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Abstract 52 
 53 Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but 54 questions remain about the replicability of biomarkers across cohorts and populations. We 55 performed a meta-analysis of five publicly available datasets and two new cohorts, and validated the 56 findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome 57 shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly 58 higher richness than controls (P < 0.01), partially due to expansions of species typically from the oral 59 cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the 60 putrefaction and fermentation pathways to be associated with CRC, whereas the stachyose and starch 61 degradation pathways were associated with controls. Predictive microbiome signatures for CRC 62 trained on multiple datasets showed consistently high accuracy in datasets not considered for model 63 training and independent validation cohorts (average AUC 0.84). Pooled analysis of raw 64 metagenomes showed that the choline trimethylamine-lyase gene was over-abundant in CRC (P = 65 0.001) identifying a novel relationship between microbiome choline metabolism and CRC. The 66 combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome 67 biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic 68 tests and hypothesis-driven mechanistic studies.  69 
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Introduction 79 Colorectal cancer (CRC) is the second most common non sex-specific cancer and is responsible for 80 more deaths than any other cancer after lung cancer 1. Because of demographic trends toward an 81 ageing population, the global incidence rate is expected to increase by nearly 80% to 2.2 million cases 82 per year over the next two decades 2. Sporadic CRCs, as opposed to hereditary CRCs, account for 83 approximately 70%-87% of cases 3 and genetics can only explain a small proportion of disease 84 incidence 4. The missing strong link of CRC with genetics points to the potential role of other variables 85 including lifestyle and environmental factors as disease co-determinants. Reported risk factors 86 associated with CRC include age, tobacco and alcohol consumption, lack of physical activity, increased 87 body weight, and diet 5,6. However, many non-genetic risk factors are common to several cancer types 88 and these factors remain largely unsettled for CRC 7,8. 89 The human gut microbiome - defined as the microbial communities that populate our intestinal tract 90 - is emerging as a relevant factor in human diseases 9,10. Supported by some evidence of carcinogenic 91 mechanisms induced by bacterial organisms 11–13, the gut microbiome has also been hypothesized to 92 play a crucial role in the development of CRC. Studies using 16S rRNA gene amplicon sequencing have 93 led to the discovery of Fusobacterium nucleatum’s association with CRC 14, which was subsequently 94 shown to be causal in animal models of CRC carcinogenesis and progression 15,16. Compared to 16S 95 rRNA gene studies, a smaller number of metagenomic sequencing studies have linked other microbial 96 species and potential functional activities of the gut microbiome to CRC 17–19. However, the 97 reproducibility and predictive accuracy of these high-resolution microbial signatures across cohorts 98 and study design choices remain unclear. The potential use of the gut microbiome as a diagnostic tool 99 for CRC has been proposed 17–21, but not yet validated across multiple independent study populations. 100 There is thus a need to establish and validate links between the human gut microbiome and CRC 101 carcinogenesis across populations, cohorts, and microbiome tools. Some multi-cohort works have 102 been performed based on 16S rRNA gene studies 22, but this technique has important technical 103 limitations 23. The recent availability of whole-metagenome shotgun datasets of CRC cohorts 17–21 104 enables a combined multi-population exploration of the CRC-associated microbiome with strain-level 105 resolution 24,25 and meta-analytic predictive approaches 10,26, but the only meta-analysis study 106 performed so far on CRC is affected by overfitting issues 27. It is thus crucial to perform large-scale 107 cross-cohort studies to provide an unbiased and well-powered assessment of the link between CRC 108 and the gut microbiome. 109 In this study, we have sequenced 140 samples from two different cohorts, performed an integrated 110 analysis combining all current metagenomic CRC datasets available, and assessed prediction 111 accuracies of the gut microbiome for CRC detection across populations, datasets, and conditions. 112 
Results 113 

A meta-analysis of metagenomic datasets to identify links between the gut microbiome and 114 
CRC 115 To identify reproducible relationships between the gut microbiome and CRC, we performed shotgun 116 metagenomic sequencing 28 of the stool microbiome of 140 CRC patients and controls recruited in 117 two cohorts, and analyzed these in the context of 624 additional samples from five publicly available 118 and geographically diverse metagenomic studies. We validated the results on two novel datasets of 119 60 CRC and 65 controls 29 and 40 CRC and 40 controls (see Methods), respectively. In total, we 120 



 

 

considered 413 samples from CRC patients, 143 from subjects with adenoma and 413 control 121 samples. Participants from all studies underwent colonoscopy to diagnose CRC, adenoma, or to 122 confirm the absence of disease, with samples collected before diagnosis or beginning of treatment 123 (Suppl. Table 1, Table 1). All datasets were sequenced at high depth except for the Hannigan et al. 124 study 30 (Extended Data 1A, Methods).   125 
Meta-analysis shows higher species richness in CRC-associated samples 126 We first tested whether microbial richness and diversity differed between CRC samples and controls, 127 given contrasting current evidence 31–33. In all but one study, the median species richness was higher 128 in CRC samples compared to controls, and the increase was significant in four of the six deeply 129 sequenced datasets (P < 0.05 Extended Data 1B-C). Meta-analysis of standardized mean differences 130 by random effects model for the number of microbial species confirmed the higher number of species 131 in CRC compared to controls (μ=0.5, 95% CI [0.16, 0.85], P = 0.004), although with significant 132 heterogeneity across datasets (I2 = 74.8%, p = 0.0007, Q-test). This difference was not meaningfully 133 affected when controlling for potential confounding by age, BMI, or sex(Extended Data 1D-E). 134 Conversely, we observed no difference in diversity between carcinomas and controls (Extended 135 
Data 2A-B). We thus provide strong evidence that the CRC-associated microbiome has a quantitative 136 species distribution which is consistent with healthy controls, but is significantly enriched in the total 137 number of detected microbes. 138 We further tested whether the CRC-associated microbiome possesses more oral cavity-associated 139 species than controls, as previously hypothesized 22,34. Considering the 161 species we identified from 140 multiple existing datasets 35,36 as being typical colonizers of the oral cavity (see Methods), we found 141 increased oral species richness in CRC samples for all but one of the six deeply sequenced datasets 142 compared to controls and the increase was significant in meta-analysis (μ = 0.16, 95% CI [-0.03, 0.35], 143 
P = 0.02, Extended Data 2G). Similarly, the total abundance of oral species in the stool microbiome 144 was also significantly higher in CRC patients compared to controls (meta-analysis μ=0.23, 95% CI 145 [0.07, 0.39], P = 0.003). Altogether, greater species richness and abundance may be a sign of an 146 altered gut microbiome in CRC, and it is indicative of an influx of bacterial species originating from 147 the oral cavity. 148 
A panel of microbial biomarkers for CRC is reproducible across cohorts 149 Individual biomarker discovery efforts can be sensitive to technical artefacts and to heterogeneity of 150 factors implicated in microbial shifts in healthy populations, including biogeography, diet, and host 151 genetics 25,37. This is confirmed by the two newly sequenced datasets that have only partially 152 overlapping taxonomic and functional potential biomarkers (Extended Data 3). Even so, several CRC 153 biomarker species were identified by univariate statistics 38 independently in the majority of the 154 datasets: F. nucleatum, Solobacterium moorei, Porphyromonas asaccharolytica, Parvimonas micra, 155 
Peptostreptococcus stomatis, and Parvimonas ssp. Other species were identified in fewer datasets or 156 were dataset-specific (Figure 1A, and Suppl. Table 2). F. nucleatum, whose connection with CRC has 157 been extensively reported 14,17–19, had significantly increased abundance in CRC patients in all 158 datasets with adequate sequencing depth, when considering single markers for this species 159 (Extended Data 4A). Some of the cross-cohort CRC biomarker species have already been reported 160 14,22,34 and many of them are commonly found in the oral cavity (8 out of the 39 total biomarkers 161 found in at least 2 datasets), consistent with the increased oral taxa presence in CRC samples 162 mentioned above.  163 



