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Abstract—One of the most common approaches to 

unsupervised change detection in multispectral images is Change 

Vector Analysis (CVA). CVA computes the multispectral 

difference image and exploits its statistical distribution in (hyper-

)spherical coordinates by means of two steps: i) magnitude and ii) 

direction thresholding. The two steps require assumptions on: i) 

the model of class distributions: and ii) the number of changes. 

However, both assumptions are seldom satisfied or difficult to 

formulate, especially when considering VHR images. Thus, we 

propose an approach to multiple change detection in VHR optical 

images based on iterative clustering and adaptive thresholding in 

(hyper-) spherical coordinate. The proposed approach: i) is 

distribution free, ii) is unsupervised, iii) automatically identifies 

the number of changes; and iv) is robust to noise. Results 

obtained on two multitemporal single-sensor and multisensor 

datasets, including images from WorldView-2 and QuickBird, 

corroborate the effectiveness of the proposed approach. 

 

Index Terms— Very High Resolution images, Change 

detection, Multitemporal, Clustering, Adaptive Thresholding. 

I. INTRODUCTION 

HEN dealing with VHR optical images, one of the most 

common approaches to multiple Change Detection 

(CD) is the computation of the multispectral difference 

image by means of Change Vector Analysis (CVA) [1]–[3]. 

CVA uses two or more spectral channels to model both the 

magnitude and the direction of spectral change vectors. To 

separate changed from unchanged samples, sub-optimal 

solutions are often employed that identify decision thresholds 

along the magnitude and direction variables independently 

[1]–[3]. A threshold over the magnitude variable provides 

separation between changed and unchanged samples. Whereas 

multiple thresholds along the direction variable(s) provide 

separation among kinds of change. However, such thresholds 

are complex to define. The accuracy of these sub-optimal 

methods depends on the a priori knowledge of both class 

statistical models and expected number of changes in order to 
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define the thresholds [1]–[3]. Moreover, when the number of 

dimensions increases, sub-optimal solutions become less 

effective as they do not fully exploit the correlation among 

variables. Two main limitations arise from the above-

mentioned assumptions. The first one is given by the 

definition of the threshold value along the magnitude, which is 

defined by considering all kinds of change as a single large 

metaclass [2], [4]–[6]. This implies that this threshold is 

defined according to the average properties of the kinds of 

change and does not gather the peculiarities of each of them. 

The second one is given by the definition of thresholds along 

the direction variable(s), which are usually defined by 

assuming a prior knowledge on the number of classes and on 

the statistical distribution model [1]–[3]. 

In order to overcome the two main limitations, methods 

based on adaptive thresholding or clustering have been 

designed [3], [6]–[11]. According to the literature, and under 

the assumption of independence between magnitude and 

direction variable(s), two main steps are usually applied [2], 

[5]. The first step aims at distinguishing changed from 

unchanged pixels by defining a single threshold value along 

the magnitude variable. The second one separates kinds of 

change from each other by defining threshold values along the 

direction(s). Both steps can be addressed by using 

thresholding techniques available in the literature [3], but 

specific solutions are required depending on the type of data 

(e.g., optical, SAR) and application (e.g., bi-temporal or 

multitemporal analysis, short or long term analysis). 

Sometimes [6], a third step is considered that adapts the 

threshold along the magnitude to the characteristics of 

different kinds of change identified in step 2. Nevertheless, the 

problem remains about how to properly detect the number of 

changes and how to separate them without prior information 

on their number and statistical distribution. 

To detect and separate the kinds of change in an automatic 

way, methods based on clustering can be considered [4], [7], 

[8], [12]. There are mainly two kinds of clustering algorithms 

[8]: i) partitioning; and ii) hierarchical methods. The former 

relies on the centroid-based model and partition the data into k 

clusters (e.g., k-means). Such methods often exploit a 

predefined statistical model for the classes and assume the 

knowledge of the number of clusters. Thus, they show similar 

drawbacks to the sub-optimal thresholding solutions. Whereas 

the latter (e.g., Ordering Points to Identify the Clustering 

Structure (OPTICS) [13]) build a cluster hierarchy based on a 
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tree structure. Tree construction follows: i) bottom-up; or ii) 

top-down paradigms. Hierarchical clustering identifies clusters 

with different size and densities and is sensitive to outliers. 

