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Abstract

We investigate some cryptographic properties of Boolean functions. Some of the

properties we are going to consider include weight, balancedness, nonlinearity and

resiliency. Mainly, we study how the properties of a Boolean function can be related

to the properties of some other functions in a lower dimension. We utilise these

relations to construct balanced and resilient functions. Another aspect which we

consider is the set of linear structures of Boolean functions. Our interest is in

construction of balanced functions which have a trivial set of linear structures.

It is well-known that block ciphers may suffer from two main attacks, namely, dif-

ferential attacks and linear attacks. APN functions are known to provide the best

resistance against differential attacks. We look at some properties of APN functions

in even dimension. We study the linear structures of their components. We show

that there must be at least a component whose set of linear structures is trivial.

In particular, we determine the possible size of the set of linear structures for any

component of an APN permutation. Based on the sizes of the sets of linear struc-

tures for the components, we establish a simple characterization of quadratic APN

functions, and this knowledge is useful in proving some results on a general form for

the number of bent components. We further consider counting bent components in

any quadratic power functions.

Based on the behaviour of second order derivatives, we derive some quantities which

are used for characterization of quadratic and cubic APN functions. We show that

these quantities can also be used to characterize quadratic and cubic Bent functions.

Furthermore, we show that these derived quantities can be linked to the size of the

set of linear structures for any quadratic and cubic partially-bent functions.
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Introduction

We are going to consider the mappings from Fn2 to Fm2 , for positive integers n and

m. These functions are called Boolean functions (or n-Boolean functions) if m = 1

and they are called vectorial Boolean functions if m > 1. They are widely studied

and applied in coding theory, cryptography and other fields. In this thesis, we study

them in relation to their cryptographic properties. The properties of (vectorial)

Boolean functions play a critical role in cryptography, particularly in the design of

symmetric key algorithms in block cipher, nonlinear filters and combiners in stream

ciphers. Some authors refer vectorial Boolean functions to as substitution-boxes

(S-boxes) or multi-output Boolean functions.

Differential and linear cryptanalysis are the most well-known and efficient attacks

against block ciphers. The underlying vectorial Boolean functions need to satisfy

some desirable properties, such as the differential uniformity and nonlinearity, in

order for the cryptosystem to be resistible to such attacks. Functions with high

nonlinearity have better resistance with respect to linear attack and those with low

differential uniformity have better resistance with respect to differential attacks.

A vectorial Boolean function with differential uniformity two is optimal. Any func-

tion which attains this value is said to be Almost Perfect Nonlinear (APN). It is

well-known that 2n−1 − 2
n−1
2 is an upper bound on the nonlinearity of vectorial

Boolean function from Fn2 to itself and the functions achieving this optimal nonlin-

earity are called Almost Bent (AB).

Balancedness is another aspect sought in cryptographic Boolean functions and many

authors have studied balanced Boolean functions with respect to their desired cryp-
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tographic properties. Cryptographic Boolean functions should satisfy various crite-

ria simultaneously, mainly balancedness, high nonlinearity and good autocorrelation

properties, to resist linear cryptanalysis and differential cryptanalysis particularly.

Generally, it is a difficult task to find a function with properties which are necessary

for a cryptosystem to possess robust resistance against most of the known attacks.

Thus, in some way, a compromise (trade off) is needed when picking a function of

good cryptographic properties. For instance, bent functions [the functions from Fn2
to F2 which achieve the upper bound 2n−1 − 2n/2−1 on the nonlinearity when n is

even] have high nonlinearity but unfortunately they do not possess other desirable

cryptographic properties. Among other properties, bent funtions are not balanced,

not resilient and their algebraic degrees cannot exceed n/2.

Now we give an outline how this thesis is organised. Chapter 1 reports some known

results which form the foundation for what is being studied (all preliminaries are in-

cluded in this chapter). Our work is presented in Chapters 2, 3 and 4. In Chapter 2,

we are mainly concerned with weight, balancedness, linear structures, resiliency and

nonlinearity of Boolean functions. In Section 2.1, we show how the weight of any

Boolean function can be related to the weights of some other functions in a lower

dimension, we prove some results on weight of “splitting” functions and a special

class of cubic Boolean functions, and we provide an algorithm which can be used

to compute the weight of any cubic Boolean function. In Section 2.2, we construct

balanced Boolean functions and determine those which have trivial linear space (the

set of linear structures) and in Section 2.3, we construct resilient functions with re-

spect to monotone sets. In Section 2.4, we give an inequality relation which relates

the nonlinearity of any Boolean function to the nonlinearity of some functions in a

lower dimension.

In Chapter 3, we derive some quantities based on the behaviour of second derivatives

of Boolean functions and we show that these quantities can be used for characteri-

zation of quadratic and cubic APN functions. In Chapter 4, we focus our attention

on components of APN and quadratic power functions in even dimension. In Sec-

tion 4.1, we show that any APN function possess at least one component whose linear

space is trivial. In Section 4.2, we establish a simple characterization of quadratic
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APN functions based on the dimensions of linear spaces of their components and

we utilize this knowledge to prove a general form for the number of bent compo-

nents. Lastly, in Section 4.3, we determine the number of bent components in any

quadratic power function.

NB: Any result in Chapters 2, 3 and 4 in this thesis which does not have a direct

citation is my own.



Chapter 1

Preliminaries

In this chapter, we report the results which form the foundation for this thesis. The

first section presents some definitions and results related to Boolean functions and

in the second section we talk about some results in vectorial Boolean functions.

1.1 Boolean functions

In this section, we report some definitions and well-known results on Boolean func-

tions and in case more details are sought, the reader is referred to [3, 4, 8, 11, 15,

16, 17, 24, 27, 37, 49].

1.1.1 Some definitions and notations

In this thesis, the field with two elements, 0 and 1, is denoted by F (other authors

use F2 or Z2). We use n or m to represent a natural number. Let Fn be the n-

dimensional vector space defined over the finite field F. Any vector in Fn is denoted

by v (instead of commonly used notations such as ~v or v). The all-one vector is

denoted by 1 = (1, 1, .., 1) and the all-zero vector is denoted by 0 = (0, 0, ..., 0). The

vector with coordinate 1 at ith position and 0 elsewhere is denoted by ei. We loosely

4



1.1. BOOLEAN FUNCTIONS 5

use ordinary addition + for XOR sum ⊕. For any two vectors v = (v1, ..., vn) and

w = (w1, ..., wn) in Fn, a dot product of v and w is given by v · w =
∑n

i=1 viwi.

For any two binary vectors x = (x1, ..., xn) and y = (y1, ..., yn) in Fn, we define the

sets sup(x) = {i | xi 6= 0} (it is commonly called support of x) and δ(x, y) = {i |
xi 6= yi}. The size of a set A is denoted by |A|. We define the Hamming weight of

the binary vector x as w(x) = | sup(x)| and the Hamming distance between the two

binary vectors x and y is defined as d(x, y) = |δ(x, y)| = | sup(x+ y)|.

A Boolean function is any function f from Fn to F. The set of all Boolean functions

is denoted by Bn. If f ∈ Bn depends on m variables only, with m < n, then we

denote its restriction to Fm by f�Fm . Clearly, we have f�Fm ∈ Bm. The support of

f ∈ Bn is defined as sup(f) = {x ∈ Fn | f(x) 6= 0}. The weight of f is defined as

w(f) = | sup(f)| and the distance between f and g is given by d(f, g) = w(f + g).

A Boolean function f is called balanced if w(f) = 2n−1. An image of a function f is

denoted by Im(f), that is, Im(f) = {f(x) | x ∈ Fn}.

1.1.2 Representation of Boolean functions

We describe four representations of Boolean functions which are used in coding and

cryptography.

The algebraic normal form

The most used representation of any Boolean function f is the algebraic normal form

(ANF for short) which is the n-variable polynomial representation over F given by

f(x1, ..., xn) =
∑
u∈Fn

au

(
n∏
i=1

xuii

)
=
∑
u∈Fn

aux
u,

where au ∈ F and xu =
∏n

i=1 x
ui
i is the monomial in F[x1, ..., xn]/(x2

1+x1, ..., x
2
n+xn).

The algebraic degree (or simply degree) of f , denoted by deg(f), is the maximal value

of the weight of u such that au 6= 0 in ANF, that is, deg(f) = maxau 6=0 w(u). In

[19], it is shown that ANF exists and is unique.
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A Boolean function f is called linear if deg(f) ≤ 1 and f(0) = 0. Alternatively,

for any a ∈ Fn, we define a linear function, denoted la, as la(x) = a · x. A Boolean

function is called affine if its degree is less than or equal to 1. In other words,

affine functions are either linear functions or their complements, both denoted by

ϕa(x) = la(x) + c, where a ∈ Fn and c ∈ F. The set of all affine functions is denoted

by An. Since a ∈ Fn and c ∈ F have no constraints in the definition of affine

functions, so |An| = 2 · 2n = 2n+1. A Boolean function is quadratic if its degree is 2

and cubic if its degree is 3.

The Truth-Table

Any Boolean function f can also be represented by the Truth Table, which gives

the value of f at all of 2n vectors in Fn.

Let Fn = {P0, ..., P2n−1}, where Pi is a vector corresponding to binary expansion

of i and let f ∈ Bn. Then the Truth Table (TT) of f is given by the value vector

TTf = (f(P0), ..., f(P2n−1)). It is clear that the length of TTf is 2n.

For instance, when n = 3, we can have a Boolean function f which corresponds to

the following TT:

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

TTf 0 1 0 1 0 1 1 0

Table 1: Truth Table

Since each coordinate of the vector TTf arbitrarily takes any element of F, then

clearly there are 22n Boolean functions.

The ANF can be computed directly from the TT with a complexity of O(n2n)

operations by Butterfly Algorithm (sometimes known as Fast Möbius Transform)

and vice versa.
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The Fourier spectrum

The Fourier transform of a Boolean function f is defined by

Ff (a) =
∑
x∈Fn

f(x)(−1)a·x.

The Fourier spectrum of a Boolean function f is the data/list of all the values of

Ff (a), a ∈ Fn, that is, the multi-set {Ff (a), a ∈ Fn}. The Fourier spectrum can

also be considered as a representation of Boolean functions (see [18]). It can also be

computed from the TT by a Butterfly algorithm.

The numerical normal form

For this representation of Boolean functions, we use [18, 19] as our standard refer-

ence.

Definition 1. Let f be a real-valued function on Fn. We call Numerical Normal

Form (NNF) of f , the following expression of f as a polynomial with real coefficients:

f(x1, ..., xn) =
∑

I∈P(N)

λI

(
n∏
i∈I

xi

)
=

∑
I∈P(N)

λIx
I , (1.1)

where P(N) denotes the power set of N = {1, ..., n}.

The NNF is another representation of Boolean functions over the reals. We call

the (global) degree of the NNF of a function its numerical degree. When NNF

coefficients are taken modulo 2, they correspond to the ANF coefficients, that is:

aI = λI (mod 2).

Since the ANF is the modulo 2 version of the NNF, so the numerical degree is at

least the algebraic degree.
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The ANF of any Boolean function can be deduced from its NNF by reducing it

modulo 2. Also NNF can be deduced from ANF. This is the case since we have

f(x) =
∑

I∈P(N)

aIx
I ⇐⇒ (−1)f(x) =

∏
I∈P(N)

(−1)aIx
I

⇐⇒ 1− 2f(x) =
∏

I∈P(N)

(1− 2aIx
I). (1.2)

Expanding the product in the last equality we obtain:

∏
I∈P(N)

(1− 2aIx
I) = 1 +

2n∑
k=1

(−2)k
∑

{I1, ..., Ik}|
I1 ∪ · · · ∪ Ik = I

aI1 · · · aIkxI .

where “{I1, ..., Ik}|I1 ∪ · · · ∪ Ik = I” means that the multi-indices I1, ..., Ik are all

distinct, in indefinite order, and that their union equals I.

So, using Equation 1.2, we obtain the NNF as

f(x) =
2n∑
k=1

(−2)k−1
∑

{I1, ..., Ik}|
I1 ∪ · · · ∪ Ik = I

aI1 · · · aIkxI

from which we deduce that

λI =
2n∑
k=1

(−2)k−1
∑

{I1, ..., Ik}|
I1 ∪ · · · ∪ Ik = I

aI1 · · · aIk . (1.3)

Transformation from ANF to NNF can be accomplished by making use of the fol-
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lowing conversion between binary and integer arithmetic:

a⊕ b = a+ b− 2ab.

1.1.3 Reed-Muller codes

Reed-Muller codes are named after I.S. Reed and D.E. Muller who introduced them.

These codes can be defined over Fq (a field of q elements) but we confine ourselves

to the binary case, that is, when q = 2. In binary case, Read-Muller codes are easily

defined in terms of Boolean functions and some authors, for this reason, consider

Reed-Miller codes as another representation of Boolean functions.

Definition 2 (Reed-Muller codes). Let n ∈ N and r be an integer such that

0 ≤ r ≤ n. The r-th order binary Reed-Muller code of length 2n, denoted by R(r, n),

is the set of the value vectors of the all Boolean functions in Bn with degree at most

r:

R(r, n) = {TTf | f ∈ Bn, deg(f) ≤ r}.

In particular, R(0, n) is composed of all-zero and the all-one 2n-bit words, R(1, n) =

An and R(n, n) contains all 2n-bit words (i.e., R(n, n) = F2n = Bn).

Next, we state some well-known properties satisfied by Reed-Muller codes.

Proposition 3. Let n ∈ N and r be an integer such that 0 ≤ r ≤ n.

1. R(r, n) is a linear code,

2. The value vectors of all monomials of degree at most r form a basis of R(r, n),

3. dimR(r, n) =
∑r

i=0

(
n
i

)
,

4. R(r − 1, n) ⊂ R(r, n).
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1.1.4 Equivalence of Boolean functions

We earlier saw that |Bn| = 22n , so it can be appreciated that the number of Boolean

functions of n variables increases so fast with a minor increase in size of n. This

makes it so difficult to find functions with good cryptographic properties such as

balancedness, resiliency, high nonlinearity, etc. Equivalence relations, under which

some cryptographic properties are invariant, are essential tools which help us to

avoid examining all the Boolean functions.

Next, we give definitions of some equivalences which are commonly used in studying

different properties in cryptography.

Definition 4. Let g, h ∈ Bn be related by g(x) = h(Ax+a)+b·x+c, where a, b ∈ Fn,

c ∈ F and A is an n× n nonsingular matrix. We say that g and h are:

1. affine equivalent if b = 0 and c = 0 and we write g ∼A h,

2. affine equivalent modulo constant if b = 0 and we write g ∼A′ h,

3. extended-affine equivalent for any b and c and we write g ∼EA h,

4. inequivalent if no such transformation exists.

We rewrite the first part of Definition 4 by using some notations which will often

be used. Functions g, h : Fn → F are said to be affine equivalent if there exist an

affinity ϕ : Fn → Fn such that g = h◦ϕ. For 1 ≤ i ≤ n and l ∈ An−1, a basic affinity

of Fn maps xi 7→ xi + l(x1, ..., xi−1, xi+1, ..., xn) and fixes all other coordinates.

Remark 5. The relations ∼A, ∼A′ , and ∼EA are obviously equivalence relations,

and if f, g ∈ Bn, then f ∼A g ⇒ f ∼A′ g ⇒ f ∼EA g.

We next present in the following proposition that weight and degree of a Boolean

function are invariant under the equivalence defined.

Proposition 6. Let g, f ∈ Bn. Then

(i) f ∼A g ⇒ w(f) = w(g),
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(ii) f ∼A g ⇒ deg(f) = deg(g),

(iii) f ∼A′ g ⇒ deg(f) = deg(g) if f, g 6= 0, 1,

(iv) f ∼EA g, deg(f), deg(g) ≥ 2⇒ deg(f) = deg(g).

We present the theorem on classification of quadratic Boolean functions, via affine

equivalence, whose proof can be found in [37] page 438.

Theorem 7 (Classification Theorem for Quadratics). Let f ∈ Bn be a quadratic

Boolean function. Then

(i) f ∼A x1x2 + · · ·+ x2i−1x2i + x2i+1, with i ≤ bn−1
2
c, if f is balanced,

(ii) f ∼A x1x2 + · · ·+ x2i−1x2i + c, with i ≤ bn
2
c and c ∈ F, if f is unbalanced.

1.1.5 Autocorrelation function

Definition 8. The correlation (also called bias or imbalance) of a Boolean function

f is

F(f) =
∑
x∈Fn

(−1)f(x).

Lemma 9. For any f ∈ Bn, we have

F(f) = 2n − 2w(f).

Proof. We have

F(f) = |{x ∈ Fn | f(x) = 0}|− |{x ∈ Fn | f(x) = 1}| = 2n− 2|{x ∈ Fn | f(x) = 1}|.

Since w(f) = |{x ∈ Fn | f(x) = 1}|, we have the result.

Remark 10. In other words, Lemma 9 says that

PrX [f(X) = 1] =
w(f)

2n
=

1

2

(
1− F(f)

2n

)
.
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Observe that F(f) = 0 if and only if f is balanced.

Proposition 11. Every non-constant affine function is balanced.

Proof. Recall that la(x) = a ·x is a linear function and ϕa(x) = la(x)+c, with c ∈ F,

is an affine function. Note that ϕa is a non-constant affine function if a is nonzero.

Suppose that c = 0, that is, ϕa = la = a · x. Then

|{x ∈ Fn | ϕa(x) = 0}| = |{x ∈ Fn | a · x = 0}|
= | < a >⊥ |
= 2n−1

which implies that w(ϕa) = w(la) = |Fn| − | < a >⊥ | = 2n−1.

If c = 1 then we have w(ϕa) = w(la + 1) = 2n − w(la) = 2n−1.

Lemma 12. Let la, with a ∈ Fn, be a linear function. Then

F(la) =
∑
x∈Fn

(−1)la(x) =

2n if a = 0

0 otherwise.

Proof. Suppose a = 0. So∑
x∈Fn

(−1)la(x) =
∑
x∈Fn

(−1)a·x =
∑
x∈Fn

(−1)0 =
∑
x∈Fn

1 = 2n.

If a 6= 0 then la(x) = a · x is non-constant and so, by Proposition 11, it is balanced,

that is, F(la) = 0.

Lemma 13. Let f ∈ Bn. Then F(f + 1) = −F(f).

Proof. It is clear that w(f + 1) = 2n − w(f). So we have

F(f + 1) = 2n − 2w(f + 1) = 2n − 2(2n − w(f)) = −2n + 2w(f) = −F(f).

Definition 14. Let f ∈ Bn. If f(x1, ..., xn) ∼A g(x1, ...xs) + h(xs+1, ..., xs), with

g ∈ Bs, h ∈ Bn−s, we say that f is a splitting function.
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Remark 15. It follows from Definition 14 and Theorem 7 that all the quadratic

Boolean functions are splitting functions.

Lemma 16. Let f ∈ Bn be such that f ∼A g(x1, ..., xs) + h(xs+1, ..., xn), with s < n

Then

F(f) = F(g�Fs)F(h�Fn−s) = 2−nF(g)F(h).

Proof. Let X = (y, x) with y ∈ Fs and x ∈ Fn−s. So

F(f) =
∑
X∈Fn

(−1)f(X) =
∑

y∈Fs;x∈Fn−s
(−1)g(y)+h(x)

=
∑
y∈Fs

(−1)g(y)
∑

x∈Fn−s
(−1)h(x) = F(g�Fs)F(h�Fn−s)

= 2−n
(
2n−sF(g�Fs)

)
(2sF(h�Fn−s))

= 2−nF(g)F(h).

It is immediate from Lemma 16 that the following corollary holds.

Corollary 17. Let f be a function on Fn defined by f(X) =
∑k

i=1 gi(Xi), where

Xi ⊂ X = {x1, ...xn} are disjoint, gi ∈ Bni, with ni = |Xi| and let t =
∑k

i=1 ni ≤ n.

Then

F(f) = 2n−t
k∏
i=1

F(gi�Fni ).

Remark 18. If g = h(Mx + a), with M invertible in GLn(F) and a ∈ Fn, then

we have F(g) =
∑

x∈Fn(−1)h(Mx+a) =
∑

y∈Fn(−1)h(y) = F(h), where y = Mx + a

[i.e., if g ∼A h implies F(f) = F(g)]. Hence correlation is invariant under affine

equivalence. Since w(g) is invariant under affine equivalence (see Proposition 6)

and F(g) = 2n − 2w(g), we can also deduce from this that F(g) is invariant under

equivalence.

Theorem 19. Let f be a quadratic Boolean function on n variables, that is, f ∼A
x1x2 + · · · + x2k−1x2k + x2k+1, with k ≤ bn−1

2
c if f is balanced; f ∼A x1x2 + · · · +
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x2k−1x2k + c, with k ≤ bn
2
c and c ∈ F, if f is unbalanced. Then

F(f) =

0 if f is balanced

±2n−k if f is unbalanced.

Proof. Since f is balanced when f ∼A x1x2 + · · ·+ x2k−1x2k + x2k+1, so in this case

F(f) = 0. Observe that when x2k−1x2k is restricted to F2, we have F(x2k−1x2k) = 2.

Applying Lemma 13, Corollary 17 and Remark 18, if f ∼A x1x2 + · · · + x2k−1x2k,

we have F(f) = 2n−2k2k = 2n−k and if f = x1x2 + · · · + x2k−1x2k + 1, we have

F(f) = −2n−k.

The (first-order) derivative of f at a is defined by Daf(x) = f(x + a) + f(x) and

the (second-order) derivative at a and b is DbDaf(x) = f(x) + f(x+ b) + f(x+ a) +

f(x+ a+ b). It is important to note that deg(Daf) < deg(f).

Definition 20. Let f ∈ Bn. The autocorrelation function of f , denoted by r̂f , is

defined as

r̂f : a 7→
∑
x∈Fn

(−1)Daf(x). (1.4)

So r̂f (a) = F(Daf) and it is clear that r̂f (0) = 2n.

1.1.6 Weight of Boolean functions

In Proposition 11, we showed that any non-constant affine function is balanced, so

the weight of any affine function is 0, 2n−1 or 2n.

