IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 16, 2019, accepted August 12, 2019, date of publication August 21, 2019, date of current version September 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936604

Temporal Spiking Recurrent Neural
Network for Action Recognition

WEI WANG!, SIYUAN HAO 2, (Member, IEEE), YUNCHAO WEI "3, SHENGTAO XIAO?,
JIASHI FENG*, AND NICU SEBE "5, (Senior Member, IEEE)

IComputer Vision Laboratory, Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
2Information and Control Engineering College, Qingdao University of Technology, Qingdao 266520, China

3Beckman Institute, University of Illinois at Urbana—Champaign, Urbana, IL 61820, USA

“Department of Electrical and Computer Engineering, National University of Singapore, Singapore 259776
SDepartment of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy

Corresponding author: Siyuan Hao (lemonbananan@ 163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61701272.

ABSTRACT In this paper, we propose a novel temporal spiking recurrent neural network (TSRNN) to
perform robust action recognition in videos. The proposed TSRNN employs a novel spiking architecture
which utilizes the local discriminative features from high-confidence reliable frames as spiking signals. The
conventional CNN-RNNs typically used for this problem treat all the frames equally important such that
they are error-prone to noisy frames. The TSRNN solves this problem by employing a temporal pooling
architecture which can help RNN select sparse and reliable frames and enhances its capability in modelling
long-range temporal information. Besides, a message passing bridge is added between the spiking signals and
the recurrent unit. In this way, the spiking signals can guide RNN to correct its long-term memory across mul-
tiple frames from contamination caused by noisy frames with distracting factors (e.g., occlusion, rapid scene
transition). With these two novel components, TSRNN achieves competitive performance compared with
the state-of-the-art CNN-RNN architectures on two large scale public benchmarks, UCF101 and HMDBS51.

INDEX TERMS Action recognition, temporal spiking, recurrent neural network.

I. INTRODUCTION

Human action recognition in videos has drawn growing atten-
tion in computer vision, owing to its broad practical appli-
cations in many areas such as visual surveillance, behavior
analysis, and virtual reality [1]-[5]. Different from image-
based recognition tasks which only considers the visual
apperance, for action recognition tasks, the visual appear-
ance of each frame and the temporal motion information are
equally important and should be considered simultaneously
for action recognition. One common practice thus is to extract
representations of videos by simultaneously making use of
both video frames and optical flows [6], as widely adopted
by many previous works [7]-[9].

Many researchers focus on learning better hand-
crafted [10] or deep features [11] to boost the performance
of classification and detection tasks [12], [13]. For action
recognition, traditional methods [3], [4] rely on hand-crafted

The associate editor coordinating the review of this article and approving
it for publication was Qichun Zhang.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

features (e.g. Motion Boundary Histograms, HOGHOF and
SIFT [14]. Recently, some works [2], [15]-[17] propose to
adopt Convolutional Neural Networks (CNNs) for video-
based human action recognition, in which CNNs are taken as
effective representation learners. However, the improvement
brought by CNNs upon those traditional approaches is very
marginal compared with the remarkable benefit CNNs have
brought to other tasks like image classification. The reason
is that the CNN-based methods only learn the local visual
appearance of each frame and are limited in modeling the
long-term cross-frame motion and other dynamics from a
global view, leading to inferior performance. To address
this issue, some works [8], [9], [18], [19] propose to build
recurrent neural networks (RNNs) upon CNNs for capturing
the long-term information. For instance, in [19], the stan-
dard gated recurrent unit (GRU) is extended to a Con-
volutional GRU by replacing the product operations with
convolutional operations. Similar to [19], we also employ
Convolutional GRU as the backbone of our network. These
CNN-RNN-based approaches indeed perform better for the

117165

https://orcid.org/0000-0001-8247-4207
https://orcid.org/0000-0002-2812-8781
https://orcid.org/0000-0002-6597-7248

IEEE Access

W. Wang et al.: TSRNN for Action Recognition

T 3'\;" -
200 N N

CNN Squarts Squarts Numchucks Numchucks

RNN Squarts Squarts Squarts Squarts

TSRNN Squarts Squarts Numc&ucks Numchucks
Activation

7 " 8 [F{e

= T4 i

CNN Numchucks Squarts Squarts Numchucks

RNN Squarts Squarts Squarts Squarts

TSRNN Numchucks Numchucks Numchucks Numchucks

Activation

FIGURE 1. lllustration of the importance of spiking signals for correcting
the contaminated memory of RNN (row 2), and activating the most
reliable frames (marked with red check mark in row 4). The first two
frames are wrongly predicted owing to the blurry frames as “numchucks”
are invisible. Without spiking signals, all following frames (3-8) in RNN
are erroneously predicted. In contrast, those frames are successfully
corrected by introducing spiking signals in TSRNN (row 3). Besides,

the reliable frames (i.e. , frame 3 & frame 8) can be found and activated.

video-based action recognition. However, these methods treat
the information from all the frames equally important and
this inevitably introduces noise from some ‘“‘bad” frames
caused by occlusion, fast moving or rapid scene transition.
Such noise will contaminate the representations learned
by the RNN in an accumulative way, which may bring
irreparable damage to the final action recognition result.
As shown in Figure 1, due to the missing of the key object
(i.e., numchucks), the first two frames are falsely predicted
as “Squarts” by RNN, leading to wrong predictions on the
following frames even when the numchucks appear. This
behavior is cause by the wrong memory in RNN. In this paper,
we focus on designing a robust scheme to correct the wrong
memory of RNN to make better predictions.

To recognize actions more robustly even in the presence of
noisy frames, we propose a novel temporal spiking recurrent
neural network (TSRNN). As shown in Figure 2, the TSRNN
consists of two branches, i.e. the key-frame branch which is

° 1%

-»[x] 1 Activate ,[x]

used to learn the spiking signals from RGB frames and the
temporal context branch which is used to learn the global
semantics by taking advantage of RNN. The spiking signals
provided by the key-frame branch have two functions. Firstly,
the spiking signals learned from the local view (i.e., single
frame), which are independent of RNN, can identify the
positive frame at any position of the target video. Thus,
they can help RNN identify the discriminative frames, and
activate the corresponding recurrent module with the help
of the temporal pooling operation. Secondly, the message
passing bridge between the spiking signals and the recurrent
unit integrates information from both temporal local view

(i.e., single frame) and global view (i.e., long-duration frame

sequence). Therefore, the spiking signals can help identify

and correct wrong long-term ‘“memory” contaminated by
those noisy frames. Besides, the recurrent connection in the
temporal context branch is established on the top of convo-
lution layer. Therefore, the inputs for the RNN are feature
tensors which can better preserve the structure information
than the flattened feature vectors.