One of the most well-known hierarchical clustering is the 

OPTICS [13], and was proposed in the literature in order to 

overcome two specific drawbacks: i) to allow to search for 

clusters with different densities among the same set of points; 

and ii) to be able to deal with sparse data. OPTICS performs 

well when there are large differences in cluster densities and 

therefore is able to deal with sparse data. Accordingly, the use 

of OPTICS for solving the problem of multiple CD in VHR 

images in the (hyper-) spherical domain is promising. 

However, the overlapping of change clusters reduces OPTICS 

performance and increases computational time. This leads to 

the need of defining novel efficient methods in which 

threshold values (in the magnitude domain) and change 

sectors (in the direction domain) are adaptively defined. 

In this letter, we propose an approach for automatic multiple 

CD that jointly exploits the histogram distribution of the 

magnitude and direction variables in (hyper-) spherical 

coordinates. The approach is distribution free (in the direction 

domain) and thus particularly suitable for VHR images. It first 

performs a rough discrimination between unchanged and 

changed samples according to the properties of the magnitude 

variable. Then, it automatically identifies the sectors along 

direction variables associated to different kinds of change by 

iteratively performing density-based clustering and region 

growing [8], [12], while adding samples from around the joint 

magnitude-directions histogram peaks. Finally, it tunes the 

magnitude threshold by adapting it according to the 

characteristics of kinds of change. CD is achieved in an 

unsupervised and application-independent way. 

The rest of this letter is organized as follows. Section II 

describes the proposed method giving details on each of its 

three steps. Section III presents the datasets and experimental 

results. Finally, Section IV draws the conclusions and 

provides future developments. 

II. PROPOSED METHOD FOR MULTIPLE CD BY ITERATIVE 

CLUSTERING AND ADAPTIVE THRESHOLDING 

Let us consider two VHR optical images, 𝑋1 and 𝑋2, 

acquired over the same geographical area by sensors 𝑆1 and 𝑆2 

at time t1 and t2, respectively. 𝑆1 and 𝑆2 can be the same or 

different sensors (e.g., GeoEye, QuickBird, WorldView). Let 

𝑋1,𝑎 and 𝑋2,𝑏 be the images associated to spectral bands 𝑎 

(𝑎 = 1,2, … , 𝐴) and 𝑏 (𝑏 = 1,2, … , 𝐵) for 𝑆1 and 𝑆2. a and b 

may be associated to the same wavelength or not depending 

on the sensor properties. Let 𝐼1 × 𝐽1 and 𝐼2 × 𝐽2 be the size of 

𝑋1 and 𝑋2, respectively. Let 𝑋𝐷 be the multispectral difference 

image obtained by subtracting on a pixel base the spectral 

feature vectors. Let 𝜔𝑛 be the class of unchanged pixels and 

𝛺𝑐 = {𝜔𝑐1 , 𝜔𝑐2 , … , 𝜔𝑐𝐾} the metaclass of 𝐾 possible kinds of 

change. Thus, Ω = 𝜔𝑛 ∪ 𝛺𝑐  is the set of classes to be 

identified by the proposed approach. 

The approach assumes, 𝑋1 and 𝑋2 to be radiometrically and 

geometrically corrected to mitigate differences that are not 

related to changes on the ground [1]. This step is relevant for 

any change detection approach and particularly critical when 

dealing with multisensor images [1], [3], [12], [14]. To 

properly model and automatically detect multiple changes in 

VHR an adequate feature extraction is required [1]. CVA 

feature space is used to represent/highlight the 

presence/absence of changes. For sake of simplicity and 

visualization purposes, CVA is often applied to a 2D space 

[2], [5], [10]. Nevertheless, employing a higher number of 

dimensions increases the change representation capabilities, 

but also the complexity due to density and sparsity of clusters. 

Here we define a 3D feature space, thus 𝑋𝐷 ca be represented 

in spherical coordinates by eq. (1)-(3) [1]. 