It can be easily observed from the definition of Boolean functions on n variables

that half of them have degree n. The following property characterize the weights of

these functions.

Proposition 21. Any Boolean function on n variables, with n > 1, has an odd

weight if and only if it has degree n.
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Obviously, odd weight implies that the output distribution of these functions (with

maximal degree) is biased, so they are not suitable to be used in most cryptographic

applications.

We next consider the weight of some splitting functions.

Proposition 22. If f(x, y) ∼A g(x) + h(y), with g ∈ Bm and h ∈ Bn, then

w(f) = 2mw(h�Fn) + 2nw(g�Fm)− 2w(g�Fm)w(h�Fn).

Proof. Since bias of Boolean function is invariant under affine equivalence (see Re-

mark 18), we have

F(f) =
∑

(x,y)∈Fm×Fn
(−1)f(x,y)

=
∑

(x,y)∈Fm×Fn
(−1)g(x)+h(y)

=
∑
x∈Fm

(−1)g(x)
∑
y∈Fn

(−1)h(y)

= F(g�Fm)F(h�Fn). (1.5)

So

w(f) = 2n+m−1 − 1

2
F(f)

= 2n+m−1 − 1

2
F(g�Fm)F(h�Fn)

= 2n+m−1 − 1

2
(2m − 2w(g�Fm)) (2n − 2w(h�Fn))

= 2mw(h�Fn) + 2nw(g�Fm)− 2w(g�Fm)w(h�Fn).

Proposition 23. A function f(x, y) ∼A g(x) + h(y), with g ∈ Bm, h ∈ Bn, x ∈ Fm

and y ∈ Fn, is balanced if and only if either g or h is balanced.

Proof. Recall, from Equation (1.5), that F(f) = F(g�Fm)F(h�Fn). We know that f

is balanced if and only if F(f) = 0 if and only if either F(g�Fm) = 0 or F(h�Fm) = 0
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if and only if either g or h is balanced.

We next report a well-known result which can be found in [37] on page 372.

Proposition 24. A Boolean function g(x1, ..., xn−1)+xn on n variables is balanced.

Proof. It is clear that g(x1, ..., xn−1) + xn is a splitting function. Since xn is a

linear function, so it is balanced (see Proposition 11). The proof is concluded by

Proposition 23.

Corollary 25. Let f ∈ Bn be such that f ∼A x1x2 + · · · + x2k−1x2k + x2k+1, with

k ≤ b(n − 1)/2c, if f is balanced; f ∼A x1x2 + · · · + x2k−1x2k + c, with k ≤ bn/2c
and c ∈ F, if f is unbalanced. Then

w(f) =

2n−1 if f is balanced,

2n−1 ± 2n−k−1 if f is unbalanced.

Proof. The result follows from Theorem 19 and the fact that w(f) = 2n−1 − 1
2
F(f)

(see Lemma 9).

Proposition 26. A monomial in Bn of degree r has the weight 2n−r.

Proof. From Proposition 22, we can assume that g ∈ Br and h ∈ Bn−r such that

g(x) =
∏r

i=1 xi and h = 0. It is clear that w(g�Fr) = 1 and w(h�Fn−r) = 0. So by

applying the formula w(f) = 2n−rw(g�Fr)+2rw(h�Fn−r)−2w(g�Fr)w(h�Fn−r), we have

w(f) = 2n−rw(g�Fr) = 2n−r.

Alternatively, since it is clear that, for (c1, ..., cn) ∈ Fn, g(c1, ..., cn) = 1 if and only

if c1 = · · · = cr = 1, so we have

w(g) = |{x ∈ Fn | g(x) = 1}|
= |{(c1, ..., cn) ∈ Fn | c1 = c2 = · · · = cr = 1}|
= 2n−r.
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Remark 27. If g(x1, ..., xt), with a positive integer t < n, is in Bn then we have

w(g) = 2n−tw(g�Ft) and F(g) = 2n−tF(g�Ft). Furthermore, g is balanced if and only

if g�Ft is balanced and also F(g) = 0 if and only if F(g�Ft) = 0.

1.1.7 Walsh transform of Boolean functions

In this subsection, we define and give some properties of the Walsh transform, a

tool which is crucial in proving different significant results in Boolean functions.

Definition 28. Let f be a Boolean function on n variables. For all a ∈ Fn, the

Walsh transform Wf of a Boolean function f is the function from Fn to Z defined

by

Wf : a 7→ F(f + la) =
∑
x∈Fn

(−1)f(x)+a·x

The valueWf (a) is called the Walsh coefficient of f at a point a and we call the list

(or multiset) of the 2n Walsh coefficients of f (i.e., {Wf (a) | a ∈ Fn}) the Walsh

spectrum of f . The list of the 2n absolute values of Walsh coefficients of f (i.e.,

|Wf (a)|, for all a ∈ Fn) is called the extended-Walsh spectrum.

We now consider some properties of Walsh transform.

Proposition 29. Let f ∈ Bn. Then, for all b ∈ Fn, we have∑
a∈Fn

(−1)a·bWf (a) = 2n(−1)f(b).

Proof. We have∑
a∈Fn

(−1)a·bWf (a) =
∑
a∈Fn

∑
x∈Fn

(−1)a·b(−1)f(x)+a·x

=
∑
x∈Fn

(−1)f(x)
∑
a∈Fn

(−1)a·(x+b)

=
∑
x∈Fn

(−1)f(x)F(lx+b) = 2n(−1)f(b)
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where the last equality follows from Lemma 12 which states that F(lx+b) = 2n if

x = b and 0 otherwise.

Proposition 30 (Parseval’s relation). Let f ∈ Bn. Then we have∑
a∈Fn
W2

f (a) = 22n.

Proof. We have ∑
a∈Fn
W2

f (a) =
∑
a∈Fn

∑
x∈Fn

(−1)f(x)+a·x
∑
y∈Fn

(−1)f(y)+a·y

=
∑
x∈Fn

∑
y∈Fn

(−1)f(x)+f(y)
∑
a∈Fn

(−1)a·(x+y)

= 2n
∑
x∈Fn

(−1)f(x)+f(x) (1.6)

= 2n
∑
x∈Fn

(−1)0 = 22n,

where Equation (1.6) follows from Lemma 12, that is,
∑

a∈Fn(−1)a·(x+y) = 2n if

x = y and 0 otherwise.

Next, we show how the Fourier transform is related to Walsh transform.

Lemma 31. Let f be a Boolean function on n variables. Then

Wf (a) = 2nδ(a)− 2Ff (a),

where δ(a) = 1 if a = 0 and δ(a) = 0 otherwise.

Proof. First note that (−1)f(x) = 1− 2f(x). We have

Wf (a) =
∑
x∈Fn

(−1)f(x)+a·x

=
∑
x∈Fn

(−1)f(x)(−1)a·x
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=
∑
x∈Fn

(1− 2f(x))(−1)a·x

=
∑
x∈Fn

(−1)a·x − 2
∑
x∈Fn

f(x)(−1)a·x

= F(la)− 2
∑
x∈Fn

f(x)(−1)a·x

= 2nδ(a)− 2Ff (a),

where the last step follows from the fact that F(la) = 2nδ(a)(see Lemma 12).

We now consider the Fourier transform of f on an arbitrary subspace of Fn.

Theorem 32. Let f be a Boolean function on n variables. Let S be an arbitrary

subspace of Fn and S⊥ be the dual of S. Then∑
y∈S

Ff (y) = 2dimS
∑
y∈S⊥

f(y).

Proof. We have ∑
y∈S

Ff (y) =
∑
y∈S

∑
x∈Fn

f(x)(−1)y·x

=
∑
x∈Fn

f(x)
∑
y∈S

(−1)y·x

= 2dimS
∑
x∈S⊥

f(x).

The following corollary can be proved in a similar way as Theorem 32.

Corollary 33. Let f be a Boolean function on n variables. Let S be an arbitrary

subspace of Fn and S⊥ be the dual of S. Then∑
y∈S

Wf (y) = 2dimS
∑
y∈S⊥

(−1)f(y).

Taking S to be the set of all vectors y “included” in a, that is, y ≤ a meaning that



20 CHAPTER 1. PRELIMINARIES

yi ≤ ai, for all 1 ≤ i ≤ n and ā = 1 − a, then Corollary 33 transformed into the

following.

Corollary 34. For any f ∈ Bn,∑
y≤a

Wf (y) = 2w(a)
∑
y≤ā

(−1)f(y).

We next present a result which shows some relations between autocorrelation and

Walsh transform of a Boolean function.

Proposition 35. Let f ∈ Bn and u ∈ Fn. Then we have∑
x∈Fn

r̂f (x)(−1)u·x =W2
f (u).

Proof. We have∑
x∈Fn

r̂f (x)(−1)u·x =
∑
x∈Fn

∑
y∈Fn

(−1)Dxf(y)+u·x

=
∑
x∈Fn

∑
y∈Fn

(−1)f(y+x)+f(y)+u·x+u·y+u·y

=
∑
y∈Fn

(−1)f(y)+u·y
∑
x∈Fn

(−1)f(x+y)+u·(x+y)

=W2
f (u).

In the next result we show that the extended-Walsh spectrum is invariant under

extended-affine equivalence.

Theorem 36. Let g and h be Boolean functions on n variables such that g ∼EA h.

Then {|Wg(a)|, a ∈ Fn} = {|Wh(a)|, a ∈ Fn}.

Proof. Suppose that g and h are extended-affine equivalent, that is, g = h(Ax +

a) + b · x + c, for some a, b ∈ Fn, c ∈ F and A is an n × n nonsingular matrix in
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GLn(F). So we have

Wg(u) =
∑
x∈Fn

(−1)g(x)+u·x

=
∑
x∈Fn

(−1)h(Ax+a)+(b+u)·x+c

= (−1)(b+u)·(A−1a)+c
∑
y∈Fn

(−1)h(y)+(b+u)·(A−1y)

For any y ∈ Fn, we have

(b+ u) · (A−1y) =
n∑
i=1

(bi + ui)(A
−1y)i

=
n∑
i=1

n∑
j=1

(bi + ui)A
−1
ij yj

=
n∑
j=1

yj

n∑
i=1

(bi + ui)A
−1
ij

= y · ((A−1)T (b+ u))

Let µ = (b+ u) · (A−1a) + c and w = (A−1)T (b+ u). We thus obtain

Wg(u) = (−1)µ
∑
y∈Fn

(−1)h(y)+y·w = (−1)µWh (w) (1.7)

from which the result follows.

Now we consider the Walsh transform of some splitting functions.

Proposition 37. For g ∈ Bm and h ∈ Bn, define f(x, y) = g(x) + h(y) on Fm+n.

Then, for z = (a, b) ∈ Fm × Fn,

Wf (z) =Wg�Fn (a)Wh�Fn (b).
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Proof. For z = (a, b) ∈ Fm × Fn, we have

Wf (z) =
∑

(x,y)∈Fm×Fn
(−1)f(x,y)+a·x+b·y =

∑
(x,y)∈Fm×Fn

(−1)g(x)+h(y)+a·x+b·y

=
∑
x∈Fm

(−1)g(x)+a·x
∑
y∈Fn

(−1)h(y)+b·y

=Wg�Fn (a)Wh�Fn (b).

Next, we determine the Walsh transform of quadratic Boolean functions.

Theorem 38. Let f ∈ Bn be such that f ∼A q = x1x2 + · · ·+x2k−1x2k +x2k+1, with

k ≤ bn−1
2
c, if f is balanced and f ∼A q̄ = x1x2 + · · · + x2k−1x2k + c, with k ≤ bn

2
c

and c ∈ F, if f is unbalanced. Then, for any a ∈ Fn, Wf (a) ∈ {0,±2n−k}

Proof. We have

Wq(a) =
∑
x∈Fn

(−1)q(x)+a·x = F(q(x) + a · x)

If q(x) + a · x is balanced then Wq(a) = F(q(x) + a · x) = 0. If q(x) + a · x is

unbalanced then q(x) + a · x ∼A x1x2 + · · · + x2k−1x2k + c, with c ∈ F, and so

F(q(x) + a · x) = ±2n−k, by Theorem 19. Thus, Wq(a) ∈ {0,±2n−k}. In a similar

manner, we can show that Wq̄(a) ∈ {0,±2n−k}. We deduce from Equation (1.7)

that Wf (a) ∈ {0,±2n−k}.

Definition 39. An element a ∈ Fn is a linear structure of a Boolean function f on

Fn if Daf is a constant. Define V (f) = {a ∈ Fn|Daf is a constant}. The set V (f)

is said to be the linear space of a Boolean function f .

In [16], the Walsh transform of a quadratic Boolean function is presented in a dif-

ferent form.

Theorem 40. Let f ∈ Bn be a quadratic function. Then, for a ∈ Fn, we have

Wf (a) ∈
{

0,±2(n+`)/2
}
, where ` = dimV (f).
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1.1.8 Nonlinearity of Boolean functions

Nonlinearity of a Boolean function is an important property in cryptography and

it is desirable for the Boolean functions used in designing cryptographic schemes to

have high nonlinearity, since such schemes are believed to have high resistance to

linear attacks. In this subsection, we define and give some results on nonlinearity of

Boolean functions.

Definition 41. Let f ∈ Bn. Then the nonlinearity of f is defined as

N (f) = min
a∈Fn

d(f, ϕa),

where ϕa = a · x+ c is in An.

The distance between a Boolean function f and an affine function ϕa is related to

the Walsh transform Wf (a) as follows:

Lemma 42. Let f be a Boolean function on n variables. Then, for a ∈ Fn,

d(f, ϕa) = 2n−1 ± 1

2
Wf (a).

Proof. We have ϕa = a · x+ c, with c ∈ F. So

d(f, ϕa) = w(f + ϕa) = 2n−1 − 1

2
F(f + ϕa)

= 2n−1 − 1

2
F(f + a · x+ c)

=

2n−1 − 1
2
F(f + a · x) if c = 0

2n−1 + 1
2
F(f + a · x) if c = 1 (see Lemma 13)

= 2n−1 ± 1

2
Wf (a).

We next apply Lemma 42 to relate the nonlinearity to Walsh transform of a Boolean

function.

Theorem 43. Let f ∈ Bn. Then N (f) = 2n−1 − 1
2

maxa∈Fn |Wf (a)|.
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Proof. By applying Lemma 42, we have

N (f) = min
a∈Fn

d(f, ϕa)

= min
a∈Fn

(
2n−1 ± 1

2
Wf (a)

)
= 2n−1 − 1

2
max
a∈Fn
|Wf (a)|.

In the following result we show that two extended-affine equivalent Boolean functions

have the same nonlinearity.

Corollary 44. Let g, h ∈ Bn be such that g ∼EA h. Then N (g) = N (h).

Proof. The proof follows from Theorem 43 and the fact, in Theorem 36, that the

extended-Walsh spectrum is invariant under extended-affine equivalence.

Corollary 45. If f ∈ Bn then maxa∈Fn |Wf (a)| ≥ 2
n
2 .

Proof. Applying Parseval’s relation, we have

max
a∈Fn
W2

f (a) ≥ 22n

2n
= 2n ⇐⇒ max

a∈Fn
|Wf (a)| ≥ 2

n
2 .

By Theorem 43 and Corollary 45, the following result holds.

Corollary 46. Let f ∈ Bn. Then N (f) ≤ 2n−1 − 2
n
2
−1.

Since, for any quadratic function f , Wf (a) ∈ {0,±2n−k} (see Theorem 38), so the

following result which can be found in [26] on page 134 is deduced.

Corollary 47. Let f ∈ Bn be such that f ∼A q = x1x2 + · · ·+x2k−1x2k+x2k+1, with

k ≤ bn−1
2
c if f is balanced and f ∼A q̄ = x1x2 + · · · + x2k−1x2k + c, with k ≤ bn

2
c

and c ∈ F, if f is unbalanced. Then N (f) = 2n−1 − 2n−k−1.

In a different form, when we apply the result in Theorem 40, the nonlinearity of

quadratic functions is given as in the following.
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Corollary 48 ([16]). Let f ∈ Bn be a quadratic function. Then

N (f) = 2n−1 − 2
n+`
2
−1,

where ` = dimV (f).

The following lemma can be found in [27] on page 134.

Lemma 49. Any two quadratic Boolean functions g and h on n variables are affine

equivalent if and only if w(g) = w(h) and N (g) = N (h).

The following result of a spitting function can be found in [49] on page 80.

Corollary 50. Let f = g(x) + h(y), with x ∈ Fn and y ∈ Fm. Then we have

N (f) = 2mN (g�Fn) + 2nN (h�Fm)− 2N (g�Fn)N (h�Fm).

Proof. We know from Proposition 37 that, for z = (a, b) ∈ Fn × Fm, we have

Wf (z) =Wg�Fn (a)Wh�Fm (b).

Clearly, from the definition of nonlinearity, we have

max
a∈Fm

|Wg�Fn (a)| = 2n − 2N (g�Fn) and max
b∈Fm
|Wh�Fm (b)| = 2m − 2N (h�Fm).

So we have

N (f) = 2n−1 − 1

2
max

z∈Fn×Fm
|Wf (z)|

= 2n−1 − 1

2
max

(a,b)∈Fn×Fm
|Wg�Fn (a)Wh�Fm (b)|

= 2n−1 − 1

2

(
max
a∈Fs
|Wg�Fn (a)|

)(
max
b∈Fm
|Wh�Fm (b)|

)
= 2n−1 − 1

2
(2s − 2N (g�Fn)) (2m − 2N (h�Fm))

= 2mN (g�Fn) + 2nN (h�Fm)− 2N (g�Fn)N (h�Fm).



26 CHAPTER 1. PRELIMINARIES

1.1.9 Plateaued functions

Definition 51. A function f in Bn is said to be plateaued if its Walsh coefficients

take at most three values: 0 and ±ϑ. The value ϑ is called the amplitude of the

plateaued function f .

Proposition 52. A Boolean function f on n variables is plateaued if and only if

there exists σ such that, for every x ∈ Fn,
∑

a,b∈Fn(−1)DaDbf(x) = σ. The amplitude

ϑ of f is related to σ by σ = ϑ2.

It is immediate that all linear functions are plateaued and the same is true for

quadratic functions (this can also be verified by Theorem 38).

1.1.10 Bent functions

In this subsection, we define and give some properties of bent functions.

Definition 53. Let f ∈ Bn, with n even. A function f is bent if and only if

N (f) = 2n−1 − 2
n
2
−1. Equivalently, a Boolean function f is bent if and only if

Wf (a) = ±2
n
2 , for all a ∈ Fn.

Next, we state a result which relate bent functions to its first-order derivatives.

Theorem 54. A Boolean function f on n variables is bent if and only if Daf is

balanced for any nonzero a ∈ Fn.

For a given Boolean function f , we define a real valued function by

f̂(x) = (−1)f(x) = 1− 2f(x).

Definition 55. Let f ∈ Bn be a bent function. Then a Boolean function f̃ is the

dual of f if, for a ∈ Fn,

Wf (a)

2
n
2

= (−1)f̃(a) = 1− 2f̃(a). (1.8)
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Proposition 56. Let f ∈ Bn be bent. Then its dual f̃ is bent.

Proof. Since f is bent then, by definition, we have Wf (a) = ±2n/2, for all a ∈ Fn.

Now we need to show that Wf̃ (a) = ±2n/2, for all a ∈ Fn. Thus, we have

Wf̃ (a) =
∑
x∈Fn

(−1)f̃(x)+a·x

=
∑
x∈Fn

Wf (x)

2n/2
(−1)a·x (by definition of dual)

=
1

2n/2

∑
x∈Fn

∑
y∈Fn

(−1)f(y)+x·y+a·x

=
1

2n/2

∑
y∈Fn

(−1)f(y)
∑
x∈Fn

(−1)x·(y+a)

=
1

2n/2
(
(−1)f(a)

)
(2n) (apply Lemma 12)

= 2n/2(−1)f(a) = ±2n/2.

Hence it implies that f̃ is also bent.

Theorem 57 (Rothaus’s bound). Let f ∈ Bn be a bent function. Then, for n > 2,

deg(f) ≤ n/2.

Proof. Let f ∈ Bn be bent and n > 2. By Corollary 34, we have∑
y≤a

Wf (y) = 2w(a)
∑
y≤ā

(−1)f(y).

Equivalently, we can write∑
y≤a

Wf (y) = 2w(a)
∑
y≤ā

(1− 2f(y)). (1.9)

Since f is bent, by Equation (1.8) that defines the dual f̃ , we obtain

Wf (y) = 2
n
2 − 2

n
2

+1f̃(y)). (1.10)
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Substituting (1.10) in Equation (1.9) we have∑
y≤ā

(
2
n
2 − 2

n
2

+1f̃(y)
)

= 2w(ā)
∑
y≤a

(1− 2f(y))

⇐⇒ 2−w(ā)
∑
y≤ā

(
2
n
2 − 2

n
2

+1f̃(y)
)

=
∑
y≤a

(1− 2f(y))

⇐⇒ 2−w(ā)
(
2
n
2

+w(ā)
)
− 2

n
2
−w(ā)+1

∑
y≤ā

f̃(y) = 2w(a) − 2
∑
y≤a

f(y)

⇐⇒ 2w(a)−1 − 2
n
2
−1 + 2

n
2
−w(ā)

∑
y≤ā

f̃(y) =
∑
y≤a

f(y)

⇐⇒
∑
y≤a

f(y) = 2w(a)−1 − 2
n
2
−1 + 2w(a)−n

2

∑
y≤ā

f̃(y), (1.11)

where Equation (1.11) follows from the fact that w(ā) = n− w(a).

Note that f can be written as

f(x) =
∑
a∈Fn

g(a)xa (1.12)

where the coefficients are given by

g(a) =
∑
y≤a

f(y)

(see [37], Theorem 1, p. 372). So the monomial xa is present in f(x) if and only

if g(a) is odd. Since if w(a) > n/2, with n > 2, implies that w(a) − n/2 ≥ 1,

then g(a) =
∑

y≤a f(y) in (1.11) is even [i.e., g(a) ≡ 0 (mod 2)]. Thus, f does not

contain any monomial of degree > n/2. Hence f must have at most degree n/2.