 

 

We then pooled evidence of differential abundance across datasets by random effects meta-analysis. 164 Among the 26 differentially abundant species at FDR < 0.005, those with the highest effect size were 165 again F. nucleatum, S. moorei, P. asaccharolytica, P. micra and P. stomatis. The meta-analysis 166 additionally identified Clostridium symbiosum, which has been tested as a marker for early CRC 167 detection 39 (Figure 1B). Other differentially abundant species at FDR < 0.05 have not been 168 previously reported in CRC microbiome studies, including Streptococcus tigurinus and Streptococcus 169 
dysgalactiae, and 3 different Campylobacter species. We also confirmed Gemella morbillorum and 170 
Streptococcus gallolyticus to be relevant biomarkers, as previously suggested in smaller cohorts 18,40. 171 In contrast, only 12 species were associated with the control population in the meta-analysis and only 172 four were significantly enriched for the same populations in at least three datasets. Control-173 associated species with the highest effect sizes were Gordonibacter pamelae and Bifidobacterium 174 
catenulatum (Figure 1B, Suppl. Table 2; Extended Data 4C), which are generally considered 175 beneficial microbes and have been used as probiotic supplements 41. Adjustment for potential 176 confounding by host characteristics did not meaningfully affect crude estimates in the meta-analysis 177 (Figure 1D, Extended Data 4B). The substantially higher number of species enriched in CRC than in 178 controls (49 vs. 12), even when focusing only on species with putative oral origin (15 vs. 2, Extended 179 
Data 5A), points to the existence of a reproducible taxonomic signature of the CRC-associated 180 microbiome. 181 Functional potential of the microbiome was also significantly associated with CRC samples when 182 compared against healthy controls. We found overall increased richness of UniRef gene families 42 in 183 CRC samples in two datasets, with percentages of unmapped reads ranging between 20% and 40% 184 (Extended Data 5E). We found 33,840 of the 2,479,274 single gene families detected at least once to 185 be associated with CRC and 30,475 associated with controls (FDR < 0.05, 9,154 and 7,115 differential 186 gene families at FDR < 0.005 respectively). We further observed 136 out of 590 metagenomically 187 reconstructed microbial functional pathways to be CRC-associated, and only 37 associated with 188 controls (Suppl. Table 3). Among the most differentially abundant pathways (Figure 1C) that are at 189 worst just minimally affected by potential confounding factors (Figure 1E), we found starch, 190 stachyose, and galactose degradation to be associated with controls. These associations could 191 indicate how potentially diet-associated changes in the functional repertoire of the microbiome can 192 influence host conditions. The CRC-associated microbiome showed an association with 193 gluconeogenesis and with capacity for uptake and metabolism of amino acids via putrefaction and 194 fermentation pathways (Suppl. Table 3-4). These included those pathways responsible for the 195 conversion of different amino acids to tumor-promoting compounds 19,43, such as polyamines (e.g. L-196 arginine and L-ornithine degradation to putrescine) and ammonia (L-histidine and L-arginine 197 degradation, and L-lysine and L-alanine fermentation to acetate, butyrate and propionate). These 198 pathways (Figure 1C) and the set of species described above (Figure 1A,B) thus constitute a 199 collection of microbiome biomarkers that is reproducible across cohorts. 200 
Predicting CRC from single metagenomic datasets in independent cohorts leads to reduced 201 
accuracy 202 To test the hypothesis that the stool microbiome could be used as a reproducible CRC pre-screening 203 tool, we performed intra-cohort, cross-cohort and combined-cohort prediction validation on the 204 overall set of 621 CRC and controls samples using a Random Forest classifier (Table 1). In intra-205 cohort cross-validation using species-level taxonomic relative abundances, we observed 206 performances ranging from 0.92 to 0.58 AUC score, with an average in the deeply sequenced datasets 207 of 0.81 AUC (Figure 2A). When using the functional potential of the gut microbiome by means of 208 



 

 

pathway abundances, we observed decreased single dataset cross-validation accuracies, with the 209 exception of our Cohort1 (maximum 0.82 AUC, average 0.71 AUC, Extended Data 6A). The profiling 210 of the more fine-grained UniRef90 gene family abundances improved the predictions, with AUCs 211 reaching 0.84 AUC for Cohort2 and an average of 0.77 AUC in the deeply sequenced datasets (Figure 212 
2B). These results show that, while cross validation AUCs can be high for predicting CRC in some 213 datasets, they are highly variable and dataset dependent. 214 We then tested whether and how much the microbial signatures of CRC remained predictive across 215 distinct datasets and cohorts. To this end, we trained the classifier on each single “training” dataset 216 and applied the model on each distinct “testing” dataset. For most datasets this led to decreased AUC 217 values when compared to single cross validation AUCs, and AUCs showed a high variability across 218 cohorts (minimum 0.5 and maximum 0.86 cross dataset AUC). These results were consistent when 219 using either pathway or gene family-abundances as predictors (Extended Data 6and Figure 2B). 220 Overall, we highlight a poor transportability of the microbiome signature from one dataset to the 221 other and experimental choices 44 and cohort or population characteristics 25 , may explain the 222 reduced cross-study predictability when considering single datasets to train the model (Extended 223 
Data 6C-D). 224 
Pooling of training cohorts substantially improves prediction across datasets 225 To overcome the limitations of training on single datasets (Suppl. Table 5), we performed a Leave-226 One-Dataset-Out (LODO) analysis 45 in which classifiers were trained on six datasets combined, and 227 validated on the left-out dataset, for each dataset in turn. For taxonomic profiles, this approach 228 improved both AUC values and inter-dataset consistency, producing AUCs ≥ 0.80 (average 0.84 s.d. 229 0.03) for all six deeply sequenced datasets (Figure 2A). Predictors based on clade-specific markers 230 also produced high, albeit more variable AUC values, outperforming taxonomic profiles in some 231 datasets (Extended Data 6B). Gene families achieved slightly reduced performances, whereas 232 pathway abundances produced substantially less accurate predictions (Figure 2B). The technical and 233 host population diversity embedded in these training meta-cohorts may be crucial in improving the 234 generalizability of classifiers, as we found this LODO approach to be substantially and consistently 235 more informative than a single-dataset cross-validation, and independent investigations found 236 similarly high LODO performances using different metagenomic profiles and machine learning tools 237 29. 238  239 The model trained on taxonomic or functional features was also shown to capture the above whole-240 microbiome biomarkers because the direct inclusion of alpha-diversity metrics, oral-species 241 abundance, and a measure of metagenome mappability did not provide substantial improvements 242 (mean 0.83, s.d. 0.03 for the deeply sequenced datasets when using the taxonomic model). However, 243 based on the performance and variability of the predictive models across datasets, we recommend 244 using species-level microbial abundance as the main feature set for CRC status prediction in a LODO 245 setting. 246 To assess the relation between population diversity in the training meta-cohort and prediction 247 performance, we considered increasingly larger subsets of the available training cohorts. AUC values 248 sharply increased when moving from one to two training datasets (10% to 13% median AUC 249 improvement depending on the features considered in the model, Extended Data 7) with less 250 marked improvements at further dataset additions (Figure 2C-D). Large and heterogeneous 251 combined training sets thus generate improved accuracy for identifying CRC cases in independent 252 metagenomic datasets.  253 