Our contribution can be summarized as follows:

(i) We propose a novel temporal spiking recurrent neu-
ral network (TSRNN) where the pooling operation is
implemented at the frame-level instead of the pixel-
level. Therefore, the reliable discriminative frames can
be identified for robustly recognizing actions even in
challenging conditions.

(ii)) A novel message passing bridge is introduced to the con-
volutional recurrent unit. This bridge allows the spiking
signals to help RNN correct its contaminated memory.
TSRNN not only makes a prediction from the long-term
view of the target video but also accepts modulation
from the spiking signals about each frame provided by
the key-frame branch.

The rest of the paper is organized as follows. Section II
briefly reviews the related works on action recognition.

h*

O X

y

P Entropy-guided
Tempora Pooling

| Stl |
1 .
B1 | | Spiking Spi}fing Spii(ing /»Messg%iedgzssmg
RN v B N T (RN
P — |2
< Ut
CNN | CNN CNN Conv.
Features
Tt—1 Y\ t S Tt

B1: Key-Frame Branch

B2: Unfolded Temporal Context Branch

FIGURE 2. Overview of the proposed TSRNN. The TSRNN contains two branches: the key-frame branch (B1) and the
temporal context branch (B2). B1 has a local view of the video and produces spiking signals. B2 is a RNN, which has a
global view of the videos since RNN can memorize the previous frames. A message passing bridge is added between
the spiking signals and the RNN. The memory of RNN can be corrected by the spiking signals. After mining out the most
discriminative spiking signal by B1, it will activate the corresponding recurrent unit in B2.

117166

VOLUME 7, 2019

W. Wang et al.: TSRNN for Action Recognition

IEEE Access

Section III introduces the architecture of the proposed
TSRNN. Section IV shows the results of our extensive eval-
uation on two publicly available benchmarks, UCF101 and
HMDBS51, and achieve comparable performance with the
state-of-the-art results. Finally, in Section V conclusions are
drawn.

Il. RELATED WORK

In this section we review the most relevant works on action
recognition using hand-crafted features, deep features, and
recurrent neural networks.

A. HAND-CRAFTED AND CONVOLUTIONAL FEATURES
The previous works on feature extraction can be mainly
divided into two categories: the hand-crafted features and the
convolution features learned from CNNs. Traditional meth-
ods rely on the hand-crafted features for action recognition,
such as dense trajectories [3], improved dense trajectories [4],
and space-time interest points [20]. Dense trajectory employs
a lot of hand-crafted features, such as Motion Boundary
Histograms (MBH) [21], Histograms of Oriented Gradi-
ent (HOG), Histograms of Optical Flow (HOF) [22], and
HOGHOF [22]. Recently, CNNs were also employed for
feature extractions. Typically, previous works [8], [9], [16]
follow the two-stream ConvNet architecture [2] with the spa-
tial stream which takes as inputs the RGB video frames and
the temporal stream that takes as inputs the stacked optical
flow images. The optical flow images are obtained by linearly
scaling the optical flows [6] to the range of [0, 255].
Simonyan and Zisserman [2] compared two optical flow
stacking methods, which are (1) stacking the optical flows
directly, and (2) stacking the optical flows by aligning them
along the motion trajectories across frames. The optical flow
stacking along the trajectory is analogous to the trajectory
feature in [3] which is computed by stacking the displacement
vectors along the trajectory. However, the trajectory stacking
by alignment does not improve the performance. The main
possible reason is that ConvNet cannot mine the motion
patterns even though it is good at describing appearances.
Some recent works reveal that RNN is better at modeling the
temporal structure, as reviewed below.

B. RNN ARCHITECTURES

Because of RNN’s good capability of modeling sequences,
some recent works use RNN to model the temporal struc-
tures [23]. Yue-Hei Ng et. al [8] revealed that LSTM
is better at encoding the temporal information than the
pooling architectures over the stacked feature maps of the
frames or the optical flows. Specifically, attention LSTM
is employed [18], [24] where the attention mask of the next
frame is predicted based on the memory of LSTM. Only
static RGB frames are utlized to generate the attention mask.
Therefore, the generated attention masks are unstable. For
example, in some cases the attention is put to the background
instead of the moving objects. In order to make the LSTM
focus on the foreground, Li et al. [9] inferred attention from

VOLUME 7, 2019

optical flows instead of video frames. They presented a two
layer LSTM for action recognition. The bottom LSTM layer
takes as inputs the optical flow images and outputs the atten-
tion masks. An element-wise product is performed between
the feature maps of the frame and the feature maps of the
attention masks. Then the weighted feature map is passed
to the top LSTM layer. The optical flow reflects the salient
motion of the foreground objects, and better performance
was achieved. Actually, the optical flows can also be added
beside the frames as another input and work in parallel with
the frames [16]. Differently, in this paper, we employ the
Gated Recurrent Unit (GRU), another widely used recurrent
unit [25], as the recurrent unit instead of LSTM. A message
passing bridge is added externally from the spiking signals
which are independent from the recurrent unit. It’s worth
mentioning that the spiking signals in this paper share a simi-
lar name with [26]. However, the motivations and operations
behind the spiking signals are quite different. In [26], recur-
rent networks of spiking neurons are employed to learn prob-
abilistic planning such that the generated spike sequences
realize mental plans. However, in out method, the spiking
signals are employed to guide RNN to correct its long-term
memory.

Ill. THE TSRNN MODEL

Following the common practice [27], we train two TSRNNSs,
one for the RGB frames (RGB-TSRNN) and one for the
optical flow images (OF-TSRNN). In the following, we detail
the TSRNN using the RGB-TSRNN. The OF-TSRNN is
a replicate of RGB-TSRNN whose inputs are the stacked
optical flow images instead of RGB images. In this section,
we will illustrate the architecture using the RGB-TSRNN.
From Figure 2 we can observe that the TSRNN includes two
branches, i.e., the key-frame branch (B1) and the temporal
context branch (B2). B1 learns to generate spiking signals,
and B2 learns global features over the whole video by taking
advantage of RNN. The details of each branch are detailed as
follows.

