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Abstract

In this doctoral thesis, we theoretically investigate the propagation of sound waves
in dilute Bose gases, in both the collisionless and hydrodynamic regimes. The
study of sound wave is a topic of high relevance for the understanding of dynam-
ical properties of any fluid, classical or quantum, and further provides insightful
information about the equation of state of the system.

In our work, we focus in particular on the two-dimensional (2D) Bose gas,
in which the sound wave is predicted to give useful information about the na-
ture of the superfluid phase transition. Recently, experimental measurement of
sound wave in a uniform 2D Bose gas has become available, and we show that the
measured data are quantitatively well explained by our collisionless theory.

Finally, we study the mixtures of weakly interacting Bose gases, by developing
a beyond mean-field theory, which includes the effects of thermal and quantum
fluctuations in both the density and spin channels. Our new theory allows for the
investigation of sound dynamics, as well as the fundamental problem of phase-
separation.
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Introduction

From our voice to musical instruments, sound is ubiquitous in nature. In classical
fluids, sound corresponds to an adiabatic oscillation in pressure traveling in space,
for which the propagation is mediated by the collisions between the particles in
the medium, such as air or water [1]. The need for collisions between particles
implies that, different from electromagnetic waves, sound can not propagate in
vacuum. On the other hand in solids, the periodic arrangement of atoms allow for
the existence of vibrational modes, which correspond to the collective excitations
of the system in the quantum mechanical description. In contrast to the sounds
in classical fluids (referred to hydrodynamic sounds), these phonons do not arise
from the incoherent collisions between the atoms, but rather from the presence of
a lattice. Finally the most exciting, yet not fully explored field concerns the sound
propagation in quantum gases.

Quantum gases have been intensively investigated since their first experimental
realization more than twenty years ago [2,13], and are often referred to as quantum
simulators, owing to their cleanness and high tunability [4-6]. The use of opti-
cal and magnetic traps allows for trapping millions of atoms of the same species
without bringing any impurities, and for cooling them to a few micro-Kelvins, a
temperature regime in which quantum effects become dominant. As for the high
controllability of the system, it is achieved from the control of several external pa-
rameters at will, including the temperature, the atomic species, the shape of the
trapping potential, and most importantly, the interaction strength between atoms,
using Feshbach resonance. Consequently, playing on these available “knobs”, one
can conveniently sweep from a regime where there are enough collisions to sustain
a hydrodynamic picture, to a collisionless regime where many-bodies interactions
play a lead role.

The aim of my thesis is to study the propagation of sound in dilute Bose gases,
in both the hydrodynamic and collisionless regimes. In particular, we focus on the
sound properties of three-dimensional and two-dimensional Bose gases. We further
develop the finite-temperature theory for three-dimensional Bose-Bose mixtures,
in view of a future study of sound dynamics.

One of the most extraordinary manifestation of quantum behavior at the



macroscopic scale is the phenomenon of superfluidity [7]. Below a certain tem-
perature, the quantum fluid is well described by the two-fluid picture introduced
by Landau [8], where one may consider the gas to be a mixture of normal viscous
component and a non-dissipative superfluid. This leads to the emergence of a new
sound mode, which in the hydrodynamic regime is referred to as second sound,
in contrast to the first sound known in normal fluids [9]. In a weakly interacting
Bose gas, the second sound corresponds to an oscillation of the superfluid density.
Instead, for a strongly interacting system such as the unitary Fermi gas, the sec-
ond sound corresponds to an out-of-phase oscillation of the superfluid and normal
components [10]. Therefore the second sound is closely related to the superfluid
property of the gas. Recently, this connection has been used to achieve the first
measurement of the superfluid density of an interacting Fermi gas [11], from an ex-
perimental probe of the second sound. Indeed, while in a weakly interacting Bose
gas the superfluid density is practically the same as the Bose-Einstein condensate
(BEC) fraction and therefore can be easily measured, this is no longer true in a
Fermi gas, where the macroscopic occupation of a single state is prohibited from
Fermi statistics. Another system where second sound is expected to provide useful
information about the superfluid property is the two-dimensional (2D) quantum
gas [12].

In two dimensions, Bose-Einstein condensation is ruled out at finite tempera-
ture, due to the presence of strong thermal fluctuations [13|. However, a super-
fluid can still exist, known as the Berezinskii-Kosterlitz-Thouless (BKT) superfluid
phase [141/15]. One of the main characteristic of this phase is to be an infinite order
phase transition, implying that any thermodynamic quantities evolve smoothly as
one crosses the transition point, without showing any singular behavior. Instead,
the superfluid density is predicted to exhibit a sudden jump at the phase transi-
tion, by taking abruptly a finite value as one enters in the superfluid regime. While
2D Bose and Fermi gases have been realized experimentally, this BK'T jump of the
superfluid density has never been observed explicitly in a quantum gas, also due to
the difficulty in probing directly the superfluid density. The situation is therefore
very similar to the aforementioned interacting Fermi gas, and one may expect the
second sound to shed light on the BKT transition. This is indeed what was found
in a preliminary theoretical work [16], in which the authors have predicted the
occurrence of a BKT jump in the second sound speed too, for a weakly interacting
2D Bose gas.

In our work, we have extended this prior study to investigate the effects of
inter-atomic interaction on the sound velocities, from the weak-coupling regime to
the strong-coupling regime. In experimental systems, the two limits correspond
to the weakly interacting 2D Bose gas on one side, and the BEC regime of a 2D
Fermi gas on the other side. Our calculations based on Landau’s two-fluid equation
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and universal thermodynamics have revealed that the BKT jump of the second
sound remains for any values of interaction, whereas the nature of the sound itself
exhibits a great change, by evolving from a density wave to an entropic wave as
one increases the interaction strength.

Besides the hydrodynamic regime in which the sound propagates through the
individual atomic collisions, it is known that sound in interacting quantum gases
can also propagate as an effect of the average interaction force. This is for instance
the case of the Bogoliubov phonon at zero temperature in weakly interacting BEC,
which corresponds to the collective mode of the superfluid system. Strongly moti-
vated by the measurement of the sound velocity in a weakly interacting 2D Bose
gas carried by the experimental group of Paris [17], where they did not observe the
BKT jump but rather a finite sound velocity also in the absence of a superfluid,
we have developed a theory to investigate the collisionless regime. Our theoretical
framework is based on the collisionless Boltzmann equation, where one considers
the atoms to freely evolve in a mean-field created by the other atoms. Consistent
with the experimental observations, we found that sound can indeed propagate
without collisions, both in the superfluid and normal phase of the system, sus-
tained by the interaction between particles.

Finally, another system where the problem of sound remains practically unex-
plored, concerns the mixtures of quantum gases. Mixtures of atomic gases have
been realized since the early age of Bose-Einstein condensates [18,19]. Nowadays,
it is possible to trap simultaneously atoms of same species lying in different hyper-
fine states, but also atoms of different species and different statistics (Bose-Fermi
mixtures). A crucial question concerning mixtures, regardless of its quantum or
classical nature, is the miscibility. One can indeed expect the sound to propagate
in a different way as the mixture is homogeneous or phase-separated. For the two-
component Bose gas at zero temperature, the simplest mean-field analysis predicts
that the mixture is miscible if the interaction between the same atomic species is
stronger than the interaction between unlike particles, and phase separates if not.
On the other hand, the effects of temperature on the miscibility of mixtures are
less known, and even less the interplay between thermal and quantum fluctuations.
Intuitively, one may think that temperature favors mixing, as it is the case in clas-
sical fluids because of the entropy of mixing. However, our theoretical study based
on the finite-temperature many-body theory demonstrates the opposite: the mis-
cibility of a BEC mixture decreases as one increases the temperature, eventually
leading to a phase-separation.

Thesis summary

The first chapter of the manuscript aims to give a comprehensive introduction to
the theoretical concepts used in the thesis for the investigation of sound propa-



gation in ultracold quantum gases. After briefly discussing the sound dynamics
in classical fluids, we will introduce the phenomena of Bose-Einstein condensation
and superfluidity. This will bring us to the concept of two-fluid hydrodynamics
developed by Landau. We then turn to the opposite collisionless regime, and set
the general theoretical framework, based on linear response theory. Finally we
summarize the existing and on-going experimental works on sound propagation
in quantum gases, so as to formulate the main motivation of this work. The sec-
ond chapter is devoted to the sound properties of single-component Bose gas. We
start from reviewing the three-dimensional Bose gas, which has been the subject
of several papers in the literature. This will provide us some insight into the ther-
modynamics of the weakly interacting Bose gas, as well as the theoretical tools
introduced in the previous chapter. The main part of this thesis concerns the
Chap. [3 devoted to the study of 2D Bose gas. After an introduction to the BKT
physics of 2D quantum gases, we investigate the hydrodynamic regime of the 2D
Bose gas. This part of the manuscript is mainly based on our work published in
Physical Review A [20]. We then move to the collisionless regime, and compare
our theoretical results for the sound speed with the recent experiment carried by
the Paris group. This part of the work was published together with the experi-
mental paper in Physical Review Letters [21]. In the final chapter, we study the
finite-temperature properties of binary Bose mixtures. After a review of existing
theories for the Bose mixtures at zero and finite temperatures, we develop the
Popov theory for the mixtures. Different from the other chapters, the emphasis in
this section is put on the study of the phase-separation. In particular, we discuss
the effects of thermal and quantum fluctuations on the thermodynamic properties
of the mixture. This part of the thesis is based on our work published in Physical
Review Letters [22].



Chapter 1

Sound propagation in ultracold
quantum gases

The aim of this first chapter is to introduce the theoretical tool needed for studying
the propagation of sound in quantum gases. We will first calculate the speed
of sound for the ideal classical fluids, by starting from the Boltzmann transport
equation. Although this derivation is not the most straightforward, nor the most
general one, it will provide us all the basic theoretical concept for the understanding
of sound physics. After introducing the phenomenon of Bose-Einstein condensation
and superfluidity, we will derive the equations for the sound waves in quantum
gases, in both the hydrodynamic and collisionless regimes.

1.1 Sound propagation in classical fluids

1.1.1 Boltzmann transport equation

The general idea of physical kinetics for the description of transport phenomena,
is to follow the motion of the fluid as a whole instead of looking at the motion of
each individual atom [23,[24]. This is achieved by writing down the equation of
motion for the distribution function of the system, f(r, p,t), which corresponds to
the number of particles per unit volume of phase space {r,p} at time ¢, where r
and p are, respectively, the spatial and momentum coordinates. Let us consider a
monoatomic gas, with atoms initially occupying a region A of the phase space, of
volume d3rd®p at (r,p). In the absence of collisions and under an external force
F, the atoms will be found after an interval of time 6t in a region B of volume
d3r'd3p’ at coordinates (', p’), where r' = r+vdt and p’ = p+Fdt, with v = p/m.
This statement is equivalent to the following equality:

f(r+vét,p+Fdt,t + 6t)d*r'd’p’ = f(r,p,t)d°rd’p. (1.1)

5



6 Sound propagation in ultracold quantum gases

From geometric construction, one can show that d’r’'d*p’ = d®rd>p, and expanding
the left-hand side of Eq. (1.1) up to linear order, one obtains the Boltzmann
transport equation,

Jd p of
— + =V —VU(r,t t) = — 1.2
(at +2v_vu, >vp) for =G| (12
where we have assumed a conservative force F' = —VU and introduced the colli-

sional term, 0f /0t|con.

For a sufficiently small volume d*rd®p, and time dt, one may consider that any
collisions occurring inside A will drift atoms away from B. Equivalently, there
might be atoms reaching the elemental volume B from collisions occurring outside
the region A. For the dilute system which we are interested in, one can restrict to
binary collisions, and the collision integral takes the general form [25]:

of

ot

(p,r,t) = /d3p2d3p’1d3p’2[w(p’1, PP, P2) fo (r, /1,1, P/ t)
coll
_w<p17p2’p/17p/2)f2 (r7p7r7 p27t)] 9 (13)

where we have introduced the scattering function w(py, p2|p’;, p’y) containing all
the information about the nature of the collisions, and the two-body correlation
function fo(ry, p1,re, p2), corresponding to the probability to find simultaneously
atoms in (ry, p1) and (rg, p2). Therefore, the first term in the right-hand side of Eq.
describes the process in which the colliding atoms reach the state p, whereas
the second one corresponds to the scattering out term. In general, the scattering
function depends on the inter-atomic interaction and has to be defined in the
quantum mechanical context. The study of the two-body problem will be done in
Sec. and here we only discuss some general features of w(1,2[1’,2"). In what
follows we consider the collisions to be elastic, implying that the momentum and
the energy are conserved. Under these considerations, the scattering amplitude has
to be invariant under time reversal and parity transformation, w(p’y, p’s|p, p2) =

w(p1, p2|p'1, P'2), and Eq. (1.3 can be rewritten as:

or
ot

:/dgpzdgp/1d3p/2w<plla P's[P1. P2)
X [f (I', p/17 t) f (r7p/27t) - f (I‘, plat) f (I‘, p27t)] : (14)

In the above equation, we have further assumed the molecular chaos hypothesis
to hold, by neglecting the correlations between the colliding atoms: fy(1,2) ~
f(1)f(2). Equation together with Eq. constitute the Boltzmann trans-
port equations for the classical fluids. It is worth noticing that, beside the diffusion
terms, the Boltzmann equation possesses two distinct contributions for the

coll
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restoring force to the equilibrium: the collisional integral on one hand, and
the conservative force VUV, f on the other hand. As one shall see in more de-
tails in Sec. the transport regime in which the former contribution plays a
major role is referred to the hydrodynamic regime, whereas one speaks about the
collisionless regime when the later contribution becomes dominant.

For a homogeneous gas (V = 0) in the absence of an external potential (U = 0),
an equilibrium solution of the Boltzmann equation is obtained by noticing that
the left-hand side of Eq. is equal to zero for any distribution function f(p)
which does not depend on time and position. As for the collisional term Eq. (1.4),
it vanishes when the detailed-balance condition is satisfied:

f(I‘, pllvt)f(rap/27t) = f(raplat)f(rap27t> : (15)

Recalling the conservation of energy, the above condition is found to be satisfied
for the Maxwell-Boltzmann distribution function:
»2
f(p) = e Pm), (1.6)
where 8 = 1/(kgT) is the inverse thermal energy, and the chemical potential y is
found from the normalization condition

n(r) = (%)/ [ s, (1.7

with n(r) the number density of particles.

1.1.2 Hydrodynamic sound in classical fluids

We start from the hydrodynamic solution of the Boltzmann equations [24, §4].
As one shall see below, the solution of Boltzmann equation correctly retrieves the
adiabatic sound speed of a classical fluid. First, it is important to notice that the
collisional term ([1.4)) vanishes not only for the special choice of the distribution
function ((1.6), but for a more general class of solutions:

1
Fpt) =exp | -600) (5o - mute. 0 —pr)) |09
with u the velocity of the fluid. Although the above equation is not an equilibrium
solution of the Boltzmann equation, it cancels the collisional term. The vanishing
of collisional term here does not mean that there are no collisions but the opposite:
there are enough collisions to maintain locally the thermodynamic equilibrium,

with a well-defined temperature, velocity and chemical potential, at every position
of the fluid.



8 Sound propagation in ultracold quantum gases

From the local equilibrium distribution ([1.8)), one can derive conservation equa-
tions, by taking the n'® momenta of the Boltzmann equation. This is achieved by
multiplying Eq. (1.2) by p" (n = 0,1,2) and integrating over the momentum
space:

1. 0" momentum. Equation of continuity:

%n(r, t) + Vj(r,t) =0 (1.9a)

with j(r,t) = [ d®p(p/m)f(r,p,t) the current density.

2. 1% momentum. Momentum conservation:

0

() + / &p (pV) (% f(p,r,t)) — VU(r,)n(r,t)  (1.9b)

3. 2" momentum. Energy conservation:

9 2
aé’(r,t) + V/dgp%QP—mf(p,r,t) = —VU(r,t)j(r,t) (1.9¢)

with E(r,t) = [ ®p(p*/2m)f(r, p,t) the energy density.

For the description of acoustic waves, we shall concentrate on the small ampli-
tude oscillations of the fluid. This is achieved by expanding the physical quantities
around their equilibrium values, (r, p, t) = 2°+dx(r, p, t), and keeping only terms
to linear order in dz (we consider the fluid to be initially at rest; v = 0). Then,
noticing that any integrands with odd power of (p — mv) vanish, Egs. (1.9a)) -

(1.9¢) yield to linear order:
0

an(r,t) = —n'Vv(r,t), (1.10a)
m%j(r,t} = —VP(r,t) —n°VU(r,t), (1.10Db)
%S(r, t) = —(E°+POVv(r,t), (1.10c)

with P = 2€/3, and to linear order, j(r,t) = n’v(r,t). Solving the above equations
one finally finds the following wave equation,

9%n(r,t)
o2

with the classical sound velocity ¢ = \/5kgT'/(3m).

= *V?n(r,t) + nV2U(r, 1), (1.11)
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Before closing this section, it is insightful to discuss the nature of the classical

sound. From Egs. ((1.10a) and ((1.10¢)), one finds
10n(r,t)  30P(r,1)
n ot 5 ot

This equation corresponds to the isentropic condition PV®? = const, reflecting
that the sound wave propagates adiabatically. One can indeed verify that the
sound speed is given by the adiabatic compressibility of an ideal fluid, ¢ = %g_]; s-

It is also worth noticing that the above approach based on the Boltzmann
equation neglects the effects of interaction (see Eq. in which £ includes only
the kinetic energy), and is therefore valid for weakly-interacting fluids only. As
one shall see in the next section, the formulation of the hydrodynamic equation
for the quantum fluids follows essentially the same procedure, starting from the
conservation equations after assuming local equilibrium of the gas. However we
shall not adopt any equation of state, making the superfluid hydrodynamics more
general than the classical description sketched in this section.

(1.12)

1.1.3 Collisionless sound in classical fluids

The Boltzmann equation can also be solved in the absence of collisions, by putting
explicitly the collisional term on the right-hand side of Eq. to zero. The
collisionless Boltzmann equation, also referred to the Vlaslov equation in the lit-
eratures, has been intensively used in the context of plasma physics, to treat the
long-range character of Coulomb interactions [24, §6] [26, Ch. 3]|. The effects of
interaction are taken into account through an effective potential,

Uett (r) = Uyt (r) + Upng () . (1.13)

In particular, we consider the interaction to be in the form,
Ut (r) = /d3r’V(r —1')n(r'). (1.14)

Let us calculate the solution to the Boltzmann equation, under an external per-
turbation U () = U (g, w)e' @t propagating along the z direction. Then,
for sufficiently small value of U, the induced fluctuations oscillate at the same
frequency as the perturbation:

f(p.r,t) = f'(p) + 6 f(p, q,w)e @ (1.15)

where f9(p) is an equilibrium distribution function satisfying Eq. (1.7). To linear
order in the perturbation, the Boltzmann equation now reads,

df°(p)
Ope

i(que —w)df(p, q,w) — ikdUeqt (g, w) =0, (1.16)
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where the small amplitude deviation of the effective potential is

0Uectt(q,w) = 0Uexi(q, w) + v(q) /dBp’éf(p’, q,w), (1.17)

with v(q) = [ d®sV (s)e "** the Fourier component of the interaction potential.
The density perturbation induced by the external potential dn = [ d®pd f is found
to be,

_ s ¢ Of°(p)
5n(q7 CU) - 5Ueff(Qaw) /d |Y quy — W apx

= —0Uerx"(q,w) (1.18)

where we have introduced the response function of the referential system yg. Fi-

nally, from Eq. (1.16)), one finds

0
X’ (g, w)
on(q,w) = —0Ucx
(&) 1 —0(g)x°(q,w)
= _6UextX(Q7w) : (119)
The sound velocity can be calculated from the pole of the response function x(q,w):
1—v(q)x"(q;w) = 0. (1.20)

1.2 Bose-Einstein condensation and superfluid-
ity
Since the first realization of Bose-Einstein condensation (BEC) over two decades
ago |2/3], the scientific field of ultracold atomic gases has been constantly growing,
by gathering the interest of both experimental and theoretical communities [4,
7,)27]. The occurrence of BEC is associated to the macroscopic occupation of a
given single-particle state, while the other states remain microscopically occupied.
A striking feature of BEC is that it is a purely statistical phenomenon, arising
from the very bosonic nature of the particles, regardless the interaction between

them. As a result, BEC occurs when the quantum nature of the particles becomes
dominant, i.e. when the thermal de Broglie wavelength,

| 2wh?
Ap = 1.21
T kaT ( )

becomes comparable to the interparticle distance. Experimentally, such configu-
ration can be achieved by both lowering the temperature or increasing the atomic
density. That is the dilute Bose gas, which is the system of interest in this thesis.
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1.2.1 Long-range order and density matrices

In order to discuss the phenomenon of BEC from the microscopic point of view,
it is meaningful to introduce the one body density matrix |7, §1]

A

nW(r,r') = (T () T(r'), (1.22)

where W(r) (Uf(r)) is the field operator destroying (creating) a particle at the
spatial coordinate r. The (...) denotes the statistical average, taken in the grand-
canonical ensemble (see below). By definition, the diagonal elements of the density
matrix correspond to the real space density:

nM(r,r) =n(r). (1.23)

The field operators can be expressed in the basis of single-particle wave func-
tions as follows [2§]

T(r) = Z%(r)ai, (1.24)

where @; (!) is the annihilation (creation) operator of a single particle in the state
described by ¢;. Using this expression, the one body density matrix Eq. ((1.22))

now takes the form
nO(r,r') = ni(r)ei(r'), (1.25)

with n; = <€L1Tdi> the occupation number of the state ¢;. For simplicity, we consider
the uniform system in which the single-particle wave functions are given by plane-
waves, ¢;(r) = e®*/y/V. In the thermodynamic limit where N,V — oo with
N/V = const, the one body density matrix will depend only on the modulus of
the relative distance s =r —r’.

The onset of BEC is characterized by the macroscopic occupation of the lowest
lying single-particle mode n,—qg = Ny, with Ny being of the same order as the total

atoms number N. Equation ([1.25]) therefore becomes
nM(s) =ng + Z npe%p's : (1.26)
p#0

with ng = Ny/V. For a system in the thermodynamic limit, the sum in Eq. ([1.26))
can be replaced by an integration and one can verify that

lim nW(s) = n, . (1.27)

5§—00

This is the off-diagonal long-range order nature of the condensate. It is worth
stressing that the long-range order defines uniquely the condensate. As one shall
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see in the chapter devoted to two-dimensional systems, the enhancement of thermal
fluctuations in low dimensional system, and the consequent breaking of long-range
order, prevails the gas from having a BEC at finite-temperature in two dimensions.

By taking the Fourier transform of Eq. , one obtains the momentum
distribution function:

n(p) = (27‘:@3 /d?’sn(l)(s)e_fép's

= (UT(p)¥(p)), (1.28)

with U(p) = (27h%)~" [ d*r¥(r)e /. Using the expression ([.26) for n(V(s)
one finds,
V

n(p) = Nod(p) + ——="p - 1.29

(p) 0 (p) (27Th>3 P ( )

An explicit expression for the occupation number in the non-interacting gas will
be given in the next section.

Finally, let us introduce the two-body density matrix:
n®(r,r') = (U ()T (@) (r)T(r) . (1.30)

The two body density matrix characterizes the correlation between two particles
at distance r —r’, and hence is closely related to the two-body correlation functions
introduced in Sec. 1.1l

1.2.2 The ideal Bose gas

For a non-interacting uniform Bose gas, one can evaluate the momentum distribu-
tion (1.29)) in the thermodynamic equilibrium [7,23]. This is achieved by working
out in the grand-canonical ensemble, and one finds the Bose-Einstein distribution

function: .

S

where p is the chemical potential fixed by the normalization condition n = V1 Zp f(p).
When the chemical potential becomes equal to the lowest-lying single-particle state

€9, the distribution function diverges, signaling that this state becomes macroscop-
ically occupied. This is the mechanism behind BEC. For a uniform gas, ¢g = 0

and consequently BEC occurs when one reaches the critical density:

f(p) = (1.31)

93/2(1)
PE

NBec — (132)
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where we have introduced the Bose special integral,

1 o 1
=—— | dea"'—— 1.
gp(Z) F(p) /0 LTL zefl -1 ) ( 33)

with I'(p) the Gamma function. By definition, g,(1) = ((p) is the Riemann’s zeta
function, and one can rewrite Eq. (1.32]) in terms of the critical temperature,

Thpc = 2%2 (ﬁ)m . (1.34)

As for the two-body density matrix ([1.30]), one can show that for an ideal Bose
gas it is directly related to the one-body density matrix as [7},29]:

n®(r,r') = n(r)n(r’) + [0 (1, 1) * — no(r)no(r') . (1.35)
In particular, we consider here the following two limits:
1. T'=0. All the atoms are condensed (ny(r) = n(r)) and

n®(r,r) =n’(r). (1.36)

2. T > Tggc. None of the atoms are condensed (ng(r) = 0) and

n®(r,r) = 2n2(r). (1.37)

The factor 2 in Eq. is referred to bosonic bunching (or exchange effect),
and arises from the statistical nature of bosons, which prefer to occupy the same
state. For fermions, one would instead have the opposite effect, with the fermions
avoiding staying in the same state, due to Pauli exclusion principle. It is worth
noticing from Eq. that the exchange effect is suppressed in the presence
of a condensate. In the following chapters, we will come back to the physical
interpretation of the two-body matrix, which plays a crucial role in low dimensions

(Chap. [3).

1.2.3 Weakly interacting Bose gas

We now turn to the effects of interaction, which has been discarded so far. For
this purpose, we start from a brief review of the two-body problem, introducing
the s-wave scattering length. After that, we develop the Bogoliubov theory for
weakly interacting bosons at zero temperature.
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The two-body problem

Let us consider the binary collision of two particles with mass m; and ms [30, §122].
In the center of mass frame, the scattering problem is described by the following
Shrodinger equation:

2
(—%ﬁﬂ+¢%ﬂ)@@):EW@% (1.38)
with 1/ = 1/my 4+ 1/my the reduced mass. Equation shows that in the
center of mass frame, the two-body problem reduces to a single-particle problem
with a scattering center V(r). Let us consider that the interatomic potential is
central V(|r|), an assumption which is true for the weakly interacting Bose gases
(unless one considers long-range dipolar interaction [31]). Then, Eq. reduces
to the radial equation

h? 9?
——— + Veg(r) | w(r) = Epy(r), 1.39
(52 505 + Vi) ) o) = ) (1.39)
where we have factorized ¥(r) = R;(r)Y;™(0, ¢), introducing the spherical har-
monics Y,\ | and w;(r) = rR;(r) is the radial wave-function. The effective potential
reads R4 1
+

(—2> . (1.40)
2ur

The description of the two-body problem is particularly simplified when one
considers the dilute gas [32]. Indeed, as we have already pointed out, in such system
the inter-particle distance is very large, so that the interaction is effectively small.
Moreover, the diluteness implies that the actual shape of the inter-atomic potential
is unimportant. In what follows we can therefore limit ourself to the study of
collisions far from the scattering center. In that region, the incoming particle can
be described by a plane-wave, whereas the scattered particle must be described by
an out-going spherical wave. For indistinguishable bosons (m; = my = m), the
wave function takes therefore the asymptotic form:

) ) eikr
qj([‘) N (ezkr + e—zkr) +

[f(k,0) + f(k, 7 —0)], (1.41)

where 6 is the scattering angle and we have taken into account the symmetric
nature of bosons, and introduced the scattering amplitude f(k, ) |30, §135]. In
the limit of low scattering energy, one may only consider the [ = 0 contribution
in the effective potential Eq. , corresponding to the s-wave regime. In such
regime the scattering amplitude becomes independent of k and 6:

lim f(k,0) = —as, (1.42)

k—0
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with a, the s-wave scattering length. Therefore, for a dilute gas, one can choose
an arbitrary shape of the interacting potential, as long as it recovers the relations
and (3.