 

 

Accurate predictive models using a minimal microbial signature 254 The predictive CRC-associated microbiome signatures identified above considered all observed 255 species and gene functions and would thus be impractical for clinical application without whole 256 microbiome profiling. We thus sought to identify a minimal set of highly predictive microbial features 257 by exploiting the internal feature ranking of the Random Forest classifier 10. We found that P. stomatis 258 was the species with the highest average rank. As expected, other CRC-associated species such as F. 259 
nucleatum, Parvimonas ssp., P. asaccharolytica, G. morbillorum, Clostridium symbiosum and P. micra 260 were also crucial to prediction accuracy (Figure 3A) with the top seven ranked species for CRC 261 detection amongst those with the largest effect sizes in the meta-analysis. Very few species were 262 ranked high in the learning models, further highlighting that successful discrimination is achieved by 263 CRC-specific rather than control-specific microbial features. 264 To evaluate how many microbial species or gene families are necessary to achieve prediction scores 265 comparable to those obtained using the full set of features, we computed AUC values at increasing 266 numbers of features. Feature ranking was performed internally to each training fold to avoid 267 overfitting. By applying this approach to all datasets (Figure 3B-C), we found that using as few as 16 268 species achieved CV AUC >0.8 for the majority of the datasets, with little improvement from using all 269 remaining species (2% improvement in the mean AUC value). We also found that using only 64 gene 270 families achieved prediction values >0.8 for the same datasets, and that using all 8,192 gene families 271 improved AUC only slightly (2% improvement -Extended Data 8). Therefore, these results suggest 272 that a stool-based diagnostic test using genetic markers targeting a limited number of microbial 273 species or genes would serve as a promising clinical tool.  274 
Microbiome signatures for adenomas are only partially predictive 275 We assessed the ability to discriminate adenomas from controls or carcinomas, using 27 newly 276 sequenced adenoma-associated samples and 116 adenoma-associated samples from available studies 277 (Table 1). Adenomas could be distinguished from CRC patients with lower accuracy than controls 278 (mean AUC 0.69 versus 0.79, Extended Data 6E-F) and there are only eight species that differentiate 279 adenoma patients from carcinoma patients in the meta-analysis (FDR < 0.05). Seven of these eight 280 biomarkers are in common with the comparison between carcinoma patients and healthy individuals, 281 and the LODO approach did not improve discrimination of adenomas from CRC (average AUC 0.68). 282 Moreover, we found that no dataset could accurately predict adenomas from control samples 283 (maximum AUC 0.58, minimum 0.46), even when using a LODO approach (average AUC 0.54). In the 284 meta-analysis, no species were significantly different when contrasting samples from patients with 285 adenomas and healthy controls. These results reinforce previous findings 18,19 that the adenoma-286 associated stool microbiome closely resembles that of the healthy gut.  287 
Increased abundance of choline TMA-lyase encoding genes in CRC 288 Microbiome-derived metabolites and specifically polyamines have been implicated in carcinogenesis 289 both in animal models and in humans 43. We chose to focus on trimethylamine (TMA), an amine 290 produced by bacteria from choline and carnitine, because it has been shown to play a role in complex 291 diseases such as atherosclerosis and primary sclerosing cholangitis 9,46. Since dietary components 292 have been linked with CRC risk 5,6, we hypothesized that the TMA-producing potential of the human 293 gut microbiome could also be associated to CRC 47. To test this hypothesis, we considered the genes 294 belonging to the main TMA-synthesis pathways to reconstruct and quantify the presence of such 295 genes in the CRC-associated metagenomes. The main genes associated with TMA-synthesis are those 296 encoding the choline TMA-lyase (cutC), the L-carnitine dioxygenase (yeaW) and the L-297 



 

 

carnitine/gamma-butyrobetaine antiporter (caiT) and we identified them in 923, 5,185 and 5,709 298 available bacterial genomes, respectively.  299 Screening the 7 CRC-associated metagenomic datasets, we found that only one of them had a 300 significant increase of caiT in CRC samples compared to controls, whereas no significant differences 301 were detected for yeaW (Extended Data 9A). However, we found increased abundance of cutC in 302 CRC samples compared to controls in all seven datasets (P < 0.05 by Wilcoxon Rank Sum test on 303 RPKM abundances for five datasets, Figure 4A). Meta-analysis indicated an overall strong association 304 with no evidence of heterogeneity (P = 0.001, μ = 0.27, 95% CI [0.1, 0.42], I2 = 4.2%, Q-test = 0.65, 305 
Figure 4B). We also analyzed the abundance of the gene encoding the choline TMA-lyase-activating 306 enzyme (cutD), finding a significant increase in CRC (meta analysis P = 0.001, μ = 0.32, 95% CI [0.16, 307 0.47], I2 = 0%, Q-test = 0.96, Extended Data 9B-C). These results indicate that TMA production might 308 happen preferentially via choline degradation, and not via carnitine, and could substantially affect the 309 amounts of TMA and trimethylamine oxide (TMAO) in an individual 48. Intermediate levels of cutC in 310 adenomas (Figure 4A) is further suggestive of a TMA action along the adenoma-carcinoma axis. We 311 validated the increased cutC gene abundance in CRC by qPCR 49 on a subset of samples from Cohort1 312 with enough DNA left after sequencing, and confirmed the metagenomic findings (one-tailed 313 Wilcoxon signed rank test P = 0.024, Figure 4D). Further quantification of cutC transcript abundance 314 from the co-extracted RNA in the same dataset also pointed to an over-expression of this gene in CRC 315 (P = 0.035, Figure 4E). 316 We further explored the role of cutC in the gut microbiome by reconstructing sample-specific 317 sequence variants using a reference-aided targeted assembly approach (see Methods). We found a 318 large sequence divergence for the gene encoding this enzyme that is known to occur in single copies 319 in the genomes 49 and we identified four main sequence variants that are associated with the 320 taxonomic structure (Figure 4B, Extended Data 9C-D, 10A-B). Interestingly, the most prevalent 321 (46.5%) cutC sequence type belonged (>95% identity over the full lenght of the gene) to an unknown 322 species that was only recently assembled from metagenomics  50 and assigned to species-level 323 genome bin (SGB) ID 3957. This candidate species comprises 56 metagenomically-assembled species 324 50  and is placed within the Lachnospiraceae family, but the missing genus assignment confirms that 325 several microbes remain under-characterized in the human microbiome. This cutC variant was 326 associated with non-CRC samples (OR 0.38, 95% CI [0.25, 0.57], P = 0.0001, Fisher Test), whereas 327 
cutC sequence types mostly belonging to Hungatella hathewayi and Clostridium asparagiforme 328 (Firmicutes) were significantly CRC-associated (OR 2.14, 95% CI [1.29, 3.56], P = 0.004, Fisher test), 329 as were sequence types belonging to Klebsiella oxytoca and Escherichia coli (OR 1.85, 95% CI [1.13, 3], 330 
P = 0.02, Fisher Test - Figure 4B). Altogether, these novel findings highlight that sequence variants of 331 
cutC can be strongly associated with disease, potentially because of corresponding differences in the 332 efficacy of choline degradation and TMA production.  333 
Additional independent validation of predictive models 334 To further validate our meta-analysis results, we considered two additional independent 335 metagenomic cohorts from Germany 29 (Validation Cohort1) and Japan (Validation Cohort2) 336 comprising a total of 100 CRC patients and 105 controls (see Methods). The metagenomic predictive 337 model was confirmed to be highly accurate on these new cohorts (Figure 5A) with an AUC of 0.90 338 and 0.81 for the German and Japanese cohorts respectively, when using the species-level taxonomic 339 abundance model. Species newly associated to the CRC microbiome such as Streptococcus tigurinus 340 and Streptococcus dysgalactiae were confirmed to have higher prevalence in CRC than in controls In 341 the two validation datasets (blocked Wilcoxon test 51 P = 0.049 and P = 0.011 for S. tigurinus and S. 342 