A. KEY-FRAME BRANCH

The key-frame branch is in charge of extracting spiking sig-
nals from each input frame x;, (=1, 2, ...). It has a local view
of the video. Throughout the paper, we use the following nota-
tions. For an input video V, we evenly sample N frames. The
input video is represented by V:{x,}i\/:1 where x; represents
the #-th RGB frame. Given the input frame x;, the output
spiking signal of the key-frame branch (B1) is denoted as s;.
The key-frame branch consists of a spiking layer which is in
charge of producing spiking signals, and it is built on the top
of a CNN model which is used to extract convolutional feature
maps. There are many CNN models available. A thorough
comparison is performed in [16] revealing that the GoogleNet
with batch normalization [28] has better performance than
the other deep CNN models. Therefore, we employ the
GoogleNet as the CNN model. We take the output of the last
convolutional layer in the CNN model as the representation

117167

IEEE Access

W. Wang et al.: TSRNN for Action Recognition

of the input frames. Given the frame x; to the CNN model,
the corresponding output is denoted as u¢. Then we feed the
feature tensor u¢ to the spiking layer to produce the spiking
signals s¢ using the following spiking function,

st =1 (uy). ey

where s¢=[s;,1, 5.2, ..., 8t,c]. C denotes the number of action
labels. The spiking layer £)(-) is a composite of multiple
layers including a fully connected layer and a softmax layer.
The supervisions are the action labels, and the cross-entropy
loss is employed to train the network.

N C
Lyi=—Y > yic-log(s.c))

t=1 c=1

where y; . is 1 if frame x; belongs to action ¢, and s; . is the
output probability that frame x; belongs to action c¢. Thus,
the output spiking signals are the semantic representations
(i.e. probabilities over all action candidates). Next, the spik-
ing signals are passed through the message passing bridge
to the RNN to correct its memory, and these signals are also
employed to pool out the reliable frames.

1) MESSAGE PASSING BRIDGE

The message passing bridge between the spiking signals and
the RNN allows the spiking signals to check the internal
state of the RNN and modify it. Specifically, the semantic
spiking signals for local view is independent of the long-term
temporal motion, which can provide a useful spiking signal
(i.e. semantics of key objects) to eliminate the negative effects
caused by potentially noisy frames. The RNN can better learn
the video semantics from a global view. In this way, both
the semantic representations from the local and the global
view of the video are leveraged to make a reliable prediction.
From Figure 1, we can observe that the frames (3-8) are
successfully corrected by introducing local semantic-level
spiking signals.

2) TEMPORAL POOLING USING SPIKING SIGNAL ENTROPY
The aim of the temporal pooling is to select the most reliable
and discriminative output of B2 based on the spiking signals
generated by B1. As shown in Figure 2, we first mine out
the index of the most discriminative frame of B1. Then the
corresponding output of B2 with the same index will be
activated to predict the action label since the output in B2 has
a large temporal receptive filed as it contains the memory of
all the previous frames. If frame x; is good enough to predict
the action label, it should have a strong confidence that this
frame belongs to a certain action class and result in a peaky
label distribution i.e. s; should have low entropy. Given the
spiking signal s¢ from B1, we employ its entropy ¢; as the
activation score,

C
c=— silogs. 3
i=1

117168

Then we pool out the most discriminative frame via tem-
poral max-pooling on the opposite number of the entropy ¢.
Let y denote the size of the temporal pooling window. In the
window [1, y], we have

k=arg, max{—c¢|t € [1, y]}, @

where k is the index of the maximum score. Then the cor-
responding output hy is activated for the subsequent action
classification task.

B. TEMPORAL CONTEXT BRANCH

The temporal context branch is a convolutional RNN. It is in
charge of modeling the long-term temporal content of videos.
Different from the conventional RNN which flattens the input
as a vector, the convolutional RNN takes as inputs the tensors
directly. In this way, the detailed spatial structure can be pre-
served. In general, Long Short Term Memory (LSTM) [29]
and Gated Recurrent Unit (GRU) [25] are two most widely
used recurrent modules for RNN. Greff ef al. [30] conducted a
thorough analysis and revealed that usually GRU has compet-
itive performance compared with LSTM. Besides, GRU has
simpler structures and much fewer parameters than LSTM.
Therefore, following [19], we choose to extend the standard
GRU to convolutional GRU as the recurrent module.

In addition, a message passing bridge is built within the
convolutional GRU. The message passing bridge can allow
the spiking signals to interfere the memory of the recurrent
module. With the help of spiking signals, the memory could
be corrected. A good example is shown in Figure 1, from
which we can observe that the wrong memory of RNN is
corrected in TSRNN.

The memory of video context is carried by the hidden
state hy in GRU. The hidden state h¢, (¢t = 1,2,...,N)
connects the GRU along the time axis as a chain. In the
t-th recurrence, the GRU takes the memory, h¢_j (i.e., hidden
state), from the previous recurrence as the input to itself. The
hidden states are initialized with zeros. The detailed structure
is available in Section III-B1.

As shown in Figure 2, the recurrent module takes as inputs
[h¢_1, st, ug] which are the memory from the previous recur-
rence, the spiking signals from the key-frame branch, and the
feature tensors from the CNN model respectively. The output
of RNN is calculated by

h¢ = RNN prigge(he—1, [St, utl), (5)

where hy is the updated memory and it will be passed to the
next recurrence. In this way, the current state is informed
of what has happened before and a global view is provided.
If this recurrent module is activated, its updated memory
will be fed forward to the subsequent classification layers
in order to make the final predictions. With the help of the
message passing bridge, the input spiking vector s¢ can be
put aside together with the feature tensor ug as the input
to RNN. To make s; compatible with the convolutional opera-
tion in RNN, we replicate the spiking vectors to tensors. The
message passing bridge enables the spiking signals to help

VOLUME 7, 2019

W. Wang et al.: TSRNN for Action Recognition

IEEE Access

update the memory. The spiking signals can help RNN to
decide what to remember and what to forget by influencing
the internal gates in the recurrent module.

1) RNN WITH MESSAGE PASSING BRIDGE

Different from the conventional RNN which flattens the input
as a vector, the convolutional RNN replaces all the prod-
uct with convolutional layers and takes as inputs the ten-
sors directly such that the detailed spatial structure can be
preserved in the memory.

