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Abstract— The clinical success of targeted cancer therapies
is limited by the emergence of drug resistance often due to
pre-existing tumor genetic heterogeneity and acquired, therapy-
induced resistance. Targeted therapies have varied success in
addressing metastatic disease, due to their ability to penetrate
certain physiological compartments. This paper considers an
evolutionary cancer model that incorporates tumor cell growth,
mutation and compartmental migration and leverages recent
results on the optimal control of monotone and convex systems
to synthesize switching treatment strategies where a single drug
or a predetermined combination of drugs is used at a given time.
The need for switching is motivated by clinical considerations
such as the limited effectiveness of any single targeted therapy
against multiple resistance mechanisms arising in a single
patient and the inability to design drug combinations at effective
doses due to toxicity constraints. An optimal and clinically
feasible switching therapy is obtained as the solution of a convex
optimization problem that exploits the diagonally-dominant
structure of the model. We demonstrate that this method yields
an effective strategy in mitigating disease evolution in the
presence of imperfect drug penetration in two compartments
on an experimentally identified model of anaplastic lymphoma
kinase (ALK)-rearranged lung carcinoma.

I. INTRODUCTION AND MOTIVATION

Targeted therapies are effective for the treatment of certain
oncogene-driven tumors [1]; however, clinical response is
transient and often within months of treatment initiation,
resistance emerges [2], [3], [4]. These small molecule in-
hibitors and monoclonal antibodies commonly exploit partic-
ular genetic addictions and vulnerabilities, and establish an
environment in which the occurrence of mildly drug resistant
cells can develop an evolutionary advantage over those for
which the therapy is targeted [5], [6]. Clonal expansion of
these evolutionary advantageous cells is exacerbated by the
considerable genetic intratumoral heterogeneity often already
present in treatment-naive patients [7].

There is also evidence that treatment with certain targeted
therapies has poorer prognosis for patients with metastatic
disease. Often, imperfect penetration of certain physiological
compartments can lead to sub-therapeutic drug levels that
dramatically increase the chance of overall treatment failure
[8]. Some inhibitors have better prognosis for patients with
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metastatic disease, due to an increased ability to pene-
trate certain physiological compartments, whereas others
are typically not found in high enough concentrations to
have a clinically relevant effect [9], [10]. The lack of drug
permeability in compartments such as the central nervous
system (CNS) makes brain metastases notoriously difficult
to treat from a pharmacological perspective. In addition
to potential spatial heterogeneity in drug concentrations,
constant treatment strategies with small molecule inhibitors
fail to control progression of heterogeneous tumors [2],
[3], [4]. As an alternative, drug pulsing [11] or treatment
switching strategies have been proposed and shown to better
control tumor growth [12].

The challenge of designing treatment protocols that pre-
vent or delay resistance and progression in cancer has
been explored in several control-theoretic settings. Results
in optimal and receding horizon control [13], [14] and gain
scheduling [15] have been applied to synthesize treatment
protocols that are robust to parameter uncertainty. In [16],
static multi-objective optimization is used on experimentally
derived dose response data to solve the combination therapy
problem for different initial tumor populations, when the
drugs under consideration have additive, linear effects on
cell viability. These predicted combination treatments have
been validated experimentally in a murine lymphoma model
for different tumor initial conditions [17].

In the context of HIV treatment design, switching strate-
gies that minimize the total viral load within a finite horizon,
thus mitigating viral escape in the presence of mutations,
can be designed by solving an optimal control problem
[18] whose cost functional is convex [19]. To prevent the
emergence of resistant mutants, infinitely fast switching [20]
may be needed. However, this strategy is clinically unfeasible
and to address this, a dwell-time constraint on the switching
rule is included [21] to ensure that a minimum amount of
time elapses between drug switching. A model-predictive-
control approach has been proposed to solve the optimal
control problem over a short receding horizon [22].

