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Abstract

We are witnessing an explosion of available data coming from a huge amount of sources

and domains, which is leading to the creation of datasets larger and larger, as well as

richer and richer. Understanding, processing, and extracting useful information from

those datasets requires specialized algorithms that take into consideration both the dy-

namism and the heterogeneity of the data they contain. Although several pattern mining

techniques have been proposed in the literature, most of them fall short in providing in-

teresting structures when the data can be interpreted differently from user to user, when

it can change from time to time, and when it has different representations. In this thesis,

we propose novel approaches that go beyond the traditional pattern mining algorithms,

and can effectively and efficiently discover relevant structures in dynamic and hetero-

geneous settings. In particular, we address the task of pattern mining in multi-weighted

graphs, pattern mining in dynamic graphs, and pattern mining in heterogeneous tempo-

ral databases.

In pattern mining in multi-weighted graphs, we consider the problem of mining pat-

terns for a new category of graphs called multi-weighted graphs. In these graphs, nodes

and edges can carry multiple weights that represent, for example, the preferences of

different users or applications, and that are used to assess the relevance of the patterns.

We introduce a novel family of scoring functions that assign a score to each pattern

based on both the weights of its appearances and their number, and that respect the anti-

monotone property, pivotal for efficient implementations. We then propose a centralized

and a distributed algorithm that solve the problem both exactly and approximately. The

approximate solution has better scalability in terms of the number of edge weighting

functions, while achieving good accuracy in the results found. An extensive experi-

mental study shows the advantages and disadvantages of our strategies, and proves their

effectiveness.
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Then, in pattern mining in dynamic graphs, we focus on the particular task of discov-

ering structures that are both well-connected and correlated over time, in graphs where

nodes and edges can change over time. These structures represent edges that are topo-

logically close and exhibit a similar behavior of appearance and disappearance in the

snapshots of the graph. To this aim, we introduce two measures for computing the

density of a subgraph whose edges change in time, and a measure to compute their

correlation. The density measures are able to detect subgraphs that are silent in some

periods of time but highly connected in the others, and thus they can detect events or

anomalies happened in the network. The correlation measure can identify groups of

edges that tend to co-appear together, as well as edges that are characterized by similar

levels of activity. For both variants of density measure, we provide an effective solu-

tion that enumerates all the maximal subgraphs whose density and correlation exceed

given minimum thresholds, but can also return a more compact subset of representative

subgraphs that exhibit high levels of pairwise dissimilarity. Furthermore, we propose

an approximate algorithm that scales well with the size of the network, while achieving

a high accuracy. We evaluate our framework with an extensive set of experiments on

both real and synthetic datasets, and compare its performance with the main competitor

algorithm. The results confirm the correctness of the exact solution, the high accuracy

of the approximate, and the superiority of our framework over the existing solutions.

In addition, they demonstrate the scalability of the framework and its applicability to

networks of different nature.

Finally, we address the problem of entity resolution in heterogeneous temporal databa-

ses, which are datasets that contain records that give different descriptions of the status

of real-world entities at different periods of time, and thus are characterized by different

sets of attributes that can change over time. Detecting records that refer to the same en-

tity in such scenario requires a record similarity measure that takes into account the tem-

poral information and that is aware of the absence of a common fixed schema between

the records. However, existing record matching approaches either ignore the dynamism

in the attribute values of the records, or assume that all the records share the same set

of attributes throughout time. In this thesis, we propose a novel time-aware schema-

agnostic similarity measure for temporal records to find pairs of matching records, and

integrate it into an exact and an approximate algorithm. The exact algorithm can find

all the maximal groups of pairwise similar records in the database. The approximate

algorithm, on the other hand, can achieve higher scalability with the size of the dataset

and the number of attributes, by relying on a technique called meta-blocking. This al-

gorithm can find a good-quality approximation of the actual groups of similar records,

by adopting an effective and efficient clustering algorithm.
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Chapter 1

Introduction

With the advent of cheaper storage and the growth of the data collection capacity, many orga-

nizations, companies, and other autonomous sources in various domains have started collecting

vast quantities of data every day. Similarly, the steady increase in social media usage has re-

sulted in tons of new content posted on the Web daily, and in new social interactions between

users. These phenomenons have led to the availability of huge, heterogeneous, and constantly

changing datasets, which constitute the subject of analysis of data mining. Pattern mining has

emerged in the data mining community as a way of extracting knowledge from these datasets,

in the form of patterns satisfying desirable properties specified by the application.

In this thesis, we study three novel pattern mining tasks for datasets that display high levels of

heterogeneity and dynamism, i.e., multi-weighted graphs, dynamic graphs, and heterogeneous

temporal databases. We introduce each problem with a simple use case that serves as motivation

for our work, and then discuss why existing approaches fall short in providing the desired results.

Finally, we outline the specialized algorithms we designed to solve the three problems, which

go beyond the traditional methods by incorporating user preferences, qualitative, and temporal

information of the data into custom measures of relevance, for the first two problems, and of

similarity, for the last problem.

1.1 Mining Multi-weighted Graphs

Graphs have become very popular recently, as they can model complex real-world relationships

easily and represent data originating from a large variety of domains. In biology, for example,
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Introduction 2

nodes can represent proteins and edges their interactions [PJZ05]; in sociology, nodes describe

persons and edges their communications and relationships [Agg16]; and in market basket analy-

sis, nodes model products and buyers, while edges connects products bought together, and users

with the products they bought [VCR14].

Graph pattern mining finds applications in real-world scenarios such as fraud detection [NC03],

event detection [ASKS12], community detection [CS10], identification of biological structures

[HBW+05, FNBB06], traffic control [JVB+05], graph similarity search [JWYZ07], anticipa-

tion of user intention [PHMAZ00], query optimization [YYH04], and stock market analy-

sis [DJD+09], among others. In particular, it has proved its importance for both graph col-

lections [YH02] and attributed [SMJZ12], probabilistic [LZG12], as well as generic, large

graphs [EASK14].

A key primitive in such application domains has been finding structures that appear frequently

in the graph, under the assumption that frequency signifies importance. In graph databases the

frequency of a pattern has been effectively computed as the number of distinct graphs contain-

ing an appearance of the pattern. This definition satisfies the so-called anti-monotone property,

which states that a pattern cannot be more frequent that any of its sub-patterns. This prop-

erty is useful, because it enables the implementation of efficient frequent pattern mining algo-

rithms [YSLD12]. In fact, by ensuring that the frequency of a pattern decreases monotonically

as the pattern grows in size, it allows the mining process to start from small patterns and extend

to larger ones only when the frequency of the pattern is above a certain frequency threshold.

Unfortunately, the same frequency measure cannot be used in single large graphs, as each pat-

tern would have frequency either equal to 0 or to 1. On the other hand, if we measure it as the

number of occurrences of the pattern in the graph, we would violate the anti-monotone property,

because we could assign larger frequencies to larger patterns, due to the presence of overlapping

occurrences [VSG06]. For this reason, alternative metrics have been considered in the litera-

ture [VSG06, FB07, BN08], with the more prevalent one being the MNI support, as it enjoys

high effectiveness [EASK14].

Many real-world networks are naturally modeled through weighted graphs, which are graphs

whose nodes and edges can be associated with a weight indicating, for example, their relevance

or quality. In these graphs, the importance of a pattern can be better defined in terms of the

weights of its appearances, in addition to its frequency, as there might be a discrepancy between

patterns that are frequent in general, and patterns that are relevant according to the weights.
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Figure 1.1: Portion of a citation network.

Examples include the discovery of metabolic pathways in genomic networks [KG00], where

weights indicate strength between genomes [CDB+09], the identification of topics of interest

in large knowledge graphs [MLVP16], where weights quantify the degree a piece of data is

qualified as an answer to a user [WA10], or the detection of common problematic cases in

computer networks, where weights indicate congestion [BMS11].

Furthermore, many modern applications aim at offering personalized products and services to

each individual user rather than proposing “one size fits all” solutions to everyone [SSTW01].

Indeed, such generic solutions would suit the user on average but would not be the best recom-

mendations for her, as they are not tailored to her specific interests or preferences. These cases

require multiple weights to model the diversity of user preferences, i.e., a multi-weighted graph,

and a scoring function that assesses the relevance of a pattern for a user based on her own set of

weights.

Example 1.1. Consider a heterogeneous citation network whose nodes represent authors, pa-

pers, venues, and terms (keywords); and edges connect papers with their authors, the works

they cite, the venue where they were presented, and with the keywords appearing in the title

and in the keyword list. Figure 1.1 illustrates a portion of this network, where Francis, James,

John, Miranda, Peter, and Susan indicate authors; P1, P2, P3, and P4 indicate papers; KDD,

VLDB, and WMT indicate venues; and GRAPH, MINING, NN, and SECURITY indicate key-

words. We can assign a weight to the nodes and edges of the network, according to specific user

preferences that can be inferred, for example, from the papers the user published, the coauthors,

or the keywords used and liked. Since from different users we can infer different preferences,
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each node and edge will be associated with multiple weights, one for each user. Let consider

a researcher working in the field of machine translation, who wants to discover novel papers

and emerging topics in this research area. From her past activities, we infer preferences for

the Workshop on Statistical Machine Translation (WMT), Neural Networks (NN), and paper P4

(marked with a green check mark in the figure), and then we define edge weights accordingly.

Running a frequent pattern mining algorithm in this network will find patterns that mainly con-

tain top venues and terms related to research fields with high engagement, because those labels

appear very often in the graph, and thus are characterized by a larger support. In Figure 1.1, for

example, VLDB is the most frequent venue because it appears twice, and therefore, a frequent

pattern can be pattern1 : [Pi]− [VLDB ] with Pi indicating a paper node.

On the other hand, a relevant pattern mining algorithm can guide the user in the exploration of

the literature most related to her own research interests, by suggesting the patterns that best fit

her preferences. From this network, for example, the algorithm extracts the pattern pattern2 :

[WMT ] − [P4] − [NN ], which is more relevant than pattern1 to the field of study of this

particular researcher.

Other examples include on-line retailers like Amazon and social networks. In the first case, we

can build large graphs of product co-purchases and exploit the patterns discovered to recommend

future offers to the customers [SWD16]. Frequency, number of items, recency of the purchase,

as well as the company’s business intentions affect the importance of some co-purchases with

respect to others [SSTW01]. In the second case, we can model the interactions between users

and web content, as well as their activities recorded by the system [JWL+11, BXL17], and then

mine patterns of interactions [New04] that will help advertisers to target the desired audience.

Since each advertiser has a specific business model, specific products to sell, and a specific target

to reach, some patterns of interactions may be more important than others for her purposes. We

thus need to create a different set of weights for each advertiser to encompass her needs.

All these examples highlight the need for a solution that is able to mine patterns based on their

weights instead of limiting to their frequency, and that accounts for the individual preferences

expressed as a multi-weighted graph, as opposed to common solutions where only a single set of

weights, or none, is considered. In the literature, most works require the user herself to provide

the structure of the desired patterns [PLM08, LHW10], and little effort has been dedicated to

the problem of mining patterns that satisfy constraints on the weights [YSLD12]. Although

these approaches can extract patterns characterized by large average edge weights and thus large
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relevance for a specific user, they cannot be applied efficiently to graphs with multiple weights

on the edges. Indeed, the straightforward procedure to multi-weighted pattern mining would

run these algorithms on each single-weighted graph separately, but would be clearly impractical

when used for large graphs or large numbers of users.

Moreover, in contrast to frequent patterns, weighted patterns do not generally possess the apri-

ori property because the weights of the extra edges (nodes) of a larger pattern may offset its

lower frequency, and as a consequence existing works in weighted pattern mining proposed

solutions that use pruning strategies less efficient than those developed for frequent pattern min-

ing [YSLD12]. In fact, since this property ensures that the frequency of a pattern is always

lower or equal to the frequency of its sub-patterns, the frequent pattern mining process can start

from small patterns and extend to larger ones only when the frequency of the pattern is above a

certain frequency threshold, hence pruning the search space considerably.

In contrast, we propose a novel approach to mine patterns in multi-weighted graphs that has

performance comparable with the state-of-the-art in pattern mining in unweighted graphs. We

achieve this by defining a novel family of scoring functions that are based on the MNI [BN08], a

frequency measure widely used in the literature due to its characteristic of respecting the apriori

property, while being efficient to compute [EASK14]. We model our solution as a constraint

satisfaction problem (CSP), as proposed also for unweighted pattern mining [EASK14], and

avoid redundant expensive computations by calculating the scores of each pattern at the mo-

ment we are visiting it, while keeping those that return a high score with respect to at least one

set of weights. We present also a conservative approximate solution that reduces the number

of weights to consider by aggregating those having a high probability to generate similar re-

sults into a single representative function, and show that this method introduces only few false

positives, while running considerably faster than the exact approach. Finally, we propose a

distributed version of our exact algorithm that runs on top of the distributed graph processing

system Arabesque [TFS+15] and is able to scale to large graphs.

We prove the effectiveness and efficiency of our approaches with an extensive set of experi-

ments on both real and synthetic graphs, and discuss our findings with particular regard to the

limitations of the exact solution when compared to the approximate solution, and to the settings

where the distributed algorithm proves to be the best choice.
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1.2 Mining Dynamic Graphs

Many real-world networks are dynamic by nature, meaning that their nodes and edges may

appear or disappear over time. In social networks like Facebook, for instance, users make new

friends and post new content; and similarly, in mobile networks users contact each others only at

specific points of time. Introducing a temporal component in the graph, allows us to model the

network more accurately, and moreover to discover interesting substructures that would not be

uncovered otherwise. In Twitter, for example, a group of bloggers interested in Apple products

interact more when a new iPhone is released and communicate with other friends otherwise. If

we model this dynamic network as a static graph that contains all the interactions in the history

of the network, the group may be hidden by the other external interactions.

In the context of dynamic networks, a lot of effort has been devoted to the problem of dense

subgraph mining, with approaches devised either for single subgraph extraction or for subgraph

enumeration. The former have the goal of finding the current densest subgraph [ELS15], the

most lasting densest subgraph [SPTT16], or the heaviest subgraph [BMS11]; while the latter

compute all the subgraphs that are dense in some time interval [YYW+16, RTG17]. Finding

dense subgraphs is important, for example, in event detection, as as people with the purpose of

attending a common event gather at the same time and place, hence forming a dense group in an

activity network.

In dynamic networks, nodes and edges experience structural and attribute changes, and in some

cases, their series of changes can follow similar patterns or even be positive correlated. Detecting

these correlations has many applications, especially when the nodes and edges involved are

topologically close.

Example 1.2. The Border Gateway Protocol (BGP) is the protocol used by the routers to estab-

lish how the packets are forwarded across the Internet. A challenge in managing the Internet

is how to detect issues in the BGP routing topology and diagnose the human or natural disas-

ter that caused each issue, hence allowing a faster recovery in the future, or even preventing

them from happening again. We can model the BGP routing topology as a graph where nodes

represent routers and edges represent routing paths. As these paths can change due to reconfig-

urations, bottlenecks, or faults, the graph changes over time. Figure 1.2 shows 4 snapshots of

how a small portion of the BGP graph may look like.
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Figure 1.2: Snapshots of a dynamic network.

A fault at some router can induce changes in other portions of the graph, due to the fact that

all the paths that traverse the faulty router are affected and must be replaced to ensure the

routing operations continue properly. As a consequence, changes in the same periods of time

that involve a group of edges close in the graph are likely caused by a common cause. For

instance, the snapshots in Figure 1.2 show that the routes 1, 5, 9 and 11 changed always at the

same times, and thus they are correlated. Among them, routes 1, 5, 11 are close together in the

topology network, and thus, with higher probability, they were affected by the failure of the same

router.

By focusing the attention on the whole dense group of temporally correlated routes, a network

manager is able to isolate the root causes of the faults in the topology. However, in each snapshot

of the entire BGP graph, there can be a significant number of elements experiencing a change

that need to be analyzed by the manager. In addition, not every change is associated with an

anomalous event. Thus, there is a need for an automatic tool that can simplify the detection of the

issues by finding the regions in the graph whose edges present a similar pattern of appearance,

so that the analyst need to focus on a small number of network elements.

However, little research has addressed the task of finding subgraphs of correlated change in

a dynamic network [CBL08, CBLH12], and to the best of our knowledge, no work performs

a complete enumeration. In contrast, we consider the problem of enumerating all the dense

groups of correlated edges in dynamic networks, and hence we propose two different measures

to compute the density of a group of edges that change over time, and two measures to compute

their temporal correlation. We propose an exact solution that extracts all the subgraph with high
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density and high correlation, as well as an approximate solution that scales better with the size

of the network, while achieving high accuracy in the results found. In addition, as some types

of dynamic networks may naturally contain a large number of dense groups of correlated edges,

we study the problem of identifying a more compact subset of results that is representative of

the whole set. Therefore, we introduce a threshold on the maximum pairwise Jaccard similarity

between the edge groups returned and propose an approach that extracts a set of subgraphs with

low pairwise overlap.

1.3 Mining Heterogeneous Temporal Databases

Entity resolution (ER) has been extensively studied in the literature [KSS06, EIV07], as it

is a preliminary step for many Web applications [CES15] and social applications [BLGS06,

ERSR+15], as well as data mining tasks such as data cleaning, data integration, and Linked

Data [MCD+07, GM12, DS15]. The goal of ER is to determine whether two records in a

database refer to the same real-world entity, and it typically achieved by comparing each pair of

records [NH10] and retaining those pairs exhibiting high similarity in their attribute-value pairs.

Given the inherently quadratic complexity of this process, ER becomes impractical for larger

databases. Therefore, more recent works adopt blocking methods to split the records into blocks

and then reduce the number of comparisons by considering only the pairs of records within the

same block, though at the cost of missing some matches [Chr12]. These works generally select

some distinctive attributes to create blocking keys that they use to produce cluster of the records

displaying similar attribute values [MK06].

The openness of the Web and the success of projects like Linked Open Data have made available

to the public a large amount of datasets collected from varied sources. However, due to the lack

of standardization and hence the different choices of schema, these datasets are usually highly

heterogeneous, meaning that they give a different description of the real-world entities they

represent. For example, the record of a person in a hospital database contains the personal infor-

mation, the contacts, and the medical data, whereas the record of the same person in the database

of the ministry of employment includes the employment information, the curriculum vitae, as

well as the personal information. As a consequence, ER algorithms must often deal with the

challenge of reconciling records characterized by different sets of attributes [JHS+10]. Many

efforts have been devoted to schema-agnostic approaches that accommodate to noisy, loosely

structured, heterogeneous, and growing collections of records [PIP+12, PKPN14, PPPK16a,
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database id attributes date

LinkedIn r1 name: Edward email: edward@apple.com 2018
birthday: 21/02/1985 experience: researcher
address: Palo Alto, CA

r1 name: Edward email: ed@cs.stanford.edu 2019
birthday: 21/02/1985 website: stanford.edu/edward
address: Stanford, CA experience: professor

r2 name: Elizabeth website: elizabeth.me 2019
address: Los Angeles, CA experience: consultant
email: liz@accenture.com

Twitter r3 name: Liz birth date: 03/01/1973 2006
location: Stanford, CA friends: 20

r3 name: Liza birth date: 03/01/1973 2019
location: Los Angeles, CA followers: 122

Facebook r4 name: Ed hometown: Boston, MA 2018
work: researcher birth date: 21/02
college: MIT, MA birth year: 1985

r4 name: Ed current city: Stanford, CA 2019
work: Stanford, CA birth date: 21/02
college: MIT, MA birth year: 1985
hometown: Boston, MA relationship status: married

Table 1.1: Records from three databases.

PPPK16b, EPP+17]. These solutions typically rely on attribute-agnostic blocking mechanisms

that group together those records having at least one attribute value in common, independently

of the corresponding attribute name. Due to the high level of redundancy in the collection

of blocks generated, these algorithms are generally less efficient than the schema-based ap-

proaches [PINF11].

Most of the existing approaches in ER work under the assumption that the data is static, and thus

are inadequate for detecting records that describe the same real-world entity at different time

instances [LDMS11]. In practice, many databases gather new data on a regular basis, and assign

a timestamp to each record, indicating when the record was created or its validity period [S+86].

In such cases, the identification of all the records, referred to as temporal records, that refer to

the same real-world entity can be useful, for example, to trace the history of that entity and build

a complete profile.

Example 1.3. In an online recruitment system, such as Glassdoor1, companies post their job

positions and users search and apply for new jobs. The system helps the users navigate the

vast list of positions available by recommending the most relevant ones, and similarly, it helps

1https://www.glassdoor.com

https://www.glassdoor.com
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the employers by suggesting potential employees. To achieve these goals, the system may need

historical profiles of its users, which can be built by integrating temporal information collected

from different data sources. Table 1.1 shows 7 temporal records extracted from 3 databases, i.e.,

LinkedIn, Twitter, and Facebook, where the attribute date indicates when the user identified by

the id id updated his/her personal information on the corresponding Social Network. To build

the profiles, the system must first detect which temporal records refer to the same real-world

entity. This task is challenging mainly for two reasons.

The first reason is that each database uses a different schema, and therefore two records cannot

be matched simply based on the similarity between pairs of attribute values. For example, record

r2 in LinkedIn has 5 attributes, of which address indicates the current home address, while the

records with id = r3 in Twitter have 4 attributes, of which location is the current city. Therefore,

all these records contain the name of the city where the person lives, but this information is

labeled differently in the two databases. When calculating the similarity between r2 and r3, the

matching algorithm must be aware of these discrepancies. To further complicate matters, the

same database may use different schemata in different periods of time. For example, in 2006 the

number of friends of an user in the Social Network Twitter was stored under the label friends,

while in 2019 under the label followers.

The second reason is that the attribute values of a record can change over time, and ignoring the

temporal information may result in missing some matches. Let consider, for example, record r1

with timestamp 2019 in LinkedIn, and record r4 with timestamp 2018 in Facebook. A traditional

entity matching algorithm does not match the two records, because they have somewhat similar

names, but different addresses and jobs. However, since the timestamps of the two records are

different, they might as well refer to the same real-world entity but at different points of time.

Indeed, if we look at record r4 with timestamp 2019 in FACEBOOK, we can notice that it has the

same address as the record r1 with the same timestamp in LinkedIn. Considering the temporal

information when calculating the similarity between records allows the matching algorithm to

match r1 and r4.

A handful of studies have been devoted to entity resolution in temporal databases [LDMS11,

LLHT15, LLH17, CDN14a, CG13]. These works rely on a training dataset to learn a temporal

model capturing the evolution of the attribute values of the entities over time, and then, when

comparing two records, use this model to weight the similarity of each pair of attribute values.

As a result, they all require both the same schema for all the records and the same schema
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through time. In addition, they can be affected by selection bias, because the collection of

entities used to train the temporal model may not be representative of the whole domain of

entities. For instance, a model trained with data collected from Western data sources may not

be effective if used in Eastern databases, as the two populations have different traditions and

evolutions.

In this thesis, we introduce the novel problem of entity resolution in heterogeneous temporal

databases, discuss its main challenges, and present both an exact and an approximate solution

to the problem. The exact solution compares each pair of records and then enumerates the

maximal groups of pairwise similar records, while the approximate solution trades effectiveness

for efficiency, by using a time-aware schema-agnostic meta-blocking algorithm. This algorithm

proceeds in four steps. In the first step, it creates a collection of overlapping blocks of temporal

records according to their attribute values, independently of the corresponding attribute names.

In the second step, it builds a blocking graph where the nodes represent the records, the edges

link records co-appearing in some block, and the edges weights are a function of the number

of blocks the two records share and the number of times they share each block. This graph

is used to transform the block collection into a new set of blocks that can be processed more

efficiently. In the third step, the pairs of records within the same block are compared, and those

with similarity greater than a minimum threshold are retained to create a similarity graph. In the

last step, the algorithm extracts dense clusters of similar records from the similarity graph, each

of which corresponds to a real-world entity.

1.4 Outline

The remainder of this thesis is organized as follows. In Chapter 2 we review the literature on the

research fields most related to our work; Chapter 3 introduces the problem of mining relevant

patterns in multi-weighted graphs; presents our exact, approximate, and distributed solution;

and discusses their performance on real and synthetic graphs. Chapter 4 formalizes the task of

finding dense groups of correlated edges in a dynamic network, and the related task of com-

puting only a subset of diverse groups; shows our implementations and optimizations designed

to increase the scalability of the mining process; and analyses the results of our experimental

evaluation. In Chapter 5 we introduce the novel problem of entity resolution in heterogeneous

temporal databases; discuss the inherent complexity of the task of matching records with differ-

ent schemata and that can change over time; and illustrate the exact and approximate solutions
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we propose to address all the challenges of this problem. Finally, in Chapter 6 we discuss the

limitations of our work, identify future directions for research, and draw our conclusions.



Chapter 2

State of the art

In this chapter we survey the major advances in the research areas related to our work, with the

purpose of revealing the gaps in the literature that motivated our study and proving the significant

contribution of this thesis to the field of data mining.

We first review how the problem of finding patterns in graph data has been tackled by existing

approaches, which major extensions and novel formulations those approaches have proposed,

and how our score-based pattern mining approach differs from them (Section 2.1). Then, we

examine the literature of dense subgraph mining, focusing on the subfields of dynamic dense

subgraph mining and anomaly detection in dynamic graphs, as they are the most related to the

novel research topic we investigate in this thesis. We provide an overview of the existing works

and illustrate why they are not suitable to address the task of dense correlated subgraph mining

(Section 2.2). Finally, we move to the task of entity resolution and present the challenges of

solving the problem in heterogeneous databases and temporal databases. We explain how exist-

ing techniques have tackled these challenges, and show the main differences with our approach

to solve entity resolution in heterogeneous temporal databases (Section 2.3).

2.1 Graph Pattern Mining

The frequent pattern mining problem was originally studied in the context of market basket

data analysis [AIS93], with the goal of finding sets of products bought together and whose

frequency is higher than a frequency threshold. The advantage of this model is that it satisfies

the downward closure property, which allows the design of algorithms that search for frequent

13
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patterns in a bottom-up fashion. Such property ensures that if an itemset is frequent, then its

subsets are frequent as well, and thus the search can start from sets of single items and keep

enlarging them until the are no longer frequent.

Subsequently, frequent pattern mining has attracted a lot of attention also in the context of

graph data, as it finds applications in numerous domains such as detection of frauds and anoma-

lies [NC03], characterization of protein structures [HBW+05, HYH+05], identification of web

access patterns [PHMAZ00], fast-query processing [YYH04], and detection of traffic bottle-

necks [JVB+05]. In this context, frequent patterns are subgraphs that appear often in the

graph, and their discovery is an intrinsically intractable process because determining if two

subgraphs represent the same pattern is a NP-hard problem known as subgraph isomorphism

problem [Coo71, GJ79]. The frequency of a pattern is defined based on the type of graph data in

input. When the input is a graph database, i.e., a collection of small graphs, it is the number of

graphs in the collection containing the pattern [KK01], whereas if the input is a single graph, it

is the number of appearances (a.k.a. embeddings) of the subgraph in the graph [KK05]. Because

of this design, algorithms developed for graph databases fail in finding the correct results if used

for single graphs, as every pattern would have frequency equal to 1 or 0.

2.1.1 Graph Databases

Similarly to the market basket data scenario, in the graph database setting the frequency mea-

sure satisfies the downward closure property (a.k.a. apriori property), meaning that any ex-

tension of an infrequent pattern is infrequent as well [AIS93]. Given the intractability of the

graph pattern mining problem, this property has been extensively exploited in designing pattern-

growth algorithms able to prune considerably the search space and thus scale better to larger

graphs [YH03, NK04, HWPY04, PN07]. Rather than examining each possible combination

of edges, these algorithms recursively expand frequent structures in larger subgraphs and stop

the expansion when the subgraph generated is not frequent. Despite the massive pruning, they

provide a complete and correct solution.

These algorithms can be divided into two categories, i.e., apriori-based and pattern-growth. The

apriori-based approaches generate patterns of size k by joining frequent patterns of size k − 1.

The join can either produce a pattern with an additional node [IWM00], or a pattern with an

additional edge [KK01]. However, these approaches are impractical for mining long patterns,

because when k becomes larger, the joining procedure becomes expensive and generates a huge
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candidate set. On the other hand, the pattern-growth methods add an extra edge to frequent

patterns of size k to generate candidates of size k + 1. This technique avoids costly joining

operations, but may generate the same candidate multiple times because the same set of edges

is used to create and expand the candidates. To prevent the redundant examination of the same

candidate pattern, gSpan [YH02] expands the patterns by adding the extra edge on their right-

most path and performs the search in a depth-first manner. In addition, it uses a novel canonical

labeling to accomplish the isomorphism tests, having proved that two subgraphs are isomorphic

if they have the same canonical label. The canonical label of a pattern, called DFS code, is

created by concatenating the ids of its edges in the order that gives the minimum lexicographic

string.

In frequent pattern mining, the size of the result depends heavily on the choice of frequency

threshold, meaning that at low values the number of patterns returned can be very large. As a

consequence, many efforts have been devoted to develop algorithms that computed a reduced but

representative set of patterns of great interest. SPIN [HWPY04] extracts the maximal frequent

patterns from a graph database by computing the maximal frequent spanning tree and using

them to build the maximal frequent subgraphs. Maximal frequent patterns are patterns that are

not contained in any other frequent pattern, and therefore they constitute a lossless represen-

tation of the set of frequent patterns. Similarly, CloseGraph [YH03] extracts the set of closed

frequent patterns, defined as the frequent patterns that are not contained in any larger pattern

with the same frequency. ORIGAMI [AHCS+07] introduces a novel concept of representative

pattern called α-orthogonal pattern and proposes an approximate algorithm to mine the set of

α-orthogonal β-representative patterns. A set of patterns is α-orthogonal if the pairwise simi-

larities between its elements are lower than α, and it is β-representative if each pattern not in

the set has similarity greater than β with at least one pattern in the set. This set is constructed

by randomly traversing the search space to find all the maximal patterns, and then retaining the

subset of α-orthogonal patterns that minimizes the set of unrepresented patterns, i.e., patterns

having similarity lower than β with any pattern in the subset retained.

On the other hand, LEAP [YCHY08] and GraphSig [RS09] focus on the discovery of the patterns

with the highest statistical significance. LEAP adopts structural leap search to prune the search

space horizontally and examine only a subset of promising subgraphs, and frequency descending

mining to discover the significant patterns earlier in the search. GraphSig, instead, creates a set

of feature vectors for each graph in the database, and use them to compute the significance of

the patterns efficiently.
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Despite closed and maximal frequent patterns are orders of magnitude fewer than the frequent

patterns, the output of the mining algorithm can still be huge and contain redundant informa-

tion. Moreover, the lack of user-defined thresholds leads to the discovery of many uninteresting

patterns. Aiming at mining patterns that meet the user’s demands, constraint-based algorithms

have been proposed, which let the user specify the requirements that a pattern must meet in or-

der to be part of the solution. CabGin [WZW+05] identifies five types of constraints: element,

size, super-graph, distance, and aggregate. The element constraints specify which nodes and

edges should or should not be part of the patterns mined, the size constraints limit the size of the

patterns, the super-graph constraints specify a group of valid subgraphs, the distance constraints

regulate the length of the path distances in the pattern, and the aggregate constraints control the

value of some aggregate of the nodes or edges in the pattern, where the aggregate function can

be sum, avg, max, or min. These constraints are grouped into three categories, i.e., monotonic,

anti-monotonic, and succinct, each of which is pushed at a different level of the mining process

to speed up the extraction of the valid patterns.

