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The spin dynamics of a harmonically trapped Bose-Einstein condensed binary mixture of sodium atoms
is experimentally investigated at finite temperature. In the collisional regime the motion of the thermal
component is shown to be damped because of spin drag, while the two condensates exhibit a counterflow
oscillation without friction, thereby providing direct evidence for spin superfluidity. Results are also
reported in the collisionless regime where the spin components of both the condensate and thermal part
oscillate without damping, their relative motion being driven by a mean-field effect. We also measure the
static polarizability of the condensed and thermal parts and we find a large increase of the condensate
polarizability with respect to the T ¼ 0 value, in agreement with the predictions of theory.
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In the last years, spin-superfluidity and spin-transport
phenomena have attracted great interest in the community
of condensed matter physics from both the experimental
and theoretical point of view [1]. Even in systems where
spin is conserved, the behavior of spin transport is highly
nontrivial since, at finite temperature, collisions between
different spin species yield relaxation of the spin current,
a phenomenon known as spin drag. So far the study of
superfluidity at finite temperature has mainly concerned the
density channel, where both the number of particles and
total current are conserved. A major consequence is that,
in the collisional regime, sound can propagate both in the
superfluid phase, where it takes the form of first and second
sound, as well as in the normal phase (ordinary sound). In
the presence of collisions, spin sound can instead propagate
only in the superfluid phase, so that its observation, in this
case, can be considered as an ultimate proof of spin
superfluidity. In fact, the propagation of spin sound in
the collisionless regime is consistent with superfluidity, but
can be predicted also in the normal phase as a consequence
of mean-field interactions (see, for instance, the propaga-
tion of sound in a normal Fermi liquid [2]). Actually the
equations of hydrodynamics applied to a superfluid quan-
tum mixture predict the propagation of three sounds [3,4]:
pressure, temperature, and spin sound (see Ref. [5] for a
recent application of three-velocity hydrodynamic theory to
Bose-Bose mixtures).
The dynamic behavior of multicomponent quantum

gases has been extensively investigated in the last years
(see, for example, Ref. [6] for a review on spinor Bose
gases). Experiments on spin dynamics have been carried
out in gases occupying two different hyperfine states
[7–15], in larger spinor systems [16–21], as well as in
mixtures of different isotopes or atomic species [22–25].

Theoretical activity in these systems has also become
very popular (see, for example, Refs. [5,26–37]). Spin-
drag phenomena have been experimentally investigated in
the unitary Fermi gas [38–40], in Bose gases [41], in Bose-
Fermi mixtures [42], as well as in two-dimensional Fermi
gases [43,44]. The role of spin polarization on the stability
of supercurrents [45] and the counterflow instability in
Bose-Fermi [25] and in Bose-Bose [21,46] mixtures have
also been experimentally investigated.
In this Letter, we experimentally study the spin-dipole

oscillation and the role of collisions at finite temperature.
The main result of our work is the observation of undamped
spin oscillations in the collisional regime. This observation
actually provides direct evidence of spin superfluidity.
We consider a symmetric BEC mixture of the

jmF ¼ þ1i≡ j↑i and jmF ¼ −1i≡ j↓i components of
the F ¼ 1 hyperfine ground state of sodium atoms, con-
fined in a harmonic trap. Differently from most of the
quantum mixtures so far investigated in the literature, our
sodium mixture is characterized by an almost perfect
symmetry between the two components, both in terms of
the number of atoms occupying the two hyperfine states,
the confining potential, and the intraspecies interaction.
Furthermore the mixture is fully miscible, not subject to
buoyancy, and is close to the miscible-immiscible phase
transition since ða − a↑↓Þ=a ¼ 0.07 ≪ 1, with a≡ a↑↑ ¼
a↓↓ ¼ 54.54ð20Þa0 and a↑↓ ¼ 50.78ð40Þa0 [47], a0 being
the Bohr radius. This mixture, then, represents an ideal
system to investigate the effects of spin superfluidity. The
zero temperature behavior of the spin-dipole oscillation
was investigated in [14]. Here, we report results at finite
temperature, both in the collisional and in the collisionless
regimes, which are experimentally realized by varying the
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frequencies of the trapping potential. We prove that in both
regimes the mixture is able to support undamped spin
oscillations. Furthermore, the vicinity to the miscible-
immiscible phase transition is associated with a strong
coupling between the two spin clouds. In addition to the
softening of the spin-dipole oscillation frequency and the
sizable increase of the static spin polarizability, which were
already observed at zero temperature [14], the vicinity to
the phase transition causes a further important amplifica-
tion of the spin polarization of the superfluid component
due to the interaction with the thermal part.
We start with an equally populated mixture of the ↑;↓