 

 

dysgalactiae, respectively). Enrichment in the CRC-associated microbiome of these two species was 343 confirmed also by the analysis of additional metagenomic datasets of IBD 52 and type-2 diabetes 53,54 344 in which the prevalence of S. tigurinus was always below 10% in both cases and controls, whereas S. 345 
dysgalactiae was never detected in these additional datasets. We also confirmed species richness to 346 be significantly higher in CRC (P = 0.0005 for both validation datasets after rarefaction at the 10th 347 percentile, Figure 5B) as well as richness of oral microbial species in the rarefied samples (blocked 348 Wilcoxon test 51 P = 0.003), and the abundance of the gene encoding the choline TMA-lyase enzyme 349 
cutC in CRC (P < 1e-6). 350 
CRC-specificity of microbiome predictive models 351 We performed additional experiments to validate the discriminative power of the above microbial 352 signatures specifically for CRC and not for other potentially microbiome-linked disease conditions. To 353 this end, we first considered 13 additional fecal samples sequenced from patients that underwent 354 colonoscopy in our Cohort1 that were originally discarded because the final diagnosis pointed at 355 diseases other than adenomas or carcinomas such as ulcerative colitis, Crohn’s disease, 356 uncategorized colitis, and diverticular diseases. These were distinguishable from CRC samples based 357 on the taxonomic model (0.78 cross-validation AUC, 0.80 AUC using only 16 species), and only 358 slightly decreased the AUC of the model trained on all the other datasets when they were added to 359 the non-disease (i.e. healthy) category (from 0.83 to 0.79 in AUC). We then expanded this analysis to 360 diseases for which at least two distinct large metagenomic datasets are available in the public domain 361 and this includes ulcerative colitis (UC) and Crohn's disease (CD) 52,55 as well as non-GI diseases such 362 as type-2 diabetes 53,54. For this purpose we added samples randomly drawn from each of the case 363 and control conditions of these additional disease cohorts to the control class of the new validation 364 cohort and recorded the variations in AUCs when attempting to predict CRC (see Methods). By 365 comparing the AUCs obtained when adding non-CRC external cases and when adding the 366 corresponding external controls, we found for both validation cohorts a small decrease in prediction 367 accuracy for both UC (3% and 4% for Validation Cohort1 and Validation Cohort2, respectively; 368 
Figure 5C) and CD (5% and 9%, for Validation Cohort1 and Validation Cohort2, Figure 5C), pointing 369 to a limited effect on the CRC model of samples from these two diseases. For type-2 diabetes we 370 observed an increase in the predictive power in one dataset 53, and a decrease in the other 54 in both 371 validation datasets, and the CRC model always remained highly predictive (AUC ≥ 0.80). Altogether, 372 these results point at the existence of a clear microbiome signature of CRC which is distinct from 373 other relevant diseases with a gastrointestinal component. 374 
Relationship to currently available non-invasive clinical screening tests 375 To assess the potential of microbiome-based prediction models in comparison and in combination 376 with currently used non-invasive clinical screening tests, we considered the Fecal Occult Blood Test 377 (FOBT) and the Wif-1 Methylation test available for 110 samples of the ZellerG_2014 cohort 19. The 378 LODO microbiome model tested on this dataset proved to be slightly superior to the FOBT at multiple 379 combinations of specificity and sensitivity levels (Figure 5D) and on par with the Wif-1 Methylation 380 test. Considering the LODO model predictions and the FOBT together in the same test improves the 381 sensitivity/specificity trade-off at high specificity levels when the integration is based on having at 382 least one predictor positive, and at relatively lower specificity levels when requiring both predictors 383 to be positive (Figure 5D). Integrating the microbiome model with the Wif-1 Methylation test results 384 in similar performances, and the use of the reduced microbiome model with only 16 species generally 385 improves the results (Figure 5D). We thus provide evidence for the potential clinical value of 386 



 

 

microbiome predictive models especially when considered together with other available non-387 invasive clinical tests. 388 
 389 

Discussion 390 In the present study, we comprehensively assessed the CRC-associated gut microbiome and its ability 391 to distinguish newly diagnosed CRC patients from tumor-free controls. Our study was performed 392 across multiple datasets and populations, through a combined analysis of fecal CRC metagenomes 393 from four previously unpublished cohorts and five publicly available datasets. Whereas direct specific 394 host-microbe interactions have been shown to cause certain malignancies in vitro and in vivo animal 395 models 11–13,56 and genotoxic determinants such as colibactin tend to be over-represented in the 396 analyzed datasets 29, indirect metabolite-mediated mechanisms may be more important to the 397 development of carcinomas although causality relations need to be tested. In our analysis, we indeed 398 found a reproducible panel of microbiome species (Figure 1), whole microbiome characteristics, and 399 strain-level biomarkers (Figure 4) beyond the validated mechanisms of specific variants of 400 
Escherichia coli 11,56 and Bacteroides fragilis 56. We found that the gut microbiome in CRC has greater 401 richness than controls, partially due to the presence of oral cavity-associated species rarely found in 402 healthy guts, challenging the widespread assumption that decreased alpha-diversity is generally 403 associated with intestinal dysbiosis 57,58. 404 The identification of reproducible microbial biomarkers for CRC may enable the design of non-405 invasive diagnostic tools. We developed machine learning models able to distinguish between 406 carcinoma patients and controls with an average performance above 0.84 AUC when validated on 407 datasets excluded from the training of the model (Figure 2A). Importantly, these performances are 408 quite independent of specific methodological choices given that complementary investigations 29 409 using different metagenomic profilers and machine learning approaches achieved very similar 410 results. Further increase in prediction performance can be achieved using larger datasets (n > 1,000) 411 rather than different methodologies (Figure 2C-D, Figure 5C), and the combination of a microbiome 412 model with other clinical tests and patient risk factors could substantially improve this diagnostic 413 accuracy (Figure 5D). Current clinical pre-colonoscopy screening tests (e.g. FOBT, WIF-1) remain 414 cheaper, but the microbiome-based CRC prediction models enable a very high diagnostic potential 415 which increases with the number of microbes or microbial genes used, with single biomarkers being 416 much inferior to multi-featured diagnostic models. However, nearly maximal accuracy was achieved 417 with as few as 15 to 25 microbes (Figure 3B-C) or a few hundred genes (Extended Data 8), 418 potentially enabling inexpensive clinical microbiological tests to be performed on stool. Prospective 419 studies of these biomarkers are needed to establish whether they can identify individuals at elevated 420 risk of CRC and provide the possibility of disease prevention. 421 The diversity and subject-specificity of the human gut microbiome is not yet fully uncovered, with 422 many microbial genes having unknown function, and with strain-level diversity that is missed by 423 many current analysis pipelines 50. Large scale shotgun metagenomics can begin to overcome these 424 limitations, as shown here by the novel identification of a link between CRC and the microbial 425 pathway producing trimethylamine from choline 48. The gene encoding for the key enzyme for this 426 pathway, the CutC choline TMA-lyase, is both more overall abundant and expressed in the gut 427 microbiomes of carcinoma patients, with specific variants of cutC characterizing controls, adenomas, 428 and carcinomas (Figure 4). TMA-producing choline lyases have been found to be associated with 429 atherosclerosis 9, and higher plasma trimethylamine oxide and choline levels have been reported to 430 