On the other hand, gPrune [ZYHP07] defines two properties of the constraints, called P-anti-

monotonicity and D-antimonotonicity, that are weaker than the anti-monotonicity and the mono-

tonicity, yet allow a significant pruning of the pattern and the data space, respectively. Thank to

these properties, the gPrune framework is able to mine all the valid patterns in a pattern-growth

fashion, without enumerating all the frequent patterns. The framework considers three struc-

tural constraints, namely the degree, the density, and the connectivity. Following the minimum

description length principle, Forage [PN07] selects from the set of frequent patterns, those max-

imizing a scoring function that depends on the size of the pattern and its frequency. The score

of a pattern is interpreted as an estimate of the space saved when all its occurrences in the graph

database are replaced by a single vertex, and thus it allows the selection of a very limited set of

both discriminative and representative elements.

Skyline patterns have been introduced to mine interesting patterns in a threshold-free manner.

Given a set of objectives, a pattern dominates another pattern if it has a higher score in at least

one objective and has the same value in all the others, and skyline patterns are those patterns

not dominated by any other. MOSubdue [SQC13] defines the dominance in terms of number

of nodes, frequency, and density, but claims it can work with any custom objective that can

be expressed in a simple way. Pareto dominance is applied to perform both the search in the

multi-objective subgraph space and the evaluation of the subgraphs discovered. The search is

a single-objective heuristic search based on a beam search method, which generates promising
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subgraph-seeds according to the MDL principle, and extend them by one node or edge to create

larger candidates. The evaluation is achieved by associating a d-dimensional objective vector to

each subgraph and then ranking those vectors in ascending order.

All these approaches treat the nodes and the edges in the graphs equally, but real-world sce-

narios show that they can be associated with different weights representing their relevance or

some quantity measured by the system. In protein-protein interaction networks, for example,

the weight of an edge represent the strength of the interaction, while in transportation networks

it can represent the speed limit of the corresponding road segment. In weighted pattern min-

ing, application-specific real numbers are assigned to the elements of the graphs, enabling the

use of weight-based constraints in the mining process. Eichinger et al. [EHB10] investigate

three non-anti-monotone constraints, namely information gain, Pearson correlation, and vari-

ance, and present an algorithm based on gSpan that returns the frequent patterns satisfying

the weight-constraint. The solution is approximate, as it relies on the anti-monotonicity of the

frequency to prune the search space, and hence may not discover an infrequent pattern that com-

plies with the weight-constraint. ATW-gSpan, AW-gSpan, and UBW-gSpan [JCZ10] are other

variations of gSpan that incorporate three different weighting mechanisms to mine weighted

frequent patterns. The first mechanism is the average total weighting, which divides the sum

of the average weights in the graphs containing the pattern by the sum of the average weights

of all the graphs. The second is the affinity weighting, which calculates the ratio between the

minimum and maximum weight among the occurrences of the pattern in the graphs, and the

average Jaccard distance between the pattern and the graphs in which it appears. Finally, the

third is the utility-based weighting, which computes the reciprocal of the sum of the Jaccard

similarities between the supports sets of endpoints of the pattern edges, and the ratio between

the total weight of the pattern and the total weight of all the graphs. The first two mechanisms

take advantage of the anti-monotone property to prune the search space, while the third one

exploits an alternative less effective pruning technique. Additionally, WFSM-MR [BJ16] further

extends such approaches in a distributed manner on top of the MapReduce framework.

2.1.2 Single Graphs

As opposed to the graph database case, the frequency defined for the single-graph setting do not

possess the anti-monotone property, due to the presence in the graph of occurrences, i.e., embed-

dings, of the same pattern that share some edges (i.e., they overlap) [FB07]. These embeddings
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count as a single contribution to the frequency of the overlapping edges, but as a separate con-

tribution to the frequency of the larger pattern, meaning that the larger pattern achieves a higher

frequency than its sub-pattern. As a consequence, alternative different measures have been in-

troduced to allow an effective pruning of the search space [BN08].

Subdue [HCD+94] is the first pattern mining algorithm in single graphs, but instead of mining

the frequent patterns, it adopts an approximate greedy strategy based on the Minimum De-

scription Length to mine the subgraphs that can better compress and thus describe the original

graph. In addition, it allows the user to provide background knowledge in the form of domain-

dependent or domain-independent rules that will be used to evaluate the subgraphs and thus

bias the search towards specific types of structures. The first apriori-compliant frequency met-

ric proposed in the literature is the maximum independent set (MIS) support [VGS02], which

counts each pair of overlapping embeddings at most once. This metric is used by hSiGraM and

vSiGraM [KK05], two pattern-growth algorithms that find the frequent subgraphs in a graph by

following a horizontal and a vertical approach, respectively. The horizontal approach discovers

the frequent patterns in a breadth-first fashion, while the vertical approach traverses the search

space in a depth-first fashion. They propose both an exact and an approximate discovery, for

which they compute, respectively, the MIS supports exactly and approximately. The exact MIS

supports are computed using a maximal clique algorithm, while a greedy algorithm is used to

approximate their size. vSiGraM achieves better performances than hSiGraM, as it stores all

the embeddings of the frequent patterns discovered in the previous iteration to speed up the

isomorphism tests for the current candidate patterns. GREW [KK04], instead, calculates the

MIS support of a pattern using a greedy maximal independent set algorithm that quickly finds

a subset of the vertex-disjoint embeddings of the pattern, hence leading to an underestimation

of the real support of the pattern. To increase the efficiency of the algorithm, the computation

of the frequent patterns is iteratively performed on the augmented graph built by collapsing the

embeddings of the frequent patterns into vertices and augmenting the edges incident to these ver-

tices with information present in the original graph. At the beginning of each iteration, GREW

identifies the edge-types that occur enough times in the augmented graphs and processes them in

descending order of number of appearances. At the end of the iteration, if no edge types has MIS

support greater than the minimum frequency threshold, the algorithm terminates; otherwise, it

discards the infrequent edge-types and updates the augmented graph for the next iteration.

The second metric proposed is the Harmful Overlap (HO) support [FB07], which categorizes the

pairs of overlapping embeddings into harmful and harmless, and then counts each harmful pair at
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most once, while the harmless pairs are considered separate contributions. However, calculating

the MIS or the HO support is an intractable problem [GJ79], rendering them unsuitable in many

practical scenarios.

In contrast, the minimum number of node images (MNI) support can be computed efficiently

[FB07], and thus has been extensively exploited by more recent works such as GraMi [EASK14]

and its parallel extension ScaleMine [AAK+16]. These algorithms optimize the computation of

the frequent patterns by modeling the search of the embeddings of a pattern as a constraint

satisfaction problem, denoted as CSP (X,D,C). According to the CSP model, an embedding

is isomorphic to a pattern P : (X,D,C) if it is a valid assignment of the variables in X to

variables in D, and it satisfies all the constraints in C, which are node and arc consistency

constraints that define how the variables in X are connected in the pattern P . To avoid the

computation and the storage of all the embeddings of the patterns, the two algorithms search for

valid assignments on-the-fly, terminating the search process as soon as the set of embeddings

found pass the minimum frequency threshold.

With the goal of defining a support measure that satisfies the downward closure property, as

well as being intuitive and significant, Han et al. [HW13] introduces the concept of pivot and

a new type of pattern called frequent neighborhood pattern. Having selected a vertex of each

subgraph as pivot, they treat two subgraphs as identical if they are isomorphic and map the pivot

to the same node of the graph. The support of a pattern, or neighborhood, is then defined as the

number of distinct nodes in the graph to which its pivot is mapped, and the problem of finding

patterns with large support is called frequent neighborhood pattern mining.

However, all the previous frequency-based approaches focus their attention solely on the struc-

ture and the popularity of the patterns, disregarding any other user-defined constraint or user

preference. Little attention has been focused on the development of constraint-based algorithms

that find patterns satisfying some notion of relevance. SkyGraph [PLM08] is the first contribu-

tion to the field, which expresses the relevance in terms of number of vertices and edge connec-

tivity, and mines patterns maximizing these two objectives by recursive graph partitioning. At

each iteration, SkyGraph uses a MIN-CUT algorithm to obtain the partitioning that maximize

the edge connectivity within the partitions, and then performs the multi-objective evaluation of

the subgraphs obtained in order to determine if they can be part of the solution. Finally, the set

of current best patterns is updated and the next iteration starts. Since the search of the candi-

date subgraphs is guided by the edge connectivity objective, this algorithm is not designed to
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work with other user-defined constraints like preferences expressed in terms of weights on the

elements of the graph.

The first work on weighted pattern mining in single graphs is WIGM [YSLD12], which quanti-

fies the importance, or weighted support, of a pattern as the ratio between the sum of the edge

weights of its appearances, and the number of edges in the pattern. Since this measure do not

satisfy the anti-monotone property, WIGM bounds the search space using a novel but weaker

pruning strategy called 1-extension property. In addition, it maintains an index on the subgraphs

in the graph, in order to speed up the computation of the weighted supports.

Uncertain graphs are graphs that include existence probabilities for their nodes and edges, and

thus they can be seen, to some extent, as a special case of weighted graphs. Several works have

been proposed to mine frequent patterns in those graphs [ZLGZ10, JKHB11, PIS11, CZLW15,

WRS17, LZG12]; however, as opposed to weighted graph pattern mining algorithms, their sup-

port measures are defined in terms of the uncertainty of the edges and compute the support of

a pattern as an expected value. As a consequence, they are not designed to work with general

weighted graphs.

Differently from WIGM and all the frequency-based algorithms, we introduce a family of scor-

ing functions that assess the relevance of a pattern in terms of the weights of its appearances, and

yet satisfy the anti-monotone property, hence allowing efficient implementations. Moreover, we

propose a more general framework that supports multi-weighted graphs, and thus is able to mine

the relevant patterns for each set of weights, effectively and efficiently.

2.2 Dense Subgraph Mining

Density has been considered a measure of importance in many different kinds of networks, rang-

ing from social networks, where dense groups of nodes and edges can represent communities of

people that share similar interests [CS10, ASKS12]; to biological networks, where dense sub-

graphs can indicate biological modules [BH03, HYH+05]; to the World Wide Web, where a

spam page is characterized by a large number of incoming links [BXG+13].
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2.2.1 Single Graphs

The literature abounds with works aiming at extracting dense subgraphs from a single graph.

These works differ in how they calculate the density of a subgraph, and how they select the

dense subgraphs to return. The ideal form of dense component is represented by the clique,

which is a fully-connected subgraph. However, determining if a graph contains a clique of size

k is a well-known NP-complete problem [Kar72], and thus alternative notions of density have

been proposed [ARS02] and approximate algorithms have been developed [GKT05]. Gold-

berg [Gol84], for example, defines the density of a subgraph as the average node degree and

proposes an approach that finds the subgraph with maximum average degree by iteratively ap-

plying a max-flow/min-cut algorithm that decomposes the current node set into two partitions.

On the other hand, Charikar [Cha00] reduces the problem to a linear programming task, and

describes a greedy algorithm with 2-approximation guarantee that is linear to the number of

edges and nodes in the graph. The algorithm iteratively removes the node with lowest degree,

until the graph becomes dense or empty. Other approximate works have considered the problem

of extracting the densest subgraph with at least k nodes (DALKS), the densest subgraph with

at most k nodes (DAMKS), and the densest subgraph with k nodes (DKS), which are all NP-

complete problems [AC09]. DALKS is solved with a 1/3-approximate algorithm based on core

decomposition, that iteratively removes the node with minimum weighted degree and finally

chooses the subgraph with maximal density among those discovered during the process. DKS is

solved with a 1/4-approximate algorithm Rozenshtein et al. [RAGT14], instead, take a weighted

activity network in input, and detect the subgraph that maximizes the sum of the weights and

minimizes the sum of the pairwise node distances. The two objectives are combined in a sin-

gle objective function, which is optimized using a randomized double-greedy algorithm with

1/2-approximation guarantee [BFSS15]. The paper proposes also a slower but more effective

solution based on the MAXCUT problem [GW95]. Finally, Balalau et al. [BBC+15] gener-

alize the densest subgraph problem to the problem of detecting at most k subgraphs such that

the sum of the average degrees is maximized, and the maximum pairwise Jaccard similarity

between their node sets is at most α. They devise an exact algorithm based on Charikar’s ap-

proach [Cha00], as well as a fast heuristic that allows the algorithm to scale to graphs with 100

million edges. The algorithm iteratively executes two subroutines called TRYREMOVE and

TRYENHANCE, which produce minimal densest subgraph at each step. The former receives a

node, and checks if it can be removed from the graph without decreasing its density; while the

latter receives a node and a density value, and returns the subgraph that contains the node and
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has the given density. The algorithm terminates when k subgraphs are found, or when the graph

becomes empty.

2.2.2 Multiple Graphs

The problem of finding dense components has been extended also to datasets that consists of a

set of graphs modeling a dynamic network, with applications like detecting congested locations

in road networks [BCK+03] and real-time story identification in social networks [ASKS12].

However, applying algorithms for the static case to this setting is generally inefficient [BMS11]

and ineffective [YYG+14], as the temporal dimension brings a new wave of challenges that

require more specialized solutions.

Several approaches have been developed with the goal of extracting dense subgraphs from a

dynamic network. Bogdanov et al. [BMS11] extract the highest-scoring temporal subgraph

from a dynamic weighted network, which is defined as the subgraph with largest sum of edge

weights in a sub-interval of graph snapshots. The paper proves that the problem is NP-hard and

proposes a filer-and-verify approach that effectively prunes the quadratic sub-interval space and

efficiently verify the promising sub-intervals. Ma et al. [MHW+17] propose a more scalable

solution that employs hidden statistical characteristics of the time intervals to detect k candidate

sub-intervals and then extracts the dense subgraphs in each sub-interval by reducing the problem

to the Prize Collecting Steiner Tree problem.

Yang et al. [YYG+14] focus on capturing the most frequently changing structure in a series

of graph snapshots, i.e., the subgraph that maximizes the density of the connectivity change

between each pair of the subgraph nodes. The connectivity change between two nodes between

two snapshots is measured using the maximum number of independent paths, and the algorithm

proposed computes the cumulated connectivity change between two nodes in the entire sequence

of snapshots by iterating over the snapshots and computing the edge connectivity using a max-

flow algorithm twice at each step. Then, the algorithm constructs a static graph Ḡ by merging

all the snapshots together and assigning a weight to each edge equal to the number of snapshot

where it appears, and finally it extracts the minimum spanning tree from Ḡ.

The problem of finding the densest temporally compact subgraph in the context of interaction

networks is studied by Rozenshtein et al. [RTG17]. The temporal compactness of a dense group

of nodes with respect to a set of time intervals, is ensured posing a constraint on the number
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of intervals in the set, and on their total length. The two algorithms proposed are based on

Charikar’s greedy algorithm [Cha00] and differ in how they try to optimize the two temporal

constraints. One approach optimizes the two constraints in an alternating fashion with binary

search, while the other approach aggregates the two constraints into a single gain/cost ratio

optimized in a greedy fashion. The performance of two algorithms is improved by exploiting

the concavity property of the objective functions and applying fractional programming.

Charikar’s algorithm has been exploited also by Semertzidis et al. [SPTT18] to find the group

of nodes most densely connected in all the snapshots of a dynamic graph. They measure the

density of a group of nodes as either the minimum node degree or the average node degree,

and then the density of a group over time as either the minimum or the average density across

the snapshots, thus obtaining four variants of the problem, i.e., BFF-MM, BFF-AA, BFF-MA,

and BFF-AM. The paper presents a generic greedy algorithm that solves BFF-MM and BFF-

AA optimally in polynomial time, while no theoretical guarantees are proved for BFF-MA and

BFF-AM. Furthermore, the paper solves the problem of finding the group of nodes and the set

of k snapshots such that the density of the group in these snapshots is maximized. The first

solution is an iterative algorithm that starts with a set of snapshots and a set of nodes and tries

to improve them at each step; while the second solution is an incremental algorithm that builds

the solution incrementally starting with a set of two snapshots.

Although some of these works can be modified to retrieve multiple subgraphs (e.g., by itera-

tively applying the algorithm and removing the solution found), they would detect only non-

overlapping subgraphs, and more importantly, they would not scale to very large graphs. The

enumeration of dense structures has been studied in the context of frequent subgraph mining,

community evolution, and temporal subgraph mining. In frequent dense subgraph mining in dy-

namic networks, the goal is to extract components that are dense and that occur frequently in the

snapshots of the network. Yan et al. [YZH05] develop a pattern growth and a pattern reduction

approach that exploit the minimum cut clustering criterion to compute all the frequent closed

patterns that satisfy given connectivity constraints. Abdelhamid et al. [ACS+17] propose an

incremental approach to continuously report the frequent patterns, which employs three novel

techniques to save space and time, among which, (i) it uses an efficient index to store a minimal

number of occurrences of a selected subset of patterns, (ii) it supports batch processing, and (iii)

it reorders the execution of the isomorphism tests needed for computing the support values based

on information collected during past graph updates, with the goal of improving the efficiency

of the next iterations. An high-quality approximation of the subset of frequent patterns with k
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vertices is instead computed by Aslay et al. [ANDFMG18]. Their approach is based on two

components, i.e., a reservoir of subgraph samples and an exploration procedure. The subgraph

samples are used to capture the changes in k-subgraphs previously sampled using a scheme

with guarantees on its accuracy, while the exploration procedure includes newly (dis)connected

k-subgraphs into the sample.

Aggarwal et al. [ALYJ10] define a density measure in terms of node co-occurrence and edge

density, and determine the frequent dense patterns in a dynamic network using a probabilistic

algorithm. The algorithm consists in two step. In the first step, it detects the correlated node

patterns, which are groups of nodes that frequently appear together in the same snapshots; while

in the second step, it determines the subset of nodes that satisfy a given edge-density constraint.

To speed up the detection of the correlated nodes, the algorithm maintains a set of min-hash val-

ues for each node that are updated as new snapshots of the network are processed. On the other

hand, Quin et al. [QGY13] define six types of significant structures characterized by different

pattern of appearance in the snapshots, and introduce a two-step algorithm that creates a sum-

mary graph, deletes the infrequent edges, and finally uses a density-based clustering algorithm

to obtain the set of subgraphs with the desired properties. In the field of bioinformatics, Hu et

al. [HYH+05] find the coherent dense subgraphs that appear frequently in a sequence of rela-

tional graphs. The temporal component is encapsulated into a time-series-based edge similarity

function, and the coherence of a subgraph is measured as the total pairwise edge similarity. The

main steps of the algorithm proposed are the construction of a summary graph that contains the

edges appearing in at least k graphs, and the construction of a second-order graph that represents

the edges of the original graph with similar binary series of appearance. Then, the algorithm ex-

tracts all the subgraphs that are simultaneously dense in both meta-graphs, by first computing

the dense subgraphs in the summary graph, and secondly computing the dense subgraphs in the

second-order graph of each subgraph found in the first step. The search for the dense subgraphs

is carried out by recursively partitioning the graph following a normalized-cut and a min-cut

approach.

Works in community evolution track the progress of dense groups of nodes over time. Kim et

al. [KH09] describe a particle-and-density-based clustering algorithm able to extract commu-

nities of arbitrary forming and dissolving, addressing the challenges of how to cluster a graph

in a variable number of communities, and how to connect the communities across time given

that the number of communities is variable. The first challenge is solved by means of a density-

based clustering algorithm that extracts smoothed clusters using an efficient cost embedding
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technique and optimal modularity. The second challenge is tackled via a mapping method that

can identify the status of each community at each snapshot, i.e., evolving, forming, and dis-

solving. Greene et al. [GDC10], instead, identify the dynamic communities of a dynamic graph

using an incremental dynamic clustering approach independent of the choice of the underlying

static community detection algorithm. The approach starts with the detection of the commu-

nities in the first snapshot and the initialization of the dynamic communities as sets containing

the corresponding static community. Then, it applies a community detection algorithm to each

subsequent snapshot and uses a heuristic threshold-based method to perform a many-to-many

mapping between the existing dynamic communities and the current static communities. Com-

munities without a match will constitute a new dynamic communities, while the others are added

to the corresponding dynamic community.

Finally, temporal subgraph mining focuses on the detection of subgraphs of a dynamic graphs

that satisfy given temporal and structural constraints. TimeCrunch [SKZ+15] searches for the

coherent temporal patterns that best minimize the encoding cost of the dynamic graph. It defines

6 types of dense structures and 5 types of temporal signatures that model the connectivity and

periodicity of the structures, and use them to encode each static subgraph in each snapshot,

following the Minimum Description Length paradigm. Then, it stitches the static subgraphs

with the same connectivity behavior together to obtain a set of temporal subgraphs, and finally

uses the VANILLA, TOP-10, TOP-100, and STEPWISE heuristics to select the non-redundant

temporal structures that best summarize the dynamic graph. Crochet [PJZ05], on the other hand,

enumerates all the maximal groups of nodes that induce a dense subgraph of minimum size in

all the input graphs. When the input is a dynamic network, these groups represent subgraphs

that persist over time. They prove the problem is #P-complete, and describe an algorithm that

enumerates the subsets of nodes using a set enumeration tree, and then conducts a depth-first

search on the tree. At each step of the search, the algorithm uses effective strategies to prune

futile subtrees and decide the order of exploration of the next children, hence speeding up the

mining process.

Other approaches restrict their enumeration to the top k subgraphs. Yang et al. [YYW+16] find

the k diversified γ-quasi-cliques with minimum size, which are subgraph that are γ-dense in a

time interval of minimum size. A divide-and-conquer algorithm starts with the entire dynamic

graph and the entire set of time instances, recursively divides the current graph into two parts,

applies effective pruning rules to remove futile vertices, and search for the maximal dense sub-

graphs induced by each part. During the whole mining process, the algorithm maintains the k
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best subgraphs using a greedy procedure. Nasir et al. [NGMG17] detect the k node-disjoint sub-

graphs with maximal total density in dynamic graphs modeled as streams of edges. Given the

hardness of the problem, they propose a greedy algorithm with 2-approximation guarantee for

the first subgraph extracted, and 2k-approximation guarantee for the top-k subgraphs. The al-

gorithm incrementally stores the strongly connected subgraphs using a novel memory-efficient

data structure called snowball, which handles all the graph update operations and allows the

extraction of the top-k disjoint subgraphs on-the-fly.

All these works, however, find subgraphs that satisfy only density and structural constraints,

and therefore fail in enumerating all the dense correlated subgraphs in a dynamic network. In

anomaly and fraud detection, other measures have been considered, together with the density,

with the goal of discovering rare changes in the snapshots of a dynamic network, with appli-

cations in security [DKB+12], and finance [MBA+09] among others. Jiang et al. [JBC+15]

propose an axiomatization of metrics to measure the suspiciousness of dense blocks in tensors.

Then, they develop an algorithm that detects dense regions of anomaly in dynamic networks

modeled as tensors, assuming that the dense regions are randomly distributed according to a

Poisson distribution, and using the negative log likelihood as suspiciousness measure. Similarly

M-Zoom [SHF16] detects only the top-k dense blocks. Spotlight [EFGM18], instead, spots

anomalous graphs in dynamic bipartite graphs, using a sketch space to save space and time. A

graph is anomalous if its density significantly increased or decreased compared to the previous

snapshots of the network.

Other methods bound the search for anomalous patterns to a time window. They model the

normal behaviour by means of the previous snapshots of the network, and compare it against the

current snapshot to determine if it is anomalous. Netspot [MBR+13], for example, computes the

anomalousness of each edge in each snapshot of a weighted dynamic network as the statistical

p-value according to the distribution of the edge weights over time. Then, it iteratively tries to

optimize the time interval that gives the highest sum of anomaly scores for a given set of edges,

and the set of edges that leads to the highest sum of scores in a given interval. The algorithm

outputs subgraphs that are more anomalous than a given threshold. However, these groups are

in general not correlated.

All these works, however, focus their search on the statistically significant structures, and thus

the edges within the discovered subgraphs may not be correlated in time. A notion of correlation

has been introduced by Guan et al. [GYK12] and Yu et al. [YAMW13]. The first work proposes
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a novel measure for assessing the structural correlation of two events in a graph. The main idea

is to select uniformly a subset of reference nodes from the vicinity of all the nodes in the two

events, and compute the average concordance of density changes of the two events between two

reference nodes using the Kendall’s τ rank correlation measure. High concordance scores in-

dicate that the occurrence of one event tends to attract the occurrence of the other event, while

low concordance scores indicate a repulsion. This approach, however, is designed for static

graphs and assumes that the two events are given in input. On the contrary, the second work

detects anomalous hot spots in a stream of edges that model a dynamic network. Hot spots are

defined as localized regions of sudden activity or change, and are dynamically determined by

a localized principal component analysis algorithm that computes a decay factor for each edge

and time stamp, and calculates the correlation between two edges as the correlation between

the decay factors. The mean and standard deviation of the magnitude change and the correla-

tion change at each node are continuously maintained with the goal of extracting those nodes

that unusually deviate during some time interval. An algorithm to search for graphs that have

more statistical co-occurrence ratio in a graph database have been introduced by Samiullah et

al. [SAF+14]. This algorithm efficiently mines graphs that are both frequent and correlated,

using a novel correlation measure called gConfidence defined as the ratio between the frequency

of the graph and the maximum among the frequencies of its subgraphs. The mining process

follows a pattern-growth strategy similar to the one used by gSpan [YH02] that exploits the

anti-monotonicity of the frequency and the correlation measure, to prune the search space. Even

though this algorithm can be effectively applied to dynamic graphs modeled as sequences of

static graphs, the subgraphs extracted do not satisfy any density constraint. In contrast to these

works, our goal is to extract groups of correlated edges that are dense.

In the field of correlated dense subgraph mining, Chan et al. propose the greedy algorithm

CStag [CBL08] and its incremental and more scalable version ciForager [CBLH12], which can

find regions of correlated temporal change in dynamic graphs. The temporal similarity between

two edges is defined as the Euclidean similarity between the corresponding time series, while the

spatial closeness is measured in terms of the shortest path distance. The proposed algorithms

iterate over the snapshots of the graph using a window of fixed size, and for each window,

they cluster the edges using first the temporal distance and then the spatial distance. To save

computational time, they adopt heuristics to calculate the temporal distances, and exploits a

data structure called union graph to compute the spatial distances. However, these approaches

partition the edges into a possibly very large number of regions, i.e., each edge of the graph is
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part of the output. In contrast, we aim to enumerate only the subgraphs with large density and

high pairwise edge correlation, and in addition, our approach is independent of the choice of the

underlying spatial and temporal measure.

2.3 Entity Resolution

Entity resolution (ER) has been extensively studied in the context of data integration [SGV06],

data cleaning [BG04], and information retrieval [KJDR08], among others, and for both struc-

tured and unstructured data, such as Web data [CES15], genealogical data [ERSR+15], and

social networks [BLGS06]. The exact solution to this problem computes the similarity be-

tween each pair of records in the dataset and then clusters the records, aiming to maximize the

intra-cluster similarities and minimize the inter-cluster similarities. To improve on the quadratic

complexity of this solution, ER algorithms usually reduce the number of candidate records to

compare using a strategy called blocking [MK06, PIP+12, EIV07, Chr12], which assigns a

blocking key to each record based on its attribute values, and places the records into blocks

according to some blocking criteria. Since the comparisons will be executed only between

records in the same block, the effectiveness of a blocking criteria is measured as the number

of missing matches, while its efficiency is given by the number of comparisons saved. The

literature abounds with different strategies that can be classified into schema-based approaches

and schema-agnostic approaches, and that create either overlapping or non-overlapping blocks,

which are processed in a predefined order [HS95, GIJ+01, MNU08, dVKCC09]. Whang et

al. [WMK+09] propose a more advanced technique called iterative blocking, which exploits the

matches detected in previously processed blocks to save comparisons in the following blocks

and to infer new matches. The main idea is to first run a core ER algorithm on each block,

and then, whenever a pair of duplicate records is found, merge the records and replace their

occurrences in all the blocks with the unified record. The already examined blocks that contain

either of the duplicate records are re-processed to identify more duplicates, and the process is

repeated until no more matching records can be found in the blocks. This technique is also used

by Papadakis et al. [PINF11] in their schema-agnostic approach designed for records coming

from heterogeneous sources. Assuming that two matching records have at least one value in

common, the algorithm proposed groups the records considering only their values, defines a

block processing order by comparing the cost for processing a block against the corresponding

gain, and finally processes the ordered set of blocks. Oversized blocks and blocks whose cost
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exceeds an upper bound are discarded, and the duplicates detected are propagated via iterative

blocking.

To reduce the likelihood of missed matches, overlapping blocking strategies place the records

into multiple blocks, but this redundancy comes at the cost of lower efficiency, as the number of

comparisons to perform is higher. Therefore, block processing techniques have been introduced

with the goal of decreasing the number of redundant comparisons without any significant impact

on the effectiveness. These techniques are applied after the block creation step, to restructure

the initial block collection into a smaller but effective new collection. Meta-blocking [PKPN14],

for example, is a block processing method that relies on a graph built from the block collection

to remove the comparisons that are likely to link dissimilar records. A node is created for each

record, and every pair of records that co-appear in some block is linked with an edge. The

edges are then weighted using one of the five schema-agnostic schemes that trades between

computational cost and gain of comparing the adjacent records. Those edges that do not satisfy

a given weight constraint are removed, while each of the remaining edges is transformed into a

new block containing its adjacent nodes. Papadakis et al. [PPPK16a] further improve the perfor-

mance of meta-blocking [PKPN14] with three node-centric pruning algorithms, i.e, Redundancy

Pruning, Graph Partitioning, and Reciprocal Pruning; and with a block filtering algorithm that

removes every record from the blocks that are the least important for it. In addition, they study

how to select the best pruning scheme a-priori, depending on the application and the resources.

To deal with applications that have limitations on the maximum response time or the available

resources, Simonini et al. [SPPB18] propose a progressive schema-agnostic algorithm based

on blocking, which generates on-line the most promising pairs of records in decreasing order

of matching likelihood. In this way, it can identify matching records earlier, hence providing

the best possible partial solution. This algorithm relies on two principles, i.e., it assumes that

matching records have blocking keys that are closer in alphabetical order, and that the matching

likelihood of two records is proportional to the number of shared blocks.

2.3.1 Temporal Data

When the records in the dataset are associated with temporal information, we talk about temporal

entity resolution. In temporal entity resolution, the goal is to identify records that describe the

same real-world entity over time, hence tracing the history of that entity. Since traditional ER

algorithms are agnostic to the temporal dimension, they fail to identify entity changes over
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time [LDMS11]. In contrast, temporal matching approaches typically rely on a temporal model

able to capture the evolution of the attribute values, hence allowing to detect which records can

represent the same real-world entity at different times.

The pioneering work in this context is the paper of Li et al. [LDMS11], which compares the

temporal records using a weighted similarity function that assigns penalties to value agreements

and disagreements based on the time gap of the two records. This function favors value differ-

ences over a long time gap (disagreement decay) and penalizes value similarities over a long

time gap (agreement decay). Decay values are learned for each attribute using a labeled training

set. In addition, the paper proposes three temporal clustering methods that process the records in

temporal order. Early binding merges a record with the most similar cluster among the existing

ones; late binding compares a record with each existing cluster but makes the clustering decision

at the end; and adjusted binding, used in addition to one of the previous methods, compares a

record with clusters created at later times to adjust the clustering results.

Chiang et al. [CDN14a] improve the accuracy and the robustness to noise of [LDMS11] via a

more complex model able to learn more detailed patterns of value change. The model is based

on the notion of mutation, which gives the probability that an attribute of an entity has a value

never appeared in that attribute in the history of that entity; and on the notion of recurrence,

which gives the probability that an attribute value of an entity recurs after a time interval ∆t.

