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Abstract— Deep learning is responsible for the current re-

newed success of artificial intelligence. Applications that in

the recent past were considered beyond imagination, now

appear to be feasible. The best example is autonomous driving.

However, despite the growing research aimed at implementing

autonomous driving, no artificial intelligence can claim to have

reached or closely approached the driving performance of

humans, yet. Deep learning is an evolution of artificial neural

networks introduced in the ’80s with the Parallel Distributed
Processing (PDP) project. There is a fundamental difference in

aims between the first generation of artificial neural networks

and deep neural models. The former was motivated primarily

by the exploration of cognition. Current deep neural models are

instead developed with engineering goals in mind, without any

ambition or interest in exploring cognition. Some important

components of deep learning – for example reinforcement

learning or recurrent networks – owe indeed an inspiration to

neuroscience and cognitive science, as PDP far legacy. But this

connection is now neglected, what matters is only the pragmatic

success in applications. We argue that it urges to reconnect

artificial modeling with an updated knowledge of how complex

tasks are realized by the human mind and brain. In this paper,

we will first try to distill concepts within neuroscience and

cognitive science relevant for the driving behavior. Then, we

will identify possible algorithmic counterparts of such concepts,

and finally build an artificial neural model exploiting these

components for the visual perception task of an autonomous

vehicle.

I. FROM THE COGNITIVE SIDE

A. The Simulation Theory

A well-established theory in cognitive science is the one
proposed by Jeannerod and Hesslow, the so-called simu-
lation theory of cognition, which proposes that thinking
is essentially a simulated interaction with the environment
[1], [2]. In their view, simulation is a general principle of
cognition, which can be expressed in at least three different
components: perception, actions and anticipation.

The most simple case of simulation is mental imagery,
especially in visual modality. This is the case, for example,
when a person tries to picture an object or a situation. During
this phenomenon, the primary visual cortex (V1) is activated
with a simplified representation of the object of interest, but
the visual stimulus is not actually perceived.

This work was developed inside the EU Horizon 2020 Dreams4Cars
Research and Innovation Action project, supported by the European Com-
mission under Grant 731593. The Authors want also to thank the Deep
Learning Lab at the ProM Facility in Rovereto (TN) for supporting this
research with computational resources funded by Fondazione CARITRO.

1Alice Plebe is with the Dept. of Information Engineering and Computer
Science, University of Trento, Italy alice.plebe@unitn.it

2Mauro Da Lio is with the Dept. of Industrial Engineering, University
of Trento, Italy mauro.dalio@unitn.it

B. Convergence–Divergence Zones
Although the simulation theory is one of the most estab-
lished, it does not identify how simulation takes place at
neural level. A prominent proposal in this direction is the
formulation of the convergence-divergence zones (CDZs) [3].
They highlight the “convergent” aspect of certain neuron
ensembles, located downstream from primary sensory and
motor cortices. Such convergent structure consists in the
projection of neural signals on multiple cortical regions in a
many-to-one fashion. On the other hand, the neuron ensem-
bles have the ability to reciprocate feedforward projections
with feedback projections in a one-to-many fashion, realizing
the divergent flow.

The primary purpose of convergence is to exploit synaptic
plasticity in order to record which patterns of features –
coded as knowledge fragments in the early cortices – occur
in relation with a specific higher-level concept. Such records
are built through experience, by interacting with objects. The
convergent flow is dominant during perceptual recognition,
while the divergent flow dominates imagery.

Convergent-divergent connectivity patterns can be identi-
fied for specific sensory modalities, but also in higher order
association cortices. It should be stressed that CDZs are
rather different from a conventional processing hierarchy,
where processed patterns are transferred from earlier to
higher cortical areas. In CDZs, part of the knowledge about
perceptual objects is retained in the synaptic connections of
the convergent-divergent ensemble. This allows to reinstate
an approximation of the original multi-site pattern of a
recalled object or scene.

C. Transformational Abstraction
One major challenge in cognitive science is explaining the
mental mechanisms by which we build conceptual abstrac-
tions. The conceptual space is the mental scaffolding the
brain gradually learns through experience, as internal repre-
sentation of the world. In particular, conceptual abstraction
is derived mostly from perceptual experience, which fits
perfectly with the approach implemented by artificial neural
networks.

As highlighted by [4] CDZs are a valid systemic candidate
for how the formation of high-level concepts takes place
at brain level. However, the idea of CDZs is just sketched
and cannot provide a detailed mechanism for conceptual
abstractions. A difficulty with acquiring abstract categories
lies in the inconsistent manifestations of the characteristic
features across real exemplars.

A suggested solution to this difficult issue is the trans-
formational abstraction [5], [6] performed by a hierarchy



of cortical operations, as in the ventral visual cortex. The
essence of transformational abstraction, from a mathematical
point of view, lies in the combination of two operations:
linear convolutional filtering and nonlinear downsampling.
Operations of this sort have been identified in the V1 [7],
[8], and are well recognized in the primate ventral visual
path as well [9], [10].