Let us now evaluate the scattering amplitude, from a perturbative solution of
the Schrodinger equation . Decomposing the wave function into ¥ = Uy+W,
where Wy is the plane-wave solution of the free particle problem (V' = 0), Eq.

becomes (v)
2mV (r
(VQ + kz) ‘Ifl(r) = TQQ(I‘) . (143)
The above equation is nothing but the Poisson equation. In the dilute limit, its
solution is given by

ikr
U, (r) ~ —2:;12 er / Br'V (r) e (1.44)

By comparing with Eq. (1.41]), one identifies that

FR,6) 4 Flhm—6) = — / BV (x)e (1.45)

This is the (first order) Born approximation for the scattering amplitude.
Finally, based on our discussion about the s-wave regime, we find convenient
to choose the following potential to model the two-bodies interaction [32]:

V(r) = gé(r), (1.46)

with g the interaction coupling constant defined as g = 4wh%a,/m, so as to recover
result ([1.42)) for the scattering amplitude.

Bogoliubov theory

The gas of weakly interacting bosons is described by the following model Hamil-
tonian, written in the second quantization form [7,33} §25]:

H :/d3r (%vﬁﬁ(r)v@(r))
+ % / Brd®r’ (‘il(r)T\iJ(r’)TV(r - r')\if(r')\if(r)) (1.47)

with V(r) the two-body potential. As we saw in the previous section, the in-
teraction potential can be conveniently replaced by the contact type potential
V(r) = go(r — r'). Restricting us to the uniform gas occupying a volume V',
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and expressing the field operators in the plane-wave basis as in Eq. (1.24]), the
Hamiltonian becomes

H = ka&-rkdk 2V Z akak,+qak/ak+q, (148)
k

kK,q

with e, = h?k?/(2m) the single-particle kinetic energy. A major assumption in
solving the above Hamiltonian consists to replace the operator for the lowest lying
mode do (a}) by the number of condensate atoms Ny. This is the Bogoliubov
prescription, motivated by the macroscopic occupation of the condensate state [34].

Let us consider the ground state of the gas, at zero temperature. Then, one
may expect the depletion of the condensate due to interactions to be small, since
for an ideal gas all the atoms are found to be in the condensate state at 7' = 0. We
can therefore keep in Eq. only quadratic terms in the particle operator axo,
and neglect higher order terms. From momentum conservation, one also dismisses
the terms in which only one operator dp?go(dfo 20) appears, so as to rewrite the
Hamiltonian in the form:

= —N2+Z€kakak+ NoZATkor— Z(deT_kjL&k&*k) - (1.49)

k#0 K£0 Kk#0

To leading order in g, one can replace Ny by N in the last two terms of Eq. (1.49)),
while it has to be replaced by

Ng ~ N* = 2N > af, (1.50)
k40

in the first term in order to keep the same accuracy. It is worth noticing that the
last terms of Eq. do not preserve the number of atoms, meaning that in the
Bogoliubov approach the condensate plays the role of a reservoir. Furthermore,
as we will see later, the ground-state energy associated with the Hamiltonian
(1.49) exhibits a ultraviolet divergence, due to the momentum sum. Finally, the
Bogoliubov Hamiltonian is given by,

H = g N2+ngAT&k+ NZ k—i——NZ(aka K T axa_ k) . (1.51)
Kk£0 K40 K£0

We now diagonalize the Hamiltonian, by performing the following canonical (Bo-
goliubov) transformations:

_ A * AT
ax = UkQk + V_ Q. , | 59
o ot . (1.52)
Qy = U Q. + V_x Qi .
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These new creation and annihilation operators obey the Bose statistics, and con-
sequently,
|Uk|2 — |U_k|2 =1. (153)

Inserting Eq. (1.52)) into the Hamiltonian Eq. (1.51), one finds that the off-
diagonal terms @& (a'a') vanish for the following values of the quasi-particle
amplitudes:

2Ex 2

where the Bogoliubov spectrum of elementary excitations is given by

Ek = \/8%4‘297181(. (155)

The long wavelength excitation mode of the Bogoliubov gas corresponds to a sound

mode, limy_.o Fyx = cok, with
[gn
= ./ 1.56
Co m ) ( )

the Bogoliubov phonon mode velocity. This sound mode arises from the macro-
scopic coherence of the condensate, and therefore has a collisionless nature. It
corresponds to the Goldstone mode of the weakly-interacting Bose gas, associated
with the spontaneous breaking of Gauge symmetry (see Eq. below). Instead
for higher mode, the excitation spectrum is described by the single-particle kinetic
energy, limy . Fyx = €.

Finally, the Hamiltonian in its diagonalized form reads

1\ /2
5k+g"i) , (1.54)

Uk, Vo = + (

H=FEy+ Y Eiaféy, (1.57)
K£0
with the ground-state energy
g o, 1
Ey==—N*+- Ex —gn — 1.5
0= 5y +2Z[k gn — &x] (1.58)
K40
9 a2 128 3\1/2
=—N-"|1 : 1.59
2V { T 5E ) (1.59)

where we have performed the momentum integration in going to the second line.
As we have already stressed, this integration is ultraviolet divergent and has to
be cured by a proper renormalization of the coupling constant. This problem
arises from the Born approximation we have made in the previous section, which
includes only the lowest order contribution to the coupling constant. Since we are
developing a second-order perturbation theory, one needs to include also second-
order contribution in the Born approximation for the interacting potential. This
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is achieved by replacing the coupling constant g in the first term of Eq. (1.58])
by (B3, §6];

gn — gn (1 + % %%) : (1.60)
0 P

The last term of Eq. , the Lee-Huang-Yang (LHY) correction, characterizes

the effects of quantum fluctuations [35]. It arises from the inclusion of the last

terms of Eq. , in which annihilation and creation operators appear by pairs.

As for the depletion of the condensate, one finds from Eq. that in the

ground-state

=n {1 — —(na?’)l/?] : (1.61)

The Bogoliubov theory therefore shows that the system of interacting particles
Eq. can be mapped into an effective Hamiltonian of non-interacting quasi-
particles Eq. . In the subsequent chapters, we will see how to extend the
present model to finite-temperature.

1.2.4 Superfluidity
Zero temperature

The phenomenon of superfluidity was first observed by Kapitza [36], Allen and
Misener [37] in 1938, and theorized later by London [38], Tisza [39], and Landau [§]
(for an historical overview, see Ref. [40]). In the initial experiment of Kapitza,
they observed a non-viscous flow of liquid Helium trough capillaries when the fluid
was cooled down to 2K. Landau later showed that for a moving quantum fluid,
the process of spontaneous creation of excitations was energetically favorable only
under a very specific condition. In particular, he found that as far as the velocity
of the fluid is smaller than a critical value

E
v, = min — | (1.62)
p D

the spontaneous emission of excitations, thus the dissipation of energy, is not
possible. This is the Landau’s criterion of superfluidity. In such regime, the fluid
is said to behave as a superfluid, flowing without any friction. For an ideal Bose
gas, in which the excitation spectrum is given by the single-particle kinetic energy
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E, = p*/(2m), Eq. (1.62) gives a zero critical velocity, meaning that the non-
interacting gas is not superfluid. Instead, for a weakly interacting Bose gas, one

finds from Eq. (1.55]) that
Ve = Co (1.63)

with ¢y the phonon velocity ((1.56)).

Connection to Bose-Einstein condensation

The above analysis underlines that BEC and superfluidity are distinct phenomena,
which are not to be confused. Nevertheless, one can show that both phenomena
are closely related to each other [7]. To see this connection, let us write down the
equation of motion for the field operator, in the Heisenberg picture,

A

oV(r,t)
ot

o A h2 A o
= [\I/(I'jt), H] = _%Vg + V;Xt(rvt) + g|\I/(I',t)|2 \P(I‘,t)7 (164)

vh

where we have used the Hamiltonian assuming contact-like interaction and
an external potential Vi (r, ). In order to look for the solutions of the equation
of motion, let us recall the Bogoliubov prescription introduced earlier. In terms of
the field operator, the Bogoliubov ansatz can be expressed as

A

U(r) ~ Wy(r) + 0¥(r), (1.65)
where Uy(r) is the wave function of the condensate. It is a complex classical field,
Wo(r,t) = /no(r, t)e T (1.66)

§imilarly to the Bogoliubov theory, at zero temperature one can safely approximate
U by Wy. This leads us to the celebrated Gross-Pitaevskii equation [41,42]:
8\110(1‘ t) hQ
" = | —— V2 + Vo (1, 8) + g| T (r, t)|?| Uo(r, 1), 1.67
= PV Vi (0,8) + gl (e, D | Wor. ) (1.67)
extensively used in the literature for the investigation of zero-temperature Bose
gas dynamics (for a review, see Ref. [4]).
Let us start looking to the stationary solution of Eq. (1.64). The Bogoliubov
ansatz is in fact equivalent to the the identity (V) = ¥, and one can rewrite the
classical field in terms of the time evolution operators as

Wo(r, t) = (en T (r)e i1 (1.68)

As we have already pointed out, the orthogonality between the left and right
states does not imply a zero average, since one considers the condensate to act as
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a reservoir, in which adding or subtracting a particle does not modify the physics.
Finally, the stationary solution takes the form

Wo(r, t) = Uo(r)e w . (1.69)

We also briefly note that the explicit choice for the phase of the order parameter
S(r,t) as we have seen here, corresponds to the spontaneous breaking of Gauge
symmetry [43].

Let us now consider a uniform condensate at rest. Then, neglecting the contri-
bution of thermal and quantum depletions, the equilibrium solution of Eq. is
given by the stationary solution Wy(t) = \/n_oe_i“t/ " In the moving frame instead,
in which the fluid moves with velocity v, one can verify that

Wi (r,t) = y/nge’™ ™Y (1.70)
with the new phase given by
! 1 1 2
S'(r,t) = 7 |mvr — | gmv +p )t (1.71)

is a solution of Eq. (1.64]). Thus, the velocity of the fluid is given by

v, =y (1.72)
m

and can be identified to the superfluid velocity. Because of the divergence, the flow
is irrotational (V x v4 = 0). It is worth stressing that Eq. has been derived
by assuming the existence of an order parameter Eq. only, and therefore is
general to any superfluid.

Finite-temperature

In Sec. we have seen that the gas of interacting bosons can be regarded
as a gas of non-interacting quasi-particles (excitations). Therefore, at finite but
sufficiently small temperature, one can assume the thermodynamic properties of
the fluid to be described by those excitations. Although the superfluid does not
create any new excitations, quasi-particles can be thermally excited. Then, these
quasi-particles can collide with the capillary, eventually exchanging energy and
momentum, therefore acting as a viscous fluid. Thus at finite temperature, the
gas can be described by a two-fluid picture, in which both a non-viscous superfluid
and a viscous normal fluid coexist |33, §23]:

n=ns+n,, (1.73)
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with ns and n,,, the superfluid and normal components of the fluid, respectively.

Although the superfluid velocity is related to the phase of the condensate wave
function, it does not imply that the superfluid density is connected to the conden-
sate density. Actually, identifying the normal fluid to the gas of excitations, one
can show that the normal atoms density is given by the formula

1 . AN, (E)
”"__Sm(erh)S/dpp dE (1.74)

where Np(FE) is the distribution of excitations, which according to the Bogoliubov
theory, follows non-interacting Bose statistics. One can verify that for an ideal
Bose gas E, = p*/(2m), Eq. (1.74)) yields n,, = n for any temperatures, so that
ng = 0.

1.3 Sound propagation in quantum fluids

We now discuss the propagation of sound waves in quantum fluids. In this respect,
we will first give the two-fluid equation for the hydrodynamic sounds, which are
derived from general considerations, and apply to any superfluids. Next, we will
discuss the sound propagation in the collisionless regime, by reviewing some general
concepts of linear response theory.

1.3.1 Two-fluid hydrodynamics

The hydrodynamic equations for the sound waves in a quantum fluid are obtained
in a similar fashion to the classical gas Sec. [I.1.2] We start from the assumption
of local thermodynamic equilibrium, so as to derive the conservation equations
holding in every point of the fluid |7, §6.6] [1, §141]. However, as we have discussed
before, a major difference comes from the consideration of two separated and
independent fluids: the normal fluid and the superfluid. Consequently, the current
density is given by:

j(r,t) =ngvs +npv, . (1.75)

Both the continuity equation and the momentum conservation take the same form

as the classical fluid, Eqgs. (1.9a) and (1.9b)),

%n(r, t)+ Vj(r,t) =0, (1.76a)
mgj(r, t)+ VP(r,t) =0, (1.76Db)

ot
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where we have omitted the external field. Important considerations about the
superfluid arise in the equation for the superfluid velocity v, which is related to

the chemical potential as (see Eqgs. ([1.69), (1.70))

= 1.
8t =0, (1.76¢)
and the equation for the entropy per unit volume,
0
a—j +V(sv,) =0, (1.76d)

reflecting that the superfluid component does not carry any entropy. From Egs.

(1.76a)) and (1.76b)) one finds the wave equation for the pressure/density:
— = V*P. 1.77
m atQ =V (1.77)
On the other hand, Egs. (1.76c) and (1.76d]) together with the Gibbs-Duhem

relation

dP = ndp + sdT', (1.78)

leads to the wave equation for the entropy/temperature:

0?5 1ns,

- = VT 1.79

o2 mnn ( )
where § = s/n is the entropy per particle. This last equation makes the key
difference with the classical hydrodynamic equations derived earlier. We now

linearize Eqs. ((1.77) and (1.79), by looking for plane-wave solutions z(r,t) =

zo + dxe'**=w)  Using the expansion
on on _ 08 05
5n—a—P 5P—|—a—T oT, 55—@ 5P—|—a—T orT, (1.80)

to express the equations in terms of the variables P and T, one finds

5 0N 50N
oz 205 2905 5 _
(nns 8T> 0T —w aPéP 0. (1.81b)

These two coupled equations can be recast to a single quartic equation, and finally
using some general thermodynamic identities one finds:
A { 1 N nSTsz] 2 nTs* 1

mnKks  MNyCy

—0, (1.82)

mn,Cy MmnKr
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where kg1 is the adiabatic (isothermal) compressibility, and ¢y the specific heat
at constant volume per particle. Equation (1.82]) is the Landau’s two-fluid hy-
drodynamic equation, which possesses two positive solutions, referred as to the
first and second sound. Here, the terminology second sound is used to designate
the sound wave that arises from the presence of a superfluid, and which vanishes
otherwise. It is worth stressing that in deriving Eq. , we have only assumed
general properties of the superfluid (irrotational flow and zero entropy). Landau’s
two-fluid equation is therefore very general, being applicable for any superfluid
systems regardless the statistics of the particles or the interaction. The specific
properties of the fluid arises only in the behavior of the thermodynamic quantities
entering in Eq. . The proper determination of the equation of state of the
system under consideration is therefore essential and the subsequent chapters will
be devoted for the development of reliable thermodynamic theories.

Before closing this section, let us consider some general solutions of Eq.
[9]. First, as one approaches the superfluid to normal transition point 7" — T, the
superfluid density becomes small ny, — 0 E| In this regime the inequality c¢; > ¢
holds, where ¢; and ¢y are the first and second sound, respectively. By neglecting
the ® (c*) term in Eq. one obtains to lowest order in ng,

1 | n 152
C1 = s Cy = " (i y (183)
mnkg mnpCp

with ¢p the specific heat at constant pressure per particle. Next, above 1., ng = 0,
and the second sound vanishes, whereas the first sound is described by the classical
gas expression ¢ = 9P/dn|s. Finally, we have previously seen that the two wave

equations ((1.77) and ((1.79) are coupled to each other. From Eq. ([1.81)) it is found
that this coupling is negligible if

ol = (“—T - 1) <1, (1.84)
Ks
where a« = —n~10n/0T|p is the thermal expansion coefficient. In that case, Egs.

and take the form of independent wave equations for the density
and the entropy, respectively, and Eq. yields the correct speed of sounds.
Generally, condition is satisfied as one approaches T" = 0 since Ky ~ K.
Other important examples of incompressible fluids are the strongly interacting
systems, such as liquid Helium or unitary Fermi gas, for which Eq. provides
the correct behavior of the sounds speed in a wide range of temperature.

LA notable exception is the two-dimensional Bose gas, as one shall discuss in Sec.
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1.3.2 Linear response theory

In Sec. [I.1.3] we have seen that the investigation of the density response function
provides valuable information about the behavior of sound wave in the collisionless
regime. In this section, we will introduce the linear response theory, which pro-
vides a direct way to calculate the response of the system to any type of external
perturbation. Contrary to the classical density response function derived from the
collisionless Boltzmann equation (1.19), the linear response formalism can in prin-
ciple be applied both in the hydrodynamic and collisionless regime. In particular,
one can derive general sum rules, which offer a powerful tool to investigate the
dynamic properties of the system. We here follow the development of Ref. 7], §7],
and focus in particular to the density response of the gas.

Generality

Let us consider a many-body system described by the Hamiltonian ﬁo, being under
an external perturbation described by the Hamiltonian He. The expectation
value of a physical quantity of interest, described by an operator F', is given by

1 .
(F1) = —Tr [ﬁFT} , (1.85)
with p = e B(Ho+Hper) the density matrix and Z = Tr[p] the partition function.

Then, by applying linear perturbation theory to evaluate the trace, one arrives to
the Kubo formula [28| §32] [44], §1.2]:

. t
(FT) = (1) — / at'Tr { o | Hyen(¥), F1 ()] } (1.86)
where the expectation value on the right-hand side is calculated with respect to
the unperturbed system ﬁo, and the operators are taken in the interaction picture
a(t) = enflotae=nHot | Hereafter we omit the subscript 0 for the expectation values.
Now, we consider the particular case in which the perturbation has an explicit
time-dependence given by

Hpert = —AGe ™™ + hc. (1.87)

where \ is the amplitude of the external field, G a given operator, and e” with
small positive value of 17 ensures that as t — —oo the perturbation vanishes. The
fluctuation 6<FT) of an operator of physical interest F' induced by such pertur-
bation oscillates at the same frequency w as the external field. We introduce the
linear response function x i, defined as

5(FT> = e ey prg 4+ hoe. + N e™emy prat . (1.88)
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To calculate x, we use the Kubo formula ((1.86)), and consider that at t — —oo the
system is in thermal equilibrium at temperature 7'. Then, the trace is evaluated
as a canonical ensemble average:

Tt [ o Hpers () F1(8)]| = 3 €7 (| Hper () E' ($)m)

= eI 5 =B i) (1] il (| )

(1.89)

where |n) and E,, are the eigenstate and eigenvalue of the unperturbed Hamiltonian
Holn) = E,|n), and wym = (E, — Ey)/k. In the last line we have also used the
completeness relation ) |m)(m| = 1. Performing the time integration in Eq.
(1.86)), the response function is found to be

1Z—IZ€—,8Em (m| £ n) (n|Glm) — (m|Gln) (n|ET|m)

- __ 1.90

Xria h o W — Wpm + 11 W+ Wpm + 11 ( )
For future purpose it is useful to introduce the dynamic structure factor,

Sr(w) = Z_IZe_BEm\<n|F|m)|25(h/vu—Mnm), (1.91)

m,n
which embodies valuable informations about the excitation spectrum of the fluctu-
ation. In what follows, we consider the simplest case in which F' = G. In that case,

the connection between the response function and the dynamic structure factor is
straightforward:

XF(W)Z—/OOdw,{ Sele) __SplW) | (1.92)

w—w 4+ wH+w+1in

[e.e]

Density response function

For the study of the sound propagation, the fluctuation we are interested in cor-
responds to the density one. Let us therefore consider the density operator for a
uniform system

R 1 o a
Pa =1 Z a;hqaq : (1.93)
p

The associated fluctuation operator is given by dpq = pq — (0q), With (pq) = 0 at

A

equilibrium if q # 0. Then, the density response function F' = (5,52 is given from

Eq. (1.90) as

1 - m|dpg|n)|? |(m|dpk|n)[?
X(@w)=—3m27t Yy e [(m|dpq|m)* :

W—Wpm +1 W+ Wy + 1

(1.94)
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From Eq. (1.91)) one can further obtain the dynamic structure factor

S(quw)=2"1) e’k

m,n

(n]6pL[m) 28 (hw — ) (1.95)

The evaluation of the response function requires the solution of the Schrodinger
equation in order to evaluate the eigenstates of the unperturbed system. However,
insightful informations about the response function can be extracted by the method
of sum-rule [45], which provides a convenient way to evaluate the moments of the
dynamic structure factor:

my(q) = APt /OO dww?S(q, w) . (1.96)

—0o0

In particular, two sum rules related to the density response will be extensively
used in the following chapters. The first one, known as the f-sum rule, comes
from the particle conservation of the system
h2 q2
m =n—, 1.97
(@) =nt (197)

with n the total atoms density. The energy weighted momentum characterizes the
high-frequency behavior of the response function, and one has consequently
fim (q.0) = -2 (193
woree XD @)= mw?’ ’
The second one is the compressibility sum rule, which connects the dynamic prop-
erty of the system to the thermodynamic one:

1
limm_(q) = =n? 1.
limy m 1(q) 5TV KT (1.99)
where kp is the isothermal compressibility of the gas. The inverse energy-weighted
momentum is instead related to the static response as

- ) 2
(lllir(l]x(q,w =0) =n"kr. (1.100)

1.3.3 Quantum Boltzmann equation

So far, we have considered distinctly the two extreme regimes which are the col-
lisionless and collisional hydrodynamic regimes. However, as we have seen for
the classical gas, a unified description of the transport phenomena is in principle
possible starting from transport equations. Although we will not give the details
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here, one can actually show that not only the classical particles, but also quantum
particles obey the Boltzmann equation (1.2)) [24./46]. In that case, the collisional
integral ((1.4) has to be adapted to include the statistical nature of the particles,
and for the bosons it takes the form

of o

— =———— [ @Ppod®p' PP 5 (p + P2 — P1 — P

5t 7TmQ(zﬁh)g/ p2d°p’1d°p'y0(P + P2 — P1 — P2)

coll
X 0(Ep + €py — €p,) — €py)

X [(T+ )X+ fo) frrfor — (U4 f1) (X + for) fifa]
(1.101)

where we have expressed the scattering function in terms of the differential cross
section o and Dirac d-functions, to take into account energy and momentum con-
servation, and adopted the short-hand notation f; = f(r,p1,t). This collisional
term is referred to the Uehling-Uhlenbeck formula [47,/48], and together with Eq.
(1.2) they form the quantum Boltzmann equation for bosons. The additional
(14 f1)(1+ f2) terms take into account the bosonic bunching, in which the collid-
ing atoms preferentially scatter into states already occupied by other atoms. One
can verify that Eq. vanishes for the following class of solutions:

f(p,r,t) = [65(”)(ﬁ(p‘m“(r’tw‘“(”)) —~ 1}1 . (1.102)

In particular, the thermodynamic equilibrium solution in absence of an external
potential is given by the Bose-Einstein distribution function (|1.31)).

We briefly note that the quantum Boltzmann equation as defined in the last
paragraph, does not include the physics of the condensate. For this purpose, one
needs an additional equation to describe the transport properties of the BEC.
This is achieved by solving the quantum Boltzmann equation together with the
Gross-Pitaevskii equation , and by including the effects of collisions between
condensate and thermal atoms through a second collisional integral analogous to
Eq. [49-51]. This is the general idea behind the finite-temperature non-
equilibrium theory developed by Zaremba, Nikuni and Griffin, referred to the ZNG
model [46]. The analysis of sound dynamics in the framework of ZNG approach
is out of the scope of this thesis, for two reasons. First, the ZNG solutions in the
hydrodynamic and collisionless limits correspond, respectively, to the solutions
obtained within the Landau equation and linear response Eq. , eval-
uated within the Random Phase Approximation. In this thesis, we shall focus on
the two limits, using the later approaches. Secondly, the ZNG framework being
based on the existence of a well-defined condensate, it is a priori not suitable for
the investigation of 2D Bose gas, carried in Chap. for which BEC does not
occur. From this point of view, a reliable description of the dynamics in the 2D
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Bose gas is provided by stochastic approaches, such as the stochastic (projected)
Gross-Pitaevskii equation [52H54].

1.3.4 From the hydrodynamic to the collisionless regime

In this section we briefly discuss how to assess in which regime between the hy-
drodynamic one and collisionless one a fluid belongs. The most straightforward
way for this purpose is to introduce the collisional time 7, defined from the single
relaxation time approximation for the collisional term of Eq. as

af ~ f(r7p7t) B fO(I.7 p)
S| =- - , (1.103)

coll

with fY the distribution function at equilibrium. The above approximation simpli-
fies the expression of the collisional term by assuming an exponential decay of the
out-of-equilibrium distribution toward its equilibrium value, with characteristic
time 7. As briefly discussed in Sec. [L.I.I} the fluid is said to be in the colli-
sional hydrodynamic regime if the mean time between two collisions, 7, is much
larger than the typical time-scale of the fluid dynamics, w™!, so as to ensure the
local equilibrium picture. Oppositely, the fluid is in the collisionless regime, if 7 is
sufficiently large, so that the collision integral described by Eq. becomes
negligible. Hence,

wr K 1 Hydrodynamic

wT > 1 Collisionless

where in our interest, w = ck is the sound frequency, with velocity ¢ and wavevec-
tor k. It is important to underline that the term collisionless does not mean
non-interacting. In presence of inter-atomic interaction, one can adopt the quasi-
particle picture, in which the particle is dressed with a self-consistent field arising
from the interaction with all the other atoms (Ueg in Sec. (1.1.3))) [45]. Then, the
hydrodynamic regime will correspond to a regime in which the restoring force to
the equilibrium state arises from the instantaneous collisions between these non-
interacting quasi-particles, as described by the collisional integral of Eq. .
As for the collisionless regime, the restoring force is instead brought about by the
aforementioned self-consistent field, which under an external perturbation will de-
pend on position and time. One can hence stress that, a non-interacting gas can
propagate in the hydrodynamic regime, while in the collisionless regime not, since
the self-consistent field would not exist.

Let us give an estimate for the relaxation time, based on the collisional integral
Eq. [46, §11.3]. In particular, we are interested in the scattering out term,
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since it represents the number of atoms per unit time colliding in the element
volume d®rd®p and leaving it. Therefore,

I = (27T1h)3/d3p (%) : (1.104)

represents the number of atoms colliding per unit volume and unit time. On the
other hand, by definition 7 is the mean time between two collisions, and thus dt /7
the probability for an atom to collide in an interval of time dt. It follows that
n(r)d?rdt /7 is the number of atoms in the unit volume d3r experiencing a collision
in the time interval dt. Therefore,

(1.105)

For the normal Bose gas in equilibrium, I' is obtained from Eq. (1.101) re-
placing f by its equilibrium value f°. After performing the integral over the
d-functions, one finds (see for instance Refs. [23,46])

é N 47?(207#1)6 /dgpl/d3p2/d9|"1 ol 51+ f) (1 + f7),  (1.106)

where p3 4 are functions of p; 2 according to energy and momentum conservation.
In the classical limit, one can find by using the Maxwell-Boltzmann distribution
Eq. (T6) for f°,
1

— =V 20vyn, (1.107)

T™B
with vy, = /8kpT’/(7mm) the mean velocity. The cross-section is instead related
to the scattering amplitude f(k,0) of Eq. (1.41]) as do/dQ = |f(k,0)|* and in the

s-wave regime, o = 8ra’.