The algorithm proposed cluster the records by processing them in increasing temporal order, and

computing the temporal similarity between two records as the weighted average of the attribute

value similarities based on the weights obtained from the mutation model. Low weights are

assigned to attributes that tend to change over time, as considered less reliable. The temporal

model introduced in [LDMS11] forms the basis of the two-step temporal clustering algorithm

proposed by Chiang et al. [CDN14b]. The first step of the algorithm assumes the records are

static and groups them according to the value similarities. The second step merges the clusters

by deciding if it is possible for an entity to evolve from the state described in one cluster to the

state described in another one.

On the other hand, Li et al. [LLHT15] present a temporal entity matching algorithm that use a

value transition model and a source freshness model to track the evolution of the entities over

time, hence building entity profiles. The transition model captures the probability that an entity

change to a particular value for a particular attribute after some period of time, while the source

freshness model captures the freshness of a data source on an attribute. The algorithm starts
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with clustering the records depending on the freshness of their source, placing stale records into

multiple clusters if need be. Then, given an entity profile, it iteratively identifies the subset

of clusters that match with the profile, and updates the profile by adding the records in those

clusters. The matching decision depends on both the value transition probabilities and the sup-

port of the data sources. This work is extended in [LLH17] with an approach that considers

not only the freshness of the data sources, but also their reliability. Reliability is measured in

terms of accuracy and coverage, which indicate, respectively, the probability that an attribute

value from a source conforms to the real world and the probability that a change of a value in

the real world is captured by a source. They propose a source-aware matching algorithm that

relies on a transition model, a freshness metric, and a reliability metric, to augment the entity

profiles with correct values at the right times. The matching algorithm works in two phases,

which are the clustering of the records into a set of clusters representing the status of an entity

over some time period, and the matching of the clusters to the entity profiles to augment them

with the best clusters. On the other hand, Ranbaduge et al. [RC18a, RC18b] address the task

of temporal entity resolution between datasets containing sensitive information. They propose

a privacy-preserving temporal record linkage (PPTRL) protocol able to link the entities in the

temporal databases without sharing confidential information between their owners. This proto-

col uses a homomorphic-encryption-based technique to learn the decay values for each attribute,

which are exploited to generate masking Bloom filters to adjust the similarity values between

the records.

An adaptive approach is presented by Christen et al. [CG13], that is able to adjust the similar-

ities between two records based on both their attribute values and their time difference. This

algorithm uses the same weighted similarity function introduced in [LDMS11], but adopts an

efficient technique to calculate the weights in an adaptive fashion, which incorporates the fre-

quency distributions of the attribute values in the calculation of the agreement probabilities.

Given a stream of new records, the matching algorithm processes them in order of arrival, and

updates the weights after each matching decision. All these approaches assume the records have

the same schema, whereas we focus on heterogeneous data. In addition, in contrast to these

approaches, we offer a model-free solution that does not require a training dataset to learn how

the entities evolve over time, and yet is effective in identifying a good-quality approximation of

the set of matching records in a temporal database.

Finally, we note that our problem may resemble a time-series matching problem, where the

goal is to retrieve, in a database with time-series, those series (or sub-series) that match a query
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(sub)series exactly or approximately. Existing works in this field define a time series as an or-

dered sequence of real numbers, where each number represents a value measured at a particular

time instance, and typically transform it into a feature vector of lower dimension to handle also

high-dimensional data [Lia05, EA12]. However, while structured records can be easily trans-

formed into real-valued time series by deciding an ordering of the attributes and mapping the

attribute values to integers, a consistent mapping can not be efficiently and effectively obtained

for heterogeneous dynamic records, for two reasons. First, dynamic records can have different

sets of attributes over time and new attributes can appear in successive updates to the database,

and therefore a fixed ordering cannot be selected a-priori. Secondly, the values of the attributes

of a dynamic record can change over time, and their concatenation results in a very large feature

vector that is hard to project to a low-dimensional space.



Chapter 3

Score-based Graph Pattern Mining

In this chapter we present the first contribution of this thesis, which is the formulation of a

novel graph mining task that focuses on the discovery of patterns that are relevant according

to individual user’s preferences; and an efficient and effective solution that assumes that those

preferences can be expressed as multiple weights on the edges of the graph, and mines the

patterns using a special scoring function that assess the relevance of a pattern in terms of the

weights of its appearances in the graph, as well as its frequency. As a consequence, we are able

to provide personalized results, rather than “one size fits all” solutions that satisfy the user on

average.

3.1 Contributions

The contributions of this chapter can be summarized as follows:

• We extend the task of pattern mining in weighted graphs for a novel family of scoring

functions that are based on the MNI support, which guarantees they are efficient to com-

pute, and on the edge weights, meaning that they can identify the most relevant weighted

patterns in the graph efficiently and effectively (Section 3.2). We call these functions

MNI-compatible scoring functions.

• We formally introduce the problem of mining patterns in graphs with multiple weights on

the edges, which has the goal of discovering the most relevant weighted patterns for each

set of edge weights (Section 3.2).

33
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• We devise two centralized algorithms for solving pattern mining in multi-weighted graphs

(Section 3.4). RESUM is an exact solution less time and space consuming than the naive

approach that extracts each set of patterns separately, as it avoids redundant revisits of

the graph by aggregating and performing once multiple computations on the same parts

of the graph, and it stores the relevant patterns in a compact way. On the other hand,

RESUM approximate is a conservative approximate solution that reduces the number of

edge-weight functions to consider in the mining process by aggregating those having a

high probability to share similar results into a single representative function (Section 3.5).

• We develop a distributed version of RESUM, called RESUM distributed, which runs on

top of the distributed graph processing system Arabesque [TFS+15] and is able to scale

to larger and richer graphs (Section 3.6).

• We study four MNI-compatible scoring functions that can be effectively used to mine the

relevant patterns in different applications and in graphs with weights drawn from different

distributions or with different characteristics (Section 3.7).

• We evaluate our approaches with an extensive set of experiments on both real and syn-

thetic graphs and discuss our findings. In particular, we showcase advantages and limi-

tations of RESUM when compared to the approximate and the distributed algorithm; we

show that RESUM approximate introduces only few false positives, while running consid-

erably faster than the exact approach; and we discuss in which cases a distributed solution

can be beneficial, and when a centralized solution is rather preferable (Section 3.8).

3.2 Problem Formulation

We first introduce the graph concepts and notation that we use in the formulation of our problem

and in the further sections.

Let Σ be a countable set of labels, and I = [0, 1] ∪ {⊥} the interval of numbers between 0 and

1, plus a special symbol ⊥ denoting no weight. A weighted labeled graph is a structure that

consists of a set of nodes, a set of edges between nodes, an assignment of labels to nodes and

edges, and an assignment of weights to edges. For presentation purposes we assume that the

graph has weights only on the edges, but weights on the nodes can be considered as well with

no need for any major modification.
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Figure 3.1: Example of a edge-labeled, weighted graph.

Definition 3.1. A weighted labeled graph, or simply a graph, is a tuple G : 〈V,E, `, ω〉 where

V is a set of nodes, E ⊆ V × V is a set of edges, ` : E ∪ V → Σ is a labeling function, and

ω : E → I is a weighting function.

Definition 3.1 assumes that the edge weights are in the range of [0, 1]. Nonetheless, this defini-

tion is not restrictive, as any positive or negative value can be scaled down to [0, 1], while any

categorical value can be mapped to some number according to its semantics. For example, if

the values represent a range of preferences, such as extremely needed, moderately needed, and

not needed, we can replace the top preference value with 1, the moderate value with 0.5 and the

bottom value with 0. On the other hand, for the edges that have no weight, the 0 or ⊥ value can

be assumed.

A graph S : 〈VS , ES , `S , ωS〉 is a subgraph of a graph G : 〈VG, EG, `, ω〉 (denoted as S v G),

if VS ⊆ VG, ES ⊆ EG, ∀n ∈ ES ∪ VS , `S(n) = `(n), and ∀e ∈ ES , ωS(e) = ω(e), meaning

that they assign the same labels and the same weights to the common nodes and edges.

To express the fact that two graphs share the same topological structure, we introduce the notion

of isomorphism, which is a bijective mapping between the nodes of the two graphs such that the

edges between the nodes, alongside their labels, are preserved through the mapping.

Definition 3.2. A graph G : 〈V,E, `, ω〉 is isomorphic to a graph G′ : 〈V ′, E′, `′, ω′〉 (de-

noted as G ' G′) if there exists a bijective function φ : V → V ′ such that ∀(u, v) ∈

E , (φ(u), φ(v)) ∈ E′ and `((u, v)) = `′((φ(u), φ(v))).

We collectively represent a set of isomorphic graphs with a special labeled graph called pattern,

which has no weights on its edges but simply describes the common structure of these graphs.

Definition 3.3. A pattern is a graph P : 〈V,E, `, ω〉 such that ∀e ∈ E , ω(e) = ⊥. Given

a graph G, and a pattern P , the support set of P in G is the set of subgraphs of G that are
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isomorphic to P , i.e., SG(P ) = {g|g v G ∧ g ' P}. The elements in SG(P ) are called

appearances, or embeddings, of P in G.

We denote by φPg the bijection that maps a subgraph g of G to its isomorphic pattern P , and we

call P a subgraph of G (denoted P v G) if SG(P ) is non-empty.

Frequent pattern mining in graphs is the data mining task that aims at identifying all the patterns

that appear frequently in the input graph, according to a minimum frequency threshold τ . Intu-

itively, a pattern can be considered a frequent pattern if its support set have cardinality higher

than τ , since this set contains all the appearances of that pattern in the graph. However, this

simple method for determining the frequency of the patterns is unpractical for mining frequent

patterns in large graphs, since it does not satisfy the anti-monotone property and hence requires

the exploration of the entire search space. The violation of this property is caused by the pres-

ence of overlapping embeddings of the same pattern in the graph [BN08]. As an example, note

that the frequency P1 : [v1] − B − [v2] − A − [v3] in the graph in Figure 3.1 is 3, while the

frequency of its sub-pattern P2 : [v1]−B − [v2] is 1.

With the goal of implementing efficient techniques to mine frequent patterns in large graphs,

a lot of effort has been dedicated to define alternative frequency measures [HCD+94, VSG06,

KK05, FB07], with the MNI support being the most effective and efficient to compute [BN08].

Definition 3.4. Given a graph G : 〈V,E, `, ω〉 and a pattern P : 〈VP , EP , `P , ωP 〉, the MNI

support of P in G is MNI (P,G) = min
v∈VP

|N (G, v)| where N (G, v) = {n|n ∈ V ∧ ∃g ∈

SG(P ) . φPg (n) = v}.

The set N (G, v) contains all the nodes of G that are mapped to the pattern node v by the

isomorphisms φPg of P , meaning that the MNI support of a pattern is simply the minimum

number of mappings found for any of its nodes. For example, the pattern P : [v1]−B − [v2]−

A − [v3] in the graph in Figure 3.1 has MNI support equal to 2 because N (G, v1) = {1, 3},

N (G, v2) = {1, 3}, and N (G, v3) = {2, 4, 5}. In contrast, the number of appearances of P in

G is 3: SG(P ) = {[3]−B − [1]−A− [2], [1]−B − [3]−A− [4], [1]−B − [3]−A− [5]}.

Similarly, we denote as E(G, e) the set of edges of G that are mapped to the pattern edge e, i.e.,

E(G, e) = {a|a ∈ E ∧ ∃g ∈ SG(P ) . φPg (a) = e}.

In the presence of weights on the edges of the graph, the importance, or score, of a pattern

should not be based on the frequency only, but rather strike a balance between frequency and
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weights, hence allowing the latter to play a role in assessing the relevance of the pattern. In

these cases we thus need to replace the frequency measure with an alternative scoring function

able to adjust the contribution of a subgraph to the score of its isomorphic pattern, according to

the weights of its edges. The patterns discovered using this kind of function are called weighted

frequent patterns, or relevant patterns.

When different weights are assigned to the edges by multiple weighting functions, the scoring

function may produce different sets of relevant patterns. Such situation leads to the following

problem formulation, which we call MULTIW-SPM.

Problem 1 (Score-based Pattern Mining). Given a threshold τ , a scoring function f , and a

graph G : 〈V,E, `,W 〉 where W is a finite set of weighting functions, discover, ∀ωi ∈ W , the

set of patterns Ri = {P |G′ = 〈V,E, `, ωi〉 ∧ f(P,G′) ≥ τ}.

In the following sections we introduce a novel family of scoring functions that be efficiently

implemented and effectively used in MULTIW-SPM; our approach, called RESUM, that adopt

one of those functions to compute all the sets Ri exactly; our approximate solution, called

RESUM approximate that can scale to larger numbers of weighting functions; and a distributed

version of our framework, called RESUM distributed. Finally we present and analyze the four

scoring functions we used in our experiments, and discuss our findings.

3.3 MNI-compatible Scoring Functions

Different semantics of the edge weights and different applications may demand different ways

of aggregating the weights of the embeddings, meaning that there is no scoring function that

is consistently better than the others. For this reason, we propose a class of scoring functions,

called MNI-compatible scoring functions, that can accommodate a wide range of applications.

Assuming that larger weights indicate higher importance, a scoring function f is a MNI-com-

patible scoring function if it satisfies the following properties:

(i) the larger are the edge weights in the embeddings of a pattern P in G, the larger is the

score f(P,G);

(ii) the higher is the number of embeddings of P in G with positive edge weights, the larger

is the score f(P,G);
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(iii) for each pattern P in G, f(P,G) ≥ τ =⇒ MNI(P,G) ≥ τ .

Property (i) states that between two patterns with the same number of embeddings, the pattern

whose embeddings have largest edge weights receives the largest score. On the other hand, Prop-

erty (ii) guarantees that when all the embeddings of two patterns have the same edge weights,

the pattern with more embeddings obtains the largest score. We note that these two properties

are a natural consequence of our assumption on the importance of the weights. Last but not least,

Property (iii) allows efficient solutions to the score-based pattern mining problem, as it ensures

that we can use the same pruning strategies adopted in the MNI-based pattern mining algo-

rithms. Note that, according to Property (iii), a high frequency is a condition necessary but not

sufficient to achieve a high score, i.e., MNI(P,G) ≥ τ does not guarantee that f(P,G) ≥ τ .

In Section 3.7, we introduce and analyze four scoring functions that satisfy the aforementioned

properties.

3.4 The RESUM Framework

Our solution to score-based pattern mining in weighted (and multi-weighted) graphs is a one-

step process that explores the pattern search space only once and simultaneously computes the

score f(P,G) (all the scores f(P,G′) when G is multi-weighted) of P when P is discovered.

The computation of the score requires the identification of all the isomorphisms of P that satisfy

the constraints on the weights specified by the scoring function f .

3.4.1 Mining Single-weighted Graphs

We model the pattern mining problem as a constraint satisfaction problem (CSP) [DRZ07].

An instance of CSP is a tuple (X,D,C) where X is a set of variables, D is a set of domains

corresponding to the variables in X , and C is a set of constraints between the variables in X .

A solution for an instance of CSP is an assignment from the candidates in D to the variables

in X that satisfies all the constraints in C. The matching problem for a pattern P v G is

translated into CSP (P ) = (XP , DP , CP ), so that any solution to CSP (P ) corresponds to a

subgraph g isomorphic to P . Specifically, each node v ∈ VP is mapped to a variable xv ∈ XP ,

each domain Dv ∈ DP is a subset of V containing all the graph nodes isomorphic to v, and C

includes consistency constraints that enforce a topology isomorphic to that of P [Mac77]. We
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Algorithm 1 SCOREBASEDPATTERNMINING

Input: Graph G : 〈V,E, `, ω〉, threshold τ
Output: Set of relevant patterns R

1: R← RELEVANTEDGES(G)
2: fE ← FREQUENTEDGES(G)
3: while fE 6= ∅ do
4: e← fE .pop
5: R← R ∪ PATTERNEXTENSION(G, e, τ, fE ∪ {e})
6: return R

7: function PATTERNEXTENSION(G, g, τ, fE )
8: Cand ← ∅; S← ∅
9: for all e ∈ fE do

10: Cand ← Cand ∪ {g � e}
11: for all c ∈ Cand do
12: (score, sup)← EXAMINEPATTERN(G, c)
13: if sup ≥ τ then
14: S← S ∪ PATTERNEXTENSION(G, c, τ, fE )

15: if score ≥ τ then
16: S← S ∪ {c}
17: return S

discover solutions to CSP (P ) through an iterative process that examines each candidate node

n ∈ Dv and search for valid assignments that maps n to v. If no assignment is found, n is

removed from the domain Dv and the topology constraints are checked again until no invalid

candidate is found in the other domains. At the end of the process, the number of elements in the

smallest domain, i.e., arg minDv∈DP |Dv|, corresponds to the MNI support of P , meaning that,

given a threshold τ , P is frequent if no variable inXP has less than τ distinct valid assignments.

On the other hand, the computation of the score of P requires an additional step where we

discard the assignments corresponding to embeddings that do not satisfy the weight constraints

imposed by the scoring function f , and we aggregate the remaining ones.

Algorithm 1 outlines the RESUM framework. The first step is determining the relevant and the

frequent edges (Lines 1-2). Then, each subgraph is recursively extended following the pattern-

growth approach introduced by gSpan [YH02] (Line 5), until no further extension is possible.

Each extension is a candidate relevant pattern, whose MNI support is computed alongside its

score by the EXAMINEPATTERN procedure (Algorithm 2). This procedure first initializes the

candidate domain Dv of each pattern node v ∈ VP with all the nodes in G with the same label

as v (Lines 1-3), and the support set supv of each node v ∈ VP with the empty set. Then, the
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Algorithm 2 EXAMINEPATTERN

Input: Graph G:〈V,E, `, ω〉, pattern P , threshold τ
Output: Score and MNI support of P

1: for all v ∈ VP do
2: supv ← ∅
3: Dv ← {v′∈V |`(v′) = `(v)}
4: A ← automorphisms of P
5: STRUCTURALCONSISTENCY({Dv|v ∈ VP }, P )
6: for all v ∈ VP do
7: if ∃w = A(v) s.t.Dw already computed then
8: Dv ← Dw

9: continue
10: STRUCTURALCONSISTENCY({Dv|v ∈ VP }, P )
11: if ∃Du s.t. |Du| < τ then return (−1,−1)

12: for all n ∈ Dv do
13: search for g s.t. g ' P ∧ n ∈ Vg ∧ n 7→ v
14: if g 6= Nil then
15: Valid← ISVALID(g, ω)
16: for all n′ ∈ Vg, v′ ∈ VP s.t. n′ 7→ v′ do
17: mark n′ in Dv′

18: if Valid then
19: supv′ ← supv′ ∪ {n′}
20: else
21: remove n from Dv

22: score ← RELEVANCESCORE({supv|v ∈ VP })
23: mni ← minv∈VP |Dv|
24: return (score,mni)

algorithm computes the automorphisms of the pattern (Line 4). Automorphisms are isomor-

phisms of a graph to itself and can be used to compute the valid assignments more efficiently

(Lines 7-8), since each assignment valid for a pattern node v is valid for each automorphic node

w too. Finally the algorithm iterates over each candidate node n ∈ Dv to determine if it belongs

to some subgraph g isomorphic to P (Lines 12-13). As soon as such subgraph is found, all the

domains are updated (Lines 16-17) and the subgraph is checked for validity (Line 15). In par-

ticular, the ISVALID procedure compares the edge weights in g against the constraints specified

by the scoring function f , and if g satisfies the condition, the nodes of the subgraph are stored

in the corresponding support sets (Line 19). These nodes will contribute to the score of P .

On the other hand, if n does not participate in any isomorphism, it is removed from Dv. As a

consequence, in the following iteration, the structural constraints like the minimum degree of a

node mapped to a v ∈ VP are enforced, to remove candidates that can no longer participate to

any isomorphism of P (Line 10). The algorithm terminates either when all the pattern nodes
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Figure 3.2: A weighted graph with patternsP1 : [v1]−A−[v2] andP2 : [v1]−A−[v2]−C−[v3].

have been examined, or when the size of some domain becomes lower than τ , as in this case P

can be neither relevant nor frequent (Line 11). In the first case, instead, the MNI support and the

score of P are calculated and returned. We refer to Section 3.7 for a discussion about desirable

MNI-compatible scoring functions that we implemented in Procedure ISVALID.

Finally in Lines 13-17 of Algorithm 1, all the frequent patterns are further extended, while all

the relevant patterns are included in the final set of relevant patterns R.

Note that, unlike the MNI support, the scoring function f is not anti-monotonic. As an example

consider the graph G in Figure 3.2 and a scoring function f that counts the number of appear-

ances of P with a large average edge weight. Using the relevance threshold α = 0.4, the score

of P1 : [v1]− A− [v2] is 1 because only the appearance [1]− A− [2] has average edge weight

above 0.4 (i.e., 0.7). On the other hand, the score of its extension P2 : [v1]−A− [v2]−C− [v3]

is 2 because both the appearances [1] − A − [2] − C − [3] and [4] − A − [5] − C − [6] have a

large average edge weight (0.65 and 0.45 respectively).

As a consequence, also the patterns with score below τ must be expanded in order to obtain

a complete solution to MULTIW-SPM. Nonetheless, Property iii guarantees that the score of

a pattern is upper bounded by its MNI support, and therefore we can safely call Procedure

PATTERNEXTENSION only for the frequent patterns (Lines 13-14).

3.4.1.1 Complexity

Even though the computation of the automorphisms (O(|VP ||VP |)) and the pruning strategy

improve the expected performance of the algorithm, in the worst case it takes C = O(2|V |
2 ·

|V ||VP |) time, which is exponential in the number of nodes and the size of the patterns. In
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Algorithm 3 EXAMINESUBGRAPHMULTI

Input: Graph G:〈V,E, `,W 〉, pattern P , frequency threshold τ
Output: Scores and MNI support of P

1: for all v ∈ VP do
2: Dv ← {v′∈V |`(v′) = `(v)}
3: for all i ∈ 1, . . . , |W | do
4: SUPv[i]← ∅
5: A ← automorphisms of P
6: STRUCTURALCONSISTENCY({Dv|v ∈ VP }, P )
7: for all v ∈ VP do
8: if ∃w = A(v) s.t.Dw already computed then
9: Dv ← Dw

10: continue
11: STRUCTURALCONSISTENCY({Dv|v ∈ VP }, P )
12: if ∃Du s.t. |Du| < τ then return ({−1, . . . ,−1},−1)

13: for all n ∈ Dv do
14: search for g s.t. g ' P ∧ n ∈ Vg ∧ n 7→ v
15: if g 6= Nil then
16: VAL← ISVALID(g,W )
17: for all n′ ∈ Vg, v′ ∈ VP s.t. n′ 7→ v′ do
18: mark n′ in Dv′

19: for all i ∈ 1, . . . , |W | do
20: if VAL[i] then
21: SUPv′ [i]← SUPv′ [i] ∪ {n′}
22: else
23: remove n from Dv

24: S ← RELEVANCESCORES({SUPv|v ∈ VP })
25: mni ← minv∈VP |Dv|
26: return (S,mni)

particular, O(2|V |
2
) is the time required to compute all the patterns in G, and O(|V ||VP |) is that

needed to find all the isomorphisms of a pattern P .

3.4.2 Mining Multi-weighted Graphs

In the case of multiple edge weighting functions W = {ω1, . . . , ωm}, the naı̈ve approach for

solving MULTIW-SPM runs Algorithm 1 |W | times, once for each set of weights. Each run

requires the computation of the isomorphisms of the patterns, which is an operation computa-

tionally intense. As a consequence, this approach becomes impractical for large m.

The naı̈ve approach recomputes the same patterns multiple times, incurring in a significant time

overhead that can be avoided by running the algorithm only once, while keeping track of the

relevant patterns for each weighting function. This strategy replaces Line 12 in Algorithm 1
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with Algorithm 3, which searches for the isomorphisms of the pattern P , while checking their

validity with respect to each ωi ∈ W , at the same time. Similarly to the single-weight case, we

initialize each candidate domain and all the support sets for each weighting function (Lines 1-4).

When an isomorphic subgraph is found, procedure ISVALID checks in parallel each set of edge

weights against the constraints set by the scoring function and stores the results in the auxiliary

array VAL. If the weights of ωi satisfy the constraints, the nodes of the subgraph are stored in

the corresponding sets SUPv[i] (Line 21).

Finally, all the scores of the candidate pattern c are evaluated in Line 16 of Algorithm 1, and

c is added to the final set R if only if at least one of its scores is larger than τ . As a further

optimization, instead of storing in memory the sets of relevant patterns for each function ωi, we

maintain a binary vector of size m for each relevant pattern P , where position i is set to 1 if P

is relevant for ωi.

3.4.2.1 Complexity

The automorphisms of each pattern P are computed once (O(|V ||VP |)), while the m scores are

computed incrementally as new subgraphs isomorphic to P are found (O(|V ||VP | · |VP | ·m)).

Even though the search of isomorphisms stops as soon as all the m scores exceed the threshold

τ , in the worst case we must find all of them. The complexity is therefore O(2|V |
2 · (|V ||VP | +

m · |VP | · |V ||VP |), which can be approximated toO(2|V |
2 ·m · |VP | · |V ||VP |). If we can assume

that the size of the pattern |VP | is negligible, the complexity becomes O(2|V |
2 ·m · |V ||VP |).

3.5 RESUM Approximate

Our exact algorithm RESUM incurs a significant memory overhead when the number of weight-

ing functions is in the order of thousands, which, for example, is the case for recommender

systems for big retailers (e.g., Amazon). For such applications, we devise a more conservative

approximate solution, called RESUM approximate, that significantly reduces the memory con-

sumption by taking advantage of the similarities between the weighting functions ω1, . . . , ωm ∈

W .

The RESUM approximate algorithm generates k � m representative functions ω∗j , by cluster-

ing and aggregating the weighting functions ωi. Then, it runs Algorithm 3 to compute k sets of
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Algorithm 4 GENERATEREPRESENTATIVEFUNCTIONS

Input: Graph G : 〈V,E, `,W 〉, number of buckets b, number of clusters k
Output: Set of representative functions W ∗

1: F ← CREATEFEATUREVECTORS(E,W, b)
2: C ← COMPUTECLUSTERING(F , k)
3: W ∗ ← GENERATEMAXWEIGHTVECTORS(C,W )
4: return W ∗

relevant patterns R∗1, . . . , R
∗
k, which are used to build m sets of relevant patterns A1, . . . , Am,

one for each weighting function ωi. Different clustering can produce different sets R∗1, . . . , R
∗
k,

and therefore the sets A1, . . . , Am are in general an approximation of the real sets R1, . . . , Rm.

The quality of the approximation depends on how the representative functions ω∗i are generated.

With our implementation, we aim at minimizing the difference between the approximate and the

exact sets of patterns.

3.5.1 Generation of the Representative Functions

The generation of the representative functions is shown in Algorithm 4 and consists of three

steps. First, we create a feature vector for each weighting function ωi ∈ W (Line 1). Secondly,

we cluster the feature vectors into k groups according to their similarity (Line 2). Finally, the

set of k representative functions W ∗ = {ω∗1, . . . , ω∗k} is returned (Lines 3-4).

3.5.1.1 Creation of the Feature Vectors

In the first step, we construct a feature vector ri for each ωi, which is used in the second step to

determine the similarities between the weighting functions. Since our final goal is to compute a

set of patterns Ai for each ωi that is as close as possible to the exact set Ri, a natural choice is

to use the edge weights as features. Given an ordering of the edges, the feature vector ri of the

function ωi is a vector of size |E|, where ri[x] is the weight assigned by ωi to the edge in the

xth position. We call this approach full-vector strategy.

Although similar edge weights lead, with high probability, to similar sets of relevant patterns,

the effectiveness and the efficacy of the full-vector strategy decrease as the size of the graph

increases. In fact, the high dimensionality of the vectors complicates the detection of functions

with similar properties, as a consequence of the curse of dimensionality phenomenon [SEK04].
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Algorithm 5 CREATEBUCKETFEATUREVECTORS

1: function CREATEBUCKETFEATUREVECTORS(E,W, b)
2: for all l ∈ ΣE do
3: BucketList l ← COMPUTEBUCKETLIMITS(El,W, b)
4: for all ωi ∈W do
5: rli ← FILLBUCKETS(El, ωi,BucketList l)

6: for all ωi ∈W do
7: ri ← CONCATE({rli|l ∈ ΣE})
8: return

{
r1, . . . , r|W |

}
Thus, we propose also a more efficient approach called bucket-based strategy, which overcomes

the problem of high dimensionality by considering the edge labels as features, rather than the

edges. The underlying idea is that, in real scenarios, a preference for an edge is highly corre-

lated with the preference for the label of that edge. This strategy is implemented in Procedure

CREATEBUCKETFEATUREVECTORS (Algorithm 5), which takes the set of weighting functions

W and the number of buckets b, and generates a set of feature vectors r1, . . . , rm each of size

|ΣE | · b, where ΣE indicates the set of distinct edge labels. Each vector ri is the concatenation

of |ΣE | summaries of the weights of ωi, one for each edge label, and b is the resolution of each

summary.

The summary for a label l is obtained by splitting the range of weights [0, 1] into b sub-ranges

(buckets) (Line 3), e.g., [0, x1), [x1, x2), and [x2, 1.0] for b = 3. Then Procedure FILLBUCKETS

(Line 5) counts, for each sub-range, how many times ωi assigns a weight within that sub-range

to an edge with label l. Note that, in the degenerate case of b = 1, the vector ri simply keeps,

for each label, the number of edges with that label and whose weight is greater than 0.

The bucketization of a label l is performed by Procedure COMPUTEBUCKETLIMITS (Line 3)

following the equi-depth paradigm [GK01], which assigns the input values to buckets, while

trying to balance the number of elements in each bucket. Thus, we consider all the weights of

all the weighting functions to edges with label l, and split the range [0, 1] into b depth-balanced

intervals.

For example, given b = 2, the label ordering A |C, and the two weighting functions ω1 and ω2

in Figure 3.3, we obtain the vectors r1 = [1, 3, 2, 0] and r2 = [3, 1, 0, 2]. As such, the buckets

of A are the ranges of values [0, 0.3] and [0.3, 1], and those of C the ranges [0, 0.5] and [0.5, 1].

Note that the bucket-based strategy allows us to decide the size of the feature vectors apriori,

and tune the parameter b to improve the accuracy of the clustering.
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Figure 3.3: Graph with two weights < ω1, ω2 > on each edge.

3.5.1.2 Identification of Similar Functions

Procedure COMPUTECLUSTERING (Algorithm 4, Line 2) implements the Lloyd’s clustering

algorithm [Llo82], which identifies groups of similar ωi by computing the pairwise cosine sim-

ilarity between the feature vectors r1, . . . , rm ∈ F .

The algorithm can be initialized either providing k random seeds among all the vectors in F ,

or by selecting the k most diverse feature vectors. Note that finding the most diverse vectors

may increase the running time of the algorithm, but also allows the discovery of better separated

clusters. In addition, the algorithm can be executed either until convergence or in iterative

steps. In the first case it finds k clusters, while in the second case it runs multiple times with k

ranging from 2 to a maximum value kmax, and then returns the clustering with largest silhouette

coefficient.