Given two bent functions, one with m variables and another one with n variables,

we can construct another bent function on m+ n variables as in the following.

Theorem 58. For g ∈ Bm and h ∈ Bn, define f(x, y) = g(x) + h(y) on Fm+n,

x ∈ Fm and y ∈ Fn. Then f is bent if and only if g and h are bent.

Proof. By Proposition 37, Wf (z) = Wg(a)Wh(b), for z = (a, b) ∈ Fm × Fn. If g
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and h are both bent, then Wg(a) = ±2m/2 and Wh(b) = ±2n/2. Thus we have

Wg(a) = ±2(m+n)/2, and so f is bent.

Conversely, assume that f is bent. We prove that g and h are both bent. Suppose,

by contradiction, that g is not bent. Then it follows that maxu∈Fn |Wg(u)| > 2m/2.

Thus, we must have maxv∈Fm |Wh(v)| < 2n/2, since

2(m+n)/2 = max
w=(u,v)∈Fn×Fm

|Wf (w)|

= max
(u,v)∈Fn×Fm

(|Wg(u)||Wh(v)|)

=

(
max
u∈Fn
|Wg(u)|

)(
max
v∈Fn
|Wh(v)|

)
.

This contradicts Corollary 45, that is, maxv∈Fn |Wh(v)| ≥ 2n/2.

Observe that the Walsh transform of g = x1x2, for any a ∈ F2, is Wf (a) = ±2, so g

is bent. Thus, the following corollary holds by Theorem 58.

Corollary 59. The function f(x1, ..., x2k) = x1x2 + · · · + x2k−1x2k, k ≥ 1 on 2k

variables, is bent.

By definition of bent functions and Corollary 44, we have the following result.

Corollary 60. Let g, h ∈ Bn be such that g ∼EA h. Then g is bent if and only if h

is bent.

Theorem 61. Let f ∈ Bn be a bent functions. Then w(f) = 2n−1 ± 2
n
2
−1.

Proof. By definition f is bent ⇐⇒ Wf (a) = ±2
n
2 , for any a ∈ Fn. So it implies that

F(f) =Wf (0) = ±2
n
2 . Hence, by Lemma 9, w(f) = 2n−1− 1

2
F(f) = 2n−1±2

n
2
−1

1.1.11 Partially-bent functions

We now define partially-bent functions as in [7].
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Definition 62. A Boolean function f is partially-bent if there exists a linear sub-

space W of Fn such that the restriction of f to W is affine and the restriction of f

to any complementary subspace U of W , W ⊕ U = Fn, is bent.

That is, for all x ∈ U and y ∈ W ,

f(x+ y) = f(x)︸︷︷︸
bent part

+ f(y)︸︷︷︸
affine part

. (1.13)

Equivalently, as in [21], a Boolean function f is called partially-bent if, for any

a ∈ Fn, Daf is either balanced or constant.

Remark 63. The linear subspace W of Fn, in Definition 62, is formed by the set

of all linear structures of f , that is, W = V (f). Observe that since bent functions

exist only in even dimensions then dimU = n − dimV (f) is even, implying that

dimV (f) is even if n is even and it is odd if n is odd. The dimension of V (f) is 0

if and only if f is bent.

Let x = y + z, where y ∈ U and z ∈ V (f). Then, for any a ∈ V (f) \ {0},

Daf(x) = f(x+ a) + f(x) = f(y + z + a) + f(y + z)

= f(y) + f(z) + f(a) + f(y) + f(z) = f(a). (1.14)

The result in the following corollary is immediately deduced from Theorem 7 and

Definition 62.

Corollary 64. Every quadratic function is partially-bent.

1.1.12 Semi-bent functions

We have seen that bent functions exist only in even dimension and they are the only

Boolean functions which attain maximal nonlinearity. We next define, as in [40], a

family of functions which attain relatively high nonlinearity in odd dimension. This

family of functions was first introduced by Chee et al. in [24].
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Definition 65. Let f be a Boolean function of n variables, with n odd. Then f is

called semi-bent if N (f) = 2n−1−2
n−1
2 . Equivalently, for n odd, semi-bent functions

are those Boolean functions whose Walsh transform takes the values: 0 or ±2
n+1
2 .

For n even, f ∈ Bn is called semi-bent if N (f) = 2n−1 − 2
n
2 . Equivalently, for n

even, semi-bent functions are those Boolean functions whose Walsh transform takes

the values 0 or ±2
n+2
2 .

Remark 66. For odd n ≤ 7, the maximal nonlinearity of a Boolean functions in

Bn attainable is 2n−1−2
n−1
2 and for odd n > 7, the maximal nonlinearity can exceed

this bound (see [38]).

By Corollary 44, the following holds.

Corollary 67. Let g, h ∈ Bn be such that g ∼EA h. Then g is semi-bent if and only

if h is semi-bent.

Proposition 68. If f ∈ Bn, with n odd, is a semi-bent function then

w(f) ∈
{

2n−1, 2n−1 ± 2
n−1
2

}
.

Proof. By definition of semi-bent function f , we have F(f) ∈
{

0,±2
n+1
2

}
from

which the result follows.

The following corollary can be easily proved.

Corollary 69. Let f ∈ Bn be a quadratic Boolean function and c ∈ F. Then

1. for even n, f is bent if and only if

f ∼A x1x2 + · · ·+ xn−1xn + c.

2. for even n, f is semi-bent if and only if

f ∼A x1x2 + · · ·+ xn−3xn−2 + xn−1 or f ∼A x1x2 + · · ·+ xn−3xn−2 + c.

3. for odd n, f is semi-bent if and only if

f ∼A x1x2 + · · ·+ xn−2xn−1 + xn or f ∼A x1x2 + · · ·+ xn−2xn−1 + c.
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1.1.13 Resilient Boolean functions

We begin with a classical approach to correlation-immune and resilient functions

and later the generalised approach by Braeken et al. in [4] is considered.

Definition 70 ([3]). A Boolean function f on n variables is correlation-immune

(CI) of order t (or simply write t-CI function) if and only if Wf (u) = 0, for all

u ∈ Fn such that 1 ≤ w(u) ≤ t.

The output of a correlation-immune function of order t is statistically independent

of the combination of any t of its inputs. In other words, a Boolean function f(x)

in n variables is correlation immune of order t if, for any fixed subset of t variables,

the probability that, given the value of f(x), the t variables have any fixed set of

values is always 2−t, no matter what the choice of the fixed set of t values is.

Definition 71 ([3]). A balanced function which is of correlation-immune of order t

is said to be resilient or it is said to satisfy the property of resiliency (simply write

t-resilient function). Equivalently, a Boolean function f on n variables is said be

t-resilient if and only if Wf (u) = 0, for all u ∈ Fn, such that 0 ≤ w(u) ≤ t.

Next, we give a result which relates the order of a resilient function to its degree.

Theorem 72. For any t-resilient Boolean function f , deg(f) ≤ n− t− 1.

We say that a t-resilient function f is optimal algebraic degree if we have deg(f) =

n− t−1. The next result shows that the order of a resilient function, its degree and

nonlinearity are related.

Theorem 73. Let f ∈ Bn be t-resilient, with t ≤ n− 2. If

(i) deg(f) = n− t− 1 then N (f) = 2n−1 − 2t+1,

(ii) deg(f) < n− t− 1 then N (f) ≤ 2n−1 − 2t+1.
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Observe, from Theorems 72 and 73, that there are some trade-offs between the

order of a resilient function and some other properties such as algebraic degree and

nonlinearity.

We now consider the generalized presentation of correlation-immune and resilient

functions with respect to some collections of subspaces as introduced by Braeken et

al. in [4]. Canteaut et al. in [11] were the first to extend the properties of resiliency

with respect to subspaces. Braeken et al. indicated that one advantage of this

approach is that it relaxes some trade-offs between important properties of Boolean

functions.

We now present some definitions and notations which are used to generalize the

definition of resilient and correlation immune functions.

Let P = {1, ..., n} and denote the power set of P by P (P). We call the set ∆ ⊆ P (P)

monotone decreasing if, for each set A in ∆, each subset of A is also in ∆ and the

set Γ ⊆ P (P) is monotone increasing if, for each set B in Γ, each set containing B

is also in Γ. We can efficiently describe a monotone increasing set Γ by the set Γ−

which consists of the minimal elements (sets) in Γ, that is, the elements in Γ for

which no proper subset is also in Γ. Similarly, a monotone decreasing set ∆ can be

described by the set ∆+ which consists of the maximal elements (sets) in ∆, that

is, the elements in ∆ for which no proper superset is also in ∆.

Let ∆c = P (P) \ ∆ and set Γ = ∆c. From this, it can be easily noted that Γ is

monotone increasing if and only if ∆ is monotone decreasing.

For any two monotone decreasing sets ∆1 and ∆2, define

∆1 ]∆2 = {A = A1 ∪ A2 : A1 ∈ ∆1, A2 ∈ ∆2}.

Notice that ∆1 ]∆2 is also a monotone decreasing set.

Observe that sup(x) and δ(x, y) = sup(x−y) are subsets of P and that P is partially

ordered, that is, x � y if and only if sup(x) ⊆ sup(y). As noted in [32, 41], δ(x, y)

has similar properties to a metric while sup(x) has similar properties to a norm.

Next, we define correlation-immune and resilient functions with respect to a mono-

tone decreasing set ∆. In this case, we are assuming that the set ∆ is the maximal
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possible monotone decreasing set for which the function satisfies the corresponding

property. Consequently, as indicated earlier, the monotone increasing set Γ corre-

sponding with ∆ is defined by Γ = ∆c.

Definition 74 ([4]). Let f ∈ Bn and ∆ be a monotone decreasing set. Then f

is called ∆-resilient (or it is said to satisfy the property of ∆-resiliency) if and

only if f(x) + w · x is a balanced function for all w ∈ Fn such that sup(w) ∈ ∆.

Furthermore, f is called a ∆-correlation immune function (or ∆-CI function) if and

only if f(x) + w · x is a balanced function for all w such that sup(w) ∈ ∆ \ {∅}.

Remark 75. For some positive integer t, if ∆ = {A ∈ P (P) : |A| ≤ t} then

the definitions of ∆-resilient function and t-resilient function coincide (this is true

also for ∆-CI function and t-CI function) and in Definition 74, we can replace the

property of balancedness of f(x) + w · x with Wf (w) = 0

If we denote the set of vectors which have zero Walsh coefficients by ZWf , then

∆ ⊆ {sup(u) : u ∈ ZWf}. It can be noted that ZWf ∩ Γ is not necessarily empty.

Notice that ∆ is a collection of subspaces, that is, it is not necessarily a subspace

itself.

We can also establish some relations with the classical definition of resiliency by

using ∆+ and Γ−. For the monotone sets Γ and ∆, define the parameters:

t1 = min{|A| : A ∈ Γ−} and t2 = max{|A| : A ∈ ∆+}.

Observe that from the definition of t1 and the fact that Γ is a monotone increasing

set, each subset of size t1 − 1 belongs to ∆, implying that a ∆-resilient function is

also (t1 − 1)-resilient. Similarly, a ∆-CI function is (t1 − 1)-CI. Also worth noting

is that the parameter t2 defines the maximum dimension of a subspace in which a

function is ∆-resilient.

Finally, we report the construction of Siegenthaler and Camion et al. which was

later extended with respect to monotone sets by Braeken et al. in [4].
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Theorem 76. Let g(x1, ..., xn) and h(x1, ..., xn) be two ∆-resilient functions on Fn.

The function f on n+ 1 variables defined by

f(x1, ..., xn+1) = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn)

is ∆̃-resilient, where ∆̃ = ∆]P ({n+1}). Furthermore, if w ∈ Γ and for any u � w it

holds thatWh�Fn (u)+Wg�Fn (u) = 0, then f is ∆̂-resilient, where ∆̂ = ∆̃∪P (sup(w)).

Proof. Let a = (a1, ..., an) ∈ Fn and ã = (a, an+1) ∈ Fn × F. From Equation (2.9),

we have

Wf (ã) =Wh�Fn (a) + (−1)an+1Wg�Fn (a).

If ã satisfies sup(ã) ∈ ∆̃, then sup(a) ∈ ∆. Since h and g are ∆-resilient functions

(i.e., Wh�Fn (a) =Wg�Fn (a) = 0), so we conclude that Wf (ã) = 0, implying that f is

∆̃-resilient.

Suppose that ã satisfies sup(ã) ∈ ∆̂. Then we have to deal with two cases:

(i) sup(ã) ∈ ∆ ] P ({n+ 1}), which has already been shown that Wf (ã) = 0,

(ii) sup(ã) ∈ P (sup(w)), for some w ∈ Γ. We have now that an+1 = 0 and thus

Wf (ã) =Wh�Fn (a) +Wg�Fn (a) = 0 since ã � w.

Remark 77. Theorem 76 extends the Siegenthaler’s result in [47] which states that

“if h and g are t-resilient then f is t-resilient” and also it generalises the result of

Camion et al. in [8] which states that “if, for all v such that w(v) = t+ 1, it holds

that Wh(v) +Wg(v) = 0, then f is t+ 1-resilient.”

1.2 Vectorial Boolean functions

In this section, we are going to report some results on vectorial Boolean functions

and the reader is referred to [1, 2, 7, 9, 13, 40, 43, 44, 45] in case more details are

sought.
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1.2.1 Definitions and notations

A vectorial Boolean function F is any function from Fn to Fm, where n,m ≥ 1.

Observe that the case m = 1 is what we considered in the previous section, so

we assume that n,m > 1. Any vectorial Boolean function can be written as F =

(f1, ..., fm), where fi’s are Boolean functions from Fn to F called coordinate functions

of F . For any λ 6= 0 ∈ Fm, the function λ · F is called a component of F and we

denote it by Fλ.

Notice that we can extend the definition of derivatives to vectorial Boolean functions.

The first-order derivative of a function F from Fn to Fm at a ∈ Fn is given by

DaF (x) = F (x+ a) +F (x) and the second-order derivative of a function F from Fn

to Fm at a, b ∈ Fn is given by DaDbF (x) = F (x)+F (x+a)+F (x+b)+F (x+a+b).

1.2.2 Representation of vectorial Boolean functions

We give two well-known representations which are commonly used in cryptography

and our standard reference is [13, 14].

The algebraic normal form

The notion of algebraic normal form of Boolean functions, we considered in the

previous section, can easily be extended to vectorial Boolean functions. We have

seen in the previous subsection that each coordinate function of vectorial Boolean

function F is uniquely represented as a polynomial on n variables, where every

variable appears in each monomial with degree 0 or 1 and its coefficients are in F,

that is, it is an element of F[x1, ..., xn]/ < x2
1 + x1, ..., x

2
n + xn >. So F must also be

uniquely represented as a polynomial of the same form but with coefficients in Fm,

that is, it is an element of Fm[x1, ..., xn]/ < x2
1 + x1, ..., x

2
n + xn >. Thus, we have:

F (x) =
∑
u∈Fn

au

(
n∏
i=1

xuii

)
=
∑
u∈Fn

aux
u, (1.15)
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where au ∈ Fm. We call this polynomial the algebraic normal form of vecto-

rial Boolean function F . The algebraic degree of vectorial Boolean function F

is deg(F ) = maxu∈Fn{w(u)|au 6= 0}. Equivalently, deg(F ) = maxλ∈Fn deg(Fλ) =

max1≤i≤m{deg(fi)}, where fi’s are coordinate functions of F . A function F is said

to be balanced if it takes every value of Fm the same number 2n−m of times. A

function F from Fn to itself is balanced if and only if all components are balanced

(see [13]). We call a balanced function from Fn to itself a permutation of Fn.

Univariate polynomial representation over F2n

We now focus on a special representation when n = m, that is, a vectorial Boolean

function from Fn to itself. Consider the finite field F2n consisting of 2n elements.

It is well-known that the set F∗2n = F2n \ {0} is a cyclic group which has 2n − 1

elements. An element in F2n which is a generator of the multiplicative group F∗2n
is called a primitive element. It is well explained in [13] that the vector space Fn

can be endowed with the structure of the finite field F2n . So any vectorial Boolean

function F from F2n into F2n admits a unique univariate polynomial representation

over F2n , given as:

F (x) =
2n−1∑
i=0

δix
i, (1.16)

where δi ∈ F2n and the degree of F is at most 2n − 1.

Next, we see how the ANF can be obtained from a given univariate polynomial. For

every vector x ∈ Fn, we can also denote by x the element
∑n

j=1 xjαj of F2n , where

(α1, ..., αn) is a basis of the F-vectorspace F2n . If we write the binary expansion of

every integer i ∈ {0, 1, ..., 2n − 1} as i =
∑n−1

s=0 is2
s, is ∈ {0, 1}, then we have

F (x) =
2n−1∑
i=0

δix
i =

2n−1∑
i=0

δi

(
n∑
j=1

xjαj

)i

=
2n−1∑
i=0

δi

(
n∑
j=1

xjαj

)∑n−1
s=0 is2

s
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=
2n−1∑
i=0

δi

n−1∏
s=0

(
n∑
j=1

xjα
2s

j

)is

since the mapping x 7→ x2 is F-linear over F2n and xj ∈ F. The ANF of F is obtained

by expanding these last products, simplifying and decomposing them again over the

basis (α1, ..., αn). Another way to do this is by the Lagrage interpolation theorem.

With this established relationship between the ANF and univariate polynomial,

it is certainly possible to read the algebraic degree of F directly on the univari-

ate polynomial representation. Given the binary expansion i =
∑n−1

s=0 is2
s, define

w2(i) =
∑n−1

s=0 is. The value w2(i) is called the 2-weight of i. Then the algebraic

degree of F is

deg(F ) = max
0 ≤ i ≤ 2n − 1

δi 6= 0

w2(i).

Any function of the form F (x) = xd, for some non negative integer d, is called a

power function and if d = 2i + 2j, for some non negative integers i and j, i 6= j, we

say that F is a quadratic power function since it algebraic degree is clearly 2.

Remark 78. The (absolute) trace function Tr, defined on F2n by

Tr(z) = z + z2 + z22 + · · ·+ z2n−1

,

is F-linear and satisfies (Tr(z))2 = Tr(z2) = Tr(z); thus it is valued in its prime

field F. Every Boolean function can be written in the form:

f(x) = Tr(F (x)) = Tr

(
2n−1∑
i=0

δix
i

)
.

However, it is important to note that this representation is not unique.
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1.2.3 Properties of Walsh transform for functions from Fn

to Fm

Let b 6= 0 ∈ Fm and a ∈ Fn. The Walsh transform of a component Fb of vectorial

Boolean function F is given by

WF (a, b) = WFb(a) =
∑
x∈Fn

(−1)Fb(x)+a·x.

The set defined by

ΛF = {WF (a, b) | a ∈ Fn, b 6= 0 ∈ Fm}

is called the Walsh spectrum of F .

Next, we give the Parseval relation for a function from Fn to Fm whose proof natu-

rally follows from the proof of Proposition 30.

Corollary 79 (Parseval relation). Let F be a function from Fn to Fm. Then∑
b6=0∈Fm

∑
a∈Fn
W2

F (a, b) = 22n(2m − 1) (1.17)

We call W4
F (a, b), with a, b ∈ Fn, a 4th power moment of the Walsh transform of

Fb. We next report a result which gives a lower bound on the sum of all 4th power

moments of the Walsh transform.

Lemma 80. Let F be a function from Fn to Fm. Then∑
b∈Fm

∑
a∈Fn
W4

F (a, b) ≥ 2n+m(3 · 22n − 2 · 2n). (1.18)
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Proof. We have

∑
b∈Fm

∑
a∈Fn
W4

F (a, b) =
∑
b∈Fm

∑
a∈Fn

(∑
x∈Fn

(−1)b·F+a·x

)4

=
∑

x,y,z,t∈Fn

(∑
b∈Fm

(−1)b·(F (x)+F (y)+F (z)+F (t))

)(∑
a∈Fn

(−1)a·(x+y+z+t)

)

= 2n+m

∣∣∣∣∣∣
(x, y, z, t) ∈ F4n

∣∣∣∣∣
x+ y + z + t = 0

F (x) + F (y) + F (z) + F (t) = 0


∣∣∣∣∣∣

= 2n+m|{(x, y, z) ∈ F3n | F (x) + F (y) + F (z) + F (x+ y + z) = 0}| (1.19)

≥ 2n+m|{(x, y, z) ∈ F3n | x = y or x = z or y = z}| (1.20)

= 2n+m (3|{(x, x, y) | x, y ∈ Fn}| − 2|{(x, x, x) | x ∈ Fn}|)
= 2n+m(3 · 22n − 2 · 2n).

1.2.4 Nonlinearity of vectorial Boolean functions

We talk about nonlinearity of vectorial Boolean functions and the reader is referred

to [13] if more information is sought.

Definition 81. Let F be a function from Fn to Fm. The nonlinearity of F is given

by

N (F ) = 2n−1 − 1

2
max

b 6=0∈Fm;a∈Fn
|WF (a, b)|.

Equivalently, the nonlinearity of F is equal to the minimum of all the nonlinearities

of components of F , that is, N (F ) = min
b 6=0∈Fm

N (Fb).

It can be deduced, from Corollary 46 and Definition 81, that if n is even then

2n−1− 2n/2−1 is an upper bound for the nonlinearity of a vectorial Boolean function

from Fn to Fm. We are going to see later that this bound is not tight for some values

of m. Next, we report the best upper bound known for m ≥ n− 1.
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Theorem 82 (Sidelnikov-Chabaud-Vaudenay bound). Let n,m ∈ N be such that

m ≥ n− 1 and let F be any function from Fn to Fm. Then

N (F ) ≤ 2n−1 − 1

2

√
3 · 2n − 2− 2(2n − 1)(2n−1 − 1)

2m − 1
.