(b

hy_4

Y
[Conv]| Iy [Conv] |C0nv]

@

)

tanh
v

a

fA

S¢ Message)

Passing

Bridge @\ Conv

FIGURE 3. The message passing bridge allows the spiking signals s; to
look at and modify the gates in the Conv-GRU.

>

Here we employ GRU as the recurrent module. The struc-
ture of the convolutional GRU with message passing bridge
is shown in Figure 3. In accordance with Figure 3, the model
is shown as follows:

2t = oWy % 1 + Wy, Wil * [uy, 511,

re = 0 (W % hy— 1 +[Why, Wil * [uy, 5¢1),

cr = tanh(Wep, * (1 © hy—1)+[Wey, Wesl * [uy, 5¢),

hy =1 —-z2)O -1tz Oct. (6)

where o is the logistic sigmoid function and tanh is the
hyperbolic function. W represents the filter of the convolution
layer and the bias term is absorbed in W. Each GRU has
two gates (i.e., reset gate r; and update gate z;), one hidden
state /;, and one new variable ¢; to be added to the hidden
state.

The reset gate r, decides whether the memory of previous
frames should be ignored. If 7; is close to 0, the memory of the
previous frames will be forced to be discarded, and the unit
will focus on the current input frame only. This gate allows
the unit to remember or drop the irrelevant frames.

The update gate z; updates the memory via the coupled
gates, z; and 1—z;. This setting means that the unit only
accepts a new frame when it forgets something correspond-
ingly in the memory. 1—z; controls what to remember from
the memory and z; controls what to be accepted.

¢y 18 the new information created by a tanh layer. This new
information will first be weighted by the reset gate z; and
then be added into the memory stream to form a new video
memory (hidden state hy).

VOLUME 7, 2019

The system will have short-term memory and ignore the
previous frames if the reset gate is always activated. On the
other hand, if the update gate is always activated, the system
will have long-term memory and all the previous frames will
be memorized.

We would like to explain why we build RNN on the top of
the last convolutional layer: First, the last convolutional layer
of the CNN model has the largest receptive field among all the
layers such that its output feature tensor contains the richest
context information. Using the output from other layers will
introduce redundant information and it may actually hurt the
final performance. Secondly, using more CNN layers will
introduce more recurrent layers and this will significantly
increase computation cost. Thus, we only build RNN on
the top of the last convolutional layer as it balances the
performance and efficiency well.

C. ACCUMULATIVE LOSS FUNCTION

After unfolding the RNNs along the time, we can observe that
the RNN in the rear of the sequence have longer-term memory
compared with the RNN in the front. Thus, the rear RNNs
should play more important roles since they have broader
views of the video, and better predictions may be made by
focusing more on these RNNSs. In order to force the model to
focus more on the rear RNNs, we set a bigger gain for the loss
of the rear RNNSs.

The classifier in Figure 2 consists of a fully connected layer
and soft-max layer. We rely on the cross-entropy to calculate
the classification loss. Let M represent the number of tem-
poral pooling window. Given the activated output hj of the
[-th pooling window, its corresponding output from the soft-
max layer is denoted as S; . y; . is a boolean variable which
indicates that the video has the c-th action label. We have the
following loss function,

M i C
=% (— > v log Sz,c)), %
=1 i=1

where % is the gain for the loss of the /-th pooling window.
Therefore, as the gain increases monotonically, the predic-
tions at the rear RNNs will draw more attention.

In accordance with the setting in the training phase, we uti-
lize the same weights for prediction in the testing stage. Let p;
represent the probability vector from the /-th triggered RNN
output, whose j-th element p; ; denotes the probability that the
video has the j-th action label. Given a series of predictions
[p1.pP2,---,PI,---, Pu], we employ the following function
to calculate the label of the video,

M
l
y = arg mjax i ;pl,j. (8)

As shown in Eqn. (8), the weight for the predicted probability
from the /-th pooling window is also set as ﬁ, which is the
same as the gain for the /-th pooling window in the training
phase.

117169

IEEE Access

W. Wang et al.: TSRNN for Action Recognition

(a) late fusion

Concatenate | Bl B2 B *
ﬁ | Dot Product |
| Bl | B2 | Concatenate
1 @ @ 5 5]
] CNN-OF ‘] CNN-RGB ‘] CNN-OF ‘] CNN-RGB ‘] CNN-OF ‘
e %
4 y 4
— & L

(b) early fusion

(c) attention fusion

FIGURE 4. lllustration of different fusion strategies. x; denotes RGB frame at the time t, and x; is a stack of optical flow images. We stack 5 paitrs of
optical flow frames starting from ¢. Each optical flow pair consists of a horizontal optical flow and a vertical optical flow. The CNN-RGB and CNN-OF
blocks in the figure are the CNN models which process RGB and optical flow images.

D. FUSION OF RGB-TSRNN AND OF-TSRNN

The RGB-TSRNN and OF-TSRNN are complementary to
each other since they view the video from different perspec-
tives. The RGB-TSRNN may help correct the OF-TSRNN
and vice versa. For example, the optical flow images of
Brushing Teeth are visually similar to the ones of Shaving
Beard since the hands in both actions move in a simi-
lar pattern. Therefore, the OF-TSRNN could hardly distin-
guish between them. However, these two actions are visually
quite different. As a result, the OF-TSRNN has an accu-
racy of 38.9% for the action of Brushing Teeth while the
RGB-TSRNN has an accuracy of 83.3%.

On the contrary, the OF-TSRNN may also help correct the
RGB-TSRNN. For instance, the appearances of the action
Handstand Walking and Handstand Pushups are very sim-
ilar since the actors have the same poses. However, their
movements are quite different which can be reflected by the
optical flow images. The flows of the Handstand Walking
are backwards and forwards while the flows of the Hand-
stand Pushups are up and down. Hence, the OF-TSRNN
has higher classification accuracy compared with that of the
RGB-TSRNN (73.5% vs. 35.3%). Therefore, we expect to
get better performance by fusing the two TSRNNS.

Figure 4 shows three different fusion strategies. The details
of the fusion strategies are as follows,

(a) Late Fusion: First, the two TSRNNSs are trained inde-
pendently. Then the prediction scores from the temporal con-
text branch from both TSRNNs are fused using the SVM for
each recurrence as in [2], [8].

(b) Early Fusion: The two TSRNNSs are fused by stacking
the feature maps from the bottom CNN models. The stacked
feature maps are passed to the two branches on top of the
CNN model. The rest of the structure remains the same.