3.5.1.3 Aggregation of Similar Functions

Given the set of clusters C, Procedure GENERATEMAXWEIGHTVECTORS (Algorithm 4, Line 3)

generates a representative function ω∗j for each cluster Cj . Different choices of ω∗j can lead to

different sets of patterns R∗j , which can contain patterns not relevant for some ωi ∈ Cj , as well

as missing out patterns relevant for some other ωl ∈ Cj . As stated in the following proposition,

we resort to take the maximum among the weights to prevent missing any relevant pattern:

Proposition 3.5. Given a cluster Ci, and a MNI-compatible scoring function f , a complete

set of relevant patterns for Ci can be mined using the representative function ω∗i defined as

∀e ∈ E , ω∗i (e) = maxωj∈Ciωj(e).
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Proof. By definition, only the subgraphs that satisfy the constraints on the weights imposed by

the scoring function f can contribute to the score of the corresponding pattern. The larger the

weights of a subgraph, the higher is the chance that it fulfills those constraints. Since the function

ω∗i assigns to each edge e ∈ E the largest weight among those of the weighting functions in the

cluster Ci, i.e., ∀ωj ∈ Ci , ω∗i (e) ≥ ωj(e), if a subgraph satisfies the constraints with respect to

some ωj ∈ Ci, it must satisfy them with respect to ω∗i . It follows that ∀ωj ∈ Ci , f(P, ω∗i ) ≥

f(P, ωj), and therefore if a pattern is relevant for some ωj ∈ Ci, it is also relevant for ω∗i . Thus,

the set of patterns mined is complete.

Given the sets of relevant patterns R∗1, . . . , R
∗
k discovered by Algorithm 1 using the representa-

tive functions ω∗1, . . . , ω
∗
k, we create a pattern set Ai for each function ωi using the patterns in

the set R∗j for j ≤ k . ωi ∈ Cj , i.e., each function ωi receives the set of relevant patterns of the

cluster to which it belongs.

3.5.2 Complexity

The generation of the k representative functions for the m weighting functions requires the

creation of the feature vectors (O(m · |E|)), the identification of similar functions (O(I · k ·

m · b · |ΣE |), where I is the number of iteration of k-means, and b · |ΣE | is the size of the

feature vectors), and the computation of the maximal weights for each edge and for each cluster

of functions (O(m · |E|)). Then, the k sets of relevant patterns are found running the algorithm

described in Section 3.4 (O(2|V |
2 ·k·|V ||VP |)). Since k, I and b are negligible, and |ΣE | = |E| in

the worst case, the complexity of RESUM approximate reduces toO(m · |E|+2|V |
2 ·k · |V ||VP |).

3.5.3 Quality Measures for RESUM Approximate

RESUM approximate reduces the problem of pattern mining in graphs with m weights on each

edge to finding k sets of relevant patterns R∗j , with k�m. The quality Q of the solution can

be measured in different ways, according to the requirements of the user or the application. In

the literature, the most common quality measure is the accuracy, which is defined in terms of

precision and recall with respect to a given ground-truth. In our case, the sets Ri constitute

the ground-truth, and the accuracy of the sets Ai with respect to the sets Ri is measured only

in terms of the precision, since Proposition 3.5 ensures a total recall. Specifically, the quality



Score-based Pattern Mining 48

of the solution {A1, . . . Am} is the average Jaccard similarity with the corresponding set in

{R1, . . . , Rm}:

Q =
1

m

m∑
i=1

|Ri ∩Ai|/|Ri| (3.1)

The quality Q can be measured also in terms of the average distance between the patterns in the

sets Ri and those in the sets Ai. We calculate the distance between two patterns P1 and P2 as

their normalized Levenshtein distance NORMLEV(P1, P2), i.e., the minimum number of edges

that should be added or removed from the first to transform it into the second, normalized to

obtain a value in the range [0, 1]. Then, we define the distance between a pattern P ∈ Ai and

the set of patterns Ri, as the normalized Levenshtein distance between P and the closest pattern

Pj ∈ Ri, i.e., NORMLEV(P,Ri) = min
Pj∈Ri

NORMLEV(P, Pj), and the distance ∆ between

the two sets Ai and Ri as the average normalized Levenshtein distance, i.e. ∆(Ai, Ri) =

1
|Ai|

∑
P∈Ai

NORMLEV(P,Ri). Finally, the quality of the solution {A1, . . . Am} is the inverse of

the average of the distances ∆(A1, R1), . . . ,∆(Am, Rm):

Q = 1− 1

m

m∑
i=1

∆(Ai, Ri) (3.2)

The average of the distances ∆(A1, R1), . . . ,∆(Am, Rm) measures the average number of op-

erations required to transform a pattern in Ai to a pattern in Ri, and thus, according to Equa-

tion 3.2, Ai is a good solution for ωi if the patterns in Ai have structure and labels similar to

the patterns in Ri. We recall that our method is complete, and therefore no relevant pattern is

missing. However, RESUM approximate may return spurious patterns, which are patterns not

relevant for any function in the cluster. Computing the distance between the two pattern sets

allows us to understand how much a spurious pattern, on average, differs from the patterns that

are actually relevant for some weighting function in the cluster.

3.6 Distributed Score-based Pattern Mining

Distributed graph processing systems have been introduced to overcome the challenges of deal-

ing with very large graphs [TFS+15, MAB+10]. Those systems scale by distributing the com-

putation among multiple machines communicating with each other. Moreover, they are usually
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designed such that all the details related to the distribution, the message-passing, and the syn-

chronization, are hidden behind simple API that allow non-expert users to implement efficient

and scalable algorithms [TFS+15, MAB+10].

In the following, we show to apply our score-based pattern mining framework in the distributed

settings by designing a distributed version of RESUM. We implemented our algorithms on top of

Arabesque [TFS+15], a framework for distributed graph mining that differs from other existing

platforms (e.g., Pregel [MAB+10]) in the programming paradigm adopted. In fact, Arabesque

follows the Bulk Synchronous Parallel model [Val90], but centers the computation around the

task of searching for embeddings, meaning that each worker is delegated to examine and expand

a different set of embeddings in the graph. This programming model is specifically designed

for the implementation of graph pattern mining algorithms, instead of generic vertex-centric

computations (like those supported by Pregel [MAB+10]).

3.6.1 RESUM Distributed

Generic distributed pattern mining frameworks like Arabesque base the examination of the pat-

tern search space only on the frequency of the patterns, and therefore two important extensions

are required to implement score-based pattern mining in such framework: an appropriate data-

structure for the storage of the embeddings that can keep track of their weights (especially for

the case of multiple weighting functions), and the implementation of aggregation functions for

the computation of the MNI-compatible scoring functions. In particular, in the case of multiple

weights, it is important to aggregate the support sets associated to each weighting function.

The computation proceeds via a sequence of supersteps in the Bulk Synchronous Parallel model,

where a master coordinates and collects the results from a cluster of workers. Given an initial set

of embeddings in the graph, the task of the workers is to identify all the possible expansions of

each of them, i.e., embeddings with an additional edge, which will be used to compute the fre-

quency of the corresponding patterns. In the first step of the computation, the initial set contains

only a special undefined embedding, whose set of expansions is the edge set of the graph. This

set is collected by the master as input for the next step of computation. In each of the follow-

ing supersteps, the master broadcasts the set of embeddings received in the previous superstep,

while the workers expand those corresponding to frequent patterns and give back the new ex-

panded embeddings to the master. The computation halts when the new set of embeddings is

empty.
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Algorithm 6 DISTRIBUTEDRELEVANTPATTERNMINING

Input: Set of initial embeddings I , threshold τ
Output: Set of expanded embeddings F
Output: Set of relevant patterns R

1: for all e ∈ I do
2: if AGGREGATIONFILTER(e) then
3: Cand ← EMBEDDINGEXPANSION(e)
4: for all e′ ∈ Cand do
5: if ISCANONICAL(e′) then
6: PROCESS(e′)
7: F ← F ∪ {e′}
8: PATTERNAGGREGATION(F )

9: function AGGREGATIONFILTER(e)
10: Dv1 , . . . , Dvn ← GETDOMAINS(e)
11: supv1 , . . . , supvn ← GETSUPPORTSETS(e)
12: mni ← minvi |Dvi |
13: score ← RELEVANCESCORE({supv|v ∈ VPe})
14: if score ≥ τ then
15: R ← R ∪ {Pe}
16: return mni ≥ τ

17: function PROCESS(e)
18: MAP(Pe, {Dvi}vi∈VPe , {supvi}vi∈VPe )
19: REDUCE(P , {D1

vi , . . . , D
m
vi}vi∈VP , {sup1

vi , . . . , sup
m
vi}vi∈VP )

Upon receiving the embeddings, the workers use Round Robin on large blocks of embeddings

to partition them. A different subset of embeddings is thus assigned to each worker to be filtered

and processed. Since the number of embeddings in a graph increases exponentially with the

graph and the pattern size, the workers use a special data structure called Overapproximating

Directed Acyclic Graph (ODAG) to store them in a compact way. ODAGs trade space for time

by over-approximating the set of embeddings they want to store, hence entailing additional work

to extract only the actual embeddings from them and avoid the generation of spurious patterns.

Once restored the valid embeddings I , the workers run the procedures shown in Algorithm 6.

When processing an embedding e, the worker must first determine if it corresponds to a frequent

pattern, since embeddings of infrequent patterns will not be expanded. The frequency values

are computed via a MapReduce job (Line 8) where the mappers send the ODAGs of the same

pattern to the reducer responsible for that pattern, and the reducers aggregate the domains and

the support sets contained in the ODAGs received. The aggregation of the domains (support

sets) consists in computing the union of the domains Dv (support sets supv) of each vertex v of

the pattern P . As described in Section 3.4, the domains are used to compute the MNI support
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of Pe, while the support sets to compute its score. In the initialization of the support sets of Pe,

the mapper runs procedure ISVALID to check whether the weights of e satisfy the constraints

specified by the scoring function or not. If they pass the validity test, the nodes of e are stored

in the support sets; otherwise the sets are left empty.

At the end of the aggregation, if all the domains have size greater than τ (Line 16), the pattern is

frequent and thus its embeddings are further processed (Line 2). Similarly, if all the size of all

the support sets exceeds τ , the pattern is inserted in the relevant pattern set R that will be output

to the underlying distributed file system (Line 14). We recall that the MNI support mni is the

minimum among the sizes of the domains (Line 12), while the evaluation of the score depends

on the scoring function chosen (Line 13). To speed up the computation, the reducers actually

stop merging the values in the domains/ support sets that have already exceeded the threshold,

hence terminating the ODAG aggregation when all the domains/ support sets contain enough

values.

All the embeddings retained are expanded by Procedure EMBEDDINGEXPANSION(Line 3), whi-

ch adds one additional edge in all the possible positions. Since the workers have access to a local

copy of the graph, they do not need to communicate and exchange information in this phase.

Nonetheless, the same embedding can be generated by multiple workers as a result of processing

the same set of edges in different orders. To avoid duplicate embeddings, one of the ordering

is elected as canonical (Line 5), so that all the others can be safely pruned. All the extensions

of canonical embeddings are stored in a set F that will be sent to the master at the end of the

superstep (Line 7).

To reduce the amount of messages that will be sent through the network, the workers perform a

MapReduce job locally (Line 6) to aggregate the extensions related to the same pattern, hence

building an ODAG for that pattern. In the Map phase, the domains Dv and the support sets

supv of the pattern Pe of e are initialized with the ids of the nodes of e (Line 18). In the reduce

phase, the domains and the support sets related to the same pattern P are aggregated in the same

way as when running Procedure PATTERNAGGREGATION. To identify the canonical pattern Pe

of e, the workers use a technique called two-level pattern aggregation. In the first level, they

create a so-called quick pattern by scanning all the edges of the embedding and extracting the

corresponding labels. In the second level, they compute the canonical pattern of each quick

pattern and reorder the list of domains and support sets of the quick pattern according to the

canonical vertex ordering. When computing the canonical patterns, the workers also search for
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automorphisms that will be exploited to insert all the elements in a domainDv to the domains of

the symmetric counterparts of v. Note that the two-level pattern aggregation technique reduces

the complexity of Procedure PROCESS, as the graph isomorphism tests required to aggregate

the embeddings are performed for the smaller number of quick patterns rather than the larger

number of embeddings.

3.6.2 Time Complexity

At the beginning of each superstep, each worker must first extract the valid embeddings from

the ODAGs, then generate the canonical extensions of the embeddings associated to frequent

patterns, and finally produce the ODAGs for the next step. The cost of the first operation is

upper bounded by the number of paths contained in the ODAGs, i.e., O(|V ||VP |). The cost of

the second operation is the sum of the cost of computing the frequency of the pattern associ-

ated to each ODAG (O(|VP | · |V |2) = O(|V |2)) and that of creating the canonical extensions

of each embedding retained (O((|VP | + 1)(|VP |+1) · |V |(|VP |+1))). The last operation consists

in performing the two-level pattern aggregation to generate a single ODAG per canonical pat-

tern (O((|VP | + 1) · |V |(|VP |+1)) to generate the quick patterns, and O(|V |(|VP |+1)) to gen-

erate the canonical patterns). The total time required to perform each superstep is therefore

O(|VP |(|VP |+1) · |V |(|VP |+1)).

3.6.3 Space Complexity

Each worker has access to a copy of the input graph. In addition, at the beginning of each

superstep, it receives every ODAG produced in the previous step, and thus must keep in memory

|VP | vectors of integers. The maximum number of integers to store for all the ODAGs is |VP | ·

|V |2.

3.6.4 Machine-to-machine Communications

At the beginning of each superstep, the master sends all the ODAGs of the previous step to

all the workers. In the worst case, every embedding is associated to a different pattern, and

therefore the number of these messages is upper bounded by num workers · |V ||VP |. At the

end of each superstep, a map-reduce job is executed to aggregate the ODAGs associated to the

same canonical pattern, that is O(|V |(|VP |+1)), as all the ODAGs of the same patterns must be
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sent to the reducer responsible for that pattern and then all the aggregated ODAGs are sent to

the master. The total communication cost is O(|V |(|VP |+1)).

3.7 Computation of the Pattern Scores

We demonstrate the flexibility of our framework by proposing four different MNI-compatible

scoring functions that can be implemented in Procedure ISVALID (Algorithm 2) and in Proce-

dure RELEVANCESCORE (Algorithm 3 and Algorithm 6). They are called ALL, ANY , SUM and

AVG. We defined these functions because of their intuitive semantics and their suitability for

various scenarios that may pose different requirements or provide a different interpretation of

the edge weights. Moreover, since they are MNI-compatible, they are anti-monotonic, hence

allowing efficient implementations.

The ALL, ANY , SUM and AVG scores differ in the choice of which subgraphs they retain in

the support set of the patterns, and in how they aggregate the edge weights of such subgraphs.

In particular, ALL, ANY , and SUM rely on an additional system-dependent parameter α that is

used to select the subgraphs that contribute to the score, while AVG is parameter-free. In the

following we provide a formal definition and analysis of those functions.

3.7.1 The ALL Score

The ALL score considers only the subgraphs whose edge weights are larger than the relevance

threshold α as valid appearances of a pattern P . Specifically, the ALL score of P is its MNI

support computed over the restricted set of appearances S′G(P ) = {g | g = 〈Vg, Eg, `, ω〉 ∧ g ∈

SG(P ) ∧ ∀e ∈ Eg , ω(e) > α}, that is, fALL(P,G) = minvP∈VP
∣∣N (G, vP )�S′

G(P )

∣∣, where

N (G, vP )�S′
G(P ) = {v|v ∈ V ∧ ∃g ∈ S′G(P ) . φPg (v) = vP } is the restriction of N (G, vP ) to

the subset S′G(P ) ⊆ SG(P ).

In graphs like protein-to-protein interaction networks, this score retrieves patterns characterized

by an overall confidence greater than a certain value.
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3.7.2 The ANY Score

The ANY score takes into account only the appearances of a pattern having at least one edge with

weight above the relevance thresholdα. Hence, the ANY score ofP is the MNI support ofP over

the set of appearances S′G(P ) = {g | g = 〈Vg, Eg, `, ω〉 ∧ g ∈ SG(P ) ∧ ∃e ∈ Eg . ω(e) > α},

i.e., fANY (P,G) = minvP∈VP
∣∣N (G, vP )�S′

G(P )

∣∣.
This score is suitable especially for the cases in which only partial weights are available (e.g.,

product reviews for some product), to find patterns that are overall interesting (e.g., the entire

transaction comprising the product), as well as super-patterns around relevant core structures.

By definition, the ANY score of P is always equal or larger than its ALL score, as any appearance

of P considered by fALL is considered also by fANY , while in general, the opposite is not true.

For example, given the graph in Figure 3.3 and the relevance threshold α = 0.4, the subgraph

g : [1]–A–[2]–C–[4] does not contribute to the ALL score of P : [v1]–A–[v2]–C–[v3], but

contributes to its ANY score.

3.7.3 The SUM Score

For the SUM score of P , a subgraph g contributes if the sum of its weights is larger than the

relevance threshold α. The restricted support set obtained in this way is S′G(P ) = {g | g =

〈Vg, Eg, `, ω〉 ∧ g ∈ SG(P ) ∧
∑

e∈Eg ω(e) > α}. The MNI support over this set is the SUM

score of P : fSUM (P,G) = minvP∈VP
∣∣N (G, vP )�S′

G(P )

∣∣.
This score accounts for the overall pattern weight in scenarios like money transactions, where it

is beneficial to sum each single contribution in order to judge the complete value of a structure.

Note that if an appearance of P has some weight greater than α, then the sum of all its weights

is at least α, and therefore fSUM (P,G)≥fANY (P,G). For example, all the appearances con-

sidered by ANY in computing the score of P : [v1]–A–[v2]–A–[v3] for α=0.4 in Figure 3.3 are

considered also by SUM, whereas the subgraph g : [3]–A–[4]–A–[8] contributes to the SUM

score only.
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3.7.4 The AVG Score

In contrast to the previous scoring functions, the AVG score is not defined in terms of the min-

imum cardinality among the node sets of the pattern, but in terms of the relative weights of its

appearances. Previous works have defined the weighted support (WSUP ) of a pattern P as

the sum of the weights of the embeddings of P . For example, WIGM [YSLD12] proposes a

measure called normalized weighted support (NWSUP ), which is the weighted support of P

divided by its size |EP |, i.e., NWSUP(G ,P) = WSUP(G,P )/|EP |. Nevertheless, this scor-

ing function is not MNI-compatible and our focus in on MNI-compatible scoring functions. To

guarantee the anti-monotonicity and be consistent with the other MNI-compatible scoring func-

tions, we compute WSUP(G,P ) by first retaining, for each edge set E(G, eP ) with eP ∈ EP ,

the set E(G, eP )�µ of µ edges with largest weight, and then summing up those weights, i.e.,

WSUP(G,P ) =
∑

eP∈EP
∑

e∈E(G,eP )�µ
ω(e). By setting µ to be the MNI support of P we

guarantee that the AVG score is bounded by the MNI support, as stated in the following propo-

sition:

Proposition 3.6. Given a graph G:〈V,E, `, ω〉, a pattern P , and an edge e ∈ E, it holds that

fAVG(P � e,G) ≤ MNI (P,G), where P � e is an extension of P with EP�e = EP ∪ {e}.

Proof. Since the MNI support is anti-monotonic [BN08], it holds that MNI (P � e,G) ≤

MNI (P,G). By definition, the pattern P � e has the maximum normalized weight f∗AVG(P �

e,G) when all the edges in E(G, e)�µ have weight 1, and hence each subgraph contributes with a

total weight of (|EP |+1). In this case, f∗AVG(P �e,G) = MNI (P �e,G)·(|EP |+1)/(|EP |+1),

and thus fAVG(P � e,G) ≤ f∗AVG(P � e,G) = MNI (P � e,G) ≤ MNI (P,G).

According to Proposition 3.6, although AVG is not anti-monotonic, the AVG score of a pattern is

at least bounded by the MNI support of its sub-patterns, making it MNI-compatible and allowing

an early pruning of the pattern search space when the MNI support of a pattern P is lower than

τ . On the other hand, fAVG(P �e,G) can be higher than fAVG(P,G) even though the frequency

of P � e is lower, because the weights of the edges in E(G, e)�µ can compensate for the lower

frequency. For example, the AVG score of P : [v1]–C–[v2] in the graph G in Figure 3.3 is

0.6, because MNI(P,G) = 1 and E(G, C)�1 = {(1, 4)}. Instead, the AVG score of P :

[v1]–C–[v2]–B–[v3]–A–[v4] is 0.8, because E(G, C)�1 = {(1, 4)}, E(G, B)�1 = {(1, 3)}, and

E(G, A)�1 = {(3, 5)}.
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degree label frequency
dataset |V | |E| |Σ| min/avg/max min/med/avg/max τ α

FREEBASE-T 7.2k 10k 40 1/2.8/504 3/70/251.3/2.8k 90 .05
FREEBASE-C 16.7k 26k 77 1/3.2/1082 1/66/348.5/4.8k 155 .05

AMAZON 163k 296k
4

1/3.6/1072
2k/12k/30k/113k

130 .0001
1710 1/1/95/142k

CITESEER 2.1k 3.6k 21 1/3.5/99 15/55/174.7/988 95 .05
FREEBASE-O 1.9M 2.4M 19294 1/2.4/46k 1/1/103/237k 6000 .05

SHOP-S 11k 12k
80

1/3/35
1/60/161/3k

76 .05
24 1/100/467/2.8k

SHOP-M 163k 296k
81

1/3/129
3/606/1.6k/30k

759 .05
24 6/1k/4.6k/28k

SHOP-L 1.1M 1.2M
81

1/3/583
5/5.9k/16k/305k

7580 .05
24 60/10k/46k/280k

SHOP-XL 11M 13M
81

1/3/3868
115/60k/160k/3M

76124 .05
24 600/100k/467k/2.8M

Table 3.1: Real (top) and synthetic (bottom) datasets with default τ, α parameters.

3.7.5 Implementation in the RESUM Framework

The ALL, ANY , and SUM scores are implemented in Procedure ISVALID by checking the edge

weights of the assignment g against the constraint in the corresponding definition of S′G(P ),

and returning true if the constraint is fulfilled. In this way, each support set supv (and SUPv

for the multi-weighted case) for v ∈ VP will be equal to N (G, v)�S′
G(P ). Therefore, Procedure

RELEVANCESCORE actually computes the MNI support over the support set S′G(P ).

On the other hand, to implement the AVG score, Procedure ISVALID returns always true, while

Procedure RELEVANCESCORE calculates the normalized sum of the top-k edge weights of every

pattern edge, where k = minv∈VP |Dv|.

3.8 Experimental Evaluation

We first compare the scalability of our exact algorithm with the performance of our approximate

algorithm. The results demonstrate that RESUM approximate allows faster response time, yet

retaining good accuracy in terms of the patterns returned. We then study the behavior of RESUM

distributed under different settings to identify in which cases we can benefit more from the

distribution, as well as understanding when the overhead of a distributed system may lead to

performances worse than those of single-machine algorithms [MIM15].
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3.8.1 Datasets

We run experiments on both real and synthetic datasets of different sizes, and in particular, we

used five real networks and four randomly generated graphs. All the datasets are listed in Ta-

ble 3.1 together with their characteristics, i.e., the number of vertices |N |, edges |E|, and labels

|Σ|; the minimum, average, and maximum node degree; and the minimum, median, average,

and maximum edge label frequency.

For the AMAZON and the synthetic datasets we report statistics for both edge (top) and node

labels (bottom). We also report the default frequency (τ ) and relevance (α) values used in the

experiments (unless otherwise stated). Experiments on the quality of RESUM and RESUM ap-

proximate, and on their scalability, were conducted on the first four real datasets; the scalability

of RESUM and RESUM distributed was tested on the last two real datasets and the synthetic

datasets.

• FREEBASE-T and FREEBASE-C are directed subgraphs extracted from the knowledge graph

FreeBase 1, which is a database collecting structured information about real-world entities like

people, places and things for various topics. We obtained the two samples by restricting the

graph to the topic travel and computer respectively, and then we kept only the largest weakly

connected component in the restriction.

• AMAZON2 [HM16] is a directed graph representing items, purchases, and user ratings. We

considered the subgraph of electronic products, in which every node represents a product, a cat-

egory, or a brand, and a link represents items bought together, bought in subsequent transactions,

or viewed on the website one after the other. Weights represent individual user review scores

(from 1 to 5), and we considered only users with more than 100 reviews. Given the sparsity of

the weights, we used Personalized PageRank to spread the user preferences to products other

than those they rated, as it is a standard technique for recommendations [Agg16]. In this way

we obtained weights not only for the items reviewed, but also for the most related items. Each

edge weight is actually computed as the average between the PageRank value of its endpoint

nodes.
1developers.google.com/Freebase/data
2jmcauley.ucsd.edu/data/amazon/

developers.google.com/Freebase/data
jmcauley.ucsd.edu/data/amazon/
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• CITESEER [EASK14], is a graph representing Computer Science publications and citations

between them. The labels on the edges indicate the area in which the two papers were published

(e.g., a database conference).

• FREEBASE-O is a undirected, node-labeled subgraph extracted from FreeBase and restricted

to the topics organizations, business, finance, and government. The node labels refer to the types

of nodes, obtained by following “instance of ” edges.

• SHOP-S, SHOP-M, SHOP-L, and SHOP-XL are synthetic graphs generated using the gMark

framework [BBC+17], which creates labeled graphs with a user-defined schema that specifies

constraints on the number of nodes and labels, the proportions of nodes and edges per label,

and the degree distribution. We used the shop.xml schema provided by the framework, which

encodes an online shop network consisting of sellers, users and products, according to the spec-

ifications in the WatDiv default schema [AHÖD14]. This schema contains 24 node labels, 82

edge labels, default probabilities for each label, and specifies a different degree distribution

(Uniform, Gaussian, or Zipfian) for each combination of node and edge labels allowed.

3.8.2 Experimental Setup

RESUM is implemented in Java 1.8 on top of the constraint satisfaction problem presented in

GRAMI [EASK14] whose code was kindly provided by the authors3. The code of our imple-

mentation and all the datasets we used are publicly available4. We also compare with a frequent

pattern mining approach (FREQ) based on GRAMI, which is also implemented in Java 1.8. All

the single-machine experiments were run on a 24 Cores (2.40GHz) Intel Xeon E5− 2440 with

188Gb RAM with Linux 3.13.

RESUM distributed is implemented in Java 1.8 on top of the Arabesque framework, which is

in turn built as a layer on top of Apache Spark [ZXW+16] (v. 2.0.0). All the multi-machine

experiments were run on a cluster of 7 machines: the master is a 8 Cores machine with 80Gb

RAM and Linux 14.04, while the workers are 16 Cores machines with 30Gb RAM and Linux

14.04.
3github.com/ehab-abdelhamid/GraMi
4https://github.com/lady-bluecopper/ReSuM

github.com/ehab-abdelhamid/GraMi
https://github.com/lady-bluecopper/ReSuM
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3.8.3 Generation of the Weights

Since we had real weights only for the AMAZON graph, to test the scalability of our method

with a larger number of weighting functions, for the other datasets we created synthetic weights

based on the results of a user study we conducted on the Crowdflower5 platform. We extracted

a sample from the FreeBase knowledge base, restricting the domain of the edge labels to five

topics (Music, Books, Celebrities, Movies, and Sport). Then we asked the users to rate each

graph edge (i.e., fact) according to their preferences, using a relevance value between 1 and

5. Once collected the relevance values from 123 users, we modeled the distribution of the edge

weights with respect to the number of facts. We found that the edge weights, after normalization,

are distributed as a Gaussian with mean 0.452 and variance 0.02. In addition, we noted that, on

average, a user rated above 0 between 10% and 20% of the labels, and thus we concluded

that real graph weights are usually quite sparse. Therefore, we uniformly subset edge labels

according to our findings and generated weights normally distributed in [0, 1].

Furthermore, in order to evaluate the performance of RESUM and RESUM approximate with

different weight distributions, we generated sets of synthetic edge weights, varying a focus pa-

rameter representing the ratio of weighted edges for each edge label. The edge weights were

sampled from a normal distribution N (µ, σ2) and a Beta(α, β) distribution, hence allowing

us to prove the effectiveness of our algorithms under normally distributed weights and expo-

nentially distributed weights. We set µ = 0.5 and σ = 0.25 for the normal distribution and

α = 0.7, β = 5 and β = 0.7, α = 5, for the Beta distribution. The two choices of the

parameters for the Beta distribution represent two extreme of an exponential behavior: the

former concentrates the probability mass on low weights, the latter on large weights. The fo-

cus parameter takes values in the range {0.5, 0.8} for the normal distribution and in the range

{0.25, 0.5, 0.75, 1} for the Beta distribution.

3.8.4 Comparison with Frequent Pattern Mining

We compared the patterns returned by a frequent pattern mining algorithm (FREQ) and our

algorithm RESUM to validate our claim that frequent pattern mining returns a large number

of low-weight patterns, which, instead, are correctly discarded in score-based pattern mining.

Unless otherwise stated, we report the average of 10 different randomly sampled weighting
5www.crowdflower.com

www.crowdflower.com
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Figure 3.4: Average number of patterns found in each dataset, using different scores and de-
fault parameters.

functions. In particular, these weights were sampled from a normal distribution using focus 0.5,

as previously described.

Figure 3.4 reports the average number of patterns found using different scoring functions on the

four datasets, with default parameters, as shown in Table 3.1. We observe that FREQ returns

patterns, at least half of which are irrelevant with respect to any of the four scoring functions.

As expected, in all the datasets, ANY and SUM return more patterns than ALL and AVG, due to

the less restrictive conditions on the weights. On the other hand, AVG returns a low number of

patterns, mainly because more than 50% of the edges have low or zero weight. Therefore, AVG

is particularly suited in graphs where weights are uniformly distributed in the entire graph, e.g.,

biological or chemical datasets.

We now discuss quality (Table 3.2), number of patterns, and running time of RESUM compared

to FREQ, when varying relevance (α) and frequency (τ ) threshold (Figure 3.5 and 3.6). Here we

report results for two datasets (FREEBASE-C and FREEBASE-T), however we observe similar

results also on the other datasets. In particular, as an example, within the top-5 frequent patterns

in the AMAZON graph, we found that the most frequently bought products are Sony appliances,

but some relevant patterns actually involve Nikon products. This result shows that Sony products

are popular but not interesting for all the users.
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Figure 3.5: Varying α: average number of patterns (top) and running time (bottom) in
FREEBASE-C (a,c) and FREEBASE-T (b,d).

FREEBASE-C FREEBASE-T
top-k ALL ANY SUM AVG ALL ANY SUM AVG
1 0.6 0.6 0.6 0.86 0.5 0.5 0.5 1
3 0.43 0.43 0.43 1 0.45 0.33 0.33 1
10 0.44 0.49 0.49 1 0.8 0.66 0.66 1

Table 3.2: Quality of FREQ vs RESUM on the top-k patterns.

3.8.4.1 Quality of FREQ vs RESUM

Table 3.2 shows the quality of the patterns discovered by FREQ, measured on the k most frequent

patterns. We selected 10 random weighting functions and mined the patterns relevant for each

of them. The quality of FREQ is measured as the average Jaccard similarity between the top-

k frequent patterns and the top-k relevant patterns. As expected, frequency is a bad predictor

of relevance, since most of the relevant patterns are not in top-k frequent patterns. Notably, for

AVG the quality is higher mostly due to the small or null number of patterns returned, as reported

in Figure 3.4.
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Figure 3.6: Varying τ : average number of patterns (top) and running time (bottom) in
FREEBASE-C (a,c) and FREEBASE-T (b,d).

3.8.4.2 Analysis of the Relevance Threshold

The relevance threshold α is a system-dependent parameter set only for ALL, ANY , and SUM.

