurations. These cases are
discussed with examples in Section 4. Following our approach used for the solution of the G1 Hermite
Interpolation Problem with clothoid curves, [6, 4], we propose herein a purely analytic solution to the biarc
problem, that does not require to split the problem in mutually exclusive cases. This analytic construction
is based on the representation of a circle arc with the smooth function sinc(x) := sin(x)/x that permits to
manage smoothly also the singular cases, i.e. when the circle degenerates to a straight line. At the best of the
Authors' knowledge, this approach based on the sinc(x) function is a novelty. We select the free parameter
required to close the system of equations in the same way as Matlab's Curve Fitting Toolbox implementation
([19], page 12-218). The construction is explained in detail in the next sections. The issue of Matlab's function
for biarcs (rscvn) is that it cannot solve certain con�gurations of angles and that it gives a non-consistent
solution for some range of angles, as it is discussed in the experimental section. We show how to overcome
this problem while maintaining the same approach for the construction of the biarc. A C++ implementation
of the proposed algorithm is available from [2] (with other useful tools for handling clothoids) also with Matlab
interface via mex �les. There is also a standalone version available al Matlab Central [5].

2 Biarc Formulation

The biarc problem requires to �nd the pair of circle segments (possibly degenerate, as we will clarify next)
that connect two points in the plane with assigned initial and �nal angles [9]. More formally, it is the solution
of the G1 Hermite Interpolation Problem with two arcs. Let p0 = (x0, y0)T and p1 = (x1, y1)T be two points
in the plane R2, ϑ0 and ϑ1 be the associated angles, then the biarc problem requires to �nd the solution of
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the following Boundary Value Problem (BVP):

x′(`) = cos θ(`), x(0) = x0, x(L) = x1,

y′(`) = sin θ(`), y(0) = y0, y(L) = y1,

θ′(`) = k(`), θ(0) = ϑ0, θ(L) = ϑ1,

(1)

where the curvilinear abscissa ` is in the range [0, L].
As for the G1 �tting of the Clothoids (see [3]), the angles ϑ0 and ϑ1 are assumed bounded in the range

(ϑ0 − ω) ∈ [−π, π], (ϑ1 − ω) ∈ [−π, π], (2)

where ω = atan2(y1 − y0, x1 − x0) is the solution of the problem x1 − x0 = d cosω, y1 − y0 = d sinω with
d =

√
(x1 − x0)2 + (y1 − y0)2.

The above equations ensure that the solution exhibits G1 continuity, however, because there are not enough
degrees of freedom, in general, it is not possible to satisfy (1) with a single arc or straight line. Therefore, the
curvature must be piecewise constant:

k(`) =

{
κ0 0 ≤ ` < `?,

κ1 `? ≤ ` ≤ L,
(3)

where we assume that the curvilinear abscissa ` runs from 0 to L and the curvature has a jump at `?, with
`? ∈ (0, L). The point at `? is where the two arcs join. The two curvatures κ0, κ1 are real values, which
can take the value zero. These values are associated to the radii of curvature of the two circles, if they are
di�erent from zero. This formulation of the problem also contains degenerate cases, where the solution is not
composed of two circles (i.e. we allow κ0 = 0 or κ1 = 0), meaning that a straight line can be part of the
solution. Other particular cases are represented by a single arc of circle or by a single straight line. Fixing
the G1 Hermite condition, i.e. the boundary condition of the BVP (1), the solution depends on four free
parameters `?, L, κ0, κ1, to be determined.

Lemma 1 The solution of BVP (1) as a function of the parameters `?, L, κ0, κ1 can be written as

x(`) =

{
x0 + f(`, ϑ0, κ0) ` ≤ `?,
x1 + f(`− L, ϑ1, κ1) ` ≥ `?,

f(`, ϑ, κ) = ` sinc

(
κ`

2

)
cos

(
ϑ+

κ`

2

)

y(`) =

{
y0 + g(`, ϑ0, κ0) ` ≤ `?,
y1 + g(`− L, ϑ1, κ1) ` ≥ `?,

g(`, ϑ, κ) = ` sinc

(
κ`

2

)
sin

(
ϑ+

κ`

2

)

θ(`) =

{
ϑ0 + `κ0 ` ≤ `?,
ϑ1 + (`− L)κ1 ` ≥ `?,

(4)

where ` is the arc length of the curve and the function sinc z is

sinc z :=
sin z

z
= 1 +

∞∑
n=1

(−1)n
x2n

(2n+ 1)!
. (5)
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proof. By direct integration, the solution of BVP (1) is for ` ≤ `?:

x(`) = x0 −
sinϑ0 + sin(κ0`+ ϑ0)

κ0
, y(`) = y0 +

cosϑ0 − cos(κ0`+ ϑ0)

κ0
.

