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Preface

The theory of partial differential equations constitutes today one of the most important
topics of scientific understanding for they can easily model a great number of problems.
In the 50s, the arrival of computers allowed for the first time to calculate quantities
that before could only be estimated very approximately. This offered to researchers and
engineers the possibility to use the numerical results for the modification or adaptation
of their scientific arguments and experiments.

In this context, the so-called exponential integrators, a class of numerical methods for
the time integration of differential equations, were first developed. Since then, research
on exponential integrators made important steps ahead and new, refined exponential
integrators have been developed. Among others, we can mention exponential Runge–
Kutta, exponential Rosenbrock, or Magnus integrators.

An aspect in common to every exponential integrator is that their efficient implemen-
tation depends on how quickly and accurately the action of a matrix exponential on a
vector is approximated. Such a feature places exponential integrators at the junction be-
tween the fields of scientific computing and numerical linear algebra. While this duality
makes research on exponential integrators eclectic and open to scientists with different
backgrounds, it also constitutes a source of inefficiencies.

In fact, despite several algorithms have been perfected for computing the action of the
matrix exponential, less than a handful are actually employed when it comes to solving
problems originated in the real applications. On the one hand, this is because numerical
linear algebraists sometimes develop very involved and elegant algorithms that in turn
poorly fit the computations typical of the applications. On the other hand, engineers,
but even researchers in the field of scientific computing, are usually reluctant to adopt
new and complex methods for computing the matrix functions underlying their methods,
often blaming their own side of the implementation when inefficiencies arise.

The goal I set myself, maybe näıvely, when I first started my thesis work, was to build
routines that are sophisticated and elegant but that also perform well on those problems
coming from the applications. While I may have lost my resolve on elegance, I made
sure I could claim that I developed routines that perform well on real problems. For this
reason, every chapter of my thesis is accompanied by rigorous, fair and extensive tests.

After a long and slightly technical introduction to the core problem motivating my
research, I will outline the structure of my thesis.

Then, in Chapter 2, I will thoroughly analyze the relationship existing between the
divided differences of an analytic function and the interpolation set. This analysis leads
to novel representations of the divided differences that play a crucial role in the successive
phases of this thesis. The main result of this chapter is a routine, dd_phi, for the fast
and accurate computation of the divided differences of the exponential and closely related
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functions.
I will then proceed, in Chapter 3, to study the problem of computing the matrix ex-

ponential. The reason that initially pushed me to study this problem is the high precision
computation of the exponential of the Hessenberg matrices arising from the Krylov meth-
ods. However, the resulting routine, called expkptotf, stands out even when compared
with routines expressly designed for computations in standard double precision arithmetic.

In Chapter 4, I will treat the problem of computing the action of the matrix expo-
nential on a vector. The links with the other chapters are surprisingly many, showing
how strongly interconnected are the various aspects of the problem of computing the
matrix exponential. As a result I will present two routines, explhe and pkryexp, based
on polynomial interpolations of the exponential function, which elicit in innovative ways
information on the spectrum of the input matrices and fine-tune the approximation pa-
rameters accordingly.

Finally, I will present a brief chapter of conclusion, where I resume the experience I
collected writing these pages and I outline the future work.

6



Acknowledgements

It is my pleasure to express my gratitude to my supervisor, Marco Caliari, for his guidance,
his scientific contribution to my doctoral project, and his precious feedback on my work.
I really appreciated the freedom to pursue, without pressure, any research topic I found
interesting. Part of this work was carried out while I was visiting other institutions: I
thank Nicholas J. Higham, Frédéric Hecht, Jorge Sastre, Javier Ibáñez and Emilio Defez
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Chapter 1

Introduction

In nature there exist many examples of a quantity u(t) which continuously grows or decays
over time by an amount proportional to u(t), with a continuous rate given by the scalar a.
Such an u(t) obeys the differential equation

u̇(t) = au(t),

which shows an exponential solution. Here the dot denotes the derivative with respect to
t. In fact, provided that u0 = u(t0), by using the technique of separation of the variables
we have that the solution exists and it is uniquely determined by

u(t) = e(t−t0)au0.

More in general, we can consider a system of differential equations of the type

u̇(t) = Au(t) (1.1)

where now u(t) is a vector function, u : R → CN and A is the square matrix of size
N representing a constant bounded linear operator acting over CN . Here A may be the
Jacobian of a certain function or an approximation of it, and it can be large and sparse.
By sparse we mean that the number of non-zero elements in A is a multiple of the size
N rather than of the number N2 of the total entries of A. The exponential of the matrix
A can be defined in many ways, one of those is by means of the exponential series

eA :=
∞∑
k=0

Ak

k!
.

If we differentiate term by term the exponential series of e(t−t0)A with respect to t we find
that

d

dt
e(t−t0)A = Ae(t−t0)A.

It is therefore evident that the system of differential equations (1.1) admits too the expo-
nential solution

u(t) = e(t−t0)Au0.
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Suppose now that we want to solve the slightly more complicated system of differential
equations

u̇(t) = Au(t) + b(t, u(t))

The solution in this case is given by the corresponding Volterra integral equation

u(t) = e(t−t0)Au0 +

∫ t

t0

e(t−s)Ab(s, u(s))ds (1.2)

that is also called Lagrange’s variation-of-constants formula. If the function b is constant
with respect to t we can pull it out of the integral sign. Then, we can easily find an
analytic expression for the solution:

u(t) = e(t−t0)Au0 + (t− t0)ϕ1((t− t0)A)b

where ϕ1 is defined as

ϕ1(A) :=
∞∑
k=0

Ak

(k + 1)!
.

If instead the function b is not constant with respect to t but it is analytic, we can expand
it in a Taylor series about t0 and write the solution as

u(t) = e(t−t0)Au0 +
∞∑
`=1

(t− t0)`ϕ`((t− t0)A)b`, (1.3)

where

b` :=
d`−1

dt`−1
b(t, u(t))|t=t0

and

ϕ`(A) :=
∞∑
k=0

Ak

(k + `)!
.

Clearly, if there exists a q such that bq is the zero function we have that the truncation to
degree q of the series on the right hand side of (1.3) leads to an exact solution. Otherwise
this series gives the approximation

û(t) = e(t−t0)Au0 +

q∑
`=1

(t− t0)`ϕ`((t− t0)A)b` (1.4)

of the analytic solution (1.3). A wide class of exponential integrator methods is obtained
by employing suitable approximations to the vectors b` in (1.4), and more methods can
be obtained by differently approximating the integral in (1.2) (see [30]).

The problem of efficiently evaluate the approximation û(t) of u(t) for a certain order
q can be reduced to the computation of just a single matrix exponential of a singular,
slightly larger matrix Ã. It was in fact shown in [2, Section 2] that if we set

Ã :=

(
A B
0 J

)
, J :=

(
0 Iq−1

0 0

)
,
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where B is the matrix whose columns are bq, bq−1, . . . , b1 and Iq−1 is the identity matrix
of size q − 1, then we have that the desired approximation can be formed as

û(t) =
(
IN 0

)
e(t−t0)Ã

(
u0

eq

)
where eq is the qth column of Iq.

Exponential integrators, sometimes used in combination with splitting methods (for a
detailed dissertation on splitting methods the reader could refer to [40]), play a key role
in the field of the applications due to their effectiveness when applied to stiff or highly
oscillatory problems. Therefore, we can see today exponential integrators applied to
quantum dynamics, chemistry, mathematical finance and many other branches of the field
of applications. For a detailed survey on the exponential integrators and their applications
see Hochbruck and Ostermann [30].

1.1 Methods for computing the action of the matrix

exponential

The efficiency of this class of methods strongly depends on the fast and accurate approxi-
mation of the action of the matrix exponential on a vector. This task, that can be reduced
without loss of generality to the task of computing

eAv,

where A is a complex-valued N sized square matrix and v is a vector of compatible
dimension, constitutes the central topic of this manuscript.

Which approach is best to compute eAv is not clear. Generally, since A may be large
and sparse while its exponential is usually dense, it is not convenient to form eA and then
multiply it into v. On the contrary it is usually preferable to compute tout court the
vector eAv.

To do so, recall that the minimal polynomial of a vector v is the non-zero monic poly-
nomial p of lowest degree such that p(A)v = 0. The degree ν of the minimal polynomial
of v with respect to A is often called the grade of v with respect to A (see [53, Section
6.2]). A consequence of the Cayley–Hamilton theorem is that the grade of v does not
exceed N . Therefore, we can form eAv as a linear combination of vectors from

{v,Av,A2v, . . . ,Aν−1v}.

Of course, not every vector from such a basis is cheaply available to us since ν could be of
same order N of the matrix while we surely wish to perform fewer matrix-vector products.
Once again thanks to the Cayley–Hamilton theorem, we have that for a suitable γ the
vector (I + γA)−1v is a polynomial in A of degree ν − 1 applied to v. Therefore we know
we can rapidly invade Cν considering rational approximations to eAv.

As a consequence, a great deal of routines based on rational approximations techniques
have been designed. Among others, we can mention the Padé approximation usually
employed for approximating the matrix eA, [1, 18], the massively parallel in time REXI
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method (see [63]), the best rational L∞ approximation (see [67]), and all those methods
that are based on rational Krylov approximations (see for more details [14, 22, 41, 43, 49]).

The main drawback of this approach is that rational methods require to solve linear
systems. In fact, if it is not a problem to solve linear systems involving I+γA, then other
well-established implicit methods are available for solving stiff differential equations. If,
on the other hand, the matrix is large and/or ill-conditioned, suitable preconditioners and
iterative methods for solving linear systems have to be used. But such methods lie their
foundations on sequences of matrix-vector products. Therefore at this point, one finds
out that the vectors Akv for high powers k may be neglected anyway making sometimes
the effort of solving linear systems to be unjustified.

In this work, we do not consider rational approximations to eAv, we focus on methods
which do not require to solve linear systems involving the matrix A.

1.1.1 Truncated Taylor series

We prefer to adopt methods that form the approximation of eAv combining vectors from

{v,Av,A2v, . . . ,Am−1v} (1.5)

which, provided without loss of generality that m < ν, is a basis spanning Km, called
Krylov subspace of dimension m. The simplest method is constituted by the truncated
Taylor series, i.e. the approximation of eAv by

Tm−1(A)v :=
m−1∑
k=0

Ak

k!
v

coupled with a sub-stepping strategy. The sub-stepping strategy consists in determining
s positive scalars τ1, τ2, . . . , τs such that

s−1∑
l=0

τl+1 = 1

so that we can set v(0) := v, then march as

v(l+1) := Tm−1(τl+1A)v(l), l = 0, 1, . . . , s− 1

and recover the desired approximation v(s). In order to shift the eigenvalues of A to a
more favorable location for Tm−1(x), we consider to work with the shifted version of the
input matrix

B := A− µI,

instead of A, for some scalar µ. Popular choices of µ all aim to drag the spectrum in a
neighborhood of the origin. Due to numerical stability reasons, if the real part of µ is
positive we recover the desired approximation as eµv(s), otherwise we multiply eτl+1µ into
v(l+1) at each sub-step l.

This method is also equipped with an early termination criterion. Suppose that at

14



sub-step l we encounter a positive integer i smaller than m− 1 such that∥∥∥∥τl+1B
i−1

(i− 1)!
v

∥∥∥∥
∞

+

∥∥∥∥τl+1B
i

i!
v

∥∥∥∥
∞

is not larger than

tol ·
∥∥∥∥∥

i∑
k=0

τl+1B
k

k!
v

∥∥∥∥∥
∞

,

for a certain tolerance tol prescribed by the user. Then we stop the computations, i.e. we
set

v(l+1) :=
i∑

k=0

τl+1B
k

k!
v(l)

and we proceed to the successive sub-steps.

To the best of our knowledge, the most prominent implementation of this technique
was recently developed in the manuscript [2].

The greatest vulnerability of the truncated Taylor series technique is caused by the
so-called hump phenomenon, that is the possibility that the norm of the partial sums
Ti(B)v, with i < m, grows very large before it converges to

∥∥eBv
∥∥, that in turn could be

small. Bearing in mind that the truncated Taylor series is equivalent to an interpolation
in the Hermite sense of the exponential function at the origin, it was shown in [6] that
the hump phenomenon is likely to happen when the interpolation points lie far from the
eigenvalues of the matrix B. In finite precision arithmetic, such phenomenon kicks in
destructively due to severe cancellation errors.

1.1.2 Polynomial interpolation

In order to avert the onset of the hump phenomenon, we take into account a slightly more
involved class of methods: the polynomial interpolation in Newton form. If we consider
the interpolation sequence σm−1 := (z0, z1, . . . , zm−1) and the Newton polynomials defined
as

πk,σm−1(x) :=
k−1∏
j=0

(x− zj),

we can rewrite the basis (1.5) as

{v, π1,σm−1(A)v, π2,σm−1(A)v, . . . , πm−1,σm−1(A)v} (1.6)

that spans over the same Krylov subspace Km. This basis is called Newton basis. The
polynomial methods in Newton form approximate eAv by

pm−1(A)v :=
m−1∑
k=0

d[z0, z1, . . . , zk]πk,σm−1(A)v,

where d[z0], d[z0, z1], . . . , d[z0, z1, . . . , zm−1] are the divided differences of the exponential
function at the interpolation sequence. These methods are coupled with a sub-stepping
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strategy too, so that we can set v(0) := v, then march as

v(l+1) := pm−1(τl+1A)v(l), l = 0, 1, . . . , s− 1

and recover the desired approximation v(s). In order to shift the eigenvalues of A to a
more favorable location for pm−1(x), we consider to work with the shifted version of the
input matrix

B := A− µI,

instead of A, for some scalar µ. Popular choices of µ all aim to drag the spectrum in a
neighborhood of the origin. Due to numerical stability reasons, if the real part of µ is
positive we recover the desired approximation as eµv(s), otherwise we multiply eτl+1µ into
v(l+1) at each sub-step l.

This class of methods is also equipped with an early termination criterion. Suppose
that at sub-step l we encounter a positive integer i smaller than m− 1 such that∥∥∥∥∥d[z0, z1, . . . , zi−1]

i−2∏
j=0

(τl+1B− zjI)v

∥∥∥∥∥
∞

+

∥∥∥∥∥d[z0, z1, . . . , zi]
i−1∏
j=0

(τl+1B− zjI)v

∥∥∥∥∥
∞

is not larger than

tol ·
∥∥∥∥∥

i∑
k=0

d[z0, z1, . . . , zk]
k−1∏
j=0

(τl+1B− zjI)v

∥∥∥∥∥
∞

.

Then we stop the computations, i.e. we set

v(l+1) :=
i∑

k=0

d[z0, z1, . . . , zk]
k−1∏
j=0

(τl+1B− zjI)v(l)

and we proceed to the successive sub-step.

Several polynomial interpolation methods were proposed in the literature. We mention
among others [6, 7, 8, 36, 44, 66]. A slightly different class of methods is constituted by
the polynomial approximations that are non-interpolatory, such as [4, 12, 45, 62].

If the interpolation points lie close (or even coincide) with the eigenvalues of largest
magnitude, the hump phenomenon is greatly mitigated. This is because the norm of the
vectors forming the basis in (1.6) have a reduced norm with respect to those forming
the basis in (1.5). It is a basic linear algebra fact that the ith eigenvalue of πk,σm−1(B)
equals πk,σm−1(λi), where λ1, λ2, . . . , λN are the eigenvalues of B. To be persuaded of this,
consider to write πk,σm−1(B) as an explicit polynomial in B

πk,σm−1(B) = Bk − (
k∑
j=0

zj)B
k−1 + . . .+ (−1)k

k∏
j=0

zjI

and to obtain the eigenvalues of πk,σm−1(B) as the algebraic sum of the eigenvalues of the
monomials in B that form πk,σm−1(B).

Let us clarify this concept with the aid of an example: suppose we have to compute
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the exponential of the matrix

B̄ =

(
−100 0

0 B

)
and that the matrix B has eigenvalues in a unit circle centered at the origin and henceforth
it should not represent a source of humping problems. Ignoring for a moment the sub-
stepping strategy, with a truncated Taylor method it would take k to reach at least the
value 100 before the norm of the first entry of Tk(B̄)v starts converging to its actual,
very small, value e−100eT1 v, where e1 is the first column of IN . On the other hand, using
the Hermite interpolation at (−100, 0, . . . , 0) we immediately “switch off” the dangerous
component of B̄ burdening the algorithm for computing the divided differences of the
task of accurately computing d[−100] and the remaining divided differences.

On the convenient ordering of the interpolation sequence

Clearly, the mere presence of −100 among the interpolation points does not grant that the
hump phenomenon will not kick in. We should in fact also make sure that −100 appears
early on in the interpolation sequence. Therefore, given an interpolation set made out
of points in C lying close to the eigenvalues of A, a good ordering plays a crucial role.
This is the reason why we refer to interpolation sequences rather than interpolation sets.
Consider the set P = {x0, x1, . . . , xk} of k distinct interpolation nodes such that mj + 1 is
the multiplicity of the node xj and suppose m0 +m1 + . . .+mk+k+1 = m. In [50] Reichel
suggests an ordering of P , called Leja ordering, that returns an interpolation sequence
(z0, z1, . . . , zm−1). For a fixed initial point y0 ∈ P , one recursively chooses

yi+1 ∈ arg max
x∈P

i∏
j=0

|x− yj|mj+1, i = 0, 1, . . . , k − 1,

the ordered sequence of interpolation points is given by the selected nodes yi repeated
according to their multiplicity in P

(z0, z1, . . . , zm−1) = (y0, . . . , y0︸ ︷︷ ︸
m0+1

, y1, . . . , y1︸ ︷︷ ︸
m1+1

, . . . , yk, . . . , yk︸ ︷︷ ︸
mk+1

).

When z0, z1, . . . , zi are all distinct, since at step i the interpolation error is proportional
to πi,σi(x), the procedure above selects at each step the point zi+1 ∈ P where the inter-
polation error is likely to be the largest, forcing the interpolation error to be now 0 at
zi+1. This should greedily reduce the interpolation error. When instead z0, z1, . . . , zi are
not distinct, this reordering algorithm slightly diverges from this idea. In Section 4 we
propose a new ordering algorithm that handles rigorously this case.

1.1.3 Krylov method

On the other hand, if the interpolation sequence is not carefully selected, the destructive
hump phenomenon could even be enhanced. This is likely to be the case when the user
does not have any effective information about the spectrum of A.

Therefore, alternative ways for avoiding the hump phenomenon were designed. The
most straightforward and intuitive solution consists in searching for a proper orthonormal
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basis
{v1, v2, . . . , vm} (1.7)

of the Krylov subspace Km. While one could simply apply the Gram–Schmidt orthogo-
nalization process to the basis in (1.5) (or equivalently (1.6)), it is less straightforward
but more efficient to build this basis iteratively. To do so, as first step set v1 = v/ ‖v‖2.
Suppose that {v1, v2, . . . , vj} is an orthonormal basis of the Krylov subspace of dimension
j, we obtain vj+1 normalizing the vector

rj := Avj −
j∑
i=1

vi(v
∗
iAvj).

Since vj+1 and rj are aligned, we have

v∗j+1rj = ‖rj‖ = v∗j+1Avj

and therefore, if we define
hi,j := v∗iAvj,

we can rewrite the relation above as

Avj =

j+1∑
i=1

vihi,j.

Set now Vm to be the matrix whose jth column is vj, clearly V∗mVm is the m sized
identity matrix but, more importantly, we can write

AVm = VmHm + hm+1,mvm+1e
T
m, (1.8)

where em is the mth column of Im and Hm, the projection of the matrix A over the
Krylov subspace of dimension m, is the upper Hessenberg square matrix of size m whose
(i, j) entry is hi,j. The structure of this factorization is highlighted in Figure 1.1. In

= +

N ×m

Hm

A

N ×N N ×m

Vm Vm

m×m

hm+1,mvm+1

Figure 1.1: Arnoldi decomposition structure.

case the matrix A turns out to be Hermitian or skew-Hermitian, it is possible to speed
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up the Arnoldi process by employing a simpler algorithm, called Lanczos process. In
fact we know from (1.8) that if the matrix A is (skew-)Hermitian then the matrix Hm is
(skew-)Hermitian too

H∗m = (V∗mAVm)∗ = V∗mA∗Vm = V∗mAVm = Hm,

and in particular tridiagonal since Hm shows in the first place a Hessenberg structure.
Therefore, in case A is (skew-)Hermitian we can avoid to compute hi,j for those indexes i
such that |i− j| > 1. This is particularly important because, while in the Arnoldi process
the cost of an additional step gets higher as the number of iteration increases, the cost
of an additional step of Lanczos is independent from the number of iterations previously
performed. In fact the cost of Arnoldi process is quadratic in m, while the cost associated
to Lanczos process is linear in m.

Now we report verbatim a simple routine that can be used to perform the Arnoldi
or Lanczos process given A, v and the parameter skewness that it is equal to 1 if A is
Hermitian, to −1 if A is skew-Hermitian while it is 0 otherwise.

1. function [ V, H, n2, hm1 ] = my_krylov( A, v, m, skewness )

2. % If skewness == 0 perform m steps of the ARNOLDI process on A and v.

3. % For m < N produce V s.t. cjt( V ) * V = eye( m ) and H Hessenberg s.t.

4. % A * V( :,1:m ) = V( :,1:m ) * H + hm1 * V( :,m+1 ) * e_m’,

5. % where e_m is the m-th column of eye( m ).

6. % If skewness == 1 ( or skewness == -1 ) then H is ( skew )Hermitian

7. % and the steps are the equivalent but cheaper LANCZOS.

8. n2 = norm( v ); V = [ v / n2, zeros( size( v,1 ),m ) ];

9. H = zeros( m+1 );

10. for j = 1:m

11. z = A * V( :,j );

12. for k = j:-1:max( ( j - 1 ) * abs( skewness ),1 )

13. H( k,j ) = ctranspose( V( :,k ) ) * z;

14. z = z - H( k,j ) * V( :,k );

15. end

16. H( j+1,j ) = norm( z );

17. if ( H( j+1,j ) == 0 ) % ’happy breakdown’

18. break,

19. end

20. V( :,j+1 ) = z / H( j+1,j );

21. end

22. hm1 = H( j+1,j ); H = H( 1:j,1:j ); V = V( :,1:j+1 );

23. if ( skewness )

24. H( j+1:j+1:power( j,2 ) ) = skewness * H( 2:j+1:power( j,2 ) );

25. if ( skewness == -1 )

26. H( 1:j+1:power( j,2 ) ) = 1i * imag( H( 1:j+1:power( j,2 ) ) );

27. end

28. end

29. end

Lines 17. to 19. contain the so-called “happy breakdown” of the Arnoldi process that
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allows to early terminate the Krylov projection.
The desired approximation of eAv, called Krylov approximation, is then obtained by

forming
km(A, v) := ‖v‖2 VmeHme1,

coupled with a sub-stepping strategy, so that we can set v(0) := v, then march as

v(l+1) := km(τl+1A, v
(l)), l = 0, 1, . . . , s− 1

and recover the desired approximation v(s). In order to shift the eigenvalues of A to a
more favorable location for the Krylov approximant, we consider to work with the shifted
version of the input matrix

B := A− µI,

instead of A, for some scalar µ. Popular choices of µ all aim to drag the spectrum in a
neighborhood of the origin. Due to numerical stability reasons, if the real part of µ is
positive we recover the desired approximation as eµv(s), otherwise we multiply eτl+1µ into
v(l+1) at each sub-step l.

We mention among others the manuscripts on Krylov approximation of the matrix
exponential [27, 28, 46, 52].

Krylov method is a polynomial method

In the following, we report some results, taken from [52], which show that the Krylov
method is indeed a polynomial method .

Lemma 1. Let A be any matrix while Vm and Hm are the results of m steps of the Arnoldi
(or Lanczos) method applied to A. Then for any polynomial pj(x) of degree j ≤ m − 1
the following equality holds:

pj(A)v1 = Vmpj(Hm)e1.

Proof. The goal is to prove by induction that

Ajv1 = VmHj
me1

which is clearly true for j = 0. Let Wm = VmV∗m be the orthogonal projector onto Km

as represented in the original basis. Assume that is true for j ≤ m− 2. Since the vectors
Ajv1 and Aj+1v1 belong to Km we have

Aj+1v1 = WmAj+1v1 = WmAAjv1 = WmAWmAjv1.

The relation Hm = VmAV∗m yields WmAWm = V∗mHmVm. Using the induction hy-
pothesis, we get

Aj+1v1 = VmHmV∗mVmHj
mv1 = VmHj+1

m v1

proving the Lemma.

Now let ψη(x) be the minimal polynomial of A, where η is the degree of ψη(x). We
know, as a consequence of the Cayley–Hamilton theorem, that any power of A can be
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expressed in terms of a polynomial in A of degree at most ν − 1. Let us recall that η ≥ ν
where ν is the grade of v in A. An immediate consequence is that if f(x) is an entire
function then f(A) = pη−1(A) for a certain polynomial of degree at most η−1. The next
lemma characterizes such polynomial.

Lemma 2. Let A be any matrix whose minimal polynomial ψη(x) is of degree η and f(x)
a function in the complex plane which is analytic in an open set containing the spectrum
of A. Moreover, let pη−1(x) be the interpolating polynomial of the function f(x), in the
Hermite sense, at the roots of the minimal polynomial of A, repeated according to their
multiplicities. Then

f(A) = pη−1(A).

Proof. See [20] for a proof.

We observe that it is not necessary to work with polynomials of the same degree of
the minimal polynomial of A. Suppose q(x) is any polynomial interpolating f(x), in
the Hermite sense, at the roots of ψη(x) and at some other arbitrary interpolation set.
Clearly, q(x) complies with the assumptions of the previous lemma for it is analytic over
the whole complex plane. Therefore we have that q(A) = pη−1(A), thus f(A) = q(A).

Therefore, going back to the Hessenberg matrix provided by the Arnoldi process, we
can state that

eHm = pm−1(Hm)

where the polynomial pm−1 interpolates the exponential function at the set of the eigen-
values {ρ1, ρ2, . . . ρm} of Hm, called Ritz’s values, in the Hermite sense. The set of Ritz’s
values, in fact, contains for sure the roots of the minimal polynomial of Hm taken with
their multiplicities. We are now ready to state the main characterization theorem.

Theorem 1. The approximation km(A, v) is mathematically equivalent to approximating
eAv by pm−1(A)v, where pm−1(A)v is the (unique) polynomial of degree m − 1 which
interpolates the exponential function in the Hermite sense on the set {ρ1, ρ2, . . . , ρm} of
Ritz’s values.

Proof. Using Lemma 2 we have

‖v‖2 VmeHme1 = ‖v‖2 Vmpm−1(Hm)e1

where pm−1 is the polynomial defined in the statement of the theorem. Using Lemma 1,
this becomes

‖v‖2 VmeHme1 = ‖v‖2 pm−1(A)v1 = pm−1(A)v.

Therefore the Krylov method coincides with a polynomial interpolation at the Ritz’s
values. The question is: are the Ritz’s values any good for avoiding the onset of the
hump phenomenon? The answer is positive: assume that (ρ

(m)
i , s

(m)
i ) is an eigenpair of

Hm where we temporarily added the apex m for sake of clarity. Then we have

AVms
(m)
i = VmHms

(m)
i + hm+1,mvm+1e

T
ms

(m)
i = ρ

(m)
i Vms

(m)
i + hm+1,mvm+1e

T
ms

(m)
i
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and clearly
AVms

(m)
i − ρ(m)

i Vms
(m)
i = hm+1,mvm+1e

T
ms

(m)
i

from which, applying the triangular inequality, we get that∥∥∥A(Vms
(m)
i )− ρ(m)

i (Vms
(m)
i )

∥∥∥
2

= hm+1,m|eTms(m)
i |.

Therefore we know that the Ritz’s values approximate the eigenvalues of A, generally
starting from the external one, more and more precisely as m grows. This makes the
Krylov method an excellent way to avert the risk of humping.