 
𝜌 = √𝑋𝐷,1

2 + 𝑋𝐷,2
2 + 𝑋𝐷,3

2  (1) 

 
𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑋𝐷,2
𝑋𝐷,1

) (2) 

 
𝜑 = 𝑎𝑟𝑐𝑜𝑠 (

𝑋𝐷,3
𝜌
) (3) 

where 𝜌 represents the magnitude variable, and 𝜃 and 𝜑 the 

direction variables (the number of direction variables increases 

as the space dimensionality does). Once the (hyper-) spherical 

space is defined, the proposed approach considers 3 steps (see 

Fig. 1). Step 1 separates unchanged from changed samples by 

means of the magnitude variable (binary CD). Step 2 

iteratively identifies multiple changes by means of a 

hierarchical algorithm applied to the direction variables 

(iterative multiple CD). And step 3 adaptively adjusts the 

magnitude threshold values by considering each change class 

separately (adaptive magnitude thresholding). 

A. Step 1: Binary CD 

  
step 1/step 2 step 3 

Fig. 1 Illustration of the 3-step procedure for the detection of multiple changes 
(zenithal view of the azimuth and magnitude variables of CVA) [6]. 

Step 1 separates unchanged from changed samples. In the 

literature, it has been demonstrated that in a (hyper-) spherical 

domain unchanged pixels tend to cluster around the origin of 

the coordinate system, i.e., they show a small magnitude 𝜌 ≤
𝑇, where T is a decision threshold separating changed from 

unchanged samples [2], [5]. T can be calculated by means of 

the Bayesian decision theory by estimating class statistical 

parameters using the Expectation-Maximization (EM) 

algorithm [15]. This can be done by following a Gaussian 

([15]), Rayleigh-Rice ([5]) or compound multiclass statistical 

model ([16]). In step 1, 𝜌 statistical distribution is exploited to 

separate the feature space of multispectral change vectors in: 

1) the circle of unchanged samples (𝐶𝑛) and 2) the annulus of 

changed samples (𝐴𝑐) (Fig. 1, step 1). 

B. Step 2: Iterative Multiple CD 

In step 2, we focus on 𝐴𝑐, where: i) changed pixels are 

located far from the origin, ii) kinds of change may show 

stronger or weaker magnitude (𝜌) and specific preferred 

direction (𝜃, 𝜑); and iii) pixels affected by the same kind of 
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change tend to cluster [2]. Thus, for each kind of change a 

cluster exists with a peak surrounded by a spread and irregular 

cloud of points. Change clusters may overlap. To distinguish 

among change clusters, an iterative clustering is applied. 

The proposed method jointly exploits the capabilities of 

OPTICS and the well-known region growing algorithm [8], 

[12] in an iterative configuration, such as that drawbacks are 

addressed. In the specific case of OPTICS, main problems are 

related to the overlap of different clusters in a cloud of points. 

For the region growing, it requires the definition of seed points 

(from the user) to determine whether a neighbor pixel belongs 

to a given region. Once the seeds are defined, it starts to add 

samples from surrounding pixels in the cloud of points, which 

results in problems with overlapping clusters. Here our set of 

cloud points is defined by the 𝜌, 𝜃, 𝜑 histogram resulting from 

the CVA (hyper-) spherical representation of the feature space 

(see Fig. 2 (a)). In our iterative clustering, instead of applying 

the OPTICS/region growing directly to the whole cloud of 

points (as in the literature), we exploit the different frequency 

levels (𝑛 - see Fig. 2 (b)) of the magnitude-direction variables. 

This configuration allows us to reduce the computational time, 

by starting from a reduced number of samples (green dots/line 

in Fig. 2), and adding them as we move to lower frequency 

levels (pink, blue and purple dots/lines in Fig. 2). 

  
(a) (b) 

Fig. 2. Illustration of (a) the cloud points histogram in a CVA coordinate 

system (zenithal view of the azimuth and magnitude variables) and (b) its 
corresponding azimuth histogram. 