Here, we introduce a multi-compartment population model
that encodes the evolutionary dynamics of heterogeneous
tumor cells undergoing replication, genetic mutation, migra-
tion (to compartments) and drug response, accounting for
imperfect drug penetration in physiological compartments
(Section II). Based on recent results in optimal control of
monotone and convex-monotone systems [19], [23], [24],
in Section III we propose an algorithm to design optimal
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and clinically feasible switching treatment strategies that
minimize tumor progression when drug pharmacodynamics
are subject to maximum dosage constraints, the drug dose
is piecewise-constant in time, and only one drug is used
at a given time. We consider linear drug dose responses
and exploit the biological fact that growth phenomena are
dominant with respect to mutation and migration to formulate
a convex programming problem. Indeed, when the state
matrix associated with the model is practically diagonal,
the tumor reduction depends exclusively on the overall
duration of the treatment with each drug, and not on the
moment when each drug is used: this yields both the advan-
tages of convex optimization and more freedom in therapy
scheduling. Section IV illustrates the proposed strategy for
synthesizing switching treatments over a finite horizon using
a model of metastatic ALK rearranged lung adenocarcinoma:
switching therapies offer a good control of the overall disease
progression. Section V ends with concluding remarks and
directions for future work.

Notation. R+ denotes the set of nonnegative real numbers,
1n the ones vector of dimension n. The inequality X > 0
(X ≥ 0) means that all elements of the matrix or vector X
are positive (nonnegative). Matrix A ∈ Rn×n is Metzler if
all its off-diagonal elements are nonnegative.

II. MULTI-COMPARTMENT EVOLUTIONARY MODEL

We include drug dose response [25] and compartment dy-
namics in the well-known quasi-species evolutionary model
[26], [27] and propose a multi-compartment evolutionary
model that describes growth, mutation, metastasis and se-
lection by drugs of a heterogeneous tumor cell population.
In the presence of m mutant cell lines, of migrations among
p compartments and of d different drugs (or suitable drug
combinations), the concentration xki ∈ R+ of mutant species
i in compartment k evolves as

ẋki = rki qii,kx
k
i +

m∑
j=1
j 6=i

rki qij,kx
k
j (1)

+

p∑
c=1

µkc,ix
c
i −

p∑
c=1
c6=k

µck,ix
k
i −Ψk

i (`)xki ,

where rki is the growth rate of mutant i in compartment
k, qij,k is the probability that mutant j mutates to mutant
i in compartment k (hence, qii,k is the probability of no
mutation occurring), µck,i is the migration rate of mutant
i from compartment k to compartment c. Growth rates, as
well as mutation and migration dynamics (depicted in Fig. 1),
are assumed to be independent of drug effects. The vector
of drug concentrations ` = (`s) ∈ Rd+ is assumed to have
piecewise-constant components `s, while the function Ψk

i (`)
represents the overall drug dose response in compartment k
with respect to mutant i.

When `s = 0 ∀s ∈ {1, ..., d}, the dynamics in Eqn. (1)
represent tumor growth and metastasis in the absence of
therapy and are unstable. The contribution of each individual

(A) (B)

Fig. 1. Pairwise mutation dynamics (A) and pairwise compartment
migration dynamics (B), whose overall effect is included in Eqn. (1).

drug to function Ψk
i (`) can be modeled as follows: the bound

cell receptors ρ are quantified as a function of the ligand (i.e.,
drug) concentration `s according to the drug-receptor binding
reaction `s+ρ

KA−−⇀ `s ·ρ, corresponding to the Hill function

ψks,i(`s) =
(`s)

ns

(`s)ns +Kns
s
, (2)

where ψks,i ∈ [0, 1] is the fraction of bound receptors relative
to mutant i, compartment k and drug s, `s ∈ R+ is the ligand
(drug) concentration, Ks = 1

KA
∈ R+ is the dissociation

constant of the binding reaction, and the Hill coefficient nk ∈
R+ represents the cooperativity index (i.e., the degree to
which binding of a ligand molecule modulates the probability
of another ligand molecule binding). For small enough drug
amounts, far from saturation, the drug effects can to a good
approximation be assumed linear:

ψks,i(`s) = Ks,i`s, Ks,i > 0. (3)

For an additive drug model, in which drugs do not interact
competitively, neither synergistically nor antagonistically,
the total effect of independently acting drugs `1, . . . , `d on
mutant i in compartment k could be described as

Ψk
i (`) =

∑d
s=1 ψ

k
s,i(`s). (4)

Additive drug models are relevant for a large class of
cancer drugs [28] but are not generalizable to all targeted
therapies[29]. Drug combinations often include therapies that
selectively target different genes on the same or a related
signaling pathway. Their combined effect can invoke changes
to the underlying signaling network dynamics and can result
in non-additive effects [29]. In our formulation, we consider
clinically relevant drug doses and assume that combination
drug effects are known at these doses. We then synthesize
piecewise-constant switching treatment strategies such that
only one drug (or a suitable drug combination with a known
combined effect) is selected at any given time, and used at
a corresponding maximum tolerated dose (MTD).