On the other hand, the Krylov method suffers from certain vulnerabilities, first of
all, the computational cost of enlarging the Krylov subspace with the Arnoldi algorithm
grows quadratically with the subspace dimension. Also, for large problems the storage
of the basis vectors alone becomes burdensome. Furthermore, it is a well-known issue
that the Arnoldi process suffers from loss of orthogonality, undermining the accuracy of
the approximation. For further details see [53, Section 6.3.2]. In considering these issues,
the user should keep in mind that each of them can be encountered at every sub-step.
Proposed solutions involve restarting the Arnoldi method (see, for instance, [13, 17]) or
modifications of the Arnoldi process based on an incomplete orthogonalization (see [21]).

Finally, differently from other polynomial methods whose parameters are set a priori
in finitely many variants, the Krylov approximants depend on A and v. Hence for Krylov
methods it is not possible to know, at the beginning of the computation, parameters such
as the optimal m and the sub-stepping strategy.

These vulnerabilities divided the researchers, that during the years polarized into
the two seemingly competing groups: those interested by the simplicity and elasticity of
Taylor and Newton interpolation methods and those that instead are attracted by the
great effectiveness of the Krylov method.

1.2 Thesis outline

It is exactly in this context that this thesis work came into play. We now proceed to
briefly sketch how this manuscript is organized.

• Chapter 2: Computing the divided differences of analytic functions.

In Chapter 2 we treat the problem of computing quickly and accurately the di-
vided differences of analytic functions. Special attention will be dedicated to the
computation of the divided differences of the functions ϕ`. Thanks to Opitz’s theo-
rem (see [66]) we know that the divided differences of a function f at the sequence
(z0, z1, . . . , zm) can be obtained as f(Z(z0, z1, . . . , zm)) where

Z(z0, z1, . . . , zm) =


z0

1 z1

. . . . . .

1 zm


reducing the problem of computing the divided differences for the exponential func-
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tion to the accurate computation of the first column of the matrix exponential of
Z(z0, z1, . . . , zm). Although Z(z0, z1, . . . , zm) is small and structured as a bidiagonal
matrix, the most known routines for the computation of the matrix exponential mis-
erably fail in obtaining accurate values of d[z0], d[z0, z1], . . . , d[z0, z1, . . . , zm]. This
is because the component of the first column of

eZ(z0,z1,...,zm)

greatly decays in norm. Therefore the routines from the literature, that return
results that are accurate in norm, fail to appreciate errors that may be relatively
large. To understand why this constitutes a problem, consider the case where we
approximate the vector wT = [P, 0] by w̃T = [P, ε] with P � 1. The relative error

‖w − w̃‖
‖w‖

can be several orders of magnitude smaller than the agreed tolerance while the
0 component is so wrongly approximated that if the relative error was computed
componentwise then it would be going to infinite. Therefore, the computation of
the divided differences of the exponential function requires to be carried on by a
routine that is extremely accurate.

As a result, we designed a routine, dd_phi, for the computation of the divided
differences of the exponential function that is more accurate than its competitors
and, at the same time, it is an order of magnitude faster.

The results are reported in Chapter 1, that is based on the publication

[68] F. Zivcovich, Fast and accurate computation of divided differences for ana-
lytic functions, with an application to the exponential function, Dolomites Res.
Notes Approx, Vol. 12, pp 28–42, 2019.

• Chapter 3: Computing the matrix exponential.

The technical difficulties encountered in the computation of the exponential of the
matrix Z(z0, z1, . . . , zm) led us to wonder if this problem affects other related fields
of numerical analysis. We found out this is the case of the Krylov approximations
of matrix functions, that form the approximation by combining orthogonal vectors
using as coefficients the first column of the matrix f(Hm), that shares the Hessenberg
structure with Z(z0, z1, . . . , zm). In fact, as it was shown in [9, Table 6], the state-
of-the-arts routines for computing the matrix exponential sometimes fail to return
an accurate approximation of the exponential of Hm. This is because, similarly to
the divided differences’ case, such routines return results that are accurate in norm
but fail to appreciate errors that may be component-wise relatively large although
absolutely small. This is a problem since, in some circumstances, it is crucial to
have very good approximations in order to preserve certain quantities, for example
for large linear Hamiltonian systems [32]. Therefore we investigated the possibility
to build a routine that is as accurate as the user wishes.

As a result, we developed and perfected a routine, expkptotf, for computing the
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matrix exponential in arbitrary precision arithmetic for any given tolerance that
shows accuracy and performances that are superior to existing alternatives.

The results are collected in Chapter 3, that is based on the publication and preprint

[9] M. Caliari, F. Zivcovich, On-the-fly backward error estimate for matrix ex-
ponential approximation by Taylor algorithm, Journal of Computational and
Applied Mathematics, 532–548, 2018;

[60] J. Sastre, J. Ibañez, E. Defez, F. Zivcovich, On-the-fly backward error Krylov
projection for arbitrary precision high performance Taylor approximation of the
matrix exponential, submitted, 2019.

• Chapter 4: Computing the action of the matrix exponential.

Finally, we studied in the main chapter of this manuscript new polynomial approx-
imations to the vector eAv. Acknowledged the great effectiveness of the Krylov
method, we tried to replicate its characteristics while avoiding its vulnerabilities us-
ing polynomial interpolations at set of points carefully determined according to A.
To do so, we studied new interpolation sets whose elements fall closer to the es-
timated location of the eigenvalues of the input matrices, increasing in this way
the efficiency of the polynomial methods. Furthermore, we developed an innovative
reordering algorithm of the interpolation sets aimed to increase accuracy and per-
formances of the polynomial methods, improving and substituting the Leja ordering
that we introduced at the end of Section 1.1.2. In addition to that, we managed to
engineer a procedure for computing the coefficients of the backward error polynomial
without recovering to computations in higher precision arithmetic. This allowed for
runtime estimates of the norm of backward error matrix for certain interpolation
sets determined “on the go” when needed.

As a result we built two Matlab routines, explhe and pkryexp, that proved to
be faster and more accurate than many other routines in the literature for the
approximation of the action of the matrix exponential.

The results we obtained are reported in Chapter 4, that led to the production of
the following three manuscripts

[8] M. Caliari, P. Kandolf, F. Zivcovich, Backward error analysis of polynomial
approximations for computing the action of the matrix exponential, Bit Numer
Math 58:907, 2018;

[10] M. Caliari, F. Cassini, F. Zivcovich, Approximation of the matrix exponential
for matrices with skinny fields of values, submitted, 2019;

[11] M. Caliari, F. Zivcovich, Extended Ritz interpolation for computing the action
of the matrix exponential, in preparation.

24



Chapter 2

Computing the divided differences of
analytic functions

This chapter contains an adaptation of the paper [68] where we analyze in-depth the struc-
ture of the matrix representing the operator mapping the coefficients of a polynomial p(x)
in the monomial basis M into those in the Newton basis N . A factorization in minimal
terms of the said matrix has been obtained and as a consequence, a factorization of its
inverse is available too. As a result, a new high performances routine for the computation
of the divided differences of the exponential and the closely related ϕl functions have been
produced with satisfying results.

2.1 Introduction

Given a sequence of n+ 1 interpolation points σn = (z0, z1, . . . , zn) and the corresponding
function values f(z0), f(z1), . . . , f(zn), there exists a unique polynomial p(x) of degree n
interpolating f(x) in the Hermite sense at σn. There are many polynomial basis under
which terms p(x) can be written, in particular we are going to focus on the monomial and
the Newton basis. The monomial basis M = {1, x, . . . , xn} is such that the n+ 1 scalars
a0, a1, . . . , an identify p(x) in terms of elements from M as

p(x) =
n∑
k=0

akx
k

or, in vector form, as
p(x) = m(x, n)Ta(n)

where m(x, n) := (1, x, . . . , xn)T and a(n) is the vector having on its kth component the
coefficient ak. The Newton basis N = {π0,σn(x), π1,σn(x), . . . , πn,σn(x)} where

π0,σn(x) ≡ 1, πk,σn(x) =
k−1∏
j=0

(x− zj)
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is such that the n+ 1 scalars d[z0], d[z0, z1], . . . , d[z0, z1, . . . , zn], called divided differences,
identify p(x) in terms of elements from N as

p(x) =
n∑
k=0

d[z0, z1, . . . , zk]πk,z(x)

or, in vector form, as
p(x) = π(x, n)Td(n)

where π(x, n) = (π0,σn(x), π1,σn(x), . . . , πn,σn(x))T and d(n) is the vector having on its kth
component the coefficient d[z0, z1, . . . , zk]. In this work we are going to analyze in depth
the structure of the matrix representing the operator that maps a(n) into d(n) and its
inverse.

As a result we will come up with several simple algorithms for switching between
a(n) and d(n) each one of them showing different numerical and analytic properties. In
particular one of these algorithms fits especially well the task of computing the table of
divided differences of a given function f(x), i.e. the matrix having in the n− k+ 1 entries
of its (k + 1)st column the divided differences of the function f(x), i.e. the matrix

d[z0] d[z0, z1] · · · d[z0, z1, . . . , zn]
d[z1] · · · d[z1, z2, . . . , zn]

. . .
...

d[zn]


Thanks to this feature, together with the properties of the exponential function, we will
show how to build a new routine for the fast and accurate computation of the divided
differences of the exponential function and of the closely related ϕ` functions. Each of the
algorithms we will report is meant to work as it is in Matlab.

2.2 The change of basis operator

To easily define the matrix representing the change of basis operator and its inverse we
need to introduce two important kinds of symmetric polynomials: the complete homoge-
neous symmetric polynomials and the elementary symmetric polynomials. We recall that
a symmetric polynomial is a polynomial such that, if any of the variables are interchanged,
remains unchanged.

The complete homogeneous symmetric polynomial of degree k − j over the variables
z0, z1, . . . , zj is:

ck−j(z0, z1, . . . , zj) =
∑

0≤i1≤...≤ik−j≤j

zi1 · · · zik−j

with ck−j(z0, z1, . . . , zj) equal to 0 if k − j < 0 and to 1 if k − j = 0. In other words,
ck−j(z0, z1, . . . , zj) is the sum of all monomials of total degree k − j in the variables.

The elementary symmetric polynomial of degree k−j over the variables z0, z1, . . . , zk−1

is:
ek−j(z0, z1, . . . , zk−1) =

∑
0≤i1<...<ik−j≤k−1

zi1 · · · zik−j
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with ek−j(z0, z1, . . . , zk−1) equal to 0 if k − j < 0 and to 1 if k − j = 0. In other words,
ek−j(z0, z1, . . . , zk−1) is the sum of all monomials with k − j factors and of total degree
k − j in the variables.

In the literature (see [19], Theorem p. 776) it has been analytically derived that the
matrix C(z0, z1, . . . , zn) representing the operator that maps a(n) into d(n), i.e.:

d(n) = C(z0, z1, . . . , zn)a(n)

is defined by means of complete homogeneous symmetric polynomials as the matrix having

ck−j(z0, z1, . . . , zj)

in its (j+ 1, k+ 1) position. Since the complete homogeneous symmetric polynomials are
such that ck−j(z0, z1, . . . , zj) = 0 if k−j < 0 and ck−j(z0, z1, . . . , zj) = 1 if k−j = 0 we have
that C(z0, z1, . . . , zn) is an upper triangular matrix with all ones on the main diagonal
independently from the instance of the sequence σn = (z0, z1, . . . , zn). Therefore we know
that C(z0, z1, . . . , zn) is invertible with inverse E(z0, z1, . . . , zn) := C(z0, z1, . . . , zn)−1. As
an example we show in the following the matrix C(z0, z1, z2, z3) mapping a(3) into d(3):

C(z0, z1, z2, z3) =


1 z0 z2

0 z3
0

0 1 z0 + z1 z2
0 + z0z1 + z2

1

0 0 1 z0 + z1 + z2

0 0 0 1

 .

Notice that z3 does not appear in C(z0, z1, z2, z3).

The next step is to determine analytically the inverse E(z0, z1, . . . , zn). To do so,
we expand the Newton basis polynomials πk,σn(x) in their explicit form applying the so-
called Vieta’s formulas, which express the coefficients of a polynomial with respect to the
monomial basis as symmetric functions of its roots. Briefly, such formulas tell us that the
coefficient of the jth power of the kth Newton basis polynomial is such that

coef(j, πk,σn(x)) = (−1)k−jek−j(z0, z1, . . . , zk−1)

and hence we can rewrite the kth Newton basis polynomial πk,z(x) in the form

πk,σn(x) =
k∑
j=0

(−1)k−jek−j(z0, z1, . . . , zk−1)xj.

From here it follows that the matrix E(z0, z1, . . . , zn) representing the operator that maps
d(n) into a(n) is defined by means of elementary symmetric polynomials as the matrix
having

(−1)k−jek−j(z0, z1, . . . , zk−1)

in its (j + 1, k + 1) position. In fact, for such E(z0, z1, . . . , zn) we have that

π(x, n)T = m(x, n)TE(z0, z1, . . . , zn)
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and hence from
p(x) = m(x, n)TE(z0, z1, . . . , zn)d(n)

we can derive by comparison the identity:

a(n) = E(z0, z1, . . . , zn)d(n).

As an example, we show in the following the matrix E(z0, z1, z2, z3) mapping d(3) into
a(3):

E(z0, z1, z2, z3) =


1 −z0 z0z1 −z0z1z2

0 1 −z0 − z1 z0z1 + z0z2 + z1z2

0 0 1 −z0 − z1 − z2

0 0 0 1

 .

Notice that z3 does not appear in E(z0, z1, z2, z3).
We conclude this section by writing two Matlab routines that can be used to build

the matrices C(z0, z1, . . . , zn) and E(z0, z1, . . . , zn) but first we need to give some recur-
rence properties of the complete homogeneous symmetric polynomials and the elementary
symmetric polynomials.

Claim 1. The complete homogeneous symmetric polynomial over z0, z1, . . . , zj of degree
k − j for any p ∈ {0, 1, . . . , j} can be decomposed as follows:

ck−j(z0, z1, . . . , zj) = ck−j(z0, z1, . . . , zp−1, zp+1, . . . , zj)

+ zpck−j−1(z0, z1, . . . , zj).
(2.1)

Proof. The claim follows if we consider the alternative representation of the complete
homogeneous symmetric polynomials

ck−j(z0, z1, . . . , zj) =
∑

i0+i1+...+ij=k−j

zi00 z
i1
1 · · · z

ij
j

where i0, i1, . . . , ij are positive integers.

Claim 2. The elementary symmetric polynomial over z0, z1, . . . , zk−1 of degree k − j for
any p ∈ {0, 1, . . . , k − 1} can be decomposed as follows:

ek−j(z0, z1, . . . , zk−1) = ek−j(z0, z1, . . . , zp−1, zp+1, . . . , zk−1)

+ zpek−j−1(z0, z1, . . . , zp−1, zp+1, . . . , zk−1).
(2.2)

Proof. Consider the Newton basis polynomial πk,σn(x). For any p ∈ {0, 1, . . . , k − 1} the
coefficient of its term of degree j can be computed as

coef(j, πk,σn(x)) = coef(j, x(x− zp)−1πk,z(x)) + coef(j,−zp(x− zp)−1πk,z(x))

= coef(j − 1, (x− zp)−1πk,z(x))− zpcoef(j, (x− zp)−1πk,z(x))

The claim follows by applying Vieta’s formulas to each side of this identity.

Thanks to the decomposition (2.1) with p = j we can express the entry (j + 1, k + 1)
of C(z0, z1, . . . , zn) by means of just zj and the entries (j, k) and (j + 1, k). This can be
exploited to build the following code:
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1. function C = build_C( z )

2. % Return the matrix C mapping a(n) into d(n).

3. % Input:

4. % - z, interpolation sequence

5. % Output:

6. % - C, matrix mapping a(n) into d(n)

7. n = length( z ) - 1;

8. C = [ cumprod([ 1 ones(1,n)*z(1) ]); zeros(n,n+1) ];

9. for j = 1:n

10. for k = j:n

11. C( j+1,k+1 ) = C( j,k ) + z( j+1 ) * C( j+1,k );

12. end

13. end

Given the interpolation sequence σn = (z0, z1, . . . , zn), the routine build_C returns the
matrix C(z0, z1, . . . , zn).

Thanks to the decomposition (2.2) with p = k−1 we can express the entry (j+1, k+1)
of E(z0, z1, . . . , zn) by means of just zk−1 and the entries (j, k) and (j+ 1, k). This can be
exploited to build the following code:

1. function E = build_E( z )

2. % Return the matrix E mapping d(n) into a(n).

3. % Input:

4. % - z, interpolation sequence

5. % Output:

6. % - E, matrix mapping d(n) into a(n)

7. n = length( z ) - 1;

8. E = [ cumprod([ 1,-z(1:n) ]); zeros(n,n+1) ];

9. for j = 1:n

10. for k = j:n

11. E( j+1,k+1 ) = E( j,k ) - z( k ) * E( j+1,k );

12. end

13. end

Given the interpolation sequence σn = (z0, z1, . . . , zn), the routine build_E returns the
matrix E(z0, z1, . . . , zn).

2.2.1 Factorization of the change of basis operator

Although the two algorithms with which we concluded the past section can be used to
switch back and forth between d(n) and a(n), it may not be a good idea to employ them
for this purpose. Much faster algorithms can be created and we will do so in this section
after we will have shown some factorization properties of the matrices E(z0, z1, . . . , zn)
and C(z0, z1, . . . , zn).

Consider now again the decomposition of the elementary symmetric polynomials given
in equation (2.2), this time with p = 0. We have

ek−j(z0, z1, . . . , zk−1) = ek−j(z1, . . . , zk−1) + z0ek−j−1(z1, . . . , zk−1)

= ek−j(0, z1, . . . , zk−1) + z0ek−j−1(0, z1, . . . , zk−1)
(2.3)
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where the last equality comes from intrinsic properties of the elementary symmetric poly-
nomials.

We know from the rule that we followed to build the matrix E(z0, z1, . . . , zn) that the
left hand side of (2.3) equals (−1)k−j times the entry (j+1, k+1) of E(z0, z1, . . . , zn). Anal-
ogously, on the right hand side of (2.3) we have that ek−j(0, z1, . . . , zk−1) equals (−1)k−j

times the entry (j + 1, k + 1) of E(0, z1, . . . , zn) while we have that ek−j−1(0, z1, . . . , zk−1)
equals (−1)k−j−1 times the entry (j + 2, k + 1) of E(0, z1, . . . , zn).

What we can deduce from this is that for j, k ∈ {0, 1, . . . , n−1} the entry (j+1, k+1)
of E(z0, z1, . . . , zn) equals the entry (j + 1, k + 1) of E(0, z1, . . . , zn) minus z0 times the
entry (j + 2, k + 1) of E(0, z1, . . . , zn). In matrix form this can be represented by

E(z0, z1, . . . , zn) = (In+1 − z0Jn+1)E(0, z1, . . . , zn) (2.4)

where In+1 and Jn+1 are respectively the identity matrix of size n+ 1 and the zero matrix
of size n + 1 having all ones on its first superdiagonal. Bearing in mind how the matrix
representing the inverse change of basis operator is built, we know that

(In+1 − z0Jn+1) = E(z0, 0, . . . , 0)

and hence
E(z0, z1, . . . , zn) = E(z0, 0, . . . , 0)E(0, z1, . . . , zn).

Again, by using the definition of the elementary symmetric polynomials we know that

E(0, z1, . . . , zn) =

(
1

E(z1, . . . , zn)

)
(2.5)

and therefore we can iterate the factorization step after step over the sub-matrices until
we get to the full factorization

E(z0, z1, . . . , zn) = E(z0, 0, . . . , 0)E(0, z1, 0, . . . , 0) · · ·E(0, . . . , 0, zn). (2.6)

There is now the possibility to obtain an even more complete factorization for which
the matrix E(z0, z1, . . . , zn) is factored into the product of n(n + 1)/2 matrices. Set the
matrix Ei(zp) to be the n+ 1 square identity matrix with −zp in the entry (i, i+ 1), i.e.

Ei(zp) =


Ii

1 −zp
1

In−i−1

 .

If we now left multiply Ei+1(zp) into Ei(zp) it is clear that we are merely copying and
pasting the bottom right corner of Ei+1(zp) into the bottom right corner of Ei(zp), since
the latter consists of an identity matrix. Following this simple principle we can factor
E(0, . . . , zp, . . . , 0) with p < n into the n− p matrices

En(zp)En−1(zp) · · ·Ep+1(zp)

where E(0, . . . , 0, zn) is already the identity matrix. It is possible hence to rewrite the
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matrix E(z0, z1, . . . , zn) as the product of n(n+ 1)/2 factors

E(z0, z1, . . . , zn) =

x
n−1∏
k=0

(

x
n−k−1∏
j=0

En−j(zk)) (2.7)

where the curved arrow pointing left indicates that the product sign has to be understood
as juxtaposing the upcoming matrices on the left side.

The factorizations of E(z0, z1, . . . , zn) shown in (2.6) and (2.7) offer the possibility
to factor as well the matrix C(z0, z1, . . . , zn) too. In fact we know that the matrix
C(z0, z1, . . . , zn) equals E−1(z0, z1, . . . , zn) and hence we know that, analogously to equa-
tion (2.6), C(z0, z1, . . . , zn) equals

E(0, . . . , 0, zn)−1E(0, . . . , 0, zn−1, 0)−1 · · ·E(z0, 0, . . . , 0)−1. (2.8)

Following the same reasoning we can rewrite, analogously to equation (2.7), the matrix
C(z0, z1, . . . , zn) as the product of n(n+ 1)/2 factors

C(z0, z1, . . . , zn) =

y
n−1∏
k=0

(

y
n−k−1∏
j=0

E−1
n−j(zk)).

As a side note if we define Ci(zp) to be the inverse of the matrix Ei(zp), it can be easily
seen that

Ci(zp) = Ei(−zp) (2.9)

and thus we can rewrite the new factorizaton in a nicer form as

C(z0, z1, . . . , zn) =

y
n−1∏
k=0

(

y
n−k−1∏
j=0

Cn−j(zk)). (2.10)

We now list some highly efficient routines for switching between the monomial and
Newton’s basis coefficients. Such routines will be based on the factorizations given in
equations (2.7) and (2.10). Part of the efficiency of such an algorithm lies in the fact
of being in-place, this means that they are algorithms that transform input using no
auxiliary data structure. As a consequence, at first sight, it may be confusing that the
vector d(n) will be given in input under the name a_n and vice-versa a(n) will be given
in input under the name d_n.

We start by listing the code that given d(n) and the interpolation sequence σn =
(z0, z1, . . . , zn) returns the coefficients a(n), i.e. it performs the mapping of the operator
represented by the matrix E(z0, z1, . . . , zn).

1. function a_n = Ed_n( z,a_n )

2. % Compute a(n) given d(n) and z.

3. % Input:

4. % - z, interpolation sequence

5. % - a_n, vector d(n)

6. % Output:
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7. % - a_n, vector a(n)

8. n = length( z ) - 1;

9. for j = n:-1:1

10. for k = j:n

11. a_n( k ) = a_n( k ) - z( j ) * a_n( k+1 );

12. end

13. end

Notice that we can get rid of the inner loop by substituting it with the line

10. a_n( k:n ) = a_n( k:n ) - z( k ) * a_n( k+1:n+1 );

that is a vectorised and therefore parallelizable version of the code. This is equivalent to
implementing the factorization of (2.6).

We proceed by listing the inverse algorithm that, given a(n) and the interpolation
sequence σn = (z0, z1, . . . , zn), returns the coefficients d(n), i.e. it performs the mapping
of the operator represented by the matrix C(z0, z1, . . . , zn).

1. function d_n = Ca_n( z,d_n )

2. % Compute d(n) given a(n) and z.

3. % Input:

4. % - z, interpolation sequence

5. % - d_n, vector a(n)

6. % Output:

7. % - d_n, vector d(n)

8. n = length( z ) - 1;

9. for j = 0:n-1

10. for k = n:-1:j+1

11. d_n( k ) = d_n( k ) + z( j+1 ) * d_n( k+1 );

12. end

13. end

Notice that we can’t get rid of the inner loop as we could do with the previous code.
In order to do so, we have to reorder somehow the matrix multiplications appearing

in equation (2.10). Thanks to their special structure, the matrices Ci1(zp1) and Ci2(zp2)
commute if and only if |i1−i2| 6= 1. Bearing that in mind, consider the matrices in equation
(2.10) written down in their extended form, that is without using the product notation.
Considering the matrices from right to left we pick the first one that can commute with
its left neighbor, that is C1(z0), and we are going to swap it with its left neighbors until
we encounter C2(z1) with which it can’t commute. At this point we are going to pick the
matrix C2(z1)C1(z0) and swap it with its left neighbors until we encounter C3(z2), and
so on until the moment in which we obtain

Cn(zn−1)Cn−1(zn−2) · · ·C1(z0)(

y
n−2∏
k=0

(

y
n−k−2∏
j=0

Cn−j(zk))). (2.11)

We can iterate the commuting operations on and on over the matrices that are still nested
into the product sign. In this way we obtain the following reordering of the original
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factorization:

C(z0, z1, . . . , zn) =

x
n−1∏
k=0

(

x
n−k−1∏
j=0

Cn−j(zn−k−j−1)). (2.12)

From this we obtain also a reordering for the factorization of the inverse matrix

E(z0, z1, . . . , zn) =

y
n−1∏
k=0

(

y
n−k−1∏
j=0

En−j(zn−k−j−1)). (2.13)

Let us see how the changes in the arrangement of the matrices shown in formula
(2.13) are reflected in the code that given d(n) and the interpolation sequence σn =
(z0, z1, . . . , zn) returns a(n).

1. function a_n = Ed_n_res( z,a_n )

2. % Compute a(n) given d(n) and z. Resorted factorization.

3. % Input:

4. % - z, interpolation sequence

5. % - a_n, vector d(n)

6. % Output:

7. % - a_n, vector d(n)

8. n = length( z ) - 1;

9. for k = 0:n-1

10. for j = n:-1:k+1

11. a_n( j ) = a_n( j ) - z( j-k ) * a_n( j+1 );

12. end

13. end

Differently from before, this algorithm is not vectorizable hence we cannot get rid of the
inner loop nor we can parallelise the calculations.

Let us see instead how the changes in the arrangement of the matrices shown in
formula (2.12) reflect into the code that, given a(n) and the interpolation sequence σn =
(z0, z1, . . . , zn), returns d(n).

1. function d_n = Ca_n_res( z,d_n )

2. % Compute d(n) given a(n) and z. Resorted factorization.

3. % Input:

4. % - z, interpolation sequence

5. % - d_n, vector a(n)

6. % Output:

7. % - d_n, vector d(n)

8. n = length( z ) - 1;

9. for k = 0:n-1

10. for j = n-k:n

11. d_n( j ) = d_n( j ) + z( j-n+k+1 ) * d_n( j+1 );

12. end

13. end

33



This algorithm can be successfully vectorised. In fact, we can get rid of the inner loop
replacing it with the line

10. d_n( n-k:n ) = d_n( n-k:n ) + z( 1:k+1 ) .* d_n( n-k+1:n+1 );

making it possible to parallelise the calculations.
We conclude this section with a remark reconnecting this work to the literature. At

the beginning of Section 2 we mentioned [19, Theorem p. 776], which states that if
V(z0, z1, . . . , zn) is the Vandermonde matrix over the interpolation sequence then the
standard LU-decomposition of its transpose is

V(z0, z1, . . . , zn)T = C(z0, z1, . . . , zn)TU(z0, z1, . . . , zn)

where U(z0, z1, . . . , zn) is upper triangular. Since the inverse of C(z0, z1, . . . , zn)T is
E(z0, z1, . . . , zn)T we can also write

E(z0, z1, . . . , zn)TV(z0, z1, . . . , zn)T = U(z0, z1, . . . , zn)

and therefore any transpose decomposition of E(z0, z1, . . . , zn) can be seen as the concate-
nation of the Gaussian elimination steps.

2.3 The divided differences of the exponential and

closely related functions

In the recent years in the field of applications the problem of computing functions of
matrices has attracted a rising interest. Among such functions it can be highlighted the
exponential and more in general the ϕ` functions, that we recall that are defined as:

ϕ`(x) =
∞∑
i=0

xi

(i+ `)!
(2.14)

and that include the exponential function, since clearly ϕ0(x) coincides with ex. When it
comes to the approximation of functions of matrices it is very often convenient to interpo-
late at some sequence σn = (z0, z1, . . . , zn) in order to try and exploit spectral properties
of the input matrix. Hence a fast and accurate computation of divided differences plays
a crucial role in executing such tasks. In this section we are going to introduce a new
algorithm for the efficient computation of the divided differences for the ϕ` functions at
the interpolation sequence σn = (z0, z1, . . . , zn), namely

d[z0], d[z0, z1], . . . , d[z0, z1, . . . , zn].