It can be easily tuned on demand and strongly affects the number of patterns (Figure 3.5 (a) and

Figure 3.5 (b)), because the larger the value of α, the smaller is the number of appearances that

are considered in the computation of the score of the patterns, and thus the smaller is the total

number of relevant patterns mined. We observe that with α>0 the number of relevant patterns

is less than half of the number of the frequent ones. This behavior reflects the characteristics of

the weights in the datasets, as half of the edges have zero weight. Moreover, for FREEBASE-T,

SUM, being the most lenient scoring function, returns patterns even in the restrictive cases when

α > 0.5 (Figure 3.5 (b)). Finally, since AVG does not depend on α, it always returns the same

patterns.

Figure 3.5 (c) and Figure 3.5 (d) show that the threshold α affects the running time of RESUM

mostly when ALL is used, as this function can prune the irrelevant patterns earlier in the process.
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In fact, an occurrence of a pattern is discarded and not included in the support set of any exten-

sion of the pattern, as soon as one edge weight is found to be below α. On the other hand, for

all the other scoring functions, the extension of an invalid occurrence of a pattern can be valid

for some super-pattern, and therefore cannot be discarded until all its edge weights have been

examined. As a consequence, the running time of the algorithm is almost unaffected by α.

3.8.4.3 Analysis of the Frequency Threshold

Figure 3.6 reports the behavior of RESUM and FREQ when varying the frequency threshold τ .

We performed preliminary tests to decide a reasonable range of values [τmin, τmax] for each

dataset. In particular, the τmin corresponds to the smallest value that allowed FREQ to terminate

the computation within 48 hours, and τmax is the maximum value returning a non-empty set

of frequent patterns. The choice of different ranges for each dataset is consistent with previous

researches [EASK14] and reflects the observation that pattern frequency is dataset-dependent,

while relevance is user-dependent.

As we can see in Figure 3.6 (a) and Figure 3.6 (b), the number of frequent patterns decreases

almost linearly with τ , and consequently the number of relevant patterns decreases as well.

Regarding the performance, as opposed to the score threshold, the frequency threshold always

alters the computation time, since higher values lead to an early pruning of many patterns,

and thus the algorithm terminates earlier. Moreover, Figure 3.6 (c) and Figure 3.6 (d) show

that when τ takes low values (i.e. between 150 and 180), RESUM runs up to two orders of

magnitude faster in both the datasets. Finally, as previously noted, ALL performs significantly

better than the other scoring functions.

3.8.5 The Case of Multiple Weights

We tested the scalability of RESUM in the case of multiple weighting functions, varying their

number between 50 and 50.000 in the real graphs, and between 1 and 1000 in the synthetic

graphs. Similarly, we also measured time and quality of RESUM approximate. In the following

we do not further discuss and report the number of patterns retrieved for each weighting function

and each scoring function, since these results are consistent with what reported in the single

weight case.
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Figure 3.7: Scalability of RESUM: running time in FREEBASE-C and FREEBASE-T compared
with the brute-force approach (BF), varying number of edge weights, using AVG (a) and SUM
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weights, using AVG (c) and SUM (d).
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Figure 3.8: Scalability of RESUM: running time in SHOP-S (S), SHOP-M (M), SHOP-L (L),
and SHOP-XL (XL), using AVG (a) and SUM (b), and using 1, 10, 100, and 1000 edge weights

(EW1, EW10, EW100, EW1000).

3.8.5.1 Scalability in Real Graphs

Figure 3.7 shows the impact of the number of weighting functions on the running time. We

report the performance obtained with weights sampled from a normal distribution with focus 0.5.
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Figure 3.7 (a,b) presents the comparison between RESUM and the brute-force (BF) approach,

which computes the patterns for each weighting function separately. While BF scales linearly

with the number of weighting functions, the running time of RESUM is nearly constant with

5000 functions, and slowly increases as the number of edge weights approaches 50000. As a

pitfall, the memory requirement grows linearly with the number of weights for both algorithms.

Note that RESUM keeps all the edge weights and the scores in main memory to speed up the

score computation and the pattern evaluation respectively, and thus the number of weighting

functions it can handle heavily depends on the available memory. On our machine, we were

able to process up to 5000 functions when using the AVG score (Figure 3.7 (a)), while we were

able to scale larger than 5000 when using the SUM score (Figure 3.7 (b)).

3.8.5.2 Scalability in Synthetic Graphs

The synthetic graphs were generated using the same degree distribution, and assigning the node

and edge labels proportionally to their size. As a consequence, they display relatively similar

characteristics and can thus be effectively used to test the scalability of our approaches in terms

of the input size only. Figure 3.7(c,d) shows the performances of RESUM in both the single edge

weight and the multi-weighted edge setting, when using the AVG (c) and the SUM (d) scoring

functions. The weights were generated using a Beta distribution with parameters α = 0.7,

β = 5, and focus 0.75. Figure 3.8 (a,b) shows that adding one order of magnitude to the size

of the graph causes a performance degradation by up to one order of magnitude for all the edge

weight settings (EW), and this one order of magnitude difference is maintained when increasing

the number of weights per edge (Figure 3.7(c,d)). On the other hand, an increase in the number

of weights do not lead to an equally steep increase in the running time.

Finally, we note that the performance with AVG is comparable to that of SUM, even though

AVG requires the algorithm to find all the embeddings of the pattern, while SUM terminates the

algorithm as soon as enough embeddings are found.

In Figure 3.9 (a, b) instead, we compare RESUM and RESUM approximate. For these set of ex-

periments, we generated the representative functions by first clustering the weighting functions

using the bucket-based strategy. The clustering phase is performed as a preprocessing and not

reported, since it is agnostic to the choice of the various thresholds and depends solely on the

clustering algorithm (e.g., k-means, hierarchical, or spectral). In particular, we tried numbers of

buckets b of different orders of magnitude and proportional to the frequency of the edge labels in
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Figure 3.9: Scalability of RESUM and RESUM approximate: running time in FREEBASE-T
(a) and FREEBASE-C (b) using AVG and SUM, varying number of edge weights.

the graph. Then, we run k-means using different k to study the impact of the number of clusters

on the quality and the running time of RESUM approximate. Finally, we set the default value of

b of each dataset to the number of buckets that allowed the algorithm to use at least one order of

magnitude less memory than those consumed using the full-vector strategy, i.e., 12 buckets for

FREEBASE-T, 16 for FREEBASE-C, and 10 for CITESEER.

We observe that RESUM becomes impractical as the number of weighting functions increases.

As a matter of fact, when AVG is used, RESUM exhausts the available memory, hence return-

ing no patterns. This behavior reflects the characteristics of AVG, which requires the algorithm

to exhaustively search for all the occurrences of a pattern before computing its score. In con-

trast, RESUM approximate terminates the computation. On the other hand, when SUM is used,

RESUM is able to return the relevant patterns; however, RESUM approximate outperforms the

exact algorithm again, taking nearly constant time to terminate. In conclusion, in all the cases of

large numbers of weighting functions, RESUM approximate performs better than RESUM by

at least one order of magnitude.

3.8.6 Case Study

Figure 3.10 reports the most frequent pattern (P1), the most relevant pattern for two randomly

selected users u1 and u2 (P2), and a pattern in the top-5 relevant patterns for u1 and u2 (P3 and

P4 respectively), found in the real network Amazon using the ALL score and the default settings

in Table 3.1.
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Figure 3.10: Case study: the most frequent pattern (above left), the most relevant pattern
(above right), and two of the top 5 patterns (below left and right) found in AMAZON.

Pattern P1 shows that users who bought Sony products, frequently bought also Belkin products

in other transactions. This result makes sense, considering that Sony sells electronics and Belkin

accessories for computers, smartphones, and cameras. On the other hand, pattern P2 confirms

our claim that frequent patterns are not necessarily the most interesting patterns for every user,

as it contains other less popular node labels, which indicate a more professional user. The

high relevance score of P2 follows from the high ratings that users u1 and u2 gave to their

Canon and Cowboy Studio purchases. Note that Cowboy Studio is a US retailer selling camera

accessories such as tripods, lens, batteries, and flashes, and thus, the appearance of these two

node labels in the same pattern is realistic. Thanks to pattern P2 we know that user u1 prefers

the more professional Cowboy Studio accessories, and thus, if she buys a new camera, we can

recommend her a portrait umbrella rather than a cover from Belkin.

Finally, patterns P3 and P4 prove that different users like different products, and in particular,

u1 expressed her preference for Logitech and Manfrotto, while u2 liked Case Logic accessories

for her Nikon purchases. As a consequence, we attest that our algorithms can effectively help

the design of personalized recommending systems.

3.8.7 Quality of RESUM approximate

As discussed in Section 3.5, we measure the quality of RESUM approximate in terms of the

average distance between the patterns it returns (sets Ai) and those returned by RESUM (sets

Ri). Table 3.3 (left) reports the quality values obtained using the four scoring functions in

FREEBASE-T. Higher values indicate higher quality, with 1 representing the maximum quality

and 0 representing the minimum quality. As we can see, ANY and SUM exhibit the best quality;

ALL performs reasonably good, despite being more restrictive and therefore more sensitive to

the approximation based on the maximum edge weights. On the other hand, when AVG is used,
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Q
|W | ALL ANY SUM AVG

50 0.805 0.931 0.931 0.373
500 0.808 0.938 0.938 0.382
5000 0.797 0.947 0.947 0.391
50000 0.796 0.948 0.949 -

Q
ALL ANY SUM AVG

clustering FREEBASE-T
A-POST 0.80 0.93 0.93 0.30
BUCK 0.80 0.94 0.94 0.38
clustering FREEBASE-C
A-POST 0.72 0.93 0.93 0.55
BUCK 0.73 0.93 0.93 0.61

Table 3.3: Quality of RESUM approximate varying the number of edge weights |W | in
FREEBASE-T (left), and using BUCK and A-POST clustering in FREEBASE-T and FREEBASE-

C (right), measured using Equation 3.2.
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Figure 3.11: Varying focus in FREEBASE-C: number of patterns using SUM (a) and ALL
(b) with focus between 0.25 (F25) and 1 (F100); and running time of RESUM and RESUM
approximate with Beta(0.7, 5) weights with focus 0.25 (F25) and 1 (F100), using SUM, ALL

(c), and ANY (d).

the quality of the answer is quite poor. Nevertheless, this behavior is due to the extremely low

number of patterns this scoring function considers interesting, which skews the computation of

the pattern set distance. Note that, we do no report any value for the case of 50000 weighting

functions with AVG, since the algorithm exhausted all the available memory and did not ter-

minate. We conclude that, the additional patterns returned by RESUM approximate are indeed

closely related to the relevant patterns of each individual weighting function.
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Finally, we tested the capability of our bucket-based clustering (BUCK in short) to correctly

identify groups of similar weighting functions. To this end, we compared the quality of the

results mined using BUCK in the creation of the feature vectors of the weighting functions, with

the quality measured using a ground-truth clustering (A-POST in short). The A-POST clustering

was created using the sets of relevant patterns R1, . . . , Rm as feature vectors of ω1, . . . , ωm,

and then running a k-medoid algorithm. We regard it as a ground-truth clustering, because it is

obtained knowing what makes two weighting functions really similar, i.e. their relevant patterns,

and maximizing the intra-cluster similarity. Table 3.3 (right) reports the comparison between A-

POST and BUCK on FREEBASE-C and FREEBASE-T. We recall that lower values mean higher

quality, as they indicate distances. We can see that we experience a quality comparable with

that obtained using A-POST, and thus we can conclude that our clustering technique is indeed

effective.

3.8.8 Impact of the Weight Distribution

For the experiments presented above, we weighted the Amazon graph using real weights, where-

as for the FREEBASE-T, FREEBASE-C, and CITESEER graphs we used synthetic weights gen-

erated according to the results of our user study. The common feature of these two kinds of

weights is that they are highly sparse. It is worth studying whether weights following other dis-

tributions or that are denser, affect the performance of our algorithms. To this end, we performed

an additional set of experiments using weighting functions generated following a Beta(5, 0.7),

a Beta(0.7, 5) and a normal distribution with different densities (focus), as described at the

beginning of Section 3.8.

One would expect that, with higher densities, the cost of the computation would be higher

too. Although these expectations are reasonable, in the following we show that the behavior

of RESUM and RESUM approximate is consistent with what observed in the case of sparse

weights. Figure 3.11 (a) and Figure 3.11 (b) report the average number of patterns found using

SUM and ALL, with weights generated using a Beta(0.7, 5) distribution with focus varying

between 0.25 and 1 (i.e., all edges have weight > 0). Comparing these results with those in

Figure 3.4 when SUM is used, we can see that the number of relevant patterns is largely affected

by the presence of more (or all) edges with non-null weight, meaning that the patterns mined are

actually many more. On the other hand, when ALL is used, RESUM still finds a larger number

of relevant patterns, but the increment is not as large as in the SUM case.
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Q
ALL SUM ALL SUM

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.5 0.8 0.5 0.8
|W | Beta(0.7, 5) N (0.5, 0.25)

50 0.22 0.20 0.21 0.26 0.17 0.53 0.74 0.91 0.15 0.18 0.36 0.54
500 0.21 0.21 0.24 0.27 0.18 0.53 0.74 0.91 0.18 0.20 0.44 0.57
5000 0.21 0.22 0.24 0.28 0.19 0.54 0.75 0.91 0.22 0.20 0.49 0.59
50000 0.21 0.22 0.25 0.28 0.19 0.54 0.75 0.91 0.22 0.21 0.51 0.59
|W | Beta(5, 0.7)

50 0.19 0.23 0.42 1 0.34 0.73 0.94 1
500 0.21 0.24 0.42 1 0.36 0.73 0.94 1
5000 0.21 0.25 0.43 1 0.36 0.74 0.95 1
50000 0.21 0.25 0.44 0.99 0.36 0.74 0.95 1

Table 3.4: Quality of RESUM approximate with ALL and SUM on FREEBASE-C, with
Beta(α, β) and normal N (µ, σ2) weights generated using focus values in {0.25, 0.5, 0.75, 1}

and {0.5, 0.8} respectively, measured using Equation 3.1.

Regarding the running time, Figure 3.11 (c) and Figure 3.11 (d) show that the two algorithms

behave accordingly to what already seen in the previous experiments, meaning that the fact there

more patterns are mined do not downgrade the performance heavily.

Finally, Table 3.4 displays the quality of RESUM in terms of average precision, as defined in

Equation 3.1. As we can see, our approximate algorithm achieves similar quality values no

matter which weight distribution is chosen. In addition, the denser the weights in the graph,

the higher is the average precision of the pattern sets mined. Intuitively, this is due to the fact

knowing a larger number of positive weights allows the clustering algorithm to better detect

which weighting functions are similar.

3.8.9 Comparison with Distributed Pattern Mining

We first investigate in which cases the distributed algorithm (noted as Dist) offers an advantage

over the centralized one. When running both algorithms on the CITESEER graph, Figure 3.12

(a,c) shows that the distributed version is always one order of magnitude slower. We note that

CITESEER is a small and relatively dense graph with few labels, meaning that the graph contains

a small number of candidate relevant patterns with large sets of embeddings. In this particular

type of graph, the centralized algorithm can stop the search of new assignments and early ter-

minate the computation for a pattern as soon as the embeddings found are sufficient to verify

that the pattern has a high relevance score. On the other hand, in the distributed algorithm each

worker looks for embeddings separately, and the aggregation of the embeddings takes place
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Figure 3.12: RESUM vs RESUM distributed: running time in CITESEER (a) and FREEBASE-
O (b) varying τ , using SUM and AVG; and running time in CITESEER (c) and FREEBASE-O

(d) varying number of edge weights, using SUM and AVG.

only at the end of the computation step. For this reason, the algorithm cannot exploit the early

termination condition, and hence may compute far more embeddings than necessary.

RESUM distributed, instead, provides a clear advantage in the larger and richer FREEBASE-O

graph. This graph has a higher number of labels, which, paired with the larger size of the graph,

allows for workers to share effectively the workload and provide the answer in more than one

tenth of the time required by the centralized version (Figure 3.12 (b)). The striking difference

between the performance of the two algorithms in the two datasets, suggests that the distributed

version has to be preferred for larger and richer graphs, when many different patterns can be

retrieved. The same behavior is observed when changing the number of users (Figure 3.12 (d)),

proving that our strategy for the multi-weight pattern mining is still effective in the distributed

environment.
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Figure 3.13: Varying number of workers: running time of RESUM distributed in CITESEER
and FREEBASE-O, using SUM and AVG with single edge weights (a) and using AVG varying

number of edge weights (b).

3.8.9.1 Varying the Number of Workers

In order to better understand which dimensions affect the most the performance of the distributed

algorithm, we compared its running times over both the CITESEER and the FREEBASE-O graph,

when varying the number of workers6 Figure 3.13 (a) shows that, with one or two workers,

the RESUM distributed is sensibly slower on the much smaller citation network than on the

larger knowledge graph. Note that for FREEBASE-O the algorithm returned around 30 relevant

patterns, while for CiteSeer it retrieved 66 patterns. Only when using 6 machines we were able

to run faster on the smaller graph.

In addition, Figure 3.13 (b) shows that the effects of the distribution remain the same when

varying the number of weighting functions we consider. This substantiates our previous finding,

namely, when the graph contains few very frequent patterns the distribution strategy provided

by Arabesque is not optimal as it is dominated by the time required to compute an unnecessary

large amounts of embeddings. As a consequence, an embedding-based distribution cannot be

generally recommended for score-based pattern mining, although it provides higher load balance

and less worker communication than the most popular alternative distributed graph processing

systems [TFS+15].
6For this experiment we kept a single edge-weighting function, and parameter α = 0.05, with τ = 6000 for

FREEBASE-O, and τ = 100 for CITESEER.
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Figure 3.14: Comparison between RESUM and RESUM distributed: running time varying
the size of the graph, using AVG (a) and SUM (b), with the edge weights generated by a Beta
distribution (0.7, 5) and a skewed distribution (skew); and running time in SHOP-S, SHOP-M,

SHOP-L, and SHOP-XL, varying the number of edge weights, using SUM (c).

3.8.9.2 Scalability

We additionally compared RESUM and RESUM distributed on the four synthetic graphs using

default score threshold and frequency threshold 90, 900, 9000, 90000, respectively. At these

frequencies, the graphs contain roughly the same number of frequent patterns (47, 43, 44, and

45 respectively), hence allowing us to analyze how the increasing number of embeddings per

pattern affects the performances of the two algorithms. For these experiments, we also sampled

the edge weights from two different distributions: a Beta distribution with parameters (0.7, 5)

and focus 0.75, and a skewed distribution that simulates a user interested in a category of prod-

ucts available in the online shop, and thus assigns a large positive weights to the corresponding

edges and zero to the others.

In Figure 3.14(a, b) we can see that RESUM distributed works better when the weights are

sparse, with AVG achieving performances comparable to SUM, similarly to what observed for

RESUM. In particular, the algorithm succeeded in extracting the relevant patterns from the
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largest graphs with skewed weights, but was able to finish the computation up to the graph

of size L when the weights were drawn from the Beta distribution. In the case of sparse weights,

the number of embeddings satisfying the condition posed by the scoring function is lower, and

thus the workers must process and send a lower number of embeddings through the network.

The communication between the machines is thus faster. In contrast, the running time of RE-

SUM is not significantly affected by the weight distribution, as it does not generate and keep in

memory all the embeddings in the graph, as opposed to the distributed framework. In addition,

we note that when the graph is small, the overhead of setting up the distributed environment out-

weighs the cost of mining the relevant patterns, and thus RESUM distributed takes more time

than RESUM to complete the computation. On the other hand, when the size of graph is large,

so is the number of embeddings in the graph, and thus the algorithm can suffer from delays in

machine communication and increasing cost of embedding generation.

Finally, Figure 3.14 (c) reports the running times of RESUM and RESUM distributed in the

four synthetic graphs, varying the number of weights per edge. The performance is consistent

with the single-weight setting, thus demonstrating the superiority of the centralized algorithm

and the complexity of developing practical and scalable distributed solutions to graph mining

problems.



Chapter 4

Dense Correlated Subgraph Mining

In this chapter we focus on the second contribution of this thesis, which is the identification

of dense and correlated groups of edges in dynamic networks. In dynamic networks, nodes

and edges can undergo both structural and attribute changes, and there are cases in which some

of those nodes and edges evolve in a convergent manner, meaning that they display a positive

correlation on their behavior. These groups of correlated elements, especially when they involve

nodes and edges that are topologically close, can represent regions of interest in the network.

In the following, we present two different measures to compute the density of a group of edges

in a dynamic settings, a measure to compute their temporal correlation, and the solution we

propose to the problem of enumerating all the maximal dense groups of correlated edges that

are pairwise dissimilar. We introduce a constraint on the similarity of the groups returned, as

many real-world networks naturally contain a large number of dense groups of correlated edges,

and thus an user may rather prefer a more compact but yet representative subset of results.

4.1 Contributions

The contributions of this chapter can be summarized as follows:

• We introduce and formally define the generic problem of detecting a set of dense and

correlated subgraphs in dynamic networks (Section 4.2).

75
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• We propose two different measures to compute the density of a group of edges that change

over time, which are based on the average-degree density [Cha00, Gol84], and a measure

to compute their correlation, which is based on the Pearson correlation (Section 4.2).

• We develop an exact solution, called EXCODE, for enumerating all the subgraphs that

satisfy given density and correlation thresholds. We also propose an approximate solution

that scales well with the size of the network, and at the same time achieves high accuracy

(Section 4.3).

• As some networks naturally contain a large number of dense groups of correlated edges,

we study the problem of identifying a more compact and diverse subset of results that

is representative of the whole answer set. To this aim, we introduce a threshold on the

maximum pairwise Jaccard similarity allowed between the edge groups in the result set,

and extend our framework with an approach to extract a set of subgraphs whose pairwise

overlap is less than the threshold (Section 4.3).

• We evaluate our framework through an extensive set of experiments on both real and

synthetic datasets, confirming the correctness of the exact solution, the high accuracy of

the approximate one, the scalability of the framework, and the applicability of the solution

on networks of different nature (Section 4.4).

• We showcase EXCODE-VIZ, a powerful tool that can help the user to configure the EX-

CODE framework easily and effectively, visualize the results of the mining process, and

finally interact with them (Section 4.5).

4.2 Problem Formulation

We start by presenting our notation and defining the problem we study in this chapter. The main

actor in our setting is a dynamic network, which is a graph that models data that change over

time, and is represented as a sequence of consecutive static graphs, also called the snapshots of

the network.

Definition 4.1 (Dynamic Network). Let T ⊆ T be a set of time instances over a time domain T .

A dynamic network D = (V,E) is a sequence of graphs Gi = (V,Ei, ωi) with i ∈ T , referred

to as snapshots of the network, where V is a set of vertices, Ei⊆V×V is a set of edges between



Dense Correlated Subgraph Mining 77

these vertices, and ωi : Ei 7→ R is an edge weight function. We denote with E the union of the

edges of the snapshots, i.e., E=∪i∈TEi.

Note that we consider dynamic networks where all the snapshots share the same set of nodes.

The case of disappearing nodes can be easily mapped to an instance of our problem by inserting,

in each snapshot, all the nodes that are not present in this snapshot but exist in other snapshots.

Such nodes will be isolated in that snapshot. We slightly abuse notation, and whenever an edge

e does not appear in a graph Gi, i.e., e /∈ Ei, then we assume that ωi(e) = 0. In the case of

unweighted graphs, the edge weight functions ωi take values in {0, 1}.

The focus of our work is on identifying dense correlated subgraphs in dynamic networks. We

recall that, given a graph G = (V,E), a subgraph H of G is a graph H = (VH , EH), such that

VH ⊆ V and EH ⊆ E. We adopt the traditional notion of density used for static graphs [Cha00,

KS09] to measure the density of the subgraph.

Definition 4.2 (Density). The density of a (static) graph G = (V,E) is the average degree of its

nodes, i.e., ρ(G) = 2|E|/|V |.

In the case of a dynamic networkD, the edges of a subgraphH may not exist in all its snapshots,

meaning that this density measure would give a different value in each snapshot. Therefore, we

propose two alternative ways to aggregate those values. Let Gi(H) = (VH , EH ∩ Ei) denote

the subgraph induced by H in the snapshot i. The first approach, called minimum density and

denoted as ρm, computes the density of H as the minimum density of any subgraph induced by

H across the snapshots of D; while the second approach, called average density and denoted as

ρa, computes the average density among these induced subgraphs. In particular

ρm(H) = min
i∈T

ρ(Gi(H)) (4.1)

and

ρa(H) =
1

|T |
∑
i∈T

ρ(Gi(H)). (4.2)

Given a density threshold δ, a subgraph H is called δ-dense if ρm(G) ≥ δ or ρa(G) ≥ δ,

respectively.

Consider a subgraph H that is highly dense in some snapshots, while there are other snapshots

in which it does not appear. For these particular subgraphs, ρm(H) will be 0 even if there is
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just one snapshot in which the edges of H do not appear. Similarly, ρa(H) will take low values,

even though H has a large average degree in the snapshot in which it appears. These definitions

are thus too strict for most practical situations: in many applications edges appear and disappear

and an interesting event (or an anomaly [RSK+15]) may take place in the dynamic network and

exhibit itself only in a small number of snapshots. To account for such situations, we introduce

the notion of activity and say that a subgraph H is active at time t if at least k edges of H exist

in t, i.e., |Et ∩ EH | ≥ k. Then, we relax our density definitions and compute the minimum

and average density of H by aggregating only the values computed in the snapshots where H is

active. Let T kH denote the subset of snapshotsH is active, i.e., T kH = {t | t ∈ T and |Et∩EH | ≥

k}. We redefine Equation 4.1 and Equation 4.2 as follows:

ρkm(H) = min
i∈TkH

ρ(Gi(H)) (4.3)

and

ρka(H) =
1

|T kH |
∑
i∈TkH

ρ(Gi(H)). (4.4)

If T kH is empty then both ρkm(H) and ρka(H) are defined to be 0. Also, we use the notation ρk to

collectively refer at ρkm and ρka.

Since the dynamic part of a network consists in its edges (recall that all the snapshots of the

network have the same set of nodes), we say that a subgraph is correlated if its edges are pair-

wise correlated. Intuitively, two edges are correlated if they demonstrate a similar behavior of

presence/absence across the different snapshots of the network. We therefore represent every

edge as a time series over the snapshots of the network, and measure the correlation between

two edges as the Pearson correlation between the corresponding time series. We consider this

measure because it has been widely used to detect associations between time series [DBD94],

but our framework can work with any other correlation measure. Let t(e) denote the time series

of the edge e, where each coordinate ti(e) is set to ti(e) = ωi(e), and thus ti(e) = 0 if e does

not appear in the snapshot i.

Definition 4.3 (Edge Correlation). Given a dynamic network D=(V ,E) and two edges e1, e2 ∈

E with respective time series t(e1) = {t1(e1), . . . , tT (e1)} and t(e2) = {t1(e2), . . . , tT (e2)},

the correlation between e1 and e2, denoted as c(e1, e2), is the Pearson correlation between t(e1)
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and t(e2), i.e.,

c(e1, e2) =

∑T
i=1(ti(e1)− t(e1))(ti(e2)− t(e2))√∑T

i=1(ti(e1)− t(e1))2

√∑T
i=1(ti(e2)− t(e2))2

,

where t(e) = 1
|T |
∑T

i=1 ti(e).

Given a correlation threshold σ, the edges e1 and e2 are considered correlated if c(e1, e2) ≥ σ.

Definition 4.3 refers to pairs of edges. We compute the correlation of a subgraph H as the

minimum pairwise correlation between its edges, i.e.,

cm(H) = min
ei 6=ej∈EH

c(ei, ej) (4.5)

and say that H is σ-correlated if cm(H) ≥ σ.

Our goal is to identify all the dense and correlated subgraphs in a dynamic network. However,

since a dense correlated subgraph may contain smaller dense correlated structures due to the

nature of the density and correlation measures used, we restrict our attention to the maximal

subgraphs. Given some properties of interest, we say that a subgraph satisfying the properties

is maximal, if it is not a strict subset of another subgraph that satisfies them. Thus, given a

dynamic network D, a density threshold δ, and a correlation threshold σ, we want to find all the

maximal subgraphs H that are δ-dense and σ-correlated.

As it is often the case with problems that enumerate a complete set of solutions that satisfy given

constraints, the answer set could potentially be very large and contain solutions with a large

degree of overlap between each other. To counter this effect, we further focus on a modified

version of our problem that reports only diverse subgraphs, which are subgraphs that differ from

one another and are representative of the whole answer set. To measure the similarity between

subgraphs, we compute the Jaccard similarity between their edge sets, i.e., the Jaccard similarity

between the graph G′=(V ′, E′) and G′′=(V ′′, E′′), denoted as J(G′, G′′), is J(G′, G′′)=|E′ ∩

E′′|/|E′ ∪E′′|. Then, we require that the pairwise similarities between subgraphs in the answer

set are lower than a given similarity threshold ε. This is in line with previous work that has

aimed at finding a diverse collection of dense subgraphs [BBC+15, GGT16].
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Problem 2 (Diverse Dense Correlated Subgraphs). Given a dynamic network D, a density

threshold δ, a correlation threshold σ, and a similarity threshold ε, find a collection S of maxi-

mal and diverse subgraphs such that for each H ∈ S, H is δ-dense and σ-correlated, and for

each distinct H,H ′ ∈ S, J(H,H ′) ≤ ε.

We refer to Problem 2 through the shorthand DICORDIS. Note that the density can be measured

by using either ρkm or ρka. Note also that the smaller is the value of ε, the smaller becomes the

set S, and the more diverse turn out to be its members.

DICORDIS is an enumeration problem, since the goal is to find all the subgraphs that satisfy

certain desirable properties. Its decision problem, i.e., determining whether there exists at least

one subgraph satisfying the desirable properties, can be shown to be NP-hard, independently

of which density function is used (ρkm or ρka).

Proposition 4.4. Consider a dynamic network D, and correlated and density thresholds σ and

δ, respectively. Finding whether there is an edge set X with induced subgraph H for which

cm(H) ≥ σ and ρk(H) ≥ δ is NP-hard for both ρkm and ρka.

Proof. We can reduce the DalkS problem (densest at-least-k subgraph) [KS09] to our case. An

instance of the DalkS problem consists of an undirected graph G = (V,E) and parameters k′

and δ′. The task is to decide whether there exists a subgraph H ⊆ G having at least k′ nodes

and density at least δ′. Given an instance of the DalkS problem we construct an instance of

the decision version of DICORDIS as follows. We construct a network D consisting of two

snapshots G0 and G1, where G0 = G and G1 = (V, ∅). We set σ = 1, δ = δ′, and k = δ′k′/2.

For a subgraph H of G, we define H ′ = (VH′ , EH′) to be the corresponding subgraph in G0.

We claim that if there exists a solution H ⊆ G for DalkS, the edge set of the corresponding

subgraph H ′ ⊆ G0 is a solution for DICORDIS. Indeed, it holds that |EH′ | ≥ δ′|VH′ | ≥ δ′k′,

and thus H ′ and H have the same density, which is at least δ. Furthermore, every pair of edges

in EH′ satisfies the correlation constraint.