D. The Predictive Theory

The reason why cognition is mainly explicated as simulation,
according to Hesslow or Jeannerod, is because the brain can
achieve through simulation the most precious information of
an organism: a prediction of the state of affairs in the future
environment. The need of prediction, and how it molds the
entire cognition, has become the core of another popular the-
ory popular known as “Bayesian brain”, “predictive brain”,
or “free-energy principle for the brain” introduced by Friston
[11]. According to him the behavior of the brain – and of an
organism as a whole – can be conceived as minimization of
free-energy, a quantity that can be expressed in several ways
depending on the kind of behavior and the brain systems
involved.

Free-energy is a concept originated in thermodynamics, as
a measure of the amount of work that can be extracted from
a system. What is borrowed by Friston is not the thermody-
namic meaning of the free-energy, but its mathematical form
only, which is derived from the framework of variational
Bayesian methods in statistical physics We will see in §II-B
how the same probabilistic framework will be used in the
derivation of a deep neural model. For example, this is his
free-energy formulation in the case of perception [12, p.427]:

FP = �KL

⇣
p̌(c|z)kp(c|x,a)

⌘
� log p(x|a) (1)

where x is the sensorial input of the organism, c is the
collection of the environmental causes producing x, a are
actions that act on the environment to change sensory
samples, and z are inner representations of the brain. The
quantity p̌(c|z) is the encoding in the brain of the estimate
of causes of sensorial stimuli. The quantity p(c|x,a) is the
conditional probability of sensorial input conditioned by the
actual environmental causes c. The discrepancy between the
estimated probability and the actual probability is given by
the Kullback-Leibler divergence �KL. The minimization of
FP in equation (1) optimizes z.

II. TO THE ARTIFICIAL SIDE

A. Convergence–divergence as Autoencoder

In the realm of artificial neural networks, the computational
idea that most closely resonate with CDZ is the autoencoder.
It is an idea that has been around for a long time, it was the
cornerstone of the evolution from shallow to deep neural
architectures [13], [14]. More recently, autoencoders have
been widely adopted for their ability to capture compact
information from high dimensional data. The basic structure
of an autoencoder is composed of a feature-extracting part
called encoder and a decoder part mapping from feature

space back into input space. There is a clear correspondence
between the encoder and the convergence zone in the CDZ
neurocognitive concept, and similarity between the decoder
and the divergence zone.

Then how exactly convergence–divergence can be
achieved inside autoencoders? An interesting approach is
the one closely related to the transformational abstraction
hypothesis described in §I-C: the deep convolutional neu-
ral networks (DCNNs). They implement the hierarchy of
convolutional filtering alternated with nonlinear downsam-
pling, and are considered the essence of transformational
abstraction. In addition, there is growing evidence of striking
analogies between patterns in DCNN models and patterns
of voxels in the brain visual system. Several studies have
successfully related results of deep learning models with the
visual system [15], [16], finding reasonable agreement be-
tween features computed by DCNN models and fMRI data.
Convolutional–deconvolutional autoencoders are therefore a
highly biologically plausible implementation for the CDZ
theory, at least in the case of visual information.

B. Predictive Brain as Variational Autoencoder

In the last few years there has been renewed interest
in the area of Bayesian probabilistic inference in learning
models of high dimensional data. The Bayesian framework,
variational inference in particular, has found a fertile ground
in combination with neural models. Two concurrent and
unrelated developments [17], [18] have made this theoretical
advance possible, connecting autoencoders and variational
inference. This new approach became quickly popular under
the term variational autoencoder, and a variety of neural
models have been proposed over the years.

The loss function for a variational autoencoder is defined
as follows:

L(⇥,�|x) = �KL

�
q�(z|x)kp⇥(z)

�
+

� Ez⇠q�(z|x) [log p⇥(x|z)] (2)

where x is a high dimensional random variable, z the
representation of the variable in the low-dimensional latent
space. ⇥ and � are parameters describing, respectively, the
decoder and encoder of the network. p⇥ is computed by
the decoder and represents the desired approximation of
the unknown input distribution p, and q� is the auxiliary
distribution computed by the encoder from which to sample
z. E[·] is the expectation operator, and �KL is the Kullback-
Leibler divergence.

It is evident how this mathematical formulation is im-
pressively similar to the concept of free energy in Friston.
Despite this close analogy, all the proposers of variational
autoencoder are either unaware or fully disinterested of this
coincidence. It is not so surprising because mainstream deep
learning is driven by engineering goals without any interest in
connections with cognition. We believe instead that a strong
connection between a well established cognitive theory and
a computational solution greatly argues in favor of adopting
such a solution.
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Fig. 1. The architecture of our model.