The application of the standard trigonometric addition identities

sin(α+ β) = sinα cosβ + cosα sinβ, cos(α+ β) = cosα cosβ − sinα sinβ, (6)

to sin(κ0`+ ϑ0) and cos(κ0`+ ϑ0) with α = κ0` and β = ϑ0 yields

x(`) = x0 −
sinϑ0 + sin(κ0`) cosϑ0 + cos(κ0`) sinϑ0

κ0
,

y(`) = y0 +
cosϑ0 − cos(κ0`) cosϑ0 + sin(κ0`) sinϑ0

κ0
.

The collection of sinϑ0, cosϑ0, followed by a multiplication and division by ` results in

x(`) = x0 + ` cosϑ0
sin(κ0`)

κ0`
− ` sinϑ0

1− cos(κ0`)

κ0`
,

y(`) = y0 + ` cosϑ0
1− cos(κ0`)

κ0`
+ ` sinϑ0

sin(κ0`)

κ0`
.

Using the identity

sin z

z
= cos

z

2
sinc

z

2
,

1− cos z

z
= sin

z

2
sinc

z

2
,

it follows that

x(`) = x0 + ` sinc
κ0`

2

(
cosϑ0 cos

κ0`

2
− sinϑ0 sin

κ0`

2

)
,

y(`) = y0 + ` sinc
κ0`

2

(
cosϑ0 sin

κ0`

2
+ sinϑ0 cos

κ0`

2

)
.

With the application of the standard trigonometric identities (6), equation (4) easily follows (for ` ≤ `?). The
branch ` ≥ `? is computed analogously. �

Remark 1 To compute (5) near the critical point z = 0, its Taylor approximations with a small number of
terms is used. For example, to limit the error below 1.3 · 10−20, from∣∣∣∣(1− z2

6

(
1− z2

20

))
− sin z

z

∣∣∣∣ ≤ |z|65040
,

it is enough to have |z| ≤ 0.002.
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The continuity conditions for (4) introduce the three constraints:

`? sinc

(
`?κ0

2

)
cos

(
ϑ0 +

`?κ0
2

)
− (`? − L) sinc

(
(`? − L)κ1

2

)
cos

(
ϑ1 −

(`? − L)κ1
2

)
= x1 − x0,

`? sinc

(
`?κ0

2

)
sin

(
ϑ0 +

`?κ0
2

)
− (`? − L) sinc

(
(`? − L)κ1

2

)
sin

(
ϑ1 −

(`? − L)κ1
2

)
= y1 − y0,

ϑ0 + `?κ0 = ϑ1 + (`? − L)κ1. (7)

As pointed out in several references, [20, 18, 17], the solution of the biarc problem is not unique, in fact the
three constraints on the four parameters leave one degree of freedom that allows many di�erent geometric
constructions [31]. Introducing as free parameter the junction angle ϑ? = θ(`?), it is possible to parameterize
all the solutions of BVP (1). The use of ϑ? in the angle conditions of (7) permits to eliminate κ0 and κ1.
Starting with the identities for the angles computed at ` = `?:

`?κ0 = ϑ? − ϑ0, (`? − L)κ1 = ϑ? − ϑ1. (8)

If we introduce the scaled lengths

a = `? sinc

(
ϑ? − ϑ0

2

)
, b = (L− `?) sinc

(
ϑ? − ϑ1

2

)
, (9)

the continuity conditions (7) are equivalent to the linear system:(
cos
(
ϑ?+ϑ0

2

)
cos
(
ϑ?+ϑ1

2

)
sin
(
ϑ?+ϑ0

2

)
sin
(
ϑ?+ϑ1

2

))(a
b

)
=

(
x1 − x0
y1 − y0

)
. (10)

All the possible solutions of the biarc problem are given by the angles ϑ? for which the solution of the linear
system (10) exists. The determinant of the linear system is sin

(
ϑ1−ϑ0

2

)
and is zero for angles ϑ1 = ϑ0 + kπ

and k ∈ Z.

Remark 2 The condition ϑ1 = ϑ0 + kπ with k ∈ Z cannot be excluded. For example, when ϑ0 = ϑ1 = ϑ,
x0 = y0 = 0, x1 = d cosω, y1 = d sinω the linear system (10) reduces to(

cos
(
ϑ?+ϑ

2

)
cos
(
ϑ?+ϑ

2

)
sin
(
ϑ?+ϑ

2

)
sin
(
ϑ?+ϑ

2

))(a
b

)
= d

(
cosω

sinω

)
,

thus, a natural choice is to set ϑ?+ϑ
2 = ω, so that ϑ? = 2ω − ϑ and(

cosω cosω

sinω sinω

)(
a

b

)
= d

(
cosω

sinω

)
. (11)

However, the solution is not unique because all a and b such that a + b = d solve the linear system and the
solutions are two half-circles with radii that satisfy r0 + r1 = d/2.
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From, the previous remark, when the linear system is singular, an additional condition must be considered in
order to have a unique solution.