Inversely, if EH′ is a solution to DICORDIS, then |VH′ | ≥ 2|EH′ |/δ ≥ k′. The density of the

corresponding H ⊆ G is equal to the density of H ′, which is at least δ′, thus, H is a solution for

DalkS as well.
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Algorithm 7 EXCODE
Input: Dynamic network D = (V,E), Density function ρk

Input: Thresholds: Correlation σ, Density δ, Size sM
Input: Thresholds: Edges-per-snapshot k, Similarity ε
Output: Diverse dense correlated maximal subgraphs S

1: G ← CREATECORRELATIONGRAPH(G, σ)
2: C ← FINDMAXIMALCLIQUES(G)
3: S ← FINDDIVERSEDENSEEDGES(D, C, ρk, δ, k, sM , ε)
4: return S

Note that since the computation of ρk requires the aggregation of the density values over the

snapshots that contain at least k edges, we aggregate only the density value in first snapshot G0.

Thus, the proof holds for both versions of ρk, i.e., ρkm and ρka.

4.3 The EXCODE framework

To solve the DICORDIS problem, we propose a two-step approach, called EXCODE (Extract

Correlated Dense Edges). This approach first identifies maximal sets of correlated edges, and

then extract subsets of these edges that form a dense subgraph according the density mea-

sure selected between ρkm and ρka. The correlation of a set of edges is instead computed us-

ing Equation (4.5). Given the dynamic network D = (V,E) we create a correlation graph

G = (E, E), such that the vertex set of G is the edge set E of D, and the edges of G are the pairs

(e1, e2) ∈ E × E that have correlation value c(e1, e2) ≥ σ. Using this construction, a maximal

clique in the correlation graph G corresponds to a maximal set of correlated edges in D. In fact,

a set of nodes forms a clique in the correlation graph G if and only if they are all connected,

and thus, the corresponding edges in the dynamic network D have pairwise correlation that is

greater than σ, meaning that they are a set of correlated edges. Furthermore, by the maximality

of the clique in G, the corresponding edge set is maximal in D.

The flow of EXCODE is illustrated in Algorithm 7. Starting from the dynamic network D =

(V,E) the algorithm first creates the correlation graph G (line 1) by adding a meta-edge between

two edges of D if their correlation is greater than σ. Then it enumerates all the maximal cliques

in G (line 2). This collection of maximal cliques in G corresponds to a collection C of maximal

correlated edge sets in D. Finally, Procedure FINDDIVERSEDENSEEDGES (line 3) examines

each connected component in C (by using either the density measure ρkm or ρka) to identify those
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Algorithm 8 CREATECORRELATIONGRAPH (approximate)
Input: Dynamic network D = (V,E)
Input: Threshold: Correlation σ
Output: Correlation graph G = (E, E)

1: cand ← ∅; E ← ∅
2: for all e ∈ E; i ∈ [0, h r] do
3: H[e][i]← min{hi(t) |ω(e, t) = 1}
4: for all i ∈ [0, r] do
5: B[i]← ∅
6: for all e ∈ E do
7: code ← H[e][i h : (i+ 1)h− 1]
8: B[i][code]← B[i][code] ∪ {e}
9: for all i ∈ [0, r]; b ∈ B[i] do

10: for all e1, e2 ∈ B[i][b] do
11: cand ← cand ∪ {(e1, e2)}
12: for all (e1, e2) ∈ cand such that c(e1, e2) ≥ σ do
13: E ← E ∪ {(e1, e2)}
14: return G ← CREATEGRAPH(E, E)

constituting dense subgraphs in D, retaining only a subset of pairwise dissimilar subgraphs

according to the similarity threshold ε.

4.3.1 Creation of the Correlation Graph

The correlation graph G can be built exactly, by computing the correlation c(e1, e2) between

each pair of edges e1, e2 ∈ E and retaining those pairs satisfying c(e1, e2) ≥ σ. However, when

D is large, comparing each pair of edges is prohibitively expensive, and thus we propose also an

approximate solution based on min-wise hashing [BCFM00] which is described in Algorithm 8.

Here we assume that a strong correlation between two edges implies a high Jaccard similarity,

and thus, we use min-wise hashing to identify sets of candidate correlated edges. Specifically,

we use a variant of the TAPER algorithm [ZF06], which repeats a min-wise hashing procedure

r times, each time using h independent hash functions hi : T → N. In each run, the algorithm

computes h hash values for each edge and concatenates them to create a hash code for the edge

(line 7). For each edge e and each hash function hi, the hash value H[e][i] is the minimum

among the values hi(t), for timestamps t ∈ T where e exists, i.e., ωt(e) = 1. Note that, for

efficiency purposes, the r h hash values are computed all together by traversing once the set of

edges ofD (lines 2–3). Edges with the same hash code are inserted into the same bucket (line 8)

and the Pearson correlation is calculated for each pair of edges in the same bucket (line 12). If
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Algorithm 9 FINDMAXIMALCLIQUES

Input: Graph G = (E, E)
Output: Set of maximal cliques C

1: anc ← ∅; not ← ∅; cand ← E
2: C ← ENUMCLIQUES(anc, cand ,not)
3: return C

4: function ENUMCLIQUES(anc, cand ,not)
5: C ← ∅
6: if ISACLIQUE(cand) then
7: return {anc ∪ cand}
8: repeat
9: v ← vertex with smallest degree in cand

10: nxAnc ← anc ∪ {v}
11: nxCand ← cand ∩ adj [v]
12: nxNot ← not ∩ adj [v]
13: if @u ∈ nxNot s.t. ∀w ∈ nxCand , u ∈ adj [w] then
14: C ← C ∪ ENUMCLIQUES(nxAnc,nxCand ,nxNot)

15: cand ← cand \ {v}
16: not ← not ∪ {v}
17: until ISACLIQUE(cand)
18: if @u ∈ not s.t. ∀w ∈ cand , u ∈ adj [w] then
19: C ← C ∪ {anc ∪ cand}
20: return C

the correlation is greater than the correlation threshold σ, the pair is inserted in the edge set of

the correlation graph G (line 13).

The algorithm requires two parameters that specify the number of runs r to execute and the

number of hash functions h to use. Larger r means less false negatives, and larger h means

more effective pruning.

4.3.2 Enumeration of the Maximal Cliques

After the creation of the correlation graph G, the maximal groups of correlated edges are enu-

merated by identifying the maximal cliques in G. To perform this enumeration we use our

implementation of the GP algorithm of Wang et al. [WCH+17].

The algorithm proceeds by recursively partitioning the graph into two disjoint parts and ex-

amining each one independently using Procedure ENUMCLIQUES. In each step, the algorithm

maintains three sets of vertices, anchor , cand , and not . The set anchor , initially empty, is

recursively extended by adding a new vertex such that, at every step, the vertices in anchor are
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Algorithm 10 FINDDIVERSEDENSEEDGES

Input: Dynamic Network D = (V,E)
Input: Set of maximal cliques C
Input: Density function ρk

Input: Thresholds: Density δ, Size smax

Input: Thresholds: Edges-per-snapshot k, Similarity ε
Output: Set of diverse dense maximal subgraphs S

1: S ← ∅; P ← ∅
2: CC ← EXTRACTCC(C)
3: for all X ∈ CC do
4: if X.size<smax and ISMAXIMAL(X , S∪P) and ISDIVERSE(X , S) then
5: (flag , R)← ISDENSE(D,X, k, ρk, δ)
6: if flag = 1 then
7: S ← S ∪ {X}
8: else if flag = 0 then
9: P ← P ∪R

10: for all X ∈ P do
11: if ISMAXIMAL(X,S) and ISDIVERSE(X, S) then
12: S ← S ∪ {X}
13: return S

14: function ISDIVERSE(X,S)
15: if S = ∅ then return true

16: for all Cj ∈ S do
17: if |Cj ∩X|/|Cj ∪X| > ε then return false

18: return true

all connected in the input graph G. The set cand , initially set to E, contains the vertices that can

still be used to extend anchor , i.e., vertices that do not belong in anchor and are connected to

every vertex in anchor . Finally, the set not , initially empty, contains vertices already used as

extensions for anchor in the previous steps.

When examining the set cand in a graph, the algorithm first checks if the vertices in cand

form a clique, and hence returns the maximal clique cand ∪ anchor . Otherwise, the algorithm

recursively takes the vertex with smallest degree in cand (line 9), creates a new set nxCand

of all the vertices in cand adjacent to v (line 11), and updates cand removing v (line 15). Set

not is updated adding vertex v, as it cannot be used as a partitioning anchor anymore (line 16),

and a new set nxNot is initialized adding all the vertices in not adjacent to v (line 12). If some

vertex in nxNot is connected to all the vertices in nxCand , the recursive function is not called

(line 13), because this means that the vertices nxCand cannot generate a maximal clique. When

cand becomes a clique, the recursion stops (line 17) and the algorithm checks if the clique is

maximal before inserting it into the output set (line 19).
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Algorithm 11 ISDENSE

Input: Dynamic Network D = (V,E)
Input: A set of edges X
Input: Density function ρk

Input: Thresholds: Density δ, Edges-per-snapshot k
Output: (1, ∅) if X is dense; (0, R) if X contains the dense subsets R; (−1, ∅) otherwise

1: K ← KEDGESNAPSHOTS(X, k)
2: if ρk(X,K, δ) then return (1, ∅)
3: if CONTAINSDENSE(X,K, k) = ∅ then
4: return (−1, ∅)
5: return (0, EXTRACTDENSE(X,K, k))

6: function CONTAINSDENSE(X,K, k)
7: while ρk(X,K, δ/2) = false do
8: if X = ∅ or K = ∅ then return false

9: max ← GETMAXDEG(X)
10: n← GETMINDEGNODE(X)
11: if max < δ/2 then return false

12: X ← X \ adj (n)
13: K ← KEDGESNAPSHOTS(X, k)

14: return true

15: function EXTRACTDENSE(X,K, k)
16: R← ∅; Q ← {(X,K)}
17: while Q 6= ∅ do
18: (Y,K ′)← Q.pop
19: if ρk(Y,K ′, δ) then
20: R← R ∪ {Y }
21: else if K ′ 6= ∅ then
22: max ← GETMAXDEG(Y )
23: N ← GETMINDEGNODES(Y )
24: if max < δ then
25: continue

26: for all n ∈ N do
27: Y ← Y \ adj (n)
28: K ′ ← KEDGESNAPSHOTS(Y, k)
29: if Y 6= ∅ then
30: Q← Q ∪ {(Y,K ′)}
31: return R

4.3.3 Discovery of the Dense Subgraphs

The goal of this step is to find connected groups of edges that form a dense subgraph, using

either ρkm or ρka as density function ρk. Algorithm 10 receives as input a set of maximal cliques

C, each of which represents a maximal group of correlated edges. Since some of the edges in a

clique may not be connected in the network D, the algorithm extracts all the distinct connected
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Algorithm 12 Density Functions
1: function ISAVGDENSE(X,K, δ)
2: if K = ∅ then return false

3: let H be the subgraph induced by X
4: d← 1/K

∑
t∈K ρ(Gt(H))

5: return d ≥ δ

6: function ISMINDENSE(X,K, δ)
7: if K = ∅ then return false

8: let H be the subgraph induced by X
9: for all t ∈ K do

10: if ρ(Gt(H)) < δ then return false

11: return true

components from the cliques (line 2), before computing the density values. To allow a faster

discovery of the maximal groups of dense edges, the connected components are sorted in de-

scending order of their size and processed iteratively. If no larger or similar dense set of the

current candidate component X has been discovered yet (line 4), and if the size of X does not

exceed the threshold sM , the density of X is computed invoking Algorithm 12 (line 5). We

recall that the similarity between two sets is calculated using the Jaccard similarity, and two

sets are considered dissimilar if the similarity is below the threshold ε. On the other hand, the

threshold on the maximum size controls the size of the subgraphs in the result set S, as well as

the complexity of Algorithm 10.

Algorithm 11 describes the steps for determining if a set of edges X is dense or if at least

contains some dense subset. This algorithm uses either Procedure ISMINDENSE or Procedure

ISAVGDENSE in Algorithm 12 to compute the density of X and thus assessing if X is dense.

Procedure ISAVGDENSE applies Equation (4.4) to determine if the average density of X is

above the threshold δ. The average density of X is computed as the average among the average

node degrees of the subgraphs H induced by X in all the snapshots where at least k edges of X

are present.

On the other hand, Procedure ISMINDENSE computes Equation (4.3), which expresses the den-

sity of a group of edges as the minimum between the average degrees of the induced subgraph

in all the snapshots where at least k edges of the group are present, and then checks if its values

is above δ. The minimum average degree is computed by iterating over the set K of snapshots

at least k edges of X present (line 9). Nonetheless, we can stop the iteration as soon as we find

a snapshot t where the subgraph H induced by X in t has average degree below the density

threshold δ (line 10), because the minimum average degree is now guaranteed to be lower than
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δ. Thanks to the optimizations described in the next paragraph, the implementation of Proce-

dure ISAVGDENSE is more efficient than that of Procedure ISMINDENSE, and thus we call the

latter only when the former returns true, given that the average average degree is an upper bound

on the minimum average degree.

When the density ρka(H) (ρkm(H) respectively) of the subgraph H induced by X is above the

threshold δ, X is inserted in the result set S (Algorithm 10 line 7). When the density is below

the threshold δ, the set X is not dense; though some subset X ′ ⊆ X may satisfy the condition

ρka(H
′) ≥ δ. Since examining all the possible subsets ofX is a costly operation especially when

the size of X is large, Algorithm 11 uses Procedure CONTAINSDENSE, which is based on a 2-

approximation algorithm for the densest subgraph problem [Cha00], to prune the search space.

In details, Procedure CONTAINSDENSE iteratively removes the vertex with lowest degree from

the induced subgraph H , until it becomes empty or its density is greater than δ/2. Every time

a vertex is removed, its outgoing edges are removed as well (line 12), and thus the set of valid

snapshots K must be updated (line 13). If K becomes empty, any subset of X will have zero

density, and thus the algorithm returns false (line 8). If the maximum value of density calculated

during the execution of this algorithm is below the threshold δ/2, it holds that X cannot contain

a subset X ′ with density above δ [Cha00], and thus CONTAINSDENSE returns false. Therefore,

Procedure EXTRACTDENSE, which extracts all the dense subsets in the setX , is invoked (line 5)

only when Procedure CONTAINSDENSE returns true.

When CONTAINSDENSE returns true, Procedure EXTRACTDENSE iteratively searches for all

the dense subsets in X . At each iteration, a subset of edges Y is extracted from the queue

of candidates Q and its density is checked. If Y is not dense but the set of valid snapshots

is not empty (line 21), a new candidate is created for each vertex n with lowest degree in the

subgraph induced by Y . These candidates are then inserted into Q. On the other hand, when

Y is dense, it is inserted into the result set R returned at the end of the procedure. At the end

of Algorithm 10, the maximal subsets in the set P , which contains the elements of all the R

sets computed during the search, are checked for similarity with the subsets already in S. Those

with Jaccard similarity below ε with any subsets in S are finally added to S (lines 10–12).

4.3.4 An Efficient Way for Computing the Average Density

The average density ρa(H) of a subnetwork H = (VH , EH) in a dynamic network D can be

computed via the summary graph of D defined as the static graph R = (V,E, σ) where V is
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the set of vertices of D, E is the union of the edges Ei of all the snapshots of D, and σ : E 7→ R

is a weighting function that assigns, to each edge e ∈ E, a value equal to its average weight over

all the snapshots of D, i.e., σ(e) = 1/|T |
∑

t∈T ωt(e). The following proposition ensures that

ρa(H) is equivalent to the weighted density of H in the summary graph R, which is defined as

wρ(H) = 2
∑

e∈EH σ(e)/|VH |.

Proposition 4.5. Given a dynamic network D, its summary graph R, and a subnetwork H , it

holds that ρa(H) = wρ(H).

Proof.

ρa(H) =
1

|T |
∑
t∈T

ρ(Gt(H)) =
1

|T |
∑
i∈T

(
2|EH ∩ Et|
|VH |

)

=
2

|VH |
1

|T |
∑
i∈T

∑
e∈EH

ωt(e) =
2

|VH |
∑
e∈EH

σ(e) = wρ(H)

The weighted density of H in the summary graph R can be calculated significantly faster than

its average density in the dynamic network D, since the former is obtained by summing the

weights of the edges of H defined by σ, while the latter is obtained by (i) constructing the sub-

graph induced by EH in each snapshot, (ii) computing the average node degree of each induced

subgraph, and (iii) taking the average among those values. As a consequence, Proposition 4.5

allows us to improve the efficiency of our algorithm in solving Problem 2 in the case of the ρa

density function.

4.3.5 Complexity

The exact construction of G (Algorithm 8) takes O(|E|2), as it requires the computation of

all the pairwise edge correlations. On the other hand, the approximate solution creates h · r

hash values for the edges in O(h · r · |E|) and compares only the edges that share at least one

hash code. Even though the worst-case time complexity is still O(|E|2) (every pair of edges

share some hash code), the experiments show that the actual number of edge comparisons is

much smaller than |E|2. The time complexity of the maximal clique enumeration (Algorithm 9)

is O (|E| · κ(G)), where κ(G) is the number of cliques in G. The computation of the con-

nected components in the maximal cliques takes again O(|E| · κ(G)), as it requires a visit of
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the network D for each clique. In the worst case, each edge of the network belongs to a dif-

ferent connected component, and thus Algorithm 10 must iterate |E| times. At each iteration,

it calls Procedure ISDENSE to compute the density of the current set of edges X if its size is

lower than sM . Procedure ISDENSE calculates the average node degree of each subgraph in-

duced by X in all the snapshots where at least k edges of X are present (at most |T |), and

thus its running time is bounded by O(sM · |T |). When X is not dense, the algorithm fur-

ther calls Procedure CONTAINSDENSE and Procedure EXTRACTDENSE. The former runs in

sM , since it removes at least one edge from X at each iteration; while the latter must process

all the subsets of X in the worst case (2sM ). The complexity of Algorithm 10 is therefore

O(κ(G) · |E|+ |E|(sM · |T |+ sM + 2sM )) = O(|E|(κ(G) + sM |T |+ 2sM )), which is also the

complexity of Algorithm 7.

4.4 Experiments

We evaluate the performance of our exact and approximate solutions in terms of accuracy and

execution time. The accuracy of the exact algorithm is tested on synthetic datasets, where

ground-truth is known, while the approximate algorithm is compared against the exact. The

scalability of the two approaches is evaluated using datasets of increasing size. Furthermore, we

study the impact of all the parameters of the system on both the running time and the size of the

output, hence steering non-expert users towards the right configuration for obtaining the desired

output.

4.4.1 Datasets

We run experiments on both real and synthetic datasets of different sizes. In particular, we used 3

real networks and 12 randomly-generated networks. The characteristics of the synthetic datasets

are listed in Table 4.2, while the characteristics of the real datasets are listed in Table 4.1. The

table contains the number of vertices |V |, edges |E|, and snapshots |T |; the minimum, average,

and maximum node degree deg(G); the minimum, average, and maximum node degree per

snapshot deg(Gi); and the minimum, average, and maximum number of appearances of an edge

in the snapshots count(e).

• HAGGLE [CHC+07] is a human-contact network where nodes represent persons and an edge

between two persons indicate that there was a contact between them. The contacts were recorded
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by portable wireless devices that logged the MAC address of all the visible devices every 120

seconds, and then their timestamps were aggregated to form 90 network snapshots. This net-

work was used to study the frequency and the duration of the human contacts with the goal of

developing opportunistic forwarding algorithms.

• TWITTER [LGG18] is a hashtag co-occurrence network created using tweets collected from

2011 to 2016 related to the topics of gun control, abortion, and Obamacare. The tweets were

restricted to users who tweeted about all three topics in this time span. We pruned hashtags by

retaining only those with tf-idf value above 0.8 and created an edge for each pair of unpruned

hashtags appearing together in at least one tweet. By using a one-day granularity level we

ended up with 2716 snapshots. Finally we extracted four samples of increasing size, denoted

as TWITTER-S, TWITTER-M, and TWITTER-L, by limiting the set of nodes to the first 2, 8, and

12, highest-degree nodes, respectively, and keeping all the out-going edges and their destination

nodes.

• MOBILE [Ita15] is a telecommunication network created using Call Detail Records collected

from 2013-12-30 to 2013-12-31 and indicating calls made between Telecom Italia mobile users

within a two-day period. The calls were spatially aggregated using a regular grid overlaid on the

territory, to obtain a set of different areas, which constitute the nodes of our network. The edges

indicate interactions between the areas. Each edge is associated with a timestamp indicating

an interval start time, and the number of calls recorded in that interval. We built our dynamic

networks MOBILE-S, MOBILE-M, and MOBILE-L by aggregating the edges by hour, computing

the average strength for each pair of connected areas, retaining the edges with strength above

the average, and finally extracting a connected component of size 42 K, 80 K, and 118 K respec-

tively. The correlation between two edges is then computed by our algorithm using the vectors

of strength values.

• GAUSSIAN-X-Y-Z are synthetic networks generated in Python using the gaussian random

partition graph generator [BGW03] in the NetworkX library 1. Given parameters n, s, v, pin ,

and pout , a Gaussian random partition graph is a connected graph obtained by partitioning the

set of n nodes into k groups each of size drawn from a normal distribution N (s, s/v), and then

adding intra-cluster edges with probability pin and inter-cluster edges with probability pout . We

created two sets of dynamic networks by setting s = 10, v = 20; and n = |V |, pin , and

pout as indicated in Table 4.2. For the first set of networks (top part of Table 4.2) we used a high
1https://networkx.github.io/documentation/stable/reference/generators.html

https://networkx.github.io/documentation/stable/reference/generators.html
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deg(G) deg(Gi) count(e)
dataset |V | |E| |T | min/avg/max min/avg/max min/avg/max
HAGGLE 274 2K 90 1/15.5/101 1/5.2/19.7 1/5.4/51
TWITTER-S 767 2K 2K 1/6.2/627 1/3/5.6 26/121.1/1853
TWITTER-M 1.2K 7K 2K 1/12.1/641 1/3.2/7.4 26/86.4/1853
TWITTER-L 1.3K 10K 2K 1/15.2/776 1/3.3/7.9 19/68.6/1853
MOBILE-S 5K 42K 48 1/15.3/4415 1.8/4.9/7.1 1/3.8/25
MOBILE-M 5K 80K 48 1/28.6/4418 1.7/6.4/10.6 1/3.6/25
MOBILE-L 5K 118K 48 1/41.4/4421 1.8/7.5/12.9 1/3.6/25

Table 4.1: Real datasets.

deg(G) deg(Gi) count(e)
dataset |V | |E| |T | pin pout min/avg/max min/avg/max min/avg/max

GAUSSIAN-1-7-1 100 1059 100 0.7 0.1 9/21.1/35 9.7/10.6/11.2 35/50/67
3.37/10.32/17.14 38/48.2/64

GAUSSIAN-2-7-1 200 3029 100 0.7 0.1 20/30.2/45 14.5/15.1/16 33/50.1/66
9.8/15.1/19.6 33/50.1/68

GAUSSIAN-3-7-1 300 6070 100 0.7 0.1 26/40.4/54 19.5/20.2/20.8 30/50/69
16.3/20.3/23.4 30/50.3/68

GAUSSIAN-1-7-3 100 1825 100 0.7 0.3 24/36.5/46 17.4/18.2/19.1 33/50/67
12.5/18.2/23.1 34/49.9/66

GAUSSIAN-2-7-3 200 6828 100 0.7 0.3 52/68.2/84 33.1/34/35.1 32/49.9/71
28.4/33.8/39.7 30/49.6/68

GAUSSIAN-3-7-3 300 14723 100 0.7 0.3 77/98.1/124 48/49/50 29/49.9/69
44.4/48.9/53.1 31/49.8/69

GAUSSIAN-1-3-2 100 1113 100 0.3 0.2 10/22.2/37 8.18/11/14.24 33/49.76/63
GAUSSIAN-5-3-2 500 25450 100 0.3 0.2 74/101.8/132 49/50.8/52.9 31/49.9/69
GAUSSIAN-10-3-2 1000 100700 100 0.3 0.2 160/201.4/238 99.3/100.6/102 28/49.9/74

Table 4.2: Synthetic datasets.

intra-cluster probability, with the goal of obtaining densely connected groups of edges that could

serve as ground-truth; and two inter-cluster probabilities, with the goal of testing the accuracy of

the algorithm under different levels of noise in the data. Moreover, we generated two different

lists of existence strings for their edges, such that the first list associates strings highly correlated

to edges in the same dense group, while the second list assigns mutually independent strings.

The reason behind these two lists is that we wanted to test the correctness of our algorithm in

discovering all the dense groups in the setting where their edges are correlated, and in returning

no group when the edges are not correlated, even though it is highly dense. For each of these

dynamic networks, Table 4.2 reports the statistics deg(Gi) and count(e) for both the list of

correlated existence strings (top rule) and the list of independent strings (bottom rule). On the

other hand, the purpose of the second set of networks (bottom part of Table 4.2) is to test the

scalability of our framework in larger and sparser networks.
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CIFORAGER EXCODE
dataset Fm Fa time (m) Fm Fa time (s)

GAUSSIAN-1-7-1 0 (0.073) 0.026 (18.6) 0.22 (0.98) 1 (0.99) 1 (1.14) 0.71
GAUSSIAN-2-7-1 0 (0.033) 0.012 (365) 3.94 (0.00) 1 (0.95) 1 (2.22) 1.57
GAUSSIAN-3-7-1 0 (-) 0.007 (-) 44.00 (0.98) 1 (0.99) 1 (8.03) 4.47
GAUSSIAN-1-7-3 0 (0.021) 0.009 (78.3) 0.88 (0.98) 1 (0.99) 1 (1.18) 0.91
GAUSSIAN-2-7-3 0 (-) 0.003 (-) 332.00 (0.97) 1 (0.99) 1 (10.1) 5.52
GAUSSIAN-3-7-3 - (-) - (-) - (0.98) 1 (0.99) 1 (50.9) 23.40

Table 4.3: Fm, Fa, and running time of CIFORAGER and EXCODE in GAUSSIAN-X-7-Y using
default parameters. Worst scores and corresponding running times are in brackets.

4.4.2 Experimental Setup

We implemented our algorithms in Java 1.8, and run the experiments on a 24 Cores (2.40 GHz)

Intel Xeon E5-2440 with 188Gb RAM with Linux 3.13, limiting the amount of memory avail-

able to 150Gb. In addition, we implemented a Java version of CIFORAGER, which is the ap-

proach most related to our work, though it computes the edge similarities using the Euclidean

distance instead of a correlation measure. This approach divides the sequence of snapshots into a

sequence of overlapping windows of sizewl and overlapwi, and then performs a multi-objective

clustering of the graph for each window. The multi-objective clustering is implemented by first

clustering the edges using the edge similarity measure, and then clustering the groups found in

the first step using a spatial distance. Finally, the regions found in the second step are merged to

obtain regions that span multiple windows.

4.4.3 Effectiveness of the Exact Solution

We tested the effectiveness of our exact algorithm in detecting the actual dense groups of cor-

related edges in the synthetic networks GAUSSIAN-X-7-1 and GAUSSIAN-X-7-3, when their

edges are correlated. To this aim, we set the correlation threshold σ to the high value 0.8; the

density threshold δ equal to the minimum average degree among the actual dense groups, namely

2; and the maximum size sM to ∞ to ensure we do not miss any dense group. We measured

the accuracy of the algorithm for a network N in terms of the Jaccard similarity between the

groups of edges discovered S and the dense groups in N , which constitute our ground-truth G.

In particular, for each group H ∈ S , we computed the Jaccard similarity with its closest dense

group in G, and aggregate those values to obtain the average and minimum precision Pa and

Pm:
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Pa =
1

|S|
∑
H∈S

max
J∈G

JACCARD(H,J) Pm = min
H∈S

max
J∈G

JACCARD(H,J)

Then, for each dense group J ∈ G, we computed the Jaccard similarity with its closest group in

S, and aggregated those values to obtain the average and minimum recall Ra and Rm:

Ra =
1

|G|
∑
J∈G

max
H∈S

JACCARD(H,J) Rm = min
J∈G

max
H∈S

JACCARD(H,J)

Finally, we calculated the average and minimum balanced F-score, asFa = 2(Pa·Ra)/(Pa+Ra)

and Fm = 2(Pm ·Rm)(Pm+Rm). As shown in Table 4.3, for each synthetic network EXCODE

obtained both Fa = 1 and Fm = 1, meaning that the algorithm correctly identified all the dense

groups despite the extra edges added between the groups in the networks. We achieved lower

scores only when using correlation thresholds σ ≤ 0.2 for the smallest network, and σ ≤ 0.3

for the others. In these particular cases, since the existence strings of the edges were generated

at random, it is more likely that some inter-group edges have correlation greater than σ with

the edges in the group to which they are attached, and therefore the algorithm discovers sets of

edges that are supersets of the actual dense groups. Nonetheless, the Fa score is always greater

than 0.94, while the Fm score is lower than 0.97 only for network GAUSSIAN-2-7-1.

In the experiments where we associated mutually independent existence strings to the edges,

we correctly returned none of the edge groups present in the networks, even though we used

a threshold δ lower than the minimum density among those groups. Given the nature of these

strings, it is unlikely that all the pairs of edges within a group are highly correlated, meaning

that none of the dense groups of edges form a correlated group of edges.

Finally, we tested also the ability of CIFORAGER to detect the dense regions in the synthetic

networks. We run the code with the default parameters indicated in the paper [CBLH12], i.e.,

wl = 10, wi = 1, clustering similarity threshold 0.25, and region similarity threshold 0.2. The

goal of these experiments is to compare the results of CIFORAGER with those of EXCODE, and

hence prove that our work is more effective in identifying the actual dense regions of correlation.

Table 4.3 shows the minimum and average F score achieved by the two approaches, as well

as their running times. For EXCODE, it reports both the best and worst (in brackets) score

obtained using the settings explained above. For CIFORAGER, it illustrates the scores achieved

using wl = 10 and wl = 100 (in brackets). The symbol − indicates that the algorithm was
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Figure 4.1: Running time of EXCODE and EXCODE approximate in MOBILE-M (a) and Fa

score (b), varying δ, and using r = 3, h = 3, σ = 0.9, ρka (AVG) and ρkm (MIN).

not able to terminate within 2 days. Since the output of CIFORAGER contains also edges that

are not part of any dense group, the average and minimum precisions Pa and Pm are always

low, and, as a consequence, the Fa and Fm are always lower than those of EXCODE. We

note that, since the spatial distances are computed in the summary graph created by collapsing

the snapshots of the window, the F scores are worse when using wl = 100. We recall that

CIFORAGER creates a partitioning of the input graph, meaning that, especially when the edges

have low temporal similarity, the size of its output can be very large and many of the regions

discovered are very small. This situation happens also when using larger clustering similarity

thresholds, as the algorithm aggregates a lower number of edges in the same cluster, and hence

creates a larger number of small-sized clusters of edges. As an example, in GAUSSIAN-1-7-1

using wl = 10, it found 372 regions of size 1, 123 of size 2, while the average and maximum

size of a region are 122.8 and 216, respectively. Similarly, in GAUSSIAN-1-7-3, 1260 of the

2699 regions discovered are size-1 regions. Similar results were found using wl = 100.

Regarding the performance, the most expensive task is the computation of the temporal dis-

tances, and since this operation is performed for almost each pair of edges and for each window,

the running time increases with both the network and the window size. With window size

wl = 10, the algorithm terminated in 18 minutes in GAUSSIAN-1-7-1, and in 1.3 hours in

GAUSSIAN-1-7-3. The time required to process each window was roughly the same, and hence,

with wl = 100 it terminated in 13.7 and 53.31 seconds, respectively. In contrast, our algorithm

was able to terminate in less than a minute with every configuration and network tested.