We start by presenting the state-of-the-arts algorithm for the computation of the
divided differences of the exponential function at σn, developed in [38], since our routine
will inherit its structure. This algorithm is based on the so called Opitz’s theorem,
that has been originally introduced in [47]. According to the Opitz theorem, given any
k ∈ {0, 1, . . . , n}, the divided differences

d[zk], d[zk, zk+1], . . . , d[zk, zk+1, . . . , zn]
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of a function f(x) are in order in the last n − k + 1 entries of the (k + 1)th column of
f(Z(z0, z1, . . . , zn)), where

Z(z0, z1, . . . , zn) =


z0

1 z1

. . . . . .

1 zn

 ,

and hence the desired divided differences can be derived as

exp(Z(z0, z1, . . . , zn))e1

where e1 is the first column of the matrix In+1.

At this point, one could think that it is enough to compute this vector by using one of
the many routines developed to approximate the action of the matrix exponential. The
reality is that such routines are only relatively accurate in norm, while we are required to
approximate in componentwise relatively high precision each one of the divided differences
that, for the exponential function, are rapidly decreasing. Furthermore, general-purpose
routines are not designed for this case of interest, which presents a pattern that should
be exploited.

Returning to the routine developed in [38], a crucial step that must be performed in
order to handle accurately arbitrarily large inputs, is to apply a scaling technique. It is
possible in fact to recover the wanted divided differences by just powering the matrix of
the divided differences on a scaled sequence. In practice, for a positive integer s, set

F(0) := exp(Z(2−sz0, 2
−sz1, . . . , 2

−szn))

and set
F(i+1) := RF2

(i)R
−1

with

R =


1

2
. . .

2n−1


then, thanks to the Lemma from ([38], pp.509), we know that for 0 ≤ i ≤ s the following
holds:

F(i) = exp(Z(2i−sz0, 2
i−sz1, . . . , 2

i−szn))

and in particular
F(s) = exp(Z(z0, z1, . . . , zm))

that is the table of divided differences at σn. Since we are not interested in the whole
divided differences matrix but just in the first column, the powering part can be carried
on applied to the vector e1 and hence performing just matrix-vector products. In addition
to that, the algorithm from [38] exploited the work of [48] that investigates the relation
between the triangular matrix T and f(T) when f(x) is an analytic function, as the
exponential. As a result, F(0) is computed in an extremely efficient way and the resulting
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routine is characterized by very high performances.

What we aim to do in this section is to develop a new routine that outperforms the
one from [38] by exploiting the tools we built in this work. In particular, we will focus on
the fast computation of F(0) while we will maintain the powering part untouched.

One idea would be to adapt the algorithms derived in the previous section to the
purpose of approximating the divided differences of a power series. In fact the matrix
C(z0, z1, . . . , zn) has 1 as its last bottom-right entry, hence it is assigns the value an to
d[z0, z1, . . . , zn]. This is exact if an is the highest nonzero coefficient of p(x) while it merely
is an approximation otherwise. To fix this problem, we just have to add sufficiently many
additional interpolation points zn+1, zn+2, . . . , zN in order to recover the lost accuracy.
Unfortunately, this approach would require computing each column of F(0) separately
with increased computational complexity due to the additional points. Therefore it may
be too slow when it comes to competing with an algorithm as optimized as the one
developed in [38].

In order to tackle this inconvenient, we now derive another factorization of the matrix
C(z0, z1, . . . , zn) that we will show to have an interesting property. Consider the following
manipulation of formula (2.4)

E(z0, z1, . . . , zn) = (In+1 − z0Jn+1)E(0, z1, . . . , zn)

= E(0, z1, . . . , zn)− z0Jn+1E(0, z1, . . . , zn)

that, together with the trivial identity

Jn+1E(0, z1, . . . , zn) = E(z1, . . . , zn, 0)Jn+1,

that is due to the peculiar structure of Jn+1, gives that E(z0, z1, . . . , zn) equals

E(z1, . . . , zn, 0)(C(z1, . . . , zn, 0)E(0, z1, . . . , zn)− z0Jn+1).

Let us study now the structure of the matrix C(z1, . . . , zn, 0)E(0, z1, . . . , zn). To do so
we employ formula (2.11) over z1, z2, . . . , zn, 0 instead of z0, z1, . . . , zn, showing that the
matrix C(z1, . . . , zn, 0) can be factorized as

Cn(zn)Cn−1(zn−1) · · ·C1(z1)(

y
n−2∏
k=0

(

y
n−k−2∏
j=0

Cn−j(zk+1))).

We know already from the past section that

y
n−2∏
k=0

(

y
n−k−2∏
j=0

Cn−j(zk+1)) =

x
n−2∏
k=0

(

x
n−k−2∏
j=0

E−1
n−j(zk+1)) = (

x
n−2∏
k=0

(

x
n−k−2∏
j=0

En−j(zk+1)))−1

and hence, by comparison with (2.7), we obtain

(

x
n−2∏
k=0

(

x
n−k−2∏
j=0

En−j(zk+1)))−1 = E−1(0, z1, . . . , zn),
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from which we can deduce that

C(z1, . . . , zn, 0)E(0, z1, . . . , zn) = Cn(zn)Cn−1(zn−1) · · ·C1(z1)

which is the n + 1 sized identity matrix with z1, z2, . . . , zn on its first superdiagonal. In
conclusion, we have that the matrix E(z0, z1, . . . , zn) equals

E(z1, z2, . . . , zn, 0)Cn(zn − z0)Cn−1(zn−1 − z0) · · ·C1(z1 − z0)

that, thanks to (2.9), we know to be also equal to

E(z1, z2, . . . , zn, 0)En(z0 − zn)En−1(z0 − zn−1) · · ·E1(z0 − z1).

We can proceed analogously in factorizing the matrix E(z1, z2, . . . , zn, 0) and then the
matrix E(z2, z3, . . . , zn, 0, 0) and so on until we get

E(z0, z1, . . . , zn) =

y
n∏
k=0

(

x
n−1∏
j=0

En−j(zk − zn−j+k), ) (2.15)

provided that we set zk = 0 for every k ≥ n+ 1. Hence

C(z0, z1, . . . , zn) =

x
n∏
k=0

(

y
n−1∏
j=0

Cn−j(zk − zn−j+k)) (2.16)

provided, again, that zk = 0 for every k ≥ n+ 1. We now have the possibility to write a
new algorithm for switching between a(n) and d(n).

This algorithm enjoys a very useful property for our purposes when we use it to
compute d(n) from a(n). In fact, at each stage n − k of the outer product sign we
are computing the divided differences over zk, zk+1, . . . , zn+k starting from the divided
differences at zk+1, zk+2, . . . , zn+k+1. To make it evident consider as an example the first
step we made toward this factorization

E(z1, z2, . . . , zn, 0)En(z0 − zn)En−1(z0 − zn−1) · · ·E1(z0 − z1).

When it is inverted and applied to a(n) we have

C1(z0 − z1)C2(z0 − z2) · · ·Cn(z0 − zn)C(z1, z2, . . . , zn, 0)a(n)

that clearly equals

C1(z0 − z1)C2(z0 − z2) · · ·Cn(z0 − zn)d′(n)

where d′(n) is the vector of the divided differences over z1, z2, . . . , zn, 0. Hence it is possible
to fill up the columns of the matrix F(0) while computing the divided differences over
z0, z1, . . . , zN from the coefficients a0, a1, . . . , aN , reducing drastically the required cpu
time.

For our particular purpose, we picked N to be equal to n+30 and the scaling parameter

37



s to be a positive integer such that the interpolation points are not spread too far apart,
namely s−1|zi− zj| ≤ 3.5 and s−1|zk| ≤ 3.5 for any choice of the positive integers i, j, k ≤
n + 1. This is due to the fact that in the worst case scenario, i.e. n = 0, we want to
approximate accurately d[s−1z0] = es

−1z0 and, in [2, 8] was shown that double precision is
attainable by means of the Taylor series truncated to degree 30 provided that s−1|z0| ≤ 3.5.

To enforce the condition on the interpolation points σm and to sensibly simplify the
task, we apply a preconditioning to the interpolation sequence by computing the divided
differences of the exponential function at z0 − µ, z1 − µ, . . . , zn − µ with

µ = n−1

n∑
i=0

zi.

In this way s−1|zi − zj| ≤ 3.5 clearly implies s−1|zk − µ| ≤ 3.5 for any i, j, k ≤ n + 1. In
addition to that, such a shifting of the interpolation sequence may lead to smaller scaling
parameters leading to improve the overall efficiency. Then, by exploiting the properties of
the exponential function, we recover the divided differences over the original interpolation
sequence by multiplying eµ into the divided differences computed over the shifted points.

In the following, we list the algorithm we developed starting by the factorization we
have just outlined in combination with the scaling and squaring algorithm.

1. function dd = dd_phi( z,l )

2. % Compute phi_l(x)’s divided differences.

3. % Input:

4. % - z, interpolation points

5. % Output:

6. % - dd, divided differences

7. z = [ zeros( l,1 ); z( : ) ]; mu = mean( z ); z = z - mu;

8. n = length( z ) - 1; N = n + 30;

9. F = zeros( n+1 );

10. for i = 1:n

11. F( i+1:n+1,i ) = z( i ) - z( i+1:n+1 );

12. end

13. s = max( ceil( max( max( abs( F ) ) ) / 3.5 ),1 );

14. % Compute F_0

15. dd = [ 1 1./cumprod( (1:N)*s ) ];

16. for j = n:-1:0

17. for k = N:-1:(n-j+1)

18. dd( k ) = dd( k ) + z( j+1 ) * dd( k+1 );

19. end

20. for k = (n-j):-1:1

21. dd( k ) = dd( k ) + F( k+j+1,j+1 ) * dd( k+1 );

22. end

23. F( j+1,j+1:n+1 ) = dd( 1:n-j+1 );

24. end

25. F( 1:n+2:(n+1)^2 ) = exp( z/s );

26. F = triu( F );

27. % Squaring Part
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28. dd = F( 1,: );

29. for k = 1:s-1

30. dd = dd * F;

31. end

32. dd = exp( mu ) * transp(dd(l+1:n+1));

We now explain how we can obtain the divided differences of the functions ϕl(x)
performing just the two small modifications of lines 7 and 32. From formula (2.14) and
from the representation of the divided differences shown in the first part of this work,
the approximation of the divided differences of ϕ`(x) over the interpolation sequence
(z0, z1, . . . , zn) equals

d′(n) = C(z0, z1, . . . , zn)a′(n).

Here a′(n) is the vector such that the kth entry equals the (k + l)th entry of the vector
of the coefficients of the exponential function in the monomial basis m(x, n), namely:
ak+l = 1/(k + l − 1)!. As a consequence, one can obtain d′(n) by simply computing the
divided differences of the exponential function over the interpolation sequence modified
by adding l interpolation points at zero at the beginning 0, . . . , 0, z0, z1, . . . , zn (executed
at line 7) and then discarding the first l (executed at line 32). In fact from (2.5) we know
that

C(0, . . . , 0, z0, z1, . . . , zn)

is the matrix having an l sized identity matrix in its upper left corner.
As a final note, we highlight that with minor modifications of the algorithm in [38]

it is possible to obtain the whole divided difference table over an interpolation sequence.
In order to apply those minor modifications to our routine it is enough to substitute line
13. with

13. s = max( 2^ceil( log2( max( max( abs( F ) ) ) / 3.5 ) ),1 );

and lines from 28. to 32. with

28. for k = 1:log2( s )

29. F = F^2;

30. end

31. F = exp( mu ) * F( l+1:n+1,l+1:n+1 );

and of course demanding the output to be F and not dd.

2.3.1 Numerical experiments

In this section, we are going to run some numerical tests in order to test thoroughly the
performances of our new algorithm, dd_phi, with respect to the most advanced competi-
tors. The competitors are:

• dd_ts, this routine is based on the scaling and squaring algorithm applied to Opitz’s
theorem for triangular matrices developed in [38] and that we outlined in the past
section. The Matlab implementation we use is due to the author of [5] that also
extended this algorithm to the high performance computation of the ϕl functions.
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• exptayotf from [9], is the only existing routine able to compute the matrix expo-
nential in double precision arithmetic for any given tolerance in a backward stable
way. We will use this routine with tolerance set to realmin ≈2.23e-308 in combina-
tion with the Opitz’s theorem in order to compute the divided differences required
for running the tests.

On the other hand, we do not compare with the so-called Standard Recurrence algorithm
that is the algorithm stemming from the recurrence defining the divided difference, i.e.

d[zk, zk+1, . . . , zk+j] =
d[zk, zk+1, . . . , zk+j−1]− d[zk+1, zk+2, . . . , zk+j]

zk − zk+j

where d[zk] = ezk . The reason for this is that when it comes to the numerical implementa-
tion it is well known that the resulting routine is a very unstable algorithm, prone to huge
accuracy loss. Evidence supporting this can be found in [5, Table 3], where a catastrophic
propagation of the error through the steps of the Standard Recurrence algorithm is made
evident. To stress this point, in Table 2.1 we report the approximation of some of the
divided differences for the exponential function over the first Leja points distributed in
the interval [−2, 2]. The Leja points over [−2, 2] are defined as the sequence that starts
with z0 = 0 and that continues as

zi+1 ∈ arg max
x∈[−2,2]

i∏
j=0

|x− zj|, (2.17)

this set of points constitutes a particularly good set of interpolations points expressly
meant for reducing the numerical instabilities of the polynomial approximations. In ad-

i exact Standard Recurrence
0 1.000000000000000e00 1.000000000000000e00
1 3.194528049465325e00 3.194528049465325e00
2 6.905489227709076e-01 6.905489227709078e-01
3 2.733266029381669e-01 2.733266029381672e-01
4 4.841100451817702e-02 4.841100451817710e-02
5 1.250375676884083e-02 1.250375676884073e-02
. . . . . . . . .
10 2.969328503472984e-07 2.969328505292328e-07
. . . . . . . . .
15 8.652201142961257e-13 8.650408252305874e-13
. . . . . . . . .
20 4.359767314729199e-19 -3.420012541100294e-17
. . . . . . . . .
25 6.335065785389162e-26 3.467430190505354e-16
. . . . . . . . .
30 3.912862814239202e-33 1.290495466811578e-16

Table 2.1: Divided differences d[z0, z1, . . . , zi] at the Leja points z0, z1, . . . , z30 for ex,
comparison between the Standard Recurrence algorithm and exact data.
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dition to that, we are not going to perform any comparison with the algorithm from [33]
based on the computation of divided differences via their representation as a contour in-
tegral. In fact, although such an algorithm is an excellent tool for computing accurately
the divided differences of certain classes of analytic functions, it is not designed expressly
for those of the exponential function and therefore a comparison would turn out to be
unfair, to say the least.

The first test we perform consists in testing the speed performances of the three rou-
tines under examination. In order to accurately measure the timing of each computation,
we run the tests by using just one processor (Matlab’s option -singleCompThread).
Moreover, we run each routine on each sequence 20 times and we register the average
cpu time taken to process each input. The experiments were performed using the 64-bit
(glxna64) version of Matlab R© 9.2 (R2017a) on a machine equipped with 16Gb of RAM
and four Intel Core i7 processors running at 3.30GHz. The set of sequences over which
we run the three routines are:

s1. γ · (z0, z1, . . . , zn) where n ∈ {1, 3, 5, . . . , 99}, γ = 8 and the interpolation points zi
are randomly chosen following a normal distribution of mean 0 and variance 1;

s2. γ · (z0, z1, . . . , zn) where n ∈ {1, 3, 5, . . . , 99}, γ = 8 and the interpolation points zi
have real and imaginary parts chosen following a normal distribution of mean 0 and
variance 1.

We then report the results in two different graphs (see Figure 2.1) to compare the perfor-
mances over real and complex inputs. What we can observe is that, over both real and
complex inputs, dd_phi performs best by at least one order of magnitude. The surprising
data is that the routine exptayotf is faster than dd_ts in the complex case even though
it is not optimized for this particular task. We repeat this test but we ask, instead of the
vector of the divided differences, the whole divided differences table. The results, reported
in Figure 2.2, show that also in this case dd_phi stands out as the fastest routine.

The next test we perform is meant to establish how accurate is our routine dd_phi

with respect to dd_ts and exptayotf. The interpolation sequences that we use to test
the accuracy of the three algorithms are:

a1. γ · (z0, z1, . . . , zn) where n ∈ {10, 25, 50, 100}, γ ∈ {2, 4, . . . , 512} and the interpola-
tion points zi are randomly chosen following a normal distribution of mean 0 and
variance 1;

a2. γ · (z0, z1, . . . , zn) where n ∈ {10, 25, 50, 100}, γ ∈ {2, 4, . . . , 512} and the interpola-
tion points zi have real and imaginary parts chosen following a normal distribution
of mean 0 and variance 1;

a3. γ · (z0, z1, . . . , zn) where n ∈ {10, 25, 50, 100}, γ ∈ {2, 4, . . . , 512} and the interpola-
tion points zi are the n Chebyshev points over the interval [−1, 1];

a4. γ · (z0, z1, . . . , zn) where n ∈ {10, 25, 50, 100}, γ ∈ {2, 4, . . . , 512} and the interpola-
tion points zi are the n Leja points (see [6, 8, 31, 50]) over the interval [−1, 1];

a5. γ · (z0, z1, . . . , zn) where n ∈ {10, 25, 50, 100}, γ ∈ {2, 4, . . . , 512} and the inter-
polation points zi are the n Leja points over the closed unit disk in the complex
plane (see [50, Example 1.3]);
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Figure 2.1: Average elapsed cpu time (y-axis) to compute the divided differences at
the sequences of length n (x-axis) described in s1. (left) and s2. (right).
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Figure 2.2: Average elapsed cpu time (y-axis) to compute the divided differences
table at the sequences of length n (x-axis) described in s1. (left) and s2. (right).
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a6. γ · (z0, z1, . . . , zn) where n ∈ {10, 25, 50, 100}, γ ∈ {2, 4, . . . , 512} and the interpola-
tion points zi are coalescing, i.e. zi = 2−i.

The sequences in a1.–a3. are then reordered à la Leja (see [8, Section 3.2] and [50,
Formula (1.5)]) so that they can be meaningful from a numerical point of view. Such
a reordering is shown to lead to higher stability when it comes to Newton interpolation
(see [50, Example 4.1]). On the other hand the sequences in a4.–a5. are by construction
already ordered à la Leja while we do not reorder those in a6. since they are designed to
stress the three routines.

For each sequence γ · (z0, z1, . . . , zn) we compute the mean relative error committed by
each routine taking as trusted reference the divided differences computed using exptayotf

with tolerance set to realmin ≈2.23e-308 and the input converted in a 200 digits vpa data
type from the variable precision arithmetic toolbox of Matlab. We plot in Figures from
2.3 to 2.6 the mean relative error committed by each routine as the scale parameter γ
increases for the sequences described in a3.–a6., the most significant from a numerical
point of view. We deduce from Figures 2.3 to 2.6 that, while there exists a clear relation
between the choice of the scale parameter γ and the mean relative error, it does not exist
between the length of a sequence and the mean relative error.

What is more important is that it appears evident that our routine, dd_phi, at least
as accurate as its main competitors. Now, in order to rigorously determine which routine
is the most accurate, we present the data from Figures 2.3 to 2.6 together with the data
relative to the families of sequences described in a1. and a2. in Figure 2.7 as a performance
profile. Figure 2.7 is such that a point (γ, ρ) on a curve related to a method represents
the fraction of computed divided differences for which the corresponding error is bounded
by ρ times the “unit” error, that we set to eps ≈ 2.22e-16.

It is clearly shown in Figure 2.7 that, although all the three routines are very accurate,
the performance profile held by dd_phi stands out as the most favorable. It is followed
by the one of exptayotf and then dd_ts.

In fact, data suggest that dd_phi commits an error smaller than 20 times eps over
the 95.7% of the total amount of divided differences computed. This fraction drops to
respectively 89.7% and 85.3% for the routines exptayotf and dd_ts.

When instead we consider an error large at most 50 times eps, we notice that dd_phi
approximate the 100% of the divided differences committing a smaller error. As for
exptayotf and dd_ts this figure drops to 95.7% and 97.4% respectively.

A less meaningful, but still significant, data is about the mean error committed over
the 9990 divided differences approximated by each routine. The figures are: 4.42e-15 for
dd_phi, 7.46e-15 for dd_ts, and 7.76e-15 for exptayotf. The maximum error committed
by each routine over the 9990 divided differences approximated equals instead 6.68e-14
for dd_phi, 1.20e-13 for dd_ts, and 2.97e-13 for exptayotf.

2.4 Conclusions

From the numerical tests, we conclude that the new routine dd_phi is more stable, accu-
rate and fast than the competitors existing nowadays. This is true both for the compu-
tation of the divided differences over an interpolation sequence σn = (z0, z1, . . . , zn) and
for the computation of the whole divided difference table.
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Figure 2.3: Mean average error (y-axis) as the scale parameter γ (x-axis) increases
over the sequences described in a3., i.e. n Chebyshev points over [−1, 1] and reordered
à la Leja.
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Figure 2.4: Mean average error (y-axis) as the scale parameter γ (x-axis) increases
over the sequences described in a4., i.e. n Leja points over the interval [−1, 1].
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Figure 2.5: Mean average error (y-axis) as the scale parameter γ (x-axis) increases
over the sequences described in a5., i.e. n Leja points over the closed complex unit
disk.
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Figure 2.6: Mean average error (y-axis) as the scale parameter γ (x-axis) increases
over the sequences described in a6., i.e. coalescing points zi = 2−i.
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Figure 2.7: Same data as from Figures 2.3–2.6 presented as performance profile.

In conclusion, we can state that the thorough analysis of the matrix representing the
operator mapping the coefficients of a polynomial p(x) in the monomial basisM into those
in the Newton basis N we carried on in the first part of this work gave us a powerful
theoretical tool for building innovative algorithms.

The next step is going to be to exploit the structure of the matrices E(z0, z1, . . . , zn)
and C(z0, z1, . . . , zn) in order to tackle difficult problems of interest in the field of numerical
polynomial interpolation. As an example, in Chapter 4, we will use the theory developed
in the course of this chapter in order to study in-depth the nature of the backward error
polynomial using only calculations in low digits arithmetic. Furthermore, as future work,
the plan is to develop brand new routines for the computation of the divided differences
of other functions of interest such as the trigonometric or logarithmic functions.

48



Chapter 3

Computing the matrix exponential

New and old challenges brought by the numerical applications and by the always more
diffused numerical computations in arbitrary precision arithmetic fuelled lively research in
the field of matrix functions. Among the most important is without any doubt the matrix
exponential. In this chapter, we report an adaptation of the contents from the manuscripts
[9, 60], where the authors developed and then perfected a routine for computing the
matrix exponential, in arbitrary precision arithmetic and for any given tolerance, that
shows accuracy and performances that are superior to existing alternatives.

3.1 Introduction

Given a complex valued square matrix A of size N , the matrix exponential eA, that we
recall that can be defined by means of the power series expansion of the exponential
function

eA :=
∞∑
k=0

Ak

k!
,

plays a crucial role in many applications of numerical analysis. Among others, we high-
light the technique of the exponential integrators, that constitute a competitive tool for
the numerical solution of stiff or highly oscillatory problems (see [30]). Since these meth-
ods just require the action of eA on a vector, and not to form the matrix eA, that it is
generally dense even when A is sparse, a great deal of methods have been designed for
computing the action of the matrix exponential. These methods are particularly efficient
for they only perform matrix-vector products, showing a computational complexity deci-
sively smaller than the one needed to handle matrix products. We mention for example
the manuscripts [2, 6, 8, 46]. On the other hand there are other cases where forming the
matrix exponential is instead convenient. Consider the example of the heat equation

ut = ∆u, u|∂Ω = 0,

on Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions. If A is the discretization
of the one dimensional operator ∂xx by finite differences over N points, we have that the
matrix

L := A⊗ I + I⊗A
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is the two dimensional spatial discretization of the Laplacian operator, where I is the
identity matrix of size N and ⊗ is the Kronecker product. Now, if U(t) is the approxima-
tion of u(x, y, t) on the 2D grid and vec(·) is the operator such that vec(A) corresponds
to the Matlab command A(:), we can rewrite equation in discretized form as

vec(U̇(t)) = L vec(U(t))

and one could thus compute the solution at time t as etL vec(U0) and successively reshape
it back in matrix form. Unfortunately L = A⊗ I + I⊗A is a matrix of size N2, leading
the total complexity of evaluating the solution to drastically grow, as well as to demand
a larger amount of storage space.

Alternatively, thanks to the property of the Kronecker product vec(X Y Z) = (ZT ⊗
X) vec(Y), we can rewrite the problem in matrix form as

U̇(t) = A U(t) + U(t) AT

whose solution at time t is etA U0 etA
T
, that requires to handle matrix of just size N . We

refer to [25, Chapter 10.1] and [37, Section 3.2] for more details. This and many other
applications fueled a lively research, we can mention among the others the manuscripts
[1] and [18] that are based on a Padé approximation of the exponential function and the
manuscripts [9, 18, 51, 57, 58, 59] and [61] that are based instead on a Taylor approxima-
tion.

In addition to that, special attention is dedicated to the approximation of the matrix
exponential in arbitrary precision arithmetic (see for example the routines from [9, 18]).
This is due to the increased interest toward the rich variety of computer algebra sys-
tems such as Maple [34], Arithmetica [35], SageMath [54] that natively support arbitrary
precision floating-point arithmetic or of Matlab special toolboxes enabling the multi-
precision calculus such as Symbolic Math Toolbox [64] and the Multiprecision Computing
Toolbox [39].

Another case, often overlooked, arises when the needed precision is higher than the
working precision. Even though this may sound strange, there are cases where this is a
crucial point. For example, suppose one approximates the vector wT = [P, 0] by w̃T =
[P, ε], P � 1, the relative error

‖w − w̃‖
‖w‖

can be several orders of magnitude smaller than the working precision while the 0 compo-
nent is so wrongly approximated that, if the relative error was computed component-wise,
then it would be tending to infinite. This phenomenon is not as uncommon as one may
think: as an example among others we can mention the case of the matrix

Z(z0, z1, . . . , zm) =


z0

1 z1

. . . . . .

1 zm


that, thanks to the Opitz theorem, we know is such that the exponential of Z(z0, z1, . . . , zm)
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is the divided differences table of the exponential function at the interpolation sequence
(z0, z1, . . . , zm). The matrix

eZ(z0,z1,...,zm) =
∞∑
k=0

Z(z0, z1, . . . , zm)k

k!

shows entries that largely vary in norm: in fact the pth subdiagonal of eZ(z0,z1,...,zm) only
gets filled when, in the summation, j grows larger than p. Hence, it follows, due to the
factorial decay of the coefficients, the large variation in norm of the entries. It is also
for this reason that in the literature exist dedicated algorithms for the computation of
the divided differences of the exponential function, such as the state-of-the-arts algorithm
from [68] that we developed in Section 2. Another important case where such a phe-
nomenon may appear, is in the approximation of the action of the matrix exponential
using Krylov methods. These methods approximate eAv, where A is a N sized squared
matrix and v is a vector of according dimension, by forming a linear combination of m
orthonormal vectors, m� N . The coefficients of such linear combination are determined
as

eHme1

where Hm is an m sized upper Hessenberg matrix while e1 is the first column of Im. Due
to the Hessenberg structure of Hm also the subdiagonals of eHm fill up with higher powers
of Hm as it happens with eZ(z0,z1,...,zm). Therefore it is necessary to use a routine that
computes eHm in high precision arithmetic. Or that works in double precision arithmetic
but can compute the matrix exponential of Hm with tolerance set arbitrarily low. As
today, the only routine able to run the calculations in double precision arithmetic while
setting an arbitrarily low tolerance is exptayotf from the manuscript [9] of Caliari and
Zivcovich.