For example, a minimization of the curvature jump or the weighted sum of the squares of the curvatures
(as in [34]) implies a = b = 1/2. The same result can be obtained looking for the minimum norm least squares
solution for linear system (11), which is obtained by multiplying the r.h.s. with the Moore-Penrose pseudo-
inverse of the coe�cients matrix [1]. The pseudo-inverse is here used to obtain a solution that smoothly
depends on its parameters [29]. The use of the minimum norm least squares solution of problem (10) does
not guarantee the satisfaction of constraints (7). To have a solution of problem (10) with smooth dependence
on the parameters x0, y0, x1, y1, ϑ0 and ϑ1, the free parameter ϑ? is assumed to satisfy

ϑ? = 2ω −A(ϑ0, ϑ1), (12)

with A(ϑ0, ϑ1) a smooth function such that

A(ϑ, ϑ) = ϑ, min{ϑ0, ϑ1} < A(ϑ0, ϑ1) < max{ϑ0, ϑ1}, for ϑ0 6= ϑ1. (13)

For example, A(ϑ0, ϑ1) = (ϑ0 + ϑ1)/2, which will coincide with the Matlab geometric construction in the
non-singular case.

Lemma 2 The minimum norm least squares solution (a, b) of the linear system (10) with ϑ? given by (12),
together with properties (13) and

|ϑ0 − ω| ≤ π, |ϑ1 − ω| ≤ π, |ϑ1 − ϑ0| < 2π,

exists, is unique, and satis�es a > 0 and b > 0. Notice that the requirement for the angles assumed in (2)
implies the above constraints.

proof. If ϑ0 6= ϑ1, from |ϑ1 − ϑ0| < 2π, the determinant of (10) is di�erent from zero, the solution is unique
and coincides with the minimum norm least squares solution. The solution of the linear system is computed
using Cramer's Rule with r.h.s. written in polar coordinates, e.g.(

x1 − x0
y1 − y0

)
= d

(
cosω

sinω

)
, (14)

and using standard trigonometric identities, the solution reduces to

a = d
sin
(
ϑ?+ϑ1

2 − ω
)

sin
(
ϑ1−ϑ0

2

) = d
sin
(
ϑ1−A(ϑ0,ϑ1)

2

)
sin
(
ϑ1−ϑ0

2

) , b = d
sin
(
ω − ϑ?+ϑ0

2

)
sin
(
ϑ1−ϑ0

2

) = d
sin
(
A(ϑ0,ϑ1)−ϑ0

2

)
sin
(
ϑ1−ϑ0

2

) . (15)

Finally, properties (13) easily imply a > 0 and b > 0. If ϑ0 = ϑ1 = ϑ, system (10) with r.h.s. (14) becomes(
cosω cosω

sinω sinω

)(
a

b

)
= d

(
cosω

sinω

)

and the least squares minimum norm solution computed using the Moore-Penrose pseudo-inverse is a = b =
d/2 > 0. �
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Corollary 3 For A(ϑ0, ϑ1) = (ϑ0 + ϑ1)/2 the solution of the biarc �tting problem (1) can be written as

t = d sinc

(
ϑ1 − ϑ0

4

)/
sinc

(
ϑ1 − ϑ0

2

)
, ϑ? = 2ω − ϑ0 + ϑ1

2
,

`0 = t
/(

2 sinc

(
ϑ? − ϑ0

2

))
, `1 = t

/(
2 sinc

(
ϑ? − ϑ1

2

))
,

κ0 =
ϑ? − ϑ0
`0

=
4

t
sin

(
ϑ? − ϑ0

2

)
, κ1 = −ϑ? − ϑ1

`1
= −4

t
sin

(
ϑ? − ϑ1

2

)
,

where `0 = `? and `1 = L− `? are the lengths of the �rst and second arc, respectively.

proof. A simple substitution of A(ϑ0, ϑ1) into (15) and with (5) to avoid 0/0, permits to compute

a = b =
d

2
sinc

(
ϑ1 − ϑ0

4

)/
sinc

(
ϑ1 − ϑ0

2

)
.