1.4 Overview of sound experiments in ultracold
quantum gases

Before closing this chapter, let us review the existing works in the field of sound
propagation in ultracold quantum gases, and formulate our motivation. Measure-
ments of sound speed in atomic gases have been achieved since the early age of
BEC, as a fundamental tool to study the collective behavior of the Bose gas, as
well as to probe the superfluid property of the system.

For weakly interacting Bose gas, a first experimental measurement at zero
temperature has been achieved at MIT [55]. The experimental protocol consists
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Figure 1.1: (a) Experimental sketch to excite sound wave in weakly interacting
Bose gas. At t < 0 a density depletion is created by means of a repulsive beam.
At t = 0 the beam is suddenly turned off, and the density perturbation is re-
sponsible for the propagation of a density depletion for time ¢ > 0. (b) Measured
sound velocity as a function of thermal density (temperature). The sound speed
is normalized with respect to the prediction for the second sound calculated from
Landau theory, showing a good agreement with the hydrodynamic theory (see

Chap. . Figures from Ref.

in applying a local density perturbation through a laser beam, at the center of
a harmonically trapped gas, and observe how such density defect propagates in
space and time (see Fig. [1.1{(a)). Their measurement was in close agreement with
the prediction of Bogoliubov theory for the speed of phonon Eq. , when tak-
ing into account the effects of trap inhomogeneity. Lately, the same experiment
has been performed at finite temperature . The temperature dependence of
the sound speed was found to correspond with the prediction of Landau’s the-
ory for the second sound, deviating from the Bogoliubov phonon result.
However, in that experiment the first sound mode was not observed, querying the
hydrodynamicity of the fluid. More recently, uniform Bose gases trapped in box-
like potential became available ,, together with new experiments on sound
measurement [59).

On the other hand, the propagation of sound waves has been also investigated
in the context of ultracold Fermi atoms . Although Fermi particles do not
condense due to Pauli exclusion principle, atoms of different hyperfine states in-
teracting attractively can form pairs and exhibit a superfluid transition [5,/60]. In
particular, in the unitary regime of the gas, where the s-wave scattering length
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Figure 1.2: (a) Experimental sketch to excite sound waves in strongly interacting
Fermi gas. The protocol is similar to that of Fig. however the laser beam
(green) induces a local density or thermal perturbation, depending on the studied
mode. (b) Measured density depletion for the first sound mode (color scale) as
a position in the trap at different time step. The first sound is excited through
a density probe. (c¢) Same figure as (b) but for the second sound mode, excited
through a temperature probe. Figures from Ref.

diverges, strongly interacting fermions gain a universal description, in which all
the thermodynamic quantities can be expressed through a single parameter; the
Fermi wave vector [6163]. The strong interaction among the atoms implying both
hydrodynamicity and small thermal expansion coefficient Eq. , the first and
second sounds can be regarded in these systems as uncoupled density and entropy
modes, at any temperature . Therefore, for the first sound, which is essentially
an oscillation of the total density, a localized density perturbation similar to that
of Bose gas has been used to excite it. Instead for the second sound, due to its
entropic nature, a local thermal perturbation (heating) has been used to excite
it. In this regime, the second sound is still weakly coupled to the density mode,
so that it can be observed by measuring the induced density depletion. The ex-
perimental protocol is summarized in Fig. [[.2] The measured experimental data
were in agreement with the theoretical predictions obtained within the Landau
theory, calculated using the universal thermodynamics. This permitted to further
extract the superfluid density from the second sound speed, providing the first
experimental measurement of superfluid density for ultracold Fermi gases.
Finally, during the last decade, a growing interest has emerged in the field
of low-dimensional quantum gases [7, §22-§23]. In particular, many experimen-
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tal [65/72] and theoretical [12}14}15,[73-76] works have been devoted to the
Berezeinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, as-
sociated with the presence of topological defects. The BKT phase has the pecu-
liarity to exhibit a jump of the superfluid density as one crosses the transition
point (see Chap. , while the other thermodynamic quantities evolve smoothly at
the transition. In analogy to the unitary Fermi gas, theoretical speculation for the
observation of the BK'T jump through a measurement of the second sound velocity
has been made in the pioneering work of Ref. [16]. Stimulated by this prediction,
experimental measurement of sound velocity in a uniform two-dimensional Bose
gas was recently carried by the group of College de France in Paris [17]. However,
while the measured sound velocity was in agreement with Landau’s prediction
in the superfluid phase, it did not exhibit the expected jump at the superfluid
transition point, keeping a finite value of sound speed also in the normal phase.



Chapter 2

Sound propagation in
three-dimensional Bose gases

In this chapter, we review the propagation of sound in the three-dimensional Bose
gas, both in the hydrodynamic and collisionless regimes. This will allow us to
handle with the theoretical tools introduced in Chap. [I] As we have already dis-
cussed, the determination of the equation of state is essential for the solution of the
Landau’s equation. Therefore, we will start by developing the finite-temperature
Hartree-Fock theory for the weakly interacting Bose gas. As for the collision-
less sound, it will be calculated from the pole of the density response function,
evaluated within the Random Phase Approximation (RPA).

2.1 Weakly interacting Bose gas at finite tem-
perature

2.1.1 Hartree-Fock theory

We develop in this section the Hartree-Fock (HF) theory for the weakly interacting
Bose gas at finite temperature. Our starting point in deriving the HF equations
is the Hamiltonian Eq. (L.48). For the description of the static properties of
the gas, it is necessary to work in the grand-canonical ensemble, since due to the
presence of a condensate, the total number of atoms is not conserved [77]. The key
assumption in deriving the finite-temperature mean-field theory, is to assume the
macroscopic occupation of the condensate state through the Bogoliubov ansatz,
but without treating the non-condensate component as a negligible quantity, like
we did in Sec. [I.2.3] Instead, the non-condensate operators are treated in a mean-
field fashion, by neglecting the quadratic order terms in the fluctuations around

33
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their mean value ([a]dw — (alaw)]? ~ 0):

Ui 1 glin Qicq = [<dfﬁk’> + <af<dk' - (CLL&M)}

At A A A At A
X |:<ak/+qak+q> + ak’+qak+q — <ak/+qak+q>
N A A At
~ (nkak+qak+q + Nt qly Ak — nknk+q> Ok x (2.1)

(the subscripts are all taken to be different from 0) where we have used the orthog-
onality (aa;) = 6;;, and ny = (alay) is the occupation number. In deriving Eq.
(2.1), we have further ignored the anomalous components, corresponding to the
terms in which the creation and annihilation operators appear by pairs (Hartree-
Fock approximation). Then, after the replacement , one obtains for the grand
canonical Hamiltonian K = H — [LN :

K= %Ng - %Kﬂ — uNo+ Y (61 +2gn — ) dldc (2.2)
k£0

with N = N — No=> "\ 20 Mk the number of non-condensed atoms. The thermo-

dynamic potential is obtained according to Q = 87 !In Z, where Z = Tr(e*BK) is
the grand partition function. The Hamiltonian being already diagonal, the trace
immediately follows:

fL:QV+%2;h41—eﬁ®ﬁ%"W), (2.3)

with Qo = gNZ/(2V) — gN?/(2V) — un.
From the thermodynamic relation N = —0€)/du, one finds n = ng + f1, where
the thermal atoms density reads

= e ) P 2.4
" (27Th)3 /0 peﬁspz—l —1 /\%93/2<Z) ) ( )

with z = eP(#=29") the fugacity, and g3/2(2) the Bose special function Eq. ((1.33)).
As for the chemical potential, it is obtained in the BEC phase from the saddle-point
equation 0€2/0ng|r.» = 0, according to:

fr = gno + 297, (2.5)

whereas in the absence of a condensate, it is given by the number equation ([2.4)),
by putting ng = 0,
_ IBG
po=p" +2gn, (2.6)
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with ;' the ideal Bose gas chemical potential. Therefore, in the HF descrip-
tion, the particles are evolving freely in a mean-field, created by the presence of
other atoms. It is worth noticing that this mean-field is felt differently from the
condensed and thermal atoms, since the latter has a factor 2 (see Eq. ),
arising from the exchange effect. A normal Bose gas undergoes Bose-Einstein con-
densation, when the chemical potential approaches the lowest-lying single-particle
state, g + 2gn. Therefore according to Eq. , HF theory predicts BEC to
occur when p = 2¢gn, thus at the same critical temperature as the ideal gas; Eq.
. Actually, the many-body correction to the critical temperature can not
be obtained in the framework of perturbation theories, and one needs to resort to
non-perturbative approaches, such as the universal relations |78,79] or ab-initio
calculations [80].

For future purpose, it is useful to derive an analytical expression for the thermal
atoms density, valid in the temperature regime where kgT > |u — 2gn|. Let us
introduce a characteristic scale |y —2gn| < & < 1, so as to divide the integration

domain of Eq. (2.4) into two parts:

g 1 o 1
I'(3/2 = d —_— d —_—
(3/2)g3/2(2) /0 I\/Ee“"’z*1 —1 +/g~c xﬁe’fz*l -1
~ d d
| s R A Gy

= —m/Blu—2gn| + ((3/2)T'(3/2), (2.7)

where in the last line we have used that the second integral is that of an ideal gas.
Using the value I'(3/2) = \/7/2, we arrive at:

23/
=l — 2V /B 2gnl. (23)
T

with n% = ¢(3/2)/A3 the ideal Bose gas thermal atoms density.

i

2.1.2 Results

We now show the numerical results for the key thermodynamic quantities. These
are evaluated for the interaction parameter

The chosen 71 corresponds to the typical value of the gas parameter, na® ~ 1075,
found in dilute Bose gas experiments [4]. Figure [2.1{ shows the results for the con-
densate density and the chemical potential. We compare the predictions from the
Hartree-Fock theory, together with the calculations from the beyond mean-field
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Figure 2.1: Left panel: condensate density no = n—n as a function of temperature,
for interaction parameter n = 0.05. Right panel: chemical potential i as a function
of temperature. Blue dashed line is the HF theory prediction. The red solid line
shows the result of the Popov theory and the black dots are the universal relations
prediction, from Ref. [83].

Popov theory and the universal relations. The Popov approach is known to be the
best available second-order perturbation theory to describe the weakly interact-
ing Bose gas at finite temperature, and includes both the effects of thermal and
quantum fluctuations, through the proper treatment of the anomalous averages.
Its derivation, as well as some of the important outcomes, are given in Appendix
As for the universal relations (UR), it describes the region in the vicinity
of the phase transition, where perturbative theory fails due to strong fluctuations
but a universal description of the weakly interacting Bose gas exists [81-83]. The
equation of state in the vicinity of the critical density nggc depends on a single
variable, n — nggc = f(X), with X given by [83]

~ h%(p — pBEc)

_ BEC) 2.10

with uggc the chemical potential at the critical point. Explicit results for the uni-
versal functions f in 3D was calculated using the classical Monte-Carlo simulations
in Ref. [83]. The universal relations become extremely useful in two dimension,
where a mean-field description is obsolete, and we will come back to discuss the
problem in Chap. [3

The left panel of Fig. shows the condensate density, calculated from Eq.
([2.4). The HF result is found to agree qualitatively well with the other approaches
in the whole temperature region. We briefly note that the unphysical jump of the
condensate density observed in both the HF and Popov results is an artifact of
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these theories, arising from the inclusion of beyond quadratic order terms in the
coupling constant. Indeed, let us recall the high-temperature expansion ([2.4)):

ay/T
n—noznOT—)\—[\/ﬂgno, (2.11)
T

with a = 24/7 or v/27 for the HF or Popov theory, respectively (see Eq. (2.8) and
Eq. (A.25) in the Appendix). The solution for ng in Eq. (2.4)) can be easily found:

- = nC(3/2)2 , (2.12)
+

yielding therefore a jump proportional to 7, given by . Such problem would
not arise if one includes the effects of interaction up to second order in g only, and
use the ideal gas value n) = n — nY for the condensate density entering in the
square root of Eq. (see Appendix |Af for further discussion).

It is useful to estimate the region in which strong fluctuations near the critical
point spoil the mean-field description. From the perturbation theory, one can
estimate the first correction to the thermodynamics due to the fluctuations to be
small if [84] §146]

e = 29m] . L

kpThrc ¢(3/2)?
For n = 0.05 one finds that in the BEC phase, |u — 2gn|/(kgTsrc) < 0.09 corre-
sponding to T' < 0.99Tggc.

In the right panel of Fig. we make a similar comparison for the chemical po-
tential. As expected from Eq. , the chemical potential evolves monotonically
from gn at zero temperature to ~ 2gn at the critical temperature.

This comparison shows that the HF theory is well suited for the description of
the weakly interacting Bose gas at finite-temperature, giving essentially the same
results as the more sophisticated Popov or UR approaches. However, we anticipate
that this will be no longer true for the description of binary Bose mixtures. The
breakdown of HF theory for the mixtures, and the development of the Popov
theory to overcome these failures, will be the main topic discussed in Chap. [

(2.14)

2.2 Hydrodynamic sounds in a 3D Bose gas

The theoretical tool being settled, we can now investigate the propagation of sound
waves in the hydrodynamic regime. The Landau’s two-fluid equation ((1.82)) is
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solved by evaluating the thermodynamic quantities:

. TS _lon
V=Nor| T hap
g T (2.15)
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_| L, kT (0P ?
N RT cyn oT n
S
with P = —Q/V the pressure evaluated from Eq. (2.3, and we have expressed
all the thermodynamic derivatives in terms of the canonical variables (n,T). As

for the entropy, according to the non-interacting single particles picture, it can be
evaluated from the ideal gas formula:

S=kp» BEf(Ex)—In(1—e PP, (2.16)
k

with Ey = ex +2gn — p. Finally, a crucial quantity is the superfluid density, given
by Eq. . Within the HF theory one simply finds ny = ng. The HF theory
therefore does not distinguish the superfluid from the condensate.

Figure[2.2]shows the calculated speeds of sound, in units of the zero-temperature
Bogoliubov sound velocity cg = 1/gn/m. We find that the second sound velocity
(red dashed line) is always smaller than the first sound (blue solid line), and van-
ishes at Tggc. One can observe at T' =~ 0.05Tggc the occurrence of a hybridization
of the two sound modes (see inset) [85]. Although the HF theory is not expected
to be valid in such a degenerate regime, we have checked that the same hybridiza-
tion occurs within the Popov approach. This is understood if we remind that
for any superfluid, in the region where T" — 0, the first and second sound modes
are decoupled and correspond, respectively, to a density and entropy oscillation
of the system. However, as the temperature increases, the thermal expansion co-
efficient Eq. takes a non-negligible value, and one can not ignore anymore
the coupling between the two modes. This is shown in Fig. where the thermal
expansion coefficient is found to increase with the temperature. The hybridization
point therefore signals the departure from the uncoupled sound waves picture. We
briefly note that, in the low-temperature regime kg1 < gn, the thermodynamic
properties are governed by the phonon excitations, which are not captured in the
HF framework. Actually by using phonon thermodynamics (see Appendix ,
one finds that at zero temperature co = ¢1/ V3.

For a weakly interacting Bose gas, a good estimate for the sound velocities at
intermediate temperatures is obtained by considering that all the thermodynamic
quantities entering in the Landau’s equation, except the isothermal compressibility
and the superfluid density, are described by that of the ideal gas [9]. In that case
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Figure 2.2: Hydrodynamic sound velocities for a weakly interacting Bose gas, nor-
malized to the zero-temperature Bogoliubov sound ¢y = y/gn/m. The interaction
parameter is chosen to be 7 = 0.05. Blue solid and red dashed lines: first and sec-
ond sounds evaluated from the Landau’s two-fluid equation , respectively.
Green dotted and cyan dotted-dashed lines: first and second sounds calculated
from the weakly interacting Bose gas approximated expressions . The inset
emphasizes the hybridization point near kg1 = gn.

the following identity holds:

| T2 T3
pent oS (2.17)

mnKks  MNyCy MMy, Cy

Using the above expression in the Landau’s equation (1.82]), one finds the approx-

imated results,
nT's? ns 1
cLwn = | —, Cowt = 1 — : (2.18)
Ny MCy n mnkr

These approximations of the sound velocities are shown in Fig. as green dotted
(c1wi) and cyan dot-dashed (cowr) lines. Equation (2.18]) correctly describes the
sound velocities down to the hybridization point.

Finally, it is useful for the experimental perspective to assess how sensitive are
the sound modes to a density probe. This is achieved by looking to the density
response function of the system. In the deep hydrodynamic regime, which is under
consideration here, sound propagates without any damping. This implies that the
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Figure 2.3: Thermal expansion coefficient oT" Eq. ((1.84)), for a weakly interacting
Bose gas with interaction parameter n = 0.05.

dynamic structure factor Eq. ((1.95)) in the two-fluid picture can be modeled by
two delta-peaks [86]:

2 2
ng ng
S = —710(w— — 750 (w — . 2.19

(q,w) om 1 (w—c1q) + om 22 (w—c2q) (2.19)
The factors in front of the delta functions have been chosen so that the amplitudes
71 and Zy saturate the f-sum rule Eq. (1.97) as Z1 + Z5 = 1. On the other hand,
the two sound modes also exhaust the compressibility sum rule Eq. (1.99). The
relative contribution Wy o = Z; 5/ 0%2 of each sound mode to the compressibility
sum rule is found to be

1 — mnkpc mnrrcs — 1

W= —5——5—7=, Wy= —5———. 2.20

! c? — 3 2 2 —c2 (220)
Hence, if the ratio W5 /W is larger than unity, second sound can be excited from
a density perturbation. We also note that starting from the general inequalities
c1 > co and ¢; > ¢y, the thermal expansion coefficient Eq. (1.84]) sets a lower

bound for the sum rule,

W,
— >aT. 2.21
iz o (221)

In Fig. we show the calculation of the compressibility sum rule amplitude
Wy /Wi. As expected from the discussion we have made previously, W5 /W is
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Figure 2.4: Ratio of the compressibility sum rule amplitudes, for n = 0.05. W,
(Ws) is the relative contribution of the first (second) sound mode to the compress-

ibility sum rule, Eq. (2.20)).

extremely small below the hybridization point, since the second sound corresponds
to an entropy wave, uncoupled from the density oscillation of the fluid. Instead, the
weight of the second sound becomes abruptly large as one crosses the hybridization
point, and remains large up to Tggc. This observation suggests that second sound
in a weakly interacting Bose gas can be probed from a density perturbation. This
property has been used in the experiment of Ref. [56] to successfully probe the
second sound velocity. A more detailed discussion about the comparison between
theory and experiment will be carried in the last section of this chapter.

2.3 Collisionless sound in a 3D Bose gas

We now discuss the propagation of sound in the collisionless regime. We have seen
in Sec. that the velocity of a collisionless sound can be determined from the
pole of the response function. First, we will give an expression for the density
response of a weakly interacting Bose gas, calculated within the Random Phase
Approximation (RPA). Then, we will verify that the obtained response function
satisfies the sum-rules. Finally, we evaluate the pole of the response function and
discuss the nature of the observed sound mode.
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2.3.1 Random Phase Approximation
Dynamic mean-field approach

For the description of the weakly interacting Bose gas in the collisionless regime,
we start from the general expression for the density response to an external
perturbation. Let us consider the condensate and normal components of the gas
to feel different effective potentials, [46, §5.4]

5nﬂ(q7 W) = _5Ueff,0(q7 W)Xg(% W) )
0

on(q,w) = _5Ueff’ﬁ(q, w)xs(q,w), (2.22)

where x and xY are the response functions of the reference system, defined later.
The effective interaction is given by the dynamic mean-fields,

5Ueﬁ,0<q7 (.U) = 5Uext,0(q7 w) + gan(qa U.)) + 295ﬁ<q7 (.U) )

2.23
Ut 71(q,w) = 0Uext 7 (q, w) + 29dno(q,w) + 2g6n(q,w) . ( )

We briefly note that consistently with the discussion made in Secs. and
2.1.1] the exchange effect for the condensate is suppressed. Consequently, the
condensate feels a mean-field gng+ 2¢gn while the thermal component feels 2¢g(ng +
n). The above equations can be solved straightforwardly, and yield the following
expressions for the density fluctuations:

5710 = — [5Uext,0X0 + 5Uext,ﬁX0ﬁ] ) (224)
on = — [6Uext,ﬁXﬁ + 5Uext,0X0ﬁ] ) <225)

where the response function in each component is defined to be

0 0 0 0 0,0

Xo(1 +29x3) X (1+ 9xp) 29XoXx
_ Xo\r T 29Xa) o= A T IR0 5 = ——JA0RR 2.26
Xo D r X D Xo D (2.26)

with the denominator

D(q,w) =1+ g [xJ(1—2g9x2) +2x2] . (2.27)

The zeros of D, corresponding to the poles of the response function, will be ana-
lyzed later. If one considers that the external potential acts in the same way on
the condensate and on the thermal component (0Uet0 = 0Uextn = 0Ueyxt), one has
on = dng + 0n = —0Ux X, with the RPA density response function of the Bose
gas given by

_ Xola,w) + x5 (9, w) — 9xoxE(a, )

x(q,w) = Diq.o) : (2.28)
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Bare response function

We now discuss the bare response function x°(q,w). For the RPA description,
the reference system is chosen to be the Hartree-Fock gas [87]. As one shall see,
this choice ensures the consistency with the dynamic mean-fields introduced in Eq.
. In particular, it provides the correct behavior of the compressibility sum
rule. Thus, let us start from the general expression for the linear response function
Eq. . In the single-particle description of the HF theory, the eigenstates of
the Hamiltonian are fixed by the single—particle occupation number n, (see Sec.

2.1.1)), and the matrix element <m]ap hqlip|n) vanishes unless the energy difference
E, — Em is equal to the difference of single-particle kinetic energy ep_nq — €p.
Consequently, focusing on the first term of Eq. (1.94) only, [7, §7.5]

1 ¢ BEm o
Y(qw) =—— > (mlal_yqbpln) (nlalap _pglm) + (---)
m,n p,p

hz W — Wpm + 11
e_BEm

1 ~ ~
_EZZ;—M_ (Cpnq — € )+Z‘?7<m|a'p hqapagap—hq|m>+(”‘)
p—hq ~ €p

féphqf(gp)"‘f(gphq)
=L G i ) 2

where we have assumed q # 0. The second term denoted by (---) follows essen-
tially the same calculation, and one ﬁnally obtains

[f(epina) — fep)] (2.30)

Z huw + ( €p+hq) + 1

with n — 0". The equlhbrlum distribution function is given by the Bose-Einstein
distribution function with the HF mean-field energy

1
flep) = eBlept2gn—p) _ 1°

(2.31)

As seen before, one needs to consider separately the contribution from the con-
densate p = 0 and the thermal part. Therefore x° = x§ + x2 with

Xo(q, w) = ng = + !
S hw — eng + i Aw + epq + i
dPp  f(eptnas2) — f(Ep—na/2)
0 _ p+iq p—ha/2) 2.32
Xald, @) / (2h)3  hw — hpg/m +in (2:32)

In the long wavelength limit (¢ — 0), the response function takes the form (we
assume the sound to propagate in the z-direction, q = ge,):

X (w/g) = == (2)2 +/ <d3p L &) (2.33)

w 2h)3 w/q — pe/m +in Op,
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depending on the ratio w/q only. We can simplify the integration of the thermal
part by using the cylindrical coordinate (with z the longitudinal axis) and one
finally gets,

o0

ol = =2 () — s [ B f(e,).  (234)

m \w o PGlq = pafmt i

Before going to the next section, we briefly note from Eq. (2.28) that at zero
temperature, y = x3/(1 + gx3). The pole of the response function then gives the
Bogoliubov dispersion relation, Eq. (|1.55)):

2,2\ 2 2
hw = \/(h_q) + n gan’ (2.35)
2m m

or equivalently, from the long-wavelength expression (2.34)), the Bogoliubov phonon

velocity Eq. (1.56), w/q = \/gn/m.

2.3.2 Sum rules
f-sum rule

We start from the verification of the f-sum rule (1.98)), which for the system under

consideration is given by

2
n;q

mw?’

(g, w — 00) = (2.36)
where the subscript ¢ refers to the total ((}), thermal (72) or condensate (0) response
function.

First, one can immediately see from Eq. (2.34) that x§ already satisfies the
sum rule. As for the non-condensate part,

’p_q .\ Of
0 ~ 94 i
Xi (g, w — 00) =~ / 2l (1 + mw) e (2.37)

Noticing that the first term of Eq. (2.37) vanishes from the oddness of df/dp,,
and integrating by part, the f-sum rule for the thermal part is also found to be
satisfied. Finally,

ng?
mw?

x(q, w — 00) = Xo(q,w — 00) + Xa(g, w — 00) = (2.38)
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Compressibility sum rule

We next verify the compressibility sum rule, Eq. (1.100) x(q — O,w = 0) =
n?kp. Let us start from the bare response function x°, which the long wavelength
expression (2.34) already takes into account the ¢ — 0 limit. It is immediate to
see that

Xo(w/q = 0) = oo (2.39)

This is an expected behavior, since the isothermal compressibility of an ideal Bose
gas is infinite. For the normal part, it can be expressed in terms of the Bose
integral as

X3(0) = %gm(z). (2.40)

In the normal phase above Tgrc, X = X7 = X2/(1+2gx2) and one has consequently

1 %91/2(2)
n?1+ 29%91/2(2).

I{T(T > TBEC) = (241)

Below Tgc instead, one can use the inequality x3(0) > {x2(0), 1} so that the
pole of the response function reduces to D =~ gx5(0)[1 — 2gx2(0)] and Eq. (2.28)

becomes:
1 1- 9%91/2(2)

gn2 1— 2g%gl/g<2) .

K,T(T < TBEC) = (242)

It is worth noticing from the above equation that, the compressibility of the
Bose gas in the BEC phase becomes finite in presence of interaction. In particular,
kr(T = 0) = (gn?)~! at zero temperature.

Thermodynamic compressibility

Let us evaluate the isothermal compressibility within the HF thermodynamics, in
order to verify the consistency of the RPA approach. From the thermodynamic
identity u = OP/On|r, the isothermal compressibility can be expressed as

1 On

rmR (2.43)

R =
Above Tggc, the total density is n = n, and from Eq. (2.4]),

on B on
5= (1- 205 ) o), (2.44)
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Figure 2.5: Isothermal compressibility as a function of temperature, for interaction
parameter 7 = 0.05. Red solid line: self-consistent Popov theory. Blue dashed line:
HF theory.

where we have used the Bose integral property dgs(z)/0z = gs—1(z)/z. After some
algebra we obtain

18 gip(2)
n2 )\%., 1 + 29%.91/2(2)7

KT(T > TBEC) = (245)

namely, Eq. (2.42). For T' < Tggc we instead use the equation of state (2.5)) to
express the total density as n = 5 —n and using Eq. (2.44)) for On/0u, one finds,

1 1- 9%91/2(2)

KT(T < TBEC) =
97 1 = 2955 g1/2(2)

(2.46)

which is the same expression as Eq. (2.42)).