Proof. First note that, we have

max
b 6=0∈Fm;a∈Fn

W2
F (a, b) ≥

∑
b6=0∈Fm

∑
a∈Fn
W4

F (a, b)∑
b6=0∈Fm

∑
a∈Fn
W2

F (a, b)
. (1.21)

By relation (1.18), we can deduce that∑
b6=0∈Fm

∑
a∈Fn
W4

F (a, b) ≥ 2n+m(3 · 22n − 2 · 2n)− 24n. (1.22)

Hence, by Equation (1.17), the relations (1.21) and (1.22), we have:

max
b 6=0∈Fm;a∈Fn

W2
F (a, b) ≥ 2n+m(3 · 22n − 2 · 2n)− 24n

22n(2m − 1)

=
3 · 23n+m − 2 · 22n+m − 24n

22n(2m − 1)

=
3 · 2n+m − 2 · 2m − 22n

2m − 1

=
(3 · 2n − 2)(2m − 1)− (22n − 3 · 2n + 2)

2m − 1

= 3 · 2n − 2− 2(2n − 1)(2n−1 − 1)

2m − 1
.

This implies

max
b 6=0∈Fm;a∈Fn

|WF (a, b)| ≥
√

3 · 2n − 2− 2(2n − 1)(2n−1 − 1)

2m − 1
.

SinceN (F ) = 2n−1−1
2

max
b6=0∈Fm;a∈Fn

|WF (a, b)|, then the desired bound is obtained.



42 CHAPTER 1. PRELIMINARIES

The condition m ≥ n−1 is assumed in Theorem 82 to make sure that the expression

located under the square root is non-negative.

1.2.5 Bent vectorial Boolean functions

In this subsection, the definition of bent function, seen in previous section, is ex-

tended to vectorial Boolean functions and some results are reported.

Definition 83. A function F from Fn to Fm, with n even, is said to be bent if and

only if N (F ) = 2n−1 − 2
n
2
−1. Equivalently, a function F from Fn to Fm is called

bent if any component Fb is bent for all b 6= 0 ∈ Fn, that is, the Walsh transform for

any component Fb is equal to ±2
n
2 .

It is immediate from the definition and Theorem 57 that if function F from Fn to Fm

is bent then every component has degree at most n/2, implying that deg(F ) ≤ n/2.

Proposition 84. A function F from Fn to Fm is bent if and only if all its derivatives

DaF (x), for all a 6= 0 ∈ Fn, are balanced (i.e., DaF (x) are all permutations).

Since bent Boolean functions exist only if n is even, so bent vectorial Boolean func-

tions from Fn to Fm exist only under this same hypothesis that n is even. However,

this condition is not sufficient for the existence of bent vectorial Boolean functions

from Fn to Fm as shown by Nyberg in [44]. The following result provide conditions

for existence.

Proposition 85. Bent functions from Fn to Fm exist only if n is even and m ≤ n/2.

Open problem: In Proposition 82, we saw that, for m ≥ n − 1, the Sidelnikov-

Chabaud-Vaudenay bound is better especially if m is large enough. However, to

determine a better bound when n is odd and m < n−1 is an open problem [13]. We

know from [44] that, for n even, the upper bound 2n−1 − 2
n
2
−1 is the best and tight

for nonlinearity of functions from Fn to Fm, with m ≤ n/2. But it is a long standing

problem to determine a better upper bound on the nonlinearity of (n,m)-functions

when n is even and n/2 < m < n− 1.
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Remark 86. Proposition 85 implies that no vectorial Boolean functions from Fn to

itself can be bent. However, we can discuss about the number of bent components

which functions from Fn to itself can contain. In [45], it is shown that such functions

can have at most 2n − 2n/2 bent components and some functions which achieve this

bound can be easily constructed.

1.2.6 Almost Perfect Nonlinear functions

In this subsection, we define and give some results on almost perfect nonlinear

functions and our standard reference is [1, 2, 13, 34].

Definition 87. For a, b ∈ Fn and a vectorial Boolean function F from Fn to Fm,

let

δF (a, b) = |{x ∈ Fn | DaF (x) = b}|.

The differential uniformity of F is given by

δ = max
a6=0,b∈Fn

δF (a, b)

and it always satisfies the relation δ ≥ 2. We say that a function F is differentially

δ-uniform in Fn. A function with δ = 2 is called Almost Perfect Nonlinear (APN).

The statements which we state in the following theorem are obvious from the defi-

nition of APN function.

Theorem 88. A function from Fn to itself is APN if and only if one of the following

conditions holds:

(i) δ = 2;

(ii) for any a 6= 0 ∈ Fn,

Ha = {F (x+ a) + F (x) | x ∈ Fn}

contains 2n−1 elements, that is, |Ha| = 2n−1;
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(iii) for every (a, b) 6= 0, the systemx+ y = a

F (x) + F (y) = b

admits 0 or 2 solutions;

(iv) for any a 6= 0 ∈ Fn, the derivative DaF is a two-to-one mapping;

(v) F is not affine on any 2-dimensional affine subspace of Fn.

The result that follows associate APN functions to second-order derivatives and can

be found in [9].

Proposition 89. An function F from Fn to itself is APN if and only if, for any

nonzero elements a and b in Fn, with a 6= b, we have DaDbF (x) 6= 0, for all x ∈ Fn.

In other words, Proposition 89 can be presented as: a function F from Fn to itself

is APN if and only if it holds that “for all x ∈ Fn, DaDbF (x) = 0 ⇐⇒ a = 0 or

b = 0 or a = b.”

The statement: “for all x ∈ Fn, DaDbF (x) = 0 ⇐⇒ a = 0 or b = 0 or a = b”

can also be presented in different way. First, we recall that DaDbF (x) = F (x) +

F (x+ b) + F (x+ a) + F (x+ b+ a). Let y = x+ a and z = x+ b. Thus, it implies

that x+ y + z = x+ a+ b. So we can deduce that the statements: “for all x ∈ Fn,

DaDbF (x) = 0 ⇐⇒ a = 0 or b = 0 or a = b” and “F (x) +F (y) +F (z) +F (x+ y+

z) = 0 ⇐⇒ x = y or x = z or y = z” are equivalent. It implies that Proposition 89

can also stated as in the following.

Corollary 90. A function F from Fn to itself is APN if and only if it holds that

“F (x) + F (y) + F (z) + F (x+ y + z) = 0 ⇐⇒ x = y or x = z or y = z.”

Next, we use Lemma 80 and Corollary 90 to prove a result which relate APN func-

tions to the 4th power moment of Walsh transform.
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Theorem 91. A function F from Fn to itself is APN if and only if∑
b6=0,a∈Fn

W4
F (a, b) = 23n+1(2n − 1). (1.23)

Proof. Observe that we have equality in the relation (1.20) if and only if the state-

ment: “F (x)+F (y)+F (z)+F (x+y+z) = 0 ⇐⇒ x = y or x = z or y = z” holds.

By Corollary 90, the statement: “F (x)+F (y)+F (z)+F (x+y+z) = 0 ⇐⇒ x = y

or x = z or y = z” holds if and only if F is APN. Thus, it implies that∑
a,b∈Fn

W4
F (a, b) = 3 · 24n − 2 · 23n (1.24)

if and only if F is APN. Observe that Equation (1.24) can be modified to∑
b6=0,a∈Fn

W4
F (a, b) =

∑
a,b∈Fn

W4
F (a, b)− 24n = 23n+1(2n − 1) (1.25)

from which the assertion is deduced.

Lemma 92. For any (n, n)-function, we have∑
λ6=0,a∈Fn

W4
F (a, λ) = 2n

∑
λ 6=0,a∈Fn

F2(DaFλ) (1.26)

Proof. We have∑
λ 6=0,a∈Fn

W4
F (a, λ) =

∑
λ 6=0,a∈Fn

∑
x,y,z,w∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)+a·(x+y+z+w)

=
∑

λ 6=0,a∈Fn

∑
x,y,z,w∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)(−1)a·(x+y+z+w)

=
∑

x,y,z,w∈Fn

∑
λ 6=0∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)
∑
a∈Fn

(−1)a·(x+y+z+w)

=
∑

x,y,z,w∈Fn|x+y+z+w=0

2n
∑

λ 6=0∈Fn
(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)

= 2n
∑

x,y,z,w∈Fn|w=x+y+z

∑
λ 6=0∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)
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= 2n
∑

x,y,z∈Fn

∑
λ 6=0∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(x+y+z)

[substituting y = x+ a and z = x+ b we have]

= 2n
∑

λ 6=0∈Fn

∑
x,a,b∈Fn

(−1)Fλ(x)+Fλ(x+a)+Fλ(x+b)+Fλ(x+a+b)

= 2n
∑

λ 6=0∈Fn

∑
x,a,b∈Fn

(−1)DaFλ(x)+DaFλ(x+b)

= 2n
∑

λ 6=0,a∈Fn

∑
x,b∈Fn

(−1)DaFλ(x)+DaFλ(x+b)

= 2n
∑

λ 6=0,a∈Fn
F2(DaFλ).

By applying Theorem 91 and Lemmas 80 and 92, the following result which can be

found in [1] is deduced.

Theorem 93. Let F be a function from Fn into Fn. Then∑
λ 6=0,a∈Fn

F2(DaFλ) ≥ 22n+1(2n − 1). (1.27)

Moreover, F is APN if and only if equality holds.

There are a lot of APN functions which are known today (for instance see [5, 34, 50]).

We list all the powers for all known power APN functions in Table ??.

We denote the greatest common divisor integers d and d′ by (d, d′). We begin with

the following well-known result which can be found in [31].

Lemma 94. For any positive integer k, we have

(a) (2n − 1, 2k − 1) = 2(n,k) − 1,

(b) (2n − 1, 2k + 1) =

1 if n/(n, k) is odd,

2(n,k) + 1 if n/(n, k) is even.



1.2. VECTORIAL BOOLEAN FUNCTIONS 47

Family Power Condition Proven in
Gold 2i + 1 (i, n) = 1 [33]

Kasami 22i − 2i + 1 (i, n) = 1 [35]

Welch 2i + 3 n = 2i+ 1 [28]

Niho
2i + 2

i
2 − 1, i even

2i + 2
3i+1
2 − 1, i odd

n = 2i+ 1 [29]

Inverse 22i − 1 n = 2i+ 1 [43]

Dobbertine 24i + 23i + 22i + 2i − 1 n = 5i [30]

Table 2: APN power functions

We give the proof for quadratic APN power function (Gold APN function).

Theorem 95. Let k be a positive integer. A quadratic power function F (x) = x2k+1

is APN if (k, n) = 1.

Proof. Note that since F is a quadratic function, so

F (x+ a) + F (x) + F (a),

with a ∈ F2n , is a linear function in x whose kernel has the same size as any of its

translates such as the solution set of

F (x) + F (x+ a) = b

in F2n , for any b ∈ F2n . Thus, we show that, for any a 6= 0, b ∈ F2n ,

F (x) + (x+ a) = b

has at most two solutions by simply finding the size of the solution set of

F (x+ a) + F (x) + F (a) = 0.
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We have

F (x+ a) + F (x) + F (a) = (x+ a)2k+1 + x2k+1 + a2k+1

= ax2k + a2kx

So it follows that

γ(a) = |{x ∈ F2n | F (x+ a) + F (x) + F (a) = 0}|
= |{x ∈ F2n | ax2k = a2kx}|
= |{0} ∪ {x ∈ F2n | (x/a)2k−1 = 1}|

Thus, γ(a) = 2 if (2n−1, 2k−1) = 1 and by Lemma 94, this happens when (n, k) = 1.

Hence F is APN if (n, k) = 1.

Next, we present the proof of inverse power APN function as done by Nybeg. The

inversion mapping F : F2n → F2n of Nybeg is also presented as:

F (x) =

x−1 if x 6= 0

0 if x = 0.

This inversion mapping is sometimes called patched inversion.

Theorem 96 ([43]). The patched inversion is an APN function for n odd and a

differentially 4-uniform for n even.

Proof. Let α 6= 0, β ∈ F2n . Consider the equation

(x+ α)−1 + x−1 = β. (1.28)

Assume that x 6= 0 and x 6= α. Then (1.28) is equivalent to

βx2 + αβx+ α = 0, (1.29)
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which has at most two solutions in F2n . If either x = 0 or x = α is solution to (1.28),

then both of them are solutions and β = α−1. In that case (1.29) is equivalent to

x2 + αx+ α2 = 0, (1.30)

which may give two more solutions to (1.28). By squaring (1.30) and substituting

x2 = αx+ α2 we obtain

x(x3 + α3) = 0, (1.31)

which has no other solutions than x = 0 or α if gcd(3, 2n − 1) = 1 (i.e., if n is odd).

If n is even then 3 divides 2n − 1. Let d = 1
3
(2n − 1). Then there are two more

solutions, x = α1+d and x = α1+2d.

Proposition 97 ([7]). Let a function F from Fn to itself, with n even, be an APN

permutation. If there are elements a, λ 6= 0 ∈ Fn such that DaFλ is constant, then

DaFλ = 1.

Proof. Let F = (f1, ..., fn), where fi : Fn → F. Suppose there exist nonzero elements

a, λ 6= 0 ∈ Fn such that DaFλ = 0. Without loss of generality, we can suppose that

Fλ = fi. Thus, we have

Im(DaF ) = {(0, y2, ..., yn) | yi ∈ F}.

Since F is APN, so we have |Im(DaF )| = 2n−1 which implies that 0 lies in Im(DaF ),

contradicting the fact that F is a permutation.

We next show that we cannot have a partially-bent component in any APN permu-

tation in even dimension.

Theorem 98 ([7]). Let a function F from Fn to itself, with n even, be an APN

permutation. Then, for any λ 6= 0 ∈ Fn, no component Fλ is partially-bent.

Proof. Suppose that Fλ is partially-bent, for some λ 6= 0 ∈ Fn. Then F being a

permutation in even dimension and by Remark 63, the linear space of Fλ has at
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least dimension 2. Let a1 and a2 be two distinct nonzero elements in V (Fλ). By

Proposition 97 and Equation (1.14), we have

Da1Fλ(x) = Fλ(a1) = 1 and Da2Fλ(x) = Fλ(a2) = 1.

Clearly, a1 + a2 is a nonzero element in V (Fλ). But we have

Da1+a2Fλ(x) = Fλ(a1 + a2) = Fλ(a1) + Fλ(a2) = 0,

which contradicts Proposition 97.

1.2.7 Almost-bent functions

We briefly define and give some results on almost bent functions and the reader is

referred to [13, 20, 22] if more details are required.

Definition 99. A function F from Fn to itself, with n odd, is said to be almost-bent

(AB) if N (F ) = 2n−1− 2
n−1
2 . Equivalently, F is almost-bent if any Fλ is semi-bent,

for all λ 6= 0 ∈ Fn, that is, the Walsh transform for any Fλ is in {0,±2
n+1
2 }.

Note that, for m = n and n odd, the Sidelnikov-Chabaud-Vaudenay bound coincides

with the upper bound 2n−1 − 2
n−1
2 , the nonlinearity of AB functions.

Next, we state some well-known results which associate AB functions to APN func-

tions.

Proposition 100 ([22]). Let F be an AB function from Fn to itself, then F is an

APN function.

Theorem 101. An APN function F : Fn → Fn is AB if and only if one of the

following conditions holds:

(i) all the values in ΛF are divisible by 2
n+1
2 ;

(ii) for any λ ∈ Fn, the function Fλ is plateaued.

Proposition 102 ([20]). Let F be a quadratic APN function from Fn to itself, with

n odd, then F is an AB function.



1.2. VECTORIAL BOOLEAN FUNCTIONS 51

1.2.8 Equivalences of vectorial Boolean functions

In this subsection, we give some definitions of equivalences for vectorial Boolean

functions as in [10].

Definition 103. Let F and G be functions from Fn to Fm. Then F and G are

1. affine equivalent if there exist two affine permutations:

A : Fn → Fn and B : Fm → Fm

such that G(x) = (B ◦ F ◦ A)(x).

2. extended affine equivalent (or EA-equivalent for short) if there exist two affine

permutations:

A : Fn → Fn and B : Fm → Fm

and an affine function Λ : Fn → Fm such that

G(x) = (B ◦ F ◦ A)(x) + Λ(x).

3. CCZ-equivalent if there exists an affine permutation A of Fn × Fm such that

{(x, F (x)), x ∈ Fn} = A({(x,G(x)), x ∈ Fn}).

CCZ-equivalence is named after Carlet, Charpin and Zinoviev who introduced the

notion.

Affine equivalence is a particular case of EA-equivalence. It can also be shown

that EA-equivalence and CCZ-equivalence are both equivalence relations, and EA-

equivalence is a particular case of CCZ-equivalence. So it is possible to partition the

space of all functions from Fn to Fm into CCZ-equivalence classes and then further

partition each CCZ-equivalence class into EA-equivalence classes.
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The degree, nonlinearity and differential uniformity of functions from Fn to Fm are

invariant under affine and extended affine equivalences. Under CCZ-equivalence,

the nonlinearity and differential uniformity are invariant, but not the degree. Since

all three equivalence relations preserve the nonlinearity and differential uniformity,

then bent functions are mapped to bent functions and similarly for APN and AB

functions. So when searching for or constructing new bent functions or AB functions

or APN functions, it is usually important to check that they are inequivalent to the

already known ones. However, it should be noted that it is not obvious to check if

two functions are equivalent.



Chapter 2

Weight, balancedness, resiliency

and nonlinearity of Boolean

functions

In this chapter, we are mainly going to look at the weight of cubic functions and other

functions, construct and determine balanced Boolean functions whose linear space

is trivial, construct resilient functions whose properties are studied with respect to

monotone sets, and finally we study the nonlinearity of functions in some special

forms.

2.1 On the weight of Boolean functions

In this section, we determine the weight for a special class of cubic functions and

other functions. We also establish how the weight of a function can be related to

weights of some other functions in a lower dimension.

We start by determining the weight of a given splitting function.

Proposition 104. Let f be a Boolean function on n variables of degree m defined

53
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by

f ∼A
k−1∑
i=0

m∏
j=1

xmi+j + c,

with c ∈ F. Then F(f) = ±2n−mk(2m − 2)k and w(f) = 2n−1 ± 2n−mk−1(2m − 2)k.

Proof. Let c = 0 and fi =
∏m

j=1 xmi+j so that we have f ∼A
∑k−1

i=0 fi. Since F(f) is

invariant under affine equivalence (see Remark 18) then, by Corollary 17, we have

F(f) = 2n−mk
k−1∏
i=0

F(fi�Fm).

Observe that we have fi�Fm(x) = 0, for all x ∈ Fm \ {1}, and fi�Fm(1) = 1, so it

implies that F(fi�Fm) = 2m − 2. Thus, it follows that

F(f) = 2n−mk(2m − 2)k.

Recall that w(f) = 2n−1 − 1
2
F(f), so we have

w(f) = 2n−1 − 1

2
[2n−mk(2m − 2)k] = 2n−1 − 2n−mk−1(2m − 2)k.

If c = 1 then, by Lemma 13, we have F(f) = −2n−mk(2m − 2)k and by using the

fact that w(f + 1) = 2n − w(f), we have w(f) = 2n−1 + 2n−mk−1(2m − 2)k.

Remark 105. The function f in Proposition 104 is balanced if and only if m = 1,

that is, f is balanced if and only if it is a linear function. If f is quadratic (i.e.,

m = 2) then, by Theorem 7, f is unbalanced and we have F(f) = ±2n−k and

w(f) = 2n−1 ± 2n−k−1 just as seen in Corollary 25.

Now we study the weight and balancedness of Boolean functions given in a special

form. We show how the weight of a Boolean function on n variables can be related

to the weights of some other functions in a lower dimension.
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Any Boolean function can be expressed in the form

f ∼A x1g(x2, ..., xn) + h(x2, ..., xn). (2.1)

Observe that f ∼A x1g(x2, ..., xn) + h(x2, ..., xn) = x1(g + h) + (1 + x1)h. So any

Boolean function f on n+ 1 variables can be written in the form

f ∼A xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn). (2.2)

We say that f is the convolutional product of g and h.

Remark 106. Since the convolutional product of g and h can be reduced to f =

xn+1(g+h) +h, so either deg(f) = deg(h) [this happens when deg(g+h) < deg(h)]

or deg(f) = max{deg(g), deg(h)}+ 1.

Observe that the convolutional product is a special case of the form defined by

f ∼A

(
m∏
j=1

xj

)
g(xm+1, ..., xm+n) +

(
1 +

m∏
j=1

xj

)
h(xm+1, ..., xm+n), (2.3)

for some positive integer m and Boolean functions g and h on n variables. In fact,

for any Boolean function f , there exists a positive integer m such that f can be

expressed in the form (2.3).

The next result shows that if the weights of g and h are known, then the weight of

f is obtained.

Theorem 107. Let f be a Boolean function on n + m variables expressed in the

form (2.3). Then

(a) w(f) = (2m − 1)w(h�Fn) + w(g�Fn),

(b) f is balanced if and only if F(h�Fn) = −F(g�Fn)/(2m − 1),

(b) f is balanced if both g and h are balanced,

(d) f is unbalanced if one in {g, h} is balanced and the other is not.
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Proof. We have

f ∼A
(∏m

j=1 xj

)
g(xm+1, ..., xm+n) +

(
1 +

∏m
j=1 xj

)
h(xm+1, ..., xm+n).

(a) Let X = (x, y) ∈ Fm × Fn. Recall that F(f) is invariant under affine equiva-

lence (see Remark 18), so we have

F(f) =
∑

X∈Fm×Fn
(−1)f(X) =

∑
(x,y)∈(Fm\{1})×Fn

(−1)h(y) +
∑

(x,y)∈{1}×Fn
(−1)g(y)

= (2m − 1)
∑
y∈Fn

(−1)h(y) +
∑
y∈Fn

(−1)g(y)

= (2m − 1)F(h�Fn) + F(g�Fn) (2.4)

From Lemma 9, w(f) = 2m+n−1 − 1
2
F(f), so we have

w(f) = 2n+m−1 − 1

2
F(f) = 2n+m−1 − 1

2
[(2m − 1)F(h�Fn) + F(g�Fn)]

= 2n+m−1 − 1

2
[(2m − 1)(2n − 2w(h�Fn)) + (2n − 2w(g�Fn))]

= 2n+m−1 − 1

2

[
2n+m − 2m+1w(h�Fn) + 2w(h�Fn)− 2w(g�Fn)

]
= (2m − 1)w(h�Fn) + w(g�Fn).