Let M be the maximum number of samples in a bin of the 

histogram in the (hyper-) spherical domain. First, iterative 

clustering finds a set of bins showing a number of samples 

higher than M-n (𝑛 = 1,… ,𝑀). In this way at least one cloud 

of samples can be defined which is dense and isolated enough 

to be considered as a cluster. Whether the cluster is dense 

enough or not is decided by the initial conditions of the 

density-based clustering algorithm. Let us assume that these 

conditions are reached at the level n of the histogram (where 

0 < 𝑛 < 𝑀), and that k=3 (𝑘 ≥ 1) clusters are differentiated. 

Each of the clusters is expected to represent a different kind of 

change. The most populated bins are used to apply the 

OPTICS density-based algorithm (Fig. 3 (a)). OPTICS 

requires some initial parameters: i) the minimum number of 

points (MinPts) to form a cluster, and ii) the reachability 

(Eps), i.e., the maximum distance (radius) to which a point can 

be considered of the same cluster. Once the first k clusters are 

found, the algorithm evolves to the next frequency level (level 

n-1), i.e., to histogram bins with less number of samples (see 

Fig. 2 (b)). Thus, new samples are added (black dots in Fig. 3 

(b)). Each of the existing k clusters is grown by means of the 

region growing [8], [12] (Fig. 3 (c)). To apply the region 

growing algorithm, the number of cycles and the 

neighborhood connectivity need to be defined. Then the 

OPTICS algorithm is applied (with the same parameters) to 

search for new possible clusters (Fig. 3 (d)). The same process 

is iterated until the algorithm reaches the level 1 and all the 

histogram bins are processed. At the end, the optimal clusters 

are found, each of them corresponding to one specific kind of 

change, together with outliers. 𝑆𝑘 sectors are defined 

according to the region associated to the kth cluster (Fig. 1, 

step 2). Fig. 3 (a)-(d) illustrates the working process of the 

proposed step 2 by considering a 2D zenithal view of the 

spherical space. Given the nature of the proposed iterative 

multiple CD step, we name it as Growing OPTICS (GO). 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Proposed step-2: zenithal view of the 𝜃 and 𝜑 variables. 

C. Step 3: Iterative Multiple CD 

In step 1 a single global threshold value 𝑇 along 𝜌 is 

computed that exploits the properties of the meta-class Ω𝑐. 

However, each 𝜔𝑐𝑘
∈ Ω𝑐  may have a different overlapping 

grade with the distribution of 𝜔𝑛. Thus, the optimal threshold 

𝑇𝑘 along the magnitude variable that separates a given kind of 

change 𝜔𝑐𝑘
 from 𝜔𝑛 might be different from the global 

threshold 𝑇 defined in step 1. Thresholds 𝑇𝑘 (𝑘 = 1,… ,𝐾) can 

be different from each other. To properly exploit the 

peculiarities of each 𝜔𝑐𝑘
, the last step tunes the threshold 

value along 𝜌 by considering only the pixels in each sector 𝑆𝑘, 

𝑘 = 1,… , 𝐾. Therefore, 𝐾 binary problems are defined that 

differ from the problem described in step 1 because of the 

different balance between change and no-change class prior 

probabilities and conditional distributions. Each optimal 

threshold value 𝑇𝑘 can be computed by applying the same 

methods as for step 1. The residual gray light area in Fig. 1, 

step 3 is associated to unchanged pixels, whereas the sectors 

𝑆1, 𝑆2, 𝑆3, 𝑆4, … , 𝑆𝑘 are associated to changed areas. 

III. EXPERIMENTAL RESULTS 

A. Dataset description and design of experiments 

To validate the proposed approach, two datasets made up of 

both single-sensor and multisensor VHR optical images were 

selected. The study areas are located in the Trentino region, 

north Italy. For dataset 1, images were acquired by the 

QuickBird (QB) and the WorldView-2 (WV-2) satellites in 

2006 and 2010, respectively. Whereas for dataset 2, images 

were acquired by the WV-2 satellite in 2010 and 2011. The 

images were pre-processed by absolute radiometric and 

geometric corrections, as per [1]. This step is critical and may 
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affect CD performance if not accurate. However experimental 

analysis showed that the proposed method is robust to pre-

processing accuracy. Pre-processed images show 0.6m spatial 

resolution and 640×640 pixels size for dataset 1 (Fig. 4, left 

column) and 0.5m spatial resolution and 1230×1230 pixels 

size for dataset 2 (Fig. 4, right column). 