To further emphasize the inherent feedback structure that
arises from drug effect on the growth, mutation and migration
of tumor cell populations, we rewrite the overall model as

ẋ(t) = [A−Ψ(`(t))]x(t), (5)

where x = (xki ) is the stacked vector of tumor cell popu-
lations, having size n = mp, while matrices A and Ψ are
chosen such that the dynamics (5) are consistent with (1):
A ∈ Rn×n is an unstable Metzler matrix and the drug effects
are described by the diagonal matrix Ψ(`) ∈ Rn×n, whose
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diagonal entries are increasing functions of `.

Remark 1: Due to the biological quantities involved, the
off-diagonal entries of matrix A are several orders of mag-
nitude smaller than its diagonal entries.

Since the drug doses we consider are not greater than the
MTD, the diagonal entries of Ψ(`) can be well approximated
as linear functions of `. Hence, the model becomes

ẋ(t) =

[
A−

d∑
s=1

Ds`s(t)

]
x(t), (6)

where Ds ∈ Rn×n is a positive diagonal matrix expressing
the effect of drug s.

III. SYNTHESIS OF OPTIMAL SWITCHING TREATMENTS

Suitable treatment strategies to address intratumor hetero-
geneity, imperfect drug penetration and resulting resistance
can be designed by solving an optimal control problem. For
all drugs, we normalize the maximum tolerated dose (MTD)
to `s = 1. Then, our goal is to design an optimal switching
therapy that minimizes the final tumor size 1>n x(T ) over a
finite horizon T , under the following constraints:

1) the total MTD is 1, namely,
∑d
s=1 `s(t) ≤ 1, ∀ t;

2) each drug is either used at its MTD, or not used at all,
namely, `s(t) ∈ {0, 1}, ∀ t, ∀ s.

These constraints imply that a single drug (or a suitable
drug combination) is used at a given time at predetermined,
clinically relevant doses.

Remark 2: The proposed evolutionary model is a convex-
monotone system: it is monotone and its state trajectory is
a convex function of both the initial state and the input
trajectory. Hence, controller synthesis can be performed by
convex optimization, if both the objective function and the
constraints are convex [24]. More details can be found in the
Appendix.

Typically, plasma drug concentrations require several days
to reach a steady state concentration upon treatment initia-
tion. The switching therapy algorithm must therefore select
a single treatment at a given time instant and this treatment
must also remain constant for intervals of a minimum dura-
tion. The drug dose `(t) can be rendered piecewise-constant
in time over desired intervals by adopting the approach
proposed in [19]: for given initial conditions x(0) ≥ 0 and a
given horizon T , the time [0, T ] is divided into N intervals
T1, T2, . . . , TN , and the drug dose choice

`(t) =



`(1), t ∈ [0, T1),

`(2), t ∈ [T1, T1 + T2),
...

`(N), t ∈
[∑N−1

i=1 Ti, T
)
,

(7)

is given by the solution of the optimization problem

min
`(1),...,`(N)

1>n

N∏
i=1

exp

[(
A−

d∑
s=1

Ds`
(i)
s

)
Ti

]
x(0) (8)

s.t. `(i)s (t) ∈ {0, 1}, ∀s ∈ {1, . . . , d}, ∀i ∈ I,
d∑
s=1

`(i)s ≤ 1, ∀i ∈ I = {1, . . . , N}.