(c) Attention Fusion: The memory of the temporal con-
text branch of the OF-TSRNN works as an attention mask.
The products of the weight masks from the CNN-OF and

117170

feature tensors from the CNN-RGB are taken as input to
temporal context branch of RGB-TSRNN. The output of the
RGB-SRNN will be used for the final prediction.

IV. EXPERIMENTAL VALIDATION

A. DATASET DESCRIPTION

We evaluate our framework using two large public action
datasets which are UCF101 [31] and HMDBS51 [32]. We give
a brief description of the two datasets as follows.

1) UCF101

The UCF101 dataset consists of 101 action classes,
13,320 video clips and 27 hours of video data. These user-
uploaded videos are recorded in unconstrained environments
containing camera motion, cluttered background, various
illumination conditions, efc. These videos cover a wide range
of action classes, such as playing musical instruments, sports,
body-motion, human-object interaction, and human-human
interaction. All video clips have a fixed frame rate of 25 fps
and the resolution of 320x240. The length of each video
clip is 7.21s on average from the minimum 1.06s to the
maximum 71.04s. There are 3 splits for training and testing.

2) HMDB51

The HMDBS51 dataset contains 6,766 video clips from
51 actions with each action containing more than 132 sam-
ples on average. In our experiments, we follow the standard
evaluation scheme which divides the clips into three different
training splits. In each split, each action has 70 clips for
training and 30 clips for testing.

B. EXPERIMENT SETTINGS

To explore the best fusion strategies and architectures, we fol-
low the same evaluation scheme as [2], [9] where the results
of the first split of the UCF101 dataset are employed to eval-
uate the performance of each architecture. To compare the

VOLUME 7, 2019

W. Wang et al.: TSRNN for Action Recognition

IEEE Access

performance of our method and the state-of-the-art baselines,
the average accuracy is employed as the evaluation metric.

C. IMPLEMENTATION DETAILS

1) VIDEO REPRESENTATION

Following the common practice [2], [16], for each video,
we sample 25 frames and 25 groups of optical flow images
evenly as the inputs to the RGB-TSRNN and OF-TSRNN
respectively. The optical flow images are obtained by linearly
scaling the optical flows to the range of [0, 255]. The optical
flows are extracted using the algorithm [33] implemented
in OpenCV. Each optical flow image group consists of five
consecutive pairs of optical flow images and they are stacked
together as the inputs to the OF-TSRNN.

2) DATA AUGMENTATION

Data augmentation is always applied to reduce the risk of
over-fitting and boost the generalization performance of the
CNNs. To make a fair comparison with the state-of-the-art
methods, we implement data augmentation by horizontal flip-
ping and RGB jittering for the randomly cropped images. The
sub-images with the size of 224 x224 are randomly cropped
from the original images.

3) TRAINING RGB-TSRNN

To explore the contribution of each branch, we first train
the key-frame branch independently, and then we train the
temporal context branch and fine-tune the whole network.
We initialize the key frame branch together with the CNN
model using the GoogleNet with Batch Normalization [28]
whose parameters are pretrained using ImageNet [34]. Then
we fine-tune the model using video frames with the action
labels using the stochastic gradient descent algorithm with
momentum. Next, we fix the learned parameters of the key
frame branch together with the CNN model, and learn the
parameters of the temporal context branch. The parameters
are fixed by setting their learning rate to 0. Finally, we fine-
tune the overall architecture. When training the key-frame
branch, we follow the same parameter setting from [16].
When training the temporal context branch, the learning rate
is initialized at 0.001 and it is decreased by the ratio of 0.5
every 5 epochs. We report the results in 20 epochs.

4) TRAINING OF-TSRNN

The training strategy of the OF-TSRNN is similar to the one
of RGB-TSRNN. The difference is that their inputs have
different number of channels and they require different CNN
models, as shown in Figure 4, to extract feature tensors. The
inputs to the OF-TSRNN in each time step are the stacked
5 pairs of optical flow images (each pair consists of one
horizontal image and one vertical flow image). Therefore,
the input to the network has 10 channels. In order to take
advantage of the GoogleNet which is pre-trained using RGB
images, we take the average of the weights of the first con-
volution layer and replicate it 10 times for the 10 channels.

VOLUME 7, 2019

Then the model is fine-tuned using the stacked optical flow
images.

D. RESULTS

In this section, we first analyze the contribution of each
branch by implementing an ablation study. Next, we test
different fusion strategies of the RGB-TSRNN and the
OF-TSRNN. Finally, we report the performance comparison
between our TSRNN and other state-of-the-art methods.

1) ABLATION STUDY OF THE TSRNN BRANCHES

To explore the contribution of each branch, we implement the

ablation study. For the temporal context branch, we test its

performance under different conditions:

(1) standard CNN: only key-frame branch is available;

(2) standard Conv. RNN: only temporal branch is available
(using all frames);

(3) standard Conv. RNN + pooling: only temporal branch is
available (using selected frames);

(4) both branches are available (with spiking signals);

(5) both branches are available (with spiking signals and
temporal pooling);

(6) both branches are available (with average loss).

(7) both branches are available (with accumulative loss).

TABLE 1. Performance of each branch within TSRNN on the first split of
the UCF101 dataset.

Branches RGB(%) OF(%)
Two-Stream Nips 2014 [2] 72.7 81.0
Attention-LSTM cviu 2017 [9] 79.6 82.1
Trajectory CNN cver 2015 [15] 82.8 82.2
TSN Eccv 2016 [16] 85.7 87.9
(1) standard CNN: Key-Frame Branch 84.9 83.5
;2) standard Conv. RNN: Temporal Branch (using all 853 844
rames)

(3) standard Conv. RNN + pooling: Temporal Branch

. 85.4 84.4
(using selected frames)
(4) Both Branches (spiking + avg.) 85.8 86.6
(5) Both Branches (spiking + acc.) 86.4 87.3
(6) Both Branches (spiking + pooling + avg.) 86.0 86.9
(7) Both Branches (spiking + pooling + acc.) 86.8 88.1

The size of the temporal pooling window is set to 5.
Following previous literatures [2], [9], [15], we make com-
parisons using the first split of the UCF101 dataset. Table 1
shows the advantages of using the spiking signals via the
message passing bridge and the temporal pooling architec-
ture. In the following paragraphs, we first compare the per-
formance of CNN and RNN. Next, we study the contribution
of the spiking signals and the message passing bridge. Finally,
we study the contribution of the accumulative loss.

a: KEY-FRAME BRANCH VS TEMPORAL BRANCH

From Table 1, we can observe that the standard Conv. RNN
(i.e. the temporal branches in options 2 & 3) has superior
performance than the key-frame branch (i.e., option 1). This
observation indicates that the standard Conv. RNN has bet-
ter performance than CNN as it uses temporal information.