The selected areas of interest contain mainly agricultural 

fields in the case of dataset 1, plus a new road for dataset 2 

(Fig. 4). In order to properly highlight these kind of changes, 

Tasseled-Cap (TC) features were extracted [1]. CVA is 

applied to the brightness, wetness and greenness features and 

the information is represented in spherical coordinates [1]. A 

reference map of each study area was built by 

photointerpretation, and 5 and 4 kinds of change were found 

for datasets 1 and 2, respectively. For comparison we use 

OPTICS clustering since it does not require a priori 

knowledge of the number of clusters and is distribution free, 

whereas most of the clustering methods do (therefore they 

provide poor performance when used for multi-class change 

detection with VHR multitemporal images). This choice also 

allows to explicitly prove how GO improves OPTICS 

performance. 
 

Dataset 1 Dataset 2 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Left column, true color composition of dataset 1: (a) QB 2006 and (c) 
WV-2 2010 images; and Right column dataset 2: (b) WV-2 2010 and (d) WV-

2 2011 images. 

B. Experimental Results 

Once pre-processing and feature selection have been carried 

out, we proceed with the multiple CD. In step 1 the threshold 

𝑇 is calculated by means of [5]. Results are reported in Table I 

for both datasets. Step 2 is applied only after masking 

unchanged samples. For both datasets, the minimum number 

of clusters k for the initial step of GO was set to 2. MinPts was 

set to 20 and the number of iterations of the region-growing 

algorithm was set to 5 with a neighborhood of connectivity 

equal to 26. The selection of these parameters is critical for the 

performance of OPTICS and proposed approach, but they are 

easy to fix by means of quick error and trial tests. In this set up 

GO was able to detect all the changes in 11.9s for dataset 1 

and 26.8s for datasets 2, using MATLAB® on a standard 

workstation. Hardware is Intel(R) Core(TM) i7-3630QM CPU 

@2.40 GHz, 16.00GB RAM. Whereas OPTICS required 140s 

for dataset 1 and 225s for dataset 2. Step 3 identifies 𝑇𝑘 values 

(Table I). As expected 𝑇𝑘 threshold values are different among 

them and from T. 

TABLE I. MAGNITUDE THRESHOLD VALUES FOR DATASETS 1 AND 2. 

Dataset 𝑻 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 

1 0.030 0.027 0.035 0.047 0.032 0.026 

2 0.070 0.070 0.068 0.045 0.073 - 
 

 Dataset 1  Dataset 2 

 

 

 

 
(a) (b) 

  
(c) (d) 

  
 (e)  (f) 

Fig. 5. CD maps obtained by applying the 3-step configuration with: (a) and 

(b) OPTICS; (c) and (d) proposed approach; and (e) and (f) Reference Maps. 
Left column dataset 1 and right column dataset 2. 

The CD maps obtained are shown in Fig. 5. It is possible to 

see that the proposed approach was able to properly detect all 

the kinds of change for both datasets. A visual comparison of 

the two CD maps with the reference map (Fig. 5 (e) and (f)), 

points out the improvement achieved while working with the 

GO algorithm. In dataset 1, GO detects 𝐶1,1 and 𝐶1,4 properly, 

whereas OPTICS tends to confuse those classes with other 

changes, resulting in several false alarms (FA). In both 

experiments, one part of 𝐶1,1 is misdetected, maybe because of 

TC features. GO is further able to detect and separate class 

𝐶1,5 from 𝐶1,1 (which correspond to overlapped clusters in the 

spherical domain), whereas OPTICS confuses it with class 

𝐶1,1. Concerning 𝐶1,2 and 𝐶1,3 the proposed approach results in 

a slightly better detection (Table II). In dataset 2, 

improvements are mainly achieved in the separation of 𝐶2,2 

and 𝐶2,4, as well as in a better detection of unchanged samples 
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with a reduction of FA (Table III). The proposed approach 

outperforms OPTICS of about 7% and 4% for datasets 1 and 

2, respectively, without using any prior knowledge about the 

number of changes. 