A different version of (8), where the constraint `(i)s (t) ∈
{0, 1} is replaced by `

(i)
s ≥ 0 (which we will denote as

“relaxed (8)”), is relevant for the design of HIV therapies
and is a convex optimization problem, as shown in [19];
however, the resulting optimal treatment assumes an additive
drug model and requires a combination of drugs at each
time interval. This is not a general solution for treatment
design with targeted therapies, as discussed earlier, due to the
fact that a drug additivity model is not always applicable to
any combination of targeted therapies. Undesired side effects
due to unmodeled drug interactions could arise. Due to the
constraint `(i)s (t) ∈ {0, 1}, convex mixed integer nonlinear
programming is required in general to solve (8) (and the more
general optimization problem that considers dynamics (5) as
well). However, by exploiting the structure of the problem,
we can design the optimal switching treatment via convex
programming and still enforce the integer constraint.

A. The Diagonal Case: a Convex Programming Approach

As pointed out in Remark 1, due to the nature of the
considered systems, the off-diagonal entries of matrix A are
practically negligible with respect to its diagonal entries. If
A is a diagonal matrix, the optimal control problem can be
solved as a convex optimization program while still making
sure that a single drug is used in each interval. In fact, if A
is diagonal, the matrices Hi = (A−

∑d
s=1Ds`

(i)
s ) commute

and

1>n

N∏
i=1

exp(HiTi)x(0) = 1>n exp

(
N∑
i=1

HiTi

)
x(0). (9)

Hence, we can write

1>n x(T ) =

n∑
i=1

eAiiT exp

(
−

d∑
s=1

Dsτs

)
xi(0), (10)

where

τs =

∫ T

0

`s(t)dt. (11)

Since `s(t) is either 0 or 1 at each time instant, (11) means
that `s(t) is 1 for τs time units (and 0 otherwise).

The problem can then be equivalently formulated as

min
τ1,...,τd

n∑
i=1

eAiiT exp

(
−

d∑
s=1

Dsτs

)
xi(0) (12)

s.t. τs ≥ 0, ∀s ∈ {1, . . . , d},
d∑
s=1

τs ≤ T,
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which is a convex optimization problem. The resulting values
τs are the optimal treatment durations with each of the drugs,
s = 1, . . . , d, within the given time horizon T .

Remark 3: The commutation property (9) means that,
when A is diagonal, the minimum final tumor size is
achieved regardless of when each drug is used during the
treatment horizon, provided that the overall duration of the
treatment with drug s is τs. This additional degree of freedom
can be exploited in treatment design.

Since all of the switching rules that use drug s for a
total time τs lead to the same (minimum) final tumor size,
the treatment can be scheduled so as to enforce additional
worthwhile properties: e.g., the switchings between different
therapy choices can be reduced by applying the drugs se-
quentially, or the switching law can ensure that the overall
tumor size is monotonically decreasing, i.e., ẋ(t) < 0 ∀t.

If A is diagonal, the optimal value of 1>n x(T ) achieved
by (12) is the same obtained by solving the relaxed version
of (8), as in [19], but it is achieved by using a single drug at
a time. When A is not diagonal, we can quantify the cost of
allowing only a single therapy to be active at a time. Denote
as Crel the value of 1>n x(T ) obtained by solving the relaxed
version of (8), Cdiag that obtained by applying the strategy
given by (12) (even though A is not diagonal), and Copt the
best value we could achieve by using one drug at a time.
Then,

Crel ≤ Copt ≤ Cdiag.

If A is not diagonal, but Crel and Cdiag are close, by adopting
the approach in (12) we get close to the “real optimum”.

IV. EXAMPLE: TREATMENT STRATEGIES FOR ALK
REARRANGED NON-SMALL CELL LUNG CANCER

Chromosomal translocations of the anaplastic lymphoma
kinase (ALK) have been associated in several hematological
and solid malignancies including in non small cell lung
carcinomas (NSCLC) [30], [31]. The majority of ALK
rearrangments described in NSCLC are cases involving
fusions of the echinoderm microtubule-associated protein-
like 4 (EML4) gene with ALK [32]. In particular, this
abnormal rearrangement leads to the production of a fusion
gene (EML4-ALK) that promotes and maintains cancer cell
proliferation.