states [14,48] with N↑ ¼ N↓ ≃ 4 × 105 (with a spin imbal-
ance fluctuation smaller than 10%) and consider two
different trap geometries: (A) a crossed optical trap with
frequencies ½ωx;ωy;ωz�=2π ¼ ½87; 330; 250� Hz and (B) a
single-beam optical trap with frequencies ½ωx;ωy;ωz�=2π¼
½12;1350;1350�Hz. Using parametric heating, we can
adjust the condensed fraction of the mixture, i.e., the ratio
between the total number of atoms in the condensates N0

and the total number of atoms N ¼ N↑ þ N↓. A major
difference between the two configurations is that, in the
long axial direction, configuration (A) is basically charac-
terized by a collisionless regime (ωxτ↑↓ ≫ 1), while
configuration (B) by a more collisional one (ωxτ↑↓ ∼ 1).
The difference is not due to significant changes in the
density, but rather in the value of ωx. The collisional time
between the ↑;↓ components can be estimated employing
the classical expression for τ↑↓, with the density calculated
in the center of the trap at T ¼ Tc [48]. We estimate ωxτ↑↓
of a few tens in configuration (A) and of order unity in
configuration (B).
Spin dynamics.—The spin oscillation is excited by

applying a magnetic field gradient B0
x for a few ms. This

generates a small force F↑;↓ ¼ �gFμBB0
x (gF is the Landé

factor, μB the Bohr magneton) that tends to separate the
two components, as illustrated in Fig. 1. Such a procedure
leaves the total center of mass at rest and gives rise to
time-varying spin displacements

S0 ≡ x0↑ − x0↓; ST ≡ xT↑ − xT↓;

of both the condensed S0 and the thermal part ST , where
x0↑;↓ and x

T
↑;↓ are the centers of the atomic distribution of the

condensed and thermal components of the ↑;↓ density
distributions. In the experiment, we are able to study the
dynamics of such four-fluid system by monitoring each of
the four components to reconstruct S0 and ST as a function
of time. The amplitude of oscillation of fS0; STg is smaller
than the Thomas-Fermi radius Rx of the cloud [for a fully
Bose-Einstein condensed mixture at T ¼ 0, Rx ¼ 25 μm
for configuration (A) and Rx ¼ 230 μm for (B)]. The two
spin states are separately imaged after a Stern-Gerlach
expansion in a magnetic field gradient along z, which

allows us to extract the centers of mass of the four
components of the fluid fx0↑; x0↓; xT↑; xT↓g [48].
The spin dynamics of the condensate is shown in

Figs. 2(a) and 2(b) at relatively high values of T=Tc,
corresponding to N0=N ∼ 0.3 and N0=N ∼ 0.4, respec-
tively. The figure shows that the condensate, in the presence
of a large thermal component, exhibits spin oscillations
without visible damping in both collisionless (A) and
collisional (B) regimes. The absence of friction near the
BEC border, where the Landau critical velocity is vanish-
ingly small, is due to the fact that the spin velocity, during
the spin-dipole oscillation, is strongly suppressed near the
surface of the condensate [see Fig. 1(b)], differently from
what happens in the rigid motion of the center-of-mass
oscillation, and in agreement with the Steinwedel-Jensen
model for the isospin oscillations of nuclear physics [49].
The measured frequencies [ωSD ¼ 0.205ð2Þωx in (A) and
ωSD ¼ 0.233ð5Þωx in (B)] differ by about 6% from the
value reported in Ref. [14] at very low temperatures
[ωSD ¼ 0.218ð2Þωx] and by 7% (A) and 20% (B) from
the value ω0