(b) Recall that f is balanced if and only if we have F(f) = 0 if and only if

(2m − 1)F(h�Fn) + F(g�Fn) = 0 if and only if F(h�Fn) = −F(g�Fn)/(2m − 1).

(c) Suppose that g and h are both balanced. Then F(g�Fn) = F(h�Fn) = 0. By

Equation (2.4), it implies that F(f) = 0, and so f is balanced.

(d) Without loss of generality, suppose that g is balanced while h is not. Then

F(g�Fn) = 0 and F(h�Fn) 6= 0 which, by Equation (2.4), implies that F(f) 6= 0,

and so f is unbalanced.

Remark 108. If we have m = 1 in Theorem 107, then the form (2.3) becomes

f ∼A xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn) and w(f) = w(h�Fn) + w(g�Fn).
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We now consider the weight for a special class of cubic Boolean functions. As alluded

to in [16], it is generally difficult to determine the weight of Boolean functions of

degree greater than 2. We completely determine the weight for the special class of

cubic Boolean functions and give a classification for those which are balanced. This

result allows us to construct an algorithm that computes the weight of any cubic

function.

Our result for the weight of the special class of cubic functions uses the knowledge

of weights of affine and quadratic functions (see Lemma 11 and Corollary 25).

Theorem 109. Let f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn) be a cubic Boolean

function such that deg(g), deg(h) ≤ 2. Then h ∼A q = x1x2 + · · · + x2k−1x2k or

h ∼A q̄ = q + 1; g ∼A r = x1x2 + · · ·+ x2`−1x2` or g ∼A r̄ = r + 1, with k, ` ≤ bn
2
c,

if g and h are unbalanced quadratic. Moreover,

w(f) =



2n if both h and g are balanced

2n−1 if h (resp. g) is bal. quad. and g (resp. h) = 0

2n + 2n−1 if h (resp. g) is bal. quad. and g (resp. h) = 1

2n−1 ± 2n−k−1 if h is unbal. quad. and g = 0

2n + 2n−1 ± 2n−k−1 if h is unbal. quad. and g = 1

2n−1 ± 2n−`−1 if h = 0 and g is unbal. quad.

2n + 2n−1 ± 2n−`−1 if h = 1 and g is unbal. quad.

2n ± 2n−k−1 if h is unbal. quad. and g is bal.

2n ± 2n−`−1 if h is bal. and g is unbal. quad.

2n − 2n−k−1 − 2n−`−1 if h ∼A q and g ∼A r

2n + 2n−k−1 + 2n−`−1 if h ∼A q and g ∼A r

2n + 2n−k−1 − 2n−`−1 if h ∼A q and g ∼A r

2n − 2n−k−1 + 2n−`−1 if h ∼A q and g ∼A r.

Proof. The first part of our assertion follows directly from Theorem 7. To prove

the second part of our assertion, we use a direct case-by-case computation. For the
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weight of quadratic functions, we recall Corollary 25. By Remark 108, we know that

w(f) = w(h�Fn) + w(g�Fn).

If both g and h are balanced, then w(f) = w(h�Fn) + w(g�Fn) = 2n−1 + 2n−1 = 2n. If

h (resp. g) is a balanced quadratic and g = 0 (resp. h = 0), then w(f) = 2n−1. If

h (resp. g) is a balanced quadratic function and g = 1 (resp. h = 1), then w(f) =

2n + 2n−1. If h is an unbalanced quadratic and g = 0, then w(f) = 2n−1 ± 2n−k−1

and if g is an unbalanced quadratic and h = 0, then w(f) = 2n−1 ± 2n−`−1. If h

is unbalanced quadratic and g = 1, then w(f) = 2n + 2n−1 ± 2n−k−1 and if g is an

unbalanced quadratic and h = 1, then w(f) = 2n+2n−1±2n−`−1. If h is unbalanced

quadratic and g is balanced, then w(f) = 2n−1 +2n−1±2n−k−1 = 2n±2n−k−1 and if g

is unbalanced quadratic and h balanced, then we have w(f) = 2n−1+2n−1±2n−`−1 =

2n ± 2n−`−1.

If h ∼A q and g ∼A r, then we have w(h�Fn) = 2n−1 − 2n−k−1 and w(g�Fn) =

2n−1−2n−`−1. So it implies that w(f) = 2n−2n−k−1−2n−`−1. If h ∼A q̄ and g ∼A r̄,
then w(h�Fn) = 2n−1 +2n−k−1 and w(g�Fn) = 2n−1 +2n−`−1. So it implies that w(f) =

2n + 2n−k−1 + 2n−`−1. If h ∼A q̄ and g ∼A r, then we have w(h�Fn) = 2n−1 + 2n−k−1

and w(g�Fn) = 2n−1−2n−`−1 from which we deduce that w(f) = 2n+2n−k−1−2n−`−1.

If h ∼A q and g ∼A r̄, then w(h�Fn) = 2n−1 − 2n−k−1 and w(g�Fn) = 2n−1 + 2n−`−1

which implies that w(f) = 2n − 2n−k−1 + 2n−`−1.

Thanks to Theorem 109, we can now state our classification theorem for all balanced

functions in our special class of cubic functions:

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn),

with deg(g), deg(h) ≤ 2.

Corollary 110. With the same notation from Theorem 109, a cubic Boolean func-

tion f is balanced if and only if one of the following holds:

(a) both h and g are balanced,

(b) h ∼A q and g ∼A q,
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(c) h ∼A q and g ∼A q.

Proof. In Theorem 109, we notice that there are only three cases for f to be balanced.

That is, when both h and g are balanced or h ∼A q = x1x2 + · · · + x2k−1x2k and

g ∼A r = x1x2 + · · ·+x2`−1x2` + 1, with k = ` or h ∼A q = x1x2 + · · ·+x2k−1x2k + 1

and g ∼A r = x1x2 + · · ·+x2`−1x2`, with k = `. Hence this completes the proof.

By applying Lemma 49 and Theorem 109, we can equivalently rewrite Corollary 110

as follows:

Corollary 111. Let f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn) be a cubic Boolean

function on n+ 1 variables, with deg(g), deg(h) ≤ 2. Then f is balanced if and only

if either both g and h are balanced or g = h ◦ ϕ+ 1, for some affinity ϕ.

Proof. Recall from Lemma 9 that F(g) = 2n − 2w(g) and by Equation (2.4), we

have F(f) = F(g�Fn) + F(h�Fn). So f is balanced ⇐⇒ F(f) = 0 ⇐⇒ F(g�Fn) =

−F(h�Fn) ⇐⇒ 2n− 2w(g�Fn) = −2n + 2w(h�Fn) ⇐⇒ w(g�Fn) + w(h�Fn) = 2n ⇐⇒
w(g�Fn) = 2n − w(h�Fn) ⇐⇒ w(g�Fn) = w(h�Fn + 1) ⇐⇒ either both g and h are

balanced or both g and h are unbalanced quadratics related by g = h ◦ ϕ + 1, for

some affinity ϕ (see Lemma 49).

Next, we consider a way in which the weight of cubic Boolean functions that cannot

be expressed in the form described in Theorem 109 can be determined.

Since any Boolean function expressed in the form (2.1) can be written in the con-

volutional form as: f = x1g(x2, ..., xn) + h(x2, ..., xn) = x1(g + h) + (1 + x1)h, then

we can apply Theorem 107 to deduce the following.

Corollary 112. Let g and h be Boolean functions on n variables and define a

function on n+ 1 variables by f = xn+1g(x1, ..., xn) + h(x1, ..., xn). Then

(a) w(f) = w([g + h]�Fn) + w(h�Fn),

(b) f is balanced if both g + h and h are balanced,

(c) f is unbalanced if one in {g + h, h} is balanced and the other is not.
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Since our interest is in finding the weight of any cubic Boolean function given in the

form: f = x1g(x2, ..., xn) + h(x2, ..., xn), so we assume that g is quadratic while h

can be affine, quadratic or cubic. If h is affine or quadratic, then the weight of f is

determined by Theorem 109 since in this case the degrees of g+h and h are at most

2, implying that their weights are known. It becomes difficult to find the weight of f

if h is cubic since in this case it implies that g+h is also cubic and finding w(h�Fn−1)

and w([g + h]�Fn−1) is not easy. However, we can recursively repeat the process of

decomposing the function f so that its weight is the sum of weights of some affine or

quadratic functions on vector spaces of dimension lower than n over F. For instance,

further expressing g + h and h in the form g + h = x2g1(x3, ..., xn) + h1(x3, ..., xn)

and h = x2g
′
1(x3, ..., xn) + h′1(x3, ..., xn), the weight of f clearly becomes w(f) =

w([g1 + h1]�Fn−2) + w(h1�Fn−2) + w([g′1 + h′1]�Fn−2) + w(h′1�Fn−2). We use this idea to

build an algorithm which computes the weight of cubic Boolean functions and its

efficiency and simplicity relies on the well-known results of the weights of affine and

quadratic functions.

Algorithm 1

The following algorithm computes the weight of any cubic function f on Fn:

Input: cubic function f ,

Output: w(f),

Step 1: express f in the form f = x1g(x2, ..., xn) + h(x2, ..., xn) such that

g is quadratic,

Step 2: if deg(h) ≤ 2, compute w(f) by using Theorem 109 and return w(f),

Step 3: otherwise, recursively compute the weights of g + h and h by

applying Step 1 and Step 2,

Step 4: sum up all the weights computed to obtain w(f).

2.2 Construction of balanced functions

In this section, we are going to construct balanced Boolean functions based on

some known functions. In one construction, we have the classification of quadratic
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functions via affine equivalence in Theorem 7 as a special case.

2.2.1 Balanced Boolean functions

The first two constructions use the well-known result in Proposition 24 and Corol-

lary 112.

Proposition 113. Let g = g̃(x1, ..., xn−1) + xn and h = h̃(x1, ..., xn−2) + xn−1 such

that f ∼A xn+1g(x1, ..., xn) + h(x1, ..., xn−1). Then f is balanced.

Proof. It follows from Proposition 24 that both g + h and h are balanced and we

deduce by Corollary 112 that f is balanced.

Lemma 114. If f = xn+1g(x1, ..., xn) + h(x1, ..., xn), with f ∈ Bn+1 and g, h ∈ Bn,

then we have

F(f) = F([g + h]�Fn) + F(h�Fn).

Proof. Let X = (x, xn+1) ∈ Fn × F. We have

F(f) =
∑

X∈Fn+1

(−1)f(X)

=
∑

(x,xn+1)∈Fn×F

(−1)xn+1g(x)+h(x)

=
∑
x∈Fn

(−1)g(x)+h(x) +
∑
x∈Fn

(−1)h(x)

= F([g + h]�Fn) + F(h�Fn).

Notice that the result which we present in the following proposition is partly an

extension of Proposition 113.

Proposition 115. Let gi = g̃i(xi+1, ..., xn−i) + xn−i+1 be a Boolean function on

n− 2i+ 1 variables, with 1 ≤ i ≤ bn
2
c and n ≥ 3, and define the two functions on n
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variables as:

f` ∼A
`−1∑
i=1

xigi + g` (2.5)

and

f̄` ∼A
∑̀
i=1

xigi + c, (2.6)

with ` ≤ bn
2
c and c ∈ F. Then f` is balanced and f̄` is unbalanced.

Proof. For a positive integer t ≤ `− 1, define

ht =
`−1∑
i=t

xigi + g` and h̄t =
∑̀
i=t

xigi + c,

with c ∈ F. Since F(f`) is invariant under affine equivalence (see Remark 18) then,

by Lemma 114, we obtain

F(f`) =
`−2∑
i=1

F(gi + hi+1) + F(g`−1 + g`) + F(g`) (2.7)

and

F(f̄`) =
`−1∑
i=1

F(gi + h̄i+1) + F(g` + c) + F(c). (2.8)

Observe that the functions: gi + hi+1, gi + h̄i+1, g`−1 + g` and g` + c have the same

form as the functions defined in Proposition 24, so they are balanced. This implies

that

F(g` + c) = F(g`−1 + g`) = F(gi + hi+1) = F(gi + h̄i+1) = 0.

It follows that Equation (2.7) becomes F(f`) = 0, implying that f` is balanced and
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Equation (2.8) becomes F(f̄`) = F(c) 6= 0 which implies that f̄` is unbalanced.

Remark 116. All the quadratic Boolean functions are a special case of the functions

constructed in Proposition 115 since if we let g̃i = 0, for all 1 ≤ i ≤ `, we obtain

their classification via affine equivalence as given in Theorem 7.

Proposition 117. Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), where g and

h are Boolean functions on n variables related by g = h ◦ϕ+ 1, for some affinity ϕ.

Then f is a balanced.

Proof. Since g = h ◦ϕ+ 1, for some affinity ϕ, then clearly w(g�Fm) = 2n−w(h�Fm).

It follows that w(f) = w(g�Fm) + w(h�Fm) = 2n, implying that f is balanced.

In the next result we construct balanced functions on n + 1 variables by using any

two bent functions on n variables of unequal weight.

Proposition 118. Let g and h be any bent functions on n variables and define

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn). Then f is balanced if and only if

w(g) 6= w(h).

Proof. Suppose that g and h are any bent functions on n variables. Since F(g) =

Wg(0) = ±2
n
2 , so the weight of g is w(g) = 2n−1 − 1

2
F(g) = 2n−1 ± 2

n
2
−1. Similarly,

we have w(h) = 2n−1 ± 2
n
2
−1. Since w(f) = w(g�Fn) + w(h�Fn), so w(f) = 2n ± 2

n
2 if

w(g�Fn) = w(h�Fn) and w(f) = 2n if w(g�Fn) 6= w(h�Fn). Hence f is balanced if and

only if w(g) 6= w(h).

We can deduce that the balanced functions in Proposition 118 [also for the unbal-

anced, that is, if w(g) = w(h)] are in fact plateaued.

Proposition 119. Let g and h be any bent functions on n variables and define

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn). Then f is a plateaued function.
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Proof. Let α = (a, an+1) ∈ Fn × F and X = (x, xn+1) ∈ Fn × F. Then we have

Wf (α) =
∑

X∈Fn+1

(−1)f(X)+α·X

=
∑

(xn+1,x)∈F×Fn
(−1)xn+1g(x)+(1+xn+1)h(x)+a·x+an+1·xn+1

=
∑
x∈Fn

(−1)h(x)+a·x +
∑
x∈Fn

(−1)g(x)+a·x+an+1

=Wh�Fn (a) + (−1)an+1Wg�Fn (a). (2.9)

Since g and h are bent then, for any a ∈ Fn, we haveWh�Fn (a) = ±2
n
2 andWg�Fn (a) =

±2
n
2 . So, for any α = (a, an+1) ∈ Fn×F, we deduce from Equation (2.9) thatWf (α)

takes one of the values 0 or ±2
n
2

+1. Hence f is plateaued.

2.2.2 Balanced functions with trivial linear space

In this section, we present some conditions which help to determine whether a

derivative of a Boolean function is constant and we utilise them to check some

balanced Boolean functions, among the constructed functions in Subsection 2.2.1,

whose linear space is trivial. (I acknowledge that this topic was proposed to me

by Prof. C. Carlet in a private conversation at “2018 Boolean Functions and their

Applications (BFA) conference” in Norway.)

Proposition 120. Let f = xn+1g(x1, ..., xn) + h(x1, ..., xn), where g and h are

Boolean functions on n variables. Let λ = (a, an+1) ∈ Fn × F. Then

Dλf ∼A xn+1Dag + an+1g +Dah. (2.10)

Proof. Let (X, xn+1) ∈ Fn × F and λ = (a, an+1) ∈ Fn × F. We are given that

f = xn+1g(X) + h(X). So

Dλf = (xn+1 + an+1)g(X + a) + h(X + a) + xn+1g(X) + h(X)

= xn+1 [g(X + a) + g(X)] + an+1g(X + a) + h(X + a) + h(X)
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= xn+1Dag(X) + an+1[Dag(X) + g(X)] +Dah(X)

∼A xn+1Dag(X) + an+1g(X) +Dah(X) (apply xn+1 7→ xn+1 + an+1).

For f ∈ Bn, we define the set which contains all a ∈ Fn such that Daf is balanced

by Γ(f), that is, Γ(f) = {a | Daf is balanced}. This definition was introduced in

[7]. We show in the following lemma that the sizes of Γ(f) and the linear space of

a function are invariant under affine equivalence.

Lemma 121. Let g1 and g2 be Boolean functions on n variables such that g1 ∼A g2.

Then |V (g1)| = |V (g2)| and |Γ(g1)| = |Γ(g2)|.

Proof. Let ϕ be the affinity of Fn associated with invertible M ∈ GLn(F) (here

GLn(F) is the general linear group of degree n over F) and w ∈ Fn, that is, ϕ(y) =

M · y + w, for all y ∈ Fn. For a ∈ Fn, we have

Dag1(x) = Da(g2 ◦ ϕ)(x)

= g2(ϕ(x+ a)) + g2(ϕ(x))

= g2(M · (x+ a) + w) + g2(ϕ(x))

= g2(M · x+M · a+ w) + g2(ϕ(x))

= g2(M · a+ ϕ(x)) + g2(ϕ(x))

= DM ·ag2(ϕ(x)) = (DM ·ag2 ◦ ϕ)(x). (2.11)

So it implies that Dag1 = (DM ·ag2) ◦ ϕ ∼A DM ·ag2. It follows by Proposition 6 that

w(Dag1) = w(DM ·ag2), so we conclude that Dag1 is balanced if and only if DM ·ag2

is balanced, Dag1 = 0 if and only if DM ·ag2 ∼A 0, and Dag1 = 1 if and only if

DM ·ag2 ∼A 1. Hence we must have |V (g1)| = |V (g2)| and |Γ(g1)| = |Γ(g2)|.

The result that follows gives sufficient condition for a derivative of a function to be

constant.

Proposition 122. Let f = xn+1g(x1, ..., xn) + h(x1, ..., xn), where g and h are

Boolean functions on n variables. Let λ = (a, an+1) ∈ Fn × F. Then Dλf = c,

with c ∈ F (i.e., Dλf is constant) if and only if Dag = 0 and Dah = an+1g + c.
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Proof. Observe that Dλf = c, with c ∈ F (i.e., Dλf is constant) if and only if

xn+1Dag + an+1g +Dah = c

(see the relation 2.10) if and only if Dag = 0 and Dah = an+1g + c.

The following result is directly deduced from Proposition 122.

Corollary 123. Let f = xn+1g(x1, ..., xn) + h(x1, ..., xn), where g and h are non-

constant functions on n variables. Let λ = (a, an+1) ∈ Fn × F. Then Dλf is

non-constant if and only if one of the following happens:

(i) Dag 6= 0,

(ii) Dag = 0 and Dah 6= an+1g + c, for some c ∈ F.

We now determine some functions whose linear space is trivial by using Corol-

lary 123.

Proposition 124. If f = xn+1g(x1, ..., xn) + h(x1, ..., xn), with n even and g bent,

then f has a trivial linear space.

Proof. Suppose that g is a bent function and let λ = (a, an+1) ∈ Fn × F. By

Proposition 120, we have Dλf ∼A xn+1Dag + an+1g + Dah. Observe that when

λ = (0, 1) we have Dλf ∼A g which is a non-constant function since g is bent.

If we show that Dλf is non-constant, for all λ = (a, an+1) ∈ (Fn × {0}) × F,

then we are done. Since g is bent then Dag is balanced (i.e. nonzero), for any

a ∈ Fn \ {0}, and so we conclude by Corollary 123(i) that Dλf is non-constant, for

all λ = (a, an+1) ∈ (Fn × {0})× F.

In the next Proposition, we apply Proposition 122 to show that some balanced

functions constructed in Proposition 113 have trivial linear space.

Proposition 125. Let a Boolean function f on n + 1 variables be as constructed

in Proposition 113, with n ≥ 3 odd. If g̃, with restriction to Fn−1, is bent then the

linear space of f is trivial.
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Proof. Suppose that g̃, with restriction to Fn−1, is bent and let λ = (a, an+1) ∈ Fn×
F. We know, by Proposition 120, that Dλf ∼A xn+1Dag+an+1g+Dah. Observe that

when λ = (0, 1) we have Dλf ∼A g which is clearly non-constant as g̃ is bent. Now

we remain to show that Dλf is non-constant, for all λ = (a, an+1) ∈ (Fn \ {0})× F.

We know from Corollary 123 that if Dag is nonzero then Dλf is non-constant. So

we can simply show that Dag is nonzero, for all a ∈ Fn \ {0}.

Let a = (ã, an) ∈ Fn−1 × F, where ã = (a1, ..., an−1). If ã = (0, ..., 0) and an = 1,

then we have Dag = 1 which is nonzero. If a = (ã, 1), with ã ∈ Fn−1 \ {0}, we have

Dag = Dãg̃ + 1 which must be nonzero as Dãg̃ is balanced because g̃ is bent. If

a = (ã, 0), with ã ∈ Fn−1 \ {0}, we have Dag = Dãg̃ which is balanced as g̃ is bent.

Thus, Dag is nonzero, for all a ∈ Fn \ {0}. Hence the linear space of f is trivial.

Notice that we can apply similar arguments as in the proof of Theorem 125 to show

that the linear space for any function, with g̃1 bent, in Proposition 115 is trivial.

Example 126. For any odd positive integer n > 1, a function of the form:

f = xn+1(x1x2 + · · ·+ xn−2xn−1 + xn) + h(x1, ..., xn−2) + xn−1

is balanced and its linear space is trivial.

Next, we determine whether the linear space of any balanced cubic function of the

form: f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with deg(g), deg(h) ≤ 2, is

trivial. From Theorem 111, we know that such functions are balanced if and only if

either both g and h are balanced or g = h ◦ ϕ + 1, for some unbalanced quadratics

g and h, and an affinity ϕ.

Proposition 127. Let f = xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn) on Fn+1, with n

even, be cubic such that g and h, with restriction to Fn, are quadratic bent functions

related by g = h ◦ ϕ+ 1, for some affinity ϕ. Then the linear space of f is trivial.