TABLE II. CONFUSION MATRIX: (A) OPTICS AND (B) GO (DATASET 1). 

(A) 

Predicted 
Actual 

𝐶1,1 𝐶1,2 𝐶1,3 𝐶1,4 𝐶1,5 𝐶1,6 Rel. (%) 

𝐶1,1 3243 8 3 10249 11976 8143 9.65 

𝐶1,2 24 41087 291 0 12 4023 90.43 

𝐶1,3 102 1011 21300 4782 2 5445 65.25 

𝐶1,4 39 3 196 18069 41 1569 90.72 

𝐶1,5 0 0 0 0 0 0 0.00 

𝐶1,6 3331 6112 1234 4119 1438 261748 94.16 

Acc. (%) 48.12 85.21 92.51 48.55 0.00 93.17  

Overall Accuracy 84.34% 

(B) 

Predicted 
Actual 

𝐶1,1 𝐶1,2 𝐶1,3 𝐶1,4 𝐶1,5 𝐶1,6 Rel. (%) 

𝐶1,1 3893 23 3 995 60 8754 28.36 

𝐶1,2 24 44671 83 0 10 12 99.71 

𝐶1,3 5 358 16992 480 0 11 95.21 

𝐶1,4 41 6 658 29885 1034 1480 90.28 

𝐶1,5 0 0 0 781 11242 660 88.64 

𝐶1,6 2776 3163 5288 5078 1123 270011 93.94 

Acc. (%) 57.77 92.64 73.80 80.30 83.47 96.11  

Overall Accuracy 91.97% 
 

TABLE III. CONFUSION MATRIX: (A) OPTICS AND (B) GO (DATASET 2). 

(A) 

Predicted 
Actual 

𝐶2,1 𝐶2,2 𝐶2,3 𝐶2,4 𝐶2,5 Rel. (%) 

𝐶2,1 213918 2156 54 630 80413 71.98 

𝐶2,2 1665 90079 1007 6302 27361 71.26 

𝐶2,3 41 232 16506 0 783 93.99 

𝐶2,4 0 0 0 0 0 0.00 

𝐶2,5 32662 38665 6755 1059 992593 92.62 

Acc. (%) 86.16 68.68 67.86 0.00 90.14  

Overall Accuracy 86.79% 

(B) 

Predicted 
Actual 

𝐶2,1 𝐶2,2 𝐶2,3 𝐶2,4 𝐶2,5 Rel. (%) 

𝐶2,1 215985 138 1 73 41828 83.71 

𝐶2,2 441 108541 2602 251 27257 78.04 

𝐶2,3 40 517 17224 1 1595 88.89 

𝐶2,4 951 2030 0 6912 5041 46.28 

𝐶2,5 30869 19926 4495 754 1025428 94.82 

Acc. (%) 86.99 82.76 70.82 86.50 93.12  

Overall Accuracy 90.82% 

IV. CONCLUSION 

In this letter, an approach to multiple CD in VHR optical 

images based on iterative clustering and adaptive thresholding 

has been proposed. The adaptive GO works in (hyper-) 

spherical coordinates, is distribution free (in the direction 

domain), unsupervised and automatically identifies the 

number of changes. The effectiveness of the adaptive GO, 

with respect to OPTICS thresholding method, has been 

validated in two pairs of VHR single-sensor and multi-sensor 

images. Such datasets showed complex and noisy set-ups. GO 

demonstrated to be robust in handling noisy samples and 

overlapping clusters and required a reduced computational 

time when compared to SoA. The adaptive thresholding 

improved the overall accuracy thanks to the correct separation 

of overlapping clusters. Open issues regarding the selection of 

initial clustering algorithm parameters remain (for both 

OPTICS and region growing). Though the parameters are easy 

to setup (correlated to data spatial resolution and density of 

cloud points), they are not fixed in an automatic way. Future 

works will consider the applicability and adaptation of the 

method for CD in images with lower spatial resolution as well 

as possible extensions to other applications (e.g., 

classification). 
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