 

 

be correlated with CRC risk 59,60. We highlighted the importance of strain-level gene resolution in 431 understanding any potential carcinogenic role of cutC. CRC-associated variants mostly originated 432 from Hungatella hathewayi, Clostridium asparagiforme, Klebsiella oxytoca, and Escherichia coli, 433 whereas no significant enrichment was detected for a cutC variant carried by a unexplored recently 434 discovered candidate species in the  Lachnospiraceae family 50. Thus, genetic variants in key microbial 435 genes involved in choline-induced TMA production by the gut microbiome are a plausible and novel 436 potential mechanism for colorectal carcinogenesis. Other partially diet-dependent microbiome 437 factors can contribute to promote carcinogenesis, and we found in our parallel work that genes for 438 secondary bile acid conversion are consistently enriched in the CRC-associated microbiomes 29. 439 Further work is needed to establish the changes in protein structure and function associated with the 440 genetic variants of the diet-related microbial genes found here to be enriched in the CRC microbiome. 441 Analysis of cancer cohorts that are heterogeneous for geography, ethnicity, and lifestyle, presents a 442 distinct opportunity for studying the cancer-associated microbiome. By combining multiple small 443 cohorts of potentially low generalizability, it is possible to obtain better representation of the 444 spectrum of cancer cases and controls. With appropriate methodology, artifactual findings due to 445 batch effects present in any individual dataset can be avoided. The use of large, diverse training sets 446 enables creation of more accurate diagnostic models, and the availability of independent validation 447 datasets enables more realistic estimation of that accuracy. Future shotgun metagenomic studies of 448 the intestinal mucosa-associated microbiome, which are currently infeasible due to excessive human 449 DNA contamination 28, will be important to further refine the list of CRC-associated gut microbes. 450 Nevertheless, this study identifies highly reproducible microbial CRC biomarkers and points to the 451 potential for non-invasive microbial diagnostic tests to supplement existing screening.  452 
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Figure legends (for main text only) 638 
Figure 1. Reproducible taxonomic and functional microbial biomarkers across datasets when 639 
contrasting carcinoma against healthy controls (no adenoma samples considered). (A) UpSet 640 plot showing the number of taxonomic biomarkers identified using LEfSE on MetaPhlAn2 species 641 profiles shared by combinations of datasets (see Suppl. Table 3 for all single significant 642 associations). (B) Pooled effect sizes for the 20 significant features with the largest effect size 643 calculated using a meta-analysis of standardized mean differences and a random effects model on 644 MetaPhlAn2 species abundances and on (C) HUMANn2 pathway abundances. Bold lines represent 645 the 95% confidence interval for the random effects model coefficient estimate . (D) Scatter plot of 646 crude and age-, sex-, and BMI-adjusted coefficients obtained from linear models using MetaPhlAn2 647 species abundances. (E) Scatter plot of crude and age-, sex-, and BMI-adjusted coefficients obtained 648 from linear models using HUMANn2 pathway abundances. 649  650 
Figure 2. Assessment of prediction performances of the gut microbiome for CRC detection 651 
within and across cohorts. (A) Cross prediction matrix reporting prediction performances as AUC 652 values obtained using a Random Forest (RF) model on species-level relative abundances (see 653 
Methods). Values on the diagonal refer to 20 times repeated 10-fold stratified cross validations. Off-654 diagonal values refer to the AUC values obtained by training the classifier on the dataset of the 655 corresponding row and applying it on the dataset of the corresponding column. The Leave-One-656 Dataset-Out (LODO) row refers to the performances obtained by training the model on the species-657 level abundances and MetaPhlAn2 markers using all but the dataset of the corresponding column and 658 applying it on the dataset of the corresponding column. See Extended Data 6 for the marker cross-659 study validation matrix. (B) Cross prediction matrix of AUC values obtained using HUMANn2 660 UniRef90 gene-family abundances and HUMANn2 pathway relative abundances. See Extended Data 661 
6 for the pathway cross-study validation matrix. (C) Prediction performances for the two Italian 662 cohorts at increasing numbers of external datasets considered for training the model. The dark 663 yellow line interpolates the median AUC at each number of training datasets considered. See 664 
Extended Data 7 for the plots referred to the other testing datasets. (D) Prediction performances at 665 



 

 

increasing number of datasets in the training, using HUMANn2 UniProt90 gene-family abundances. 666 See Extended Data 7 for the plots referred to the other testing datasets. 667  668 
Figure 3. Ranking relevance of each species in the predictive models for each dataset and 669 
identification of a minimal microbial signature for CRC detection. (A) The importance of each 670 species for the cross-validation prediction performance in each dataset estimated using the internal 671 RF scores. Only species appearing in the five top ranking features in at least one dataset are reported. 672 Prediction performances at increasing number of microbial species obtained by re-training the RF 673 classifier on the N top ranked features identified with a first RF model training in a cross-validation 674 
(B) and LODO-setting (C). The rankings are obtained excluding the testing dataset to avoid 675 overfitting. 676  677 
Figure 4. Choline TMA-lyase gene cutC and its genetic variants are strong biomarkers for CRC-678 
associated stool samples. (A) Distribution of reads per kilobase million (RKPM) abundances 679 obtained using ShortBRED for the choline TMA-lyase enzyme gene cutC. P-values were computed by 680 two-tailed Wilcoxon Signed-Rank tests comparing values between controls and carcinomas for each 681 dataset. (B) Forest plot reporting effect sizes calculated using a meta-analysis of standardized mean 682 differences and a random effects model on cutC RPKM abundances between carcinomas and controls. 683 
(C) Phylogenetic tree of sample-specific cutC sequence variants identified four main sequence 684 variants. Tips with no circles represent cutC sequence variants from genomes absent from the 685 datasets. Taxonomy was assigned based on mapping against existing cutC sequences (criteria of 80% 686 coverage, >97% identity and minimum 2,000nt alignment length). (D) qPCR validation of cutC gene 687 abundance and (E) cutC transcript abundance (normalized by total 16S rRNA gene/transcript 688 abundance) on a subset of DNA samples from Cohort1. qPCR validation P-values are obtained by 1-689 tail Wilcoxon Signed-Rank test. 690  691 
Figure 5 - Clinical potential and validation of the predictive biomarkers. (A) Prediction 692 performance of the taxonomic models trained on the 7 datasets of Table 1 and applied on the new 693 validation cohorts confirmed the strong reproducibility of metagenomic models for CRC across 694 cohorts when sufficiently large training cohorts are available. Feature ranking of the 16-species 695 model are obtained the testing cohort to avoid overfitting. (B) Species richness, rarefied oral species 696 richness , and cutC gene abundance (RPKM) are confirmed to be strong biomarkers of CRC in the 697 validation datasets 29. P-values underlying the panels refer to one-tailed Wilcoxon Signed Rank test; 698 P-values overlying the panels refer to the one-sided permutation-based Wilcoxon-Mann-Whitney 699 tests, blocked for cohort. (C) Prediction performances as AUC values on the validation cohorts when 700 adding external set of case and controls samples from metagenomic cohorts of diseases other than 701 CRC (Crohn’s disease, ulcerative colitis, type-2 diabetes). (D) Assessment of the potential of 702 microbiome-based prediction models in comparison and in combination with current non-invasive 703 clinical screening tests. Models integrating our LODO machine learning approach with the FOBT or 704 the Wif-1 Methylation tests are termed OR and AND, depending on whether only one or both need to 705 be positive for the combined test to be positive. 706  707 
Tables 708  709 
Table 1. Size and characteristics of the large-scale CRC metagenomic datasets included in this study. 710 