SD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiða − a↑↓Þ=ðaþ a↑↓Þ
p

ωx ¼ 0.19ð2Þωx

[50], predicted by hydrodynamic theory of superfluids at
T ¼ 0 [51].
The thermal component, instead, behaves very differ-

ently in the two regimes. In the collisionless regime (A),
after a transient of damped oscillations, it oscillates at the
same spin-dipole frequency of the condensate, but with
opposite phase and a smaller amplitude [see Fig. 2(a)], the
ratio between the thermal and the condensed amplitudes
being 0.18(2). In the collisional regime (B), the thermal part
is instead strongly damped and quickly reaches an equi-
librium position, where both spin thermal components are
at rest in the center of the trap [see Fig. 2(b)] [52].
In Fig. 2, we report the results for spin dynamics above Tc,

as well. In configuration (A) the cloud exhibits several
oscillations before relaxing, thus revealing that collisions

(a) (b)

FIG. 1. Computed atomic density distribution n↑;↓ðx; 0; 0Þ of
the binary mixture at finite temperature showing the component
↑ (violet) and ↓ (green), each one of these being composed of a
superfluid (top) and a thermal part (bottom). (a) In the absence of
any external force the centers of mass of all four components
overlap. (b) In the presence of a differential force F↑;↓, the
condensed part shows a large positive polarization, while the
thermal component interacting with the condensate is polarized in
the opposite direction. The thermal part lying outside the BEC
region has a small positive polarization.
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are not very strong [Fig. 2(c)]. Vice versa, in the collisional
regime (B), the behavior is diffusive, suggesting an over-
damped spin oscillation [Fig. 2(d)]. A similar spin-drag effect
was observed in the Bose-Fermi mixture of [42], as well as in
aBosegas aboveTc inRef. [41]. Fromour experimental data,
we extract ωxτ ¼ 11ð2Þ for (A) and ωxτ ¼ 1.2ð4Þ for (B).
These measurements are in agreement with the theoretical
estimates of ωxτ↑↓ given earlier in the Letter.
Finally, it is worth pointing out that the behavior of the

spin-dipole oscillations is very different with respect to
the center-of-mass motion, where both the condensed and
thermal parts oscillate in phase without damping at the
frequency ωx=2π [48], independent of the presence of
collisions.
Spin-dipole polarizability.—The counterphase oscilla-

tion of the thermal component observed in the collisionless
regime [see Fig. 2(a)] can be physically understood by
investigating the behavior of the spin-dipole polarizability
of the gas at finite temperature, employing the mean field
Hartree-Fock theory [53] in the presence of a static spin-
dipole constraint of the form −mω2

xx0xσz (σz is the third
Pauli matrix). This additional potential generates a force
acting on the two spin components in opposite directions
(F↑;↓ ¼ �mω2

xx0), x0 being the displacement of the trap
minimum for each component. By neglecting interaction
effects induced by the thermal component on the con-
densate, as well as thermal-thermal interactions, and using
the Thomas-Fermi approximation for the condensate,
one obtains the following result for the spin density
s0z ¼ n0↑ − n0↓ of the condensate [50]:

s0z ¼ −x0
aþ a↑↓
a − a↑↓

∂n0
∂x : ð1Þ

For the spin density sTz ¼ nT↑ − nT↓ of the thermal compo-
nent one instead finds the results

sTz ¼ −x0
aþ a↑↓
a − a↑↓

∂nT
∂x ð2Þ

inside the spatial region occupied by the condensate, where
the thermal part feels interaction effects, and

sTz ¼ −x0
∂nT
∂x ð3Þ

outside. In the above equations, n0 and nT are the
equilibrium condensate and thermal total densities, respec-
tively. The corresponding contribution to the spin-dipole
polarizability is then obtained by integrating the quantities
xs0z and xsTz . These results show that the spin polarization
of the inner thermal atoms [see Eq. (2)] is amplified by the
same large factor ðaþ a↑↓Þ=ða − a↑↓Þ as for the conden-
sate. The corresponding polarization effects have, however,
opposite signs, the density derivative of the condensate, at
equilibrium, being opposite to the one of the inside thermal
component (see Fig. 1).
For higher temperatures, interaction effects of the ther-

mal component on the condensate can no longer be
neglected. The behavior of the spin polarization can be
explored more accurately, by solving in a consistent way
the coupled Hartree-Fock equations for the condensate and

(a)

(c) (d)

(b)