117171

IEEE Access

W. Wang et al.: TSRNN for Action Recognition

S R

CNN kiing Walk-Dog Walk-Dog
RNN Skiing Skiing Skiing
TSRNN Skiing Skiing Walk-Dog
Activation v

CNN Juggle Balls Juggle Balls Juggle Balls Yo Yo
RNN Juggle Balls Juggle Balls Juggle Balls Juggle Balls
TSRNN Juggle Balls Juggle Balls Juggle Balls Yo Yo

Activation

Y

Walk-Dog

Walk-Dog Walk-Dog Walk-Dog
Skiing Skiing Skiing Skiing
Walk-Dog Walk-Dog Walk-Dog Walk-Dog
v
SRR
Yo Yo Juggle Balls Yo Yo Yo Yo
Juggle Balls ~ Juggle Balls Juggle Balls Juggle Balls
Yo Yo Yo Yo Yo Yo Yo Yo

CNN Trampoline SkateBoard Trampoline Trampoline

RNN Trampoline SkateBoard SkateBoard Trampoline

TSRNN Trampoline SkateBoard Trampoline Trampoline
Activation v

Trampoline SkateBoard Trampoline Trampoline

SkateBoard SkateBoard ~ SkateBoard SkateBoard

Trampoline Trampoline Trampoline Trampoline
v

FIGURE 5. Visualization of the Predictions. The ground truth labels of the three videos are Walk-wth-Dog, YoYo and Trampoline. Below each video frame
we show the prediction results with three different methods where the 1st row corresponds to the key frame branch which is a CNN model; 2nd row
corresponds to the temporal context branch which is based on a CNN-RNN model; and the 3rd row corresponds to our TSRNN. The 4-th row shows the
activated frames in the pooling windows based on the entropy of the spiking signals.

Besides, if we select some representative frames (option 3)
instead of using all the frames (option 2), the performance
of RNN could be further boosted, but the performance gain
is very limited. Through the comparison between temporal
branch (using all frames) and temporal branch (using selected
frames), we can observe that we have 0.1% performance gain
for the RGB images while the performance on the OF images
remains the same.

b: THE CONTRIBUTION OF SPIKING SIGNALS

Option 4 is built on the top of Option 2 by introducing spik-
ing signals while the rest of the network remains the same.
Option 2 is the case in which only temporal branch is avail-
able (using all frames). This baseline is a standard Conv. GRU
baseline which contains no spiking mechanism. The accuracy
is 85.3% for RGB images and 84.4% for stacked optical
flow images. Option 4 is our model which involves spiking
signals. We can observe that the performance of standard
Conv. GRU is inferior compared with the Conv. GRU with
spiking signals which are 85.8% and 86.6%. The magnitude
of the impact of the spiking signal with the message passing
bridge on the Conv-GRU performance is 0.5% and 2.2%.
This observation validates the spiking signal does help to
boost the performance.

We have also visualized the effect of using spiking sig-
nals. Figure 5 shows the qualitative results. From Figure 5,
we can observe that in the first video, without the spiking
signals, the contaminated memory in RNN (second row) will

117172

continuously predicted the label as ski while the right label
should be walk-with-dog. With the help of spiking signals,
the memory could be corrected as shown in the TSRNN
(third row). Besides, the entropy of the spiking signals could
also be employed to select reliable frames. For instance,
in the first video, frame 4 and frame 8 in which the dogs are
clearly visible are selected. In the second video, frame 5 and
frame 7 in which the strings of YoYo are clearly visible are
selected. Similar results could be obtained in the third video.
We can observe that by eliminating noisy frames, not only the
memories could be corrected, but also the final predictions
of the RNN could be corrected. We have also compared the
predictions of RNN and TSRNN at all time steps and the
percentage of the corrections brought by the spiking signals
is 4.4% for RNN of RGB and 5.2% for RNN of OF.

¢: CONTRIBUTION OF THE ACCUMULATIVE

LOSS & TEMPORAL POOLING

In addition to the weighted accumulative average of the pre-
dictions from each pooling window, we also take the average
without weights. However, this will lead to inferior perfor-
mance as shown in Table 1 (options 4 & 5). This observation
shows that the recurrent unit at the end of the sequence can
make more accurate prediction. Actually, the recurrent unit
at the end in more informative as it has a memory of all the
previous frames. Therefore, the weighted temporal branch
performs better than the others as it puts larger weight on the
predictions of the recurrent unit at the end. We also tested

VOLUME 7, 2019

W. Wang et al.: TSRNN for Action Recognition

IEEE Access

a special case where only the weight of the last recurrent
step is set to 1 while the weights of all the other steps are
set to 0. In this case, the accuracy is 85.1% and 83.9% for
RGB and OF which is inferior than the case in which the
weighted predictions from all the steps are employed. Apart
from the accumulative loss, we can also observe that the
temporal pooling operation could further boost the perfor-
mance by selecting good signals while ignoring the bad ones.
By comparing options 4 & 6, 5 & 7, we can observe clearly
that the pooling operation can benefit the final prediction.

d: RGB-TSRNN VS OF-TSRNN

Table 1 shows the performance of each branch of both
the RGB-TSRNN and OF-TSRNN. For the RGB-TSRNN,
we can observe that the temporal context branch has bet-
ter performance compared with the key-frame branch. This
observation verifies that the sequence information does mat-
ter and RNN can further boost the performance. For the
OF-SRNN, similar results can be observed. The improvement
of the OF-TSRNN is more significant compared with that
of the RGB-TSRNN. This demonstrates that the aggregation
of the motion images along the time axis is more effective
than the aggregation of the static RGB images.

2) TSRNN FUSION

We explore different fusion strategies, as shown in Figure 4,
for the two TSRNNs. We make the predictions by taking the
weighted average of the predicted probabilities from each
pooling window in order to keep in accordance with the loss
in the training phase. To implement attention fusion for the
tempral context branch, we use the same setting of [9] where
the optical flow images are employed to generate the masks
for the RGB frames. For the SVM fusion, we follow the same
setting of [2].