Dataset Groups (N) Age 
(mean +/- s.d.) 

BMI
(mean +/- s.d.)

Sex
F(%)/M(

%) 

Country # of reads 
(x 10^9) 



 

 

ZellerG_2014  (Zeller et al. 2014) Control (61) Adenoma (42) CRC (53) 60.6 +/- 11.4 63  +/- 9.1 66.8 +/- 10.9 24.7 +/- 3.2 25.9 +/- 4.1 25.5 +/- 5.2 54.1/45.9 28.5/71.5 45.2/54.8   France   9.4 
YuJ_2015 (Yu et al. 2015) Control (54) CRC (74) 61.8 +/- 5.7 66 +/- 10.6 23.5 +/- 3 24 +/- 3.2 38.9/61.1 35.1/64.9 China 7.2 

FengQ_2015  (Feng et al. 2015) Control (61)* Adenoma (47) CRC (46) 67 +/- 6.5 66.5 +/- 7.9 67 +/- 10.9 27.6 +/- 3.8 28 +/- 4.7 26.5 +/- 3.5 41/59 51.1/48.9 39.1/60.9  Austria    8.3 
VogtmannE_2016  (Vogtmann et al. 2016) Control (52) CRC (52) 61.2 +/- 11 61.8 +/- 13.6 25.3 +/- 4.2 24.9 +/- 4.2 28.8/71.2 28.8/71.2 USA 6.9 
HanniganGD_2018 (Hannigan et al. 2018) Control (28) Adenoma (27) CRC (27)  NA  NA  NA USA (54) Canada (28)  0.5 

Cohort1 (This study) Control (24) Adenoma (27) CRC (29) 67.9 +/- 7.1 62.8 +/- 8.6 71.4  +/- 8.2 25.3 +/- 3.5 25.3 +/- 4.1 25.7 +/- 4.1 45.8/54.1 40.7/59.3 20.7/79.3  Italy    8.2 
Cohort2 (This study) Control (28) CRC (32)  57.8 +/- 8.3 58.4  +/- 8.4 24.6 +/- 3.8 26.8 +/- 4.3 42.9/57.1 28.1/71.9 Italy 5.1 

 
Total 

Control (308) 
Adenoma (143) 

CRC (313) 

-- -- -- --  
45.6 *Numbers differed from the original sample numbers (N = 61 instead of 63) reported in the article due to metadata and/or sequence 711 processing issues. NA = Not available. 712  713 

Methods 714 
Italian cohorts of CRC patients, adenomas and controls  715 The two clinical studies performed here were approved by the relevant ethics committees (Cohort1: 716 Ethics committee of Azienda Ospedaliera “SS. Antonio e Biagio e C. Arrigo” of Alessandria, Italy, 717 protocol N. Colorectal_miRNA_CEC2014 and Cohort2: Ethics committee of European Institute of 718 Oncology of Milan, Italy, protocol N. R107/14-IEO 118) and informed consent was obtained from all 719 participants.  720 For Cohort1, samples were collected from patients at the Clinica S. Rita in Vercelli, Italy. Patients with 721 hereditary CRC syndromes, with previous history of CRC, and with uncompleted or poorly cleaned 722 colonoscopy, were excluded from the study. Patients were recruited at initial diagnosis and had not 723 received any treatment prior to fecal sample collection. Subjects reporting the use of antibiotics 724 during the 6 months prior to the sample collection were excluded from the study. On the basis of 725 colonoscopy results, recruited subjects were classified into three categories: 1) healthy subjects: 726 individuals with colonoscopy negative for tumor, adenomas and other diseases; 2) adenoma patients: 727 individuals with colorectal adenoma/s; and 3) CRC patients: individuals with newly diagnosed CRC. A 728 total of 93 subjects were initially recruited, and the 80 that passed quality control (see below) are 729 divided into 29 CRC patients, 27 adenomas and 24 controls. An additional 13 subjects that presented 730 inflammatory GI tract diseases (ulcerative and Crohn’s colitis, diverticular diseases) were recruited 731 and fecal samples were subsequently used as a part of the final validation. Stool was collected in Stool 732 Nucleic Acid Collection and Transport Tubes with RNA stabilising solution (Norgen Biotek Corp) and 733 returned before performing the colonoscopy. Aliquots of the stool samples were stored at -80°C until 734 use. DNA was extracted from aliquot of fecal samples using the Qiamp DNA stool kit (Qiagen) 735 following manufacturer’s instructions. Total RNA from faeces was extracted using the Stool Total 736 RNA Purification Kit (Norgen Biotek Corp) following manufacturer's instructions. 737 



 

 