III. IMPLEMENTATION

In the previous section we have reviewed several components
that match quite closely the relevant neurocognitive theories
identified in §I. Our proposed model attempts to weave
together these components, finalized at visual perception in
autonomous driving agents.

Similarly to the hierarchical arrangement of CDZs in the
brain, our model is provided with different levels of process-
ing paths. A first processing path starts from the raw image
data and converges up to a low-dimension representation of
visual features. Consequently, the divergent path outputs in
the same format as the input image. The other processing
path leads to representations that are no more in terms of
visual features, rather in terms of concepts. As discussed
in §I-C, our brain naturally projects sensorial information
– especially visual – into conceptual space, where the local
perceptual features are pruned and neural activation code the
nature of entities present in the environment that produced
the stimuli. In the driving context it is not necessary to infer
categories for every entity present in the scene, it is useful
to project in conceptual space only the objects relevant to
the driving task. In the model presented here we choose
to consider the two main concepts of cars and lane
markings.

As depicted in Fig. 1, the presented variational autoen-
coder is composed by one shared encoder and three inde-
pendent decoders. All the components of the architecture
are trained jointly. The encoder compresses an RGB image
to a compact high-feature representation. Then the decoders
map different part of the latent space back to separated output
spaces: one into the same visual space of the input; the other
two into conceptual space, producing binary images contain-
ing, respectively, car entities and lane marking entities.

So, in our implementation the entire latent vector z represents
inside the visual space, and at the same time two inner
segments represent specifically the car and lane concepts.
The rationale for this choice is that in mental imagery there
is no clear cut distinction between low-level features and
semantic features, the entire scene is mentally reproduced,
but including the awareness of the salient concepts present
in the scene.

Note that the idea of partitioning the entire latent vector
into meaningful components is not new. In the context of
processing human heads the vector has been forced to encode
separate representations for viewpoints, lighting conditions,
shape variations [19]. In [20] the latent vector is partitioned
in one segment for the semantic content and a second
segment for the position of the object. Our approach is
different. While we keep disjointed the two segments for
the car and lane concepts, we fully overlap these two
representations within the entire visual space. This way, we
adhere entirely to the CDZ principle, and try to achieve the
full scene by divergence, but at the same time including
awareness for the car and lane concepts.

IV. RESULTS

We present here a selection of results achieved with an
instance of the model described in the previous section.
The final architecture is trained for 200 epochs, and used
4 convolutional layers in the encoder, 4 deconvolutional
layers for each decoder, and a latent space representation
of 128 neurons, of which 16 encoding the car concept and
another 16 for the lane marking concept. We would like
to highlight that, since the images fed to the network have
dimension of 256⇥ 128⇥ 3 and the latent space dimension
is 128, the compression performed by the network is almost
of 4 orders of magnitude. This is a considerable achieve-
ment compared to other relevant works adopting variational
autoencoder [21], [22] which limit the compression of the
encoder to only 1 order of magnitude.

We trained and tested the presented model on the SYN-
THIA dataset [23], a large collection of synthetic images
representing various urban scenarios. The dataset contains
about 100, 000 color images (and as many corresponding
segmented images, used for ground truth of the conceptual
branches of the network). We used 70% of the data for
training, 25% for validation and 5% for testing.

Fig. 2 shows the image results produced by our model for
a selection of driving scenarios. The images are processed
to better show at the same time the results on conceptual
space and visual space. The colored overlays highlight the
concepts computed by the network: the cyan regions are the
output of the car divergent path, and the pink overlays are
the output of the lane markings divergent path. Fig. 2
includes a variety of driving situations, going from sunny
environments (top rows) to very adverse driving conditions
(bottom rows) in which the detection of other vehicles can
be challenging even for a human. These results nicely show
how the projection of the sensorial input (original frames)
into conceptual representation is very effective in identifying
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Fig. 2. Results of our model for a selection of frames from the SYNTHIA dataset, with different environmental and lighting conditions.

and preserving the sensible features of cars and lane
markings, despite the large variations in lighting and
environmental conditions.

Lastly, we would like to stress that the purpose of our
network is not mere segmentation of visual input. The
segmentation task is to be considered as a support task,
used to enforce the network to learn a more robust latent
space representation, which now is explicitly taking into
consideration two of the concepts that are fundamental to
the driving tasks.

V. CONCLUSIONS

The model here presented is an attempt to convert into
an artificial neural network model the fundamental theories
about how the brain processes its sensory inputs to pro-
duce purposeful representations. We especially identified the
consolidated variational autoencoder architecture as the best
candidate for implementing convergence-divergence zone
schemes. The reason for constraining a deep learning model
on cognitive theoretical grounds, instead of starting from
scratch as often done, derives from the observation of how
humans excel in sophisticated sensorimotor control tasks
such as driving.
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