We show in Fig. the calculated isothermal compressibility, with the HF
prediction drawn as a blue dashed-line. For comparison, we also show the predic-
tions from the Popov theory (see Appendix and the universal relations. We
briefly note that the presence of the factor 2 in the denominator of Eq. is
crucial for the increase of the compressibility at finite temperature. This is the
direct consequence of the exchange effect, which is responsible for the increase of
the interaction energy with respect to the value predicted at 7' = 0 when the whole
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Figure 2.6: RPA response function evaluated for n = 0.05, as a function of dimen-
sionless frequency @ = w/(kcy). Left and right panels are the real and imaginary
part of the response function at T = 0.7Tggc, respectively. Black solid line: to-
tal response x. Blue dashed line: response function of the condensate y,. Red
dotted line: response function of the thermal part y;. Green dotted-dashed line:
cross-term response function 7.

system is fully Bose condensed. This effect explicitly shows up in the temperature
dependence of the chemical potential Eq. and in the density dependence of
the non-condensed component through the fugacity, Eq. . It is worth notic-
ing that if one employs the lowest order HF theory by taking pu ~ g(n + n%),
one misses the additional density dependence responsible for the enhancement of
kr. The temperature dependence of the single-component compressibility plays a
major role in describing the magnetic phase transition in the binary mixture, as
one shall discuss in Chap. [

2.3.3 Results

Response function

In Fig. [2.6) we show the real and imaginary part of the response function, evaluated
at T'= 0.7Tggc. As one can see, the main contribution to the total response func-
tion comes from the condensate part, in agreement with our previous discussion
about the compressibility sum rule. Numerical study shows that this statement
remains true for all the range of temperature 7' < Tggc, including the close vicinity
of TBEC~
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Evaluation of sound velocity

We now turn to the analytical study of the pole of the response function. After
some algebra, the pole equation (2.27)) reads

1—2gx2
D=1+ 29)(%) {1 + QXSW] =0. (2.47)

The thermal part of the response function being small in the BEC phase, gx% < 1,
one can expand the denominator of Eq. (2.47)) as:

D =~ (1+42gx3) [1+ gxo(1 — 29x3)°] (2.48)

The RPA response function hence possesses two poles. As already discussed, under
a density perturbation, the response of a weakly interacting Bose gas in the BEC
phase is mainly governed by the condensate part. We therefore focus on the second
pole of Eq. , arising from the presence of a condensate. Inserting expression
for xJ, the condensate pole equation yieldsﬂ

o

1-g (g)Q (1—29v2)2 = 0. (2.49)

m

Thus the pole ¢ = w/q is given by,
c=c—il'=cp(1-29x2(0)), (2.50)

where we have introduced the temperature-dependent Bogoliubov sound velocity
cg = \/gno(T)/m. At zero temperature, within the HF theory, cg(T = 0) = ¢.
Assuming that the quality factor @ = ¢/I" is small, one can decouple the real and
complex part of the pole equation into

c=cp(1—29x%"(c)) , (2.51)

I =2gx2"(c). (2.52)

The sound mode described by Eq. (2.50) corresponds to a collisionless sound.
It is associated to the coherent motion of the fluid, coming from quasi-particles
(phonon) excitation. Unlike the hydrodynamic sounds sustained by the incoherent
collisions between atoms, the restoring force in the collisionless mode arises from
the average mean-field produced by the other atoms. The collisionless sound is

'We actually have checked, using the Fourier transform method developed in Chap. 3} that
the collective mode arising from the thermal response 1 + 2gx2 = 0, has a negligibly small
amplitude at any temperatures, for the chosen interaction parameter. The response becomes
significant only for 1 ~ 1, where the validity of the HF approach becomes questionable.
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Figure 2.7: Left panel: sound velocity calculated from the pole of the response
function Eq. , with interaction parameter n = 0.05. Right panel: quality
factor Q@ = ¢/I'. The blue solid line is the pole solution Eq. (2.52)) whereas
the green dotted line is the theoretical prediction for the Landau damping from
Ref. [90].

also referred sometimes to the quasi-particle sound [88], or zero sound [89]. This
last nomenclature comes from the analogous effect in the interacting Fermi gas,
described by the Fermi liquid theory [45].

In order to understand the origin of the damping Eq. (2.52)), it is useful to
recall the general RPA expression (2.32)) for 2, and rewrite:

P =207 [ B o) = Fepral 3+ 2y = Spisa) . (25

The above equation shows that the decay corresponds to a process in which the
sound mode Aw is absorbed by a thermal excitation e, which shifts to another ther-
mal excitation epypq. This is the Landau damping, which is a finite-temperature
effect, but not associated to any thermalization processes [90,91], in contrast to
the collisional damping.

In the left panel of Fig. we show the sound velocity evaluated solving
the pole equation . Because the collisionless sound evaluated in the present
section corresponds to the response of the condensate, its velocity vanishes at
Tsec. In the right panel of Fig. 2.7 we also plot the theoretical prediction for
the damping rate Eq. . For comparison, Landau damping expression from
Ref. [90] is also shown. The discrepancy between the two predictions are due to
the neglect of the anomalous pair density in our HF theory.
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Figure 2.8: Sound velocity in units of zero-temperature Bogoliubov sound ¢y =
v gn/m for n = 0.05. Blue solid line: RPA prediction . Red dashed line:
second sound predicted from Landau’s two-fluid hydrodynamics calculated using
HF thermodynamics. Green dashed line: generalized Bogoliubov sound cp =

Vgno/m.

2.4 Comparative study of hydrodynamic and col-
lisionless sounds

Before closing this chapter, we show in Fig. [2.§ a comparison between the hy-
drodynamic second sound, the collisionless sound and the temperature-dependent
Bogoilubov sound cg = /gno(T")/m. Remarkably, all the three velocities have
the same temperature dependence, making them qualitatively similar. This can
be easily understood if we recall the approximated expression for the second
sound speed, co w1 = /ns/(mn?kr). In the HF approach, ny, = ny. Moreover, as
it can be seen from Fig. [2.5] for a weakly interacting gas the compressibility is
almost temperature independent, except in the close vicinity of the phase transi-
tion: Kk =~ (gn?)~' . Thus one arrives to c3 ~ cg. As for the collisionless sound,
Eq. also indicates that cjess ™~ CB.

In the experiment of Ref. [56], the sound speed measured from a density probe
was compared to the prediction for the Bogoliubov sound cp (left panel of Fig. [2.9))
and the hydrodynamic second sound of Landau theory, ¢y (right panel). It was
found that the experimental points are better described by the Landau theory,
therefore supporting the observation of the second sound. However, due to the
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Figure 2.9: Experimental results of Ref. [56] for the measurement of sound veloc-
ity as a function of temperature (thermal atoms density). Left panel: measured
sound velocity normalized to the (temperature-dependent) Bogoliubov sound, cg.
Right panel: the same experimental points normalized to the hydrodynamic sound
prediction of Landau theory and ZNG approach (see main text). From Ref. [56].

experimental uncertainty, it is difficult to claim the observation of the second sound
in favor to the collisionless one. Actually, the experiment could not investigate the
temperature region below the hybridization point where the difference of both
sounds become clear, nor observe the existence of a first sound mode. From this
point of view, one way to assess the collisional nature of the sound wave would
be to investigate the damping rate of the mode. Indeed, the hydrodynamic sound
is not expected to show any damping in the deep collisional regime, in contrast
to the collisionless sound, which as we have seen previously, is governed by the
Landau damping.

Finally, let us briefly comment that the dynamic approach of Zaremba, Nikuni
and Griffin, reduces to the RPA formalism developed in this chapter, in the colli-
sionless regime 46| §13]. In the hydrodynamic regime, it has been also shown that
ZNG is equivalent to the Landau’s two-fluid hydrodynamics, when the thermody-
namic quantities entering the equation is evaluated using the HF theory [92]. In
particular, it was found that in a weakly interacting Bose gas, the second sound
mainly corresponds the oscillation of the condensate, ans has been interpreted as
the hydrodynamic continuation of the collisionless sound.
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Chapter 3

Sound propagation in
two-dimensional Bose gases

This chapter is devoted to the study of sound propagation in a two-dimensional
(2D) Bose gas. Very recently, measurements of sound dynamics have become
available in uniform 2D Bose gases [17]. Such system is of particular interest
since, in 2D, BEC does not occur, as a consequence of the Hohenberg-Mermin-
Wagner theorem. As we will see, the 2D Bose gas still exhibits a superfluid phase
transition at finite-temperature, the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition, which is of infinite order and does not show any discontinuity in the
thermodynamic quantities. Remarkably, the superfluid density exhibits a universal
jump at the transition, and this motivates us to investigate the second sound, which
we predict to vanish abruptly at the BKT transition. In particular, we investigate
the interaction dependence of the speed of sound, to observe how the nature of
the sound mode evolves as one goes from the weakly interacting to the strongly
interacting regime. On the other hand, the experiment of Ref. [17] did not reveal
the occurrence of any jump in the sound velocity, its value remaining finite also
in the normal phase. We therefore develop a collisionless theory for the 2D Bose
gas, and compare our result to the experimental one.

3.1 The BKT phase transition

3.1.1 The ideal Bose gas in 2D

One of the most striking feature in the 2D Bose gas, is the absence of a condensate
associated to the off-diagonal long range order of the system [13,73]. This can be
understood if one recalls the expression for the equation of state of an ideal gas,

53
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discussed in Sec. [1.2.2}
n)\dT = gd/g(eﬂ“) , (3.1)

where the quantity D = n)% is called the phase space density. In the three
dimensional case (d = 3), we have seen that gs/»(2) saturates at p = 0, and an
increase of the phase-space density beyond the critical value gs/5(1) is only made
possible by the emergence of a condensate state. However in 2D, the phase space
density takes the explicit form

D=—In(1-¢%), (3.2)

and a solution for the fugacity with a negative chemical potential exists for any
values of D, prevailing the atoms to macroscopically occupy a single-state.
More formally, one can look at the off-diagonal long-range behavior of the

one-body density matrix Eq. ((1.22):

nW(s) = ! cl2kLk.S (3.3)
(27r)2 eBlex—n) — 17 ’

Since we are interested in the long-range behavior of the system, one can focus
on the long wavelength modes £ — 0. Further assuming that the system is in the
degenerate regime, |u|/kgT < 1, one can approximate the distribution function
by f(ex) ~ 2mh2kgT/(k? + k?) with k. = \/2m|u|/h2. Then one finds

nW(s) oc e/t (3.4)

with I, = k' ~ ApeP/?/\/An. Equation clearly suggests that contrary to
the 3D case, the 2D Bose gas does not exhibit any long-range order at finite
temperature. However, it is interesting to notice that the length scale over which
n") decays (i.e. the correlation length [.) increases exponentially as one decreases
the temperature. This observation suggests that in a real finite-size system, one
might reach a regime in which the correlation length is comparable to the system
size (I. ~ L), so that the correlations span the entire volume. As one shall see
below, the decay of the correlations is further reduced when one includes the effects
of interactions.

3.1.2 Weakly interacting Bose gas in 2D
Suppression of density fluctuations

A crucial ingredient in understanding the thermodynamic behavior of a two-
dimensional Bose gas, is the presence of a quasi-condensate, associated to the

suppression of density fluctuations. In this section, we mainly follow the argument
developed by Hadzibabic and Dalibard in Ref. [12].
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In order to discuss the interacting gas, let us consider that like in 3D, the
interaction between two atoms can be modeled by a contact type interaction
V(r) = gapd(r), with gop the two-dimensional coupling constant. This assump-
tion holds for the general experimental set-up, where the transverse confinement
is tight enough to ensure the 2D kinematics. The details about the interaction in
2D is given in the appendix [B], and here we only notice that as a peculiarity of the
2D Bose gas, one can define a dimensionless coupling constant,

5 m
g= ﬁgzp . (3-5)

Under these assumptions, the model Hamiltonian for the 2D gas is the same as
that of the 3D gas, Eq. . The interaction energy is therefore given by (for
the remaining of this chapter we use the notation g = gop for the 2D coupling
constant)

Eunt = g / &r <¢/(r)hif(r)hi/<r)xiz(r)> - gLQn(Q)(O), (3.6)

where we have used the definition of the two-body density matrix n®(r) (1.30).
We briefly remind that its value is comprised between n? and 2n?, depending
on whether the density fluctuations are suppressed (n(® = n?) or not (n® = 2n?;
Gaussian fluctuations). An estimate for the cost of density fluctuations is obtained
by looking to the change of internal energy when adding an atom to the system:

aEint
ON

Consequently, the relative fluctuation cost with respect to the thermal energy is
given by

=gn. (3.7)

g _ 9

k‘BT B 2T
The above equation suggests that at sufficiently low temperature, in which D >
27/, density fluctuations can be strongly suppressed. This suppression plays a
key role in developing the quasi-condensate mean-field theory [93,94]. As we show
in details in Appendix phase fluctuations are instead not suppressed, and
this leads to a quasi-long range behavior of the one-body density matrix in the

superfluid phase:
R 1/(ns)%,)
nW(s) (—C> , (3.9)

S

(3.8)

with R, = phy/gns/m, and ng is the superfluid density. Result shows the
peculiarity of the 2D interacting system, namely the algebraic decay of the off-
diagonal one-body density matrix. In the next section, we will see that the expo-
nent of the density matrix is always smaller than 1/4, involving an extremely slow
decay of n(V.
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3.1.3 The role of vortices

In the previous section, we have seen that in the degenerate regime of a 2D Bose
gas, density fluctuations can be significantly suppressed and one may consider the
physics of phase fluctuations only. However, so far we have not discussed how such
system undergoes a superfluid transition. In order to understand this point, one
needs to take into account an additional ingredient in the 2D physics: the vortex.

Vortices are phase defects arising from the irrotational nature of the superfluid
(see Eq. (1.72)). They correspond to a local depletion of the superfluid density,
around which the phase of the order parameter varies by a multiple of 27 [7, §5.3].
The most common way to excite vortices consists to rotate (or stir) the system.
In this way, vortices have been observed in both Bose [95,96] and Fermi [97] gases,
as a hallmark of superfluidity. In the absence of such external probe, for a vortex
line to be thermally excited, its creation has to be energetically favorable. Let
us therefore evaluate the free energy associated with the presence of a vortex line
F, = FE,—TS,. First, solving the Gross-Pitaevskii equation in a rotating
frame, one finds that the velocity around a vortex line is [7, §6.8]:

_hs

)
mr

vs(7) (3.10)
with s an integer, characterizing the quantization of vortices. Furthermore, the
size of the vortex core, in which the superfluid is depleted, is found to be given by
the healing length £ = 1/4/gn. Then, the excitation energy for a s = 1 vortex is

E, = /d2rn5(r)%mvf(r) ~ %mns In <?> ) (3.11)

where we have considered the system to be a disk of radius R, and the superfluid
density to be finite and constant in the region £ < |r| < R. As for the entropy, it

corresponds to the number of possible configurations for a vortex of size 7€2 to be
placed in the system of size mR?,

mR?
Thus, one finds for the free energy for the creation of a single vortex to be:
kgT R
F, = % (nsA% —4) In (E) . (3.13)

The creation of a vortex line becomes energetically favorable when [98],

N A- = 4. (3.14)
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The logarithmic term in Eq. being very large, it means that as soon as
Dy = 4, a vortex is thermally excited. The vortex corresponding to a local de-
pletion of the superfluid density, n, consequently decreases and this further favors
the creation of new vortices. Therefore, there will be an avalanche effect, which
strongly renormalizes the superfluid density to 0 |98]. In other word, one can say
that the vortex, corresponding to a phase defect, completely scrambles the phase
coherence and so the quasi-long-range order. This is the mechanism behind the
superfluid phase transition in 2D, first discussed by Berezinskii, Kosterlitz, and
Thouless [14,/15]. The number of vortices is exponentially small in the normal
phase just above the phase transition, and this makes the Berezinskii-Kosterlitz-
Thouless (BKT) superfluid transition to be of “infinite” order, without exhibiting
any discontinuities in the thermodynamic quantities, apart from the superfluid
density which abruptly drops to 0 at the critical temperature. The BKT phase
transition has been experimentally observed in a variety of systems, including the
*He film [99], the 2D atomic hydrogen [100], and the 2D Bose gas [65,66].

Equation (3.14)) provides a very simple and elegant formula to assess the onset
of the phase transition. It is universal, in the sense that it does not depend
on the coupling constant, but only on the phase-space density. However, Eq.
gives the relationship between the superfluid density and the temperature
at the critical point only, and it does not tell us at which temperature the BKT
phase transition actually occurs. In order to answer to this question, one needs
to properly consider the effects of vortices in the phase fluctuations. This can be
achieved through a renormalization group calculation, known as the Kosterlitz-
Thouless equations [15,[101], or by means of universal relations in the vicinity of
the phase transition. Hereafter, we will focus on this later approach.

3.1.4 Universal description of the fluctuating region

The phase transition of any systems is characterized by an increase of the cor-
relation length, so that near the phase transition, the long-wavelength physics
becomes dominant [102, §10]. This property allows for a universal description of
the phase-transition itself, but also of the critical region around the transition. For
a weakly interacting Bose gas, the long-range behavior exhibits the so-called |¥|*
universality, which is independent on the nature of the system, being classical or
quantum, continuous or discrete [78}/79].

This universality has been used by Svistunov and Prokof’ev to evaluate the
BKT critical temperature of the 2D Bose gas [81]. Briefly, the main idea is to
separate the equation of state into a universal and a non-universal parts:

1 |kcut| 0
n = W </ d2knk + / d2knk) = Nuniversal T Mideal 5 (315>
0 |k

cutl
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where the non-universal part, corresponding to the short-wavelength physics, is
essentially described by free particles physics, which can be evaluated straightfor-
wardly. Then, the difference between two distinct systems A and B sharing the
same universality is given by

nA - n® = p _ B (3.16)

In the work of Svistunov and Prokof’ev, system A was chosen to be the 2D Bose
gas, while system B a 2D classical lattice. Performing a classical Monte-Carlo
calculation, they could evaluate with great precision the critical density for the
lattice model, and from Eq. (3.16)), that of the 2D Bose gas. In particular, they
found that the critical density for the onset of the BK'T phase transition is given

by the formula
1 C
NBKT = 13 1N (T) , 3.17)
Ap\g (
with C' = 380 + 3. This result has further been confirmed in a quantum Monte-
Carlo study [80], showing that Eq. (3.17) remains accurate up to very large value

of g (~2).

3.2 Thermodynamics of 2D Bose gases

3.2.1 Theoretical framework

In order to calculate the hydrodynamic sound velocities by solving the two-fluid
equation , one needs a reliable description of the thermodynamic quantities
in 2D. The universality of the weakly interacting Bose gas we have discussed previ-
ously, can be used to obtain the equation of state in the critical region. Prokof’ev
and Svistunov have calculated the universal behavior for the equation of state of a
2D Bose gas [82], and provided dimensionless functions depending on the variable
x = pu/(kgT) and g only,

D(x,§) = \jn. (3.18)
Using general thermodynamic relations, one can further obtain the reduced pres-
sure
Pleg) = 2P — [ deD(a) (3.19)
€T e = — €T X .
T T T kT ’

as well as all the thermodynamic quantities needed for the solution of the Landau
equation (1.82)):

1 D 1 D

= ——: /q:s = _—

nkgT D’ nkgT 2P

P PD’

Cy =2— — — cp=(2=——=]2—

v=*p p 7 < D D’> DY

(3.20)
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where D' = 9D/0x. Universal relations (UR) further provide another dimension-
less function D (z, g) = A\2n,, from which one can evaluate the superfluid density.
The universal behavior of the weakly interacting Bose gas has also been investi-
gated experimentally [68]/103], showing excellent agreement with the predictions of
Prokof’ev and Svistunov, in a wide temperature range. In this thesis, we follow the
semi-analytical description of Ref. [82], in which the UR description is combined
with the 2D Popov theory.

Indeed, while a genuine condensate does not exist in 2D, one can formally intro-
duce the quasi-condensate, characterizing the suppression of density fluctuations,
according to |104}105]:

Nge = v/ 2(n)? — (n?). (3.21)

Comparing with Eq. , one can see that ng. is analogous to ng in 3D. However,
as we shall see later, the quasi-condensate in 2D takes a non-zero value even when
there is no more superfluid. As we show in details in the Appendix [C.2] one
can then develop a mean-field (Popov) theory for the weakly interacting 2D Bose
gas, based on the concept of quasi-condensate. Within the 2D Popov theory, the
universal function for the phase-space density is obtained from the implicit formula

(see Eq. (C.36) in the Appendix):

2 2
D=""14m (—91) . 2:c> . (3.22)
g m

To the same accuracy, the superfluid density can be evaluated from Eq. (|1.74)) as:

Ds:2D—27TTx—1. (3.23)
g

We show in Fig. [3.1] a comparison between the 2D Popov theory and the UR, for
the isothermal compressibility (left panel) and the superfluid density (right panel).
As one can see, the Popov approach catches correctly the temperature dependence
of k7, up to the BKT critical point. However, the Popov theory fails in describing
the behavior of the compressibility in the normal phase, as well as to reproduce the
BKT jump of the superfluid density. Thus, in the following, we evaluate all the
thermodynamic quantities entering in the Landau equation using the 2D
Popov theory, except for the superfluid density in the vicinity of the BKT critical
point, which we evaluate using the universal approach. Practically, we interpolate
between the Popov theory and the UR at an intermediate temperature 7" < Tgkr
(see the red point at T~ 0.67pkT in the left panel of Fig. m which corresponds
to the point where we “connect” the two theories). Such procedure is found to
give essentially the same result as the full UR calculations, at least below Tgxr. A
detailed discussion about the Popov theory in 2D, as well as a comparative study
of the different approaches are presented in Appendix [C.2]
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Figure 3.1: Isothermal compressibility (left panel) and superfluid density (right
panel) of a 2D Bose gas as a function of temperature, evaluated for g = 0.1. The
blue solid line is the result from the 2D Popov theory, while the black dots are
the predictions from the universal relations of Ref. [82]. The red point in the left
panel is an eye-guide to indicate the region where we connect the Popov theory
and the UR, in our combined approach (see main text).

3.2.2 Validity domain study

Although UR have been successfully used for the study of the hydrodynamic sound
waves in a weakly interacting 2D Bose gas [16], one might ask if the theory is
still valid in the strongly interacting regime. Figure (a) shows the ratio of
isothermal and adiabatic compressibilities as a function of the temperature, for
different values of the coupling constant, evaluated within the combined Popov-UR
approach. From thermodynamic principles, £r/ks can not be negative [84, §16],
and Fig. [3.2(a) shows a clear failure of the universal relation for g > 1. Still,
the behaviour of kr/ks decreasing with ¢g as shown in the inset of Fig. [3.2(a),
has also been observed in the 3D Fermi gas [86], and is physically acceptable.
Indeed, the gas is expected to become less compressible as the repulsive interaction
between bosons becomes stronger. In Fig. [3.2(b) we show the superfluid density
fraction ng/n for the same values of coupling constant H While the jump turns
out to agree [82] with the Nelson-Kosterlitz result (3.14), one observes another
unphysical result, with the superfluid density fraction becoming larger than unity
at low temperature. This last point directly arises from the limitation of the UR,
derived for the fluctuating region near the superfluid phase transition [81,82]. As
the interaction increases, the fluctuating region around Tkt shrinks, reducing the

!The reason for the unphysical kink at intermediate temperature in Fig. b), comes from
the above-mentioned treatment of the combined Popov-UR approach.
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Figure 3.2:  (a) Ratio of isothermal and adiabatic compressibilities kr/k, for
different values of g. From top to bottom, g = 0.1 (solid line), § = 0.5 (dashed
line), § = 1 (dotted line), g = 1.5 (dashed-dotted line). (b) Superfluid density
fraction n,/n for different values of §g. The values of § are the same as in panel
(a). The unphysical kinks observed for 7" ~ 0.61pkr in the superfluid density
is due to the analytical treatment of the dimensionless functions in the universal
relations approach [82]. The black solid line is an eye-guide for (a) kr/ks = 1 and
(b) ng/n = 1.

region of validity of the UR. Nevertheless, as we have already mentioned, the UR
predicts the correct phase transition temperature, up to g ~ 2, when compared to
ab initio calculation [80]. Therefore in what follows, we use the UR for the study
of the 2D Bose gas, restricting ourself to the temperature region near the phase
transition, and to values of g < 1. We briefly note that, g >~ 0.1 is a typical value
of coupling constant for a dilute 2D Bose gas [66], and 0.6 < g < 2.8 corresponds
to the BEC regime of a 2D Fermi gas [69,/106], where the system behaves as a
gas of bosonic dimers. A direct mapping between our results calculated for the
strongly interacting Bose gas and the experimentally relevant 2D Fermi gas can
be conveniently achieved using the following relationship |7, §23.4]):

1
™9 In(kpagp) + In(y2/47)’

g=—4 (3.24)

where kpasp is the interaction parameter for a 2D Fermi gas [76], kr and ayp are
the Fermi wave vector and the 2D s-wave scattering length, respectively. ~ =
ap/asp ~ 0.55 [107] is a constant relating the bosonic scattering length to the
fermionic one.
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Figure 3.3: First and second sounds as a function of temperature for different
values of g. The blue and red solid lines correspond to first and second sounds
calculated from Eq. , respectively. The blue and red dashed lines are the
approximated form of the first and second sounds for small thermal expansion

coefficient, given by Eq. (3.26)).

3.3 Hydrodynamic sounds in a 2D Bose gas

We are now in position to investigate the propagation of sound in the hydrody-
namic regime. As in the three-dimensional case, the Landau Eq. is solved
together with the thermodynamic quantities evaluated within the combined Popov-
UR approach, Eq. .

Figure shows the first and second sound obtained by solving Eq.
(solid line), for different values of g. The velocities are calculated for fixed total
density and expressed in units of the zero temperature Bogoliubov sound velocity
co = v/gn/m. As one can see, both sound velocities show a jump at the transition
temperature. This behaviour, originating from the BKT universal jump of the
superfluid density, is studied in detail in the following. Panel (a) corresponding
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Figure 3.4: Thermal expansion coefficient oT" at T' = 0.8Tgkr as a function of the
2D coupling constant g.

to g = 0.1 has already been studied within the same approach in [16]. In order
to understand the evolution of the sound modes with the coupling constant, one
recall the two-fluid Landau equation ((1.82)). As we have already discussed in Sec.
1.3.1] the two sound modes are decoupled if the thermal expansion coefficient is
negligibly small:

ol = (“—T - 1) <1. (3.25)

Ks

In that case the first and second sound modes take the form of density and entropy

waves respectively,
1 nsT'5>
i Cop = ———. (3.26)
mn,Cp

mnkg’

Figure [3.3(a) and [3.3|(b) show that the calculated velocities strongly deviate from
Eq. (3.26) (shown as dashed-line), revealing the strong coupling between the
density and entropy modes in the highly compressible regime where the condition
ol < 1 is violated. Figure [3.4] shows that as the coupling constant increases,
the gas evolves from a weakly interacting to a strongly interacting behaviour,
becoming less compressible. As a consequence Eq. becomes more and more
accurate, as shown in panels (¢) and (d). The transition between the weakly
interacting and the strongly interacting regime is then expected to take place
for values of the 2D coupling constant corresponding to g ~ 0.5. This regime
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can be reached in a 2D Bose gas with Feshbach resonance [67] or in the BEC
side of the BEC-BCS crossover in 2D superfluid Fermi gases [106]. It is worth
noticing that the already mentioned unphysical violation of the thermodynamic
relation k1 /ks > 1 predicted by the use of universal relations for large values of
the coupling constant, has little effect on the sound speeds, while the violation of
the condition ny < n has dramatic unphysical consequences due to the resulting
negativity of the normal density. The proper estimate of the sound velocities in the
strongly interacting regime should then be based on more realistic estimates of the
superfluid density. Accurate calculations of the superfluid density as well as of the
relevant thermodynamic functions of 2D Fermi gases, based on quantum Monte
Carlo simulations [804/108] or many-body theories |L09H111], would in particular
allow for a safer evaluation of the sound velocities along the whole BCS-BEC
CTOSSOVer.