The other biarc parameters follow from (9) and (8). �

Remark 3 The position of the junction point (x?, y?), as a function of the angle ϑ?, is given by

x? = x0 +
t

2
cos

(
ϑ? + ϑ0

2

)
, y? = y0 +

t

2
sin

(
ϑ? + ϑ0

2

)
,

where t and ϑ? are the values described in Corollary 3. The value of t does not depend on ϑ?, hence the
above equations represent a circle, or, in other words, the position of the junction point varies on a circle for
di�erent values of ϑ?. This property con�rms a known result, proved for example in [31].

In Corollary 3, the angles are assumed in the range speci�ed in (2). In the practical implementation, the
angles are normalized by adding 2kπ with k ∈ Z, to meet this assumption. Notice that for the computation
of κ0 and κ1, the expression using trigonometric functions are to be preferred instead of the expression that
use the division by `0 and `1. In fact, the division by `0 and `1 is ill conditioned for very small values of these
lenghts. Moreover, the trigonometric version is valid and accurate also when the problem degenerates to a
single segment, i.e., when `0 = 0 or `1 = 0.

The complete biarc algorithm is implemented in Algorithm 1.

3 Matlab's approach

Now we focus on the solution proposed and implemented in Matlab's rscvn function, [19], page 12-218, which
uses the degree of freedom to assign the direction of the (unit) normal vector n(`) to the trajectory at `?:

n(`?) = (− sin θ(`?), cos θ(`?))
T . (16)

The consequence of assigning n(`?) = v is that problem (1)�(3) will have at most one solution. According
to Matlab's Handbook, such normal vector

�v is chosen as the re�ection, across the perpendicular to the segment from p0 to p1, of the
average of the vectors n(0) and n(L)�.
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Algorithm 1: Biarc solution algorithm

Biarc (x0, y0, ϑ0, x1, y1, ϑ1);
begin

dx ← x1 − x0; dy ← y1 − y0;

d←
(
d2x + d2y

)1/2
ω ← atan2(dy, dx);

θ0 ← ω + Range(ϑ0 − ω); θ1 ← ω + Range(ϑ1 − ω);

t← d sinc
(
θ1−θ0

4

) /
sinc

(
θ1−θ0

2

)
θ? ← 2ω − θ0 + θ1

2
;

∆θ0 ← θ?−θ0
2 ; ∆θ1 ← θ?−θ1

2 ;

`0 ← t
/

(2 sinc (∆θ0)) ; `1 ← t
/

(2 sinc (∆θ1)) ;

κ0 ←
4

t
sin (∆θ0) ; κ1 ← −

4

t
sin (∆θ1) ;

x? ← x0 + t
2 cos

(
θ?+θ0

2

)
; y? ← y0 + t

2 sin
(
θ?+θ0

2

)
;

return [`0, θ0, κ0], [`1, θ1, κ1], x?, y?, θ?;
end

Sinc (x) // approximate (sinx)/x with error ≤ 1.3 · 10−20

begin

if |x| < 0.002 then return 1 +
x2

6

(
1− x2

20

)
;

return (sinx)/x
end

Range (θ) // return θ + 2kπ with k such that the angle is in [−π,−π]
begin

while θ > +π do θ ← θ − 2π;
while θ < −π do θ ← θ + 2π;
return θ

end

We elaborate this construction by recasting it into an equivalent one, expressed with the tangent vectors
t(`). The application of a rotation of π/2 to n(`?) = v yields an equivalent condition t(`?) = w, where w
is re�ected along the segment from p0 to p1, of the average of the tangents t(0) and t(L), see Figure 1.
Moreover, this construction can be improved by reasoning on the angles instead of the tangent vectors. Indeed,
it is more convenient to use the average of the angles rather than the average of the vectors, especially when
the average of the vectors will yield a null (or very small) vector. In such cases, the normal vector de�ned by
Matlab's choice is not well posed, but the average of the angles (12) is always well de�ned. Indeed, it falls in
the range (ω − π, ω + π), so that no 2π over�ow occurs.

Remark 4 The average of the angles, as described above, coincides with the Matlab method of vectors
average. In fact, the two results are exactly the same for angles in the range (−π2 , π2 ). For values outside that
range, Matlab reverses the angles: it keeps only the direction, but not the orientation. This produces a path
that is travelled from the �nal to the initial point, unless direction is not relevant for the application, it can
be considered a bug. The average of the vectors introduces also numerical problems of cancellation, whereas
the proposed solution is stable. These behaviours are discussed more in detail in the numerical tests.
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(x0, y0)

n(0)

n(L)

(x?, y?)

(x1, y1)

n(`?)

(x0, y0)
(x?, y?)