For Cohort2, a total of 60 subjects were recruited at the European Oncology Institute in Milan, Italy 738 and were divided into 32 CRC patients and 28 controls. Controls, matched for age (± 5 years) and 739 season of blood withdrawn (± 2 years), were recruited among subjects who underwent recent 740 colonoscopy and had negative or no other relevant gastrointestinal disorders. Subjects reporting the 741 use of antibiotics in the 6 months prior to the sample collection were excluded. Fecal samples were 742 collected from healthy subjects and patients (before surgery, or any other cancer treatment) and 743 directly frozen at -80°C in resuspension buffer (TES buffer: 50 mM Tris-HCL, 10 mM NaCl, 10 mM 744 EDTA, pH 7.5) and kept in liquid nitrogen until DNA extraction. DNA was extracted from fecal 745 samples with the GNOME DNA isolation kit (MP). 746 Sequencing libraries were prepared using the NexteraXT DNA Library Preparation Kit (Illumina, 747 California, USA), following the manufacturer’s guidelines. Sequencing was performed on the 748 HiSeq2500 (Illumina, California, USA) at the internal sequencing facility of the Centre for Integrative 749 Biology, Trento, Italy.  750 
Public metagenomic cohorts of CRC patients, adenomas and controls. 751 We downloaded 5 public fecal shotgun CRC datasets covering samples from 6 different countries, 752 totaling 313 CRC patients, 143 adenomas and 308 controls (Table 1) and now available in 753 curatedMetagenomicData 26. We manually curated metadata tables for the public cohorts according to 754 the curatedMetagenomicData 26 R-package grammatical rules. The metadata table includes ten fields 755 (sampleID, subjectID, body_site, country, sequencing_platform, PMID, number_reads, number_bases, 756 minimum_read_length, median_read_length) that are mandatory for all datasets in addition to other 757 fields that are dataset-specific.   758 
Description of the two validation cohorts 759 We consider an additional set of samples from two independent cohorts that were not available at the 760 time we performed the meta-analysis on the other seven datasets, and we thus used them as 761 validation cohorts. Validation Cohort1 consists of 60 CRC metagenomes collected in Germany after 762 colonoscopy and 65 sex and age-matched healthy controls and is described in depth in the study 763 accompanying this work 29. Shotgun metagenomic sequencing was performed by Illumina HiSeq 2000 764 / 2500 / 4000 (Illumina, San Diego, USA) platforms at the Genomics Core Facility, European 765 Molecular Biology Laboratory, Heidelberg. Validation Cohort2 consists of 40 CRC samples and 40 766 controls from a Japanese cohort from Tokyo. DNA was extracted for Validation Cohort2 from frozen 767 fecal samples by bead-beating using the GNOME DNA Isolation Kit (MP Biomedicals, Santa Ana, CA) 768 and DNA quality was assessed with an Agilent 4200 TapeStation (Agilent Technologies, Santa Clara 769 CA). Sequencing libraries were generated with a Nextera XT DNA Sample Prep Kit (Illumina, San 770 Diego, CA) and shotgun metagenomics of fecal samples was carried out on the HiSeq2500 platform 771 (Illumina) at a targeted depth of 5.0 Gb (150-bp paired end reads). 772 The samples and clinical information used from both validation cohorts in this study were obtained 773 under conditions of informed consent and with approval of the institutional review boards of each 774 participating institute. 775 
Public metagenomic cohorts of non-CRC patients. 776 We used the curatedMetagenomicData 26 resource to retrieve taxonomical and functional potential 777 profiles as well as metadata of three public cohorts: NielsenHB_2014 52 comprising 21 Crohn Disease 778 (CD) patients, 127 Ulcerative Colitis (UC) patients and 248 controls; KarlssonFH_2013 53 comprising 779 53 Type-2 Diabetes (T2D) patients and 43 controls; QinJ_2012 54 comprising 172 T2D patients and 780 



 

 

174 controls; and we downloaded 1339 metagenomes from the Human Microbiome Consortium 781 phase-2 cohort 55, comprising 598 Crohn Disease patients, 375 Ulcerative Colitis patients and 365 782 controls.  783 
Sequence pre-processing, taxonomic and functional profiling 784 Fecal metagenomic shotgun sequences obtained from the Italian cohorts were subjected to a pre-785 processing pipeline whereby sequences were quality filtered using trim_galore (parameters: --786 nextera --stringency 5 --length 75 --quality 20 --max_n 2 --trim-n) discarding all reads with quality 787 less than 20 and shorter than 75 nucleotides. Filtered reads were then aligned to the human genome 788 (hg19) and the PhiX genome for human and contaminant DNA removal using bowtie2 61. Thirteen 789 samples, having less than 2Gb of host-decontaminated DNA, were excluded from the study.  790 We used MetaPhlAn2 62 for quantitative profiling the taxonomic composition of the microbial 791 communities of all metagenomic samples, whereas HUMANn2 63 was used to profile pathway and 792 gene family abundances. The profiles generated for the 6 public cohorts, along with their metadata, 793 and the two newly sequenced cohorts are available through the curatedMetagenomicData R package 794 26. Oral species were defined in this work by analyzing the 463 oral samples from the Human 795 Microbiome Project dataset 36 and the 140 saliva samples from 35. Specifically, all species with > 0.1% 796 abundance and > 5% prevalence were deemed to be of oral origin. For F. nucleatum marker analysis, 797 we extracted MetaPhlAn2 clade-specific markers from each sample sam file and considered a marker 798 to be present if the coverage was greater than zero. 799 
The Random Forest based machine learning approach 800 Our machine learning analyses exploited 4 types of microbiome quantitative profiles: taxonomic 801 species-level relative abundances and marker presence or absence patterns inferred by MetaPhlAn2 802 62, gene-family and pathway relative abundances estimated by HUMAnN2 63.  803 All machine learning experiments used Random Forest 64, as this algorithm has been shown to 804 outperform, on average, other learning tools for microbiome data 10. The code generating the 805 analyses and the figures is available at 806 https://bitbucket.org/CibioCM/multidataset_machinelearning/src/, and is based on MetAML 10 with 807 the Random Forest implementation taken from Scikit-Learn version 0.19.0, 65. We used an ensemble 808 of 1000 estimator trees and Shannon entropy to evaluate the quality of a split at each node of a tree. 809 The two hyper-parameters for the minimum number of samples per leaf and for the number of 810 features per tree are set as indicated elsewhere 66 to 5 and 30% respectively. For the marker 811 presence/absence profiles we used a number of features equal to the square root of the total number 812 of features, and this percentage was further decreased to 1% when using gene-family profiles as they 813 have a substantially higher number of features (> 2M). The experiments ran on reduced sets of input 814 features (Figure 4, Suppl. Fig. 19) avoided feature subsampling when less than 128 features were 815 used (Suppl. Fig. 19). 816 
Application and evaluation of the learning models 817 The inside-dataset prediction capability was measured through 10-fold cross-validation, stratified so 818 each fold contained a balanced proportion of positive and negative cases. The procedure of forming 819 the folds and assessing the models was repeated 20 times. The final result is therefore an average 820 over 200 validation folds. In the cross-study validation, datasets are considered two by two: one is 821 used for training the model, the other to validate. 822 



 

 