In the 2D Bose gas too, one can approximate the thermodynamic quantities
entering in the two-fluid equation except the isothermal compressibility and the
superfluid density, by those of an ideal Bose gas. We rewrite here the results found

in Sec. 2.2]
| nT52 ns 1
C1,wI = —, Co.wI = — . (327)
Ny MCy n mnkKkr

Figure shows, again, the sound velocities for the same values of the coupling
constant, but compared this time, to Eq. (dotted-lines). As expected, the
approximation successfully describes the exact sound speeds for small g. In con-
trast to Fig. 3.3 Eq. becomes less accurate as one increases g. However,
panel (d) shows that the approximated velocities approach again the exact solu-
tions, for T" < Tgkr. This is a proper behaviour to the 2D system, where the BKT
jump of the superfluid density, scaling as ns/n = 4/In(C/g) (see Egs. and
(3.17))), is responsible for ngy ~ n over the whole range of temperature, as observed
in Fig. [3.2(b). This assumption, in addition to a ~ 0 for large value of g, leads to
c1.w1 & Coo (respectively, cowr = ¢1p).

While in the 3D case the sound velocities near the phase transition can be
estimated by putting ny — 0, leading to Eq. , this assumption can not be
used in the actual 2D case, due to the presence of the jump. One can however
derive a first-order correction to ¢jp and cog from the two-fluid equation ([1.82]),

2 2
c c
2 9 20 2 2 20
€1 BKT = Clo (1 + O‘T—Cg ) ] C3 BKT = C20 (1 - aT—CQ ) ; (3.28)
10 10

where one has assumed that aT'c3,/c?, < 1. This condition is expected to be valid
near Tpkr, and the results of Eq. correctly describe the jump ¢(Tgir) —
c(Tgwr) of the two velocities in a wide range of values of the coupling constant, as
drawn in Fig. . According to Eq. , the deviation from c;y and cgy near
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Figure 3.5: First and second sounds as a function of temperature for different
values of g. Solid lines are the same as Fig. [3.3. The blue and red dotted lines
are the approximated form of the first and second sounds for a weakly interacting

Bose gas, given by Eq. (3.27).

Tsxr is characterized by a factor aT'c3,/c%,. Therefore, not only the BKT jump
of the superfluid density (appearing in %, o< n,), but also the difference between
thermal and adiabatic compressibilities, are responsible for the observed gap in
the sound velocities. This is explicitly shown in Fig. [3.3(d), where the jump in
the first sound mode disappears due to the vanishingly small value of «.

Finally, it is of great interest to understand weather second sound can be excited
using a density probe. This is again assessed by calculating the amplitudes of the
respective sound modes in the compressibility sum rules, W; and Ws5. Figure
[3.7 shows the ratio of the relative contribution of first and second sound to the
compressibility sum rule, Eq. (2.20)). We can see from a comparison with Fig. |3.4
that as expected from Eq. (2.21), Wy/W; follows the same evolution as kr/Ks.
This observation involves that from the experimental point of view, the density
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Figure 3.6: BKT jump in sound velocities ¢gpr — Chep as a function of g. Sound
velocities jump obtained from the solutions of Landau equation ((1.82)) (solid lines)
are compared to the approximated expression Eq. (3.28) (dashed lines).

probe of the second sound becomes more and more difficult as one increase the
value of the coupling constant.

3.4 Collisionless sound in a 2D Bose gas

3.4.1 Motivation

We discuss in this section the propagation of sound in the collisionless regime. This
discussion is motivated from the recent experiment of College de France group in
Paris [17], where they have measured the propagation of sound wave in a 2D
gas of ¥Rb atoms. As shown in Fig. while the measured sound lies close
to the zero-temperature Bogoliubov sound in the superfluid phase, the velocity
does not exhibit any jump and remains finite also above the superfluid transition
temperature. This observation is in contradiction with the hydrodynamic theory
we have developed in the previous section. The key point for understanding these
observations is the role of collisions, which would be essential for the application
of two-fluid hydrodynamics. In the quasi-2D regime of [17], one can estimate the
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Figure 3.7: Ratio of compressibility sum rule contribution Wy /W at T' = 0.8Tpkr.
Wy (Ws) is the relative contribution of first (second) sound mode to the compress-

ibility sum rule Eq. (2.20)).

collisional parameter to be given by (see Appendix :

[ 1 2w

where L is the size of the box. Using the parameters of the experimental set-up:
L = 38um, n = 30um2, G =0.16, (3.30)
one gets an estimate for the collisional parameter:
wr =~ 0.47. (3.31)

Thus, the collisional rate is of the same order of the frequency of the excited mode,
determined by the box length, and this observation suggests that collisions might
not be efficient enough to ensure the collisional hydrodynamic regime. Hence one
needs a theory which can describe density waves in the absence of collisions, above
TgkT, even in the absence of superfluidity.

3.4.2 Collisionless theory of the 2D Bose gas

In Chap. [2] we have found that a collisionless transport theory for the weakly
interacting Bose gas can be obtained, starting from the dynamic mean-field ap-
proach. Although we have seen that the 2D Bose gas is well described by mean-field
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Figure 3.8: Experimental result for the measurement of density sound in a 2D
Bose gas, using density probe. The blue dots are the experimental data, the
black solid line the theoretical prediction of Sec. for the hydrodynamic second
sound. Sound velocities are normalized by the Bogoliubov sound velocity ¢y. From
Ref. [17].

theories based on the concept of quasi-condensate in the superfluid phase, these
approaches fail above Tk, where the physical meaning of the quasi-condensate
becomes ambiguous (see Fig. [3.1| where the Popov theory predicts an erroneous
divergence of the isothermal compressibility, as well as discussions in Appendix
C.2). The experimental measurement showing a discrepancy with the hydrody-
namic theory in the normal regime of the gas, one needs an appropriated theory
to describe that region.

Kinetic theory

In our work, rather than developing a framework which includes the effects of
vortices, we have simplified the description of the Bose gas, assuming that in the
temperature region of interest, the system is described by a normal gas with sup-
pressed density fluctuations. This is motivated by the prediction of the universal
relations shown in Fig. [3.9) which reveals that the quasi-condensate, characteriz-
ing the suppression of density fluctuations Eq. , is close to the total atoms
density even in the normal phase, up to relatively high temperature. Our starting
point is therefore the RPA expression for the response function (|1.18) of a normal
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Figure 3.9: Quasi-condensate density as a function of temperature, evaluated for
the interaction parameter g = 0.16. Blue solid line: prediction from the 2D Popov
theory. Black dots: prediction from the universal relations of Ref. [82].

Bose gas:
571((1, w) = _5Ueff<qa w)XO(CL w) ) (332>
with the effective interaction now given by
6Ueff<q7 CU) = 5Uext(qa w) + gén(q, CO) ) (333)

namely the dynamic mean-field in absence of exchange effect. One immediately
obtains,

on(q,w) = —6Uex(q, w)x(q, w), (3.34)
with the density response function given by
0
x’(q,w)
xX(q,w) = : 3.35
(@) 1—gx°(q,w) (339)

The response function of the reference system is obtained from the same expression

as the 3D Bose gas Eq. (2.30)),
1 | f(epthas2) — f(Ep-hqs2) 6

(27h)? hw — hpq/m + in
with n — 0%, and the equilibrium distribution function defined as
1

f({;‘p) = @ﬁ(fp‘i‘gn—lt) _ 1 . (337)
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It is important to stress that, in Egs. (3.35)) and (3.37)), the mean-field enters as gn
and not 2gn. This assumption comes from the definition of the quasi-condensate
Eq. , corresponding to the non-Gaussian component of the gas. For the
following, it is useful to introduce the effective chemical potential

A=|p—gn|=—p+gn. (3.38)

In the long-wavelength limit (¢ — 0) of interest, the bare response function
takes the form (we consider a sound wave propagating in the q = ge, direction):

0 _ 1 = F(p:v)
/o) = G [ b (3.39)

where we have introduced

2
oo 00 B(3—+A)
[ a0 [ gy

py7— = p
o Op om ) y[eﬁ(;i+A>_1]2

F(p,) = (3.40)

We briefly note that the same response function Eqs. (3.35) and (3.39) can be
obtained starting from the collisionless Boltzmann equation

g—{ +vVf—gVpefom(r) =0, (3.41)

and following the same steps as for the classical gas of Sec. [112]. As for the
effective chemical potential A, it is obtained from the number equation

1

n = W/aﬁpf(ap) = —% In(1—e "), (3.42)

and one naturally associates to —A the chemical potential of an ideal gas.

Sum rules

We first verify the f-sum rule Eq. (1.98). From Eq. (3.35)),
X(¢,w = 00) =~ x’(q,w — o) (3.43)
d’p ¢ apz\ Of
——= (1 —) — 44
/ (2mh)? w ( * mw/ Op, (3:44)
In the last equation, the first term vanishes from the oddness of df/0p, and the

second term is solved by integrating by part and recalling the number equation

(13.42). Finally,

an

mw?’

x(g,w — 00) = (3.45)
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We next verify the compressibility sum rule (1.100). The response function
(13.39) already assumes the long wave-length limit, and one finds

B 22 4h)
x’(¢ — 0,0) 5 (3.46)
66 Bl 1]
The integration can be performed analytically and one gets,
m 1
—0,0) = ———+1—7—. 3.47
The full response function therefore exhausts the compressibility sum-rule:
1 1
(g —0,0) = ——~ = for. (3.48)

n? 2mh? (eMT — 1) + %

Thermodynamic compressibility

An alternative way to evaluate the isothermal compressibility is to start from the
number equation (3.42), ky = n~2%(On/Ou)|r. In this way, one naturally finds
result derived from the response function. In fact, the RPA theory we have
developed is consistent with the mean-field expression

1, ’p p?
P—§gn +/(2wh)2% (p), (3.49)

for the pressure of the interacting 2D Bose gas.

The isothermal compressibility «7 is expected to play an important role in char-
acterizing the dynamic behavior of the gas in the collisionless regime, differently
from the adiabatic compressibility kg which instead describes the propagation of
sound in the collisional regime. Figure shows the isothermal compressibility
evaluated from Eq. . We also show the results from the 2D Popov theory
and the universal relations of Sec. 3.2l Comparing with the prediction of the 2D
Popov theory, one can see that although the RPA framework developed in this
section does not catch the increasing behavior of the compressibility in the su-
perfluid phase, it smoothly evolves around the critical point, and decreases with
the temperature in the normal regime. This behavior confirms our choice of the
simplified mean-field theory for the description of the collisionless regime.

Classical field theory

Finally, we also show in Fig. the isothermal compressibility calculated within
the stochastic (projected) Gross-Pitaevskii equation (SPGPE), from Ref. [21]. In
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Figure 3.10: Isothermal compressibility evaluated for g = 0.1. The blue solid line
is the prediction of the RPA theory, while the green dashed line is from the quasi-
condensate Popov theory. The red square are predictions from the SPGPE (see
main text) [21]. The black dots are from universal relations of Ref. [82].

this approach, the system is divided into two parts, corresponding to the low energy
modes, and the high energy modes [54}/113]. Owing to the macroscopic occupation
of the lowest energy states, the former part can be described by a classical field W,
whereas the later part acts as a thermal reservoir of classical atoms. The key point
in this approach is that the low energy (coherent) part does not only represent the
condensate, but includes a finite number of excited states, up to an energy cutoftf.
Thus, unlike the ZNG formalism discussed in Sec. [1.3.3] which is based on the
presence of a BEC, the SPGPE framework is well suited for the investigation of
2D Bose dynamics [53]. The SPGPE takes a similar form to the Gross-Pitaevskii
equation ([1.67]), with additional thermal dissipation and stochastic fluctuation
terms. The equilibrium state at a given temperature is obtained by solving the
equation for different noise realizations, and then taking the average. As one can
see in Fig. [3.10] although the SPGPE includes the effects of thermal fluctuations in
an approximated scheme, it successfully reproduces the characteristic peak of the
compressibility near the superfluid transition, in agreement with the UR results.
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Figure 3.11: Experimental protocol for the excitation of sound wave in 2D Bose
gas. (a) Initial density profile of the gas at ¢ = 0, with a depleted density in
the upper part induced by an external local potential. (b) Time evolution of the
density depletion, after removing the external potential. From Ref. .

3.4.3 Comparison with the experiments

The velocity of sound as well as its damping rate can in principle be evaluated
from the calculation of the pole of the response function Eq. (3.35). However,
unlike the 3D case, this is a rather fastidious task (see Appendix . Here, we
therefore follow another approach, inspired by the experimental procedure.

Linear response analysis

The experiment of Ref. consists to measure the motion of the gas when a
density perturbation is applied (we remind that the initial aim of the experiment
was to observe the BKT jump of the second sound, which for a weakly interacting
2D Bose gas is excited through a density perturbation, as we have shown in Sec.
. A sketch of the experimental protocol is shown in Fig. . At t = —o0 the
gas in the box has a density depletion, induced by a potential step (panel (a)).
This potential step is removed at ¢ = 0, letting the density depletion to move
freely. The sound velocity is then measured by tracking this density depletion (or
equivalently the center of mass oscillation of the gas) in time (panel (b)), as it goes
forth and back in the box.

For our calculation, we therefore consider the gas initially at equilibrium in
the presence of a weak, spatially periodic, stationary potential, producing a sinu-
soidal density modulation with a given wave vector q. Then, we investigate the
response of the system when the potential is suddenly removed. Such perturbation
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is described by the Hamiltonian

pert /\ 9( ) + h.c.

z'w t
ﬁg; / du +he, (3.50)
where in the last line we have used the Fourier transform of the step function.

Then, following the same calculation as Sec. starting from the Kubo formula
Eq. (1.86)), one obtains for the density response [114}/115]

F(t) = — / X Fo) . (3.51)

™2k w

where we have normalized the signal to its ¢ = 0 initial value, fixed by the isother-
mal compressibility. If the ratio x”(k,w)/w exhibits a narrow peak, as happens
at low temperature, then the oscillation will persist for a long time; if instead the
same function is broad, then the oscillation is strongly damped. Hence the function
F(t) provides direct information on the velocity of sound and on its damping. In
the left panels of Fig. [3.12/ we show some typical profile of the function x”(k,w)/w
calculated from Eq. , with g = 0.16, below and above the superfluid transi-
tion. The figure reveals the occurrence of a peak at w # 0, which is at the origin
of a damped oscillatory behavior in the Fourier transform F(t), shown in the right
panels. It is worth noticing on passing that the oscillatory behavior of the function
F(t) is caused by the interaction term in the denominator of x(k,w). In fact, in
the ideal Bose gas (g = 0), the function x”(k,w)/w has a peak at w = 0 and
its Fourier transform is a monotonously decreasing function (panel (d) in
Fig. . Indeed, one can show that the imaginary part of the ideal gas response
function can be written as a sum of Gaussian functions,

10 w m __mu o —l(u®+BA)
= [ 3.52
Xg=0 ( 7\ 2k:BT> N ; Vie ’ (3:52)

thus its Fourier transform yields a sum of exponentially decaying functions.
The sound frequency @ and its damping rate I' can be extracted from F(t) by
using an appropriated fitting function. In our work, we chose

FPHO () — oT4/2 [cos(@t) + % sin(&;t)} : (3.53)

as a fitting function, corresponding to the response of a damped harmonic oscillator
(see Appendix |D.1f). The fitting results are shown as red dashed lines in the right
panels of Fig. |3.12
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Figure 3.12: Left panels: Imaginary part of the inverse frequency weighted re-
sponse function, x”(@)/@, calculated in the RPA with g = 0.16h%/m, as a function
of the dimensionless frequency @ = w/(kv/gn/m). Right panels: corresponding
Fourier transform (3.51]), as a function of the dimensionless time ¢ = kt+/2kgT/m.
The blue solid and green dashed lines correspond to the interacting and ideal gas,
respectively. The red dotted line is the fit based on Eq. . From top to
bottom: T = 0-7TBKTa 1-2TBKT and 1-8TBKT'
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Figure 3.13: Sound velocity in units of ¢y = y/gn/m, calculated for g = 0.1h%/m.
The blue solid line is the sound velocity ¢ = @©/k extracted from the Fourier
transform Eq. of X" /w calculated in RPA, while the blue dashed line is the
isothermal sound velocity ¢r = /1/(mnrr), within the same theory. Solid and
open squares represent the sound speed extracted from real time simulations and
the isothermal sound velocity, respectively, both obtained with SPGPE [21].

Results

The velocity ¢ extracted from F(t) is shown in Fig. |3.13| (solid line) as a function
of T, in units of the zero temperature Bogoliubov sound velocity ¢ = 1/gn/m. We
compare the extracted sound velocity with the prediction for the isothermal sound
velocity er = y/1/(mnkr) determined by the isothermal compressibility (dashed
line). The two curves are found to be close to each other, while the adiabatic
sound velocity c¢g = /1/(mnkr), which describes the propagation of sound in the
collisional regime, is not shown in the figure, lying well above ¢y (¢g/cr ~ 2 near
Tgkr). This behavior can be understood by using sum rule arguments. In fact, the
ratio between the energy weighted and inverse energy weighted moments of the
dynamic structure factor provides an estimate for the mean excitation energy [7]:

1 my 1
LN T 54
¢ hqg\l m_, mnkp (3.54)

which is found to be the isothermal sound velocity c¢p. This sum rule prediction
is expected to be accurate in the collisionless regime but not in the collisional
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Figure 3.14: Sound velocity calculated for g = 0.16h?/m. Blue solid line: RPA;
red squares: SGPE; The green dashed line is the second sound velocity predicted
by Landau’s two-fluid hydrodynamics of Sec. [3.3 and the black circles are the
experimental data of Ref. [17].

regime, where the adiabatic sound does not exhaust the inverse energy weighted
(compressibility) sum rule [8§].

The propagation of sound can be also investigated using SPGPE. In SPGPE,
the propagation of density waves has been simulated in [21] following the exper-
imental procedure. Namely, an initial equilibrium state in presence of a static
external perturbation is prepared, and then the real-time simulation is performed
by removing suddenly the static perturbation and letting the system evolve [113].
The sound velocity is then extracted from the amplitude of the observed den-
sity oscillations, using Eq. as a fitting function. We show the extracted
sound speed as solid squares in Fig. For the SPGPE too, the sound velocity
is found to lie close to the isothermal compressibility sound (red open square),
obtained from the equilibrium solution of SPGPE; Fig. [3.10}

In Fig. we compare our results with the experimental observations of
Ref. [17], and the predictions of SPGPE [21]. Below Tk, our predictions for the
velocity of the collisionless sound are close to the ones for second sound based on
Landau’s two-fluid hydrodynamics (dashed green line). This is not surprising since,
for a weakly interacting Bose gas at temperatures larger than gn/kg, the velocity
of second sound is well approximated by the expression (3.27) +/(ns/n)/(mnkyr)
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Figure 3.15: Quality factor @@ = 2w/T". The blue solid line is @ evaluated from
the Fourier transform F in RPA; black circles are experimental data [17]; red
squares are the results of SGPE simulations. The inset shows () as a function of
frequency at different values of 7' from SGPE [21]; from top to bottom: T'/Tpxr =
0.29, 0.52, 0.75, 1.02. The error bars of the SGPE data in both panels represent
the statistical deviations due to different noise realizations.

and differs from the isothermal velocity only by the multiplicative factor \/ns/n,
which is fixed by the superfluid fraction and is ~ 0.7 near Tgxrt. Conversely,
neither our theoretical sound velocity nor the experimental one exhibit the jump
to zero at Tgkr, which would be predicted by two-fluid hydrodynamics in the
collisional regime.

Fig. shows the quality factor @ = 20 /T". By increasing the temperature,
() decreases as the damping rate becomes quickly large. Above Tgkr, damping
becomes so strong that the oscillatory behavior is hardly visible (see lowest panels
Fig. . Again, there is an overall good agreement between theory and exper-
iments. In RPA, the behavior of () is the consequence of Landau damping, as
we have alredady discussed for the 3D gas in Sec. It corresponds to the
coupling between the collective sound oscillation and the (thermally populated)
single-particle excited states included in the ideal Bose gas response [116].
The reason for which the quality factor in the experimental measurement is better
than the theoretical prediction, can be understood as the experimental system be-
ing slightly hydrodynamic and thus reducing Landau damping. This is confirmed
by the independence of ) on frequency, as shown in the inset of Fig. |3.15] cal-
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culated in Ref. |21] using SPGPE. In fact, if damping were collisional, it would
exhibit a quadratic increase with w and hence a pronounced frequency dependence
of the quality factor.

We briefly note that we have checked that the evaluation of the pole of the
RPA response function leads essentially to the same results for the sound
speed and the damping rate (see Appendix [D.2).

3.5 Probing the BKT jump in the second sound

To summarize, in this chapter we have investigated the propagation of sound wave,
in both the hydrodynamic and collisionless regime. With respect to the 3D Bose
gas, where the hydrodynamic and collisionless sounds have practically the same
velocity, the situation in 2D is particularly interesting, since the hydrodynamic
mode is expected to vanish at the superfluid phase transition temperature, while
the collisionless one not. Regarding the observation of the BKT jump in the sound
velocity, we are in a delicate situation where we need to find an “intermediate”
region, in which interactions are strong enough to ensure hydrodynamics, but not
too large to ensure the excitation of second sound from a density probe. From
this point of view, the most interesting region for the experimental investigation
would be around g ~ 0.7, where the predicted compressibility sum rule amplitude
Wy /W1 ~ 1 (see Fig. is still large and hydrodynamic regime should be
ensured from small sound velocity. Such value for the coupling constant has been
already achieved in Cesium gases, by means of Feshbach resonance [67]. This
situation is illustrated in Fig. [3.16] where we have calculated the response to a
static density perturbation F(t), using the hydrodynamic response function Eq.
. For g = 0.7 at intermediate temperature, one indeed finds that both sound
modes contribute equally to the inverse energy-weighted sum rule, giving rise to
a beating effect in the experimentally relevant total response. The observation of
such beating would allow for the simultaneous measurement of first and second
sounds, and further detect the BK'T jump by observing the sudden vanishing of
beatings at the critical point.

Another promising system for the observation of the BKT jump in the second
sound velocity is the strongly interacting Fermi gas. While the universal relations
do not allow us to study the crossover region of a 2D Fermi gas, we can stress
from our results that the system in this region would be highly incompressible.
This means that a density probe of the second sound is hopeless in the crossover
region, and one should rather use a thermal perturbation as in the 3D unitary
Fermi gas [103]. This observation also involves that one can safely use Eq.
for the evaluation of both sound velocities. A detailed study using many-body
theories would be useful to confirm these predictions, and to further study the
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Figure 3.16: Density response F(t) of a strongly interacting Bose gas to a static
perturbation, in the hydrodynamic regime, with g = 0.7 at 7" = 0.8Tgkr. Blue
solid line: total density response. Red dashed line: density response of the first
sound mode. Green dotted line: density response of the second sound mode.

BCS region.



Chapter 4

Mixtures of 3D Bose gases at
finite temperature

In this chapter, we investigate a mixture of two interacting superfluid Bose gases
at finite-temperature, in 3D. We first develop the HF and Popov theories for the
mixture, which are the generalizations of the single-component theories studied in
Chap. Although in the single-component gas the inclusion of the anomalous
average in the Popov theory has no drastic effects in the behavior of thermody-
namic quantities, one shall see that in the case of binary BECs, their inclusion is
crucial. In particular, we study the miscibility of the mixture, and assess what
are the conditions to observe the phase-separation of the two components at finite
temperature.

4.1 Theory of Binary Bose-Einstein condensates

4.1.1 Binary BECs at zero temperature

The miscibility of liquids and gases, and in particular its temperature dependence,
is a topic of high relevance in the study of classical fluids [117]. For quantum
mixtures, this question was addressed long time ago in the context of *He-*He
liquids [118], and more recently for mixtures of quantum gases [7,27]. In particular,
weakly interacting binary Bose gases occupying two different hyperfine states are
the simplest, yet interesting example of quantum mixtures, for which the problem
of miscibility has been intensively investigated, both experimentally [18,119-122]
and theoretically [123-134].

At zero-temperature, the miscibility criterion is obtained starting from the
Gross-Pitaevskii energy functional of Sec. , adapted to the mixtures: [7,|123

81
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126,128
3 hz 2 hQ 2 2 2
E= [ dr | —|VV "+ —|VUs|* + ‘fl,ext|\1j1‘ + V2,ext|‘1’2|
2m1 2m2
1 1
+ 5911|‘1’1|2+§gz2|‘1’2\2+912|‘1’1|2|‘1’2|2 ; (4.1)

where Wy (r) and Ws(r) are the order parameters for the respective component of
the mixture, with mass m; and ms, each of them being under an external potential
Viext(r) and Vs et (r). The interaction between identical atoms is modeled through
the intra-atomic couping constant g1 = 4wh%ai/my and gy = 4wh%ags/mo,
whereas the interaction between different atomic species is given by the inter-
atomic coupling constant gio = 4wh?aiy/mpg, with mp = 2myms/(my + my) the
relative mass. In the simplest case where the atoms are confined in a box, one can
calculate the energy in the miscible and phase-separated configurations straight-
forwardly. In the miscible case where all the atoms occupy the volume V' of the
box, one finds,

g11 2y 911 r0 , 912
Emls - N N —N N y 4.2
oyt Tyt T (4.2)

with Ny and Ny the number of atoms in the component 1 and 2, respectively. For
the phase-separated case one instead finds,

911 a2, 922 340
Eps = 5 Ni N : 4.3
with V; and V5 the volume occupied by the respective component. In the phase-
separated state, the pressure between the two gases has to be the same (mechan-
ical equilibrium), OF,s/0V) = OE,s/dV, implying the relationship g1 (N;/V;)? =
Go2(No/Vy)2. Consequently,

011 a2, 911 52 V911922
B ="=N; + =N, NiN,. 4.4
ps = oy gy Ne T (44)

Thus, comparing Eqs. (4.2) and (4.3), the miscible state is energetically stable
with respect to the phase-separated state as long as the following inequality holds:

912 < V911922 - (4.5)

This criterion has been verified experimentally, for instance in the Rubidium mix-
tures, where the transition from the miscible to the phase-separated state has been
observed by tuning the intra-atomic [119] or inter-atomic [121] coupling constant,
using the Feshbach resonance.
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4.1.2 Binary BECs at finite temperature

At finite temperature, theoretical studies have mainly focused on harmonically
trapped systems, by means of the Hartree-Fock [127,/133,|134], Zaremba-Nikuni-
Griffin [131] and Hartree-Fock-Bogoliubov [129,|130,|132] theories. Although they
differ in the treatment of the intra-species interaction, all the above approaches
treat the inter-species coupling at the mean-field level, thereby providing an inac-
curate description of the thermal fluctuations associated with the spin degree of
freedom. As one shall see, it is in fact crucial for the discussion of the miscibility
to derive a finite-temperature theory, which properly includes the effects of ther-
mal and quantum fluctuations in both the density and spin channels. In order to
illustrate this point, we develop in this section two different approaches: the HF
theory on one hand, and the Popov theory on the other hand.

In what follows, we consider the simplest symmetric configuration, in which
the masses, as well as the intra-atomic coupling constants of the two components
are the same: m; = my = M and g1 = g22 = g.