The goal of this work is to develop a routine for computing the matrix exponential in
arbitrary precision arithmetic that allows the user to prescribe any tolerance regardless
of the number of working digits. Moreover, this routine will have to comply with the
highest accuracy and speed standards dictated by the state-of-the-arts competitors, that
we will introduce in the section on numerical experiments. In order to achieve this result,
we decided to enhance the routine exptayotf, whose on–the–fly backward error estimate
is one of the most promising option for building the core of the routine we wish to create.
In particular, we applied four main modifications to exptayotf:

• we implemented a new strategy for choosing the approximation degree m and the
scaling parameter s;

• we improved the parameters selection process based on the on–the–fly backward
error estimate tool. To do so we designed a backward error projection over a small
Krylov subspace in order to discard more quickly unfeasible combinations of param-
eters;

• we implemented for tolerances larger or equal to 2−53 a new polynomial evaluation
scheme that was developed in [56] and successfully applied to the computation of
the matrix exponential in [57];
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• following the path traced in the work [18], we got rid of the only conjecture made
in [9] that, although weak, poorly fits an algorithm claiming to be highly accurate.

This chapter is structured as follows: in Section 3.2 we introduce the basic polynomial
that we use to approximate the matrix exponential, we describe two ways to evaluate such
polynomial: the well known Paterson–Stockmeyer evaluation scheme and the recently
developed evaluation scheme from [57]. In Section 3.3 we formulate an accuracy criterion
based on the matrix of the backward error, we then describe the on–the–fly backward
error estimate and show how to project it on a smaller Krylov subspace to boost the
process of selecting the approximation parameters. In Section 3.4 we show some numerical
experiments and then in Section 3.5 we draw the conclusions of this manuscript.

3.2 Approximation technique and polynomial

evaluation scheme

The truncation

Tm(A) =
m∑
k=0

Ak

k!

at degree m of the matrix exponential coupled with a shifting technique constitutes the
basic approximation method that we employ to build our algorithm. The idea behind
the shifting technique is simple: Taylor approximation corresponds to interpolating the
exponential function and its derivatives at 0, it then would be desirable if the eigenvalues
of the input matrix were somehow distributed around the origin. Therefore we pick the
shifting parameter to be equal to the mean eigenvalue of A, that is

µ :=
N∑
i=0

aii
N
.

We set B := A − µI where I is the identity matrix of appropriate dimension and we
exploit the properties of the exponential function to approximate eA by eµTm(B).

Increasing m generally corresponds to an increased accuracy, at least in exact arith-
metic. On the other hand a larger m leads to an higher computational effort, thus we
couple this approximation method with an important technique aimed to keep under con-
trol the computational cost: the so called scaling and squaring technique. The scaling
and squaring algorithm consists in picking s to be a positive power of 2 such that the
matrix

Tm(s−1B) =
m∑
k=0

(s−1B)k

k!
(3.1)

accurately approximates es
−1B up to the prescribed accuracy. Then the approximation of

eA can be recovered by T
(s)
m (s−1A), that is the matrix coming from the recurrence

T (j+1)
m (s−1A) = T (j)

m (s−1A)T (j)
m (s−1A), j = 0, 1, . . . , log2(s)− 1

where T
(0)
m (s−1A) = es

−1µTm(s−1B). Alternatively the approximation of eA can be recov-

52



ered by the matrix eµT
(s)
m (s−1B) where

T (j+1)
m (s−1B) = T (j)

m (s−1B)T (j)
m (s−1B), j = 0, 1, . . . , log2(s)− 1

and T
(0)
m (s−1B) = Tm(s−1B). Although the two procedures are mathematically equivalent,

the former is less prone to overflow when µ has negative real part (see [9, Section 3]).
Therefore we will use the two forms accordingly with the sign of the real part of µ.

3.2.1 Polynomial Evaluation Scheme

The Taylor series for the exponential function is a convergent series, hence there always
exists a degree m for which Tm(s−1B) approximates es

−1B as accurately as desired. On
the other hand, m could be quite large, thus requiring many executions of costly matrix
products MP. For this reason, in computing polynomial approximations of matrix func-
tions, an appropriate choice of the evaluation scheme plays a crucial role. One of the
most famous evaluation schemes is certainly the Horner scheme. It consists in evaluating
a polynomial performing the multiplications in a nested fashion. We briefly illustrate this
scheme giving a quick example, we show in the following how to evaluate T4(X) using the
Horner scheme:

T4(X) = I + X(I +
X

2
(I +

X

3
(I +

X

4
))).

Unfortunately in the matrix case, the Horner scheme does not make us save any matrix-
vector product. In fact, we used 3 matrix-vector products to reach degree 4. We, therefore,
have to consider more involved polynomial evaluation schemes.

In particular, we consider two evaluation schemes for the computation of Tm(X): the
first is the so-called Paterson–Stockmeyer evaluation scheme, which was proven in several
works ([9, 18, 51, 57, 58, 59, 61]) to be a robust and successful choice for the computation
of the matrix exponential; the second is a new scheme recently developed by J. Sastre in
the work [56], this scheme has been optimized in [57] for the approximation of the matrix
exponential at most in double precision arithmetic and its great efficiency pushed us to
adopt it whenever it’s possible.

The Paterson–Stockmeyer evaluation scheme for evaluating Tm(X) consists in com-
puting and storing the first few powers of X:

X2,X3, . . . ,Xz

for some positive integer z. Then, the following regrouping of the terms of Tm(X) is
considered

Tm(X) = I +
r∑

k=0

(Xz)kPk, r =
⌊m
z

⌋
where the matrices Pk are defined as

Pk =



z∑
i=1

Xi

(zk + i)!
, k = 0, 1, . . . , r − 1,

m−zk∑
i=1

Xi

(zk + i)!
, k = r.
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Clearly, for a given number MP of matrix products we wish to find a rule for choosing
z so that the approximation degree m is maximized. A commonly used rule (see e.g.
[9, 18, 59]) consists in choosing

z =

⌈
MP

2

⌉
+ 1

leading to the approximation degree

m = (MP− z + 2)z,

the optimality of this rule has been demonstrated in the recent work [16]. Henceforth, we
can define the function degPS that maps the number of matrix products into the maximum
approximation degree

degPS(MP) = (MP−
⌈

MP

2

⌉
+ 3)(

⌈
MP

2

⌉
+ 1),

that is the formula for the optimal m where the formula for the optimal z in function
of MP was plugged in. The strength of the Paterson–Stockmeyer evaluation scheme lies
in the fact that it consists in a mere regrouping of the polynomial to evaluate. Hence
it can be directly applied to polynomials of any degree without the need for accessory
computations. We briefly illustrate this scheme with a quick example, we show in the
following how evaluate T6(X) with the Paterson–Stockmeyer evaluation scheme

T6(X) = I +
X2

2!
+

X3

3!
+ X3(

I

4!
+

X2

5!
+

X3

6!
).

To compute T6(X) we performed 3 matrix products, the same amount required by the
Horner scheme to reach degree 4.

On the other hand, there exists a new evaluation scheme, developed by J. Sastre
in [56], that consists in a factorization of the polynomial of interest in smaller degree
polynomials. The coefficients of these smaller polynomials are not restricted to be equal
to the coefficients from the polynomial of interest. Instead, the coefficients of such smaller
polynomials are computed in advance, once and for all, by using a software of symbolic
calculus.

Differently from the Paterson–Stockmeyer scheme, there is not a rule in common
for every polynomial degree m, on the contrary one has to proceed on a case to case
basis. In [57] the case of Taylor series truncation at degrees m = 2, 4, 8, 15, 21, 24, 30 were
treated. In such cases, the numbers z of powers of X to compute and store are respectively
z = 2, 2, 2, 2, 3, 4, 5. The reason for treating cases just until degree 30 lies in the fact that
the computational efficiency of polynomial approximations in double precision arithmetic
of the exponential function is maximum when m is not larger than 30. This is due to the
great efficiency of the scaling and squaring algorithm, that allows to roughly double the
approximation degree by raising the number of needed matrix products of just one unit.

We briefly illustrate the Sastre evaluation scheme by giving a quick example, we show
in the following how evaluate T8(X). First we compute

y02(X) = X2(c1X
2 + c2X),
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then we form

T8(X) = (y02(X) + c3X
2 + c4X)(y02(X) + c5X

2) + c6y02(X) + X2/2 + X + I.

To compute T8(X) we performed 3 matrix products, the same amount required by the
Paterson–Stockmeyer scheme to reach degree 6 and by the Horner scheme to reach de-
gree 4.

The coefficients c1, c2, . . . , c6 are obtained by comparison with those of T8(X), this
operation requires to solve a nonlinear system of equations in high precision arithmetic.
In the following we report a table listing the highest degree reachable from the two scheme
for a growing number of matrix products. As we can observe in Table 3.1, the new

MP 0 1 2 3 4 5 6 7

degPS(MP) 1 2 4 6 9 12 16 20

degSastre(MP) 1 2 4 8 15 21 24 30

Table 3.1: Maximum degree m reachable by the Paterson–Stockmeyer and by the Sastre
evaluation scheme in function of the number MP of executed matrix products.

evaluation scheme is considerably more efficient than the Paterson–Stockmeyer one, i.e.
with the same amount of matrix products we can reach higher approximation degrees.
For the Sastre evaluation scheme we have to define the function mapping the number
of matrix products into the maximum degree reachable degSastre by cases as shown in
Table 3.1.

As a final note, we remark that we are going to call candidate degrees those degrees that
are of the form degPS(MP), if the Paterson–Stockmeyer evaluation scheme is employed,
or of the form degSastre(MP), if instead we employ the Sastre evaluation scheme. For sake
of simplicity, from now on we refer to the candidate degrees as the degrees of the form
deg(MP), omitting to specify the evaluation scheme in the subscript. Besides, we call
candidate scalings all the scaling parameters that are positive powers of 2.

If a couple of positive integers (m, s) is such that m is a candidate degree and s is a
candidate scaling we call (m, s) a candidate couple. If a candidate couple is such that the
resulting approximation is accurate, then we have that (m, s) is a feasible couple. Notice
that, for any input matrix A, the feasible couples are infinitely many. In fact, if (m, s) is
a feasible couple then, for example, also the couples (m, 2ps) are feasible for any integer
p larger than 1.

3.3 Analysis of the backward error

The approximation method and the evaluation techniques shown in the previous section
are broadly used by many other routines for the computation of the matrix exponential.
What really makes our routine faster, more flexible and accurate than our competitors is
the superior and quicker choice of the approximation parameters m and s. This section is
dedicated to describe how to choose the best feasible couple (m, s) in a competitive time.

As a first step we must introduce a criterion that tells us if a couple (m, s) is feasible or
not, i.e. if (m, s) caters to an accurate approximation. To do so, we introduce the backward
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error matrix ∆B by stating that the approximation Tm(s−1B)s is the exponential of a
slightly perturbed matrix:

Tm(s−1B)s = eB+∆B.

The approximation is accurate if the backward error matrix ∆B has a small norm in
comparison to the norm of A, that is:

‖∆B‖ ≤ tol · ‖A‖ (3.2)

where tol is a tolerance specified by the user. We rewrite ∆B as a function of B by
exploiting the fact that

e∆B = e−BTm(s−1B)s

and therefore
∆B = s log(e−s

−1BTm(s−1B))

is the functional form yielding ∆B. We now introduce some notation, in particular
considering the residual function, that for a square matrix X is defined as

rm(X) := eX − Tm(X) =
∞∑

j=m+1

Xj

j!
.

We can consider the identity I−e−XTm(X) = e−Xrm(X) and use it to define two important
functions that will play a key role in this paper:

gm+1(X) := e−Xrm(X)

that over CN×N can be represented by its power series expansion

gm+1(X) =
∞∑
k=0

bk,mXk

and
hm+1(X) := log(I− gm+1(X)).

that over the set
Ω = {X ∈ CN×N : ρ(gm+1(X)) < 1} (3.3)

can be represented by its power series expansion

hm+1(X) =
∞∑
k=0

fk,mXk. (3.4)

The analytic expression of the coefficients bk,m and fk,m is available. It was in fact already
independently derived in previous works, for more details see [9, 15, 58]. We therefore
have everything we need to represent explicitly the backward error matrix ∆B as:

s−1∆B = hm+1(s−1B) =
∞∑
k=0

fk,ms
−kBk
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provided that s−1B belongs to Ω. Thanks to the power series representation of ∆B we
now know that, in order to satisfy the inequality (3.2), two requirements have to hold
true at the same time

s−1B ∈ Ω (3.5a)

and ∥∥hm+1(s−1B)
∥∥ ≤ tol · s−1 · ‖A‖ . (3.5b)

Both requirements (3.5a) and (3.5b) are particularly expensive to check, for they
involve evaluations of matrix functions. Hence, we apply some inequalities in order to
produce more stringent requirements that, in exchange, are far easier to check. To start
with, remember that (3.5a) holds true if ρ(gm+1(s−1B)) is smaller than 1. By applying
the renowned Gelfand formula, we can avail of the following inequality

ρ(gm+1(s−1B)) ≤
∥∥gm+1(s−1B)

∥∥ .
Therefore we know that, if ∥∥gm+1(s−1B)

∥∥ ≤ 1,

then (3.5a) is verified. The requirement (3.5b) can be manipulated too. Bearing in mind
that hm+1(s−1B) = log(I− gm+1(s−1B)), we can write

∥∥log(I− gm+1(s−1B))
∥∥ =

∥∥∥∥∥
∞∑
j=1

(−1)jgm+1(s−1B)j

j

∥∥∥∥∥ ≤
∞∑
j=1

‖gm+1(s−1B)‖j
j

,

where clearly we have

∞∑
j=1

‖gm+1(s−1B)‖j
j

= − log(1−
∥∥gm+1(s−1B)

∥∥).

We are now able to check (3.5a) and (3.5b) at the same time by verifying that

− log(1−
∥∥gm+1(s−1B)

∥∥) ≤ min{1, tol · s−1 ‖A‖}, (3.6)

shifting the problem to the evaluation of ‖gm+1(s−1B)‖. In fact∥∥gm+1(s−1B)
∥∥ ≤ − log(1−

∥∥gm+1(s−1B)
∥∥)

therefore if 3.6 holds, then both 3.5a and 3.5b hold true at the same time.

To verify 3.6 we estimate the quantity ‖gm+1(s−1B)‖ using a routine for the 1-norm
estimation such as normest1 from [29]. This routine only requires to perform products
between s−1B (or its transpose) and a vector, allowing us to estimate ‖gm+1(s−1B)‖
without actually forming gm+1(s−1B). Clearly, we cannot actually estimate the quantity
‖gm+1(s−1B)‖ for any candidate pair (m, s) for it would be too computationally demand-
ing. Therefore we have to carefully plan a strategy, but first we need to determine how
large we want to allow the approximation degree m to grow.
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3.3.1 Maximum approximation degree

In this section, we explain how to determine a convenient maximum degree of approxi-
mation M for the approximation of eA in the case the user would not specify a preferred
maximum approximation degree.

The maximum approximation degree M must be determined in function of the eval-
uation scheme in use and of the tolerance prescribed by the user. To do so consider for
the moment the classical backward error analysis that aims to satisfy a slightly different
criterion from (3.2), for it requires the norm of the backward matrix to be smaller than
the shifted matrix’s one

‖∆B‖ ≤ tol · ‖B‖ .
The successive step is to consider the triangular inequality applied to the power series
expansion of the backward error matrix as follows:

‖∆B‖ = ‖hm+1(∆B)‖ =

∥∥∥∥∥
∞∑
k=0

fk,mBk

∥∥∥∥∥ ≤
∞∑
k=0

|fk,m| ‖B‖k =: h̃m+1(‖B‖),

therefore we know that if the right hand side is smaller than tol · ‖B‖ then so it is ‖∆B‖.
A common strategy is to find the smallest positive scalar θm,tol for which

h̃m+1(θm,tol) = tol · θm,tol

so that if ‖B‖ ≤ θm,tol then is implied that ‖∆B‖ is smaller than tol · ‖B‖. If instead
‖B‖ > θm,tol one can consider to use a larger candidate degree or to pick s as 2 to the
power of ⌈

log2(
‖∆B‖
θm,tol

)
⌉
,

that is the smallest power of 2 such that makes ‖s−1B‖ ≤ θm,tol.

m 2 4 6 9 12 16 20 25 30

θ 2.6e-08 3.4e-04 9.1e-03 8.9e-02 3.0e-01 7.8e-01 1.4e-00 2.4e-00 3.5e-00

Table 3.2: Values θm,tol for tol = 2−53 and m = degPS(MP) with MP = 1, 2, . . . , 9.

By giving a quick glance to the values θm,tol for tol = 2−53 and m = degPS(MP) with
MP = 1, 2, . . . , 9 that we report in Table 3.2, it appears clear that for small values of m we
have a rapid increment of θm,tol, while for larger candidate degrees this increment is more
modest. Hence, it is evident that the feasible couples with small m can be characterized by
an unnecessarily large scaling parameter, leading to an higher number of matrix products
and to an higher risk of incurring into the overscaling phenomenon that is when there is
loss of accuracy due to a choice of a scaling parameter that is too large.

The rule of thumb is to consider as maximum scaling degree the last degreeM for which
θM,tol is at least twice the value of the previous candidate degree. Doing so will surely lead
to a reduced scaling parameter and overall cost. This criterion is bound to the evaluation
scheme, in fact, an evaluation scheme with a different efficiency (intended as the degree
reached over the number of matrix products performed) may lead to different maximum
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approximation degrees M . For approximations with tolerance set to 2−53 and evaluated
with the Paterson–Stockmeyer scheme, the maximum approximation degree should be
M = 16 (and MP = 7), on the contrary in the literature the maximum approximation
degree considered is M = 30 (and MP = 9). Similarly, with the Sastre evaluation scheme,
M should be equal to 21 (MP = 5) while, in [57], degree M = 30 (and MP = 7) was
instead preferred.

This choice is due to the fear of incurring into the above-mentioned overscaling phe-
nomenon, and a larger M , in fact, may help in mitigating such a problem. Although
the parameters’ selection algorithm from [9] (that we further perfectioned in this work)
greatly reduces the risk of incurring into the overscaling phenomenon, we too adopt for any
computation with tolerance larger than 2−53 the Sastre evaluation scheme with M = 30,
while otherwise we employ the Paterson–Stockmeyer evaluation scheme with M = 30.

In any other case, we compute M in run time by searching for the first MP such
that θdegPS(MP+1),tol > 1.45 · θdegPS(MP),tol where 1.45 is the ratio between θ30,tol and θ25,tol,
following in this way the rule of the thumb adopted in the literature for mitigating the
incidence of the overscaling phenomenon. Also, we require that θdegM,tol ≥ 1 or our
numerical experience suggests that we probably incur in overscaling phenomena. To
quickly compute M , we take into account an approximation of the values θm,tol. Consider,
for small values of ‖gm+1(B)‖, the approximation

‖∆B‖ = ‖hm+1(∆B)‖ = ‖log(I− gm+1(B))‖ ≈ ‖gm+1(B)‖

which can be bound by

‖gm+1(B)‖ ≤
∥∥e−B

∥∥ ‖rm(B)‖ ≤ e‖B‖rm(‖B‖)

that in turn can be approximated by a function of ‖B‖:

˙̃hm+1(‖B‖) := e‖B‖
‖B‖m+1

(m+ 1)!
.

We can therefore compute an approximation of θm,tol by finding the scalar realizing

˙̃hm+1(x) = tol · x.

We remind that even though our numerical experience confirmed that the approxima-
tion of θm,tol is really close to its real value, a gross mistake in its estimate would not cause
any major problem to the accuracy of our approximation. In fact, we are just trying to
estimate which values of the parameter M would potentially lead to the smallest cost.

Anyway, some precision is welcomed, therefore we carefully engineered the follow-
ing Matlab code for finding our approximation of θm,tol avoiding overflow or underflow
phenomena.

01. function c = bea_tay_approx( m, log_tol )

02. % Compute the estimate c of theta_{m,exp(log_tol)} relative to

03. % the Taylor approximation of degree m with tolerance exp(log_tol).

04. tol = log_tol + gammaln( m + 2 );

05. a = 0; b = 100; c = 0; c0 = 1;
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06. it = 0; maxit = max( 100, abs( log_tol ) );

07. while ( ( abs( c0 - c ) > ( c * 1e-2 ) ) && ( it < maxit ) )

08. it = it + 1;

09. c0 = c;

10. c = ( a + b ) / 2;

11. if ( ( c + m * log( c ) ) < tol )

12. a = c;

13. else

14. b = c;

15. end

16. end

3.3.2 Krylov subspace projection of the backward error

Before the digression on the choice of the maximum approximation parameter M , we
agreed over the necessity to plan a strategy to find the best feasible pair (m, s) reducing
as much as possible the number candidate couples for which we estimate ‖gm+1(s−1B)‖.
To do so, we have to take one step back: our numerical experience tells us that in the vast
majority of the cases the quantity ‖hm+1(s−1B)‖ is either several orders of magnitude
larger than the threshold min{1, tol · s−1 ‖A‖} or several orders of magnitude smaller. In
other words, it is very rare that ‖hm+1(s−1B)‖ and min{1, tol·s−1 ‖A‖} are of comparable
magnitude. We believe that this phenomenon was never fully exploited before thus we
designed a way to do that.

The process starts by selecting a vector v outside the kernel of B. In order to be sure
of that, we pick a randomly generated vector and we multiply the matrix B into it. The
resulting vector is in the image B and therefore it cannot belong to the kernel. Then,
without loss of generality, we normalize v in its 2 norm obtaining v1. We proceed by
running few Arnoldi (or Lanczos) iterations (say κ < m) with B and v1 in order to obtain

BVκ = VκHκ + hκ+1,κvκ+1e
T
κ

with Hκ Hessenberg matrix, Vκ = [v1, v2, . . . , vκ] rectangular matrix such that VH
κ Vκ is

the size κ identity matrix and eκ is the κth column of Iκ. In case B is an Hermitian
or skew-Hermitian matrix, we recall that a simpler and faster process, called Lanczos
process, can be used to compute the same decomposition above. The meaning of such
decomposition is that the matrix Hκ represents the projection over the smaller Krylov
subspace

span{v1,Bv1, . . . ,B
κv1} = span{v1, v2, . . . , vκ+1}

of the matrix A. This projection is numerically attractive because it allows to approximate
the action of function of matrices on vectors, such as f(B)v1, by means of Vκf(Hκ)e1,
where Hκ is of smaller dimension of B and therefore easier to handle.

Let us come back to our problem: provided that we have a candidate parameter scaling
s, if we consider the chain of inequalities

√
n
∥∥hm+1(s−1B)

∥∥
1
≥
∥∥hm+1(s−1B)

∥∥
2

= sup{
∥∥hm+1(s−1B)x

∥∥
2

: x ∈ CN ∧ ‖x‖2 = 1}

whose right hand side is, for the definition of superior, greater or equal than the choice of
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x = v1, giving us √
n
∥∥hm+1(s−1B)

∥∥
1
≥
∥∥hm+1(s−1B)v1

∥∥
2
.

Therefore, we can exploit the Krylov subspace approximation∥∥hm+1(s−1B)v1

∥∥
2
≈
∥∥Vκhm+1(s−1Hκ)e1

∥∥
2

to obtain a cheap underestimate of the norm of the backward matrix for any given couple
(m, s). Clearly if ‖Vκhm+1(s−1Hκ)e1‖2 exceeds min{1, tol · s−1 ‖A‖}, even more will
‖hm+1(s−1B)‖1 and therefore the couple (m, s) is clearly not feasible.

As the reader may have understood, we need to compute ‖Vκhm+1(s−1Hκ)e1‖2 re-
peatedly and it can be quite expensive. We can tackle this issue easily by computing once
and for all the diagonal factorization of Hκ, i.e.

Hκ = QκDκQ
−1
κ

with Dκ diagonal matrix. If the entries hj+1,j of Hκ are different from zero for j =
1, 2, . . . , κ− 1, then the matrix Hκ has κ different roots and therefore it is diagonalizable.
In case we encounter a j ≤ κ for which hj+1,j = 0, then Hj−1 is diagonalizable and we set
κ = j − 1. Then we know that∥∥Vκhm+1(s−1Hκ)e1

∥∥
2

=
√
eT1 hm+1(s−1Hκ)HVH

κ Vκhm+1(s−1Hκ)e1

=
√
eT1 hm+1(s−1Hκ)Hhm+1(s−1Hκ)e1

=
∥∥hm+1(s−1Hκ)e1

∥∥
2

=
∥∥hm+1(s−1QκDκQ

−1
κ )e1

∥∥
2

=
∥∥Qκhm+1(s−1Dκ)Q

−1
κ e1

∥∥
2

where Q−1
κ e1 can be computed once and for all at the beginning. This is really cheap to

compute, in fact κ is chosen very small and for any function f(·) we have that f(s−1Dκ) is
the diagonal matrix having on its diagonal scalar functions of the diagonal entries of Dκ.

Now that we have a quick procedure for ruling out unfeasible couples (m, s) we can
follow a simple strategy that aims to narrow down the list of the candidate couples.
Briefly, this strategy consists in setting s = 1, MP = 1, m = deg(MP) and to observe the
following procedure

1. - if the inequality∥∥Qκhm+1(s−1Dκ)Q
−1
κ e1

∥∥
2
/
√
n ≤ min{1, tol · s−1 ‖A‖}

holds true, exit the procedure

2. - if m < M , increment MP by 1, otherwise double s and set MP to 1

3. - set m = deg(MP)

4. - return to 1.
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The couple (m, s) exiting this procedure constitutes the initial educated guess for the
rigorous procedure of selection of a convenient feasible couple that we introduce in the
next subsection.

Before proceeding, we explain how we can speed up even more the procedure we just
introduced by guessing an initial scaling parameter s = s0 instead of simply fixing s = 1.
To do so, we adapt an idea usually exploited by the classical backward error analysis for
Taylor method that we introduced in the past subsection: instead of comparing ‖s−1B‖
with the values θm,tol one can use instead the values

s−1αp(B) = max(s−1 ‖Bp‖ 1
p , s−1

∥∥Bp+1
∥∥ 1
p+1 )

provided p(p − 1) ≤ m − 1 (for more details see [1]). The reason behind this is that
αp(B) may be much smaller than ‖B‖. The problem of this approach, that is used by the
vast majority of our competitors (for example [1, 9, 18, 51, 57]), is that the computation
of the values αp(B) requires a lot of time, sometimes compromising the efficiency of
the routine. In particular, techniques exploiting the behavior of the sequences of αp(B)
have been exploited and many efforts have been spent in order to improve the constraint
p(p−1) ≤ m−1 and to be allowed to use a higher value p for a fixed approximation degree
m. In fact, for p growing we have that αp(B) approaches ρ(B), that is the technical limit
of this approach.

Our idea is exactly to use ρ(B), or at least our best approximation of ρ(B) that is
ρ(Hκ) (we recall that the eigenvalues of Hκ approximate those of B) and we have already
computed it since at this point we have already the diagonal factorization of Hκ.

A concern may be that ρ(B) is in general smaller than the value of αp(B) that we
are technically authorized to employ. Moreover, the approximation ρ(Hκ) is generally
smaller than ρ(B). Anyways, this is not a problem because at the moment we are still in
the guessing phase of the scaling parameter. Once we fix s = s0 with s0 determined using
ρ(Hκ), if s turns out to be an inappropriate choice, then the procedure we just designed
will automatically increase it.

After we run the aforementioned procedure, provided that we never had to double the
scaling parameter at step 2., we try to split s in half and to rerun the procedure with
s/2 hoping that the exiting candidate couple still has s/2 as scaling parameter. If this is
the case, we try over and over the same trick so that we possibly obtain an even smaller
scaling parameter.

As a final note, we remark that the candidate couple (m, s) exiting the procedure is in
no way granted to be feasible. We let the charge of determining the feasibility of (m, s)
to the “unprojected” on-the-fly backward error estimate procedure that we adopted from
[9] and that we now introduce.

3.3.3 Accuracy check: on-the-fly backward error estimate

Following the steps described in the past subsection, we obtained three key parameters:
the maximum interpolation degree M and m, s forming the couple (m, s), which could
potentially be feasible.

It is now the moment to estimate ‖gm+1(B)‖ and to make sure that equality (3.6)
holds true. If it does for (m, s), then this couple can be officially declared feasible and we
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proceed to the evaluation part. If it is not, similarly to the procedure described in the
past subsection, we increase the computational effort by considering a larger candidate
degree m and, in case m was already equal to M , we double the scaling parameter, this
time without resetting m to the smallest candidate parameter.