Since these experiments prove that CIFORAGER is not able to solve DICORDIS, we do not

present further experiments on its performance in the following paragraphs.
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Figure 4.2: Tuning of the min-wise hashing parameters r (HR) and h (HASH FUNCTIONS)
running EXCODE approximate in TWITTER-L.

4.4.4 Effectiveness of the Approximate Solution

Our approximate algorithm trades accuracy for performance by approximating the set of σ-

correlated edges. As described in Section 4.3, the approximate set is obtained by the min-wise

hashing technique with parameters r and h. The parameter r indicates the number of repetitions,

so larger values of r increase the quality of the result, at the cost of additional computation. For

the number of hash functions h, larger numbers generate more informative hash codes, meaning

that the algorithm will cluster the edges into smaller groups. As the number of comparisons

decreases, the running time decreases as well.

We tested different combinations of (r, h), starting from h = r = 3 and increasing their value

up to h = r = 15, and counted the number of σ-correlated edges discovered. Figure 4.2 shows

that after a period of decrease, the number of correlated pairs reached a plateau at h = 9, thus

prompting us to use combinations of small values for both r and h.

4.4.5 Efficiency of the Approximate Solution

Figure 4.1 shows the performance and running time of EXCODE approximate to find the (0.9)-

correlated δ-dense subgraphs in the MOBILE-M network, using both ρka and ρkm, and varying

δ. As we can see, the approximate solution is one order of magnitude faster than the exact

algorithm, and yet achieves a Fa score of at least 0.8 for the ρka case, and 0.77 for the ρkm. We

observed a similar behavior also in the other networks. As an example, in the TWITTER samples

we obtained the highest Fa score at high density values, while a minimum of 0.63 at low density

values.



Dense Correlated Subgraph Mining 96

0

200

400

600

800

1000

1200

S M L

TI
M

E 
(s

)

NETWORK SIZE

twitter

AVG
MIN

0

2000

4000

6000

8000

10000

12000

14000

S M L

TI
M

E 
(s

)

NETWORK SIZE

mobile

AVG
MIN

a) b)

Figure 4.3: Scalability of EXCODE in TWITTER with σ = 0.7 and δ = 2.6 (a), and in MOBILE
with σ = 0.9 and δ = 4.1 (b), using both ρka and ρkm.

4.4.6 Scalability

We tested the scalability of EXCODE using samples of increasing size, extracted from both the

TWITTER and the MOBILE network. In the TWITTER-X samples we set σ = 0.7 and δ = 2.6,

while in the MOBILE-X samples we used σ = 0.9 and δ = 4.1. Figure 4.3 shows that the

running time increases exponentially for both ρka and ρkm in the MOBILE-X samples (b), while

it increases slightly slower for ρkm in the TWITTER-X samples. This exponential growth is due

to the NP-complete nature of the candidate generation task, which requires the enumeration

of the maximal cliques in the correlation graph. Nonetheless, these cliques can be stored and

used for all the experiments where σ is kept fixed, hence allowing a significant speed up in

the performance when the user is interested in examining different combinations of the other

parameters. We also note that the different behavior of ρkm in the TWITTER-X samples is mainly

due to the sparsity of the snapshots in TWITTER and the early pruning strategy in Algorithm 11

line 10 that discard a candidate group as soon as it finds a snapshot in which it is not dense.

Finally, we mention that, while EXCODE terminated in under 12 minutes in the TWITTER-M

sample, CIFORAGER took 2.6 minutes per window (for a total of 89h using wl = 10) to produce

12296 results.

4.4.7 System Parameters

The system parameters are the density threshold δ, the correlation threshold σ, and the edges-

per-snapshot threshold k. Setting their value can be a hard task, especially if the user is exploring

an unfamiliar dataset and thus does not know what she can expect from it. A suitable value for
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Figure 4.4: Running time of EXCODE in the synthetic networks GAUSSIAN-X-3-2 with δ =
2.5 and in the TWITTER-X samples with δ = 2.6, using ρkm, varying σ.
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Figure 4.5: Running time of EXCODE (a) and average subgraph size (b) with δ = 3, σ = 0.7
in the TWITTER-X samples, and δ = 4.7, σ = 0.9 in MOBILE-M, using ρkm, varying k.

δ can be discovered by initializing its value to the maximum degree over the snapshots of the

network and decreasing it until the size of the result and/or the size of the subgraphs in the

result set meet the user’s demands. Indeed, the minimum degree in a snapshot is an upper-

bound on the minimum degree of a subgraph in the snapshot, and thus on its ρm and ρa density.

The user can benefit from this strategy as it allows to discover the tightest groups first, which

can be considered the most interesting. Regarding the performance of EXCODE at different

values of δ, note that thanks to the size threshold sM that limits the candidates to explore, δ

affects significantly the running time only at very low values close to 2, and in particular, in the

case of sparse snapshots. In fact, in these cases Procedure EXTRACTDENSE must generate a

larger number of candidate subsets before finding one that is dense or reaching the terminating

condition.

Setting a value for σ can be much harder, as the probability of finding σ-correlated groups of

edges in a graph depends on the edge distribution over the snapshots, which is usually unknown.
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Our strategy consists in starting with a high value and decreasing it until the result set is not

empty. The main advantage of such a technique is that the first subgraphs found are surely

the most significant. In addition, since the number of correlated pairs is monotonically non-

decreasing with the decrease of σ, the running time at lower thresholds is longer than that at

higher thresholds. Therefore, starting the search at higher thresholds allows to set a lower bound

on the complexity of the first task. As an example, Figure 4.4 shows that for large networks, the

running time increases exponentially with the decrease of σ, as the number of candidate edge

pairs isO(|E|2) and thus the size of the correlation graph isO(|E|2). We note that the algorithm

was not able to terminate within 24 hours, when running on the largest synthetic dataset with

σ = 0.2, as the number of candidate edge pairs was in the order of 10 millions. We obtained

similar results also in the case of ρka.

Finally, the parameter k affects the computation of the average and minimum density of a sub-

graph H , as only the average degree values computed in snapshots where at least k edges of

H are present, are considered in ρka(H) and ρkm(H). In the snapshots where less than k edges

exist, the average degree is lower than that in the other snapshots, and therefore higher values

of k leads to higher values of ρka and ρkm. However, setting the value of k too high can be too

restrictive in some cases, because the algorithm will discard all the candidates whose edges do

not appear in groups of k, which, however, can be dense correlated subgraphs for some val-

ues of δ and σ. To avoid missing any highly dense but rare subgraph, in our experiments we

always used a threshold greater than 0, and to avoid discarding any interesting subgraph, we

always started our exploration with k = 1, and then increased its value if the algorithm was not

able to find any result. This was the case, as illustrated in Figure 4.5, when we used ρkm in the

TWITTER samples. The TWITTER network is characterized by highly sparse snapshots, and thus

the minimum density over all the snapshots is 0 for most of the candidates. By increasing k,

we were able to discover an increasing number of results for all the networks. As an example,

with k = 1, δ = 3, and σ = 0.7, we discovered no dense correlated group of edges, while

with k = 5, in TWITTER-L we found as much as 50 groups. We note that, due to the reasons

explained above, also the average size of the results increased with k, with the only exception

of TWITTER-S, which is too small to contain large dense groups of correlated edges.
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ρka
Red(S) Rps(S, C) |S|/|C|

δ 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

3.7 0.019 0.214 0.444 0.693 0.831 0.893 0.0005 0.0015 0.0110
3.9 0.020 0.192 0.432 0.690 0.802 0.894 0.0059 0.0138 0.0909
4.1 0.000 0.218 0.370 0.750 0.925 0.962 0.0168 0.0420 0.1764

Table 4.4: Redundancy, representativeness, and size ratio of the result set in HAGGLE, varying
ε and δ, using ρka and σ = 0.6.
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Figure 4.6: Running time of EXCODE in HAGGLE with σ = 0.6 and δ = 3.7 (a), and in
MOBILE-M (b) with σ = 0.9 andδ = 4.1, varying smax, and using both ρka and ρkm.

4.4.8 Application-specific Parameters

A major challenge in enumeration problems is the possible large set of solutions that satisfy the

desired specifications. To avoid overwhelming the end user with too many results to analyze, we

introduced in our problem formulation the parameter ε, which controls the level of redundancy

and representativeness of the result set S computed by EXCODE. We calculate the redundancy

of S (Red(S)) in terms of the average pairwise Jaccard similarity between its elements, and

the representativeness of S with respect to the complete set of solutions C (Rps(S, C)) as the

percentage of edges in C that are present in S. Table 4.4 shows the values calculated for the

network HAGGLE using ρka, and varying both ε and δ. We do not report the values for the density

measure ρkm, as they are consistent to those for ρka. It is interesting to notice that even using large

values of ε, the size of S is less than one tenth the size of the complete set, which is 5060 at

its highest value, and yet the representativeness of S almost reaches the best score. In addition,

since an increase in the density threshold naturally leads to a decrease in the number of qualified

subgraphs, the redundancy score and the size of the complete set decrease as well, meaning that

the relative redundancy and the relative size of S get higher values. Finally, we note that the

redundancy score does not follow a clear pattern, taking low values both at lower densities and
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at higher density. The main reason is that higher density thresholds generate less solutions that

tend to be far apart in the network, while at lower thresholds, the union of small dense groups

of edges close in the network is likely to form a dense subgraphs, which is the only solution

returned due to the maximality constraint.

Another application-specific parameter that can be set by the users is sM , which limits the

candidate groups of edges that are processed by EXCODE to those having size smaller than sM .

As a consequence, low values of sM can significantly prune the subgraph search space, hence

boosting the performance of the algorithm. Figure 4.6 shows that the running time increases

almost exponentially for both the smaller network HAGGLE (a) and the larger MOBILE-M (b),

and for both density measures ρka (AVG) and ρkm (MIN). This result proves the importance of a

proper tuning of this parameter to avoid incurring in a degradation of performance.

4.5 Displaying the Regions of Correlation

In this section, we present a visualization tool, called EXCODE-VIZ, that runs on top of the

EXCODE framework and provides an easy-to-understand user interface. Its aim is twofold.

First, it gives the users the possibility of characterizing, by means of a detailed configuration

panel, the dense correlated subgraphs to extract from the input network, so that they better

match their expectations. Secondly, it allows the users to visualize, by means of an interactive

panel, where those subgraphs are located, how strong they are, and how they are related with

each other. In particular, it facilitates the analysis of the network and the events happening in it,

by giving the users the possibility of investigating how the regions behave over time, how their

density changes, and in which snapshots they are active.

4.5.1 Applications

This tool is directed at any data practitioner who needs a tool to visualize and interact with large

dynamic networks, and would like to understand how the network evolves, or more specifically,

identify unexpected and significant events happening in the network. It is also interesting for

any data engineer who needs an effective tool to detect correlated anomalies in the network

under her supervision, and any data researcher who wants to understand the challenges behind

understanding how a given dynamic network behaves over time, and how its changes are related

to each other.
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Figure 4.7: Dataset selection.

4.5.2 Scenario

To showcase the unique features and capabilities of EXCODE-VIZ, we simulate a practical sce-

nario. The simulation starts at the configuration screen (Figure 4.7), where the user can select the

dataset and configure the parameters. The first step is thus to load the dataset and the mapping

file containing the node labels. For this scenario, we created a dynamic network from the Border

Gateway Protocol (BGP) Internet Routing topology, modeling the Autonomous Systems (ASs)

on the Internet as nodes, and the routing paths in the PATH entries of the AS routing tables as

edges between ASs. We considered the routing tables collected by the RouteViews project2 from

August 29 to August 31. In these days, Hurricane Katrina hit Florida and Louisiana, causing

major connectivity failures, and hence changes in the BGP topology network.

By clicking the LOAD button, the dataset is uploaded to the server, and a visualization of its main

characteristics is presented to the users (Figure 4.8). Two tables show the minimum, average,

and maximum node degree in the union graph created by joining the snapshots of the network;

and the minimum, average, and maximum node degree in a snapshot. On the other hand, the

four charts display the number of edges per snapshot, the degree distribution, and the edge

distribution.
2http://www.routeviews.org

http://www.routeviews.org
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Figure 4.8: Dataset statistics.

The insights provided by the charts, together with the information included in the configuration

card shown in Figure 4.7, can guide the users towards configuring the parameters of the system

according to their desires. These parameters involve desired levels of density, correlation, size,

activity, and redundancy in the results. The question marks on the left of the parameter names

explain the role of the parameters and how their values affect the output, while the sliders on the

right indicate what values the parameters can take, and hence they let the users select appropriate

values only.

Once the parameters are configured, we can save the configuration for later use by clicking the

SAVE button, and then, we can execute the mining algorithm by clicking the EXECUTE button.

Once the results are available, an interactive panel appears in the result screen (Figure 4.9).

This panel shows the union graph with the dense groups of correlated edges highlighted using

different colors. As indicated in the legend in the bottom right corner, denser subgraphs are

colored in darker colors, while nodes belonging to multiple subgraphs are indicated in black,

and nodes that are not part of any dense subgraph are in white. The edges in each group are

routing paths that changed in a similar way over time, and that were topologically close in the

snapshots where the group was active, and therefore they are likely to represent an instability

region originated from the failure of the same router during the time of the landfall of Hurricane

Katrina.
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Figure 4.9: Dense correlated subgraphs.

Figure 4.10: Exploration of a dense subgraph.

The users can interact with the graph to better understand its structure. For example, by hovering

over a node, they can see to which subgraphs the node belongs, and by clicking on it they can

select that or those subgraphs. In addition, they can drag the nodes, and zoom in and out of the

graph. Further information on the dense subgraphs is provided in a separate hidden panel that

can be opened by clicking the dotted button. This panel includes a list of all the dense subgraphs,

with the ids of all the nodes and edges in each of them, so that the users can understand where

the regions of correlation are located in the network, as well as how they are related with each

other.
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Finally, the users can explore and analyze a dense subgraph in isolation, by selecting it in the

main panel and clicking the EXAMINE SUBGRAPH button. A separate panel (Figure 4.10)

shows how the subgraph changes over time, how many edges appears in each snapshot where

the subgraph is active, and the average degree. Different colors are used to highlight the different

types of nodes, according to the mapping file uploaded with the dataset. For our example, the

colors indicate the regional Internet address registries for the five geographical areas: Asia-

pacific, North America, South America, Europe, and Africa. Thanks to this tool, a network

analyst can see which countries were affected by the disaster and which issues were caused by

the same root cause, sparing him the trouble of examining each node in the network.



Chapter 5

Entity Resolution in Temporal Databases

In this chapter we introduce the novel problem of detecting which records in a heterogeneous

temporal database model the same real-world entity. To this aim, we define a similarity measure

between heterogeneous temporal records, which can detect matching records under the assump-

tion that two records are similar if they are characterized by similar attribute values over time.

Then, we present an exact and an approximate algorithm that adopt this measure to first detect

pairs of matching records, and then generate maximal groups of matching records.

5.1 Contributions

The contributions of this chapter can be summarized as follows:

• We formally define the notion of temporal record in the context of heterogeneous data,

and introduce the novel problem of entity resolution in heterogeneous temporal databases,

as the task of detecting which temporal records in the database refer to the same real-world

entity (Section 5.2).

• We propose a time-aware schema-agnostic similarity measure to assess the similarity be-

tween temporal records characterized by different sets of attributes (Section 5.3). To

overcome such heterogeneity, this measure compares the attribute values of each instance

of the two temporal records, independently of the corresponding attribute names.

• We present an exact solution to cluster the records into groups with intra-class similarity

greater than a minimum threshold, which compares each pair of records and extracts all

105
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the maximal cliques from the similarity graph built using the pairs of similar records

(Section 5.4).

• Given the hardness of the problem, we propose an approximate solution based on a time-

aware schema-agnostic meta-blocking algorithm, which gains efficiency by reducing the

number comparisons, yet it can provide good-quality results (Section 5.5).

5.2 Problem Formulation

Let consider a finite set of real-world entities E not known a-priori, where each entity can be

described by a set of attributes taken from a finite set of attributes A and values taken from a

finite domain of values Σ. We consider the setting where both the set of attributes and their

values can change over time, and in particular, we consider a collection of temporal records

describing an entity in E over time. Each temporal record is identified by an unique id, and the

status of the record at a given time is called record instance.

Definition 5.1 (Record Instance). Let Σ be a finite domain of values, A a finite domain of

attributes A, O a finite domain of record ids, T a finite domain of time instances, and φ :

A×O×T → Σ∪ {⊥} a function assigning a value in Σ to attributes in A, for records with id

inO, at time instances in T . The instance of record i ∈ O at time t ∈ T is a tuple rti = 〈i, t,Φt
i〉

with Φt
i = {(a, φ(a, i, t)) | a ∈ A ∧ φ(a, i, t) 6= ⊥}.

Given that φ(a, i, t) = ⊥ indicates that record i does not possess attribute a at time t, Φt
i is the

set of all the attribute-value pairs that record i has at time t. If record i does not exist at time t,

we set Φt
i = ∅. In addition, we denote as Φt

i�v the set of attribute values of record i at time t.

Then, we define a temporal record as an ordered sequence of record instances with the same id,

i.e., ri = 〈rti1i , . . . , r
tin
i 〉, such that j < k → tj < tk and ∀rtji , Φ

tj
i 6= ∅. When there is no

ambiguity, we call a temporal record a record for simplicity. We call temporal database a set of

temporal records:

Definition 5.2 (Temporal Database). A temporal database D is a set of temporal records, i.e.,

D = {ri | i ∈ O}. We call snapshot of D at time t, the set of instances of all the records that

exist at time t, i.e., Dt = {rti | ∃ri ∈ D . rti ∈ ri}.

In this work, we consider the task of entity resolution in heterogeneous temporal databases,

which is the problem of detecting which records in a heterogeneous temporal database D refer
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to the same real-world entity in E . Let indicate the relationship between a record r and the entity

e it models by r 7→ e, i.e., ∀r ∈ D , ∃e ∈ E . r 7→ e. Then, we formally define our problem as

follows.

Problem 3 (Temporal ER). Given a finite set of entities E and a temporal database D, group

the records in D into a set of clusters {E1, . . . , Ek}, such that every pair of records ri, rj in the

same cluster model the same entity, and each pair of records in different clusters model different

entities, i.e.,

• ∀l ∈ [1, k] , ∀ri, rj ∈ El , ∃e ∈ E . ri 7→ e ∧ rj 7→ e;

• ∀l 6= s ∈ [1, k] , ∀ri ∈ El, rj ∈ Es , ∃e, e′ ∈ E . ri 7→ e ∧ rj 7→ e′ ∧ e 6= e′.

We assume that records modeling the same real-world entity are characterized by similar at-

tributes values, and hence, given a similarity measure for temporal records sim and a temporal

similarity threshold τ , we conclude that two temporal records ri and rj model the same entity

e ∈ E if sim (ri, rj) ≥ τ . As a result, Problem 3 can be restated as the problem of finding a set

of clusters {E1, . . . , Ek} such that ∀l ∈ [1, k] , ∀ri, rj ∈ El , sim (ri, rj) ≥ τ .

In the next section we introduce a novel function to measure the similarity between temporal

records, which can be effectively used to solve Problem 3.

5.3 Similarity Between Temporal Records

We design our similarity measure based on the intuition that two temporal records are more

likely to refer to the same real-world entity if they frequently display similar attribute values,

meaning that a sufficient number of instances of the two records match. Given an attribute

similarity threshold ε, we say that two record instances rti and rtj match, if the Jaccard similarity

JS between the corresponding sets of attribute-value pairs is greater than ε, i.e., JS
(

Φt
i,Φ

t
j

)
≥

ε. We recall that the temporal records inD come from heterogeneous data sources, and therefore

are characterized by different sets of attributes, as well as attributes with different names. To

overcome such heterogeneity, existing works adopt either a schema matching technique to map

the records to a unified schema [MZ98], or compare the values in the records without regard to

the attribute to which they refer. The schema-based approaches achieve better performance at

the cost of information loss [LWLG19], while the schema-agnostic approaches are less efficient
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Algorithm 13 HETERE

Input: Temporal database D
Input: Set of time instances T
Input: Similarity thresholds: Attribute ε, Temporal τ
Output: Set of clusters C

1: P ← EXTRACTMATCHES(D, T , ε, τ)
2: G← BUILDSIMILARITYGRAPH(P)
3: return FINDMAXIMALCLIQUES(G)

but more effective. We follow the second line of work, and hence compute JS by considering

only the attribute values. Furthermore, to account for misspelling and abbreviations, instead of

comparing the attribute values of the two records, we transform each value into a set of tokens of

size n, and compare the two collections of distinct tokens. Let TKS ti be the set of all the distinct

tokens extracted from the attribute values in the set Φt
i�v of the instance rti . Then, JS

(
Φt
i,Φ

t
j

)
is defined as the number of tokens that rti and rtj have in common, divided by the total number

of tokens, i.e.,

JS
(
Φt
i,Φ

t
j

)
=

∣∣TKS ti ∩ TKS tj
∣∣∣∣TKS ti ∪ TKS tj
∣∣

If both TKS ti and TKS tj are empty, JS
(

Φt
i,Φ

t
j

)
is set to be 1.

We define the similarity sim (ri, rj) between two temporal records ri and rj as the fraction of

times the corresponding instances match. Let T εi,j =
{
t
∣∣t ∈ T ∧ JS (Φt

i,Φ
t
j

)
≥ ε
}

be the set

of time instances in which ri and rj match. Then,

sim (ri, rj) =
∣∣T εi,j∣∣ / |T | (5.1)

Given a temporal similarity threshold τ , we say that ri and rj match, if sim (ri, rj) ≥ τ .

Equation 5.1 takes values in the range [0, 1], where 1 indicates that the two records match in all

the snapshots, and 0 that they never match. The more is the number of times in which the two

records match, the higher becomes their similarity value, even though the attribute values that

match are not the same in all the time instances.

5.4 Exact Solution

We first present our algorithm to solve Problem 3 exactly, called HETERE (Heterogeneous

Temporal Entity Resolution), and discuss the main challenges that an exact solution entails.
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Algorithm 14 EXTRACTMATCHES

Input: Set of recordsR
Input: Set of time instances T
Input: Similarity thresholds: Attribute ε, Temporal τ
Output: Set of matching records P

1: P ← ∅
2: for all ri ∈ R do
3: for all rj ∈ R do
4: evidence ← 0
5: for all t ∈ T do
6: if JS

(
Φt
i,Φ

t
j

)
≥ ε then

7: evidence ← evidence + 1

8: if evidence/ |T | ≥ τ then
9: P ← P ∪ {(ri, rj)}

10: return P

In the next section, we present an approximate algorithm that can scale to larger collections of

temporal records, while achieving good-quality results. Both algorithms rely on Equation 5.1 to

assess the similarity between temporal records.

The exact solution computes Equation 5.1 for each pair of temporal records ri, rj ∈ D, and then

clusters the records into groups such that the pairwise similarities between records in the same

group are all greater than the temporal similarity threshold τ . The main steps of HETERE are

outlined in Algorithm 13.

5.4.1 Find the Matching Pairs

In the first step, Algorithm 13 calls Algorithm 14 to extract the pairs of matching records from

D. This procedure iterates over all the pairs of records in D and incrementally calculates the

value
∣∣∣T εi,j∣∣∣ using the auxiliary variable evidence. This variable is set to 0 at the beginning of the

calculation, and is incremented by 1 every t ∈ T in which the record instances rti and rtj match

(lines 6-7). Once all the t ∈ T have been processed, variable evidence is divided by the total

number of time instances to obtain sim (ri, rj), and if ri and rj are found to be matching, the

pair (ri, rj) is inserted into the set P (lines 8-9).

5.4.1.1 Early Termination

We optimize the record matching process executed by Algorithm 14, by introducing an early

termination criterion based on the following proposition.



Dynamic Entities Identification 110

Proposition 5.3. Let t0, . . . , t|T | be the sequence of time instances in T , T εi,j�≤k be the restric-

tion of T εi,j to the time instances before tk, i.e., T εi,j�≤k =
{
tl
∣∣tl ∈ T ∧ l ≤ k ∧ JS (Φt

i,Φ
t
j

)
≥

ε
}

, and s(i, j, k) =
∣∣∣T εi,j�≤k∣∣∣. It holds that s(i, j, k) + (|T | − k) < τ |T | ⇒ sim (ri, rj) < τ .

Proof. By definition T εi,j�≤|T | = T εi,j , and each set T εi,j�≤k is a subset of the set T εi,j�≤k+1, with

the inclusion being strict only when JS
(

Φ
tk+1

i ,Φ
tk+1

j

)
≥ ε. In particular, JS

(
Φ
tk+1

i ,Φ
tk+1

j

)
≥ ε ⇒ T εi,j�≤k+1 = T εi,j�≤k ∪ {tk+1}. Therefore, the size function s(i, j, k) =

∣∣∣T εi,j�≤k∣∣∣ is

monotonically non-decreasing with k., i.e., s(i, j, k) ≤ s(i, j, k+ 1), and satisfies the inequality

s(i, j, k+1) ≤ s(i, j, k)+1. It follows that s(i, j, k+1) ≤ s(i, j, |T |) ≤ s(i, j, k)+(|T | − k),

and hence s(i, j, k) + (|T | − k) < τ |T | ⇒ s(i, j, |T |) =
∣∣∣T εi,j∣∣∣ < τ |T |.

Let t0, . . . , t|T | be the order in which the time instances in T are examined by Algorithm 14

for each pair of records (ri, rj). We observe that, at any time tk, the variable evidence holds

the value
∣∣∣T εi,j�≤k∣∣∣. Thanks to Proposition 5.3, the algorithm can thus stop processing new time

instances and discard the pair (ri, rj) when the condition evidence < τ |T | − (|T | − k) =

|T | (τ − 1)− k is met.

Similarly, we can terminate the execution of the for loop and retain the pair (ri, rj) as soon as

evidence/ |T | ≥ τ . Thus, the loop over the time instances can be modified as follows:

1: for all t ∈ T do
2: if JS

(
Φt
i,Φ

t
j

)
≥ ε then

3: evidence ← evidence + 1

4: if evidence < |T | (τ − 1)− k or evidence ≥ τ |T | then
5: break

5.4.2 Find the Matching Groups

To solve Problem 3, the algorithm needs to identify the groups of temporal records such that the

similarity between each pair of records in the same group is greater than τ . When the similarity

relationship is transitive, these groups can be easily obtained by merging all the pairs in P that

have one element in common, because sim(r1, r2) ≥ τ ∧ sim(r2, r3) ≥ τ ⇒ sim(r1, r3) ≥ τ .

However, using our measure sim , the transitive property is not satisfied. Consider, for example,

the set of time instances T = {t0, . . . , t5}, the attribute similarity threshold ε = 1, the temporal

similarity threshold τ = 1/2, and the three records r1, r2, and r3 in Figure 5.1. The red lines

in records r1 and r2 indicate that r1 and r2 are similar in the time instances t0, t1, and t2, i.e.,
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t0 t1 t2 t3 t4 t5
time

r1
r2
r3

Figure 5.1: Three temporal records r1, r2, and r3, where the matching instances of r1 and r2
are in red, and the matching instances of r2 and r3 are in green.

∀t ∈ [t0, t2] , JS
(
Φt

1,Φ
t
2

)
≥ ε. Similarly, the green lines in records r2 and r3 indicate that

r2 and r3 are similar in the time instances t3, t4, and t5, i.e., ∀t ∈ [t3, t5] , JS
(
Φt

2,Φ
t
3

)
≥ ε.

Therefore, sim(r1, r2) = 3/6 ≥ 1/2 and sim(r2, r3) = 3/6 ≥ 1/2. We can see that r3 is not

equal to r2 in t0, t1, and t2, and hence r3 does not match r1 in those time instances. Similarly,

r1 is not equal to r2 in t3, t4, and t5, and hence r1 does not match r3 in those time instances. As

a consequence sim(r1, r3) = 0 ≤ 1/2.

Our strategy to identify the groups of matching records consists of two phases: (i) we build

a similarity graph G by creating a node for each record and an edge for each pair of records

in P (Procedure BUILDSIMILARITYGRAPH), and (ii) we extract the maximal cliques from G

(Procedure FINDMAXIMALCLIQUES). A clique is a fully-connected set of nodes, and therefore

corresponds to a set of records with pairwise similarity greater than τ , which in turn is a group

of records describing the same real-world entity. To enumerate the maximal cliques in G we

use our implementation of the GP algorithm of Wang et al. [WCH+17], described in details and

illustrated in Algorithm 9 in Section 4.3.

5.4.3 Complexity

The computation of the similarity values between each pair of records takesO(|D|2 · |T | · |A|2),

as it requires to compare the attribute values of the records in each time instance in T and, in

the worst case, the records have all the attributes in the domain A. To construct the similarity

graph G, the algorithm needs to create an edge for each pair of records in P . In the worst

case, P contains every pair of records in D, and thus the complexity of this phase is O(|D|2).

Finally, the time complexity of the enumeration of the maximal cliques in G is O (|P| · κ(G)),

where κ(G) is the number of cliques in G and |P| = |D|2 in the worst case. The complexity of

Algorithm 13 is therefore O(|D|2 (|T | · |A|2 + κ(G)).
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Algorithm 15 A-HETERE

Input: Temporal database D
Input: Set of time instances T
Input: Thresholds: Attribute ε, Temporal τ
Input: Threshold: Size smax, Convergence c
Output: Set of clusters S

1: B ← ∅
2: TKS ← EXTRACTTOKENS(D)
3: for all tk ∈ TKS do
4: Btk ← ∅
5: for all ri ∈ D do
6: for all tk ∈ TKS i do
7: Btk ← Btk ∪ {ri}
8: for all tk ∈ TKS do
9: if |Btk| ≤ smax then

10: B ← B ∪ {Btk}
11: B′ ← RECONSTRUCTBLOCKS(B)
12: for all B ∈ B′ do
13: P ← P ∪ EXTRACTMATCHES(B, T , ε, τ)

14: G← BUILDSIMILARITYGRAPH(P)
15: return GRAPHCLUSTERING(G, c)

5.5 Approximate Solution

Given the quadratic complexity of the record matching step and the hardness of the enumera-

tion of the maximal cliques [WCH+17], Algorithm 13 becomes impractical for large dataset.

We therefore propose also an approximate solution, called A-HETERE, which improves the

efficiency of HETERE, without sacrificing much accuracy. This algorithm reduces the com-

plexity of the matching step by adopting a schema-agnostic time-aware approach based on meta-

blocking [PKPN14], which divides the records into blocks and compares only the records within

the same block. Then, it replaces the enumeration of the maximal cliques in the similarity graph

G with the easier task of detecting dense groups of similar nodes, which is accomplished by

applying a graph clustering algorithm for weighted graphs.

The pseudocode of A-HETERE is shown in Algorithm 15 and described in the following para-

graphs.
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5.5.1 Schema-agnostic time-aware meta-blocking

To improve the time complexity of Algorithm 14, algorithm A-HETERE reduces the number

of record comparisons by pruning pairs of records unlikely to be similar. To achieve this goal,

the algorithm exploits the attribute values of the records to generate blocks of records such that

records in the same block are more likely to be similar than those in different blocks.

The first step is the segmentation of the attribute values of all the records in D to create a set

of distinct tokens TKS (line 2). The algorithm applies a transformation function ψ to each

ri ∈ D to transform it into a collection of pairs, where the first element is a token of an attribute

value appearing in some set Φt
i�v of ri, and the second element is the set of time instances in

which that token is present. The function ψ is thus defined as ψ(ri) =
{

(tk,Ψ(i, tk))
∣∣tk ∈

TKS i ∧Ψ(i, tk) =
{
t|tk ∈ TKS ti

}}
, where TKS i is the set of all the distinct tokens extracted

from the attribute values in the sets Φ
ti1
i �v, . . . ,Φ

tin
i �v of ri.