Hartree-Fock theory

The HF theory for the mixtures is obtained by starting from the two-components
Hamiltonian:

At
H= E { E <€k0LZ kOLZ K —|— E aZ kaZ k,+qal kUi k+q

i=1,2 kk,q
912 At A At N
+5 > ] el kb jo glinge (4.6)
kk'.q

and proceeding in the same way as the single-component case, Sec. [2.1.1 After
the Bogoliubov ansatz of Sec. followed by the mean-field assumption (2.1,
one finds for the HF grand-canonical Hamiltonian

KU — QfIF | Z Z ek + 2gn; + grans—; — ;) jkazk, (4.7)
1=1,2 k#0

with QfF given by

QgF = Z {WN2 VNZ? — i Nig + g_‘;QNl 0N2,0 — g—‘l/QNlNz} , (48)

i=1,

where N; o and N; are the number of atoms in the condensed and normal phase for
the i'" component, respectively. The grand-canonical energy is found by taking
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the trace of the grand partition function:

1
O = OfF 5 3" In (1 - st ) (1.9)

1=1,2

As for the chemical potential in the condensed phase, it is given by the saddle-point
equation 092/0n; o = 0:

it =gl + ;") + grang- (4.10)

where the thermal atoms density is given by the Bose special function, 7ff =

g3/2(2i) /A3, with the fugacity z; = e 90, When a given component is in the
normal phase, one instead has pM™ = pB% 4+ 2gn; + gions_;, with pB the ideal
gas chemical potential. Finally, we verify that when taking the derivative of QF

([4.9) with respect to pf¥, one correctly finds the number density n;.

Popov theory

As explicitly shown in Eq. (4.9), the HF theory accounts for the inter-species
interaction only to the lowest order, linear in ¢io. Indeed, Q' is simply given
by the sum of the single-component thermodynamic potential in each component
Eq. , with additional mean-field terms gy2(N19N2o + Nl]\Nfg)/V, linear in
g12 (the fugacity, as well as the thermal atoms density depend only on the intra-
atomic coupling constant ¢g). In order to include the effects of spin fluctuations,
we develop the Popov theory for the mixtures of two condensates, starting from a
model Hamiltonian which treats in a consistent way both inter and intra-species
interactions. The associated grand-canonical Hamiltonian K can be diagonalized
by means of Bogoliubov transformations, as well as proper renormalizations of the
coupling constants [135]. The derivation follows closely the one of the HF theory,
and is given in Appendix [A.2] The grand-canonical Hamiltonian is found to be:

K=+ Y (B alaw+ B Blh) (4.11)
k40

where dL and 51 are, respectively, the creation operators for the quasiparticles in
the density and spin channels obeying Bose statistics, and {2y is the thermodynamic

potential of the vacuum of these quasiparticles (see Eq. (A.37) in the Appendix).

The excitation spectrum of the system reads Elf = \/ei + 2A1ex where,
1
Ar=5 (gno + \/(92 — giy)mi + 9%2“3) : (4.12)

are the Bogoliubov sound velocities, with ng = n{, + nj, and mg = n}; — njy,

where nj, = n; — n} is the condensate density evaluated to the lowest order
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in the interaction. The thermodynamic potential is therefore given by 2 =

B~ tIn (Tre_'gk):
Q:Qo+%;¥m (1—6*”3) (4.13)

In this expression, the thermal contribution of single-particles in the HF theory
(4.9) has been replaced by that of quasiparticles. The chemical potential is evalu-
ated from the saddle point equation 0§2/dn; o in a perturbative way, and is found

to be (see Appendix |A.2)

MAL
2mh?

3/2
p1 = g(ny +nY) + grang + gz ( ) Hi(te,l) (1+2) (4.14)
+

where the dimensionless function on the reduced temperature 7. = kgT /AL and
parameter | = ny,/nf, is given by

Hy(r,1) =i{% <1i L+ (29" — I )

VT 3 V= D2 + 452

> (us — 1)3/2 1+ (262 — 1)1
—i—Ti/O dx f(z) [—Ui (1 + N —|—4§2l> - \/Ti_l’] }7
(4.15)

with § = ¢g12/9.

4.2 Magnetic phase transition in binary BECs

We now investigate the miscibility of a uniform bosonic mixture at finite temper-
ature, and consider the situation in which the inter-species interaction is close to,
but still smaller than the intra-species value (0 < dg = g — g12 < ¢). Such con-
figuration is found for instance in mixtures of 2*Na atoms occupying the hyperfine
states |F' = 1, mp = £1), where one has dg/g = 0.07 [136,137].

4.2.1 Dynamical instability

The onset of a phase separation induced by a dynamical instability can be con-
veniently assessed if one calculates the susceptibilities of the system. Indeed, the
miscible state is found to be dynamically stable against density and spin fluctua-
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tions if the compressibility matrix is positive [84,138]:

Opiy Opia

- > /= > 4.1

3711_0’ 8n2_0’ ( 6)
Opy Opa Oy Opia >0 (4.17)

anl 8712 B 8n2 8’[11 -

The first equation defines the positiveness of the single-component compressibility.
In fact, it is sufficient for only one of the two conditions in Eq. to be
satisfied, since the other one is automatically verified when the inequality in Eq.
holds. In the situation where the atomic density in each component is equal
(ny = ny), these two conditions are equivalent to the following inequalities:

o !

n’kr = (%>T >0, (4.18)
on\

n*or = <a_m)T >0, (4.19)

where we have introduced the total chemical potential p = (3 + u2)/2 and total
atoms density n = n; + no, as well as the chemical potential imbalance h =
(111 — p2)/2 and the magnetization density m = n; — ny. Equation defines
the isothermal compressibility k7 = [0%(F/V)/On?|r]~! of the mixture, while Eq.
the isothermal spin susceptibility o7 = [0?(F/V)/0m?|7.m=0] "

At zero temperature, ; = gni + gians at the mean-field level , and one
verifies that Eqs. (4.18) and (4.19) yield n*kr(or) = 2/(g £ g12), so that phase
separation occurs for g < g0, as discussed in Sec. H4.1.1, For example, in the
case of a mixture of ?*Na atoms, one has dg/g = 0.07 yielding an increase of
a factor ~ 14 of the T" = 0 value of the spin polarizability with respect to the
value obtained in the absence of interspecies interactions. The huge increase of
the spin susceptibility has been recently demonstrated experimentally in the case
of a harmonically trapped mixture of sodium atoms [136,137].

In Fig. we report the HF and Popov calculations for the isothermal com-
pressibility and the spin susceptibility, in the case of the sodium mixture discussed
above, in the unpolarized configuration n; = ny = n/2. In that case, both compo-
nents condense at the same critical temperature kpTprc = 27h%/M[n/2((3/2)])?/3.
Comparing the compressibility of the mixture in panel (a) together with Fig.
for that of a single-component gas, one can see that both have a similar trend,
without a significant difference between the HF and Popov theory. However as
shown in panel (b), we find that the spin susceptibility predicted by the Popov
theory deviates strongly from the HF calculation. Remarkably, the susceptibil-
ity predicted by the HF theory shown in panel (b) exhibits a divergent behavior
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Figure 4.1: (a) Isothermal compressibility (4.18) and (b) spin susceptibility (4.19)
for a binary mixture of Bose gases, with interaction parameters gn/(kgTprc) = 0.1
and 0g/g = 0.07. The blue solid and the red dashed lines are the predictions of HF

theory (Eq. (4.10))) and Popov theory (Eq. (4.14)), respectively. Both quantities
are normalized to the mean-field 7' = 0 values, kr(o7)(T' = 0) = 2/(g £ g12).

at T' ~ 0.5Tggc, therefore signaling the onset of a magnetic dynamic instability.
The origin of this instability can be understood if one writes the analytical ex-
pression for the spin susceptibility, obtained from Eq. together with the
high-temperature approximation for the HF chemical potential (see Eq. ):

2 (UjlfF)f1 ~ g — 93/2\/—;? ﬁo : (4.20)
A\ g
The onset of the dynamical instability in the HF description is due to the last ¢*/2-
term in Eq. , arising from interaction driven thermal fluctuations. As the
temperature increases, beyond mean-field effects are enhanced, eventually leading
to a divergent behavior of oHF at finite temperature. It is worth noticing that the
spin susceptibility in the HF theory can also be written in the form E|:

2 SC
oHF — T (4.21)
I — g12k5

with &7 the isothermal compressibility for a single-component HF gas, given by
Eq. . The above expression explicitly indicates that the temperature depen-
dence of the spin susceptibility is fully contained in the single-component prop-
erty «%. Thus, one concludes that the divergent behavior of the susceptibility

!This is easily verified if one notices that the chemical potential difference in the HF theory
can be written as pu1 — pa = p5° — py® — g12(n1 — ng), with p$° the chemical potential in a
single-component gas.
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in the HF framework arises from the enhancement of the single-component com-
pressibility with the temperature, which in turn comes from both exchange effect
and interaction-induced thermal fluctuations (see the discussion made after Eq.
(2.46])). The situation is somewhat analogous to that of quantum droplets, where
the Lee-Huang-Yang correction to the zero-temperature chemical potential is re-
sponsible for the stabilization of collapsing Bose mixtures [139]. While the LHY
term originates from quantum fluctuations, the last term in Eq. arises from
interaction driven thermal fluctuations.

This last analogy motivates us to properly evaluate the interplay between ther-
mal and quantum fluctuations in the mixture. Both fluctuations are properly taken
into account in the Popov theory, and the analytical expression for the spin suscep-
tibility can be calculated in a similar fashion to the HF approach (see Eq. )

We find:
3/2
(1+gﬁ) - <1+@) 5—91 . (4.22)
g 9/)\ g

In contrast to the HF prediction Eq. , the Popov approach gives rise to terms
proportional to dg also for the beyond mean-field terms (second term in the right-
hand side of Eq. ) A careful analysis of the grand-canonical Hamiltonian
in Eq. reveals that the emergence of such beyond mean-field terms in
g12 is due to the correct treatment of the two-component anomalous densities
(afa;)iz; and (d;0;)iz;. These anomalous averages are natural extensions of the
single component anomalous density (a;a;) of Bogoliubov theory |135], and are the
consequences of the presence of Bose-Eistein condensation in both components (see
Appendix @ The inclusion of such terms in the grand-canonical Hamiltonian
Eq. @ is crucial to provide a proper description of both spin and density
fluctuations. It is worth noticing that besides the well-known solution dg = 0,
Eq. possesses a second root, leading to a dynamical instability at finite
temperature even if dg > 0. In Fig. 4.1{(b) the divergence of o7 is found to occur at
T ~ 0.9Tggc. However at this temperature the system is already phase-separated,
as we discuss in the next section.

2 (o) e 5y — 9 2VE [

3
g12 /\T No

4.2.2 Energetic instability

In the previous section, we have established the region where the mixed binary
configuration is dynamically stable. We now turn to the investigation of a possible
energetic instability, associated with the emergence of an energetically favorable
phase separated state. Let us consider an unpolarized Bose mixture, miscible at
zero temperature (6g > 0). Since we consider a uniform system, the mixture is
prone to separate into two domains (A, B) of equal volume V/2, conserving the



Magnetic phase transition in binary BECs 89

total density n = n, but with opposite magnetization m* = —m? = m. For

the investigation of energetic instability, one needs therefore to calculate the free
energy, as a function of the magnetization m. This is achieved by evaluating the
free energy using the thermodynamic relation F' = Q+ ). 11, N;, together with the
Popov expression for () . At a given temperature T" < Tggc, two situations
emerge, depending on the value of m:

A_ B

1. m<n-— 24(5’—;2)
Both components are in the condensed phase. The free energy is therefore
given by:

F g, ., M \*? 4 5/2
V:§ (n1+n2)+912n1n2+<27rh2) 15ﬁ¥<2f\i)

N gC(?;/G:) n BLV zi: zk: I (1 _ e—ﬁE$> _ (4.23)

€(3/2)

In that case, the density of the minority component is smaller than the criti-
cal density for the BEC to occur. Consequently, only the majority component
has a condensate component and one finds:

F 3/2)?
v :g (n% + 2n3 + C(/\/G ) > + granang + p5n,
T
2 0 — 1 1— —BEx
+ <27rh2) 15ﬁ( gnio) "+ m/zk: n(1—e™?)
1
+ ﬁ_v Z ln (]_ — G_ﬁ(ek_MIQBG)> s (424)
Kk

where we chose ny to be the minority component in the normal phase. The
ideal Bose gas chemical potential piB¢ is defined through the relationship
ny = gg/g(eﬂ“éBG)/)\%, with g,(z) the Bose special function. As for the ma-

jority component in the condensed phase, it is now described by the quasi-

particle energy Ey = \/ei + 25kgn?70.

Actually, the two phase-separated domains are in equilibrium when both the pres-
sure (P4 = PP) and the chemical potential (u* = u?) equilibrium conditions
are satisfied. While the equilibrium condition for the pressure is automatically
satisfied for the symmetric configuration considered here, the chemical potential
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1.0

Figure 4.2: Difference of free energies between the miscible state (m = 0) and
the phase-separated state described in the main text, calculated within the Popov
theory for gn/(kpTgrc) = 0.1 and dg/g = 0.07. Blue solid line: T < T*, red
dashed line: T* < T < T}y, green dotted line T" > T);. The brown dotted-dashed
line is the HF theory result for 7' > T),. The vertical lines indicate the critical
magnetization m = n —2¢(3/2) /A3 above which the minority component is purely
thermal.

equilibrium is found to be fulfilled only if, in each domain one of the two com-
ponents is in the normal phase, therefore corresponding to the case 2 discussed
above.

Figure [4.2| shows the calculated free energy as a function of the magnetization
density, for different values of temperature. At low temperature, the free energy is
a monotonously increasing function (see blue solid line), with a unique minimum
at zero magnetization, corresponding to the mixed state. At a given temperature
hereafter called T™, a second minimum starts to develop in the region where the
minority component is purely thermal, m > n — 2¢(3/2)/A3 (red dashed line).
As already stressed, the emergence of such metastable state corresponds to the
fulfillment of the chemical potential equilibrium between the two domains. An
analytical expression for the temperature 7™ can be obtained from Eq. , by
employing the high temperature kg1 > gn expansion for the Bose distribution
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function (see Appendix |A.2)):

I 99¢/2) [Terc (4.25)

Teec 9 V2m gn
By further increasing the temperature, the energy of the metastable state de-
creases, eventually reaching the same energy as the unpolarized state, therefore
signaling the onset of a first order phase transition. Hereafter we use the notation
Ty to denote this magnetic phase transition temperature, above which the mixed
state is energetically unstable with respect to the phase separated state (green
dotted line in Fig. 4.2). The new equilibrium phase predicted by Popov theory
is hence characterized by a full space separation of the Bose-Einstein condensed
components of the two atomic species, their thermal components remaining in-
stead mixed, with a finite magnetization. The phase-separation is sketched in Fig.
We briefly note that HF theory predicts a similar behavior for the free energy,
but with a dynamical instability, associated to the divergence of the spin suscep-
tibility . This is shown as the brown dashed-dotted line in Fig. [4.2] where
the curvature of the free energy becomes negative at high enough temperature.

So far, we have restricted our discussion to mixtures satisfying the miscibility
criterion at zero-temperature: g1 < ¢g. However, the above free energy analysis
suggests that a similar phase-separation mechanism can take place even when the
gas is initially phase-separated. Indeed, let us consider the situation in which
g12 > ¢g. Then, the spin susceptibility Eq. as well as the square of the
spin sound speed Eq. is negative, implying a complex Bogoliubov excita-
tion spectrum in the long wave-length limit. These are signatures of dynamical
instability, with the occurrence of a phase-separation. Now, in the particular case
discussed so far, where the two condensates are phase-separated, the spin channel
in the Bogoliubov excitation vanishes, and the system is well described by
Eq. , regardless the values of g and ¢15. In Fig. M we show the behavior
of the free energy as a function of the magnetization density, for ég/g = —0.07, at
T = 0.6Tggc. We find that for any small but finite temperature, a minimum of
the free energy appears at m < n. Although one can not evaluate the energy in
the region where m < n — 2((3/2)/A3. (shaded region in Fig. because of the
complex excitation spectrum, we expect that a complete phase-separation of the
two gases (m = n) is made possible only at zero-temperature, and any small but
finite temperature is responsible for the mixing of the non-condensed parts.

To summarize, we show in Fig. the phase diagram of the two-component
Bose mixture, by plotting the characteristic temperature 7%, providing the onset
of a minimum in the free energy with m # 0, and the phase transition temperature
T, as a function of dg/g. For the sodium mixture where dg/g = 0.07, we find that
the phase-separated state appears as a metastable state at T = 0.367pgc, while
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T < Ty T > Ty

Thermal part
Thermal part

Condensate part
Condensate part

Figure 4.3: Sketch of the temperature driven phase-separation. Below the mag-
netic transition temperature 7' < Ty, (left panels), the mixture is perfectly mis-
cible. As one crosses the transition point, 7' > T), (right panel), the thermal
atoms have a finite magnetization (m # 0), whereas the condensate parts are fully
separated.

the phase transition occurs at Ty = 0.717Tggc. We briefly note that as dg/g — 0,
T* tends to a finite value (~ 0.17ggc), as a consequence of quantum fluctuations,
in contrast to Eq. which only holds if T* > gn/kg. We also find that the
phase separated state disappears slightly above the critical temperature Tggc. At
this temperature, the mixture becomes again miscible with both components in
the normal phase. In the regime where dg < 0, we have verified that the mixture
might be phase-separated in the absence of Tggc too, provided that g0 > g.

4.2.3 Effects of spatial inhomogeneity in trapped BECs

So far, we have always been considering the homogeneous mixture in a uniform
potential. However, for the experimental purpose, it is important to assess how
the physics of phase-separation is modified in the presence of a confining trap.
This can be conveniently assessed if we work in the grand-canonical ensemble, and
recall the local density approximation (LDA) [4,/63]. For fixed chemical potentials
(11, p12), four possible configurations arise, according to our previous discussion:

1. BEC1-BEC2: both components are in the BEC phase.
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Figure 4.4: Difference of free energies between the immiscible state (m = n) and
the phase-separated state described in the main text, for gn/(kpTsrc) = 0.1 and
dg/g = —0.07, calculated at T' = 0.6Tggc. The gray shaded region m < n —
2¢(3/2)/ A3 corresponds to the region in which the system is dynamically instable,
with a complex single-particle spectrum. Inset: emphasis on the minimum of free
energy.

2. N1-N2: both components are in the normal phase.

3. BEC1-N2: component 1 is in the majority and in the BEC phase, while
component 2 is in the minority and in the normal phase.

4. BEC2-N1: component 2 is in the majority and in the BEC phase, while
component 1 is in the minority and in the normal phase.

In Fig. [4.6] we show the grand-canonical phase diagram for the symmetric mixture,
as a function of the chemical potentials, obtained by comparing the thermodynamic
energy €2/V of these four configurations, and looking for the energetically favorable
state. The diagram is calculated using the Popov theory, for a fixed value of
temperature gn%./(kgT) = 0.05 and dg/g = 0.07.

Within the LDA, the inhomogeneous gas is described as a set of locally homo-
geneous subsystems, with local chemical potential [140]:

() = 1 — Ve (1) (4.26)
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Figure 4.5: Phase diagram for binary condensates with gn/(kgTggrc) = 0.1. The
blue solid and the red dashed lines are the phase transition temperature 7),, and
characteristic temperature 7™, respectively. The gray area corresponds to the
regime of phase-separation.

For a harmonic trap, Ve :(r) = mw?r?/2, and in the symmetric case where both
components feel the same external potential, the density profile in the trap will
follow the linear curve py = pg — (uf — 1) in the phase diagram, with p = p;(r =
0). Looking closely to Fig. , one finds that the mixture is miscible at every
position of the trap for u? = 1 only, and an imbalance in the chemical potentials
leads inevitably to the appearance of a region in which the two BECs do not
coexist. We briefly note that a similar phase diagram has been obtained within
the HF framework in Ref. [134], although predicting the existence of a tricritical
point, arising from the divergence of the magnetic susceptibility.

4.3 Sound propagation in binary BECs

The propagation of sound waves in a mixture can be investigated in a similar way
to the single-component gas. For the hydrodynamic sounds, we need to generalize
the two-fluid equation to the case of mixtures, by considering the normal
fluid and the superfluid in each atomic component. Such derivation has been
achieved for the particular case of liquid He in Ref. [141], and symmetric Bose-
Bose mixtures in Ref. [130]. The development of a more general hydrodynamic
equation for the binary superfluid mixture is under progress, and will be discussed
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Figure 4.6: Grand-canonical phase diagram for binary condensates, with
gn%/(kgT) = 0.05 and dg/g = 0.07. For the description of the different phases,
see main text.

in a future publication.

In the collisionless regime instead, the RPA formalism we have been using so
far is not applicable, since this approach is equivalent to the HF theory, which
predicts an erroneous divergence of the spin susceptibility. For instance, from the
study made in Sec. one expects for the collisionless sounds in the mixture to
be well described by the sum-rule result Eq. . In particular, the spin sound
velocity is expected to be directly related to the magnetic susceptibility as

1

mnop

(4.27)

Cs

The proper description of spin fluctuations through the inclusion of the anomalous
densities is therefore crucial, and one needs to develop a beyond-HF dynamic

approach [5,[77).
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Conclusion

In this thesis, we investigated the propagation of sound waves in dilute Bose gases,
in a variety of configurations. In particular, we worked on the three-dimensional
Bose gas (Chap. [2)), and the two-dimensional Bose gas (Chap. [3). We further dis-
cussed the finite-temperature properties of the three-dimensional Bose-Bose mix-
tures (Chap. [4)).

In the first chapter, we showed that the physics of sound wave is closely related
to the phenomenon of superfluidity, this connection being the central motivation
in investigating sound dynamics in ultracold atomic systems. After introducing
some basic concepts about Bose-Einstein condensation, we reviewed the theoretical
frameworks needed for the calculation of sound waves velocities. These concern
the two-fluid hydrodynamic theory of Landau, which gives rise to the phenomenon
of second sound, and the linear response theory, suitable for describing collisionless
sound.

These theories were used in Chap. [2] to investigate sound waves in a weakly
interacting 3D Bose gas, both in the hydrodynamic and the collisionless regimes.
For this purpose, we derived the Hartree-Fock theory for the dilute Bose gas at
finite temperature. Although the problem of sound propagation in 3D is well-
known in the literature, this case-study permitted us to have an insight on the
nature of the sound waves. In particular, we showed that the second sound and
the collisionless mode have similar temperature dependence of their velocity, and
correspond essentially to an oscillation of the condensate component.

The Chap. |3|is devoted to the propagation of sound waves in 2D. After briefly
reviewing the general physics of Berezinskii-Kosterlitz-Thouless phase transition,
we have introduced the universal thermodynamics for the critical region near the
phase transition. Although low-dimensional systems are known to exhibit strong
thermal fluctuations, quasi-condensate mean-field theories were found to give qual-
itatively correct results for the interested thermodynamic quantities in the super-
fluid regime, when compared to the universal description of Prokof’ev and Svis-
tunov [82]. Combining the mean-field theory together with the universal approach,
we provided a systematic investigation of the behavior of the second sound in a 2D
interacting Bose gas, exploring the transition from the weakly interacting limit to
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the regime characterized by larger values of the 2D coupling constant. We pointed
out the crucial role played by the thermal expansion coefficient, which not only
governs the density or entropy nature of the sound waves, but also characterize
the BKT jump of sound speeds.

Motivated by the recent experiment by the group of College de France in Paris
[17], we further studied the propagation of sound wave in a uniform 2D Bose gas,
in the absence of collisions. While hydrodynamic (second) sound and collisionless
sound velocities do not exhibit major difference in the 3D case, our study revealed
that the collisionless sound in 2D differs drastically from the hydrodynamic one,
possessing a finite velocity both below and above the BKT transition. Our result is
in close agreement with the measurement of Paris, and we further interpreted the
observed damping of the sound mode as arising from Landau damping mechanism.

In the final chapter of this thesis, we studied the binary mixture of weakly
interacting Bose gases. We developed a beyond mean-field Popov theory for the
binary condensates, which properly include the effects of thermal and quantum
fluctuations in both the density and spin channels. We underlined the important
role played by the two-component anomalous densities, which give rise to a pro-
found change in the thermodynamic properties of the mixtures. In particular, we
found that the inclusion of spin fluctuations enables to cure the divergent behav-
ior of the spin susceptibility, predicted by Hartree-Fock theory. Detailed analysis
of the free energy further showed the existence of a first-order phase transition
from a miscible state to a polarized state, driven by interaction induced thermal
fluctuations.

Future perspectives

We conclude this thesis by making some remarks about the possible future perspec-
tives. First, for the problem of sound propagation, the experiment by the group
of College de France [17], and our complementary theoretical work, have shed
light on the physics of collisionless sound. An important issue is the crossover
between the collisionless and collisional regimes. For instance, it is not clear how
the observed collisionless mode would evolve to the hydrodynamic sounds as one
increases the collisional rate. The RPA analysis made in Sec. indicates that
the response function possesses in fact two poles, the second one arising
from the response of thermal atoms. Clarifying this point might allow for a bet-
ter understanding about the evolution of the sound modes in the crossover. On
the other hand, it seems that reaching the hydrodynamic regime in dilute Bose
gases is experimentally challenging, thus motivating the investigation of strongly
interacting systems.

As for the mixtures, the magnetic phase transition we have discussed has re-
vealed the important interplay between thermal and beyond mean-field effects.
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The methodology we have developed for the derivation of the Popov theory in App.
can be applied to other systems, such as the coherently coupled BECs [142,/143],
or dipolar Bose gases [31.|144]. Recently, these systems have been realized experi-
mentally, and have gathered much attraction from the community, for the richness
of their phase diagrams, presenting exotic phases [145-147]. However, few works
have been devoted to the finite temperature description [148|(149], and a better un-
derstanding about the role played by the thermal fluctuations is needed. Finally,
the magnetic phase transition discussed in this thesis has never been observed
experimentally, the main reason being the inhomogeneity of the trapped systems.
Recently, box-like potentials providing uniform trapping have become available
for both Bose [58] and Fermi [150] gases. Thus, the experimental possibility of
observing the predicted magnetic phase transition is a realistic option. Important
open issues concern the propagation of sound in these polarized domains, the pos-
sible emergence of a similar magnetic phase transition in two dimensions, and the
structure of the interface between different domains.



100




Appendix A

Popov theory for 3D dilute Bose
gases

We develop in this appendix the Popov theory [102, §6], a finite-temperature gen-
eralization of the Bogoliubov theory discussed in Sec. This approach is
based on a perturbative treatment of the grand canonical potential to second or-
der in the interaction coupling constant, and properly includes beyond mean-field
quantum and thermal fluctuations.

A.1 Single-component Bose gas

A.1.1 Formalism
Grand canonical Hamiltonian

For the derivation of the Popov theory, we essentially follow the same procedure as
the HF theory, developed in Sec. by applying the mean-field approximation
to the single-component Hamiltonian (1.48). However, different from the HF
approach, we keep in the Popov theory the terms in the Hamiltonian in which
the creation and annihilations operators appear by pairs (”Bogoliubov” terms).
Thus, applying the Bogoliubov prescription and the mean-field approximation,
one obtains for the grand canonical Hamiltonian K = H — ,uN

K :WNQ VN2 — uNy + Z (ex + 2gn — p) dL&k
Kk£0

2VNOZ (aka K+ axa_ k) : (A.1)

k£0

with N = ok 20Tk the number of non-condensed atoms. In obtaining Eq. (A1),
we have further neglected the cubic products of non-condensate operators, as well

101



102 Popov theory for 3D dilute Bose gases

as terms like grmala’, and gim?, where i = V=Y, (dxa_y) is the anomalous den-

sity. As one shall see below, the leading order of the anomalous density is of order
g, and these terms correspond therefore to beyond-second order contributions. We
briefly note that these terms are included in the Hartree-Fock-Bogoliubov (HFB)
theory [77,/135], making a key difference with the actual approach. Like for the
Bogoliubov theory at zero temperature in Sec. m, the last term of Eq.
is of order g2, leading to the problem of ultraviolet divergence. This issue arising
from the approximated treatment of inter-atomic interactions is again solved by a
renormalization of the coupling constant: g — g(1 + g/V Y, m/(hk)?).