Small molecule inhibitors targeted to the ALK gene have
been proposed to address ALK-rearranged NSCLC. While
most ALK rearranged lung cancer patients respond initially
to treatment with an ALK tyrosine kinase inhibitor (TKI)
such as crizotinib, most develop resistance due to the pres-
ence of additional genetic alterations, namely secondary mu-
tations on ALK (see Table III) and copy number gain (CNG)
in the ALK gene. Other resistance mechanisms include the
activation of other signaling pathways such as epidermal
growth factor (EGFR), Kirsten rat sarcoma viral oncogene
homolog (KRAS) and met proto-oncogene (MET) [33]. Next
generation ALK inhibitors such as alectinib, ceritinib and
lorlatinib have been proposed to overcome resistance to
crizotinib.

Nearly 60% of ALK-positive NSCLC patients undergoing
crizotinib treatment exhibit brain metastasis as the first site of
disease progression [34]. Surgery and/or radiation therapy are
the primary treatment modalities for most patients with brain
metastases from NSCLC, including those with the EML4-
ALK fusion oncogene [35]. Whole brain radiation therapy
(WBRT) is routinely used in patients with multiple brain
metastases often exhibits suboptimal local control when used
without radiosurgery/surgery in addition to neurocognitive
toxicities. Despite the limited drug penetration of early
generation of ALK targeted therapies, such as crizotinib,
newer generation drugs such as alectinib and lorlatinib have
been shown to have increased activity in the central nervous
system (CNS).

In this section we demonstrate how the proposed convex
optimization based approach allows us to design switching
strategies that control tumor progression at best, despite
imperfect penetration in different compartments and signif-
icant intratumor heterogeneity. We consider four potential
inhibitors (crizotinib, alectinib, ceritinib and lorlatinib) as
candidates for a switching strategy to potentially control the
evolutionary dynamics of nine mutations, listed in Table III
that include the EML4-ALK driver oncogene and other
mutations have been shown to be resistant to at least one
of these four targeted therapies. We assume there are two
compartments where disease may be present, the primary
tumor site in the lung (compartment 1) and the secondary
site in the brain (compartment 2).

Growth and drug effects for every mutation in this study
were derived from existing murine tumor models as refer-
enced in Table III. Plasma drug concentrations and CSF to
plasma drug concentration ratios are found in Table II. We
assume that mutation rates are independent of compartment
and migration rates are independent of mutations. Units of
concentration in number of cells/ml for states and µg/ml are
used for drugs and time is measured in days. The standard
volume is 1 ml.

We consider several tumor cell initial conditions that
correspond to different tumor heterogeneity and progression
to secondary tumor sites, representative of varying stages of
disease. IC 1 is x0 = 107 · [956 5 5 5 5 5 5 4 10 0 0 0 0 0 0 0 0 0]>

(tumor in compartment 1 only, with EML4-ALK-MET
and all the other mutations), IC 2 is x0 = 107 ·
[956 7 7 7 7 7 7 6 0 0 0 0 0 0 0 0 0 0]> (tumor in compartment
1 only, with all mutations but EML4-ALK-MET), IC 3 is
x0 = 107 · [990 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0]> (tumor in
compartment 1 only, with mutant EML4-ALK-MET only),
IC 4 is x0 = 107 · [1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]> (tumor
in compartment 1 only, without any mutations), IC 5 is x0 =

107 · [956 5 5 5 5 5 5 4 10 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5]> (tumor
in both compartments, with all mutations), IC 6 is x0 = 107 ·
[956 7 7 7 7 7 7 6 0 1.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0]> (tumor in both
compartments, with all mutations but EML4-ALK-MET), IC
7 is x0 = 107 · [990 0 0 0 0 0 0 0 10 1.7 0 0 0 0 0 0 0 0.5]> (tumor
in both compartments, with mutant EML4-ALK-MET only),
IC 8 is x0 = 107 · [1000 0 0 0 0 0 0 0 0 2.2 0 0 0 0 0 0 0 0]> (tumor
in both compartments, without any mutations).
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Fig. 2. (A) Treatment strategy synthesized by algorithm for a highly
heterogeneous tumor in the lung (IC1) and time evolution of the bulk tumor
cell population. (B) Evolution of subpopulations in the lung (C1) and brain
(C2) for conditions in (A).