ϑ1ϑ0
ϑ

(x1, y1)

Figure 1: Generalisation of Matlab biarc interpolation scheme, converted from normal vectors (top) to tangent
vectors (bottom). The �gure shows the case of p0 and p1 aligned with the x axis and (x?, y?) the joint point.

Thus, we construct w on condition (16) as w = (cosϑ?, sinϑ?)
T and ϑ? is computed as:

ϑ :=
ϑ0 + ϑ1

2
, ϑ? = ω + (ω − ϑ) = 2ω − ϑ

with ω = atan2(y1 − y0, x1 − x0), e.g. ω is the angle that satis�es{
x1 − x0 = d cosω,

y1 − y0 = d sinω,
d =

∥∥∥∥∥
(
x1 − x0
y1 − y0

)∥∥∥∥∥ .
The condition n(`?) = v becomes therefore θ(`?) = ϑ?.

4 Numerical Tests

In this section we show some numerical experiments to validate the presented algorithm.

Test 1. In the �rst test, see Figure 2, we create a bouquet of biarcs, all starting in p0 = (0, 0) with angles
in the range (−π, π) and ending at the point p1 = (1, 0) with di�erent �nal angles ϑ1 ∈ {0, π/6, π/3, 2π/3}.
Figure 2 con�rms that the solution of the problem varies with continuity.

Test 2. In this test we show that the continuity of the solution is not a property of Matlab's biarc function.
In fact, we can see in Figure 3 a direct comparison on the same tests between the algorithm herein proposed
(cases (a) and (c)) and Matlab (cases (b) and (d)). In Figure 3 (a) and (c) there is continuity in the variation
of the solution, whereas in Figure 3 (b) and (d) we can notice a jump in the solution, which is an undesirable
behaviour. In Figure 3 (a) and (b) we plot the solutions for p0 = (0, 0) and p1 = (1, 0), the angles range
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Figure 2: Four examples of biarc interpolation with di�erent initial and �nal angles. The �rst arc is plotted
in blue, the second arc in red.

in [π/2, 4/5π], some tangent vectors are shown as arrows. In Figure 3 (c) and (d) we plot the solutions
for p0 = (0, 0) and p1 = (1, 0), the initial angles range in [π/2, 4/5π], the �nal angles are in the range
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Figure 3: Comparison between present method (a), (c) and Matlab (b) and (c). Arrows indicate the initial
and �nal tangent vectors. The three initial directions are combined with three �nal direction giving nine curves.
Matlab's output exhibits wrong selections in the solution, which does not vary with continuity.

[−4/5π,−π/2]. In both cases (b) and (d) Matlab selects a non-natural solution.

Test 3. As a last example, we show in Figure 4 two cases where Matlab produces a wrong solution, when it
is close to singular con�gurations, that is, when the average of the vectors used to �nd the joint point is zero
or almost zero. In Figure 4 (a), our algorithm correctly interpolates p0 = (0, 0) and p1 = (1, 0) with ϑ0 =
ϑ1 = π/2, producing a classic S-shaped biarc, whereas in (b), Matlab selects the wrong angle and produces a
C-shaped biarc that violates the tangent at the initial point. In Figure 4 (c) and (d) we show the solution of
the same problem with slightly perturbed angles: p0 = (0, 0), p1 = (1, 0), but ϑ0 = ϑ1 = π/2− 104ε, where
ε is the machine epsilon, i.e. a very small number. In Figure 4 (c), our algorithm produces a solution that is
very close to the non-perturbed case (a), whereas Matlab gives a line segment, that is incompatible with the
correct solution (c) or with the non-perturbed (still wrong) solution of (b).
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Figure 4: Comparison between present method (a), (c) with Matlab (b) and (c). Arrows indicate the initial
and �nal tangent vectors. Cases (a) and (b) are the non-perturbed angles ϑ0 = ϑ1 = π/2, cases (c) and (d)
have ϑ0 = ϑ1 = π/2− 104ε, where ε is the machine epsilon.

5 Conclusions

A robust algorithm for the numerical computation of biarcs is presented. Di�erently from geometric based
solutions, it is not necessary to consider many geometrical con�gurations and the (unique) solution is given
in closed form. The singular con�guration (when the angles satisfy ϑ0 = ϑ1) is solved smoothly by using the
sinc(x) function. The Matlab's routine rscvn solves geometrically the same problem; this has the drawback
that it is not possible to �nd the correct biarc in all the con�gurations. Finally, rscvn fails to compute the biarc
when the con�guration is almost singular. The biarc computed by the herein proposed algorithm smoothly
depends on the parameters so that it can be easily included in more complex algorithms like splines of biarcs
or least squares data �tting.
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