TABLE 2. Accuracy(%) of different fusion strategies on the
UCF101 dataset (split 1) with/without temporal pooling operations.

Fusion Early Late(SVM) Late(DotProduct) Attention
Bridge 87.8 93.2 93.5 88.9
Bridge+Pooling 87.9 93.5 93.8 89.1

Table 4 shows the performance of each fusion strategy.
We can observe that the late fusions always give better per-
formance compared with other fusion strategies, and the late
fusion with simple dot-product gives the best performance.
This means the high-level semantic representations from the
top layers of the CNN model are more representative than the
low-level features from the bottom layers of the CNN model.
Similarly, the temporal pooling operation could further boost
the performance.

3) COMPARISON WITH THE STATE-OF-THE-ART

After exploring the fusion strategies and the contribution
of each branch, we test our model on the UCF101 and
HMDBS51 datasets by comparing it with other baselines.

VOLUME 7, 2019

TABLE 3. Comparison between our TSRNN with the state-of-the-art
methods.

Methods HMDB51(%) UCF101(%)
Traditional methods:

DT (MVSV) cver 2014 [35] 55.9 83.5
iDTs (FV) 1ccv 2013 [4] 57.2 859
iDTs (HSV) cviu 2016 [36] 61.1 87.9
CNN-based methods:

Attention-LSTM kccv 2016 [18] 41.3 77.0
Two-Stream nips 2014 [2] 59.4 88.0
LSTM cver 2015 [8] - 88.3
VideoLSTM cviu 2017 [9] 56.4 89.2
TDD (FV) cver 2015 [15] 63.2 90.3
LTC (LSTM) cver 2015 [37] 64.8 91.7
Action VLAD cver 2017 [38] 66.9 92.7
Spatio-Temp. Network cver 2017 [39] 68.9 94.6
TSN Eccv 2016 [16] 68.5 94.0
TSN Eccv 2016 [16]+ Warped Flow 69.4 94.2
Spatio-Temp. Multiplier cver 2017 [40] 68.9 94.2
Spatio-Temp. Vector cver 2017 [41] 69.5 93.6
TSRNN + bridge 69.7 94.2
TSRNN + bridge + pooling 69.9 9.4

The 3-fold mean accuracy of each dataset is reported as the
evaluation metric. The results are summarized in Table 3.

We first compare our model with traditional approaches,
such as dense trajectories (DT) and the improved dense tra-
jectories (iDT) [35], [36]). We also compare it with the CNN
approaches [2], [15], [16] and RNN approaches [8], [9], [37].

From Table 3, we can observe that deep learning meth-
ods have better performance compared with the traditional
methods since the deep learning methods are better at extract-
ing semantic features from images. Moreover, by encoding
the temporal information, even better performance could be
achieved [16]. Since RNNs perform better at encoding the
long-term temporal sequences, the RNN based methods are
also employed [8], [9], [37]. We can also observe that our
TSRNN has competitive performance as Spatio-Temporal
Vector [41] on the HMDBS51 dataset as the spiking mech-
anism can make the RNN more robust to the noisy frames
using the spiking signals to select reliable frames and correct
the contaminated memories. However, the UCF101 dataset
has already been saturated. Therefore, it is very difficult to
improve the performance.

So far, the best performance on the UCF101 dataset (with-
out using extra training data) is 94.9% from [40]. How-
ever, one should note that their big performance gain comes
from multi-model fusion which boosts their performance
from 94.2% to 94.9%. In particular, [40] augments deep
features with hand-crafted features (the improved dense
trajectory-iDT), which requires another complex framework
to extract points of interests and implement clustering. In such
a case, the fusion result (i.e. 94.9%) comes from an inelegant
solution and the computation cost is also very high. In the
scenario where only deep models are employed to process
the RGB images and optical flows, our accuracy is 94.4%
which is comparable to 94.2% reported in [40]. Similarly,
the best performance on HMDBS51 dataset is 73.1% [41]

117173

IEEE Access

W. Wang et al.: TSRNN for Action Recognition

TABLE 4. Accuracy(%) on the UCF101 & HMDB51 datasets by combining
hand-crafted features.

Methods HMDB51(%) UCF101(%)

[40]+DT 722 94.9
[41]+iDT 73.1 94.6
Ours +iDT 72.8 94.7

in which they employ two types of hand-crafted features
which are iDT and Histograms of Motion Gradients which
boost their performance from 69.5% to 73.1%. Based on a
fair comparison, our performance 69.9% is better compared
with [41] whose performance is 69.5%.

To have a more fair comparison with [40], [41], we have
also implemented extra experiments by augmenting iDT
features. Similar to [40], [41], we fuse confidence scores
from iDT and deep features to obtain the final predic-
tion, and the corresponding results are shown in the table
above. The accuracies on HMDBS51 and UCF101 are further
boosted to 72.8% and 94.7% respectively. Reference [40]
has the best performance on UCF101, and worst perfor-
mance on HMDBS51 while [41] has the best performance on
HMDB51, and worst performance on UCF101. Compared
with [40], [41], we can observe that although our method
does not achieve the best performance, our method seems
more stable as it always achieves an intermediate rank.
Besides, although the accuracy improvement is not very sig-
nificant compared with other works, the ablation study shows
that the performance gain brought by the spiking mecha-
nism is considerably significant compared with the standard
Conv. RNN. Except for combining hand-crafted features and
deep features, another way to boost the performance is data
augmentation. For instance, 13D [42] employs a huge extra
dataset to boost the action recognition performance such that
it is not directly comparable with our method.

V. CONCLUSION

In this paper, we presented a novel Temporal Spiking-RNN
for action recognition which achieves competitive perfor-
mance compared with the state-of-the-art methods using less
features. The TSRNN consists of two branches (i.e., the key
frame branch and temporal context branch). The key frame
branch has a local view of the video and it is in charge
of generating spiking signals of each individual input. The
temporal context branch is an RNN which has a global view
of the video. The recurrent module is a convolutional Gated
Recurrent Unit with a message passing bridge. The tem-
poral pooling architecture over the two branches can select
the most reliable and descriminative frames based on the
entropy of the spiking signals and activate the corresponding
recurrent unit in the temporal context branch. The spiking
signals could also help correct the contaminated long-term
memory of the temporal context branch via the message pass-
ing bridge. Moreover, the inputs to the convolutional GRU
are feature tensors instead of flattened vectors such that the
spatial structure can be better preserved in the memory of the

117174

convolutional GRU. The ablation study shows the advantage
of using spiking signals and the message passing bridge over
the standard RNN.