The decision of not resetting m to the smallest candidate parameter is due to the fact
we expect (m, s) to be already close to a feasible couple or even to be already a feasible
couple. Hence we do not like the idea of lingering on the (costly, this time) decision
process. On the contrary, we acknowledge the fact that s was chosen too small and we
engage an exit strategy that returns us a feasible couple as quickly as possible.

As a consequence, once we start this new decision process, we never decrease the
scaling parameter m, therefore we can start to compute the z powers of B needed by the
evaluation scheme in order to evaluate the polynomial Tm(s−1B). We can exploit this
situation by regrouping gm+1(s−1B) à la Paterson-Stockmeyer and then by applying the
triangular inequality obtaining

ĝm+1,z(s
−1B) :=

∞∑
j=r

∥∥(s−zBz)jPj

∥∥ , r = bm/zc

where

Pj :=
z∑
i=1

bjz+i,ms
−iBi

and ‖gm(s−1B)‖ ≤ ĝm+1,z(s
−1B). We point out that the summation in the definition of

ĝm+1(s−1B) starts from r because from the analytic formula of the coefficients bk we know
that the first m are all equal to zero.

It is evident that ĝm+1,z(s
−1B) is far cheaper than ‖gm(s−1B)‖ to evaluate, in fact

the matrices Pj can be composed without needing of any additional matrix product and
the quantity ‖(s−zBz)jPj‖ we recall that can be estimated with a routine for the 1-norm
estimate.

Let us define δj(m, s) := ‖(s−zBz)jPj‖, in our numerical experience, the vast major-
ity of the times we have that if δj+1(m, s) < δj(m, s) then δj(m, s) is several orders of
magnitude larger than δj(m, s). Therefore after we overestimate carefully and sharply
δr(m, s) we can be rougher and overestimate a bit more δr+1(m, s) in exchange of cheaper
computations. To do so we consider

δ̄r+1(m, s) =
∥∥(s−zBz)r

∥∥ · ∥∥s−zBzPr+1

∥∥
where both ‖(s−zBz)r‖ and ‖s−zBzPr+1‖ are estimated with normest1 without perform-
ing any matrix product. For all the δj(m, s) with j > r + 1 instead we use the even
rougher overestimates:

ˆ̄δr+1(m, s) =
∥∥(s−zBz)r

∥∥ · ∥∥s−zBz
∥∥ · ‖Pr+1‖

that do not even involve the matrix 1-norm estimate process anymore since ‖(s−zBz)r‖
was already estimated at step j = r + 1 and the norm of s−zBz is directly available.
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Therefore, we plan to check if the couple (m, s) satisfies (3.6) by checking if we have that

δr(m, s) + δ̄r+1(m, s) +
K∑

k=r+2

ˆ̄δk(m, s) ≤ min(1, tol · s−1 ‖A‖)

where K is such that, in machine working precision, we have

δr(m, s) + δ̄r+1(m, s) +
K∑

k=r+2

ˆ̄δk(m, s) = δr(m, s) + δ̄r+1(m, s) +
K−1∑
k=r+2

ˆ̄δk(m, s)

so that we can do without the conjecture made in [9] that was aimed to arrest the sum-
mation in formula

δr(m, s) + δ̄r+1(m, s) +
∞∑

k=r+2

ˆ̄δk(m, s).

To resume, as we already set for ourselves at the beginning of this subsection, we
observe the following strategy

1. - if the inequality

(δr(m, s) + δ̄r+1(m, s) +
K∑

k=r+2

ˆ̄δk(m, s)) ≤ min{1, tol · s−1 ‖A‖}

holds true, exit the procedure.

2. - if m < M , increment MP by 1, otherwise double s

3. - set m = deg(MP)

4. - return to 1.

Then we proceed to the evaluation of Tm(s−1B) with the couple (m, s) exiting the proce-
dure. We know that Tm(s−1B)s is an accurate approximation of eA.

Early terminating the evaluations of ˆ̄δk(m, s)

In high precision arithmetic, the positive integer K defined as before may be very large,
therefore we engineered an additional criterion for arresting the evaluation of the quanti-

ties ˆ̄δk(m, s) and declaring the couple (m, s) feasible.

Let us refer with ∆q(m, s) to the sharpest overestimate possibly available of the first
q − r blocks of ĝm+1,z(s

−1B). In our case this is:

∆q(m, s) :=


δr(m, s), q = r

δr(m, s) + δ̄r+1(m, s), q = r + 1

δr(m, s) + δ̄r+1(m, s) +
∑q

k=r+2
ˆ̄δk(m, s), q > r + 1
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If we apply the following inequality

ĝm+1,z(s
−1B) =

∞∑
j=r

∥∥(s−zBz)jPj

∥∥ ≤ ∆q(m, s) +
∞∑

j=q+1

∥∥(s−zBz)jPj

∥∥
and consider that

∆q(m, s) +
∞∑

j=q+1

∥∥(s−zBz)jPj

∥∥ ≤ ∆q(m, s) +
∞∑

k=(q+1)z+1

bkαp(s
−1B)k,

it follows that, if

∞∑
k=(q+1)z+1

bkαp(s
−1B)k ≤ min{1, tol · s−1 ‖A‖} −∆q(m, s),

then (3.6) is satisfied too. If, on the contrary, the above inequality is not satisfied we do
not declare the unfeasability of (m, s), instead we just proceed to evaluate ∆q+1(m, s).
The last detail to take care about is how to evaluate

∞∑
k=(q+1)z+1

bkαp(s
−1B)k

without applying any conjecture for terminating the infinite summation. Analogously as
before we can search for a positive integer K ′ such that

K′−1∑
k=(q+1)z+1

bkαp(s
−1B)k =

K′∑
k=(q+1)z+1

bkαp(s
−1B)k

in working precision.
Differently from before, ifK ′ is large we do not worry because now the terms bkαp(s

−1B)k =
bks
−kαp(B)k are extremely cheap to compute once we spend the effort of computing αp(B).

3.4 Numerical experiments

The numerical experiments’ Section is divided into two main parts: in the first part, we
are going to run our routine expkptotf (EXPonential Krylov Projection Taylor On-The-
Fly) against the state-of-the-arts routines for the approximation of the matrix exponential
in double precision arithmetic. These routines are:

• exptayotf, the algorithm of Caliari and Zivcovich (see [9]) whose on-the-fly back-
ward error estimate algorithm has been improved in this work. Similarly to expkptotf,
this routine is based on a scaling and squaring technique coupled with a shifted
truncated Taylor series evaluated with the classical Paterson–Stockmeyer evalua-
tion scheme.

• expm_pol the algorithm of Sastre, Ibáñez and Defez (see [57]), based on a scaling
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and squaring technique coupled with a truncated Taylor series evaluated with the
new special evaluation scheme that, due to its high efficiency, was also adopted in
our routine.

• exptaynsv3 the algorithm of Ruiz, Sastre, Ibáñez and Defez (see [51]), based on
a scaling and squaring technique coupled with a truncated Taylor series evaluated
with the classical Paterson–Stockmeyer evaluation scheme.

• expm the built-in function expm of Matlab, which implements the algorithm of
Al-Mohy and Higham (see [1]) and it is based on a scaling and squaring technique
coupled with a Padé approximation of the exponential function.

In the second part of the numerical experiments instead, we are going to assess the
performances of expkptotf for computations in arbitrary precision arithmetic. To do so
we compare it with the state-of-the-arts routines that are dedicated to the approximation
of the matrix exponential in multi precision environments. These routines are:

• once again exptayotf, the algorithm of Caliari and Zivcovich (see [9]), that, sim-
ilarly to expkptotf, is meant to run in any given precision arithmetic without
needing any component external to Matlab in order to run.

• expm_mp, the routine of Fasi and Higham (see [18]) based on a scaling and squaring
method coupled with four techniques for the approximation of the matrix exponen-
tial. These techniques characterize the four versions of this code that will constitute
four of our competitors:

– exp_d, based on [18, Algorithm 4.1] employing a diagonal Padé approximant

– exp_t, based on [18, Algorithm 4.1] employing a truncated Taylor series

– exp_sp_d, based on the Schur–Padé approach discussed in [18, Section 4.3]
where, for the triangular Schur factor, [18, Algorithm 4.1] a diagonal Padé
approximant is used.

– exp_sp_t, based on the Schur–Padé approach discussed in [18, Section 4.3]
where, for the triangular Schur factor, [18, Algorithm 4.1] a truncated Taylor
series is used.

These routines only run with the aid of a Multiprecision Computing Toolbox named
Advanpix and they use the high precision arithmetic for bounding the forward error
in an innovative way.

In this section we are going to assess the accuracy of the routines over the set N ∪H
and the speed of the routines over another set, that we call M. This choice was made
in order to make these experiments as comparable as possible with those from the most
recent and relevant papers on the topic.

In fact, the set N ∪H is exactly the same set used by the authors of [18] in order to
assess the accuracy of their four versions of the routine expm_mp. This set is composed
by the union of N , that is a collection of 97 non-Hermitian matrices, and H, that is a
collection of 35 Hermitian matrices. The matrices in the set N ∪ H are of size ranging
from 2 to 1000 and are taken from a collection of benchmark problems for the burnup
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equations and from the Matlab gallery function (see [18] for details), hence this is a
formidable set for assessing the accuracy of a method.

On the other hand, the setM is exactly the same set used by the authors of [9] in order
to prove that their routine, exptayotf, was accurate and fast for the approximation of the
matrix exponential in double precision arithmetic . The matrices in the setM come from
the Matrix Computation Toolbox [23] with the addition of few random complex matrices
(see [9] for details). The property of this set (that by the way presents some intersections
with N ∪H) that makes it so attractive for measuring the speed of a method is that the
size of the matrices fromM can be decided by the user and therefore it is possible to plot
the evolution of the cpu time in function of the size of the matrices.

The four versions of the routine expm_mp use the Advanpix Multiprecision Computing
Toolbox (version 4.4.7.12739) which provides the class mp to represent arbitrary preci-
sion floating-point numbers and overloads all the Matlab functions they need in their
implementations. In order to compare with them, the experiments from the part of this
Section dedicated to the computations in arbitrary precision arithmetic are entirely run
with the aid of the Multiprecision Computing Toolbox, although neither exptayotf nor
expkptotf would need it. This toolbox allows the user to specify the number of decimal
digits of working precision, but not the number of bits in the fraction of its binary repre-
sentation, thus, in this section, similarly to [18], whenever we refer to d (decimal) digits of
precision, we mean that the working precision is set using the command mp.Digits(d).

The experiments were performed using the 64-bit (glxna64) version of Matlab R© 9.2
(R2017a) on a machine equipped with 16Gb of RAM and four Intel Core i7 processors
running at 3.30GHz.

3.4.1 Tests in double precision arithmetic

In Figure 3.1a we compare the forward errors committed by the routines optimized for the
double precision arithmetic, that we remind to be expkptotf, exptayotf, exptaynsv3,
expm_pol and expm, on the matrix test sets N and H. The matrices are sorted by
decreasing condition number κexp(A), number that we estimated using the function
funm_condest1 from the Matrix Function Toolbox [23] on expm. The same data are
displayed in Figure 3.1b as a performance profile: a point (γ, ρ) on a curve related to a
method represents the fraction of matrices in the matrix collection N ∪H for which the
corresponding error is bounded by ρ times the error of the algorithm that delivers the
most accurate result for that matrix.

In Figure 3.1a we observe that the errors of all the five routines are approximately
bounded by κexp(A) · tol and we can confirm the conclusion drawn in [18]: the algorithms
based on truncated Taylor series are overall more accurate than those based on diagonal
Padé approximants. The performance profile curve that appears to be the most favorable,
although it does not clearly stand out, is the one of exptayotf, confirming the results
displayed in [9].

In Table 3.3, we captured how varies, for each routine, the average cpu time taken to
compute an approximation of the matrix exponential of each matrix from M when the
size N of the matrices from the test set increases. Also, we reported the maximum cpu
time taken by each routine for computing the exponential of the matrices fromM at each
considered dimension. It appears clear from Table 3.3 that the routines expkptotf and
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N = 16 N = 32 N = 64

avg cpu max cpu avg cpu max cpu avg cpu max cpu

expkptotf 9.72e-04 2.96e-03 1.21e-03 4.36e-03 3.99e-03 1.23e-02
exptayotf 4.57e-04 1.94e-03 6.88e-04 2.95e-03 3.43e-03 9.36e-03
expm 2.50e-04 6.12e-04 8.20e-04 2.05e-03 2.02e-03 5.51e-03
exptaynsv3 4.75e-04 2.04e-03 6.28e-04 3.08e-03 3.17e-03 1.10e-02
expm pol 3.57e-04 1.84e-03 4.55e-04 2.18e-03 1.96e-03 8.72e-03

N = 128 N = 256 N = 512

avg cpu max cpu avg cpu max cpu avg cpu max cpu

expkptotf 5.09e-03 1.67e-02 1.87e-02 7.00e-02 1.17e-01 4.27e-01
exptayotf 4.74e-03 1.31e-02 1.98e-02 6.33e-02 1.36e-01 6.39e-01
expm 3.68e-03 1.35e-02 2.01e-02 5.67e-02 1.42e-01 5.73e-01
exptaynsv3 4.47e-03 1.32e-02 2.00e-02 8.33e-02 1.35e-01 5.50e-01
expm pol 3.77e-03 1.65e-02 1.67e-02 6.99e-02 1.11e-01 4.31e-01

N = 1024 N = 2048 N = 4096

avg cpu max cpu avg cpu max cpu avg cpu max cpu

expkptotf 7.75e-01 2.46e+00 4.92e+00 1.52e+01 3.48e+01 1.07e+02
exptayotf 8.84e-01 2.77e+00 5.43e+00 1.74e+01 3.85e+01 1.16e+02
expm 9.28e-01 3.85e+00 5.85e+00 2.09e+01 4.14e+01 1.61e+02
exptaynsv3 8.97e-01 3.22e+00 5.69e+00 2.25e+01 4.01e+01 1.50e+02
expm pol 7.44e-01 2.43e+00 4.72e+00 1.86e+01 3.34e+01 1.28e+02

Table 3.3: Average and maximum cpu time for computing the exponential of the matrices
from the set M with size N set to 2k (k = 4, 5, . . . , 12). Calculations run with 16 digits
and tol set to 2−53.
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Figure 3.1: Left: forward error (y-axis) of the methods on the matrices in the test
sets. Right: corresponding performance profiles for the matrices in N ∪H.

expmpol stand out as the fastest when N increases. This is due to the high efficiency of the
Sastre evaluation scheme developed in [56] and adopted by both routines. On the other
hand, we observe that on matrices of small size the routine expkptotf suffers particularly.
This is because running the Arnoldi iterations and searching for the eigenvalues of Hk

represents a fixed cost that penalizes the routine especially for matrices of small dimension.
While this problem could be easily tackled by avoiding to project the backward error
on the Krylov subspace for those matrices that are so small that the classical on-the-fly
backward error estimates is not excessively slow, this is out of the scope of this manuscript.
A careful implementation oriented to be commercialized would instead take this aspect in
account, as well as considering the Sastre evaluation scheme for degrees larger than 30 in
order to make it available for computations in multiprecision arithmetic, that constitute
the next topic treated in this Section.

3.4.2 Tests in multiple precision arithmetic

In Figures 3.2a, 3.2c, 3.2e we compare the forward errors committed by the routines
designed for running in multiprecision arithmetic, that we remind to be expkptotf,
exptayotf, exp_sp_t, exp_t, exp_sp_d and exp_, on the matrix test sets N and H.
The experiment was repeated performing the calculations with 64, 256 and 1024 digits
and setting the tolerance respectively to 2−213, 2−851 and 2−3402. The matrices are sorted
by decreasing condition number κexp(A), number that we estimated using the function
funm_condest1 from the Matrix Function Toolbox [23] on expm. The same data are
displayed in Figures 3.2b, 3.2d, 3.2f as a performance profile: a point (γ, ρ) on a curve
related to a method represents the fraction of matrices in the matrix collection N ∪ H
for which the corresponding error is bounded by ρ times the error of the algorithm that
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delivers the most accurate result for that matrix.
In Figures 3.2a, 3.2c, 3.2e we observe that the errors of all the six routines are approx-

imately bounded by κexp(A) · tol. Once again we can confirm the conclusions drawn in
[18]: the algorithms based on truncated Taylor series are overall more accurate than those
based on diagonal Padé approximants and the algorithms based on the Schur decomposi-
tion of A tend to give larger errors, with sensibly worse performance profile curves. From
Figures 3.2b, 3.2d, 3.2f we can deduce that the routines based on the on-the-fly estimate
of the backward error, namely expkptotf and exptayotf, stand out as the routines with
the most favorable performance profile curve, in particular, it is expkptotf the routine
with the most favorable performance profile curve.

In Table 3.4 we captured how varies, for each routine, the average cpu time taken
to compute an approximation of the matrix exponential of each matrix from M when
the size N of the matrices from the test set and when the number of digits with which
we run the calculations increase. Also, we reported the maximum cpu time taken by
each routine for computing the exponential of the matrices from M at each considered
dimension and number of digits. The reported cpu time is an impartial measurement of
the performances of algorithms which are characterized by structurally different ways to
choose approximation degrees and scaling parameters.

It appears clear from Table 3.4 that the routine expkptotf stands out as the fastest
routine in every case but two, namely the case of calculations performed with 64 digits
and tolerance set to 2−213 and matrix size N equal to 16 and 32. In the double precision
arithmetic case in which expkptotf was standing out as one of the fastest because of
Sastre’s evaluation scheme. This explanation is not satisfactory now, in fact, expkptotf
does not make use of such an evaluation scheme when the required tolerance is lower than
2−53. It is instead thanks to the new Krylov projection of the backward error that the
routine expkptotf turns out to be the fastest, for it contributed to speed up the process
of selecting a convenient feasible couple (m, s).

3.5 Conclusions

We have confirmed that the on-the-fly backward error estimate is a quick, robust and
reliable way to determine the approximation parameters m and s. In particular, we
designed a technique that consists in projecting the backward error over a small Krylov
subspace speeding up the process of selection of the parameters m and s. In addition to
that, we proved that the strong decay rate of the terms of the backward error polynomial
can be exploited to our advantage in order to boost even more the process of estimating the
backward error on-the-fly. Finally, we adopted a recently developed polynomial evaluation
scheme for computations run with tolerance larger than the double precision arithmetic
roundoff. Such a scheme further contributed to improving the performances of our routine
expkptotf.

As we mentioned in the introduction of this manuscript, the high precision compu-
tation of the matrix exponential handling a low number of digits is a very important
task. For motivating this statement we made the example of the computation of the
table of the divided differences by Opitz theorem and the computation of the exponential
of Hessenberg matrices appearing in Krylov approximation of the action of the matrix
exponential. Both tasks must be performed with the highest level of accuracy possible
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Figure 3.2: Left: forward error (y-axis) of the methods on the matrices in the
test sets. Right: corresponding performance profiles for the matrices in N ∪H.
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N = 16 N = 32 N = 64

avg cpu max cpu avg cpu max cpu avg cpu max cpu

expkptotf 6.85e-02 1.30e-01 1.44e-01 4.10e-01 5.83e-01 2.44e+00
exptayotf 5.36e-02 1.33e-01 1.35e-01 4.37e-01 5.83e-01 2.64e+00
exp sp t 1.58e-01 2.23e-01 4.28e-01 7.43e-01 2.15e+00 3.38e+00
exp t 8.62e-02 1.30e-01 1.57e-01 3.87e-01 6.38e-01 2.47e+00
exp sp d 2.48e-01 4.13e-01 6.42e-01 1.02e+00 3.35e+00 5.01e+00
exp d 1.49e-01 2.23e-01 3.03e-01 6.63e-01 1.24e+00 3.62e+00

(a) 64 digits (tol = 2−213)

N = 16 N = 32 N = 64

avg cpu max cpu avg cpu max cpu avg cpu max cpu

expkptotf 1.37e-01 2.70e-01 3.45e-01 1.12e+00 1.62e+00 7.01e+00
exptayotf 1.43e-01 3.50e-01 4.09e-01 1.45e+00 1.85e+00 7.98e+00
exp sp t 3.56e-01 7.53e-01 1.11e+00 2.22e+00 6.15e+00 9.61e+00
exp t 1.96e-01 3.97e-01 4.19e-01 1.12e+00 1.84e+00 7.06e+00
exp sp d 7.33e-01 1.19e+00 2.05e+00 3.26e+00 1.11e+01 1.57e+01
exp d 4.19e-01 7.90e-01 9.61e-01 2.90e+00 4.50e+00 1.34e+01

(b) 256 digits (tol = 2−851)

N = 16 N = 32 N = 64

avg cpu max cpu avg cpu max cpu avg cpu max cpu

expkptotf 6.69e-01 1.94e+00 2.37e+00 9.19e+00 1.26e+01 5.63e+01
exptayotf 7.55e-01 2.45e+00 2.94e+00 1.09e+01 1.46e+01 6.40e+01
exp sp t 2.02e+00 1.11e+01 9.76e+00 4.27e+01 6.26e+01 1.72e+02
exp t 8.32e-01 1.71e+00 2.67e+00 7.58e+00 1.41e+01 5.31e+01
exp sp d 3.92e+00 1.32e+01 1.67e+01 5.12e+01 9.25e+01 2.04e+02
exp d 1.86e+00 4.31e+00 6.30e+00 1.82e+01 3.18e+01 1.06e+02

(c) 1024 digits (tol = 2−3402)

Table 3.4: Average and maximum cpu time for computing the exponential of the matrices
from the set M with size N set to 2k (k = 4, 5, 6). Calculations run with 64, 256, 1024
digits and tol set to 2−213, 2−851, 2−3402.

72



in the lowest time possible for they constitute the core of high performance computing
routines. For this reason one, generally cannot afford to compute the exponential of such
matrices with a large number of digits and successively cast the result in double or single
precision arithmetic.

Therefore routines able to compute the matrix exponential with high accuracy only
handling computations in a low number of digits, such as expkptotf, are of primary
importance. As of today, no existing routine except for expkptotf and exptayotf allow
to accomplish this.

To illustrate this feature we briefly show the behavior of the multiprecision routines
in the case of computing the divided differences of the exponential function at the Leja
interpolation sets L32 and L128 via Opitz theorem requiring the resulting output to be
respectively in single and double precision arithmetic. The Leja points are interpolation
points heavily used in the applications for they asymptotically distribute as the Chebyshev
points and enjoy nice numerical properties, one among the others the fact that Lk ⊂ Lk+1.
Hence this set of points is reasonable but our numerical experience tells us that any
other set of point would lead to the same conclusion. We recall that the Opitz theorem
states that the divided differences d0[z0], d1[z0, z1], . . . , dm[z0, z1, . . . , zm] of the exponential
function over the interpolation set {z0, z1, . . . , zm} can be computed as eZ(z0,z1,...,zm)e1

where

Z(z0, z1, . . . , zm) =


z0

1 z1

. . . . . .

1 zm


and e1 is the first vector of the canonical basis of Cm.

To be sure that the divided differences are accurately approximated we demand the
tolerance to be set to the unit roundoff of the single and double precision arithmetic, i.e.
2−126 = realmin(’single’) for the single and respectively 2−1022 = realmin(’double’)

for the double. In order to measure the accuracy of the routines, if d is the approximate
data cast to respectively single or double data type, we define the maximum forward
component-wise relative error efcr(d) as

efcr(d) = max
k=0,1,...,m

{∣∣∣∣dk[z0, z1, . . . , zk]− dk

dk[z0, z1, . . . , zk]

∣∣∣∣}
where dk is the (k + 1)th component of the vector d. Clearly each exact component
dk[z0, z1, . . . , zk] is rounded in order to match the data type of d. For the computations
of the divided differences over L32 the routines expkptotf and exptayotf could handle
the calculations using just 8 digits both committing a maximum forward component-wise
error of 3.56e-07 and 3.56e-07 in respectively 1.22e-03 and 9.39e-04 seconds. For the same
task, the routines exp_sp_t, exp_t, exp_sp_d and exp_d were forced to compute the
divided differences with 38 operative digits (these routines are not designed for tolerances
different from the unit roundoff of the working precision and therefore a comparison would
be unfair) committing a maximum forward pointwise error of 9.01e-13, 9.01e-13, 5.54e-24
and 5.54e-24 in respectively 1.35e-01, 9.88e-02, 1.89e-01 and 1.66e-01 seconds.

Clearly, the error committed by expkptotf and exptayotf is larger than their com-
petitors because in handling just 8 digits the accuracy is capped to the roundoff error.
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Nevertheless, the accuracy of all six routines turns out to be the same for all the routines
when the output is converted to single precision arithmetic, that was the goal, but with
the slowest of the on-the-fly routines being 82 times faster than the fastest of the not
on-the-fly ones.

For the double precision arithmetic case with interpolation set L64 the dispropor-
tion is even larger: the routines expkptotf and exptayotf could handle the calculations
using just 16 digits both committing a maximum forward pointwise error of 9.35e-16
and 1.40e-15 in respectively 9.06e-03 and 9.49e-03 seconds. For the same task the rou-
tines exp_sp_t, exp_t, exp_sp_d and exp_d were forced to compute the divided dif-
ferences with 308 operative digits committing a maximum forward componentwise er-
ror of 4.15e-143, 4.15e-143, 4.70e-143 and 4.70e-143 in respectively 3.72e+00, 3.26e+00,
1.35e+01 and 1.32e+01 seconds. Once again the error committed by expkptotf and
exptayotf is larger than their competitors because in handling just 16 digits the accu-
racy is capped to the roundoff error. Nevertheless, the accuracy of all six routines turns
out to be the same for all the routines when the output is converted to double precision
arithmetic with the slowest of the on-the-fly routines being 344 times faster than the
fastest of the not on-the-fly ones.

The case of computation of the table of the divided differences is not the only instance
of a computation that requires high accuracy in a standard working precision. Another
example is represented by the exponentiation of the Hessenberg matrices arising from the
widely used Krylov approximations of the action of the matrix exponential. Consider in
fact the matrix A, arising from the discretization of the 1D advection–diffusion operator
∂xx+∂x with homogeneous Dirichlet boundary conditions, that can be created in Matlab
using the commands

N = 256;

h = 1 / (N + 1);

A = toeplitz( sparse([1, 1], [1, 2], [-2, 1] / ( h*h ), 1, N)) + ...

toeplitz( sparse(1, 2, -1 / (2 * h), 1, N), ...

sparse (1, 2, 1 / (2 * h), 1, N));

and the vector v

v = transp( sin( pi * linspace(0, 1, N + 2) ) );

v = v( 2:N+1);

and suppose we run the Arnoldi process until degree m = 100. We compare in Table 3.5
how accurate are the routines expm and expkptotf when we require to compute the first
column of eτH100 , with τ = 10−5 so that ‖τH100‖2 ≈ 2.64, when both are run in double
precision arithmetic, but to the latter we prescribe a tolerance equal to realmin. For sake
of completeness, we mention that the cpu time needed by expm for approximating eτH100e1

is around 1.10e-03 seconds. The value for expkptotf amounts to 4.60e-03 seconds. For
computing instead eτH100e1 using the Multiprecision Computing Toolbox required by the
routines exp_sp_t, exp_t, exp_sp_d, and exp_d the time required would be in the order
of tens of seconds. Therefore, it is not a viable solution, in high performance computing,
to compute eτH100e1 using one of these routines in high precision arithmetic and then to
convert them in double precision data type.
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i expm exact expkptotf

1 9.999013095670584e-01 9.999013095670584e-01 9.999013095670581e-01
2 3.115436398118518e-05 3.115436398118519e-05 3.115436398118518e-05
3 8.846542020076177e-07 8.846542020076174e-07 8.846542020076174e-07
4 1.574632605641432e-07 1.574632605641431e-07 1.574632605641431e-07
5 2.267163210996956e-08 2.267163210996955e-08 2.267163210996955e-08
. . . . . . . . . . . .
20 5.686441429828880e-27 5.686441429782687e-27 5.686441429782688e-27
. . . . . . . . . . . .
30 1.174361293640533e-42 1.174361274486545e-42 1.174361274486545e-42
. . . . . . . . . . . .
50 4.388439314516036e-71 4.095918401733461e-78 4.095918401733464e-78
. . . . . . . . . . . .
75 5.792148930723989e-109 2.321501202667806e-127 2.321501202667806e-127
. . . . . . . . . . . .
100 7.973862992039284e-145 2.548175675177905e-180 2.548175675177906e-180

Table 3.5: Approximation of the ith component of the vector eτH100e1 using expm and the
routine expkptotf with tolerance set to realmin.