FIG. 2. (a) Spin oscillations for the thermal ST (red) and condensed S0 (blue) parts of the mixture with N0=N ¼ 0.3 (T=Tc ≃ 0.85) for
configuration (A). After a small transient period, ST oscillates at ωT ¼ 0.207ð2Þωx which turns out to be equal, within error bars, to the
oscillation frequency of S0, ωSD ¼ 0.205ð2Þωx. The ratio of the oscillation amplitude of ST and S0 is 0.18(2). (b) Spin oscillations for the
condensed and the thermal fS0; STg parts for a mixture with N0=N ¼ 0.4 (T=Tc ≃ 0.75) in configuration (B). The condensed
component oscillates at ωSD ¼ 0.233ð5Þωx, while the thermal relative motion is quickly damped. We measure an exponential decay of
ST corresponding to ωxτ ¼ 1.5ð6Þ. (c) Thermal spin current ST for a nonsuperfluid mixture (above Tc) in configuration (A) where we
observe a few damped oscillations at the trap frequency ωx with an exponentially decaying envelope from which we extract the decay
lifetime, and obtain ωxτ ¼ 11ð2Þ. (d) Same measurement for configuration (B) where we observe a purely exponential decay and extract
ωxτ ¼ 1.2ð4Þ, compatible with the measurement of τ below Tc. To maintain a roughly constant condensed fraction during the
measurement, we limit the observation time to the first 500 ms after excitation. This explains why, due to the different trapping
frequency ωx, more oscillations are shown for configuration (A) than for (B).
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for the thermal part [48]. Figure 3 shows the resulting
predictions for the condensate and thermal contributions to
the spin polarizability, which are respectively defined as
P0 ¼ ðR xs0zdrÞ=N0 and PT ¼ ðR xsTz drÞ=NT . The figure
reveals the occurrence of a large enhancement of P0 with
respect to the T ¼ 0 case, which is caused by the inter-
action with the inside thermal component and is strongly
enhanced by the smallness of ða − a↑↓Þ. The resulting
values for the temperature dependence of the polarization
of the condensate, as well as of the total polarization,
Ptot ¼ ðN0P0 þ NTPTÞ=N, turn out to be practically the
same in the regimes (A) and (B) considered in this work.
Despite the large increase of P0, the total polarization Ptot
turns out to be practically independent of T in a wide range
of temperatures. The above discussion suggests that, in the
collisionless regime, the thermal atoms are locked to the
condensate and oscillate in opposite phase in the spin-
dipole dynamics. In the collisional regime [Fig. 2(b)],
instead, the thermal part quickly relaxes to equilibrium,
because of spin drag.
Using the experimental method introduced in Ref. [14] we

measure the static spin polarizability for the trap geometry (B)
and identify the contributions that arise from the condensate
and from the thermal part. Startingwith both↑;↓ components
perfectly overlapped in the harmonic potential, we apply a
slowly increasing force F↑;↓ to each component that even-
tually shifts their trap minima by �x0. In this way the
global center of mass is unaffected, while the superfluid
and thermal spin components acquire finite relative displace-
ments fS0; STg. The spin polarizability of the condensed and
thermal fractions fP0 ≡ S0=ð2x0Þ;PT ≡ ST=ð2x0Þg are
extracted in the linear regime, i.e., for values of fS0; STg
much smaller than the Thomas-Fermi radius of the condensed
component [14,50]. Figure 4 shows the spin displacements
fS0; STg of the thermal and condensed components of the

mixture as a function of x0 for N0=N ¼ 0.4. From this data,
we extract the polarizability by performing a linear fit around
the origin. The regionwherewe fit the data to extract thevalue
of the polarizabilities corresponds to the small x0 linear
regime (Rx ¼ 230 μm is the Thomas-Fermi radius along x).
The analysis of the data points out the occurrence of a large
polarization of the condensate, in accordance with the
predictions of theory (see Fig. 3).
In conclusion, we have investigated the spin dynamics

and the spin polarizability of a superfluid Bose-Bose mixture
at finite temperature. Our results reveal the occurrence of
undamped spin oscillations, which are observed not only in
the collisionless regime, where the mean field drives a
counterphase oscillation of the thermal part, but also in the
presence of strong collisions, which are responsible for the
relaxation of the thermal component, because of spin drag.
The absence of friction of the spin motion in the collisional
regime provides a direct proof of the spin superfluid nature of
the system.We have also shown that, thanks to the vicinity to
the miscible-immiscible phase transition, the interaction
between the two spin clouds causes, at finite temperature,
a large increase of the polarizability of the condensate with
respect to the T ¼ 0 value. Natural generalizations of the
present work concern the study of persistent spin currents in
ring geometries and the propagation of spin soundwaves and
magnetic solitons [54].
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