Proof. Suppose that both g and h, with restrictions to Fn, are bent. Let λ =

(a, an+1) ∈ Fn × F. Observe that f = xn+1(g + h) + h, and so f is cubic if and

only if g + h is a quadratic function. So we assume that g + h is quadratic. By
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Proposition 120, we have Dλf ∼A xn+1Da(g+h) + an+1(g+h) +Dah. Observe that

when λ = (1, 0) we have Dλf ∼A g + h which is non-constant as we assumed that

g + h is quadratic.

Next, we prove that Dλf is non-constant, for all λ = (a, an+1) ∈ (Fn \ {0})× F. By

Corollary 123(i), we know that if Da(g+h) 6= 0, then Dλf is non-constant. Now we

show that Dλf is still non-constant if Da(g+h) = 0, for some a ∈ Fn \{0}. Assume

that Da(g+h) = 0, for some a ∈ Fn\{0}. Then we have Dλf ∼A an+1(g+h)+Dah. If

an+1 = 0, then Dλf ∼A Dah, and so it is non-constant since Dah has to be balanced

as h is bent. If an+1 = 1, then Dλf ∼A g+h+Dah which is also non-constant since

g + h is a quadratic and Dah has degree 1 as it is balanced.

Finally, we determine some balanced functions constructed in Proposition 118 [i.e.,

f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), where g and h are both bent and

w(g) 6= w(h)] which have trivial linear space.

Proposition 128. Let f = xn+1g(x1, ..., xn) + (1 + xn+1)h(x1, ..., xn), with n even,

be a Boolean function on n+ 1 variables such that g and h are both bent. Then the

linear space of f is trivial if deg(f) = max{deg(g), deg(h)}+ 1.

Proof. Recall that Dλf ∼A xn+1Da(g + h) + an+1(g + h) +Dah, for λ = (a, an+1) ∈
Fn× F (see Proposition 127). Observe that f = xn+1(g+ h) + h. We are given that

deg(f) = max{deg(g), deg(h)}+1. So it follows that deg(g+h) = max{deg(g), deg(h)},
implying that g + h is non-constant since g and h are bent. When λ = (0, 1), we

have Dλf ∼A g + h which is non-constant.

Now we prove that Dλf , for all λ = (a, an+1) ∈ (Fn \ {0}) × F, is non-constant.

If Da(g + h) 6= 0, then Dλf is non-constant, by Corollary 123(i). Suppose that

Db(g+h) = 0, for some b ∈ Fn\{0}. We need to show that Dλf is still non-constant,

for λ = (b, an+1) ∈ (Fn \ {0})×F. In this case, we have Dλf ∼A an+1(g+ h) +Dbh.

If an+1 = 0 then we have Dλf ∼A Dbh which is non-constant since Dbh has to

be balanced as h is bent. If an+1 = 1 then we have Dλf ∼A g + h + Dbh. Since

deg(g+ h) = max{deg(g), deg(h)}, so we have deg(g+ h) = max{deg(g), deg(h)} >
deg(Dbh), implying that deg(Dλf) = deg(g + h) > deg(Dbh). So Dλf must be

non-constant. Hence the linear space of f is trivial.
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Example 129. Let g = x1x2 + x3x4 + 1 and h = x1x4 + x2x3. Note that both

g and h are bent when restricted to F4 and are related by g = h ◦ ϕ + 1, where

ϕ = A(x1, x2, x3, x4)T and

A =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 .

So we conclude by Corollary 111 and Proposition 127, that the cubic function f =

x5g + (1 + x5)h is balanced and its linear space is trivial.

2.3 Construction of resilient Boolean functions

In this section, we construct resilient Boolean functions whose properties are ex-

tended with respect to monotone sets. As noted in the previous chapter, Braeken et

al. introduced the definition of resilient Boolean functions with respect to monotone

sets because in this way some trade-offs (seen in the classical approach) between

important cryptographic properties are relaxed. In our construction we basically

consider the functions expressed in the form (2.3) and also other forms. It should be

acknowledged that our ideas for the constructions of these functions were motivated

by the (classical) construction of Siegenthaler and Camion et al. which was later

modified with respect to monotone sets (in Theorem 76) by Braeken and others.

First, we present a result which shows how the Walsh coefficients for a function

expressed in the form (2.3) can be computed in terms of the Walsh coefficients of g

and h with restriction to Fn.

Lemma 130. Let f be a Boolean function of the form (2.3). Let α = (a, b) ∈
Fm × Fn, with a = (a1, ..., am) and b = (b1, ..., bn) . Then

Wf (α) =

(2m − 1)Wh�Fn (b) +Wg�Fn (b) if a = 0

(−1)λ
[
Wg�Fn (b)−Wh�Fn (b)

]
otherwise,

(2.12)
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with λ = a1 + · · ·+ am.

Proof. Let X = (y, x) ∈ Fm × Fn. Then we have

Wf (α) =
∑

X∈Fm+n

(−1)f(X)+α·X

=
∑

(y,x)∈Fm\{1}×Fn
(−1)h(x)+a·y+b·x +

∑
(y,x)∈{1}×Fn

(−1)g(x)+a·y+b·x

=
∑

(y,x)∈Fm×Fn
(−1)h(x)+a·y+b·x −

∑
(y,x)∈{1}×Fn

(−1)h(x)+a·y+b·x

+
∑

(y,x)∈{1}×Fn
(−1)g(x)+a·y+b·x

=
∑
y∈Fm

(−1)a·y
∑
x∈Fn

(−1)h(x)+b·x − (−1)λ
∑
x∈Fn

(−1)h(x)+b·x

+ (−1)λ
∑
x∈Fn

(−1)g(x)+b·x

=

(∑
y∈Fm

(−1)a·y − (−1)λ

)∑
x∈Fn

(−1)h(x)+b·x + (−1)λ
∑
x∈Fn

(−1)g(x)+b·x

=

(∑
y∈Fm

(−1)a·y − (−1)λ

)
Wh�Fn (b) + (−1)λWg�Fn (b)

=

(2m − 1)Wh�Fn (b) +Wg�Fn (b) if a = 0

(−1)λ
[
Wg�Fn (b)−Wh�Fn (b)

]
otherwise.

In the final step we used the fact that

∑
y∈Fm

(−1)a·y =

2m if a = 0

0 otherwise

and also that λ = 0 if a = 0.

We next present some results whose proofs use the idea by Braeken et al. in the



2.3. CONSTRUCTION OF RESILIENT BOOLEAN FUNCTIONS 71

construction of ∆̃-resilient functions as given in Theorem 76.

Theorem 131. Let g(xm+1, ..., xm+n) and h(xm+1, ..., xm+n) be two ∆-resilient func-

tions on Fn, with ∆ ⊆ P ({m+ 1, ...,m+ n}). Then the function, in the form (2.3),

given by

f ∼A

(
m∏
j=1

xj

)
g(xm+1, ..., xm+n) +

(
1 +

m∏
j=1

xj

)
h(xm+1, ..., xm+n).

is ∆̃-resilient, where ∆̃ = ∆ ] P ({1, ...,m}).

Proof. Let α = (a, b) ∈ Fm × Fn, with a = (a1, ..., am) and b = (b1, ..., bn). By

Lemma 130, we have

Wf (α) =

(2m − 1)Wh�Fn(b) +Wg�Fn(b) if a = 0

(−1)λ [Wg�Fn(b)−Wh�Fn(b)] otherwise,

with λ = a1 + · · ·+ am.

Observe that if α satisfies sup(α) ∈ ∆̃, then it implies that sup(b) ∈ ∆. Since we

are given that g and h are ∆-resilient functions (i.e., Wg�Fn (b) = Wh�Fn (b) = 0), so

it follows that Wf (α) = 0 which implies that f is ∆̃-resilient.

We next construct a function on n + 2 variables which takes four functions on n

variables as input and it is balanced if all the four functions are balanced.

Proposition 132. Let α = (α1, α2) ∈ F2 and gα(x) be functions on n variables.

For all X = (x, x′) ∈ Fn × F2, with x = (x1, ..., xn) and x′ = (xn+1, xn+2), define

f(X) =
∑
α∈F2

(xn+1xn+2 + α1xn+1 + α2xn+2 + α1 · α2)gα(x). (2.13)

Let β̃ = (β, β′) ∈ Fn × F2, with β = (β1, ..., βn) and β′ = (βn+1, βn+2). Then

(a) Wf (β̃) =Wg1�Fn (β) + (−1)βn+1+βn+2Wg0�Fn (β) +
∑

α∈F2\{0,1}(−1)β
′·αWgα�Fn (β),
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(b) w(f) =
∑

α∈F2 w(gα�Fn),

(c) f is balanced if all gα’s are balanced,

(d) f is unbalanced if three of gα’s are balanced while one is not.

Proof. (a) We have

Wf (β̃) =
∑

X∈Fn+2

(−1)f(X)+β̃·X =
∑

(x,x′)∈Fn×F2

(−1)f(x,x′)+β·x+β′·x′

=
∑

(x,x′)∈Fn×{(0,0)}

(−1)g(1,1)+β·x +
∑

(x,x′)∈Fn×{(1,0)}

(−1)g(1,0)+β·x+βn+1

+
∑

(x,x′)∈Fn×{(0,1)}

(−1)g(0,1)+β·x+βn+2 +
∑

(x,x′)∈Fn×{(1,1)}

(−1)g(0,0)+β·x+βn+1+βn+2

=
∑
x∈Fn

(−1)g(1,1)+β·x +
∑
x∈Fn

(−1)g(1,0)+β·x+βn+1 +
∑
x∈Fn

(−1)g(0,1)+β·x+βn+2

+
∑
x∈Fn

(−1)g(0,0)+β·x+βn+1+βn+2

=Wg(1,1)�Fn
(β) + (−1)βn+1Wg(1,0)�Fn

(β) + (−1)βn+2Wg(0,1)�Fn
(β)

+ (−1)βn+1+βn+2Wg(0,0)�Fn
(β)

=Wg(1,1)�Fn
(β) + (−1)βn+1+βn+2Wg(0,0)�Fn

(β) +
∑

α∈F2\{0,1}

(−1)β
′·αWgα�Fn (β).

(2.14)

(b) We deduce from Equation (2.14) that

F(f) =Wf (0) =
∑
α∈F2

Wgα�Fn (0) =
∑
α∈F2

F(gα�Fn). (2.15)

Thus, we have

w(f) = 2n+1 − 1

2
F(f) = 2n+1 − 1

2

(∑
α∈F2

F(gα�Fn)

)
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= 2n+1 − 1

2

(∑
α∈F2

[2n − 2w(gα�Fn)]

)

= 2n+1 − 1

2

(
2n+2 − 2

∑
α∈F2

w(gα�Fn)

)
=
∑
α∈F2

w(gα�Fn). (2.16)

(c) Suppose that, for all α ∈ F2, gα is balanced. Then F(gα�Fn) = 0, for all α ∈ F2,

from which we deduce, by Equation (2.15), that F(f) = 0. So f is balanced.

(d) If three of gα’s are balanced and one not, then F(f) 6= 0, implying that f is

unbalanced.

Remark 133. Any Boolean function with algebraic degree at least two can be ex-

pressed in form (2.13).

We utilise our construction in Proposition 132 to show that given any four ∆-resilient

functions on n variables we can always construct some functions on n+ 2 variables

which are ∆̃-resilient.

Theorem 134. Let α = (α1, α2) ∈ F2 and gα(x) be ∆-resilient functions on n

variables. Let a function f on n+ 2 variables be as constructed in Proposition 132.

Then f is ∆̃-resilient, where ∆̃ = ∆ ] P ({n + 1, n + 2}). Furthermore, if w ∈ Γ

and for any u � w it holds that
∑

α∈F2Wgα�Fn (u) = 0, then f is ∆̂-resilient, where

∆̂ = ∆̃ ∪ P (sup(w)).

Proof. Let X = (x, x′) ∈ Fn × F2, with x = (x1, ..., xn) and x′ = (xn+1, xn+2). We

have f(X) =
∑

α∈F2(xn+1xn+2 + α1xn+1 + α2xn+2 + α1 · α2)gα(x). Let β̃ = (β, β′) ∈
Fn × F2, with β = (β1, ..., βn) and β′ = (βn+1, βn+2).

Observe that if β̃ satisfies sup(β̃) ∈ ∆̃, then sup(β) ∈ ∆. Since we are given that all

gα’s are ∆-resilient functions, so it follows that, for all α ∈ F2, Wgα�Fn (β) = 0 and

by Equation (2.14), we deduce that Wf (β̃) = 0, implying that f is ∆̃-resilient.

If β̃ satisfies sup(β̃) ∈ ∆̂ then, as in the proof of Theorem 76, we have to deal with

two cases:
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(i) sup(β̃) ∈ ∆]P ({n+1, n+2}), which we have already proven thatWf (β̃) = 0,

(ii) sup(β̃) ∈ P (sup(w)) for some w ∈ Γ. We must have βn+1 = βn+2 = 0 and thus∑
α∈F2Wgα�Fn (u) = 0 since β̃ � w.

Remark 135. Note that if, in Theorem 131, we have two distinct ∆-resilient func-

tions on Fn then we can construct two (i.e, 2!) different ∆̃-resilient functions on

Fn+1, and more interesting if, in Theorem 134, we have four distinct ∆-resilient

functions on Fn then we can construct at least 24 (i.e., 4!) different ∆̃-resilient

functions on n + 2 variables. That is, Theorem 134 shows that we can use the

knowledge of functions which are ∆-resilient on n variables to construct even more

functions which are ∆̃-resilient on n+ 2 variables.

Next, we give a result which shows that Theorem 134 can be extended in such way

that the inputs are more than four functions. By applying the same arguments used

in the proofs of Proposition 132 and Theorem 134, the following result is deduced.

Corollary 136. Let α = (α1, ..., αm) ∈ Fm and gα(x) be functions on n variables.

For all X = (x, x′) ∈ Fn×Fm, with x = (x1, ..., xn) and x′ = (xn+1, ..., xn+m), define

f(X) =
∑
α∈Fm

(
n+m∏
i=n+1

xi + α · x′ +
m∏
i=1

αi

)
gα(x). (2.17)

Let β̃ = (β, β′) ∈ Fn × Fm, with β = (β1, ..., βn) and β′ = (βn+1, ..., βn+m). Then

(a) Wf (β̃) =Wg1�Fn (β)+(−1)βn+1+···+βn+mWg0�Fn (β)+
∑

α∈Fm\{0,1}(−1)β
′·αWgα�Fn (β),

(b) w(f) =
∑

α∈Fm w(gα�Fn),

(c) f is balanced if all gα’s are balanced,

(d) f is ∆̃-resilient, with ∆̃ = ∆]P ({n+ 1, ..., n+m}), if all gα’s are ∆-resilient

functions on n variables,

(e) f is ∆̂-resilient, where ∆̂ = ∆̃ ∪ P (sup(w)), if w ∈ Γ and for any u � w it

holds that
∑

α∈FmWgα�Fn (u) = 0.

Notice that not every Boolean function can be expressed in the form (2.17).
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2.4 Nonlinearity of Boolean functions

In this section, we determine the nonlinearity of a splitting function given in the

form (104) and we also show how the nonlinearity of a Boolean function can be

related to the nonlinearities of some functions in a lower dimension.

Proposition 137. Let f ∈ Bn, with deg(f) = m and m > 1, be such that

f =
k−1∑
t=0

m∏
j=1

xmt+j.

Then N (f) = 2n−1 − 2n−mk−1(2m − 2)k.

Proof. Let fi =
∏m

j=1 xmi+j. Then f =
∑k−1

i=0 fi. Let lα(x) = α · x, where α, x ∈ Fn.

We know, from Proposition 104, that f is not balanced, so it is clear that f + lα is

balanced if lα has some variables which are not in f (see Proposition 24) and in this

case, we have Wf (α) = F(f + lα) = 0. Thus, we can assume that lα(x) = la(X) =

a ·X, with a = (a0, ..., ak−1) and X = (y0, ..., yk−1) in (Fm)k, so that all variables in

la are also in f . By Corollary 17, we have

Wf (α) = F(f + la) = 2n−mk
k−1∏
i=0

F([fi + lai ]�Fm). (2.18)

Recall that N (f) = 2n−1 − 1
2

maxα∈Fn |Wf (α)|. Clearly, |Wf (α)| is maximal if all

F([gi + lai ]�Fm) are maximal. Observe that

F([fi + lai ]�Fm) = 2m − 2w([fi + lai ]�Fm)

and it is clear that w([fi+ lai ]�Fm) 6= 0. So F([fi+ lai ]�Fm) is maximal if ai = (0, ..., 0)

since in this case w([fi + lai ]�Fm) = w(fi�Fm) = 1. Thus, |Wf (α)| is maximal if, for

all i, we have F([fi+ lai ]�Fm) = F(fi�Fm) = 2m−2, implying that it is maximal when

α = (0, ..., 0). Substituting F([fi + lai ]�Fm) = 2m − 2 in Equation (2.18), we obtain

Wf (α) = 2n−mk(2m − 2)k. Hence N (f) = 2n−1 − 2n−mk−1(2m − 2)k.
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Remark 138. We deduce from Proposition 137 that f is bent if and only if m = 2

and k = n/2, for n even, otherwise 2n−mk−12k(2m−1−1)k would be equal to 2
n
2
−1, for

some positive integer k, contradicting the fact that (2m−1−1) - 2
n
2
−1 since (2m−1−1)

is odd and 2
n
2
−1 cannot be divisible by an odd number.

Theorem 139. Let f be a Boolean function given in the form (2.3). Then

N (f) ≥ (2m − 1)N (h�Fn) +N (g�Fn).

Proof. For any two integers c and d, we use the fact that |c+ d| ≤ |c|+ |d|. Let α =

(a, b) ∈ Fm × Fn, with a = (a1, ..., am) and b = (b1, ..., bn). Clearly, by Lemma 130,

we have

|Wf (α)| ≤

(2m − 1)|Wh�Fn (b)|+ |Wg�Fn (b)| if a = 0

|Wg�Fn (b)|+ |Wh�Fn (b)| otherwise.

Since

|Wg�Fn (b)|+ |Wh�Fn (b)| ≤ (2m − 1)|Wh�Fn (b)|+ |Wg�Fn (b)|,

then we deduce that, for any α = (a, b), we have

|W(α)| ≤ (2m − 1)|Wh�Fn (b)|+ |Wg�Fn (b)|.

So we have

N (f) = 2n+m−1 − 1

2
max

α∈Fn+m
|Wf (α)|

≥ 2n+m−1 − 1

2
max
b∈Fn

(
|(2m − 1)Wh�Fn (b)|+ |Wg�Fn (b)|

)
≥ 2n+m−1 − 1

2
(2m − 1) max

b∈Fn
|Wh�Fn (b)| − 1

2
max
b∈Fn
|Wg�Fn (b)|

= (2m − 1)2n−1 + 2n−1 − 1

2
(2m − 1) max

b∈Fn
|Wh�Fn (b)| − 1

2
max
b∈Fn
|Wg�Fn (b)|

= (2m − 1)2n−1 − 1

2
(2m − 1) max

b∈Fn
|Wh�Fn (b)|+ 2n−1 − 1

2
max
b∈Fn
|Wg�Fn (b)|

= (2m − 1)N (h�Fn) +N (g�Fn).
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Remark 140. If m = 1 then, by Theorem 139, the nonlinearity of f is related to

the nonlinearities of g and h as: N (f) ≥ N (h�Fn) +N (g�Fn).

It is immediate from Theorem 47 and Remark 140 that the following corollary holds.

Corollary 141. Let f be as described in Theorem 109. Then

N (f) ≥


2n−1 − 2n−k−1 if g is quadratic and h affine,

2n−1 − 2n−`−1 if g is affine and h quadratic,

2n − 2n−k−1 − 2n−`−1 if both g and h are quadratic.

Corollary 141 suggests a way of constructing Boolean functions with high non-

linearity.

Remark 142. If f ∼A xn+1g(x1, ..., xn)+(1+xn+1)h(x1, ..., xn) on Fn+1, where both

g�Fn and h�Fn are bent, then N (f) ≥ 2N−1 − 2
N−1

2 , with N = n + 1. Thus, proposi-

tion 128 can be used to construct balanced Boolean functions with high nonlinearity

and trivial linear space.

Theorem 143. Let a Boolean function f on n+m variables, with m ≥ 1, be of the

form (2.17). Then

N (f) ≥
∑
α∈Fm

N (gα�Fn).

Proof. Let X = (x, x′) ∈ Fn × Fm, with x = (x1, ..., xn) and x′ = (xn+1, ..., xn+m).

From (2.17), we have f(X) =
∑

α∈Fm
(∏n+m

i=n+1 xi + α · x′ +
∏m

i=1 αi
)
gα(x). Let β̃ =

(β, β′) ∈ Fn × Fm, with β = (β1, ..., βn)and β′ = (βn+1, ..., βn+m). From Corol-

lary 136, we deduce the following:

|Wf (β̃)| = |Wg1�Fn (β) + (−1)βn+1+···+βn+mWg0�Fn (β) +
∑

α∈Fm\{0,1}

(−1)β
′·αWgα�Fn (β)|

≤
∑
α∈Fn
|Wgα�Fn (β)|
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So we have,

N (f) = 2n+m−1 − 1

2
max

β̃∈Fn×Fm
|Wf (β̃)|

≥ 2n+m−1 − 1

2
max
β∈Fn

(∑
α∈Fm

|Wgα�Fn (β)|

)

≥ 2n+m−1 −
∑
α∈Fm

1

2
max
β∈Fn
|Wgα�Fn (β)|

=
∑
α∈Fm

(
2n−1 − 1

2
max
β∈Fn
|Wgα�Fn (β)|

)
=
∑
α∈Fm

N (gα�Fn).



Chapter 3

APN functions and their

second-order derivatives

In this chapter, we discuss about the properties of some quantities derived from the

behaviour of second-order derivatives of functions. Moreover, we show that these

quantities can be used for characterization of quadratic and cubic APN functions.

We also show that the quantities can be used to determine whether a quadratic or

cubic Boolean functions is bent. Our results starts from Zaninelli’s thesis [51].

3.1 The parameter M(f )

In this section, a parameter associated with second-order derivatives of Boolean

functions is defined and we study its properties.