The Leave-one-dataset-out (LODO) approach consists of training the model on the pooled samples 823 from all cohorts except the one used for model testing. This mimics the scenario in which all the 824 available samples from multiple cohorts are used to predict CRC-positive samples in a newly 825 established cohort. As a part of the meta-analysis, we iterated along all the cohorts, performing a 826 LODO validation on each set of samples (Figure 2).  827 
Additional validation experiments on independent datasets and other diseases 828 We built a validation LODO model trained on MetaPhlAn2 taxonomic abundances from the previously 829 described set of 7 cohorts and applied it to the independent validation cohorts. To test the 830 performance of the model when challenged with other diseases, we selected 4 metagenomic cohorts 831 52–55 covering 3 non-CRC diseases (ulcerative colitis - UC, Crohn’s disease - CD, and type-2 diabetes - 832 T2D) and we used them for further experiments. For each disease (UC, CD, T2D) in each dataset, we 833 randomly drawn 60 samples from the control class as well as 60 samples from the cases and added 834 them to each validation dataset in turn, labelled as controls. The random selection was repeated ten 835 times, and the validation AUC computed on the model’s prediction accordingly. The rationale is to 836 observe the decrease in AUC when the external cases are added to the controls of the validation 837 cohort with respect the addition of healthy controls. 838 Specificity of the prediction model was also assessed by the addition of 13 IBD samples to Cohort1: 839 we used the 13 samples either as controls for Cohort1 or added to the original controls; we 840 performed a cross-validation and a LODO on Cohort1 (no validation cohorts in the training) using 841 MetaPhlAn2 microbial species. 842 To assess the prediction ability of our Random Forest approach with respect to more traditional non-843 invasive tests like the FOBT and the Wif-1 Methylation test, we recorded the true positive rate 844 (sensitivity) and the false positive rate (1 - specificity) for a subset of the ZellerG_2014 cohort 845 according to these two tests and one-hundred positive detection thresholds in the case of Random 846 Forest models. We then combined the Random Forest approach with the two tests in turn, first 847 assigning the positive class when both predictors are positive (“AND” model) secondly when just one 848 predictor is (“OR” model). 849 
Statistical analysis 850 Univariate analyses on a per dataset basis was performed using LEfSe 38 to identify features that were 851 statistically different among groups and estimate their effect size. ANCOM was also applied 67 but 852 showed reduced power on our datasets (e.g. it identified F. nucleatum as a biomarker in only one 853 dataset) probably due to the low relative abundance of CRC biomarkers that are thus only minimally 854 affected by the problem of compositionality. For these reasons, we chose to use LEfSe for the 855 univariate analysis and focused on the biomarkers with the highest effect size. To overcome the 856 limitations of univariate statistics, we performed multivariate analysis using linear models fitted to 857 the data using the limma R package 68 and possible confounders such as age, sex and BMI were 858 included in the models. For the meta-analysis on taxonomic and functional profiles, we converted 859 relative abundances to arcsine-square root transformed proportions and used the escalc function 860 from the R metafor package that employed Cohen’s standardized mean difference statistic to 861 calculate random effects model estimates. We quantified study heterogeneity using the I2 estimate 862 (percentage of variation reflecting true heterogeneity) as well as Cochran’s Q test to assess 863 statistically significant heterogeneity. P-values obtained from the random effects models were 864 corrected for multiple hypothesis testing correction using the Benjamini-Hochberg procedure and 865 corrected P < 0.05 were considered statistically significant. Cluster analysis was conducted by 866 



 

 

calculating distance matrices from phylogenetic trees using the APE R-package, clustering using 867 partitioning around medoids (PAM) and computing clusters’ prediction strength using the cluster R-868 package. When validating differential species richness, oral-species richness, and increased 869 abundance of the cutC gene, we also assessed significance through one-sided permutation-based 870 Wilcoxon-Mann-Whitney tests where we blocked for cohort 51, as implemented in the 'coin' R- 871 package. The lower and upper hinges of boxplots presented in the figures correspond to the 25th and 872 75th percentiles. The upper and lower whiskers extend from the hinges to the largest (or smallest) 873 value no further than 1.5 * inter-quartile range (IQR) from the hinge, defined as the distance between 874 the 25th and 75th percentiles. Data beyond the end of the whiskers are plotted individually. 875 
Identification and quantification of the genes encoding TMA producing enzymes 876 In order to obtain a more comprehensive database of choline TMA-lyase enzyme sequences, we 877 downloaded amino acid sequences that matched the keywords “cutC” and ”cutD” from UniProt90 42, 878 mapped their IDs to EMBL CDS using UniParc and used the resulting DNA sequences to search, using 879 BLASTn 69, all 48,902 Prokka 70 annotated genomes available in our repository 71. Matching queries 880 were filtered to include only alignments with >80% identity and length > 1000nt for cutC and > 800nt 881 for cutD, and an e-value < 1e-15. We used ShortBRED 72 to identify short seed sequences that were 882 representative of the filtered queries using UniProt’s UniRef100 database and quantified them in the 883 metagenomes, normalizing by the number of reads per kilobase million (RPKM). The pipeline was 884 also applied to identify and quantify the L-carnitine/gamma-butyrobetaine antiporter (caiT) and the 885 dioxygenase yeaW, responsible for producing TMA preferentially via carnitine degradation. In order 886 to investigate differences in cutC sequence types, we clustered cutC sequences at 97% sequence 887 identity using UCLUST 73 and aligned raw reads to the clustered cutC database using bowtie2 61. From 888 the bam files we calculated the breadth and depth of each sequence and generated their 889 corresponding consensus sequence using Samtools 74 and VCF utils 75. We chose the representative 890 
cutC sequence for each sample as the one with the highest breadth or the highest depth, if there were 891 multiple cutC sequences with the same breadth. We filtered representative cutC sequences from each 892 sample to include only those with a breadth > 80%, aligned them using MAFFT 76, built a phylogenetic 893 tree using fastTree 77 which was refined using RAxML 78 and visualized using GraPhlAn 79.  894 
Validation of cutC gene and transcript abundances by qPCR 895 Real time qPCR was used to assess differences in cutC genes and transcripts between CRC samples 896 and controls. We used a previously described protocol 49 which employs 16S rRNA abundances as an 897 internal sample normalization. For first strand cDNA synthesis, 400 ng of RNA templates were 898 retrotranscribed using the High-capacity cDNA Reverse Transcription Kits with Random Primers 899 (Thermofisher Scientific) following the manufacturer’s instructions. The cutC and 16S rRNA genes 900 (and transcripts from cDNA) were amplified using degenerate primers and cycling conditions as 901 described previously 49. Briefly, reactions were performed in triplicate with 10 ng of template DNA or 902 30 ng of cDNA on the Rotor Gene Q (QIAGEN) using HOT FIREPol EvaGreen qPCR mix (SOLIS 903 BIODYNE) with a final primer concentration of 0.5 �M (16S) or 0.75 �M (cutC). Cycling conditions 904 were as follows: initial denaturation of 95°C for 15 min; followed by 40 cycles of denaturing at 95°C 905 for 45 s, annealing at 57° C (cutC) or 55°C for (16S) for 45 s and an extension step of 72°C for 45 s. 906 Melting curves were subsequently performed for all reactions using the following program: 95° for 5 907 s, followed by 65°C for 60s, and a final continuous reading step of seven acquisitions per second 908 between 65 and 97°C.  909 



 

 

Quantification of the cutC gene by means of qPCR protocol was applied to 44 samples belonging to 910 Cohort1 for which enough DNA was available. Samples for which either the cutC or the 16S rRNA 911 amplification failed were removed and we retained measurements for a total of 16 CRC and 19 912 control samples. Relative gene fold change was calculated by applying the ΔΔCt method 80, with ΔCt 913 calculated as difference between cutC and 16S rRNA Ct values. Significance of the cutC vs. 16S rRNA 914 comparison was assessed through the one-tailed Wilcoxon Signed Rank test. The same procedure 915 was applied on the quantification of cutC and 16S rRNA transcripts from cDNA, which was computed 916 using 26 CRC and 20 control samples for which we obtained a reliable quantification of both cutC and 917 16S rRNA.  918 
Data Availability 919 Nucleotide sequences for the two new Italian cohorts are available in the Sequence Read Archive 920 (SRA) under the accession number SRP136711. MetaPhlAn2 and HUMANn2 profiles for the new 921 cohorts were also added to the curatedMetagenomicData R package along with their corresponding 922 metadata. Validation Cohort1 is available in the European Nucleotide Archive (ENA) under the study 923 identifier PRJEB27928, Validation Cohort2 is available in the DDBJ databases under the accession 924 number DRA006684. 925  926 
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