Equation has the same structure as the Bogoliubov Hamiltonian ({1.48))
and can be diagonalized in exactly the same way, by means of Bogoliubov trans-
formation Eq. (1.52). Then, one finds that the off-diagonal terms vanish for the
following values of coefficients uy and wvy:

€k+A 1)1/2

2F 2

where we have introduced the effective chemical potential A = [p —2gn| for future
convenience [151], and By = +/(ex + A)% — (gno)? is the Bogoliubov quasi-particle
spectrum. By means of Eq. (A.2), the Hamiltonian (A.1]) reduces to an effective
Hamiltonian describing a gas of non-interacting quasi-particles:

K =Q+ Y Eidldy, (A.3)
k#£0

U U = E ( (A.2)

with Qy the thermodynamic potential of the vacuum of quasi-particles:

Ng N2 n
Qo—gﬁ_g__ﬂN0+ Z( k_gk_A_l—ﬁ(gk;)))' (A4)
k=40

The thermodynamic potential is obtained according to €2 = %ln Z, where Z =

Tr(e #K) is the grand partition function. The trace is taken over all the quasi-
particles states and one finds:

O=Q+~ Zln( —ﬁEk). (A.5)

Finally, it is worth noticing that in terms of uy and vy, the non-condensate and
anomalous densities are expressed as:

LS 2+ 020 f(B) + 2 (A.6)

il
I

V
= ZZukv W (B + wev™y (A7)

where f(E) = (e’F —1)7! is the Bose distribution function.
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Chemical potential

Let us now calculate the chemical potential. This is achieved from the saddle point
equation 0€/0ng|s 1, = 0, which provides the following result:

2

W= gng+ = Z{ 2g€k+A)—gn0}(2f(E~’k)+1)—Qg+g€:0}. (A.8)

In principle, the above equation has to be solved self-consistently together with
Eq. for the non-condensed density. However, such procedure is known to
exhibit an unphysical gap in the quasi-particle energy [135]. In this work, we
follow the methodology of Ref. [5] and solve perturbatively the coupled equations.
This allows us to avoid the problem of the gap and provides the correct chemical
potential to order g?. To the lowest order in the interaction (O(1)), Eq.
yields for the non-condensate density the ideal Bose gas thermal atoms density,
nd = ((3/2)/A\3.. As for the chemical potential, the leadlng contribution is instead
linear in g, and one finds from Eq. - that u° = gng + 2gn% = gn + gnJ.
Consequently, A° = gnd = g(n —n%), and one finds that the Bogoliubov spectrum
is gapless to the lowest order:

Ek = \/8% + 2A€k . (Ag)

In the above equation, as well as in what follows, we omit the superscript 0.
Inserting this expression in Eq. (A.6), one finds the subleading order correction
for the non-condensed density to be

-, A\ 32 \
n=np+ 572 G(1) (A.10)

with G(7) a dimensionless function, depending on the reduced temperature 7 =
kgT /A, according to

G(T):—{—+T/ dzf(z) (Vu — —\/_)} (A.11)

VG

with u = y/1 4 (72)2. The subleading order term in p is calculated from Eq. (A.8])
by replacing Ey — Eyx and gng — A in the beyond mean-field terms:

_ 0 mh 3/2H A12
p=gntgnr+9( 5 s (1), (A.12)

with the dimensionless function defined as:

H(ﬂ:%{%w/f@f@) (@—\/ﬁ)} (A.13)
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where we have used Eq. to express ng as a function of A. These equations
give the exact second order expression for the chemical potential, as a function of
the total density n and temperature 7', when one uses A° = g(n —n%). This result
was first derived by Popov [102, §6] in the high-temperature regime (Eq.
below), and the same expression (A.12) was derived in Refs. |[152] and [133] within
the finite-temperature extension of the Beliaev diagrammatic techniques, as well
as in Ref. [5] starting from the time-dependent HFB equations. In this thesis, we
therefore refer this approach to the Popov theory.

As we have already noticed, the quasi-particle spectrum of Eq. is gapless
in the long wavelength limit, therefore fulfilling the Goldstone theorem, stating
that the spontaneous breaking of continuous symmetry must be associated to the
existence of a long wave-length gapless mode [153]. This is in sharp contrast
with the HFB approach, which is known to exhibit an unphysical gap due to an
inconsistency in second order. As a matter of fact, the HFB Hamiltonian contains
additional terms, given by

JHFB _ frPopov _ gvﬁf + gmz (dﬂdik + dkd—k> : (A.14)
120

Clearly, the last term of Eq. (A.14]) will be responsible for the modification of the
Bogolibov spectrum according to

E"B = /(e A) — glng + ). (A.15)

making it gapped in the long wavelength limit, and that even when the densities
are evaluated to the lowest order. An improvement of the Bogoliubov spectrum can
therefore be obtained only if one properly considers all the second-order diagrams
in the self-energy [133]. We also stress that though the anomalous density does
not explicitly appear in the Hamiltonian Eq. , our theory is formally different
from the HFB-Popov approximation [133,135]. The key point in our approach is to
take the derivative of the thermodynamic potential with respect to the condensate
density, before assuming the gapless spectrum (Hugenholtz-Pines theorem [154]).
The difference between the two approaches will be clarified hereafter.

Equation can also be solved self-consistently by using A = | — 2gn| in
the beyond mean-field terms. Although such procedure would allow for the calcu-
lation of higher order corrections, the validity of these new terms are questionable.
Indeed, Eq. assumes A = gng to hold, which is formally true only when A
and gng are evaluated to the lowest order, while it is an approximation when next
order contributions are included. Solving Eq. self-consistently is therefore
an ad-hoc procedure in which we have assumed a gapless spectrum [135].
In the following, we will refer to the second-order Popov theory, when the lowest-
order expression A is used, and to the self-consistent Popov theory, if Eq.
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is solved with A = | —2gn|. From this point of view, choosing A or gng as the per-
turbation parameter is only a matter of convenience, since it gives the same second
order results and their difference arises only for (a priori non-reliable) higher order
terms |151]. In this work, we have chosen A since, by construction, it has the same
beyond linear order corrections as the chemical potential (for p = pu® + du, then,
A = A% — 6u). As we shall see below, this correspondence provides the correct
low-temperature expansion of the chemical potential and the correct lowest order
expression for the free energy. The beyond mean-field theory developed in this
thesis is therefore valid as far as the following inequalities are satisfied:

A

> (na®)?3, A.16
o Tome (na) (A.16)

1>

with kpTsee = 2mh%/m[n/C(3/2)]? the BEC critical temperature for a non-
interacting Bose gas. The first inequality in Eq. involves the smallness of
the perturbation parameter, whereas the second inequality arises from perturba-
tion theory, and ensures the corrections to thermodynamics due to critical fluctu-
ations occurring around the phase transition to be small [7]. We verify that our
approach fails in describing the region in the close vicinity of the BEC transition,
where A — 0.

Finally, the anomalous density can be evaluated from Eq. using the

gapless spectrum:
- 1 A 1
k

One can immediatly notice that the anomalous density is of order g (ox A). As we
have already mentioned previously, the second term in the right-hand side of Eq.
(A.17)) is ultraviolet divergent. Using the two densities Eqs. (A.10) and (A.17]),
the chemical potential can now be rewritten as:

W= gng+2gn+ gm. (A.18)

One can verify that the above expression coincides with Eq. , when ap-
plying the proper renormalization of the coupling constant, gng + gm — gno(1 +
g/V >, m/(hk)?) 4+ gm. We also note that the aforementioned Popov approxima-
tion of the HFB theory is recovered when putting /m = 0 in Eq. (A.18)).

A.1.2 Discussion
Analytical expression

We now discuss the behavior of the chemical potential in different temperature
regimes. First at zero temperature, H(7) = 8/2/(3/7), and one obtains to order
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w(T =0) = gn (1 + % na3> : (A.19)

retrieving correctly the chemical potential calculated by Lee, Huang and Yang (see

Eq. (1.59) with p = 0Ey/0n).

At low temperature 7 < 1, one can expand the dimensionless function H ()

in Eq. as:
H(r) ~ \/g (2 — \/§§(3/2)7’3/2 + §—37'4> : (A.20)

Inserting this expression in Eq. (A.12)), one gets the low-temperature behavior of
the chemical potential:

mA\Y? [2 /8 74 4
~ (24T ) A.21
p=gntg (27rh2) ; (3 T e0” ) (A.21)

The above expression coincides with the result obtained when considering the
thermodynamics of a Bose gas with phonon quasi-particles [7, §4]. It is worth
noticing that Eq. is valid for any temperatures 7 < 1, whereas the use of
gng for the perturbation parameter would restrict the validity of expression
in a narrower temperature region. Actually, in the same temperature regime Eq.

(A.10) provides the result

A 3/2 2 2 2 4
nozn—(m 2) — £—l— L (A.22)
ol VT3 6v2 12012

The presence of the 72-term will be at the origin of a lower bound (kgT'/gn >>
(na®)'/*) on the validity range of Eq. when A is replaced by gno.

At high temperature 7 > 1 instead, one can neglect the T = 0 quantum
fluctuations contribution in Eq. :

g 2ex + A
P =22 gno + % ; i f(Ex) - (A.23)

In order to evaluate the above integral, one can separate the integration domain
into two parts, and approximate the Bose distribution function in the long wave-
length domain (fEx < 1) by the Rayleigh-Jeans one, f(E) ~ 1/(SE), while in the
short wavelength domain (g > A) it can be replaced by the non-interacting atoms
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distribution. Equivalently, one can add and subtract the ideal gas contribution:

#29m+ﬂmﬁ+ﬂgm¢ZﬁAwda@(€+Af@0—f@O

2m2h3 E
my2m [~ e+A 1 1
~ 2909 + 2 d — -
gm+»wT+92ﬂmLA &ﬁ( 5 OB &>
3V 2w
= gno + 2gn — 973 V BA. (A.24)
T

Proceeding in the same way for the condensate density (A.10)), one finally arrives

at [102,152):
2v/2
[~ gn + gny — g)\—g7T A (A.25)
T

It is insightful to compare the above result with the prediction of HF theory Eq.
. Comparing the two equations, we find that both give similar result, though
the HF theory underestimates the effects of thermal fluctuations by a factor v/2.
This rather good agreement is justified by the fact that at high temperature, large
momentum modes hk ~ +/2mkgT contribute the most to the excitations and one
can therefore approximate the Bogoliubov excitation spectrum Eq. by the
mean-field expression F ~ ¢ + A. We briefly note that the Popov approximation
of the HFB theory also leads to a similar result in the high-temperature regime.

Finally, in the absence of a condensate (ng = 0), the Popov approach reduces
to the HF theory, in which p = ™% + 2gn, with u™®¢ the ideal Bose gas chemical
potential. Consequently, the BEC phase transition is predicted to occur at the
ideal gas phase transition temperature, Tgpc = 2752 /m [n/¢(3/2)]%.

Free energy

In view of developing the Popov theory for the mixtures in the next section, let
us evaluate the free energy for the dilute Bose gas to order ¢g2. The free energy
F = F — TS is given from Eq. (A.5)) according to F' = Q + uN:

g = gng—gﬁQ—l—uﬁ%—%;ln (1 —e P5x) —l—% (A.26)
where {lqr is the contribution from quantum fluctuations, corresponding to the last
term of Eq. . In order to derive the second order expression, let us decompose
the key quantities into a sum of the lowest order term (°) and subleading terms
(8): pp=p°+6p, i =n% +6n and A = A® — §p, where 67 is of order g'/? whereas
S of order ¢3/2. Then, expanding the first mean-field contributions to order ¢,

<™=

1 Q
:g@g+n$)+m%u+g§:hql—gw&)+f§? (A.27)
k
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In order to find the second-order contribution of the logarithmic term, let us sup-
pose for simplicity the high temperature limit kgT > gn. Following the same
calculations as Eq. (A.24)), the sum over the momentum in Eq. (A.27) can be

evaluated analytically, and one finds

% S ln (1 — e B ~ _Cg;) 40 (A0 — Gp) — 43:1? (B2, (A.28)
k

Inserting Eq. into , the n%du terms are found to cancel with each
others. It is worth stressing that such cancellation would not happen if one would
choose gng instead of A for the perturbation parameter. The above argument
remains true for any temperatures, and one finally finds to order ¢:

N |

et LS (1 oot o ar
(n +nT)+5zk:ln<1 e )—l— T (A.29)

Vv
with EY = /e + 2gniex. One can verify that taking the derivative of the free
energy with respect to n, we recover the chemical potential Eq. (A.12)).

A.1.3 Results

We now show the numerical results for the key thermodynamic quantities, for the
interaction parameter 7 = 0.05. The left panel of Fig. shows the condensate
density, evaluated from the Popov theory Eq. , together with the predictions
from the HF and UR approaches. The Popov theory agrees well with the UR
prediction in the high-temperature region. In the right panel, we compare the
results of the Popov theory in different limits. We see that the second order Popov
result, in which we have used the lowest order expression for the effective chemical
potential AY = g(n — nY) in the subleading terms of Eq. (A.10]), agrees with the
self-consistent calculation in a wide range of temperature. In particular, Popov
theory predicts correctly the depletion of the condensate at zero temperature.

In figure we make a similar comparison for the chemical potential. In a
mean-field description, the chemical potential is predicted to evolve monotonically
from gn at zero temperature to 2gn at the critical temperature. The Popov the-
ory confirms this picture, although capturing quantum corrections at 7" = 0 and
exhibiting an unphysical jump at Tgrc (see Sec. 2.1.2)).

Figure shows the isothermal compressibility of the gas, ke = n~'0n/0P|r.
For an ideal Bose gas, the compressibility is predicted to diverge in the BEC phase,
and therefore the quantity is expected to be sensitive to the way interaction is
treated in the theory [155]. This is shown in Fig. [A.3] where one finds that
all approaches predict an enhancement of the compressibility in the BEC phase,
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Figure A.1: Condensate density ng = n — n as a function of temperature, for
interaction parameter gn/(kgTsrc) = 0.05. Left panel: comparison of different
theories. The red line is the Popov theory prediction in which Egs. and
have been solved self-consistently. The blue dashed line shows the result
of the HF theory and the black dots are the universal relations prediction, from
Ref. [83]. Right panel: comparison of Popov theory in different limits. Red and
blue lines: same as left panel. Green dashed line: Popov theory calculated up to
the second order (by putting A = g(n —n%) in Eq. (A.10)). Cyan dotted-dashed
and black dotted lines: low-temperature expression (A.22) and high-temperature

expression ((A.10)), respectively.

increasing with the temperature. In particular, one finds that the Popov theory
limited to the lowest order (green dashed line) shows a worse agreement to the
universal relations prediction, in comparison to the self-consistent theories. This is
understood from the fact that in the vicinity of Tggc, thermal fluctuations become
important and beyond second order terms have non-negligible contributions to the
thermodynamic quantities. Although the correctness of self-consistent theories is
questionable in this regime, its solution automatically includes higher order terms,
and thus some of the qualitative physics.

A.2 Binary Bose mixtures

A.2.1 General case

We consider a uniform mixture of two component Bose gases, and extend the
Popov theory of Sec. using the same methodology [156]. The Hamiltonian
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Figure A.2: Chemical potential as a function of temperature. Left panel: compar-
ison of different theories. Right panel: study of high and low temperature limits.
Line guides are the same as in Fig. [A.]]
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Figure A.3: Isothermal compressibility as a function of temperature. Red line:
self-consistent Popov theory. Blue dashed line: HF theory. Green dashed line:
Popov theory calculated up to the second order.

including all the possible point-like interaction takes the form,

g At A A A
. z{zahwr%;z@w&wwmﬂ}

1=1,2 kk’,q

912 Z N
k. k’.q
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where the subscript i = {1,2} refers to the i*® component of the gases. The
interaction between identical atoms is modeled through the intra-atomic coup-
ing constant g;; = 4mwh%a;1/my and gao = 4mwh?ag/ms,, whereas the interaction
between different atomic species is given by the inter-atomic coupling constant
g12 = 4wh?ay; /mg, with mg = 2mymsy/(my +msy) the relative mass. Applying the
Bogoliubov prescription and replacing a;¢ and &j}o with the number of particles
in the condensate state y/N; o, one obtains for the grand canonical Hamiltonian

K=H-=5 N

gZZ gZZ
K Z { % N2 :uz 4,0 + Z 52 k+ 29%”1 + gi2Mj — ,U/z) kaz k

i=1,2 k40

Gii f g12 g12
+ 5 zOZ(lka ket ika, - )}+—N10N20——N1N2

2V P |4 |4

912 /N10N202<a1k+a1_ ><a2 k+a2k> , (A.31)

k40

where e;3 = h?k?/(2m;), and N; = > ko d;kdi7k. In the above equation, we have
again kept the terms quadratic in axxo, di 4o up to order g% (g3,), by neglecting
the terms quadratic in the fluctuations of non-condensate density around its mean
value, as well as the terms proportional to the anomalous densities. The terms
in the bracket in Eq. correspond to the single-species Hamiltonian ({A.1)
in each component, whereas the other terms represent the interspecies interaction
contributions. Equation can be diagonalized after applying the following
canonical transformations:

Al A~ ~1 ~

ayx = Ak x + Wiy _y + 2k02k
N X 1 X (A.32)
Ay = AkG2k + Wiy — 201k -

Then the last line of Eq. (A.31)) involving the coupling of both components, in
which the operators @} and a!, appear by pairs, vanish if the weight functions take
the expressions:

k 5 ~ ~
\/(E%k - E22,k)2 + 1697961 kE2,kM1,0M2,0
~ ~ (A.33)
= + & 2 E2 _ E2
2(wd) = (E1k £ E2x) 1— Lk 2.k

81 k& (12 2 2 E1kE
1kE2k (El,k — EQ,k)2 + 16915€1 k€2,kN1,0M2,0



112  Popov theory for 3D dilute Bose gases

where we have introduced the ”gapped” kir}etic energy €;x = €ix + Ni — Gilip
and single-component excitation spectrum E;x = \/(gix + Ai)? — (giinio)?, with
effective chemical potential,

Ai = |1 — 2gimi — grons—il - (A.34)

Henceforth, Eq. reduces to the sum of two uncoupled Hamiltonian, which
can be diagonalized by means of the Bogoliubov transformation Eq. applied
to (a1 o @h)) and (a2k, ay)), respectively. Finally, the grand-canonical Hamilto-
nian in the diagonalized form is expressed as:

[A( = QO + Z <ENI+,ké{L(§ék + Ei,kﬁlﬁk) (A35)
k40

where le( (resp. BIT() is the creation operator for the quasiparticles in the density

(resp. spin) channel, obeying the Bose statistics. The excitation spectrum of the
system reads

_ 1] =~ ~ = = = =
By = V 3 [(Eik +B3)2 4\ (B — B30t + 16ggzgl,kaz,kn1,on2,0} - (A36)

and the vacuum energy of Bogoliubov quasi-particles is given by

2 = Z(QQ;NZ SN2 — piio) + T2 N1oNag

1=

n % Z { <E+,k — ek — A1> + <E_7k — &2k — A2>

Kk£0
+ # [m1(911n1,0)2 + ma(gaanag)? + Qng%QHLOnQ,O} } . (A.37)
In the above expression, the first line corresponds to the mean-field contribution,
whereas the last two lines account for the quantum fluctuations. In particular,
the last line arises from the normalization of the coupling constants g; — gi;[1 +
gm/V Zk mz/(hk:)z] and g12 — 912[1 —+ g12/V Zk mR/(hk’)2] [156, 157]

The chemical potential in each component can be calculated in a similar fashion
to the single-component case, by evaluating the saddle point equation 9§2/0n; o|ar =
0 and solving it perturbatively. First, one finds that to the lowest order in the
coupling constants, nd, = n; — nf; where nd, = ((3/2)/A}; is the ideal gas
thermal density in component i, with the species dependent thermal de Broglie
wavelength \; r = \/27mh?/ (mikBT ). As for the chemical potential, one finds that
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1) = gi(ni + nfp) + gians_, involving the equality A} = ginf,. The gapless
spectrum is therefore given by Eq. with the replacement g;n,o — A;.
We remind that such identification is a prior: justified only when n;, and A; are
evaluated to the lowest order. It follows that Ei,k has to be replaced by the single-

particle Bogoliubov spectrum E;yx = 1/5?,1{ +2MN;e;x as well as €;x — €,k in Eq.

(A.36]). Equivalently, the excitation spectrum can also be written as

2 2
E:I:,k — \/(M> éi + 2€kA:t,k7 (A38)

2

where we have introduced the relative kinetic energy e, = h?k?/(2mpg) and the
inverse mass ratios v; = mpg/m;. The effective chemical potential AL is therefore
associated to the Bogoliubov density (+) and spin (—) sounds, and takes the
following expression:

(VlAl + V2A2 + Fk) (A39)

DN | —

Arx=

(v - 13) g
'y = Ta( + (1A — 1elg) | + 472 A, (A.40)

where we have defined the reduced coupling constant g = g12/+1/g11922. Finally,
the condensate density n;o = n; — V! Zk;dé(](d;kdi,k) is given by (1 <» 2):

1 Bl —E3 N [€1x + Eix
= —_— 1+ : ’ : — (2f(FE 1) -1
e 4Vzk:;< 261l >{251,kEi,k (2f(Ex) +1) }
(A.41)

and the chemical potential:

M1 =g11n1 + giana
E?, — E2, +4G*°Aseox e
P O3y (1 P P AR [k ) 4 -1

AV 4= £ 2e1 'k B x

g11 171 _

— — | —A Aol . A .42
+ 2V €k |:V1 1 g 2:| ( )

In the absence of a condensate, the Popov theory reduces to the HF theory.
Then, both approaches predict the BEC to occur at the ideal gas critical tem-
perature kgT; grc = 27h*/m; [ni/C(B/Q)]Z/g. In the normal phase, the chemical
potential is therefore given by

H1 = M%BG + 2911711 + g12M2, (A43)

with psg the chemical potential of an ideal gas.
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A.2.2 Equal mass case

In the case where the masses of the two components are equal m; = my = m, the
function I' in Eq. (A.40) becomes independent of the wave-vector:

1
A =3 [A1 + Ao /(A= Ao)? + 4§2A1A2] ) (A.44)

and one can write down the chemical potential into a form close to the single-

component case Eq. (A.12):

AL B2
1 = guny + gung + gians + gn Y (ﬁ) Hy(7s,1) (A.45)
T

where the dimensionless function on the reduced temperature 7. = kg7 /AL and
parameter [ = Ay /A4 is given by

142 1+ (2% —1)I
Hi(ri,l)_ﬁ{ ; <1i\/(1_l)2+4g21)

> (us — 1)3/2 1+ (252 — 1)l
+Ti/0 dz f(z) [ w (u: ¢(1—1)2+4g2l> — VT

3

(A.16)

with uy = /1 + 7222, The chemical potential uy in the second component is
instead obtained from Eq. , replacing [ by 1/l = A;/Ay. We can easily
verify that for g5 = 0 and ny = 0, the spin-channel vanishes and one retrieves the
single-component result Eq. .

Finally, in analogy to the single component gas, one can define new anomalous
densities involving two creation or annihilation operators. In particular, the binary
system possesses two additional anomalous pair densities,

R 1 . . 1 A
Nio = V ; <a;ka2,k> ,  Myg = V ; <a'1,ka2,—k> ) (A47)

arising from the presence of Bose-Einstein condensates in both components. In the
mass-balanced case, one finds from the quasi-particles amplitudes of Eqs. (A.33))

and ((A.2)) that:

_ 1 2@\/1\1/\2 €k + A:t
22— |7F
+.k

2f(Bex) +1) - 1} (A.48)

s = 1o 33 () YR (a0 41 (A.49)
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Using the newly introduced densities, the chemical potential in the equal mass
case can be conveniently written into the form

g11\o
922\

w1 = g11(n1 + 7y + ma) + grane + gio (N1 + 1M2) . (A.50)

As we discuss in the main text Sec. [£.2] the anomalous pair densities play a crucial
role in describing the spin thermodynamics of the mixtures.
At zero temperature, one finds to order g* (g3,),

32 1 1+ (2g% — 1)1
T=0)= 14 ——+/na3 E “ 1+
=) g”nl{ REG A 2< (1—1)2 +4gl

1 3/2
x {5 (1+1+ m)] } . (A.51)

We have verified that corresponds to the same expression as the chemical
potential evaluated from the LHY energy functional of Ref. [139], which was de-
rived in the canonical ensemble. This functional has been successfully used for the
description of self-bound quantum droplets.

At temperature kgT > gn the Bose distribution function can be expanded in
the same way as the single-component case , yielding the following analytical
expression:

2V2m 1 1+ (2g% — 1)1
0
P12 guni +gunp+ giene —gun—3— ) 5 (1 VBAL.
T A ;2< V(A —1)? +4g%

(A.52)
It is worth noticing that the HF theory in the same temperature regime predicts

the chemical potential to behave like

24/T
M?F >~ giing + 91171% + G122 — 911%—\/ BATTF . (A.53)
T

Since AHF = gnfl'' the HF theory does not include any beyond-linear order cor-
rections in gps.
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Appendix B

Interaction in two-dimensional
Bose gases

B.1 Interaction in 2D

B.1.1 2D system

We start from the purely 2D scattering problem, which follows essentially the same
procedure as the 3D case, carried in Sec. [[.2.3] Let us consider two atoms with
identical mass colliding through a short-range interaction. We place ourself into
a system of coordinate where the center-of-mass is at rest, to reduce the problem
to a single particle scattering problem. Then, the asymptotic form of the colliding
atoms wave-function is given by the sum between an incident plane-wave and an
outgoing spheric-wave (see. Sec.

1

Y(r) ~ ™ L e _2f(k, 0) ekr (B.1)

Snrk

where f(k,0) is the scattering amplitude, depending on the relative momentum
k and the scattering angle 6. In the above equation, the multiplicative factor of
f(k, 0) has been chosen for future convenience, and we have considered the collision
of two identical bosons, taking into account their symmetric nature [30].

As we have seen in Sec. [[.2.3] the main contribution for the scattering ampli-
tude in a weakly interacting Bose gas comes from the s-wave scattering. However,
while in 3D the scattering amplitude tends to a constant in the limit of low density
k — 0 (see Eq. (1.42))), this is no longer true in the 2D case, in which the scattering
amplitude exhibits a logarithmic dependence on the relative momentum [94]:

2T

In (nkasp)’ (B.2)

llgl_r)%f(kve) =

117
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with 7 some constant, and we have introduced the 2D s-wave scattering length
azp. Within the Born approximation of Sec. [I.2.3] one finally finds that the weakly
interacting 2D Bose gas can be modeled by a contact potential V(r) = gapd(r)
yielding the same asymptotic behavior , when the 2D coupling constant gop
is related to f(k) according to gop = h2f(k)/m:

2mh? 1
m In(1/(nkasp))

gop = (B3)

B.1.2 Confined 3D system

Although Eq. gives a direct relationship between g,p and asp, actual ex-
periments are carried in tightly confined three-dimensional systems, where while
the kinematics is effectively 2D, the inter-atomic interactions are described by the
3D scattering length ag [12]. Thus, let us consider a 3D Bose gas harmonically
confined in the z-direction, V, = mw,2%/4, interacting through a central potential
V(r). The Shrédinger equation for the relative motion is given by

(—%QA FV(r) + Vz(z)) U(r) = EV(r). (B-4)

This scattering problem has been investigated by Petrov and Shlyapnikov [158]. In
particular, they found that in the ultracold dilute limit, the scattering amplitude
for the quasi-2D Bose gas can be expressed as

4m
V27, [ag + In(Bhw, /7e)’

where [, = \/h/(mw,) is the harmonic length, B ~ 0.915 a constant, and ¢ is the
characteristic energy scale of colliding atoms.