Definition 144. For a ∈ Fn and f ∈ Bn, let Za(f) = {b ∈ Fn | DbDaf = 0},
Ua(f) = {b ∈ Fn | DbDaf = 1} and Ma(f) = |Za(f)| − |Ua(f)|. Define the

parameter M(f) by

M(f) :=
∑

a6=0∈Fn
Ma(f).

We show in the next result that in fact Za(f) is a vector space and Ua(f) is either

empty or a coset of Za(f).

79
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Proposition 145. Let f ∈ Bn. Then, for any a ∈ Fn,

(i) Za(f) is a vector space and has nonzero dimension,

(ii) Ua(f) is either the empty set or a coset of Za(f).

Proof. Let a ∈ Fn and Za(f) and Ua(f) be defined as in Definition 144.

(i) It is clear that 0 is in Za(f) sinceD0Da(f) = 0. Suppose we have b1, b2 ∈ Za(f).

Then

Db1+b2Daf(x) = Db1f(x) +Db2Daf(x+ b1) = 0 + 0 = 0,

implying that b1 + b2 ∈ Za(f) [we deduced that Db2Daf(x+ b1) = 0 since, by

Equation (2.11), we have 0 = Db2Daf(x) = (DI·b2Daf) ◦ ϕ = Db2Daf(x+ b1),

with ϕ(x) = Ix+ b1]. To show that it is of nonzero dimension, observe that if

a = 0 then Za(f) = Fn and if a 6= 0, then we have DaDaf(x) = 0, implying

that {0, a} ⊆ Za(f). So the dimension of Za(f) is at least 1.

(ii) Suppose that Ua(f) 6= ∅. For any b1 ∈ Ua(f), we claim that b1 + Za(f) =

Ua(f). Let b2 = b1 + d, with d ∈ Za(f). We have

Db2Daf(x) = Db1+dDaf(x) = Db1Daf(x) +DdDaf(x+ b1) = 1 + 0 = 1.

Thus, b2 ∈ Ua(f). Conversely, for any e ∈ Ua(f), we have

Db1+eDaf(x) = Db1Daf(x) +DeDaf(x+ b1) = 1 + 1 = 0.

It follows that e+ b1 ∈ Za(f) =⇒ e ∈ b1 +Za(f). Thus Ua(f) is either empty

or a coset of Za(f) set.

Proposition 146. Let f ∈ Bn be a Boolean function with deg(f) ∈ {2, 3}. Then,

for some positive even integer j < n, and any nonzero a ∈ Fn, we have

Ma(f) =


0 if and only if Daf balanced

2n if and only if Daf is constant

2n−j otherwise.
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Proof. We know that deg(f) ∈ {2, 3} implies deg(Daf) ∈ {0, 1, 2}. It is clear from

the definition of Ma(f) that deg(Daf) = 0 ⇐⇒ Ma(f) = 2n.

Now suppose that deg(Daf) = 1. Then Daf is a non-constant affine function, so it

is balanced. That is, we can write Daf(x) = v · x + c, for some v ∈ Fn \ {0} and

c ∈ F. Observe that

DbDaf(x) = v · x+ c+ v · (x+ b) + c

= v · x+ v · x+ v · b
= v · b.

So we have DbDaf(x) = 0 ⇐⇒ b ∈ W =< v >⊥ and DbDaf(x) = 1 ⇐⇒ b ∈ W c

(note that A⊥ denotes the dual set and Ac denotes the complement of a set A).

Thus, Za(f) = W and Ua(f) = W c. It is clear that |W | = |W c| = 2n−1. So we have

Ma(f) = 0.

Finally, suppose that deg(Daf) = 2, that is, by Theorem 7, we know that Daf ∼A
x1x2 + · · ·+ x2i−1x2i + x2i+1, with i ≤ b(n− 1)/2c, if Daf is balanced and Daf ∼A
x1x2 + · · ·+ x2i−1x2i + e, with i ≤ bn/2c and e ∈ F, if Daf is unbalanced. Suppose

that Daf is balanced. Then

|Za(f)| = |{c = (c1, ..., cn) ∈ Fn | c1 = · · · = c2i+1 = 0}|

and

|Ua(f)| = |{c = (c1, ..., cn) ∈ Fn | c1 = · · · = c2i = 0, c2i+1 = 1}|.

Observe that in both cases, |Za(f)| = |Ua(f)| = 2n−2i−1. Hence Ma(f) = 0. Now

suppose that Daf is unbalanced. Then we have

|Za(f)| = |{c = (c1, ..., cn) ∈ Fn | c1 = · · · = c2i = 0}|

and Ua(f) = ∅. It follows that |Za(f)| = 2n−2i and |Ua(f)| = 0. So it implies that

Ma(f) = 2n−2i.
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3.2 M(f ) and partially-bent functions

In this section, we study some properties of the parameter M(f) of a Boolean

function f in relation to quadratic and cubic partially-bent functions.

Theorem 147. For any quadratic function or cubic partially-bent function f , we

have

M(f) = 2n(2k − 1),

where k = dimV (f).

Proof. We know, from Proposition 146, that Ma(f) = 0 if and only if Daf is

balanced and Ma(f) = 2n if and only if Daf is a constant. Recall that all

quadratic functions are partially-bent. So we deduce, from the definition, that for

any quadratic function or cubic partially-bent function f , Daf is constant if and

only if a ∈ V (f) and Daf is balanced if and only if a /∈ V (f). Thus

M(f) =
∑

a6=0∈Fn
Ma(f)

=
∑

a6=0∈V (f)

Ma(f) +
∑

a/∈V (f)

Ma(f)

=
∑

a6=0∈V (f)

2n +
∑

a/∈V (f)

0

= 2n(2k − 1),

with k = dimV (f).

Corollary 148. Let f ∈ Bn be a quadratic or cubic function. Then f is bent if and

only if M(f) = 0.

Proof. For any quadratic or cubic function f , we deduce, from Proposition 146, that

M(f) = 0 if and only ifMa(f) = 0, for all a 6= 0 ∈ Fn if and only if Daf is balanced,

for all a 6= 0 ∈ Fn if and only if f is bent (see Theorem 54).



3.3. M(F ) AND APN FUNCTIONS 83

If a function f is bent, then k = dimV (f) = 0 and so, by Proposition 147, we have

M(f) = 0. So Proposition 147 can also be used to deduce Corollary 148.

Lemma 149. Let f ∈ Bn, with n odd, be quadratic. Then dimV (f) ≥ 1 and

equality holds if and only if f is semi-bent.

Proof. Recall that the size of linear space is invariant under affine equivalence (see

Lemma 121). From Theorem 7, we have f ∼A x1x2 + · · · + x2i−1x2i + x2i+1, with

i ≤ bn/2c, if f is balanced and f ∼A x1x2 + · · · + x2i−1x2i + e, with i ≤ bn/2c and

e ∈ F, if f is unbalanced. So we have

|V (f)| = |{c = (c1, ..., cn) ∈ Fn | c1 = · · · = c2i = 0, i ≤ bn/2c}|.

So it follows that |V (f)| = 2n−2i, implying that dimV (f) ≥ 1. By Corollary 69, we

know that f is semi-bent if and only if

f ∼A x1x2 + · · ·+ xn−2xn−1 + xn

or

f ∼A x1x2 + · · ·+ xn−2xn−1 + e,

with e ∈ F, from which we deduce that f is semi-bent ⇐⇒ dimV (f) = 1.

By Proposition 147 and Lemma 149, the following corollary holds.

Corollary 150. For n odd, a quadratic Boolean function f is semi-bent if and only

if M(f) = 2n.

3.3 M(F ) and APN functions

We extend the definition of the parameter described in Section 3.2 to vectorial

Boolean functions. For a vectorial Boolean function F , we write

M(F ) =
∑

λ 6=0∈Fn
M(Fλ). (3.1)
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It is clear thatM(F ) is defined based on the second-order derivatives of components

of F . Next, we establish the link between the 4th power moment of the Walsh

transform and the parameterM(F ), and consequently a natural characterization of

APN functions based on the latter quantity is derived.

Lemma 151. Let F be a function from Fn to itself, with deg(F ) ∈ {2, 3}. Then∑
λ 6=0,a∈Fn

W4
F (a, λ) = 23n(2n − 1) + 22nM(F ).

Proof. We have∑
λ 6=0,a∈Fn

W4
F (a, λ) =

∑
λ 6=0∈Fn

∑
a∈Fn

∑
x,y,z,w∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)+a·(x+y+z+w)

=
∑

λ 6=0∈Fn

∑
a∈Fn

∑
x,y,z,w∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)(−1)a·(x+y+z+w)

=
∑

λ 6=0∈Fn

∑
x,y,z,w∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)
∑
a∈Fn

(−1)a·(x+y+z+w)

=
∑

λ6=0∈Fn

∑
x,y,z,w∈Fn|x+y+z+w=0

2n(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)

= 2n
∑

λ 6=0∈Fn

∑
x,y,z,w∈Fn|w=x+y+z

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(w)

= 2n
∑

λ 6=0∈Fn

∑
x,y,z∈Fn

(−1)Fλ(x)+Fλ(y)+Fλ(z)+Fλ(x+y+z)

[substituting y = x+ b and z = x+ c we have]

= 2n
∑

λ 6=0∈Fn

∑
x,b,c∈Fn

(−1)Fλ(x)+Fλ(x+b)+Fλ(x+c)+Fλ(x+b+c)

= 2n
∑

λ 6=0∈Fn

∑
x,b,c∈Fn

(−1)DbFλ(x)+DbFλ(x+c)

= 2n
∑

λ 6=0∈Fn

∑
x,b,c∈Fn

(−1)DcDbFλ(x) (3.2)

[deg(DcDbFλ) = 1 =⇒
∑
x∈Fn

(−1)DcDbFλ(x) = 0, so we have]
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= 2n
∑

λ 6=0∈Fn

∑
x,b,c∈Fn| deg(DcDbFλ)=0

(−1)DcDbFλ(x)

= 2n
∑

λ 6=0∈Fn
2n

∑
b,c∈Fn|deg(DcDbFλ)=0

(−1)DcDbFλ(0)

= 22n
∑

λ 6=0∈Fn

 ∑
b,c∈Fn|DcDbFλ=0

(−1)0 +
∑

b,c∈Fn|DcDbFλ=1

(−1)1


= 22n

∑
λ 6=0∈Fn

(|{b, c ∈ Fn | DcDbFλ = 0}| − |{b, c ∈ Fn | DcDbFλ = 1}|)

= 22n
∑

λ 6=0∈Fn

∑
b∈Fn

(|{c ∈ Fn | DcDbFλ = 0}| − |{c ∈ Fn | DcDbFλ = 1}|)

= 22n
∑

λ 6=0∈Fn
(|{c ∈ Fn | DcD0Fλ = 0}| − |{c ∈ Fn | DcD0Fλ = 1}|)

+ 22n
∑

λ 6=0∈Fn

∑
b 6=0∈Fn

Mb(Fλ)

= 22n
∑

λ 6=0∈Fn
(|{c ∈ Fn | Dc(0) = 0}| − |{c ∈ Fn | Dc(0) = 1}|)

+ 22n
∑

λ 6=0∈Fn

∑
b 6=0∈Fn

Mb(Fλ)

= 22n
∑

λ 6=0∈Fn
(2n − 0) + 22n

∑
λ 6=0∈Fn

∑
b 6=0∈Fn

Mb(Fλ)

= 22n
∑

λ 6=0∈Fn
2n + 22n

∑
λ 6=0∈Fn

∑
b 6=0∈Fn

Mb(Fλ)

= 23n(2n − 1) + 22n
∑

λ 6=0∈Fn

∑
b6=0∈Fn

Mb(Fλ)

= 23n(2n − 1) + 22n
∑

λ 6=0∈Fn
M(Fλ) = 23n(2n − 1) + 22nM(F ).

By Lemma 151 and Theorem 91, the following result is deduced.

Theorem 152. Let F be a function from Fn to itself, with deg(F ) ∈ {2, 3}. Then

M(F ) ≥ 2n(2n − 1).
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Moreover, F is APN if and only if equality holds.

Proof. By Lemma 80 and Theorem 91, we have∑
λ 6=0,a∈Fn

W4
F (a, λ) ≥ 23n+1(2n − 1)

and equality holds if and only if F is APN. Since, by Lemma 151, we have∑
λ 6=0,a∈Fn

W4
F (a, λ) = 23n(2n − 1) + 22nM(F ),

so must have

M(F ) ≥ 2n(2n − 1)

and equality holds if and only if F is APN.

By Proposition 147, the following result is deduced.

Corollary 153. For any quadratic function F : Fn → Fn, we have

M(F ) = 2n
∑

λ 6=0∈Fn
(2dimV (Fλ) − 1). (3.3)

Proof. For any λ 6= 0 ∈ Fn, we haveM(Fλ) = 2n(2dimVλ − 1) (see Proposition 147).

We conclude from Equation (3.1) that M(F ) = 2n
∑

λ 6=0∈Fn(2dimV (Fλ) − 1).

Example 154. Let F (x1, x2, x3) = (f1, f2, f3), with f1 = x1x3 + x2x3 + x1, f2 =

x2x3 + x1 + x2 and f3 = x1x2 + x1 + x2 + x3 in B3. It can be easily verified that

all components are quadratic. Clearly, the dimension of their linear spaces is 1.

By Corollary 153, we have M(F ) = 23(23 − 1) = 56 and so, by Theorem 152, we

conclude that F is APN. Moreover, all components are balanced, implying that F is

an APN permutation.

We deduce, from Lemma 149 and Corollary 153 that the following corollary holds.

Corollary 155. Let F be a quadratic function from Fn to itself, with n odd. Then

F is APN if and only if, for all λ 6= 0 ∈ Fn, M(Fλ) = 2n.
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The Walsh transform in zero of the second-order derivatives of a function can be

linked to the 4th power moment, and consequently a natural characterization of

APN functions based on the former is obtained. The next lemma follows directly

from Equation (3.2).

Lemma 156. For a vectorial Boolean function F : Fn → Fn, we have∑
λ 6=0,a∈Fn

W4
F (a, λ) = 2n

∑
λ 6=0,c,b∈Fn

F(DbDcFλ).

By Theorem 91 and Lemma 156, the following result is deduced.

Theorem 157. Let F : Fn → Fn be a vectorial Boolean function. Then∑
λ 6=0,c,b∈Fn

F(DbDcFλ) ≥ 22n+1(2n − 1).

Moreover, F is APN if and only if equality holds.

Observe that Theorem 157 can also be directly deduced from Theorem 93.



Chapter 4

APN functions in even dimension

In this chapter, we study the linear spaces of components of APN functions in even

dimension. We show that for any APN function there is a component with trivial

linear space. We also present a general form of the number of bent components in

quadratic APN functions and provide bounds on their number. Furthermore, we

count the number of bent components in any quadratic power function.

4.1 Linear spaces for components of APN func-

tions

In this section, we mainly show that some components of any APN function in even

dimension must have a trivial linear space.

Definition 158. Let a function f on n variables be a splitting function, that is,

f ∼A g(x1, ..., xi)+h(xi+1, ..., xn), with a positive integer i < n. We call i a splitting

number of f and S(f) denotes the set of all i (the splitting numbers of f). We define

a splitting index of f by the number σ(f) = minS(f)

Remark 159. Let f ∈ Bn be a splitting function. Then

1. i is a splitting number ⇐⇒ n− i is a splitting number,

88
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2. σ(f) ∈ {1, ..., bn/2c} (we deduce from 1.).

Our main result in this section largely depends on the following two lemmas.

Lemma 160. Let f ∈ Bn. Then σ(f) = 1 if and only if dimV (f) ≥ 1.

Proof. Suppose that σ(f) = 1, that is, f ∼A f̃ = g(x1) + h(x2, ..., xn). So we have

f̃ = f ◦ ϕ, where ϕ(y) = M · y + w, for some w ∈ Fn and invertible M ∈ GLn(F).

Clearly De1 f̃ is constant. By Equation (2.11) in the proof Lemma 121, we have

De1 f̃ = (DM ·e1f)◦ϕ and since w(De1 f̃) = w(DM ·e1f) (see Proposition 6), so DM ·e1f

must also be constant. Note that M · e1 6= 0 since M is a linear isomorphism. Thus

both 0 and M · e1 are in V (f) which implies that dimV (f) ≥ 1.

Conversely, suppose that dimV (f) ≥ 1, that is, ∃a 6= 0 ∈ V (f) such that Daf = c,

with c ∈ F. We can take the F-linear isomorphism E of Fn that sends e1 7→ E ·e1 = a

so that we have f̃ = f ◦ E and thus,

De1 f̃ = (DE·e1f) ◦ E = (Daf) ◦ E = (c) ◦ E = c

which implies that De1 f̃ is constant. Since we have De1 f̃ = c, we can write f̃ =

cx1 + h(x2, ..., xn). Hence we have σ(f) = 1 since f ∼A f̃ .

Lemma 161. Let f ∈ Bn, with n even. If σ(f) = 1, then |Γ(f)| ≤ 2n − 4.

Proof. Suppose f ∈ Fn has σ(f) = 1, that is, f ∼A f̃ = cx1 + h(x2, ..., xn), with

c ∈ F. By Equation (2.11) in Lemma 121, we have |Γ(f)| = |Γ(f̃)|, so we can simply

consider |Γ(f̃)|. It is clear that 0 and e1 are both not in Γ(f̃) since D0f̃ = 0 and

De1 f̃ = c. Suppose that these are the only ones, that is, |Γ(f̃)| = 2n − 2. This

implies that, for all a ∈ Fn \ {0, e1}, Daf̃ is balanced.

Let W =< e2, ..., en > and denote W ∗ = W \ {0}. Clearly, W ∗ is contained in

Fn \{0, e1}, that is, W ∗ ⊂ Γ(f̃). So, for all a ∈ W ∗, Daf̃ is balanced. It is clear that

W ' Fn−1. Observe that, for any a = (0, b) ∈ {0} × (Fn−1 \ {0}) = W ∗, we have

Daf̃ = Dbh as the first coordinate of a is 0. Since Daf̃ does not depend on x1 then,

by Remark 27, we have 2n−1 = w(Daf̃) = w(Dbh) = 2w(Dbh�Fn−1) from which we
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deduce that w(Dbh�Fn−1) = 2n−2, that is, Dbh�Fn−1 is balanced, for all b ∈ Fn−1 \{0}.
This implies that h, with restriction to Fn−1, is bent (see Theorem 54).

But n − 1 is odd as n is even, so this implies that we have a bent function on

F-vector space of odd dimension, which is impossible. Thus, the assumption that

|Γ(f̃)| = 2n − 2 is false, and so we can say |Γ(f̃)| ≤ 2n − 3.

Suppose that d ∈ Fn \ {0, e1} is the other nonzero element such that Ddf̃ is unbal-

anced. So Dd+e1 f̃(x) = De1 f̃(x)+Ddf(x+e1) = c+Ddf(x+e1) = (c+DI·df(x))◦ϕ,

for c ∈ F and ϕ(y) = Iy+e1, with I as an identity in GLn(F). That is, Dd+e1 f̃(x) ∼A
Ddf(x) + c. Since Ddf(x) is unbalanced then Ddf(x) + c must be unbalanced, im-

plying that Dd+e1 f̃(x) is also unbalanced. That is, we have {0, e1, d, d+ e1} 6⊂ Γ(f̃).

Hence |Γ(f̃)| ≤ 2n − 4.

Theorem 162. Let a function F from Fn to itself, with n even, be an APN. Then

there is a λ 6= 0 ∈ Fn such that the linear space of Fλ is trivial.

Proof. Since, by Lemma 160, a Boolean function has a non-zero linear structure if

and only if its splitting index is 1, so we simply show that for any APN function F

it is impossible to have σ(Fλ) = 1, for all λ 6= 0 ∈ Fn.

Suppose, by contradiction, that F is APN and σ(Fλ) = 1, for all λ 6= 0 ∈ Fn. By

Lemma 161, we can suppose that, for any λ 6= 0 ∈ Fn, there are non-zero v, u and

w not Γ(Fλ) such that DvFλ is constant, DuFλ and DwFλ are both unbalanced.

So we have F2(D0Fλ) = F2(DvFλ) = 22n, and both F2(DuFλ) and F2(DwFλ) are

non-zero positive integers (recall that, for any Boolean function f , F(f) = 0 if and

only if f is balanced). Thus, we have∑
a∈Fn
F2(DaFλ) ≥ F2(D0Fλ) + F2(DvFλ) + F2(DuFλ) + F2(DwFλ)

= 22n + 22n + F2(DuFλ) + F2(DwFλ) > 22n+1

from which we deduce that∑
λ 6=0∈Fn

∑
a∈Fn
F2(DaFλ) > 22n+1(2n − 1).
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Thus, by Theorem 93, it is impossible for F to be an APN function. So it follows

that if F is an APN function in even dimension then there is a component whose

linear space is trivial.

Theorem 163. Let F be an APN permutation over Fn, with n even. Then

dimV (Fλ) ≤ 1, for all λ 6= 0 ∈ Fn.

Proof. Suppose, by contradiction, that there is µ 6= 0 ∈ Fn such that dimV (Fµ) > 1.

It follows that V (Fµ) contains at least three nonzero elements. Let a, b ∈ V (Fµ)

be nonzero and distinct. Then, by Proposition 97, we have DaFλ = DbFλ = 1.

Clearly, a + b is also a nonzero element in V (Fµ) different from a and b. Note that

Da+bFµ(x) = DaFµ(x) + DbFµ(x + a), x ∈ Fn. By Equation (2.11) in the proof of

Lemma 121, DbFµ(x+a) = (DI·bFµ)◦ϕ ∼A DbFµ, with ϕ(x) = I ·x+a and I being

the identity matrix of GLn(F). Since DbFµ = 1, so we must have DbFµ(x+ a) = 1.

Thus, Da+bFµ(x) = 0, which is impossible by Proposition 97. Thus, we must have

dimV (Fλ) ≤ 1, for all λ 6= 0 ∈ Fn.