Treatment strategies synthesized by the algorithm are
shown in Table I. The results obtained with the proposed
optimization strategy, in terms of overall tumor reduction, are
compared with the results given by the relaxed problem, us-
ing a single drug (crizotinib) without switching. We observe
that the single drug strategies in our example can not si-
multaneously control tumor cell migration and heterogeneity
but switching strategies can offer better tumor response. In
some cases, the overall tumor cell population grows despite
switching therapies, due to the presence of subpopulations
that are not effectively targeted by any of drugs considered
here. However, our switching therapy allows for a much
slower increase in tumor size compared to the single constant
drug therapy. It is worth pointing out that the performance
achieved is almost exactly that achievable by solving the
relaxed problem. Hence, in view of the problem structure,
namely that A is very close to diagonal, we can obtain the
same optimal performance as in the relaxed problem and
still enforce the constraint of using one drug at a time. For
the initial condition IC 1, Fig. 2 shows a possible therapy
scheduling with a 60 days horizon, with drug 2 given for
the first 8 days, drug 4 given for the following 42 days
and drug 2 given again for 10 days (the overall time per
drug is that shown in Table I for this case), along with the
corresponding time evolution of the number of tumor cells.
Note that the therapy scheduling has been chosen in order
to make sure that the overall tumor size is decreasing at any
point in time, a desirable property from a clinical perspective.
Fig. 2 shows the time evolution of the amount of cancer cells
of the different mutant lines in each of the two compartments.

The benefits of switching are well demonstrated by the
results of our algorithm. Experimentally searching for time-
varying control strategies is infeasible as the number of po-
tential therapies and possible switches to consider is experi-
mentally intractable. We propose to guide these experimental
activities with our ability to design and synthesize switching

therapy controllers. As such, one could generate optimal
controllers tailored to address intratumor heterogeneity in
primary and secondary tumor sites, and subsequently verify
these predicted strategies in murine models.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced an evolutionary cancer model
that incorporates replication, mutation and compartmental
migration and we showed that a switching therapy that
minimizes tumor population can be synthesized by solving
a convex optimization problem, exploiting the fact that
the evolution matrix is close to diagonal. Importantly, our
algorithm specifies the length of time that a drug must be
implemented to optimally control tumor progression and this
allows for a flexible scheduling strategy that may be more
readily implemented clinically. We applied our method to
the design of small molecule inhibitor treatment strategies
for metastatic ALK-rearranged non small cell lung cancer,
compared the outcome obtained with different approaches
and showed that switching protocols lead to improvements
over standard constant therapies. Future work will focus
on several directions: for instance, building more detailed
and realistic models of the phenomenon (for instance, al-
lowing mutation rates to depend on the presence of drugs,
or including the interplay with the immune system), and
optimally scheduling switching treatments, based on the
diagonal convex programming formulation, given the total
time for which each drug is needed, in order to satisfy
additional clinical requirements.
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Time horizon T = 60 days Time horizon T = 90 days
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2 0, 19, 0, 41 6.4695 107 6.4692 107 6.7053 109 0, 12, 0, 128 3.2730 107 3.2714 107 1.7040 1012

3 51, 0, 0, 9 6.1270 103 6.1259 103 7.3637 103 90, 0, 0, 50 0.0048 0.0048 0.0223
4 0, 60, 0, 0 26.8926 26.8926 63.9979 0, 140, 0, 0 0 0 0
5 0, 5, 0, 55 5.2412 109 5.2411 109 2.9570 1012 0, 12, 0, 128 2.8093 1013 2.8090 1013 9.4926 1019

6 0, 14, 1, 45 1.3589 109 1.3589 109 5.7912 1011 0, 31, 0, 109 4.5537 1012 4.5532 1012 4.8272 1018

7 0, 4, 0, 56 3.3750 109 3.3750 109 2.4636 1012 0, 1, 0, 139 5.1311 1012 5.1292 1012 9.0103 1019

8 0, 60, 0, 0 48.2854 48.2854 8.3815 1010 0, 140, 0, 0 0 0 4.9872 1015

TABLE I
Optimal therapy choice (τi days per drug i) and optimal values of 1>n x(T ) obtained with (12) (Cdiag), with the relaxed version of (8) (Crel) and with

drug crizotinib only (C1), for eight different initial conditions (IC) and two different time horizons T .