An estimate for the contribution of the log-term in Eq. is obtained by
replacing the colliding atoms energy ¢ by the thermal energy of the gas ~ kgTgkr
and using the experimental values of Ref. [17]:

fqap =~ (B.5)

w, = 4.6 - 2r kHz, as=152-107% ym. (B.6)

We find: l Bhe
V2r= =77 In ( > ~ —0.66. (B.7)

Qg TE

One can see that in the experimental condition, the logarithmic term is negligible
with respect to the [, /as term. Finally,
Qs

Jaap = V8w, (B.8)
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and the 2D coupling constant is related to the 3D s-wave scattering length accord-
ing to:
h? a
= —V8r—>. B.9
92D m n I (B.9)

B.2 Collisional time in 2D

Let us now evaluate the collisional time in a 2D Bose gas, in order to give an
estimate for the hydrodynamicity in the experiment of Ref. [17]. For this purpose,
we first need to evaluate the scattering cross section o [30]. The probability per
unit time that a particle will cross through a contour C' = 277 is given by the flux
of the scattered wave intensity through this contour

1 vl f (k)
k) = 4 ()2 —— ) 2 = 20 B.10
a(h) =v (417G ) 2 = 1L, (B.10)
where v = hk/(2m) is the relative velocity of colliding atoms. The elastic scatter-
ing cross-section is then obtained by dividing a(k) by the current density in the
incident wave, which is given by

5= L [0V — V] = 4T (B.11)
m m

where we have used ¢; = ¥ + ¢~ from Eq. (B.1). Using Egs. (B.10) and
(B.11]) one finally obtains [15§]

a(k) _ [f(K)
o(k) = — = . B.12
W= ol ~ o (12
In terms of the 2D coupling constant, one gets the expression
h 41
o=—g-, (B.13)
m” v

where we have introduced the dimensionless coupling constant § = mgop/h?.
In the experiment of the College de France group, the system is excited through
a static perturbation, so that the frequency of the excited mode is given by a sound
wave w ~ ck, where ¢ and k = 27 /L are, respectively, the sound velocity and the
lowest mode wave vector defined from the box size L. One can give an estimate
for the collisional time using the classical expression adapted to the 2D
gas,
T = (novg) ", (B.14)

where n is the 2D number density of atoms, and we have considered the particles
moving at thermal velocity vy, given by the Maxwell-Boltzmann distribution.
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Interestingly, one can see that when using expression for the cross-section
in Eq. , vgn cancels out and the collisional time does not depend on the
temperature. Further approximating the sound velocity by the Bogoliubov zero-
temperature sound ¢ ~ ¢y = hy/gn/m in the expression for w, one finally obtains
the expression

1 27
Inserting the experimental values of Ref. [17]
L =38 um, n =30 um 2, g=0.16, (B.16)

one gets an estimate for the rate of collisions:

wr ~ 0.47. (B.17)



Appendix C

Quasi-condensate Popov theory
for 2D dilute Bose gases

In this appendix, we generalize the Popov theory of Appendix [A]to the case of 2D
Bose gas. For this purpose, we introduce the concept of quasi-condensate, which
arises from the quasi-long range order of the 2D system. Although thermal fluctu-
ations are enhanced in low-dimensional system, and therefore mean-field theories
are not expected to be accurate, the introduction of such quasi-condensate allows
for a good description of the 2D Bose gas thermodynamics.

C.1 Bogoliubov theory revisited

C.1.1 Formalism

Let us start from the zero-temperature case, by developing the Bogoliubov theory
for the quasi-condensate [93,94]. For this purpose, we consider a uniform system
and write down the Bose field operator in the modulus-phase representation [159]:

A

P(r) = /a(r)e?™ . (C.1)

As we discussed in Sec. |3.1.1, a condensate corresponding to the macroscopic
occupation of a single-state mode is prohibited in 2D, and hence the Bogoliubov
prescription we have used in App. [A]is not suitable. Instead, we use the fact that
in 2D, density fluctuations are significantly suppressed (see Sec. , and write
the field operator in terms of density and phase fluctuations as:

B (r) = \/nge + o0 (r)e?™ (C.2)

with 07 < ng.. The physical meaning of ny., which has not to be confused with
the condensate, will be clarified hereafter. By definition, én and 6 are unitary
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operators. Equivalently, Eq. (C.2) can be written in the form

U(r) = \/lige + 0V (r), (C.3)

analogous to the 3D case, but now with S corresponding to the fluctuation term,
including both density and phase fluctuations. Expanding Eq. (C.2) as ¥ =

VMge + i\/n_qcéé + 01 /(2/Nge) + - - - one identifies
dn(r) = ,/nqC [(ﬁﬁ(r) + (5@1(1')} :

) [mﬁ( )—5@(1«)] , (€4

0(r) =

2, /nqC

valid to any order in §U. From the Bose commutation rule for the field operator
W, one finds that the fluctuation fields are conjugated:

[5ﬁ(r) ,é(r’)} —i5(r—1'). (C.5)

Now, let us follow the usual Bogoliubov approach and expand the Hamiltonian
Eq. (1.47), up to quadratic order in the fluctuation field §¥. For the uniform
system under consideration, we readily obtain

A= /CF {2m Lch (Vi (r))? + nge (Vé(r))Q] v gé(ﬁ(r))g} . (CH)

Since we are considering the uniform gas, the field operators can be expressed in
the plane-wave basis,

Z Snee’™ = ont( Z onf e~k (C.7)

where from the unitarity of the operators one has dny = (WLT_k, and the same
identity holds for 6. We find

PN 29ngc + €k

H = Byp + Y ngeexbib + il o7y (C.8)
k

qc

with Eyr the constant mean-field energy. Although the actual Hamiltonian seems
to be diagonal, it is not the case since the density and phase fluctuation fields
are conjugated through Eq. . As usual, the Hamiltonian is diagonalized by
applying the Bogoliubov transformation

Ae = A + iy ,
y L - (C.9)
Al = A0k + w by,
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where we have used the unitary property of the operators. The new creation and
annihilation operators must obey the Bose commutation rule. It follows that this
is satisfied for the following choice of the quasi-particles amplitudes:

1

A R = —
k € N, Wk e

(C.10)

Applying the Bogoliubov transformation in the Hamiltonian (C.8]), we find that
the off-diagonal terms vanish if

1 Ex

A2 = , C.11
e (c.11)
where Ei = \/ex(ek + 2gny.) is the Bogoliubov spectrum. Finally,
H=FEy+) B, (C.12)
k

with Ej the ground-state energy.

C.1.2 Effects of fluctuations

We turn to the interpretation of the obtained results. First of all, the finding
of Bogoliubov spectrum implies that according to the Landau’s criterion ,
there is a superfluid with non zero critical velocity. Next, let us look at the
fluctuations in the density and phase channels. From the definition of the quasi-

particle amplitudes ((C.9) we obtain

An =" (5afoin) = Ek: % 2f(E) — 1), (C.13)

K k

A= (o) =) B (2f(Eyx) — 1) . (C.14)

" 4nqce k

The relative weight of the fluctuations for a given wave vector can be estimated
as [12]

Ank l{iz

X — .

Aby k% +4gng.
The above result shows that the long-wavelength phonon excitation (k — 0) of
the system involves mainly phase fluctuations, since Any/Afy becomes small.
Although this is also true in the 3D Bose gas, in 2D it has the important implication
that the number equation will exhibits an infrared divergence. On the other hand,
for the short-wavelength particle-like excitations (kK — oo), the ratio tends to 1
and both phase and density fluctuations contribute equally.

(C.15)
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One can give an estimate for the density fluctuations, if in Eq. we
neglect the quantum fluctuations contribution and we approximate the Bose dis-
tribution function by f(E) ~ kgT/E. It is needed to add some remarks about
this approximation, since we will use it all along this appendix. In fact, although
such procedure allows for the simplification of the momentum sum, it implies a
logarithmic divergence in the limit of £ — oo, that was not present in the exact
expression. However, we have to keep in mind that approximating the Bose distri-
bution function by the Rayleigh-Jeans one is only valid in the temperature regime
where kgl > F). This last condition sets therefore a natural upper cut-off in the
sum of Eq. , and also avoids the problem of ultraviolet divergence. From
a more physical point of view, this approximation consists to retain the univer-
sal long-range behavior of the system (see Eq. in main text and following
discussion).

Finally, using the approximated distribution function, the density fluctuations
Eq. (C.13) with respect to the mean value reads (we put ng ~ n)

An 2 kBT

This expression confirms our preliminary discussion made in Sec. [3.1.2} the density
fluctuations in 2D Bose gas are small, as far as D > 1.

C.1.3 Algebraic decay of one-body density matrix

We can now study the behavior of the one-body density matrix, in the long-range
limit. As we have already discussed, the long-range physics is only governed by
phase fluctuations, so that one can neglect the effects of density fluctuations in
calculating the one-body density matrix:

AW (s) = g (e PO — 5 o~ H[FE-00] (C.17)

where we have used in the last equality the fact that the probability distribution
for the fluctuations of phase are Gaussian. Then, expanding the field operators in
the plane-wave basis and by means of Eq. ((C.14]), one finds [160]

(i) 80)] ) = 37 575 @7 (i) +1) (1~ cos(ks)

k 2’/ch€k
2mkpT 1 / 5, 1 — cos(ks)

S dk————=, C.18
(27Th)2 Nge k| <k k? ( )

where in the last line we have assumed the thermodynamic limit, and replaced the
sum by an integral. Further, we have performed the same classical field approxima-
tion for the distribution function as before, introducing a wave vector cut-off given
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by hk. = kgT/\/gng/m. The integral takes its main contribution in the regime
where k > 1/s, and one can therefore approximate 1 — cos(kr) ~ 1. Finally, one
finds the off-diagonal long-range behavior of the density matrix to be

R V0e¥3)
nM(s) = ng (—C) : (C.19)

S

with R. = 1/k.. This result shows the peculiarity of interacting 2D systems,
namely, the algebraic decay of the off-diagonal one-body density matrix. The 2D
gas is said to exhibit a quasi-long-range order. In practice, one needs to prop-
erly take into account short distance physics, including the contributions to the
correlation function from the density fluctuations, as well as the effects of vortex
pairs, essential to describe the BKT physics. This can be heuristically achieved by
replacing the quasi-condensate density n,. in Eq. by the superfluid density
ns [12]. This is motivated from the fact that, in absence of density fluctuations,
the Hamiltonian Eq. reads:

i o [0 fr(vﬂn)Q (C.20)
~ ) .
The above expression corresponds to a kinetic energy with local velocity vy =
h/mV 0, which one can identify with the superfluid component velocity Eq. .
We may expect only the superfluid component to flow under a variation of 6,
motivating therefore the replacement of n, by n,. In this way, Eq. in the
main text has been obtained. We briefly note that the same expression involving
the superfluid density can be obtained from a hydrodynamic approach |7, §6.7].
It is now time to give an interpretation on the physical meaning of n,.. For this
purpose, it is insightful to notice that the field operator Eq. can be written
as

Mgziaw+@@A (C.21)

~ Mg 4 U (r). (C.22)

Under this definition, T, corresponds to the quasi-condensate field, i.e. a conden-
sate with a fluctuating field [104,/105]. This definition directly implies that

nge = /20 [2)2 — (B[, (C.23)

since W is a Gaussian field. Comparing the above expression with Eq. (T.37)
for the two-body density matrix of an ideal gas, the analogy between the quasi-
condensate and the genuine condensate is clear. Both characterize the suppression
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of the Gaussian density fluctuations. Formally, the quasi-condensate can be defined
in any dimensions and it is related to the condensate through the relationship [83]:

ng = lim ngee X (C.24)

5—00

with x(s) = %([é(s) — 0(0)]2). We verify that in 2D, the above definition yields
a zero condensate. Therefore, the quasi-condensate can be considered to act as
a well-defined condensate as far as the system size L is much smaller than the

correlation length of the algebraic decay,

L < Rpe™er . (C.25)

C.2 Quasi-condensate Popov theory

The modified Popov theory for the 2D Bose gas was introduced independently by
Svistunov [104}/105] and Anderson et al. [160L/161], as a modification of the Popov
theory to include the effects of phase fluctuations and thus, the description of the
quasi-condensate.

C.2.1 Formalism

We here follow the derivation of Anderson et al., and start from the field operator
Eq. (C.3). This is just the Bogoliubov ansatz in which the condensate density
has been replaced by the quasi-condensate density. Therefore, by applying the
same perturbative approach as in Sec. [A.1.1} we naturally find the same expres-
sions (|A.6)) and for the the non-(quasi)condensate density and the chemical
potential:

1 Z Kek +gnge %) n %ﬁnqcf@k)] 7 (C.26)

2ex + gnge 2ex + gnge
= Z = J % _1 ——= T f(E ) 2
1 gnqc+v Ek K 25, >+ o f(Fx) (C.27)

where following the notation of Ref. [160], we have replaced A by gn,. in order to
obtain a gapless Bogoliubov spectrum.

In the above expressions, the momentum sums exhibit an infrared divergent
behavior, in accordance with the Hohenberg-Mermin-Wagner theorem [13,/73]. To
overcome this problem, we can resort to two methods. The first one, is to consider
that we are in the temperature regime where the HF approximation Ey =~ ey +



Quasi-condensate Popov theory 127

gnge can be performed. Such approximation clearly removes the soft mode of the
spectrum and one immediately obtains

p = gnit 4 2ga™ (C.28)

1
L (1 - e*ﬁgn?f) . (C.29)
)\T

In the temperature region where kg1 > gn, one can further simplify the thermal

density as
) 1 gnlF
HE ~  —In [ 225 | . C.30
" o <l<:BT (C-30)

The second approach, adopted in the original work by Anderson et al., is to
notice that in the quasi-condensate formalism, the infrared divergence is in fact
artificial, arising from a wrong treatment of the phase fluctuations. Indeed, in
deriving Eqgs. and , we have used the Bogoliubov ansatz and applied
the perturbative scheme. The resulting quadratic terms in the fluctuations are

(see Eqs. (C:2) and (C3)):
1

4ng,

ST ()0 (r) ~ ngd(r)d(r) + —5al (r)dn(r), (C.31)

with quadratic terms in both the density and phase fluctuations. However, it is
clear that in an exact approach, n = (UT(r)¥(r)) and

(e eE)y = 1 4 (A(r)0(x)) + - =1, (C.32)

so that phase fluctuations will not contribute to any local quantities. Therefore,
one needs to subtract the quadratic contributions of phase fluctuations from Egs.

(C.26) and ((C.27). We have already calculated this quantity in the previous sec-
tion, and from Eq. (C.14]) we find that one needs to subtract

Ny (B(r)0 (1)) = %ﬁ: 2f(B) + 1) . (C.33)

Then, the chemical potential and the condensate depletion within the modified
Popov theory are found to be [160]

= gnhge + 297, (C.34)
- 1 €k 1 €k
P (o 3) + s (3
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Figure C.1: Quasi-condensate density n,./n, evaluated for § = 0.16. The blue
solid line is the Hartree-Fock theory result Eq. (C.29)), the red dashed and green

dotted lines are the predictions of Popov theory, using Eq. (C.35) and Eq. (C.36]),
respectively. the black dots are universal relations result from Ref. [83].

Like in 3D, quantum fluctuations lead to an ultraviolet divergence of n, which has
to be removed by a proper renormalization of the coupling constant. For simplicity,
we will not consider its contribution in what follows.

Equation (C.35)) in the absence of quantum fluctuations can be solved straight-
forwardly if we recall the classical field approximation for the distribution function.
Then, one finds:

N 1 2gn
~ _—_—_In| =229 | C.36
Tt ( kpT ) (C.36)

The above expression, together with Eq. , constitute the equation of state,
used in Sec. for the description of the universal thermodynamics in a 2D
Bose gas. We note that Eq. is very similar to the HF prediction ((C.30).
These expressions for the non-condensate density suggest that the concept of quasi-
condensate is meaningful in an interacting gas only. Similarly, we anticipate that
mean-field based approaches will fail in the region where the quasi-condensate
vanishes, since the thermal atoms density diverges for nq. — 0.
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Figure C.2: Left panel: chemical potential of 2D Bose gas evaluated for g = 0.16.
Right panel: isothermal compressibility. The blue solid line is the Hartree-Fock
theory result. The red dashed line is the Popov theory prediction, and the green
dotted line its universal part. The black dots are universal relations result from
Ref. [83].

C.2.2 Comparative study of different theories

We show in Fig. the quasi-condensate density as a function of temperature,
for the weakly interacting 2D Bose gas, with the dimensionless coupling constant
g = 0.16. Interestingly, the quasi-condensate is found to be close to unity for a
wide region of temperature, including the normal region above Tgkr. Both the HF
and modified Popov theory predictions lie close to the universal rela-
tions result of [82] in the superfluid regime, however the mean-field based theories
decrease rapidly as one increases the temperature. Eventually, Egs. and
do not provide any solutions around 7" ~ 2Tk, leading to an unphysical
jump of 7.

Figure shows the chemical potential and the isothermal compressibility.
Again, the similitude between the three approaches are remarkable below the crit-
ical temperature. However, the chemical potential calculated in the mean-field
theories is predicted to increase up to pu = 2gn, in an analogous way to the 3D
case, while for the UR, p < 1.25gn. More drastic is the compressibility, which
in the UR description, exhibits a continuous evolution at the critical point and
smoothly decreases above Tk, whereas the mean-field methods predict an erro-
neous divergence. This behavior is again identical to the 3D result (see Fig. [2.5))
and comes from the vanishing quasi-condensate. Indeed, for the HF and Popov
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theories, a simple expression for the compressibility can be obtained:

RT 1
(T = 0) _1+A2anc—2' (C.37)
The above expression is model-independent, reflecting the universal nature of the
system. We have verified that also the universal relations satisfies this relationship,
at least below TgxT where the quasi-condensate is well-defined.

The above analysis suggests that the analogy between quasi-condensate and
genuine condensate is valid for T" < Tggr only. This was expected since, in the
normal regime, free vortices destroying phase-fluctuations appear, spoiling the
quasi-condensate picture (see Sec. [3.1.2).



Appendix D

Study of the 2D RPA response
function

In this appendix, we sketch the development of the theoretical tools used for the
investigation of the collisionless sound waves in the 2D Bose gas, discussed in Chap.
We start from the study of the response of a damped harmonic oscillator, which
is used to fit the RPA response in order to extract the sound velocity in Sec. [3.4.3]
Then, we analyze the pole of the 2D RPA response function and evaluate the
analytical expression for the complex pole.

D.1 Response of a harmonic oscillator

The equation of motion for a damped harmonic oscillator in presence of an external
force F(t) is given by,

F(t
a'zi—l—ng—l—fyx':#, (D.1)

with wg the natural frequency and v the damping constant. Looking for plane-wave
solution in the form z = g + dxze ™!, the equation of motion gives,

F(t)/m

2 2 _ oA
wh — w? — 1wy

dz(t) = (D.2)

from which one can extract the response function defined as dz = F(t)x(w)/m [[}

N p— (D.3)

2 2 _ o~
Wy — w* — wy

'We adopt the same sign convention as the study of the two-dimensional Bose gas, both for
the plane-wave solution and the response function.
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S Nk~ N

x(@)

Figure D.1: Real and imaginary part of the damped harmonic oscillator response
function (D.1]), in blue and red lines, respectively. The oscillator parameters are
wp = 0.5 and vy = 0.25 (arbitrary units).

The poles of the response function are:

W12 = —Z% + wg —_ —. (D4)
For a direct comparison with the 2D Bose gas, we will only consider the situation
where the inequality wy > 7/2 holds. This situation corresponds to the under-

damped harmonic oscillator. The real and imaginary parts of Eq. (D.3]) are given
by,

2 2

X'(w) = T (D.5)
Wy

VW) = oo D6)

Figure shows the numerical results for the real and imaginary part of the
response function, for an arbitrary set of oscillator parameters.

As we have seen in Sec. [3.4.3] the quantity reliable for the investigation of the
experiment of Ref. [17], corresponds to the imaginary part of the inverse weighted
response function. From Eq. , it is given by

X" (w) v
— . D.7
w (W? — w)? + w?y? (D7)
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Let us calculate its Fourier transform:

W0 -5 [ G (0)

o — w2)? + w?y?
First, the denominator can be factorized as,
(W —wp)® + w0 = (W = wi) (W + wi) (W — w2) (W + ws), (D.9)

where wy o are the poles of y defined in Eq. (D.4)). Then one can decompose the
denominator as a sum over these factors,

1 11 1 1 1
(W2 —wd)?+w?y? 2w —wd v \w—w; wtw
1 1 1
L ( - )} | (D.10)
Wy \W — Wy W =+ Wo
We note that wy, = —w7, where * denotes the complex conjugate, and we introduce
the following new variables,
~2
W= w%—z, I'=~/2, (D.11)

so that wy = @ — «I'. Equation is rewritten as,

Fono- 53 [ () -7 (o)

D)) o

We can now evaluate easily each Fourier transform, using Cauchy’s integral for-
mula,

7(Z2) ) (D )

iwt
- —zwlt €
= —ie — | 2
T Jare W™ — Wq

= —je 1t (D.13)

where the contour integrals have been evaluated using the residue theorem, assum-
ing positive time (¢ > 0) to restrict the contour to the upper-half complex plane.
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Figure D.2: Fourier transform of inverse-weighted response function,
FH(x"Jw)(t), for the damped harmonic oscillator (D.15)). The oscillator parame-
ters are wy = 0.5 and v = 0.25.

As for the last line, we used the estimation lemma. By doing the same for the

second line of Eq. (D.12)), one obtains,

_ X”(W) 11 —dunt jwit
J—_' 1 t) = * _—iw] wi

{ w *) 400 wiwy (wle twe )

1 1

= I [(@ +iD)e @D 4 (@ — 1)@ . (D.14)

Finally, using trigonometric relation,

"
Fi {%} (t) = %ﬁe‘” [ cos(wt) 4+ T'sin(wt)] . (D.15)
Figure shows the obtained Fourier transform. It is worth noticing that Eq.
contains a sine-function, for which its relative contribution becomes greater
as the damping becomes important. For our analysis of the sound wave in the 2D
Bose gas, this means that we have to avoid the fitting of the Fourier transform of
the RPA response function to the simplest e ' cos(wt) model, and use a function
which takes into account this sine-function contribution.
It is interesting to observe that the Fourier transform of x”/w oscillates at

the same frequency as the real part of the poles of the response function, w =
Vwi —~%/4. On the other hand, the position of the peaks of y” and x”/w are
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given respectively by,

1 1/2
Wpeaks y = £ {6 (2w(2) — 4+ \/ (2w — 42)2 + 12w§>} , (D.16)

— ]2 7
WPeaks, " Jw = + Wy — ?, (D17>

which are both different from ©. This analysis confirms that in order to study the
poles of the response function (and hence the sound velocity), looking at the peak
position of x” or x” /w is not sufficient, and one needs to go to the Fourier analysis.

D.2 Poles study

We now calulcate the pole of the 2D Bose RPA response function ([3.35)), by means
of the classical field approximation introduced in App. [C] The idea is to calculate
the pole of the RPA response function by approximating the Bose distribution

function by:
1 1

f(w>: ew2+n_1 :wQ—‘—T]’
where w = p/v/2mkpgT and n = BA.

The expression for the RPA response function reads (dimensionless form)

(D.18)

Y = X0
1T+ gxo0

(D.19)

where the response function for the non-interacting system is given by using the
approximation ([D.18) into the expression (3.39):

w [ m 1 * dw, TW, . 9 u

Then, introducing the variables z = /qw, and € = ,/n/u, the real part of (D.20)
reads

' () 1 /°° zdz 1
Xo 272 um S (22 +1)*?ze—1

1 7 * z 1 1
- GFasl, EFE [1—1—26_1—%] = )
_ ﬁul\/ﬁlo (D.22)
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We now separate the integration into two parts,

z1 e’}
IOZ/ —|—/ ...:]1—|—IQ, 1<<Zl<<1/6
0 21

The first integral gives

1 z 1 1
L = - d
: /o 2+ 1) Lm 1—261 ’

Z1 2
Lge [T E (D.23)
o (2241)%?

This integral can be solved by part and in the limit of z; > 1 one gets

Q

I ~2¢[l —In(22)]. (D.24)

As for the second integral

> z 1 1
L = - d
2 /Zl 2 4 1)%2 |:1+Z€ 1—zJ :

{ LN 1 (D.25)

The integral can be solved from a change of variables (putting u = 1/(z¢)), and

gives
1 1 1 1
b () ()
Z1€ Z1€ Z1€ Z1€

= €[2In(z1€) — In(1 + z1€) — In(1 — zq¢€)]
~ 2eln(ze) (D.26)

2
3\8
Nwl % —

where we have used z1€ < 1 in the last line. From Eqs. (D.24)) and (D.26]) one has

penenaion(2)] o

Using this result, one finally has the following pole equation:
1 1 1 U
14 g 1—1In(2 -1 —————= ¢ = 0. D.28

Assuming a complex pole in the form upee = © — @y, one obtains the following set
of equations

(D.29)

ut = g 1 - éln((2 )?+(27)*) + 3Inn] =0,
—2uy — % arctan ( ) .

|1Qz
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Figure D.3: Left panel: sound velocity evaluated from the response function.
The red dashed line is the real part of the pole evaluated from Eq. , the
blue solid line the sound velocity extracted from the Fourier transform of the
response function (see Sec. . The green dotted-line corresponds to the 7" — 0
asymptotic expression Eq. (D.30]). Right panel: quality factor evaluated from the
response function. The red dashed line is the prediction from Eq. , the
blue solid line the one extracted from the Fourier transform of the RPA response
function.

In Fig. we show the results for the sound velocity, normalized to the zero-
temperature Bogoliubov sound, ¢/cy and the quality factor Q@ = /v, evaluated
by solving Eq. , for g = 0.16. Comparing them with the results obtained
in Sec. [3.4.3] from the Fourier transform of the inverse-weighted RPA response
function, we see that both approaches are consistent, giving almost the same sound
velocity and the same behaviour for the quality factor.

We note that in the very low-temperature region where the quality factor is
large (see right panel Fig. , one can neglect the imaginary part v in the first

line of Eq. (D.29)), yielding the result

1
Wt L1- In(2u) + = lnn| =0. (D.30)
2m 2

Solution of Eq. (D.30) is plotted as a green dotted line in Fig. D3P In the limit
of T — 0, this equation is further simplified to u? = —:ZInn. Then, from the

2We briefly note that a solution for Eq. (D.30]) exists only if the minimum of the function
(which possesses a positive concavity) is larger than zero. The derivative gives the position of
this minimum to be at umin = 1/§/(27), and it follows that Eq. (D.30) possesses a solution only
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number equation evaluated using Eq. (D.18)),

kaT kaT
T omh? fo(w

one finally recovers the Bogoliubov speed of sound

2
mc = gopn,

where we have used that u = c\/m/(2kgT) and gop = gh*/m.

if

(D.32)

(D.33)

(D.31)
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