The encouraging results that the routine expkptotf obtained in double precision arith-
metic and arbitrary precision arithmetic, as well as the capacity of successfully handling
data in arbitrary precision arithmetic for any prescribed tolerance, make this routine
a formidable tool for the numerical applications. We, therefore, plan to apply the ideas
elaborated in this section to the computation in multiprecision of other matrix functions.
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Chapter 4

Computing the action of the matrix
exponential

The main goal of this chapter is to produce algorithms for the efficient approximation
of the action of the matrix exponential on a vector. To do so, we consider the simple
polynomial methods. First, we study how to conveniently order an interpolation set to
minimize the chances of the insurgence of the hump phenomenon.

Then we propose a family of interpolation sequences coming from the reordering of
the Leja–Hermite sets of points. These sequences are tailored to those matrices whose
spectrum is skinny and distributed along the real or imaginary axis. A dedicated contour
integral approximation of the backward error matrix is then illustrated. The result is
an algorithm, explhe, that shows a clear improvement with respect to other polynomial
methods on a fairly large share of matrices: those with a very skinny spectrum.

After that, we show a more general way to exploit certain information readily available
about the spectrum of A. Acknowledged the great effectiveness of the Krylov method, we
tried to replicate its characteristics while avoiding its vulnerabilities using a polynomial
interpolation at the extended Ritz’s values, that are known to lie close to the largest eigen-
values of A. Such interpolation set varies with A, thus we developed a novel technique to
bound the backward error matrix in run-time in double precision arithmetic. The result is
an algorithm, pkryexp, that appears to be among the fastest routines for approximating
eAv while showing exceptional accuracy properties.

4.1 Introduction

Exponential integrators play a key role in the field of the applications due to their effec-
tiveness when applied to stiff or highly oscillatory problems. The efficiency of this class
of methods strongly depends on the fast and accurate approximation of the action of the
matrix exponential on a vector, denoted by

eAv,

where A is a complex-valued square matrix of size N and where v is a vector of compatible
dimension. As we anticipated already in the introduction of this thesis, since the matrix
A may be sparse and large, it is crucial to avoid to form the matrix eA in approximating
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the vector eAv. Therefore it is necessary to form the approximation of eAv by linearly
combining (few) vectors from

{v,Av,A2v, . . . ,Aν−1v},

where ν is the grade of v with respect to A. In this endeavor, we also set for ourselves to
avoid to use rational approximations and to focus on the contrary on methods that are
based on polynomial approximations of the exponential function.

Let us recall that a degree m polynomial approximation of eAv in Newton form is

pm(A)v =
m∑
k=0

d[z0, z1, . . . , zm]
k−1∏
j=0

(A− zjI)v,

where d[z0], d[z0, z1], . . . , d[z0, z1, . . . , zm] are the divided differences of the exponential
function at the interpolation sequence σm = (z0, z1, . . . , zm).

In order to determine if such approximation is accurate, we represent the backward
error matrix, that is the matrix ∆A such that

pm(A)v = eA+∆Av,

as a function of A. Namely, similarly to what we have done in Chapter 3, we apply the
properties of the exponential function and we write

hm+1(A) := log(e−Apm(A)), (4.1)

that is the matrix ∆A. We declare pm(A)v to be a satisfying approximation of eA if we
somehow manage to grant that the inequality

‖hm+1(A)‖ ≤ tol · ‖A‖ ,

where tol is the tolerance prescribed by the user, holds true. Since it is not practical
to compute the matrix function hm+1, the common practice is to control ‖hm+1(A)‖ by
some larger quantity that is in turn easier to compute. For practical examples we refer
to Section 3.3, 3.3.1 and 3.3.3 of this thesis.

If the analysis of the backward error matrix reveals that the approximation may be
inaccurate the options are two: either we increase m or we apply a sub-stepping strategy.
That is we can set v(0) := v, then march as

v(l+1) := pm(τl+1A)v(l), l = 0, 1, . . . , s− 1 (4.2)

and recover the desired approximation v(s). Since such polynomial interpolations do not
vary through the sub-steps, we select a positive integer s and we set τl = s−1 for each
l = 0, 1, . . . , s− 1.

In order to shift the eigenvalues of A to a more favorable location for the interpolant
pm, we consider to work with the shifted version of the input matrix

B := A− µI,

77



for some scalar µ. Popular choices of µ all aim to drag the spectrum in a neighborhood
of the origin. Due to numerical stability reasons, if the real part of µ is positive we
recover the desired approximation as eµv(s), otherwise we multiply eτl+1µ into v(l+1) at
each sub-step l.

We also equip with an early termination criterion. Suppose that at sub-step l we
encounter a positive integer i smaller than m such that∥∥∥∥∥d[z0, z1, . . . , zi−1]

i−2∏
j=0

(B− zjI)v

∥∥∥∥∥
∞

+

∥∥∥∥∥d[z0, z1, . . . , zi]
i−1∏
j=0

(B− zjI)v

∥∥∥∥∥
∞

is not larger than

tol ·
∥∥∥∥∥

i∑
k=0

d[z0, z1, . . . , zk]
k−1∏
j=0

(B− zjI)v

∥∥∥∥∥
∞

.

Then we stop the computations, i.e. we set

v(l+1) =
i∑

k=0

d[z0, z1, . . . , zk]
k−1∏
j=0

(B− zjI)v(l)

and we proceed processing the successive sub-step.

The main problem affecting this class of methods lies in the choice of the interpolation
sequence. If the interpolation points lie far away from the eigenvalues of B, the hump
phenomenon may destructively kick in causing a sensible loss of precision in finite precision
arithmetic.

In addition to that, we also showed an example where even though the interpolation
points lied sufficiently close to the spectrum of B, the hump phenomenon was bound to
strike anyway (see end of 1.1.2). This is because it is important to strategically reorder
the interpolation set so that the largest eigenvalues of B get “marked” by an interpolation
point in the earliest stages of the approximation.

In the following we are going to briefly analyze the problem of conveniently reordering
a set of interpolation points, illustrating our contribution to the problem.

After that we enter the core topic of this chapter by starting, in Section 4.2, to design a
polynomial method that is tailored to those matrices which are characterized by a skinny
spectrum. For such matrices, it is in fact easy to place the interpolation points close to
the eigenvalues, for they must be distributed along the real or imaginary axis. In addition
to that, we exploit the peculiar distribution of the spectrum of B to control the norm
of the backward error matrix with a sequence of sharp inequalities based on a contour
integral approximation of hm+1(B).

Despite in the field of the applications the matrices with a skinny spectrum can be
encountered quite commonly, this is not always the case. In Section 4.3, we design a
routine that is based on a polynomial approximation exploiting the characteristics of the
Krylov subspace linked with A and v.
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4.1.1 On the reordering of an interpolation set

To this aim we showed in the Introduction a reordering algorithm, the Leja ordering, that
helps avoiding the hump phenomenon. For it takes just few lines to be described and
it helps clarify the improvements we brought to it, we are going to illustrate the Leja
ordering algorithm once again.

Consider the set P = {x0, x1, . . . , xk} of k distinct interpolation nodes such that mj+1
is the multiplicity of the node xj and suppose m0 + m1 + . . . + mk + k + 1 = m. In [50]
Reichel suggests an ordering of P , called Leja ordering, that returns an interpolation
sequence (z0, z1, . . . , zm). For a fixed initial point y0 ∈ P , one recursively chooses

yi+1 ∈ arg max
x∈P

i∏
j=0

|x− yj|mj+1, i = 0, 1, . . . , k − 1,

the ordered sequence of interpolation points is given by the selected nodes yi repeated
according to their multiplicity in P :

(z0, z1, . . . , zm) = (y0, . . . , y0︸ ︷︷ ︸
m0+1

, y1, . . . , y1︸ ︷︷ ︸
m1+1

, . . . , yk, . . . , yk︸ ︷︷ ︸
mk+1

).

When z0, z1, . . . , zi are all distinct, since at step i the interpolation error is proportional
to πi,σi(x), the procedure above selects at each step the point zi+1 ∈ P where the inter-
polation error is bound to be the largest, forcing the interpolation error to be now 0 at
zi+1. This should greedily reduce the interpolation error.

For repeated points the above procedure diverges from this idea, that we would like
instead to pursue. In [8] we came out with a modification of the Leja ordering that properly
handles the case of interpolation nodes with multiplicity greater than one. Fixing the first
point z0 ∈ P = {x0, x1, . . . , xk}, we recursively pick from the set

zi+1 ∈ arg max
x∈P

i∏
j=0

|x− zj| = arg max
x∈P
|πi,σi(x)|, i = 0, 1, . . . , k − 1.

Of course, when i equals k, since all the points in P have been already selected once, we
have

max
x∈P
|πk,σk(x)| = 0,

making it impossible to proceed in a standard way. Differently from the standard Leja
ordering we have now selected merely k + 1 points and not the desired m. In order to
complete the sequence of interpolation points up to m, let us suppose that we can look
for zk+1 in a slightly translated set P + ν, ν ∈ C, that is

zνk+1 ∈ arg max
x∈P+ν

|πk,σk(x)| = arg max
x∈P
|πk,σk(x+ ν)|+ ν.

Now, we can express πk,σk(x+ ν) by means of Taylor’s formula

πk(x+ ν) = πk,σk(x) + π′k,σk(x)ν + o(ν),
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and therefore

arg max
x∈P
|πk,σk(x) + π′k,σk(x)ν + o(ν)|+ ν = arg max

x∈P

|π′k,σk(x)ν + o(ν)|
ν

+ ν.

Finally, letting ν tend to 0, our suggested choice for zk+1 is therefore

zk+1 ∈ arg max
x∈P1

|π′k,σk(x)|.

where P1 ⊆ P is the set of points with multiplicity at least two. Then, we can set ourselves
to pick the successive points as

zk+j ∈ arg max
x∈P1

|π′k+j−1,σk+j−1
(x)|, j = 1, 2, . . . , k1.

where k1 is the cardinality of P1. If k + k1 < m then we have once again that

max
x∈P1

|π′k+k1,σk+k1
(x)| = 0

by following an analogous reasoning as above, we select

zk+k1+j ∈ arg max
x∈P2

|π′′k+k1+j−1,σk+k1+j−1
(x)|, j = 1, 2, . . . , k2,

where P2 ⊆ P1 is the set of points with multiplicity at least three and k2 is its cardinality.
We iterate this reasoning until we complete the sequence σm = (z0, z1, . . . , zm).

Although this ordering loyally preserves the idea of greedily maximize the chances
of triggering an early termination condition for a given set of interpolation nodes P , it
is sometimes not the most convenient way to go. The matrix A and the vector v may
be real-valued while the interpolation points are chosen to be pairwise complex conju-
gated. In this case, it is possible to rewrite the Newton interpolation in real arithmetic
thanks to the so called Tal-Ezer algorithm (see [66] for details and [8, Alg. 4] for a sim-
ple pseudocode), provided that the pair of complex conjugated interpolation points are
taken in a succession. This is crucial for keeping the calculations in real arithmetic and
saving computational effort. To contemplate this possibility, it is enough to perform a
slight modification of the reordering algorithm above: once a complex point is chosen we
immediately pick its conjugate and then we proceed normally.

It is worth pointing out that this reordering algorithm and its modification aimed to
use real arithmetic over real-valued inputs has been successfully applied in [8] and [10].
The beneficial effects of such a reordering algorithm were not only limited to reduce the
computational effort but as well to improve the overall accuracy of the methods.

4.2 Matrices with skinny field of values

When it comes to the real applications, very often the spectrum of the matrices of interest
is not just a scattered bunch of points on the complex plane. On the contrary, after a
proper shifting, the spectrum of A often shows a shape that is well contained in a rectangle
centered at the origin of the complex plane. We just mention the spatial discretization
of diffusion, advection–diffusion, advection, and Schrödinger operators, among others.
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These very practical applications led us into refining the existing polynomial techniques
to achieve better accuracy and performances over a fairly specific class of matrices: those
having a skinny field of values.

In order to do so, we consider families of interpolation points that distribute accord-
ingly with the shape of said rectangles. Since, ideally, such rectangles are very skinny and
can be easily centered at the origin, we can consider interpolation points distributed on
an interval [−c, c], where c ∈ R+ or c ∈ iR+. The most famous family of interpolation
points with such characteristics is the set of Chebyshev interpolation points. Despite this
family of points is an optimal choice when it comes to polynomial approximation, it may
not be the most convenient choice in this particular scenario. In fact, the Chebyshev in-
terpolation points of order m are only optimal if considered as a whole, while we actually
hope that the early termination criterion triggers well before the mth interpolation step.
Furthermore, later on, we will agree on the necessity of having a couple of interpolation
points at 0, while for construction the Chebyshev interpolation points only show one or
no interpolation points at all at the origin.

The Leja–Hermite interpolation points are instead a satisfying solution. We can decide
in fact how many interpolation points at 0 there will be and, even more importantly, the
Leja–Hermite points are expressly designed to aid the early termination to trigger. In
fact the Leja–Hermite interpolation points are defined as

z0 = z1 = . . . = z` = 0,

zi+1 ∈ arg max
x∈[−c,c]

i∏
j=0

|x− zj|, i = `, `+ 1, . . . ,m− 1,
(4.3)

where ` ≥ 0. Points z`+1, z`+2, and z`+3 are not uniquely determined and we select
them as z`+1 = c, z`+2 = −c, and z`+3 = c

√
(`+ 1)/(`+ 3). In [50] it was shown that

when ` = 0, the Leja–Hermite interpolation points asymptotically distributed as the
Chebyshev interpolation points, constituting a strong interpolation set. Furthermore,
when the rectangle is skinny and horizontally oriented we have that the Leja–Hermite
points lie close to the estimated location of the eigenvalues of B. When on the other hand
the rectangle is skinny and vertically oriented we can consider the complex conjugate
version of the Leja–Hermite interpolation points, defined as

z0 = . . . = z` = 0, `+m even,

zi+1 ∈ arg max
x∈[−i|c|,i|c|]

i∏
j=0

|x− zi|, zi+2 = zi+1, i = `, `+ 2, . . . ,m− 2
(4.4)

where the points z`+1, z`+2, and z`+3 are selected in a similar way as above. The advantage
in using this complex conjugate version of the Leja–Hermite points is sure to keep the
interpolation points close to the eigenvalues, that for vertically oriented rectangles we
estimate to be distributed along the imaginary axis. On the other hand, by picking ` and
m so that ` + m is even, we force the existence of complex conjugated pairs in order to
be able to exploit the Tal-Ezer algorithm we mentioned before.
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4.2.1 Contour integral approximation of the
backward error matrix

In the previous section, we agreed over a family of interpolation sequences to use that
helps us exploiting the potentially skinny shape of the spectrum of A. The successive step
consists in estimating the norm of the backward error matrix so that we can determine
if the approximation is accurate. In doing so we are determined to exploit the peculiar
skinny shape of the spectrum of A.

As a first step, we need to draw a rectangle around the spectrum of the input matrix.
Given a matrix A, we split it into its Hermitian and skew-Hermitian parts, that is

A = AH + ASH

where
AH := (A + A∗)/2

and
ASH := (A−A∗)/2,

then we estimate the extreme eigenvalues of the two parts by using, for example, the
Gershgorin’s disks. Since we know the eigenvalues of AH are real and those of ASH are
purely imaginary, we obtain

conv(σ(AH)) ⊆ [α1, α2], conv(σ(ASH)) ⊆ i[η1, η2],

where conv denotes the convex hull of a set. Therefore, we have

W(A) =W(AH + ASH) ⊆ W(AH) +W(ASH) =

= conv(σ(AH)) + conv(σ(ASH)) ⊆ [α1, α2] + i[η1, η2].

We denoted by W(A) the field of values of a matrix, that is

W(A) = {z ∈ C : z = x∗Ax, for x ∈ CN with x∗x = 1 },

and used its sub-additivity property and the equivalence between field of values and
convex hull of the spectrum for normal matrices. Given the rectangle containing the field
of values of the matrix A, a choice of the shifting parameter µ can be given by its center,
that is

µ :=
α1 + α2

2
+ i

η1 + η2

2
. (4.5)

This shifting strategy is sensibly different from the one applied in Chapter 3, that is
because we want to make sure that the rectangle is symmetrically centered at the origin.
Therefore, we set

ν := |α1 − α2

2
|, β := |η1 − η2

2
|,

and we work in practice with B := A− µI, whose rectangle

R(B) = [−ν, ν] + i[−β, β]
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lays symmetrically about the origin of the complex plane. Now, if we consider the 2-norm
ε-pseudo-spectrum of B, that is

Λε(B) = {z ∈ C :
∥∥(zI−B)−1

∥∥
2
≥ ε−1},

we can write the chain of inclusions

Λε(B) ⊆ W(B) + ∆ε ⊆ R(B) + ∆ε

where ∆ε is the closed disk of radius ε. Both the quantitiesW(B) and R(B) scale with B,
that is W(zB) = zW(B) and R(zB) = zR(B) for z ∈ C, but not the ε-pseudo-spectrum.
If we considered instead, for a given δ, the δ ‖B‖2-pseudo-spectrum, we have the chain of
inclusions

Λδ‖zB‖2(zB) ⊆ W(zB) + ∆δ‖zB‖2 ⊆ R(zB) + ∆δ‖zB‖2 =

= z(R(B) + ∆δ‖B‖2) ⊆ zRδ(B)
(4.6)

where
Rδ(B) = [−ν − δ ‖B‖2 , ν + δ ‖B‖2] + i[−β − δ ‖B‖2 , β + δ ‖B‖2],

is the extended rectangle with the strip of width δ ‖B‖2 around R(B). If we select 0 as
interpolation point at least twice (that is if we pick ` > 0), provided that X belongs to

Ω = {X ∈ CN×N : ρ(I− e−Xpm(X)) < 1},

we can develop the function hm+1(X) from (4.1) in power series and write

hm+1(X) = X2

∞∑
k=`+1

fkX
k−2 =: X2h̄m+1(X). (4.7)

Provided that X is different from the null matrix, by using the Cauchy integral represen-
tation for the matrix function h̄m+1(X) we get

∥∥h̄m+1(X)
∥∥

2
=

∥∥∥∥ 1

2πi

∫
Γ

h̄m+1(z)(zI−X)−1dz

∥∥∥∥
2

≤ L(Γ)

2πδ ‖X‖2

∥∥h̄m+1

∥∥
Γ

where Γ = ∂K denotes the boundary of a domain K ⊂ C that contains the δ ‖X‖2-
pseudo-spectrum of X and∥∥h̄m+1

∥∥
Γ

= max
z∈Γ
|h̄m+1(z)| = max

z∈K
|h̄m+1(z)|.

Therefore

‖hm+1(X)‖2

‖X‖2

≤ ‖X‖2

∥∥h̄m+1(X)
∥∥

2
=

= ‖X‖2

∥∥∥∥ 1

2πi

∫
Γ

h̄m+1(z)(zI−X)−1dz

∥∥∥∥
2

≤ L(Γ)

2πδ

∥∥h̄m+1

∥∥
Γ

(4.8)

if Γ = ∂K with K now containing the δ ‖X‖2-pseudo-spectrum of X. Thanks to (4.6),
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this is certainly true if
Rδ(X) ⊆ K. (4.9)

Now we have to restrict the choice of possible domains K of interest. We consider the
domain K circumscribed by an ellipses Γγ

x2

a2
+
y2

b2
= 1, z = x+ iy

whose focal interval is the interpolation interval [−c, c] and the capacity is

γ =
a+ b

2
.

Since c2 = a2 − b2, where c can be real or purely imaginary, it turns out that the ellipse
Γγ has semi-axes

a = γ +
c2

4γ
, b = γ − c2

4γ
.

Such a choice for the domains K makes it possible to select the ellipse Γγδ , for given c
and δ, which realizes

L(Γγδ)

2πδ

∥∥h̄m+1

∥∥
Γγδ

= tol (4.10)

by finding the root (using the secant method, e.g.) of the uni-variate function

γ 7→ L(Γγ)

2πδ

∥∥h̄m+1

∥∥
Γγ
− tol.

Such a function has at most one positive root. In fact, γ ≥ |c|/2 and the function is
monotonically increasing with γ, by the maximum modulus principle. Moreover, L(Γγ)→
+∞ for γ → +∞. Therefore, either the error estimate exceeds tol already for Γ|c|/2 =
[−c, c], meaning that the interpolation degree m is not large enough for the given interval,
or there exists one positive root.

Therefore, for each polynomial of interest pm : [−c, c] → R which interpolates ex at
m+ 1 points containing `+ 1 zeros and a given δ, it is possible to pre-compute once and
for all, with a software for multiple precision arithmetic, the semi-axes a and b of the
ellipse satisfying (4.10).

At the moment of the computation, we compare the rectangle R(B) with the ellipses
of the polynomials pm. If none of the pre-computed ellipses contain R(B), or if we want
to have more freedom of choice, we can consider a sub-stepping strategy. That is for each
pm we select the smallest positive integer s such that s−1R(B) fits into the ellipse of pm
and we recover the wanted approximation by marching as follows:

v(l+1) = es
−1Bv(l), l = 0, 1, . . . , s− 1 (4.11)

where v(0) = v. In order to find the smallest integer value s for which inclusion (4.9) is
satisfied, it is now possible to solve the inequality

(ν + δ ‖B‖2)2

s2a2
+

(β + δ ‖B‖2)2

s2b2
≤ 1,
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where s−1(ν+δ ‖B‖2 , β+δ ‖B‖2) is the top-right vertex of the rectangle s−1Rδ(B), which
gives

s =

⌈√
(ν + δ ‖B‖2)2

a2
+

(β + δ ‖B‖2)2

b2

⌉
. (4.12)

By doing so the computational cost needed to build this approximation amounts to s ·m
matrix-vector products.

We briefly sketch again the procedure:

1. For a given matrix A, compute the rectangle R(A) which contains its field of values
W(A), shift it by µ (see (4.5)) and compute the final centered symmetric rectangle

R(B) = [−ν, ν] + i[−β, β].

2. Compute s as ruled in (4.12).

3. Recover the approximation of eAv marching as in (4.11).

The backward error analysis assures that v(s) accurately approximates eAv. If approxi-
mations at different matrix scales exp(tiB)vi, ti ≥ 0, are required (this is quite common
in the exponential integrators), it is possible to compute the matrix-dependent quantity

rδ(B) =

√
(ν + δ ‖B‖2)2

a2
+

(β + δ ‖B‖2)2

b2

once and for all and later to select the scaling parameter as

si = dtirδ(B)e.

This result is possible thanks to the choice of a pseudo-spectrum level which scales with
‖B‖2, improving the work done in [6, Section 3.2], in which the estimate of the backward
error analysis based on the contour integral expansion was introduced for the Leja points
and the level of the pseudo-spectrum was chosen independent of the matrix.

Refinement of the rectangle R(B)

When it comes to the real applications the input matrices are usually extremely large and
sparse. Therefore it is not convenient to store the matrix AH and ASH in order to compute
the Gershgorin’s disks and draw the rectangle [α1, α2] + i[η1, η2]. In addition to that, the
Gershgorin’s disks technique estimate the approximate location of every eigenvalue of AH

(and respectively ASH) that is an information much more expensive than necessary when
the goal is just to find the scalars α1, α2, η1 and η2 such that

conv(σ(AH)) ⊆ [α1, α2], conv(σ(ASH)) ⊆ i[η1, η2].

Alternatively, we can effectively compute the rectangle R(A) as

R(A) = [−‖AH‖2 , ‖AH‖2] + i[−‖ASH‖2 , ‖ASH‖2],
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thanks to the inclusions

σ(AH) ⊆ [−ρ(AH), ρ(AH)] = [−‖AH‖2 , ‖AH‖2],

σ(ASH) ⊆ i[−ρ(ASH), ρ(ASH)] = i[−‖ASH‖2 , ‖ASH‖2].

Clearly even if the eigenvalues of A are not so far from each other but they happen to be
unfortunately far from the origin, the rectangle traced with this method, differently from
the Gershgorin’s disks technique, is unreasonably large. Therefore it is good practice
to shift A so that its eigenvalues are distributed around the origin before drawing the
rectangle. But we cannot apply the shift µ introduced in the previous section, because for
computing it we would need to compute the Gershgorin’s disks, that we want to avoid.
Therefore the shift µ is determined as in Chapter 3, i.e. as the mean eigenvalue of A, that
is

µ :=
N∑
i=0

ai,i
N
.

Such a rectangle is generally smaller than the one obtained using the (shifted) Gershgorin’s
disks technique. As a consequence, we expect smaller values of s leading to an increased
efficiency of the method.

On the other hand, it requires two 2-norm computations (or estimates), that can be
computationally demanding. In addition to that it seems that we did not tackle the
problem of not forming the matrices AH and ASH since the state-of-the-arts routine for
estimate the 2-norm of a matrix would explicitly require as an input the matrices AH

and ASH.

There is a way around in order to tackle this issue, in fact we know that for Hermitian
matrices their 2-norm is equivalent to their spectral radius. A similar result holds also
for skew-Hermitian matrices. Therefore we can modify the method of powers in order to
compute the spectral radius of

BH := (B + B∗)/2

and
BSH := (B−B∗)/2,

without explicitly forming the matrices BH and BSH if we carefully implement the method
of powers algorithm. We report verbatim this routine in the following.

1. function e = sym_power_method( B, skewness, tol )

2. % Compute the spectral radius of B + skewness * B’ using the method

3. % of powers without actually forming the matrix B + skewness * B’.

4. maxit = 100;

5. x = randn( length( B ), 1 );

6. x = full( B * x + skewness * ctranspose( ctranspose( x ) * B ) );

7. e = norm( x );

8. if ( e == 0 )

9. return;

10. end

11. e0 = 0;
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12. x = x / e;

13. it = 0;

14. while ( abs( e - e0 ) >= tol * e ) && ( it < maxit )

15. e0 = e;

16. if ( skewness == 1 )

17. x = B * x + ctranspose( ctranspose( x ) * B );

18. else

19. x = ctranspose( ctranspose( x ) * B ) - B * x;

20. end

21. e = norm( x );

22. if ( e == 0 )

23. break;

24. end

25. x = x / e;

26. it = it + 1;

27. end

28. end

Since we know that the numerical radius of B, defined by

w(B) = max
z∈W(B)

|z|,

is such that
w(B) = sup

‖x‖2=1

〈x,Bx〉 ≤ sup
‖x‖2=1

‖x‖2 ‖Bx‖2 = ‖B‖2

and
‖B‖2 ≤ ‖BH‖2 + ‖BSH‖2 = w(BH) + w(BSH) ≤ 2w(B)

we know that the
w(B) ≤ ‖B‖2 ≤ 2w(B)

and therefore ‖B‖2 could be over-estimated at no extra cost by the diagonal of the rect-
angle R(B), that is: √

‖BH‖2
2 + ‖BSH‖2

2.

A possible choice for δ

In this section we suggest a way to choose the parameter δ. We start by considering that,
for given c 6= 0 and δ, the minimum of

γ 7→ L(Γγ)

2πδ

∥∥h̄m+1

∥∥
Γγ

is attained for the degenerate ellipse Γ|c|/2 with perimeter L(Γ|c|/2) = 4|c|. Therefore, the
minimum value for δ satisfying (4.10) is

δ1 =
4|c|

2π · tol

∥∥h̄m+1

∥∥
Γγ
.
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Of course, this value is of no interest, since no extended rectangle can be contained into
the degenerate ellipse. If δ > δ1, then there exists a non-degenerate ellipse Γγδ with
semi-axes a = aδ and b = bδ and capacity γδ which satisfies

L(Γγδ)

2πδ

∥∥h̄m+1

∥∥
Γγδ

= tol.

From the formula above, a larger δ allows a larger ellipse Γδ, but it also requires a larger
extended rectangle which has to be included into the ellipse.