4.2 Quadratic APN functions

A quadratic vectorial Boolean function from Fn to itself is denoted by Q, the lin-

ear space V (Qλ) of a component Qλ is denoted by Vλ and we let V ∗λ = Vλ \ {0}.
Since an APN function cannot contain linear components, we assume that Q is

pure quadratic. Recall that all quadratic functions are partially-bent, so by The-

orem 162 quadratic APN functions must have bent components since they are the

only quadratics with trivial linear space. In this section, we are mainly counting

how many these bent components are in quadratic APN functions.

First, we characterize quadratic APN functions based on the dimensions of linear

spaces for their components.

Proposition 164. For any quadratic Q : Fn → Fn, we have∑
λ 6=0∈Fn

(2dimVλ − 1) ≥ 2n − 1. (4.1)
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Moreover, equality holds if and only if Q is APN.

Proof. Since F2(D0Qλ) = 22n, so we have∑
λ6=0∈Fn

∑
a∈Fn
F2(DaQλ) = 22n(2n − 1) +

∑
λ6=0,∈Fn

∑
a6=0∈Fn

F2(DaQλ). (4.2)

By Theorem 93 and Equation (4.2), we deduce that∑
λ 6=0,∈Fn

∑
a6=0∈Fn

F2(DaQλ) ≥ 22n(2n − 1) (4.3)

and equality holds if and only if Q is APN.

For any quadratic Q, deg(DaQλ) = 0 if a ∈ Vλ and deg(DaQλ) = 1 if a /∈ Vλ. So we

have F2(DaQλ) = 22n if a ∈ Vλ and F2(DaQλ) = 0 if a /∈ Vλ. Thus, we have∑
λ 6=0∈Fn

∑
a6=0∈Fn

F2(DaQλ) =
∑

λ 6=0∈Fn

∑
a∈V ∗λ

F2(DaQλ)

=
∑

λ 6=0∈Fn
22n|V ∗λ |

= 22n
∑

λ 6=0∈Fn
(2dimVλ − 1). (4.4)

We deduce, from the relation (4.3) and Equation (4.4), that∑
λ 6=0∈Fn

(2dimVλ − 1) ≥ 2n − 1

and equality holds if and only if Q is APN.

For any quadratic Boolean function f in odd dimension we have dimV (f) ≥ 1 and

equality holds if and only if f is a semi-bent (see Lemma 149). This implies that

the equality in the relation (4.1) happens if and only if Q is an AB function. So

it implies that a quadratic function is APN if and only if it is AB (this is a well-

known result). It follows that all components of any quadratic APN function in odd
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dimension have non-trivial linear space, implying that the result in Theorem 162

cannot be extended to quadratic APN functions in odd dimension.

Now we focus on quadratic functions from Fn to Fn in even dimensions. It is clear,

from Theorem 7, that any quadratic Boolean function in even dimension has a

splitting index 1 or 2. By Corollary 69, we deduce that a quadratic Boolean function

is bent if and only if the splitting index is 2.

Definition 165. For any quadratic Q, define

∆i = {λ ∈ Fn | λ 6= 0, σ(Qλ) = i}, N = |∆1| and B = |∆2|.

Remark 166. From Definition 165, N is the number of non-bent compoments and

B is the number of bent components in Q and so we have N +B = 2n − 1.

As proved by Nyberg in [42], bent functions exist only from Fn to Fm, with m ≤ n/2,

so it follows that no function from Fn to itself can be bent. However, we can talk

about bent components in functions from Fn to itself. Recall, from Remark 86, that

the number of bent components in any function from Fn to itself is at most 2n− 2
n
2

[45]. It was shown in [39] that no plateaued APN function can contain the maximum

possible number of bent components. Since the quadratic functions are plateaued,

no quadratic APN function contains 2n − 2
n
2 bent components.

In the next result, we determine B when Q is an APN function and contains only

bent and semi-bent components.

Proposition 167. Let Q : Fn → Fn, with n even, be such that Qλ, with λ 6= 0, is

bent or semi-bent. Then Q is APN if and only if there are exactly 2
3
(2n − 1) bent

components.

Proof. For any quadratic APN function Q, by Theorem 162, we have B > 0, that

is, some components of Q must be bent (as we require that the linear space of some

components must be trivial). Since n is even, then dimVλ is even (see Remark 63).

From Theorem 7 and Corollary 69, we can deduce that dimVλ = 0 if and only if Qλ

is bent. That is, dimVλ 6= 0 if λ ∈ ∆1 and dimVλ = 0 if λ ∈ ∆2. For any quadratic

APN function Q, by Proposition 164, we must have
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∑
λ 6=0∈Fn

(2dimVλ − 1) = 2n − 1. (4.5)

Since dimVλ = 0 if λ ∈ ∆2, then Equation (4.5) can be reduced to

∑
λ∈∆1

(2dimVλ − 1) = 2n − 1. (4.6)

That is, Q is APN if and only if Equation (4.6) holds.

If Q is such that Qλ, with λ 6= 0, is bent or semi-bent, then N is the number of

semi-bent components (i.e., dimVλ = 2, for any λ ∈ ∆1). Thus, Equation (4.6)

holds if and only if (22− 1)|∆1| = 3N = 2n− 1 if and only if N = (2n− 1)/3. Since

N +B = 2n − 1, so B = 2(2n − 1)/3.

It follows from Proposition 167 that any quadratic APN function in even dimension

with the set {0,±2
n
2 ,±2

n+2
2 } as its Walsh spectrum has 2(2n−1)/3 bent components.

It is well-known that Gold APN functions (all functions of the form x2k+1 with

gcd(k, n) = 1) in even dimension have such Walsh spectrum, so they have 2(2n−1)/3

bent components.

Theorem 168. Let a quadratic Q : Fn → Fn, with n even, be APN. Then

2(2n − 1)/3 ≤ B ≤ 2n − 2n/2 − 2,

where B = 2(2n − 1)/3 + 4t, for some integer t ≥ 0.

Proof. Suppose that Q is APN. Since the dimension of the linear space of any

quadratic in even dimension is even (see Remark 63), so it follows that for any Qλ,

with λ ∈ ∆1, we have dimVλ ≥ 2. If, for any λ ∈ ∆1, Qλ is semi-bent then we are in

Proposition 167, that is, B = 2(2n− 1)/3. If some components are neither bent nor

semi-bent, then we must have B > 2(2n − 1)/3 for Equation (4.6) to be satisfied.
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If Q has a component Qµ, with µ ∈ ∆1, which is not semi-bent, then dimVµ = 2k,

for some k ≥ 2. So, for Equation (4.6) to be satisfied, the presence of Qµ in Q

implies that the number of bent components must be increased by

22k − 1

22 − 1
− 1 =

22k − 4

3
= 4

(
22k−2 − 1

3

)
which clearly is divisible by 4. This implies that the number of bent components in

Q is B = 2(2n − 1)/3 + 4t, for some integer t ≥ 0.

By Remark 86, we have B ≤ 2n− 2n/2. Now we show that it is not possible to have

B = 2n−2n/2. For some t ≥ 0, we have B = 2(2n−1)/3+4t = 2[(2n−1)/3+2t] 6≡ 0

(mod 4) since (2n−1)/3+2t is odd. Thus, B 6= 2n−2n/2 since 2n−2n/2 ≡ 0 (mod 4).

Hence we must have B ≤ 2n − 2n/2 − 2.

For any quadratic APN function Q in dimension 4, by Theorem 168, we only have

one possibility, that is, B = 10 (this satisfies Proposition 167). We state this result

in the following.

Corollary 169. A pure quadratic Q : F4 → F4 is APN if and only if B = 10.

Not long time ago, only quadratic APN functions with B = 2(2n−1)/3 were known.

We have shown in Proposition 167 that such functions contain only bent and semi-

bent components. As noted earlier, Gold functions are example of such functions.

It had been conjectured that all quadratic APN functions are equivalent to Gold

functions (i.e., all quadratic APN functions have the same number of bent compo-

nents) until Dillon in 2006 gave an example of quadratic APN function with different

number of bent components and inequivalent to Gold APN functions. The Dillon’s

Example:

F (x) = x3 + z11x5 + z13x9 + x17 + z11x33 + x48

is defined over F26 , with z primitive. Using MAGMA, we found that F has 46

bent components. That is, it is an example of quadratic APN function with B =

2(2n− 1)/3 + 4 (i.e., t = 1 in Theorem 168). Also by computer search, we found the

function:

G(x) = x3 + z53x10 + z41x18 + z59x33 + z43x34 + z31x48
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over F26 , with z primitive, which has the same number of bent components as F ,

the Dillon’s Example. From Theorem 168, we deduce that, in dimension 6, all the

possibilities for the number of bent components in any quadratic APN function are:

42, 46, 50 and 54. So far we only know the existence of quadratic APN functions

with 42 (Gold functions and others) and 46 (Dillon’s example) bent components but

we are uncertain whether those with 50 and 54 exist.

In [50], Yu and others constructed some quadratic APN functions in dimension 8

which have the Walsh spectrum: {−64,−32,−16, 0, 16, 32, 64} (different from the

Walsh spectrum of Gold functions). These functions are further classified in terms

of the distribution of their Walsh coefficients and two classes are found. One class

has 487 functions and the other one has 12 functions. In the class of 487 functions,

we considered the function:

G′(x) = z249x192 + z24x160 + z210x144 + z69x136 + z46x132 + z164x130 + z43x129

+ z31x96 + z30x80 + z115x72 + z228x68 + z16x66 + z228x65 + z217x48 + z9x40

+ z251x36 + z151x34 + z77x33 + z189x24 + z109x20 + z191x18 + z249x17 + z175x12

+ z130x10 + z91x9 + z59x6 + z60x5 + z121x3,

where z is primitive and by checking with MAGMA, we found that it contains

2(28−1)/3+4 = 174 bent components (i.e., t = 1 in Theorem 168) and in the other

class, we considered the function:

G′′(x) = z130x192 + z160x160 + z117x144 + z230x136 + z228x132 + z162x130 + z25x129

+ z79x96 + z204x80 + z83x72 + z159x68 + z234x66 + z36x65 + z67x48 + z151x40

+ z17x36 + z81x34 + z52x33 + z9x24 + z116x20 + z102x18 + z97x17 + z74x12

+ z48x10 + z144x9 + z58x6 + z146x5 + z123x3

which was found to have 2(28 − 1)/3 + 8 = 178 bent components (i.e., t = 2 in

Theorem 168). Thus, in dimension 8, we only know the existence of quadratic APN

functions with 170, 174 and 178 bent components and it is yet to be known whether

a quadratic APN functions with B = 2(28 − 1)/3 + 4t, with 3 ≤ t ≤ 17, exists.
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Proposition 170. Let a quadratic function Q : Fn → Fn be APN with

B = 2(2n − 1)/3 + 4t, for some integer t ≥ 0, as described in Theorem 168. Then

N (Q) =

2n−1 − 2n/2 if t = 0, n ≥ 4

2n−1 − 2n/2+1 if 1 ≤ t ≤ 4, n ≥ 6

Proof. We first need to recall, from Remark 63, that for any quadratic Boolean

function on n variables, with even n, the dimension k of its linear space is even and

the Walsh spectrum is {0, 2(n+k)/2}.

If t = 0 then, by Proposition 167, all components of Q are bent and semi-bent, that

is, the Walsh spectrum of Q is {0,±2(n+2)/2,±2n/2}. So it is clear that we have

N (Q) = 2n−1 − 2n/2.

To prove that N (Q) = 2n−1 − 2n/2+1 if 1 ≤ t ≤ 4, we need to show that for this

range of t we have dimVλ ∈ {0, 2, 4}, for all λ 6= 0 ∈ Fn, that is, that the Walsh

spectrum of Q is {0,±2(n+4)/2,±2(n+2)/2,±2n/2}.

It is clear from Theorem 168 that for t ≥ 1, we have B > 2(2n − 1)/3, and so

Proposition 167 allows us to conclude that there must be λ 6= 0 ∈ Fn such that

dimVλ > 2. We claim that if 1 ≤ t ≤ 4, then we have dimVλ ∈ {0, 2, 4}, for

λ 6= 0 ∈ Fn. Suppose, by contradiction, that there is µ 6= 0 ∈ Fn such that

dimVµ = 6. Then, as noted in the proof of Theorem 168, the presence of Qµ implies

that the number of bent components is increased by

4

(
26−2 − 1

3

)
= 4(5),

implying that B ≥ 2(2n − 1)/3 + 4(5). So it follows that if, for some λ 6= 0 ∈ Fn,

dimVλ = 6, then we have t ≥ 5. This implies that, if 1 ≤ t ≤ 4, then we must have

dimVλ ∈ {0, 2, 4}, for all λ 6= 0 ∈ Fn. So in this case the Walsh spectrum of Q is

{0,±2(n+4)/2,±2(n+2)/2,±2n/2}, implying that N (Q) = 2n−1 − 2n/2+1.

From Proposition 170, it seems like the nonlinearity of any quadratic APN function

decreases as the number of bent components increases and it is the highest when
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the number of bent components is the lowest possible.

4.3 Quadratic power functions

Pott et al. in [45] say that the question to determine all monomial bent functions

Tr(αxd) on F2n , with α ∈ F∗2n and n even, has attracted quite a lot of research inter-

est. In this section, we study the Walsh spectrum and enumerate bent components

for any quadratic power functions. Recall that a function F = xd is a quadratic

power function if d = 2j + 2i, with j > i ≥ 0. It is known that a function with

the power d = 2i(2j−i + 1) is affine equivalent to the one with power d′ = 2j−i + 1

[29, 30]. So we simply consider the power 2k + 1, for some positive integer k.

Theorem 171. Let F (x) = x2k+1 be a function in F2n [x], with n even and some

integer k ≥ 1. Let m = (n, k), s = (n, 2k) and e = 1 if n/m is odd and e = 2m + 1

if n/m is even. Then

(a) F is an e-to-1 function on F∗2n,

(b) Fα is bent if and only if α /∈ Im(F ).

(c) the number of bent components for F is (e−1)(2n−1)
e

,

(d) the Walsh spectrum of F is {0,±2(n+s)/2} if e = 1, and {0,±2(n+s)/2,±2n/2}
if e = 2m + 1,

(e) N (F ) = 2n−1 − 2(n+s)/2−1.

Proof. Let S = Im(F ) \ {0} = {ξ2k+1 | ξ ∈ F∗2n}. It can be easily shown that S is a

multiplicative subgroup of F∗2n .

(a) Clearly, F maps F∗2n onto S. So we only need to show that S has the order

(2n−1)/e. Now we need to find the order of S. First observe that every element

ζ in S satisfies ζ(2n−1)/e = 1, where e = (2n − 1, 2k + 1). By Lemma 94, e = 1

if n/m is odd and e = 2m+1 if n/m is even. If ν is a primitive element in F2n ,
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then the order of ν2k+1 is ord(ν2k+1) = ord(νe) = (2n − 1)/e. Clearly, ν2k+1

has the highest order in S. It is well-known that F∗2n is a cyclic group, so S

being its subgroup must be cyclic with ν2k+1 as a generator. Thus, it follows

that the order of S is (2n− 1)/e, implying that F is an e-to-1 function on F∗2n .

(b) It is equivalent to show that Fα is non-bent if and only if α ∈ Im(F ). Fα is

bent if its linear space is trivial, so we need to prove that the dimension of the

linear space of Fα is non-trivial, that is, dimVα ≥ 1 if and only if α ∈ Im(F ).

A component Fα, with α ∈ F2n , is non-bent if there exists β in F∗2n such that

DβFα is constant. Suppose that Fα, with α ∈ F∗2n , is non-bent and DβFα is

constant, where β ∈ F2n . So we have

DβFα(x) = Fα(x) + Fα(x+ β) = Tr
(
αx2k+1

)
+ Tr

(
α(x+ β)2k+1

)
= Tr

(
αx2k+1

)
+ Tr

(
α(x2k + β2k)(x+ β)

)
= Tr

(
αx2k+1

)
+ Tr

(
α(x2k+1 + βx2k + β2kx+ β2k+1)

)
= Tr

(
αβx2k

)
+ Tr

(
αβ2kx

)
+ Tr

(
αβ2k+1

)
= Tr

(
(αβ + α2kβ22k)x2k

)
+ Tr

(
αβ2k+1

)
. (4.7)

Observe that DβFα is constant if and only if, in Equation (4.7), we have

Tr
(

(αβ + α2kβ22k)x2k
)

= 0.

This happens if and only if

αβ + α2kβ22k = αβ
(

1 + α2k−1β22k−1
)

= 0.

So either β = 0 or

α2k−1β22k−1 = (αβ`)2k−1 = 1, (4.8)



100 CHAPTER 4. APN FUNCTIONS IN EVEN DIMENSION

with ` = 22k−1
2k−1

= 2k + 1. Suppose that ζ is a primitive element in F2n . Then

we can write α = ζr and β = ζt, for some integers r and t. So it follows that

Equation (4.8) becomes ζ(r+t`)(2k−1) = 1 which implies that

(r + t`)(2k − 1) = r(2k − 1) + t(22k − 1) = c(2n − 1),

for some integer c. Thus, we have

r = c(2n−1)
2k−1

− t(22k−1)
2k−1

= c(2n−1)
2k−1

− t(2k + 1) = e
(
c(2n−1)
e(2k−1)

− t(2k+1)
e

)
.

Recall that e = (2n−1, 2k + 1). So all α’s which satisfy (αβ`)2k−1 = 1 must be

those which satisfy α(2n−1)/e = 1. These are elements whose orders are divisors

of (2n − 1)/e. It implies that α ∈ S. Including α = 0, it follows that Fα has a

non-trivial linear space if and only if α ∈ Im(F ).

(c) By part (b), we deduce that the number of bent components is 2n − |Im(F )|.
Since |Im(F )| = 1+ |S| = 1+(2n−1)/e, then the number of bent components

is

2n − |Im(F )| = (e− 1)(2n − 1)

e
.

(d) We first determine Vα, for any α ∈ F∗2n , and then use Theorem 48 to deduce

the Walsh spectrum of F . In part (b), we showed that Vα = {0} if α /∈ Im(F )

(i.e., Fα is bent) and |Vα| > 1 if α ∈ Im(F ). For any α ∈ S = Im(F ) \ {0},
we also showed, in part (b), that DβFα is constant if either β is equal to 0

or satisfies (αβ2k+1)2k−1 = 1. Thus, we have β22k−1 = (α−1)2k−1. If α ∈ F∗2m ,

with m = (n, k), then we have β22k−1 = 1 and so β ∈ F∗2s , with s = (n, 2k),

otherwise we have β ∈ µF∗2s , where µ is `-th root of α−1. So it follows that

|Vα| = 2s.

By Lemma 94, we have e = 1 if n/m is odd and e = 2m + 1 if n/m is even. If

e = 1 then, by part (a), F is a permutation which implies that it has no bent

components and so we have |Vα| = 2s, for all α ∈ F∗2n . This implies that the

Walsh spectrum of F is {0,±2(n+s)/2} (see Theorem 48). If e = 2m + 1, then
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F contains bent components and as shown above, all the linear spaces of non-

bent components have the same order 2s, implying that the Walsh spectrum

of F is {0,±2(n+s)/2,±2n/2}.

(e) This directly follows from definition of nonlinearity and part (d).

Corollary 172. Let F (x) = x2k+1 be a power function in F2n [x], with positive

integer k ≥ 1 and let e = (2n − 1, 2k + 1) and s = (n, 2k). Then F is APN if and

only if e = 3 and s = 2. Equivalently, F is APN if and only if there are exactly

2(2n − 1)/3 bent components and the rest are semi-bent.

Proof. By Theorem 171, there are (2n− 1)/e (non-trivial) non-bent components for

F and their linear spaces have the same order 2s. Since n is even then s = 2t, where

t = (k, n/2). Thus, by Proposition 164, F is APN if and only if(
2n − 1

e

)
(2s − 1) = 2n − 1. (4.9)

Notice that Equation (4.9) holds if and only if e = 2s − 1, so we conclude that

(2s − 1)|(2k + 1) since e | (2k + 1). Since t|s then (2t − 1)|(2s − 1), implying that

(2t − 1)|(2k + 1). But also (2t − 1)|(2k − 1) (recall that t|k), so it implies that we

must have t = 1 as clearly 2k−1 and 2k + 1 are relatively prime. Observe that t = 1

implies s = 2, so it follows that F is APN if and only if s = 2 and e = 2s − 1 = 3.

In other words, F is APN if and only if the number of bent components is exactly

2(2n − 1)/3 and the other components are semi-bent (see Theorem 171).

From Theorem 171, we observe that a quadratic power function has some bent

components if e ≥ 3 and equality gives the lowest number of bent components we

can get and also equality happens when F is APN. So we state this in the following.

Corollary 173. If a quadratic power function, in even dimension, has some bent

components, then they are at least 2(2n − 1)/3.



Conclusion and future work

In this thesis, we studied some cryptographic properties of Boolean functions which

include weight, balancedness, nonlinearity and resiliency. We constructed balanced

functions with trivial linear space and some resilient functions with respect to mono-

tone sets.

Based on the behaviour of second order derivatives, we derived some quantities used

for characterization of quadratic and cubic APN functions. We showed that these

quantities can also be used to characterize quadratic and cubic bent functions.

Some properties of APN functions with respect to linear spaces of their components,

in even dimension, were studied. We showed that there must be at least a component

whose linear space is trivial. In particular, we determined the possible size of the

linear space of any component of an APN permutation. We established a simple

characterization of quadratic APN functions based on the dimensions of linear spaces

for their components. A general form for the number of bent components in any

quadratic APN functions was proved. We completely enumerated bent components

in any quadratic power functions.

Next, we present some problems which emanated from our work. We would like to

investigate the following:

• Do quadratic APN functions with nonlinearity > 2n−1 − 2n/2+1 exist?

• For t ≥ 3, construct (or prove existence of) quadratic APN functions with

2(2n − 1)/3 + 4t bent components. More specific, construct quadratic APN

functions over F26 with 50 or 54 bent components.

102
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• Find a tighter upper bound on the number of bent components in any quadratic

APN function in dimension n ≥ 6.

• Can Theorem 168 be extended to plateaued APN functions?
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