The next step is the creation of a blockBtk for each distinct token tk ∈ TKS , which contains all

the records ri such that tk ∈ TKS i (lines 5-7). Based on the observation that blocks containing

a large percentage of records are likely associated to stopwords or other non-discriminative

attributes (e.g., the hometown in the Census database of a particular city), we keep and insert in

the collection B only the blocks with size smaller than the size threshold smax (lines 9-10).

The blocks retained may have a high degree of overlap, because the same record is placed in

multiple blocks, one for each of its tokens. Despite this redundancy has the benefit of reducing

the likelihood of missed matches, it comes at the cost of a larger number of record comparisons.

To gain efficiency with limited impact on the effectiveness, we reconstruct the collection of

blocks B to obtain a new set B′ involving fewer records per block. The reconstruction of B

is performed by Procedure RECONSTRUCTBLOCKS illustrated in Algorithm 16, and is divided

into two stages, i.e., the construction of a blocking graph, and the removal of some of its edges.

The goal of the first stage is to remove all the redundant record comparisons, while the second

stage aims to remove the less promising comparisons.

5.5.1.1 Blocking Graph

To construct the blocking graph, the algorithm creates a node vi for each record ri appearing in

B (lines 6-12), and an edge (vi, vj) for each pair of records ri and rj co-appearing in a block
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Algorithm 16 RECONSTRUCTBLOCKS

Input: A block collection B
Output: A restructured block collection B′

1: V ← ∅; E ← ∅; B′ ← ∅
2: U ← ∅; I ← ∅
3: for all Btk ∈ B do
4: for all ri ∈ Btk do
5: if vi /∈ V then
6: V ← V ∪ {vi}
7: U [i]← 1
8: else
9: U [i]← U [i] + 1

10: for all rj ∈ Btk do
11: if vj /∈ V then
12: V ← V ∪ {vj}
13: U [j]← 1
14: else
15: U [j]← U [j] + 1

16: if (vi, vj) /∈ E then
17: E ← E ∪ {(vi, vj)}
18: I[(i, j)]← 1

19: (vi, vj).w ← |Ψ(i,tk)∩Ψ(j,tk)|
|Ψ(i,tk)∪Ψ(j,tk)|

20: else
21: I[(i, j)]← I[(i, j)] + 1

22: (vi, vj).w ← (vi, vj).w + |Ψ(i,tk)∩Ψ(j,tk)|
|Ψ(i,tk)∪Ψ(j,tk)|

23: for all (vi, vj) ∈ E do
24: (vi, vj).w ← (vi,vj).w

(U [i]+U [j]−I[(i,j)]) log |E|
|N(vi)| log |E|

|N(vj)|

25: for all vi ∈ V do
26: avgW ← COMPUTELOCALTHRESHOLD(vi)
27: for all vj ∈ N(vi) do
28: if (vi, vj).w < avgW then
29: E ← E \ {(vi, vj)}
30: for all (vi, vj) ∈ E do
31: B′ ← B′ ∪ {(vi, vj)}
32: return B′

(line 17). Since each pair of records is connected by a single edge, all the redundant comparisons

between the two records are easily eliminated. Then, a weight is assigned to each edge, using

a novel weighting function ω : E 7→ R inspired by the EJS weighting scheme [PKPN14]. Let

TKS i∩j indicate the set of tokens that ri and rj have in common, and TKS i∪j the set of tokens

appearing in either ri or rj . We define the weight ω((vi, vj)) as the weighted Jaccard similarity

between the sets of tokens of ri and rj , multiplied by a term inspired from the IDF metric of

Information Retrieval, i.e.,
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ω((vi, vj)) =

∑
tk∈TKS i∩j

JACCARD(tk, i, j)

|TKS i∪j |
log

|E|
|N(vi)|

log
|E|
|N(vj)|

with JACCARD(tk, i, j) = |Ψ(i, tk) ∩Ψ(j, tk)| / |Ψ(i, tk) ∪Ψ(j, tk)|, and N(vi) denoting the

neighborhood of node vi.

The peculiarity of the weighting function ω is that it assigns larger weights to (i) pairs of records

that share more blocks, (ii) pairs of records that share tokens in more snapshots, and (iii) pairs

of records with fewer outgoing edges.

Each edge weight (vi, vj).w is incrementally calculated during the construction of the graph

(lines 16-24), with the help of the two auxiliary data structures U and I , which store the number

of appearances of each record in B and the number of co-appearances of each pair of records in

B, respectively. In fact |TKS i∪j | = (U [i] + U [j]− I[(i, j)]).

5.5.1.2 Edge Pruning

Assuming that a larger weight is an indicator of a higher similarity between the correspond-

ing records, we eliminate the less promising comparisons by adopting a node-centric pruning

strategy that retains, for each node vi, the edges with weight greater than the average weight in

the node neighborhood N(vi). Thus, for each node vi in the blocking graph, we compute the

average weight in the node neighborhood avgW (line 26), and then iterate over all its adjacent

nodes vj , removing all the edges (vi, vj) with weight below the threshold avgW (line 29).

The output of Algorithm 16 is a new collection of blocks B′ containing a block B′ for each

retained edge (line 31). These edges are the candidate pairs of records that need to be further

compared by Procedure EXTRACTMATCHES (lines 12-13). All the pairs (ri, rj) with similarity

sim(ri, rj) ≥ τ are inserted into P (line 13), and then used to create the edges of the similarity

graphG (line 14), each of which is weighted with the corresponding similarity value sim(ri, rj).

5.5.2 Graph Clustering

The final step of A-HETERE is the detection of dense groups of similar records via graph

clustering. We adopt the Markov Clustering (MCL) algorithm [EVDO02], thanks to its accuracy

and scalability. MCL finds clusters of nodes connected by large weights, by simulating random
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Algorithm 17 GRAPHCLUSTERING

Input: Graph G
Input: Convergence threshold c

1: M1 ← CREATESTOCHASTICMATRIX(G)
2: d← 2c
3: while d > c do
4: M2 ←M1 ∗M1

5: M1 ← Γ(M2)
6: d← ∆(M1,M2)

7: return EXTRACTCONNECTEDCOMPONENTS(M1)

walks through the graph. This simulation is performed by alternating an expansion and an

inflation phase, as illustrated in Algorithm 17. Expansion corresponds to performing random

walks of higher length, and is implemented by computing the power of the stochastic matrix

associated to the graph (line 4), which is obtained by normalizing the adjacency matrix of G

such that the sum of the elements in each column is 1 (line 1). Inflation, on the other hand, has

the effect of boosting the probabilities of intra-cluster walks while demoting inter-cluster walks,

and is achieved by computing the Hadamard power Γ of the matrix combined with a diagonal

scaling (line 5).

Iterating these two phases will eventually result in the separation of the graph represented by the

matrix M1 into several components. When this happens, further expansion or inflation phases

will not change M1 too much, and thus the difference between M1 and M2 is smaller than the

convergence threshold c. Since an equilibrium is reached, the algorithm terminates (line 3).

Each connected component in the graph associated with the final matrix M1 is interpreted as a

cluster, and thus is part of the final output of Algorithm 17, and hence of Algorithm 15.

5.5.3 Complexity

Algorithm 16 takes O(|V ||E|) = O(|D| |E|) to restructure the blocks, while the complexity

of MCL is O(|D|3). The total complexity of the approximate solution is therefore O(|D|3).

Nonetheless, experimental results show that, in general, MCL reaches an equilibrium after 3-10

iterations, and hence is actually much faster [EVDO02].
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5.5.4 Quality of the Approximate Solution

We measure the quality of the block collection B′ created by Algorithm 16 in terms of three

well-established measures [PKPN14], i.e., Pair Quality (PQ), Pair Completeness (PC), and

Reduction Ratio (RR). PQ indicates the percentage of records in the blocks in B′ that are

duplicates, and is defined as PQ(B′) = |Dup(B′)| / ||B′||, where |Dup(B′)| denotes the number

of duplicates in B′ and ||B′|| is the total number of comparisons entailed in the blocks in B′; PC

is the percentage of duplicates in D that co-appear in a block in B′, and is defined as PC(B′) =

|Dup(B′)| / |Dup(D)|; and RR is the percentage of comparisons saved by comparing only the

records within the blocks in B′ with respect to the comparisons entailed in a baseline block

collection Bbs, and is defined as RR(B′) = 1−||B′|| / ||Bbs||. All the three measures take value

in the range [0, 1], with higher values of PC and indicating higher effectiveness, and higher

values of PQ and RR indicating higher efficiency.

On the other hand, we measure the quality of the set of clusters S = {S1, . . . , Sm} created by

Algorithm 17 in terms of precision and recall with the respect to the ground-truth, which is, in

our case, the set of maximal cliques C = {C1, . . . , Ck} in G. Let TP (S) be the number of

records correctly placed in the same cluster, i.e.,

TP (S) =
k∑
i=1

argmax j∈[1,m]|Ci ∩ Sj |

and FP (S) be the number of records wrongly placed in the same cluster, i.e.,

FP (S) =
m∑
j=1

argmini∈[1,k]|Sj \ Ci|

The precision of S is calculated as Pr(S) = TP (S) / (TP (S) + FP (S)), while its recall

is Re(S) = TP (S)/ |D|. Then, the quality of S is defined as the balanced F-score: Q(S) =

2(Pr(S) · Re(S))/(Pr(S) + Re(S)). The measure Q takes value in the range [0, 1], with 1

denoting the best quality, and 0 the worst.





Chapter 6

Conclusions

In this thesis we motivated and described three novel pattern mining problems in highly hetero-

geneous and dynamic datasets, and presented efficient and effective solutions.

First, we considered the problem of mining relevant patterns in multi-weighted graphs. As

opposed to the previous approaches, which measure the importance of a pattern solely based

on its frequency in the graph, we recognized the need for a measure that takes into consider-

ation also the user preferences. We thus proposed a novel family of scoring functions, called

MNI-compatible functions, that assess the relevance of a pattern in terms of both the weights

on the edges of its appearances and its frequency. These functions allow the retrieval of per-

sonalized patterns, while retaining the advantages offered by the anti-monotone property, which

is a powerful mean to an effective and early pruning of the search space. Then, we analyzed

the capabilities and the limitations of four different functions from this family, by integrating

them into novel exact and approximate algorithms. Finally, we proved the effectiveness and

efficiency of the algorithms on real and synthetic datasets, and compared the performance of

the centralized and the distributed version of our approach using graphs with different sizes and

characteristics. We described in which cases we can benefit from distributing the computation,

and when a centralized solution is still to be preferred, proving that distributing graph pattern

mining algorithms in an efficient way is not straightforward.

Secondly, we tackled the problem of finding maximal dense correlated subgraphs in dynamic

networks. We proposed two measures to compute the density of a subgraph that changes over

time, and one measure to assess the temporal correlation of the subgraph edges. We developed

a generic framework that uses those measures to identify all the subgraphs satisfying given

119
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density and correlation thresholds. We extended this framework to implement the retrieval of

those subgraphs that have little redundant information, specified by low Jaccard similarity. We

exhibited a number of experimental results that illustrate the effectiveness of our approach in

detecting all maximal dense groups of correlated edges, compare its performance with its nearest

competitor, and prove its applicability to large real networks with different characteristics. Last

but not least, we provided an approximate solution that can run one order of magnitude faster,

and yet achieves good precision and recall.

Finally, we formally defined the notion of temporal record in the context of heterogeneous

data, and the task of detecting maximal groups of matching records in heterogeneous tempo-

ral databases. In contrast to existing solutions that either discard the temporal information of

the data, or assume a fixed set of attributes for each record, we designed a time-aware schema-

agnostic measure that computes the similarity between two heterogeneous temporal records in

terms of the similarity between their attribute values over time, independently of the correspond-

ing attribute names. We showed how this measure can be integrated into an exact algorithm that

enumerates all the maximal groups of pairwise matching records, under the assumption that two

records match if they display a sufficient level of similarity over time. Furthermore, we pre-

sented an approximate algorithm that overcomes the two main limitations of the exact solution,

by adopting a meta-blocking and a graph clustering algorithm, respectively. The optimizations

proposed can allow this algorithm to scale to datasets of larger size, without sacrificing much

accuracy.

6.1 Extensions and Open Problems

The discussions on the challenges involved in solving the pattern mining problems introduced in

this work, and the experimental results obtained in the evaluation of the approaches developed,

unveiled some possible directions for future studies.

Memory-efficient Distributed Score-based Pattern Mining. The main limitations of our dis-

tributed algorithm to solve score-based pattern mining in multi-weighted graphs are the high

memory requirement and large network cost inherent in the Arabesque framework and caused

by the huge number of pattern embeddings that the workers need to materialize and shuffle

in each superstep. For these reasons, at low frequencies the algorithm is likely to exceed the

available resources and fail to provide any result.
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Recently, several efforts have been devoted to the development of general-purpose distributed

graph mining systems that require less storage and machine-to-machine communications, and

thus are able to scale up to graphs of billions or even trillions of nodes and edges [PJR17, JKS18,

QZL+18, BR18, DTG+19]. Fractal [DTG+19], for example, is a flexible framework that sup-

ports various graph pattern mining applications via intuitive and expressive APIs. Thanks to

effective strategies to bound the memory consumption, balance the load, and speed up the enu-

meration of the pattern embeddings, this framework outperforms the existing distributed solu-

tions in almost every computation.

We will investigate if it is possible to use Fractal’s APIs to distribute our score-based pattern

mining algorithm in a more efficient way, hence enabling us to test it on graphs with much

larger amounts of edge weights, and opening the way for other interesting applications, such as

product recommendation using the entire Amazon co-purchase network.

Parallel Dense Correlated Subgraph Mining. Our exact solution to the dense correlated sub-

graph mining problem entail three costly operations, namely the enumeration of the pairs of

correlated edges, the enumeration of the maximal cliques of correlated edges, and the genera-

tion of the candidate subsets of dense edges. The first operation incurs a quadratic cost in the

number of edges of the graph, as it requires to test each pair of edges. We addressed this chal-

lenge in our approximate solution, which uses a min-hash strategy to retain and then compare

only the most promising pairs of edges.

The complexity of the second operation is bounded by the number of cliques in the graph created

using the pairs of correlated edges. Since at low values of the correlation threshold the size

of this graph tends to the size of the input graph, this operation can be prohibitive for some

applications or datasets. Therefore, our next goal is to tackle this challenge, and hence identify

optimal strategies to detect maximal groups of pairwise correlated edges. To this aim, the first

step will be analyzing existing solutions in pseudo-clique enumeration [ZHOT16, CFM+17] and

in parallel clique enumeration [WCH+17]. The second step will be investigating other possible

ways to combine the first two operations and solve them more efficiently and effectively.

Finally, in this thesis we optimized the third operation by adopting effective strategies to prune

the search space, and early termination conditions to stop the examination of a branch of can-

didates if no solution could be found among them. Since each branch of candidates can be

processed independently, this operation can greatly benefit from parallelization. Each worker

would need only a copy of the candidate subset of edges and their corresponding vectors of
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edge weights, and all the dense correlated subgraphs would be collected by the master at the

end of the computation of the workers. Then, the maximal groups would be extracted from this

collection. Therefore, another direction of future work will be studying how to distribute our

algorithm, while guaranteeing load-balancing and correctness of the results produced.

Evaluating Scalability and Quality of HETERE and A-HETERE. Chapter 5 describes the

exact and approximate algorithm that we propose to address the task of entity resolution in

heterogeneous temporal databases. These algorithms adopt a similarity measure for temporal

records that satisfies essential properties for any effective temporal entity resolution technique.

In particular, this measure can match also those records that display a small but persistent per-

centage of common attributes. Moreover, our approximate solution can achieve high scalability,

as it relies on meta-blocking, a technique commonly adopted in the literature to speed up entity

matching processes.

In this work, however, we have not presented an experimental evaluation of the performance

and capabilities of our solutions. Testing our algorithms on datasets of different sizes, for ex-

ample, is pivotal to assess their level of scalability. Similarly, considering datasets of different

temporal granularities and characteristics, we can determine how to configure the parameters of

the system to maximize its accuracy in different entity matching tasks.

Therefore, as future work, we plan to evaluate the efficiency and effectiveness our algorithms

using both real and synthetic datasets. Regarding the real datasets, we will consider two datasets

used in previous works in temporal entity resolution [LDMS11, CDN14a, LLHT15], namely, a

benchmark of European patent data1 and the DBLP data set2. The former contains records

about 359 inventors from French patents, while the latter contains records about authors and

their papers. In addition, we will create a real-world profile dataset by integrating public profiles

crawled by social networks like LinkedIn and Twitter, using the information provided in the link

section of the profiles to derive the ground-truth.

1http://www.esf-ape-inv.eu/
2http://www.informatik.uni-trier.de/ley/db/

http://www.esf-ape-inv.eu/
http://www.informatik.uni-trier.de/ley/db/


List of Figures

1.1 Portion of a citation network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Snapshots of a dynamic network. . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Example of a edge-labeled, weighted graph. . . . . . . . . . . . . . . . . . . . 35
3.2 A weighted graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Graph with two weights < ω1, ω2 > on each edge. . . . . . . . . . . . . . . . 46
3.4 Relevant patterns in real datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Number of patterns varying α. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Relevant patterns varying τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Scalability of RESUM in real graphs. . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Scalability of RESUM in synthetic graphs. . . . . . . . . . . . . . . . . . . . . 64
3.9 Scalability of RESUM approximate. . . . . . . . . . . . . . . . . . . . . . . . 66
3.10 Case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.11 Relevant patterns and running time varying focus. . . . . . . . . . . . . . . . . 68
3.12 Scalability of RESUM distributed in real graphs. . . . . . . . . . . . . . . . . 71
3.13 Scalability varying number of workers. . . . . . . . . . . . . . . . . . . . . . . 72
3.14 Scalability of RESUM distributed in synthetic graphs. . . . . . . . . . . . . . . 73

4.1 Quality and performance of EXCODE approximate vs EXCODE. . . . . . . . 94
4.2 Tuning of the min-wise hashing parameters. . . . . . . . . . . . . . . . . . . . 95
4.3 Scalability of EXCODE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Performance of EXCODE varying σ. . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Performance of EXCODE and average subgraph size varying k. . . . . . . . . 97
4.6 Performance of EXCODE varying smax. . . . . . . . . . . . . . . . . . . . . 99
4.7 Dataset selection in EXCODE-VIZ. . . . . . . . . . . . . . . . . . . . . . . . 101
4.8 Visualization of the dataset statistics in EXCODE-VIZ. . . . . . . . . . . . . . 102
4.9 Visualization of the dense correlated subgraphs in EXCODE-VIZ. . . . . . . . 103
4.10 Exploration of a dense subgraph in EXCODE-VIZ. . . . . . . . . . . . . . . . 103

5.1 Matching instances of three temporal records. . . . . . . . . . . . . . . . . . . 111

123





List of Tables

1.1 Records from three databases. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Real and synthetic datasets for score-based pattern mining. . . . . . . . . . . . 56
3.2 Quality of FREQ vs RESUM on the top-k patterns. . . . . . . . . . . . . . . . 61
3.3 Quality of RESUM approximate. . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Quality of RESUM approximate varying focus. . . . . . . . . . . . . . . . . . 70

4.1 Real datasets for dense correlated subgraph mining. . . . . . . . . . . . . . . . 91
4.2 Synthetic datasets for dense correlated subgraph mining. . . . . . . . . . . . . 91
4.3 Quality and performance of CIFORAGER vs EXCODE. . . . . . . . . . . . . . 92
4.4 Redundancy, representativeness, and size ratio in HAGGLE. . . . . . . . . . . . 99

125





Bibliography

[AAK+16] E. Abdelhamid, I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour. Scalemine:

Scalable parallel frequent subgraph mining in a single large graph. In SC, pages

716–727, 2016. (Cited on page 19.)

[AC09] Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size

bounds. In International Workshop on Algorithms and Models for the Web-

Graph, pages 25–37, 2009. (Cited on page 21.)

[ACS+17] Ehab Abdelhamid, Mustafa Canim, Mohammad Sadoghi, Bishwaranjan Bhat-

tacharjee, Yuan-Chi Chang, and Panos Kalnis. Incremental frequent subgraph

mining on large evolving graphs. TKDE, 29(12):2710–2723, 2017. (Cited on

page 23.)

[Agg16] Charu C Aggarwal. Recommender Systems. 2016. (Cited on pages 2 and 57.)

[AHCS+07] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Jeremy Besson, and Mo-

hammed J Zaki. Origami: Mining representative orthogonal graph patterns. In

ICDM, pages 153–162, 2007. (Cited on page 15.)
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[SEK04] Michael Steinbach, Levent Ertöz, and Vipin Kumar. The challenges of clus-

tering high dimensional data. In New Directions in Statistical Physics, pages

273–309. 2004. (Cited on page 44.)

[SGV06] Vivek Sehgal, Lise Getoor, and Peter D Viechnicki. Entity resolution in geospa-

tial data integration. In GIS, pages 83–90, 2006. (Cited on page 28.)

[SHF16] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-zoom: Fast dense-block

detection in tensors with quality guarantees. In ECML PKDD, 2016. (Cited on

page 26.)

[SKZ+15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Falout-

sos. Timecrunch: Interpretable dynamic graph summarization. In KDD, 2015.

(Cited on page 25.)

[SMJZ12] Arlei Silva, Wagner Meira Jr, and Mohammed J Zaki. Mining attribute-structure

correlated patterns in large attributed graphs. PVLDB, 5(5):466–477, 2012.

(Cited on page 2.)

[SPPB18] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi. Schema-agnostic

progressive entity resolution. In ICDE, 2018. (Cited on page 29.)



Bibliography 141

[SPTT16] Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and Panayiotis

Tsaparas. Best friends forever (bff): Finding lasting dense subgraphs. arXiv

preprint arXiv:1612.05440, 2016. (Cited on page 6.)

[SPTT18] Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and Panayiotis

Tsaparas. Finding lasting dense subgraphs. Data Mining and Knowledge Dis-

covery, pages 1–29, 2018. (Cited on page 23.)

[SQC13] Prakash Shelokar, Arnaud Quirin, and Oscar Cordón. Mosubdue: a pareto

dominance-based multiobjective subdue algorithm for frequent subgraph min-

ing. Knowledge and information systems, 34(1):75–108, 2013. (Cited on

page 16.)

[SSTW01] Michael J Shaw, Chandrasekar Subramaniam, Gek Woo Tan, and Michael E

Welge. Knowledge management and data mining for marketing. Decision Sup-

port Systems, 31:127–137, 2001. (Cited on pages 3 and 4.)

[SWD16] Q. Song, Y. Wu, and X. L. Dong. Mining summaries for knowledge graph

search. In ICDM, pages 1215–1220, 2016. (Cited on page 4.)

[TFS+15] Carlos HC Teixeira, Alexandre J Fonseca, Marco Serafini, Georgos Siganos,

Mohammed J Zaki, and Ashraf Aboulnaga. Arabesque: a system for distributed

graph mining. In SOSP, pages 425–440, 2015. (Cited on pages 5, 34, 48, 49,

and 72.)

[Val90] Leslie G. Valiant. A bridging model for parallel computation. ACM Communi-

cations, 33(8):103–111, 1990. (Cited on page 49.)

[VCR14] Ivan F Videla-Cavieres and Sebastian A Rios. Extending market basket analysis

with graph mining techniques: A real case. Expert Systems with Applications,

41(4):1928–1936, 2014. (Cited on page 2.)

[VGS02] Natalia Vanetik, Ehud Gudes, and Solomon Eyal Shimony. Computing frequent

graph patterns from semistructured data. In ICDM, pages 458–465, 2002. (Cited

on page 18.)

[VSG06] N. Vanetik, S. E. Shimony, and E. Gudes. Support measures for graph data.

Data Min. Knowl. Discov., 13(2):243–260, 2006. (Cited on pages 2 and 36.)



Bibliography 142

[WA10] Haixun Wang and Charu C Aggarwal. A survey of algorithms for keyword

search on graph data. In Managing and Mining Graph Data, pages 249–273.

2010. (Cited on page 3.)

[WCH+17] Zhuo Wang, Qun Chen, Boyi Hou, Bo Suo, Zhanhuai Li, Wei Pan, and

Zachary G Ives. Parallelizing maximal clique and k-plex enumeration over

graph data. Journal of Parallel and Distributed Computing, 106:79–91, 2017.

(Cited on pages 83, 111, 112, and 121.)

[WMK+09] Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin Theobald,

and Hector Garcia-Molina. Entity resolution with iterative blocking. In SIG-

MOD, pages 219–232, 2009. (Cited on page 28.)

[WRS17] Di Wu, Jiadong Ren, and Long Sheng. Uncertain maximal frequent subgraph

mining algorithm based on adjacency matrix and weight. International Journal

of Machine Learning and Cybernetics, pages 1–11, 2017. (Cited on page 20.)

[WZW+05] Chen Wang, Yongtai Zhu, Tianyi Wu, Wei Wang, and Baile Shi. Constraint-

based graph mining in large database. In APWeb, pages 133–144, 2005. (Cited

on page 16.)

[YAMW13] Weiren Yu, Charu C Aggarwal, Shuai Ma, and Haixun Wang. On anomalous

hotspot discovery in graph streams. In ICDM, 2013. (Cited on page 26.)

[YCHY08] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant

graph patterns by leap search. In SIGMOD, 2008. (Cited on page 15.)

[YH02] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM,

pages 721–724, 2002. (Cited on pages 2, 15, 27, and 39.)

[YH03] X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. In

KDD, pages 286–295, 2003. (Cited on pages 14 and 15.)

[YSLD12] J. Yang, W. Su, S. Li, and M. M. Dalkilic. Wigm: Discovery of subgraph

patterns in a large weighted graph. In SDM, pages 1083–1094, 2012. (Cited on

pages 2, 4, 5, 20, and 55.)

[YYG+14] Yajun Yang, Jeffrey Xu Yu, Hong Gao, Jian Pei, and Jianzhong Li. Mining most

frequently changing component in evolving graphs. WWW, 17(3), 2014. (Cited

on page 22.)



Bibliography 143

[YYH04] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based ap-

proach. In SIGMOD, pages 335–346, 2004. (Cited on pages 2 and 14.)

[YYW+16] Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, and John

Lui. Diversified temporal subgraph pattern mining. In KDD, pages 1965–1974,

2016. (Cited on pages 6 and 25.)

[YZH05] X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with connec-

tivity constraints. In KDD, 2005. (Cited on page 23.)

[ZF06] Jian Zhang and Joan Feigenbaum. Finding highly correlated pairs efficiently

with powerful pruning. In CIKM, pages 152–161, 2006. (Cited on page 82.)

[ZHOT16] Hongjie Zhai, Makoto Haraguchi, Yoshiaki Okubo, and Etsuji Tomita. A fast

and complete algorithm for enumerating pseudo-cliques in large graphs. IJDSA,

2(3-4):145–158, 2016. (Cited on page 121.)

[ZLGZ10] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Mining frequent

subgraph patterns from uncertain graph data. TKDE, 22(9):1203–1218, 2010.

(Cited on page 20.)

[ZXW+16] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Arm-

brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J Franklin, et al. Apache spark: a unified engine for big data pro-

cessing. Communications of the ACM, 59(11):56–65, 2016. (Cited on page 58.)

[ZYHP07] Feida Zhu, Xifeng Yan, Jiawei Han, and S Yu Philip. gprune: a constraint

pushing framework for graph pattern mining. In PAKDD, pages 388–400, 2007.

(Cited on page 16.)


	Abstract
	Contents
	Abbreviations
	1 Introduction
	1.1 Mining Multi-weighted Graphs
	1.2 Mining Dynamic Graphs
	1.3 Mining Heterogeneous Temporal Databases
	1.4 Outline

	2 State of the art
	2.1 Graph Pattern Mining
	2.1.1 Graph Databases
	2.1.2 Single Graphs

	2.2 Dense Subgraph Mining
	2.2.1 Single Graphs
	2.2.2 Multiple Graphs

	2.3 Entity Resolution
	2.3.1 Temporal Data


	3 Score-based Graph Pattern Mining
	3.1 Contributions
	3.2 Problem Formulation
	3.3 MNI-compatible Scoring Functions
	3.4 The ReSuM Framework
	3.4.1 Mining Single-weighted Graphs
	3.4.1.1 Complexity

	3.4.2 Mining Multi-weighted Graphs
	3.4.2.1 Complexity


	3.5 ReSuM Approximate
	3.5.1 Generation of the Representative Functions
	3.5.1.1 Creation of the Feature Vectors
	3.5.1.2 Identification of Similar Functions
	3.5.1.3 Aggregation of Similar Functions

	3.5.2 Complexity
	3.5.3 Quality Measures for ReSuM Approximate

	3.6 Distributed Score-based Pattern Mining
	3.6.1 ReSuM Distributed
	3.6.2 Time Complexity
	3.6.3 Space Complexity
	3.6.4 Machine-to-machine Communications

	3.7 Computation of the Pattern Scores
	3.7.1 The ALL Score
	3.7.2 The ANY Score
	3.7.3 The SUM Score
	3.7.4 The AVG Score
	3.7.5 Implementation in the ReSuM Framework

	3.8 Experimental Evaluation
	3.8.1 Datasets
	3.8.2 Experimental Setup
	3.8.3 Generation of the Weights
	3.8.4 Comparison with Frequent Pattern Mining
	3.8.4.1 Quality of Freq vs ReSuM
	3.8.4.2 Analysis of the Relevance Threshold
	3.8.4.3 Analysis of the Frequency Threshold

	3.8.5 The Case of Multiple Weights
	3.8.5.1 Scalability in Real Graphs
	3.8.5.2 Scalability in Synthetic Graphs

	3.8.6 Case Study
	3.8.7 Quality of ReSuM approximate
	3.8.8 Impact of the Weight Distribution
	3.8.9 Comparison with Distributed Pattern Mining
	3.8.9.1 Varying the Number of Workers
	3.8.9.2 Scalability



	4 Dense Correlated Subgraph Mining
	4.1 Contributions
	4.2 Problem Formulation
	4.3 The ExCoDE framework
	4.3.1 Creation of the Correlation Graph
	4.3.2 Enumeration of the Maximal Cliques
	4.3.3 Discovery of the Dense Subgraphs
	4.3.4 An Efficient Way for Computing the Average Density
	4.3.5 Complexity

	4.4 Experiments
	4.4.1 Datasets
	4.4.2 Experimental Setup
	4.4.3 Effectiveness of the Exact Solution
	4.4.4 Effectiveness of the Approximate Solution
	4.4.5 Efficiency of the Approximate Solution
	4.4.6 Scalability
	4.4.7 System Parameters
	4.4.8 Application-specific Parameters

	4.5 Displaying the Regions of Correlation
	4.5.1 Applications
	4.5.2 Scenario


	5 Entity Resolution in Temporal Databases
	5.1 Contributions
	5.2 Problem Formulation
	5.3 Similarity Between Temporal Records
	5.4 Exact Solution
	5.4.1 Find the Matching Pairs
	5.4.1.1 Early Termination

	5.4.2 Find the Matching Groups
	5.4.3 Complexity

	5.5 Approximate Solution
	5.5.1 Schema-agnostic time-aware meta-blocking
	5.5.1.1 Blocking Graph
	5.5.1.2 Edge Pruning

	5.5.2 Graph Clustering
	5.5.3 Complexity
	5.5.4 Quality of the Approximate Solution


	6 Conclusions
	6.1 Extensions and Open Problems

	List of Figures
	List of Tables
	Bibliography