We need a strategy to “maximize” the rectangles which can be contained into the
ellipse Γγδ . For a given ellipse with semi-axes aδ and bδ, it is easy to compute the inscribed
rectangles with the largest area or the longest perimeter. By elementary calculations, they
have semi-edges aδ/

√
2, bδ/

√
2 and a2

δ/
√
a2
δ + b2

δ , b
2
δ/
√
a2
δ + b2

δ , respectively. The rectangle
with longest perimeter appears to be skinnier than the one with largest area. Since we are
precisely interested in this feature, we suppose that the rectangle of interest is a re-scaling
of the rectangle of longest perimeter, that is it has semi-edges ta2

δ and tb2
δ , for a scalar

t > 0. In order to compute the dimensions of the related extended rectangle we assume
that the 2-norm of the matrix whose field of values is contained in the rectangle is half of
its diagonal, that is t

√
a4
δ + b4

δ .
Therefore, the extended rectangle is contained into the ellipse Γγδ if

t

√√√√(a2
δ + δ

√
a4
δ + b4

δ

aδ

)2

+

(
b2
δ + δ

√
a4
δ + b4

δ

bδ

)2

≤ 1.

Now, we can try to maximize the quantity t(a2
δ + b2

δ) (that is the semi-perimeter of the
rectangle) under the constraint above. We have therefore to find the maximum of the
uni-variate function

δ 7→ a2
δ + b2

δ√(
a2δ+δ
√
a4δ+b

4
δ

aδ

)2

+

(
b2δ+δ
√
a4δ+b

4
δ

bδ

)2
. (4.13)

The above maximum can be approximated, for instance, by using the golden section
method. We will denote by δm, am, bm, and γm the parameters of the ellipse found after
this optimization procedure. The optimal choice of δ is a second neat advantage over the
procedure described in [6], where ε-pseudo-spectra where considered, with ε independent
on the norm of the matrix and fixed to 1/50.

If instead c = 0, the ellipse Γγ is in fact the circumference of radius γ. Since L(Γγ)→ 0
for γ → 0, for each δ is it possible to find γδ in order to satisfy (4.10). The function to
maximize (4.13) simplifies to

δ 7→
√

2γδ

1 +
√

2δ
.

Example. As an example, we compute the ellipse which corresponds to degree m = 30,
c = 3, and ` = 1 for the double precision tolerance tol = 2−53. The best value for δ we
found with the strategy described above is δm = 0.0179961382516439. The corresponding
ellipse Γγm of semi-axes am and bm and rectangle R with edges proportional to the squares
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of the semi-axes are drawn in magenta dashed-dotted line in Figure 4.1. If we consider
the ellipse and rectangle associated to a value of δ ten times larger (a value similar to the
value 1/50 used in [6]), we get the figures drawn with a blue dashed line in Figure 4.1. As
already noticed, the ellipse we get is quite large, but the strip of width proportional to δ is
large and the rectangle which should contain the field of values turns out to be smaller than
the previous one. Finally, we consider the result coming from taking the interpolation set
with four zeros (` = 3). The optimization technique gives δm = 0.0177640774067962 and
the corresponding figures are drawn with a solid black line in Figure 4.1. For these choices
of m and c, ` = 3 turns out in fact to be the value giving the largest rectangle.

-4 -2 0 2 4
-4

-2

0

2

4

x

y

−3 3

ℓ = 1, δ = 0.1800

ℓ = 3, δm = 0.0178

ℓ = 1, δm = 0.0180

Figure 4.1: Ellipses and rectangles of longest perimeter corresponding to m = 30, c = 3,
` = 1 and δ = 0.179961382516439 (blue dashed line), δm = 0.0179961382516439 (magenta
dashed-dotted line), ` = 3 and δm = 0.0177640774067962 (solid black line).

4.2.2 Final selection of the polynomial interpolation

The final choice of the polynomial interpolant to use for approximating eAv with the
technique introduced in this section is divided into two parts. The first part is to be
completed in advance before the user is ready to use the routine, for it requires to use a
software of symbolic calculus to predetermine certain key parameters. The second is to
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be performed during the computations, for it consists in finding the rectangle R(B) and
in comparing it with the parameters precomputed in the first part.

The family of polynomial interpolants

In the first part, we have to form a family of polynomials that we are willing to use for
our interpolation and for each polynomial we compute the connected ellipse. Clearly, the
larger is the family the better will be the performance of the routine, a commercial imple-
mentation of this algorithm would surely take into account large families of polynomials.
Nevertheless, this is out of the scope of this manuscript, therefore we kept the number of
components of said family relatively low.

The variables are three: the interpolation degree m, the number of interpolation points
taken at the origin ` + 1 and the interpolation interval of parameter c. In line with the
literature we consider interpolation degrees m of at most 55, see for example [2, 6, 8].
Then we decided to set

` = q(q − 1)− 1, q = 2, 3, . . . , 8. (4.14)

The reason for such a peculiar choice of the parameter ` is to build interpolation se-
quences with certain fractions of the interpolation points in zero that are somehow well-
distinguished from each other. If the interval [−c, c] is characterized by a purely imaginary
c then the interpolation points different from zero must be taken in complex conjugate
pairs. To do so, they need to be in an even number and therefore we adapt the choice of
` accordingly.

The last parameter left to fix is c. Clearly, we cannot vary c continuously or we
would have to compute infinitely many ellipses. Therefore we consider the sequence
|c| = 0, 0.5, 1, . . . and try to fulfill (4.10), with the relative optimal value of δ. We stress
that by “compute an ellipse” we mean that given m, ` and c we solve for γ equation (4.10)
and therefore we uniquely determined the ellipse.

As we already mentioned, for any given m, there exists a c for which the ellipse Γ|c|/2
is degenerate and it makes impossible to satisfy (4.10). This is the upper bound for the
sequence of the absolute values of c above.

To complete the first part we have to compute the ellipse relative to each member of
the family, that is the ellipses satisfying (4.10), and store the results for a later use.

Choosing the interpolation parameters

In this second part, we have to associate a polynomial and a scaling parameter s to the
input matrix B. To do so, we narrow down the choice of the candidate polynomials by
discarding those not fitting certain criteria. Before describing such criteria we stress once
again that each polynomial is characterized by the three parameters m, ` and c.

The first criterion concerns the interpolation interval. Once we compute the rectan-
gle R(B) we immediately half the possible candidates: if ν ≥ β then c will belong to R+,
otherwise c will be taken purely imaginary.

The second criterion concerns once again the parameter c. Since we want to make sure
that the interpolation points fall close to the eigenvalues of B, we want c to be broadly
equal to s−1 max(ν, β). In particular we discarded all those polynomials whose c is such
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that
|s−1 max(ν, β)− c| > c · 4e-2

where 4e-2 is a parameter we engineered a posteriori in order to discard a fair amount of
polynomials.

The third criterion concern the shape of the ellipses. Among the polynomials that
“survived” the second criterion we only keep the twenty whose ellipse has axis ratio

min(am, bm)

max(am, bm)

most similar to the ratio of the edges

min(ν, β)

max(ν, β)

of the rectangle R(B). Once again, twenty is a parameter we engineered a posteriori to
keep a fair amount of polynomials.

The final criterion is about the total approximation cost s ·m, among the 20 polyno-
mials “surviving” the previous criterion we select the one will the smallest expected total
cost.

At this point, we proceed to form the desired approximation of eAv using the polyno-
mial we are left with.

4.3 Extended Ritz’s values interpolation

Although it is true that, when it comes to the real applications, it is frequent that the
spectrum of the matrices of interest is usually contained in a quite skinny rectangle, this
is not always the case. It is not uncommon, in fact, that such a rectangle resembles more
a fatty rectangle or even a square. In those cases, it is not clear how it is best to orient
the interpolation points, vertically or horizontally, that is real or complex conjugated
case. Also, for Hermitian and skew-Hermitian matrices, it is not clear if the Leja–Hermite
interpolation is automatically the best choice. In fact, for such matrices, the slow and
involved Arnoldi process simplifies into the Lanczos process, which is on the opposite very
simple and fast.

Therefore, our idea is to exploit the equivalence between Krylov methods and the
interpolation at Ritz’s values in order to build an original approximation that interpolates
the exponential function at what we call extended Ritz’s values. Trivially, the extended
Ritz’s values are

{ρ1, ρ2, . . . ρκ} ∪ {0, 0, . . . , 0︸ ︷︷ ︸
`+1 zeros

}

where the zeros are taken with multiplicity `+1, a value that will be determined, broadly
speaking, according with the non normality of A. We set m = κ+`. Clearly, before being
ready to use such an interpolation set, we must reorder it into the interpolation sequence
σm = (z0, z1, . . . , zm), following the algorithm described in Section 4.1.1.

The main advantage of such interpolation sequence is that we can avail of an inter-
polation set that lies close to the eigenvalues of A while saving the effort of running the
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Arnoldi (or Lanczos) process at each sub-step. In fact, once we build the first time the
matrix Hκ and compute its eigenvalues ρ1, ρ2, . . . ρκ, we have a strong interpolation set.
This set needs not to be updated at each sub-step when a sub stepping strategy is con-
sidered. In fact, the Ritz’s values are supposed to approximate the eigenvalues of A that,
at worst, get scaled when a sub stepping strategy is considered.

Furthermore, after we run the Arnoldi (or Lanczos) process up to step κ for the first
(and only) time, we can recycle the matrix Vκ in order to form the approximation pm(A)v
with only ` + 1 additional matrix-vector products. To see how is that possible, consider
the equivalence

‖v‖2 Vκe
Hκe1 =

κ∑
k=1

d[ρ1, ρ2, . . . , ρκ]
k−1∏
j=1

(A− ρjI)v,

that comes directly from Theorem 1. In order to form the approximation pm(A)v, we
need explicitly the vector

πk,σκ(A)v =
k−1∏
j=1

(A− ρjI)v

with σκ−1 := (ρ1, ρ2, . . . ρκ), so that we can add, at step k, the vector

d[ρ1, ρ2, . . . , ρκ, 0, . . . , 0︸ ︷︷ ︸
k−κ

]Ak−m−1

κ∏
j=1

(A− ρjI)v

for k = κ+ 1,m+ 2, . . . ,m+ 1 and form the desired approximation. Since πk,σκ−1(x) is a
polynomial of degree lesser than κ, we know, from the previous lemmas, that the vector
πk,σκ−1(A)v is a linear combination of vectors from the basis of Kκ. In other words, we
can form πk,σκ−1(A)v exactly as

‖v‖2 Vκπk,σκ−1(Hκ)e1.

From the second sub step (if it is necessary) onward, we do not need to compute
the Arnoldi (or Lanczos) process anymore. Therefore we do not need to recycle any
matrix-vector product. Hence we can proceed to reorder the interpolation set, made out
of the extended Ritz’s values, into the interpolation sequence σm and continue as a normal
interpolation method.

4.3.1 Backward error analysis

On the other hand, the main disadvantage of interpolating at the extended Ritz’s values
is that the interpolation set varies at each instance of A and v. Therefore, we are forced
to perform the backward error analysis in run time and not in advance and once and for
all, as we were accustomed to with other routines for computing the action of the matrix
exponential. In fact, in the literature, standard fixed sets of interpolation points were
considered because the analysis of the backward error needed the aid of slow software of
symbolic calculus and therefore to be run in advance.

Let us now briefly retread the steps of the backward error analysis. With the polyno-

92



mial pm(x) we approximate exactly the matrix exponential of a slightly perturbed matrix,
i.e.

pm(A) = eA+∆A.

We declare the approximation pm(A)v satisfying if, for the prescribed tolerance tol, we
have that the norm of the backward error matrix is small enough:

‖∆A‖ ≤ tol · ‖A‖ . (4.15)

Thanks to elementary calculations, we have that said perturbation can be expressed as a
function of A as follows

∆A = log(e−Apm(A)) =: hm+1(A),

see also [8] for further details. Now, let us define the matrix set

Ω = {X ∈ CN×N : ρ(I− e−Xpm(X)) < 1},

where ρ is the spectral radius. For every matrix X belonging to Ω we can write hm+1(X)
as the power series expansion

hm+1(X) =
∞∑

k=`+1

fkX
k.

Now, we can employ the scalar function h̃m+1(x) =
∑∞

k=0 |fk|xk in order to control the
backward error:

‖hm+1(A)‖ ≤ h̃m+1(‖A‖). (4.16)

In this way, if we compute the unique positive scalar root θ? of the equation

h̃m+1(x)− tol · x = 0,

that exists provided tol > c1, thanks to (4.16) and the monotonicity of h̃m+1(x)− tol · x
we know that (4.15) holds true provided that

‖A‖ ≤ θ?.

In case instead that ‖A‖ is not smaller than θ?, we have two options. The first is to
increase the cardinality m + 1 of the interpolation set, in fact larger sets generally lead
to larger values of θ?. The second option is to select the smallest positive integer s such
that s−1 ‖A‖ is smaller than θ?, and to recover the wanted approximation by marching
as follows:

v(l+1) = es
−1Av(l), l = 0, 1, . . . , s− 1,

where v(0) = v. By doing so, the predicted computational cost necessary to form this
approximation amounts to s ·m matrix-vector products.

The inequality (4.16) it is not sharp, hence it generally leads to choices of s and m
unnecessarily large, making the overall computational cost to rise. In order to tackle this
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issue, we can apply two techniques. We are already familiar with the first one: we set

µ :=
N∑
i=1

ai,i
N
,

that is the mean eigenvalue of A, and we work with B := A− µI. The second technique
is considerably more involved: it was proven in [1] that

‖hm+1(B)‖ ≤ h̃m+1(αq(B)) ≤ h̃m+1(‖B‖) (4.17)

with
αq(B) := max(‖Bq‖1/q ,

∥∥Bq+1
∥∥1/q+1

)

with q arbitrary but subject to p(p− 1) ≤ `+ 1. We recall `+ 1 to be the total number of
interpolation points at 0. Hence the norm of the backward error matrix can be controlled
by a sharper inequality. As a consequence we can select the parameters m and s by
comparing to θ? the value αq(B) for a suitable q instead of ‖B‖.

Runtime backward error analysis

Provided that we are able to compute the coefficients of the backward error function
hm+1(x), it is straightforward to compute the root of h̃m+1(x) − tol · x = 0. In fact, by
running few iterations of the Newton root-finder method, we reach a relative precision of a
couple of digits that is enough for our purposes (provided that we truncate the remaining
digits so that we underestimate θ? rather than overestimate it).

The delicate task is to compute in double precision arithmetic the coefficients of the
power series expansion of

hm+1(x) = log(e−xpm(x)),

without resorting to any slow software of symbolic calculus. The difficulty is hidden in
the calculus of the coefficients of e−xpm(x). Let us denote the m + 1 coefficients of the
explicit form of pm(x) by {ai}∞i=0, where ak = 0 if k is larger than m. Then, by the Cauchy
product formula we have that

e−xpm(x) =
∞∑
k=0

(
k∑
j=0

(−1)j

j!
ak−j)x

k

that, in its expanded form looks like

a0 + (a1 − a0)x+ (a2 − a1 +
a0

2
)x2 + (a3 − a2 +

a1

2
− a0

6
)x3 + · · ·

which it’s prone to numerical instabilities because, even for low degrees, we encounter
huge loss of significance due to catastrophic cancellation. In fact, for legit polynomial ap-
proximants, we have that when i ≤ m the coefficient ai is really close to the corresponding
coefficient of the exponential function. Therefore, the coefficients of xk with k > 0 are
extremely close to zero and their value is computed by means of algebraic sums of values
extremely close to each other. Clearly, for i ≤ `+ 1 we have that ai is exactly equivalent
to the corresponding coefficient of the exponential function and hence the problem is just
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delayed to the coefficients of higher order.

In order to tackle this issue, we consider the residue function rm(x) = ex − pm(x) and
the identity

hm+1(x) = log(1− e−xrm(x)).

Being the coefficients of rm(x) and those of the inverse exponential function extremely
different in magnitude the loss of significance is averted provided that the coefficients of
rm(x) are computed accurately, which is the problem we face next.

The coefficients of the function rm(x) can be easily represented operating according
the following steps. First we extend σm = (z0, z1, . . . , zm) with infinitely many points,
without loss of generality in 0. Then, we develop exactly in Newton series the exponential
function and we set the first m divided differences to 0. We have that

rm(x) =
∞∑

i=m+1

d[z0, z1, . . . , zi]
i−1∏
j=0

(x− zj)

where, we say it again, d[z0, z1, . . . , zi] is the ith divided difference of the exponential func-
tion over the interpolation sequence σm = (z0, z1, . . . , zm). Due to practical constraints,
we will just pick L additional points in zero and not infinite, with M := L+m sufficiently
larger than m.

Thanks to the routine dd_phi, that we developed in Chapter 2, we can compute the
divided differences d[z0], d[z0, z1], . . . , d[z0, z1, . . . , zm] in just a fraction of the time taken
by the previously existing routines. We can therefore compute relatively quickly the
coefficients of rm(x) following the procedure that we just explained. At this point, it
is straightforward to derive the coefficients of hm+1(x) through repeated applications of
the Cauchy formula for the series product, that is equivalent to convolving the vectors
containing their coefficients. With the coefficients of hm+1(x) calculated accurately, we
can now compute the desired θ?.

However, for our specific purposes, we need to perform the backward error analysis
several times at each call of our routine. In fact, suppose we decide to interpolate the
exponential function at σm and we hence compute the relative value θ?. Suppose also that
it appears necessary to scale the matrix A for the approximation to be accurate. Now,
we have that the eigenvalues of s−1A are a scale of those of A and the Ritz’s values too.
Therefore, the right thing to do is to repeat the backward error analysis over the scaled
sequence s−1σm. Then, it is possible that a different scaling s is to be considered and
therefore another launch of the backward error analysis is necessary over another scaled
interpolation set. Since it is likely that we have to iterate this procedure many times, this
operation could result in being costly.

To tackle this issue, we exploit the results obtained in Chapter 2. It was shown
that, if a(M) is the vector having on its ith entry the ith coefficient of any degree M
polynomial, and d(M) is the vector having on its ith entry the ith divided difference over
σM = (z0, z1, . . . , zM) of said polynomial, then we have that

d(M) = C(z0, z1, . . . , zM) · a(M)

and
a(M) = E(z0, z1, . . . , zM) · d(M)
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where C(z0, z1, . . . , zM) and E(z0, z1, . . . , zM) are square upper triangular matrices one
the inverse of the other.

Their analytically definition is given in Chapter 2 and it involves two class of sym-
metrical polynomials. The firsts are the complete homogeneous symmetric polynomials
of degree k − j over the variables z0, z1, . . . , zj, that are:

ck−j(z0, z1, . . . , zj) =
∑

0≤i1≤...≤ik−j≤j

zi1 · · · zik−j ,

with ck−j(z0, z1, . . . , zj) equal to 0 if k − j < 0 and to 1 if k − j = 0. In particular
C(z0, z1, . . . , zM) is the matrix having ck−j(z0, z1, . . . , zj) on its (j + 1, k+ 1) position. As
an example, we show the matrix C(z0, z1, z2, z3) mapping a(3) into d(3):

C(z0, z1, z2, z3) =


1 z0 z2

0 z3
0

0 1 z0 + z1 z2
0 + z0z1 + z2

1

0 0 1 z0 + z1 + z2

0 0 0 1

 .

The seconds are the elementary symmetric polynomials of degree k− j over the variables
z0, z1, . . . , zk−1, that are:

ek−j(z0, z1, . . . , zk−1) =
∑

0≤i1<···<ik−j≤k−1

zi1 · · · zik−j ,

with ek−j(z0, z1, . . . , zk−1) equal to 0 if k − j < 0 and to 1 if k − j = 0. In particular
E(z0, z1, . . . , zM) is the matrix having (−1)k−jek−j(z0, z1, . . . , zk−1) on its (j + 1, k + 1)
position. As an example, we show the matrix E(z0, z1, z2, z3) mapping d(3) into a(3):

E(z0, z1, z2, z3) =


1 −z0 z0z1 −z0z1z2

0 1 −z0 − z1 z0z1 + z0z2 + z1z2

0 0 1 −z0 − z1 − z2

0 0 0 1

 .

By means of these matrices, we can represent the vector having on its entries the first
M + 1 coefficients of rm(x) as

E(z0, z1, . . . , zM)YM,mC(z0, z1, . . . , zM)a(M)

where a(M) is the vector having on its ith entry the ith coefficient of the exponential
function truncated at M and YM,m is the null matrix having the L sized identity matrix
IL on its bottom right corner.

If the matrix-vector products are considered from right to left, it is easy to see that
we are following the passages described above to obtain the wanted coefficients of rm(x).
In fact, C(z0, z1, . . . , zM)a(M) is the vector containing the divided differences of the ex-
ponential function. By left multiplying such vector by YM,m, we obtain

YM,mC(z0, z1, . . . , zM)a(M),
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that is the vector containing the divided differences of the residual function rm(x). Finally,
by left multiplying this vector by E(z0, z1, . . . , zM), we obtain the coefficients of rm(x). If
we rewrite the previous formula block wise(

E1,1 E1,2

E2,2

)(
0

IM−m

)(
C1,1 C1,2

C2,2

)(
a1

a2

)
with blocks Cj,k, Ej,k and aj of suitable dimensions, we can easily see that it all boils
down to the computation of the vector(

E1,2C2,2a2

a2

)
whose bottom part is trivial, thus we are left with the task of computing the vector
E1,2C2,2a2.

From Claim 2.1 with p = j and zj = 0 we have that

ck−j(z0, z1, . . . , zj) = ck−j(z0, z1, . . . , zj−1),

hence we know that the (j + 1, k + 1)th entry of C(z0, z1, . . . , zM) equals the (j, k)th one
for j > m and provided that zi = 0 for i = m+ 1,m+ 2, . . . ,M .

From Claim 2.2 with p = k − 1 and zk−1 = 0 we have that

ek−j(z0, z1, . . . , zk−1) = ek−j(z0, z1, . . . , zk−2),

hence we know that the (j + 1, k + 1)th entry of E(z0, z1, . . . , zM) equals the (j, k)th one
for k > m and provided that zi = 0 for i = m+ 1,m+ 2, . . . ,M .

By showing this, we have proven that the choice of taking the additional L = M −m
interpolations points equal to zero leads C2,2 to be an upper triangular band matrix and
E1,2 to be a lower triangular band matrix. Therefore, knowing just the L entries of C2,2

corresponding to the bottom row of C1,1:

ck−m(z0, z1, . . . , zm), k = 0, 1, . . . , N −m− 1,

and the m entries of E1,2 corresponding to the rightmost column of E1,1:

em−j(z0, z1, . . . , zm−1), j = 0, 1, . . . ,m− 1,

it is possible to form the m × L matrix E1,2C2,2. Furthermore we know that each entry
of the matrix E1,2C2,2 is homogeneous in z0, z1, . . . , zm. To see that, consider for example
the product of the matrices

e0 0 0 0
e−1 e0 0 0
e−2 e−1 e0 0
e−3 e−2 e−1 e0



c0 c1 c2 c3

0 c0 c1 c2

0 0 c0 c1

0 0 0 c0


whose structures mimic the band structure of the matrices E1,2 and C2,2 (even though
their dimensions differ). The indexing has been assigned in order to give the idea of how
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the homogeneous degrees vary moving away from the diagonals. Their product is
e0h0 e0c1 e0c2 e0c3

e−1c0 e0h0 + e−1c1 e0c1 + e−1c2 e0c2 + e−1c3

e−2c0 e−1c0 + e−2c1 e0c0 + e−1c1 + e−2c2 e0c1 + e−1c2 + e−2c3

e−3c0 e−2c0 + e−3c1 e−1c0 + e−2c1 + e−3c2 e0c0 + e−1c1 + e−2c2 + e−3c3


and it is immediate to notice that the homogeneity of the entries its preserved. This is
especially important because, once we build the matrix E1,2C2,2 for a given set of points
{z0, z1, . . . , zm}, when we need to perform the backward error analysis at different scales
of the set, for instance t · {z0, z1, . . . , zm}, we simply have to perform the products

tm+1T−1
m,mE1,2C2,2TL,La2 (4.18)

where Tp,p is the p sized diagonal matrix having tj on its (j + 1, j + 1) entry. The scalar
multiplication with tm+1 appearing in the formula is justified by the fact that e0 has degree
m+ 1 while c0 has degree 0 and the other entries follow accordingly with their indexes.

We now list a simple Matlab algorithm for computing the matrix E1,2C2,2 given the
interpolation sequence σm = (z0, z1, . . . , zm). We suppose, without loss of generality, that
σm is normalized so that

max
i=0,1,...,m

|zi| = 1.

This algorithm exploits the recursive structure of both the matrix C(z0, z1, . . . , zm) and
E(z0, z1, . . . , zm) that was highlighted in the Chapter 2 of this thesis. In forming the
matrix E1,2C2,2 it was exploited the pattern for which its (j + 1, k + 1)th entry always
contains its (j, k)th one.

Furthermore, it was taken in account the number ` of interpolation points equal to
zero that are in the tail of the interpolation sequence σm = (z0, z1, . . . , zm) in order to save
calculations. This is going to be particularly important since, for the class of interpolating
polynomials we are going to elect, the number of tailed zeros greatly outnumbers the points
lying outside the origin.

1. function EC = pts2EC( z, m, M, ell )

2. % Compute the matrix E_12C_22 given the

3. % interpolation sequence z.

4. e = [ 0, 1, zeros( 1,m+1 ) ];

5. for k = 1:m-ell+1

6. for j = k+1:-1:1

7. e( j+1 ) = e( j ) - z( k ) * e( j+1 );

8. end

9. end

10. e = [ zeros( 1,ell ), e( 2:m-ell+2 ) ];

11. c = [ 1, zeros( 1,M-m-1 ) ];

12. for k = 0:m

13. for j = 1:M-m-1

14. c( j+1 ) = c( j+1 ) + z( k+1 ) * c( j );

15. end

16. end
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17. EC = zeros( m+1,M-m );

18. EC( 1,: ) = e( 1 ) * c;

19. for i = 2+ell:m+1

20. EC( i,: ) = [ 0, EC( i-1,1:M-m-1 ) ] + e( i ) * c;

21. end

22. end

4.3.2 Final selection of the polynomial interpolation

In this section, we resume the choices that will lead to the determination of the parameters
κ, ` and s characterizing the polynomial interpolant pκ+`+1(x) of the exponential function.

The first step is to shift the matrix A as we set for ourselves and we work with the
shifted matrix

B := A− µI.

The second step is to compute some values αq(B) in order to assess the non-normality
of B and to perform a much sharper overestimate of the norm of the backward error
matrix. In order to save computational effort, we employ the criterion [2, Formula (3.13)],
that indicates if it is computationally worth to employ αq(B) in place of using just ‖B‖.
Namely if

‖B‖ ≤ 2
θmax

M
qmax(qmax + 3)

then it is not worth to compute any αq(B). The integer qmax represents the largest integer
q for which we are willing to compute αq(B). In our case, we set qmax = 7, broadly in line
with other routines from the literature (see for example [2]). The integer M represents,
instead, the maximum order of polynomial approximation that we are willing to take into
account. In our case, we set M = 56, once again a value in line with other routines
from the literature. For simplicity, and only for evaluating the previous formula, instead
of computing θM for the actual set of extended Ritz’s values we are going to use, we
approximate now this value by the θM corresponding to the Taylor interpolation of degree
M . This approximation is usually quite close to the actual value. In case it was not, that
would not harm the accuracy of the routine, since at worst it would only lead to a slightly
increased computational effort. In order to quickly compute the approximation of θM , we
use the routine bea_tay_approx that we introduced at the end of Section 3.3.1 of this
manuscript. In case the criterion tells us that is worth to compute the values αq(B), as
a rule of the thumb, we compute αq(B) until q = qmax or until we find a q? ≤ qmax such
that

αq?−1(B) ≥ 0.8αq?(B),

that is when the values αq(B) stop decreasing sharply. At this point we set

` = q?(q? − 1)− 1,

so that we are allowed to employ the value αq?(B) in place of ‖B‖, and

κ = 2q?.

We stress that the value we assigned to κ is expressly meant to be quite small in com-
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parison with the degree of approximation m = κ + `. This choice is due to the fact that
we desire to run the Arnoldi (or Lanczos) process up to low degrees in order to avoid the
numerical inefficiencies we called out at the beginning of this chapter.