ALK TKI targeted gene plasma conc. µM χ ref.
crizotinib MET, ALK 0.34 -0.57◦ 0.0026 [36]
alectinib ALK 0.87-1.21◦ 0.79 [37]
ceritinib ALK 0.62-1.03◦ 0.5* [38]
lorlatinib ALK 1.0† 0.4‡ [39]

TABLE II
Plasma concentrations and cerebrospinal fluid (CSF) to plasma ratios for crizotinib, alectinib, ceritinib and lorlatinib indicate drug concentration

differences measured in the blood (and accessible to the primary tumor site) versus the concentration in the CSF, accessible to central nervous system
organs (e.g. brain, location of secondary tumor sites). ◦ derived from the U.S. FDA approved drugs list [40], *estimate, ceritinib CSF to plasma ratios

have not been studied thusfar, †, estimate, ongoing clinical trial, † estimate based on number of patients with partial and complete response and
intracranial disease in ongoing clinical trial.

mutation growth crizotinib ceritinib alectinib lorlatinib
rate day−1 ref. rate day−1 ref. rate day−1 ref. rate day−1 ref. rate day−1 ref.

EML4-ALK 0.1386 [41] 0.45305 [42] 0.141885 [41] 0.4675 [43] 0.18459 [44]
EML4-ALK1151Tins 0.1888 [43] 0.142345 [42] 0.9563 [41] 0.18183 [43] 0.3807 [44]
EML4-ALKC1156Y 0.1099 [41] 0.1144 [45] 0.08593 [41] 0.4388 [46] 0.11868 [44]
EML4-ALKF1174L 0.179 [43] 0.10706 [47] 0.09726 [41] 0.17203 [43] 0.185948 [44]
EML4-ALKL1196M 0.1003 [44] 0.1096 [42] 0.097015 [41] 0.2983 [43] 0.1204 [44]
EML4-ALKG1202R 0.2067 [43] 0.1885 [41] ‡ 0.14131 [41] 0 [43] 0.4446 [44]
EML4-ALKS1206Y 0.1569 [43] 0.3467 [42] 0.9244 [41] 0.4858 [43] 0.3488 [44]
EML4-ALKG1269A 0.198 [43] 0.2145 [41] 0.6601 [41] 0.29702 [43] 0.25916 [44]

EML4-ALK-METamp 0.219 † 0.37775 * 0.0123 * 0.0123 * 0.4109 *

TABLE III
ALK mutation growth rates and the effect of ALK inhibitors crizotinib, alectinib, ceritinib and lorlatinib at plasma doses listed in Table II, and derived
from existing murine tumor models listed above. †estimated, faster growth of MET amplified cancer cells, *estimate, ‡ approximation based on IC50.
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APPENDIX

The nonlinear dynamical system

ẋ(t) = f(x(t), u(t)), x(0) = a, (13)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rd, X and U are
convex sets and (13) has a unique solution x(t) = φt(a, u),
is monotone if its solution is a monotone function of the
initial state a and of the input trajectory u, i.e., if

(a0, u0) ≤ (a1, u1)⇒ φt(a0, u0) ≤ φt(a1, u1),

element-wise. If, in addition, every row of f is a convex
function, then the system is convex-monotone.

Since matrix A is Metzler, the evolutionary compartment
model (5) is a convex-monotone system provided that the
elements of Ψ(`) are increasing concave functions of ` (this
is clearly true in the linear case; ψks,i(`s) as in (2) is not
concave in `s, but it can be rendered concave by considering
the new control variable us = (`s)

ns ). Then, along the lines
in [24, Section III], convex-monotonicity of (5) can be shown
by means of the logarithmic transformation zj = log(xj),
where xj denotes a specific state component xki .

For convex-monotone systems, the following result holds.
Theorem 1: [24] If f is a continuously differentiable

function and (13) is a convex-monotone system admitting
the unique solution x(t) = φt(a, u), then each component
of φt(a, u) is a convex function of (a, u).

Hence, given a convex objective function and convex
constraints, control design can be efficiently performed via
convex optimization.

2500