The third step consists in running the Arnoldi (or Lanczos) process in order to obtain
the matrices Vκ and Hκ. From Hκ we compute the Ritz’s values {ρ1, ρ2, . . . , ρκ}, then
we extend them with `+ 1 zeroes and we form the matrix

E1,2C2,2

as we explained in detail in the previous section. Now, we have to be careful: suppose the
backward error analysis at {ρ1, ρ2, . . . , ρκ} ∪ {0, 0, . . . , 0} returns a certain value θ? such
that we need to apply a scaling s strictly larger than 1. As we mentioned already, if we
scale the matrix B of a factor s−1, also the Ritz’s values will be scaled of the same factor.
Therefore, we need to rerun the backward error analysis over the set s−1{ρ1, ρ2, . . . , ρκ}∪
{0, 0, . . . , 0}, which will return a different θ? and therefore to a different scaling factor s−1.
If we iterate this process over and over we will eventually encounter two values θ? yielding
the same scaling factor s−1. This is the scaling factor we will adopt for our approximation.

The existence of such scaling factor is granted by the fact that when s tends to infinity
then s−1αq?(B) tends to zero and the extended Rit’z values tend to become a set of m
interpolation points in zero. Under very weak assumptions (it is enough that κ+`+1 > 1),
we know that for such an interpolation set θ? > 0. In fact the interpolation of the
exponential function at zero is equivalent to a truncated Taylor technique. Clearly, for
running the backward error analysis over different scales of the same interpolation set, we
exploit formula (4.18).

Now that we have the desired interpolation sequence of length κ+`+1 and the scaling
parameter s, the final step is to form

v(1) = pm(s−1A)v

paying attention to recycle the columns of Vκ as explained in the course of this section.
Then we march, sub-step after sub-step, without changing the interpolation set, until we
obtain the desired approximation v(s).

4.4 Numerical Experiments

In this Section about numerical experiments, we test our two routines: explhe (EXPo-
nential Leja-Hermite, see [9]) and pkryexp (Polynomial KRYlov EXPonential, see [11])
against the state-of-the-arts Matlab routines for the approximation of the matrix expo-
nential in double precision arithmetic. These routines are:

• expmv, the algorithm of Al-Mohy and Higham (see [2]), that is based on a truncated
Taylor approximation of degree m of the exponential function. As today, this routine
represents one of the most reliable and fast implementation of a polynomial method
for computing the action of the matrix exponential on a vector;

• phipm, the algorithm of Niesen and Wright (see [46]), that is based on a Krylov
subspaces approximation of degree m. As today, this routine is considered the
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state-of-the-arts Matlab implementation of a Krylov method with full reorthog-
onalization for computing the action of the matrix exponential, [21]. Differently
from expmv, phipm can also compute linear combinations of the functions ϕ`(x) (see
1.3). However, we do not test this feature of phipm but just its performance when
it comes to the computation of the action of the matrix exponential.

This section is divided in two parts: in the first part we will examine the behavior of
the four routines over the test set A. The set A is a very modest collection of matrices
that are recurrent in the field of numerical integration and that have very specific spectral
distributions. In particular, in the set A will appear the matrices stemming from the
discretization by second-order finite differences of the diffusion and advection–diffusion
partial differential equation, characterized by skinny spectra distributed along the real
axis. In addition to that, we include the matrices coming from the discretization by
second-order finite differences of the advection operator and those of the free Schrödinger
operator, both characterized by purely imaginary spectra.

In the second part we will assess the performances of the four routines over a large
set S built out of 1980 matrices from the SuiteSparse Matrix Collection (formerly the
University of Florida Sparse Matrix Collection), that is a “widely used set of sparse matrix
benchmarks collected from a wide range of applications” 1. For more detailed information
see [65].

The experiments were performed using the 64-bit (glxna64) version of Matlab R© 9.2
(R2017a) with the -singleCompThread option over a a machine equipped with 16Gb of
RAM and 4 Intel Core i7 processors running at 3.30GHz.

4.4.1 Tests over the test set A
In this experiment we want to prove a point: a convenient choice of the interpolation set
leads to an improved accuracy and a reduced computational effort. For each matrix from
the set A, we compare and measure the forward error committed by the four routines and
the computational effort measured in terms of the number of matrix-vector products.

In addition to that, we report the average elapsed cpu time (on 100 launches) that each
routine takes to compute the action of the matrix exponential on a vector. The reason for
this is that the mere number of matrix-vector products can sometimes be misleading. For
example, the routine phipm, based on Krylov method, performs a particularly low number
of matrix-vector products while the average cpu time does not reflect this efficiency. This
is because when A is very sparse, the cost of a matrix-vector product has a complexity
similar to a vector-vector product. In this case, the complexity of the Arnoldi process
roughly shifts from O(mN2)+O(m2N) to O(mN)+O(m2N), revealing that an important
share of the final cost is not represented by the m matrix-vector products. On the other
hand, the routine expmv, based on Taylor interpolation, often performs the highest number
of matrix-vector products while its extreme simplicity and absence of side computations
make up for it.

1The Collection is widely used by the numerical linear algebra community for the development and
performance evaluation of sparse matrix algorithms. It allows for robust experiments because performance
results with artificially-generated matrices can be misleading. Its matrices cover a wide spectrum of
domains, include those arising from problems with underlying 2D or 3D geometry and those that typically
do not have such geometry.
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For this experiment, we asked the tolerance to be equal to 2−53, corresponding to
the double precision arithmetic. The trusted solution eAv is obtained using expkpotf to
compute eA in high precision arithmetic with tol set to eps2 ≈ 4.93e-32.

Two-dimensional advection-diffusion matrices

We consider the discretization by second order finite differences of the advection-diffusion
partial differential equation

∂u

∂t
+~b · ∇u = d∇2u

defined in the two-dimensional spatial domain [0, 1]2, subject to homogeneous Dirichlet
boundary conditions and initial solution u0(x, y) = 16x(1−x)y(1−y). The discretization
is done with 49 inner points and thus h = 1/50. The diffusion coefficient is fixed to

d = 1/100 and the advection term is ~b = (b, b). The grid Péclet number turns out to be

Pe =
hb

2d
= b.

Suppose t0 = 0 and that we are interested in computing the solution at time t = 3. The
matrices considered in this example have size N = 2401.

In the first example we consider the truly diffusive case, where b = 0, leading to a
symmetric matrix A. After we shift A, the (estimated) “rectangle” R(tB) collapses to the
real interval [−299, 299]. Table 4.1 collects the results. From this test we can learn that, as

Method Substeps Act. prods Rel. fwd. err. Avg. Elaps. cpu Time

expmv 31 1501 6.33e-15 2.92e-02

explhe 44 1146 2.91e-15 2.99e-02

pkryexp 31 903 7.58e-15 2.16e-02

phipm 5 256 2.55e-15 1.53e-02

Table 4.1: Results for the diffusion case (b = 0), tolerance set to 1.11e-16.

we expected, the methods take more and more matrix-vector products the less information
on the spectrum of A they exploit. In fact expmv, based on a truncated Taylor series that
interpolates the exponential function and its derivatives at the origin, needs almost 6
times more matrix-vector products than phipm, based instead on Krylov method. On the
other hand both explhe and pkryexp, with their wisely placed interpolation points, need
sensibly less matrix-vector products than expmv, while phipm stands out as the method
requiring by far the least amount of matrix-vector products. The reason for this is that
phipm employs more Ritz’s values than pkryexp (and clearly of expmv and explhe) and,
in addition to that, it rearranges the interpolation points at each sub-step, tailoring them
to the application vector.

In the second example we consider the advection-diffusion case with b = 0.25. The
(estimated) rectangle R(tB) is [−299, 299]+i[−73, 73]. Table 4.2 collects the results. The
first element to be noticed is that phipm takes drastically more time than in the previous
example. This can be only partially justified by the additional 75 matrix-vector products
it computes in this second example. The truth is that being A not Hermitian anymore
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Method Substeps Act. prods Rel. fwd. err. Avg. Elaps. cpu Time

expmv 31 1488 1.09e-14 2.39e-02

explhe 31 970 1.26e-14 1.83e-02

pkryexp 30 1046 4.99e-15 2.58e-02

phipm 6 331 2.58e-14 7.64e-02

Table 4.2: Results for the advection-diffusion case (b = 0.25), tolerance set to 1.11e-16.

the routine is forced to employ the Arnoldi process, which is considerably more expensive
than the Lanczos variant. Similarly, we can guess that pkryexp suffers the passage to
Arnoldi process as well but somehow in a reduced measure. This is because pkryexp

had to perform the Arnoldi process only once against the 6 times of phipm. Finally, we
notice that both expmv and explhe selected exactly the same sub-stepping strategy but
the latter performed two thirds of the matrix-vector products computed by expmv. This
is, therefore, purely due to the superior choice of the interpolation points performed by
explhe.

In the third and final example of this series, we consider the case b = 0.5. The
(estimated) rectangle R(tB) is [−299, 299] + i[−146, 146]. Table 4.3 collects the results.
What is to be noticed in this final example is that as the spectrum of B gets fatter the

Method Substeps Act. prods Rel. fwd. err. Avg. Elaps. cpu Time

expmv 31 1458 1.29e-14 2.37e-02

explhe 36 1156 2.03e-15 2.09e-02

pkryexp 30 1104 1.70e-14 2.63e-02

phipm 4 331 3.05e-11 1.02e-01

Table 4.3: Results for the advection-diffusion case (b = 0.5), tolerance set to 1.11e-16.

performance of routine explhe gets slightly worse. Nevertheless explhe proved to be the
fastest and more accurate routine in this case. On the other hand, we see that phipm ran
into problems for it took a while to return a not satisfying approximation. We evince from
this example that the underlying Krylov methods must be having troubles in capturing
the nature of B. In fact, pkryexp too took quite long in returning an approximation, but,
differently from phipm, its strictly polynomial nature together with a rigorous analysis of
the backward error, kept it from committing a large error.

Schrödinger matrix

In this example we consider the discretization by second order central finite differences
of the free Schrödinger operator i∂xx in the one-dimensional spatial domain [−1, 1] with
homogeneous Dirichlet boundary conditions. The space step size h is 1/35, the matrix A
has dimension 69×69 and is skew-Hermitian. The application vector is the discretization
of u0(x) = 1/(2+cos(2πx))−1/3. Suppose t0 = 0 and that we are interested in computing
the solution at time t = 2. The (estimated) rectangle R(tB) is i[−4857, 4857]. Table 4.4
collects the results.
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Method Substeps Act. prods Rel. fwd. err. Avg. Elaps. cpu Time

expmv 249 13373 5.61e-11 5.62e-02

explhe 350 11848 2.04e-13 9.42e-02

pkryexp 246 10553 5.10e-13 6.61e-02

phipm × × × ×

Table 4.4: Results for the Schrödinger case, tolerance set to 1.11e-16.

Before commenting on the data collected in this case, we have to stress that the cpu
time reported here just gives a broad idea of the efficiency of a method. In fact, the matrix
A just have size 69 while the problems from the real applications can produce matrices
with far more rows and columns. The first thing to be noticed is the absence of phipm
in Table 4.4, this is due to the fact that this routine fails to find a sequence of sub-steps
delivering a satisfying approximation. We notice that both explhe and pkryexp need
considerably less matrix-vector products than expmv to deliver the desired approximation

In addition to that, Table 4.4 suggests that pkryexp performs slightly better than
explhe in the sense that it requires to compute less matrix-vector products. While this
is true on the one hand, on the other hand, we point out that explhe performs averagely
34 matrix-vector products per sub-step against the 43 of pkryexp, suggesting that the
Leja–Hermite interpolation sequence is still a superior choice in this scenario.

Lastly, we notice that the routine expmv returns an inaccurate approximation. This is
due to the hump phenomenon which is made even more evident in the Schrödinger case
because

∥∥eA
∥∥

2
equals 1 while ‖A‖2 is very large. The choice of good interpolation points

here is crucial, it can be seen by the fact that even though pkryexp selects a similar
sub-stepping strategy to expmv, it commits a much smaller error.

Conclusion

From these tables we can infer that in those cases where Lanczos process can be used
in place of Arnoldi, the routines phipm and pkryexp are by far the most effective. In
the other cases, that is when the spectra of the input matrices are skinny, we notice that
explhe is the most effective routine. We remark that, despite the reported cpu time is
to be considered with a grain of salt (the matrices in A are moderately small), there is
an inconsistency between the number of matrix-vector products performed by phipm and
the cpu time shown. This is due to the inefficiencies affecting the Arnoldi process we
discussed at the end of section 1.1.3. On the other hand, the importance of the number
of matrix-vector products should not be underestimated. For example, a matrix-vector
product may require several all-to-all communications in a parallel application and a large
number of communications could deteriorate the strong scalability of the algorithm.

4.4.2 Tests over the test set S
In the section we assess the performances of the four routines over a large set S built
out of the 1980 square matrices from the SuiteSparse Matrix Collection (formerly the
University of Florida Sparse Matrix Collection), that is a “widely used set of sparse matrix
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benchmarks collected from a wide range of applications”.
To give to the reader a quick overview of the characteristics of S, in Table 4.5 we report

the number of matrices that have or have not a (skew-)Hermitian structure for subsets
of S characterized by similar size. It is worth notice that the larger the matrices from

not Hermitian (skew-)Hermitian total

N ≤ 102 40 37 77

102 < N ≤ 103 216 151 367

103 < N ≤ 104 350 302 652

104 < N ≤ 105 235 327 562

105 < N ≤ 106 87 156 243

106 < N ≤ 107 24 49 73

107 < N ≤ 108 2 10 12

total 953 1027 1980

Table 4.5: Number of matrices that have or have not (skew-)Hermitian structure for
subsets of S characterized by similar size.

S are, the more likely they show a (skew-)Hermitian structure. Moreover, even though
this is not displayed, a similar trend can be noticed in the sparsity of the matrices from
S: the larger they get, the sparser they tend to be. The reason for this lies in the fact
that researchers and engineers are willing to handle large matrices only provided that
such matrices are really sparse or show some symmetry. These trends we just highlighted
clearly suggest that the performance of a routine may largely vary in function of the size
of A. Therefore, running tests over a set large and heterogeneous as S is fundamental to
properly assess the quality of a routine for the computation of the action of the matrix
exponential.

The problem with the set S is that it needs to be manipulated a bit before we are
ready to use it for our tests. In fact, many elements from S have norm in the order
of the tens of millions and their exponential may not even be representable in machine
precision. Clearly, it would not be correct to normalize every matrix from S to a specific
predetermined norm. First of all, because we would introduce a bias in our tests. Second
of all, we would like the matrices with norm larger (or smaller) than the average to keep
having a larger (or smaller) norm than the average, so that they can keep their “nature”.
A solution we came up with is to normalize every matrix from S to

ω · | log2(‖A‖)|

for some positive scalar parameter ω. This transformation fits our requirements for it
associates to those matrices A with a large norm a larger than average norm and vice-
versa. The only exception would arise when A originally has norm close to 0. Luckily for
us, there are no such matrices in S. We plot in Figure 4.2 the norm of the elements of S
sorted by their new norm when we set, for example, ω = 16. We invite the reader to notice
that the vast majority of the matrices now have a norm between 10 and 1000, while a
very small subset has norm smaller than 10. We believe this distribution is heterogeneous
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Figure 4.2: New norms (ω = 16) of the matrices from S (y-axis) displayed in ascending
order.

enough while it allows us to focus on hard problems, i.e. those matrices showing a large
norm. Therefore, in the next section, when we treat the choice of ω we will pick an ω of
this order of magnitude.

As important as the choice of A, is the choice of the vector v, which is not given in
the considered test set. We discarded a priori the possibility of using randomly generated
vectors for they do not allow for a perfect replicability of the experiments. We found that
a satisfying compromise is to generate v as

abs(A)u

‖abs(A)u‖2

,

where u is a vector of ones of size compatible with A and where with abs(A) we mean
the matrix whose (i, j)th is the absolute value of the (i, j)th entry of A. Unfortunately,
for some matrices from S we had that such a v was in the kernel of A. For such matrices
we built v using A? in the formula above. Of these matrices, 26 where (skew-)Hermitian,
therefore the new v is in the kernel of A as well. We decide to discard these 26 matrices
and to move on.

We noticed that the routine phipm behaves very unpredictably. On 21 matrices from S
we noticed that phipm is not able to determine a sub-stepping strategy to accomplish the
task in practical time. In one case, phipm exceeded the 16Gb of memory of the machine
running the test. This issue was provoked by the attempt of allocating the dense matrix
Vm, necessary to the Arnoldi process, for a large m, which required 18Gb of storage space.
Therefore, we exclude also these 22 matrices from S.

The set S now counts 1932 matrices left.
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Figure 4.3: Average cpu time (y-axis) against ω = 2j (x-axis) with j = −2,−1, . . . , 4,
matrices from the test set S1, tolerance set to 2−53.

CPU time versus norm

Before agreeing on a value of ω, we want to assess the sensitivity of the routines with
respect to the norm of the input matrix. In particular, we noticed that phipm is very
sensitive to the norm of A, i.e., phipm works far more efficiently when ‖A‖ is not large.
There is a small subset S1 of S, whose four matrices are all titled

’ABAQUS benchmark: pt.loaded fluid-filled spherical shell’

and we find that it exacerbates the sensitivity of phipm with respect to the norm of A.
In fact, this four matrices seem to be a formidable source of troubles for phipm when
their norm grows. In Figure 4.3 we display the data obtained plotting how the cpu time
(average over 5 launches) needed by each routine to compute eAv with A ∈ S1, varies in
function of the parameter ω.

From Figure 4.3 we can observe that while the cpu time needed by the polynomial
methods increase linearly with the norm of the input matrix, the cpu time taken by phipm

increases exponentially. Clearly, the matrices from S1 are pathological and phipm may
not be in general so sensitive to the variations of the norm of A. On the other hand, we
cannot think to scale down every matrix in S using a too small value of ω. First of all,
because it would be unfair toward those routines whose cpu time scales linearly with the
norm of the input matrix. Second of all, exponential integrators are expressly meant for
integration over time steps that are as large as possible. Running tests on a biased set
made out of matrices with small norm would not be correct. In conclusion we decided to
set ω = 9.
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Figure 4.4: Average error (y-axis) against average cpu time (x-axis), matrices from the
test set S2, tolerance set to 2−11, 2−24 and 2−53.

Precision diagram

In this experiment we run the four routines setting different prescribed tolerances. We
are interested in observing how the cpu time (average over 5 launches), needed by each
routine to compute eAv, varies when the demanded precision increases.

We run the experiment over the set S2 of the matrices belonging to S that have size
between 1000 and 5000. Then, we display the data we obtained by plotting the average
cpu time taken by each routine to compute eAv for every A from S2 against the average
relative forward error committed.

The reason for this choice of S2 is to sample a subset of S which is significant (S2

includes 471 matrices of the 1932 from S) and whose matrices are not so small to not be
meaningful when it comes to measure the performances of the routines. We chose not to
exceed size 5000 so that the reference solutions could be computed in a reasonable time
using the routine expkpotf from Chapter 3 with tolerance set to eps2 ≈ 4.93e-32. The
results are collected in Figure 4.4.

From Figure 4.4. it appears evident that the fastest and most accurate routine over
the considered subset of S is pkryexp. When double precision is required, differently from
the half or single precision accuracy cases, no routine reaches on average the full 16 digits
of accuracy. This is justified by the fact that the experiments are run in double precision
arithmetic, therefore, the approximation error gets inevitably mixed with the rounding
errors.
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CPU time versus matrix size

In this experiment we set the tolerance to 2−24 and we measure how the cpu time (average
over 5 launches), needed by each routine to compute eAv with A ∈ S, varies in function
of the size N of A.

In Figure 4.5 we display the data we collected in a log-log plot. Clearly, we could
not plot the cpu time taken by each routine to compute eAv for each A ∈ S, for this
would require to display 7728 (scattered) dots. To help readability, we regrouped the
data obtained in 28 groups of 69 matrices with similar size each (1932 is the product of
23, 7, 3, 2 and 2, so our options were limited). We then plotted the average cpu time that
each routine needs to compute the action of the matrix exponential of all the matrices of
each group.

From Figure 4.5 it appears evident that routines that are the fastest over the “small”
matrices become the slowest on the large matrices. In particular, this is the case of
expmv, whose performance dramatically drop as the size N grows larger than roughly
2000. This confirms the considerations we made at the beginning of this section on
numerical experiments on S.

The best performing routine, without any doubt, appears to be pkryexp which,
roughly after size 2000, confirms itself as the fastest routine. It is worth notice that,
when there is a marked discrepancy between the performance of phipm and the strictly
polynomial methods expmv and explhe, the routine pkryexp usually performs as the
fastest one. We believe that this is due to the dual nature of pkryexp which conjugates
the best aspect of the two approaches while dodging the drawbacks.

The behavior of the curve representing the performance of phipm is quite unpre-
dictable. We believe this is due to the lack of a tool for predicting the approximation
parameters at the beginning of the computations. Such a tool, for the polynomial meth-
ods, is represented by the backward error analysis.

Performance profile

In running the last test over S, we also collected information about the accuracy of the
routines. We plot the data obtained as performance profile in Figure 4.6 that is such that
a point (γ, ρ) on a curve related to a method represents the fraction of computed divided
differences for which the corresponding error is bounded by ρ times the “unit” error, that
we set to 2−25 ≈ 2.98e-08.

In order to measure the error we need a trusted reference. While for the tests over
the set S2 such a reference could be obtained using the routine expkpotf, this is now
impossible due to the prohibitive size of the matrices from S. We decided to produce the
trusted reference using the routine pkryexp with tolerance set to eps2 ≈ 4.93e-32. The
reason for this is that, in Figure 4.4 pkryexp, proved to be the most accurate routine.

Figure 4.6 shows that the routine explhe is evidently the one with the most favorable
curve, closely followed by pkryexp. This is because it does not matter the behavior of
any of the curves as long as it is before ρ = 4. In fact we recall that we set the tolerance
to 2−23 and the “unit” error to 2−25. Therefore ρ · 2−25, with ρ = 4, equals exactly the
tolerance 2−23, therefore we are only interested in the behavior of the curves for ρ > 4.

It is remarkable that explhe stands out as the most accurate routine even though it
is forced to interpolate the exponential function either on a real symmetric interval or a
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Figure 4.5: Average cpu time (y-axis) versus average matrix size N (x-axis), tolerance
set to 2−24.
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Figure 4.6: Performance profile over the test set S, tolerance set to 2−24.

purely imaginary one. Such a great accuracy must be due to the powerful contour integral
approximation of the backward error, which allows for optimal choices of the interpolation
parameters.

It is worth notice that, on the contrary, phipm, despite it can avail of an interpolation
set which is tailored at every sub-step l on A and v, achieve average performances.

4.5 Conclusions

The first conclusion we can draw from the section on numerical experiments is that the
contrast between the Krylov methods and the strictly polynomial methods should be
no more the paradigm when it comes to polynomial methods. In fact, the inefficiencies
of expmv and phipm clearly suggest that a rigorous analysis of the approximation error
without a good set of interpolation points, and vice-versa, can only go so far.

The contour integral expansion technique proved to be an effective way to bound the
backward error. In fact, the routine explhe, which was expressly meant for a specific
class of matrices, can compete on equal terms with routines having a larger scope.

The interpolation at the extended Ritz’s values proved to be a formidable solution to
the problems of both the Krylov methods and the strictly polynomial methods. In fact,
pkryexp mimics the interpolation features of the Krylov methods while it is not subject to
its typical instabilities. We recall as an example when we had to discard 22 matrices from
S because phipm could not converge to a solution or it was requiring more storage space
than the 16Gb available on the machine used to perform the tests. Just few years ago,
the typical storage capacity was far less. We can only imagine how many other matrices
would have to be discarded if we were to run these tests over an older machine.
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We believe these are exactly the problems of the Krylov methods that the authors of
expmv were addressing when they first developed this routine, that, we recognize, is very
reliable. On the other hand, the truncated Taylor series method underlying to the routine
expmv is a little simplistic and this is reflected both in the accuracy and speed tests.

The next step will be to conjugate the contour integral expansion of the backward
error of explhe and the interpolation at the extended Ritz’s values of pkryexp into one
routine. Our numerical experience suggests that the resulting routine should be able to
easily outperform the four routines we presented in this chapter.

112



Chapter 5

Conclusions and future work

When I first got started with my research work, the field of numerical analysis dealing
with the computation of the action of the matrix exponential was already quite crowded.
Among others, I refer to the acclaimed survey paper of C. Moler and C. Van Loan [42],
that collects a vast, although a bit dated, literature on this topic. Nevertheless, scientists
and engineers tend to polarize on a few well-established methods, mainly polynomial, that
are the methods I focused on.

Some scientists prefer the great effectiveness of the Krylov methods, which are usually
quick in recovering a fair level of accuracy and that therefore greatly fit PDEs solvers
(see for instance [27, 28, 46, 52]). The underlying Arnoldi process, however, is costly, it is
prone to loss of orthogonality and it requires a possibly very large Krylov basis to store.
Moreover, the exponentiation of the Hessenberg matrix, while it appears to be a simple
task, it hides certain pitfalls, see for example Table 3.5 from Chapter 3.

Some others researchers, instead, value more the reliability and stability of polynomial
methods which directly approximate the scalar exponential function. The performance
of these methods are very predictable for they can be equipped with the backward error
analysis tool (see [2, 4, 8, 6, 7, 12, 36, 44, 45, 62, 66]).

For this reason, the hump phenomenon, affecting direct methods and whose occur-
rence is instead unpredictable, is particularly hideous and needed to be addressed. So
there I started, studying interpolation at the Leja–Hermite sets, which proved to greatly
reduce the incidence of such a phenomenon. This branch of my investigation, through the
manuscripts [8] and [10], led to the routine explhe, that I described in Chapter 4.

Another long-standing problem, affecting in particular direct methods in Newton form,
is the computation of the divided differences. Although this problem was already elegantly
and efficiently addressed by A.C. McCurdy in [38], I felt that I could give my input. The
result is an innovative representation of the divided differences for analytic functions,
which led to the routine dd_phi from [68], that I described in Chapter 2. This routine
shown a ten-fold improvement in cpu time with respect to its fastest competitor, with a
far more favorable performance profile.

In addition to this, the novel representation of the divided differences made possible
to study, avoiding cancellation errors, certain polynomials linked to the truncation error.
This innovation was crucial for developing, in [11], a tool for performing the backward
error analysis in run-time. This tool allowed to consider interpolation sets such as the
extended Ritz’s values, which remain unknown until the moment of computing the action
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of the matrix exponential. The result is the routine pkryexp, that I described in Chapter 3
of this thesis. On the one hand, this routine excellently mimics the features of the Krylov
methods, being close-to-immune to hump phenomenon. On the other hand, pkryexp

is not subject to the instabilities and vulnerabilities of the Krylov methods. Evidence
for this can be found in the numerical experiments of Section 4.4.2, which shows the
remarkable performance and accuracy of pkryexp.

In the meantime, a second branch of my investigation consisted in studying the prob-
lem of computing the matrix exponential itself. Although this problem is strongly in-
terconnected with the problem of computing the action of the matrix exponential, the
differences run deep. In particular, one of the main challenges that the numerical linear
algebraists are facing nowadays is to convert the existing algorithms for computing matrix
functions to arbitrary-precision. For this reason, in [9], I developed the on-the-fly back-
ward error estimate, which turned out to be the trump card to the remarkable performance
shown by the routine expkptotf from [60], described in Chapter 3. In fact, other than
being the best performing and most accurate routine for the arbitrary precision arith-
metic computation of the matrix exponential, expkptotf is also the only existing method
able to successfully produce arbitrarily accurate approximations even when working with
standard precision arithmetic (see for example Table 3.5). I refer to Section 3.4 for the
numerical experiments supporting my claim.

As for the future, my plan is to produce new routines for computing (the action of) the
matrix exponential which are meant to preserve certain quantities or geometric properties,
a very important feature in certain fields of the numerical analysis. In addition to that, I
noticed that certain routines for the computation of the action of the matrix exponential
perform best when embedded into exponential integrator. This phenomenon is due to
the optimization of parameters, such as the step size, that takes in account the efficiency
of the whole system. This level of efficiency is something I would be thrilled to pursue,
therefore, I would like this to be my very next research topic.
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