REFERENCES

[1] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221-231, Jan. 2013.

[2] K. Simonyan and A. Zisserman, ““Two-stream convolutional networks for
action recognition in videos,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2014, pp. 568-576.

[3] H. Wang, A. Kliser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2011, pp. 3169-3176.

[4] H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 3551-3558.

[5] G.Zhu, C. Xu, Q. Huang, W. Gao, and L. Xing, “Player action recognition
in broadcast tennis video with applications to semantic analysis of sports
game,” in Proc. 14th ACM Int. Conf. Multimedia, 2006, pp. 431-440.

[6] G.Farnebick, “Two-frame motion estimation based on polynomial expan-
sion,” in Proc. Scand. Conf. Image Anal. Berlin, Germany: Springer, 2003,
pp. 363-370.

[7] C. Feichtenhofer, A. Pinz, and A. Zisserman, ‘‘Convolutional two-stream
network fusion for video action recognition,” 2016, arXiv:1604.06573.
[Online]. Available: https://arxiv.org/abs/1604.06573

[8] J.Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “‘Beyond short snippets: Deep networks for video classifi-
cation,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 4694-4702.

[9] Z.Li, K. Gavrilyuk, E. Gavves, M. Jain, and C. G. M. Snoek, “VideolSTM
convolves, attends and flows for action recognition,” Comput. Vis. Image
Understand., vol. 166, pp. 41-50, Jan. 2018.

[10] L. Liu, P. Fieguth, Y. Guo, X. Wang, and M. Pietikdinen, “Local binary
features for texture classification: Taxonomy and experimental study,”
Pattern Recognit., vol. 62, pp. 135-160, Feb. 2017.

[11] L. Liu, J. Chen, G. Zhao, P. Fieguth, X. Chen, and M. Pietikdinen,
“Texture classification in extreme scale variations using GANet,” 2018,
arXiv:1802.04441. [Online]. Available: https://arxiv.org/abs/1802.04441

[12] L. Liu, J. Chen, P. Fieguth, G. Zhao, R. Chellappa, and M. Pietikidinen,
“From BoW to CNN: Two decades of texture representation for texture
classification,” Int. J. Comput. Vis., vol. 127, no. 1, pp. 74-109, 2019.

[13] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikdinen, “Deep learning for generic object detection: A survey,”
2018, arXiv:1809.02165. [Online]. Available: https://arxiv.org/abs/1809.
02165

[14] P.Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its
application to action recognition,” in Proc. 15th ACM Int. Conf. Multime-
dia, 2007, pp. 357-360.

[15] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled
deep-convolutional descriptors,” in Proc. IEEE Int. Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 4305-4314.

[16] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 20-36.

[17] P. Wang, Z. Li, Y. Hou, and W. Li, “Action recognition based on joint
trajectory maps using convolutional neural networks,” in Proc. 24th ACM
Int. Conf. Multimedia, 2016, pp. 102-106.

[18] S. Sharma, R. Kiros, and R. Salakhutdinov, “Action recognition using
visual attention,” in Proc. Int. Conf. Learn. Represent. Workshop, 2016,
pp. 1-11.

[19] B. Huang, H. Huang, and H. Lu, “Convolutional gated recurrent units
fusion for video action recognition,” in Proc. Int. Conf. Neural Inf. Pro-
cess., 2017, pp. 114-123.

[20] I. Laptev, “On space-time interest points,” Int. J. Comput. Vis., vol. 64,
nos. 2-3, pp. 107-123, 2005.

[21] N. Dalal, B. Triggs, and C. Schmid, “Human detection using oriented
histograms of flow and appearance,” in Proc. Eur. Conf. Comput. Vis.,
2006, pp. 428-441.

[22] N.Dalal and B. Triggs, ““Histograms of oriented gradients for human detec-
tion,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2005, pp. 886-893.

VOLUME 7, 2019

W. Wang et al.: TSRNN for Action Recognition

IEEE Access

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, “Co-
occurrence feature learning for skeleton based action recognition using
regularized deep LSTM networks,” in Proc. AAAI, 2016, pp. 3697-3703.
S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, “An end-to-end spatio-
temporal attention model for human action recognition from skeleton
data,” in Proc. AAAI, 2017, pp. 4263-4270.

K. Cho, B. van Merriénboer, C. Giilgehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “‘Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process., 2014, pp. 1-15.

E. Rueckert, D. Kappel, D. Tanneberg, D. Pecevski, and J. Peters, “Recur-
rent spiking networks solve planning tasks,” Sci. Rep., vol. 6, Feb. 2016,
Art. no. 21142.

K. Simonyan and A. Zisserman, ““Very deep convolutional networks for
large-scale image recognition,” Sep. 2014, arXiv:1409.1556. [Online].
Available: https://arxiv.org/abs/1409.1556

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 1-11.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhu-
ber, “LSTM: A search space odyssey,” 2015, arXiv:1503.04069. [Online].
Available: https://arxiv.org/abs/1503.04069

K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human
actions classes from videos in the wild,” 2012, arXiv:1212.0402. [Online].
Auvailable: https://arxiv.org/abs/1212.0402

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB:
A large video database for human motion recognition,” in Proc. Int.
Conf. Comput. Vis., Nov. 2011, pp. 2556-2563. doi: 10.1109/ICCV.
2011.6126543.

C. Zach, T. Pock, and H. Bischof, “A duality based approach for real-
time TV-L! optical flow,” in Proc. Joint Pattern Recognit. Symp. Berlin,
Germany: Springer, 2007, pp. 214-223.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Int. Conf. Com-
put. Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

Z. Cai, L. Wang, X. Peng, and Y. Qiao, “Multi-view super vector for
action recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 596-603.

X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and fusion
methods for action recognition: Comprehensive study and good practice,”
Comput. Vis. Image Understand., vol. 150, pp. 109-125, Sep. 2016.

J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,” in Proc.
IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 2625-2634.
R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Action-
VLAD: Learning spatio-temporal aggregation for action classification,”
in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jun. 2017,
pp. 971-980.

Y. Wang, M. Long, J. Wang, and P. S. Yu, ‘““Spatiotemporal pyramid
network for video action recognition,” in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Jul. 2017, pp. 2097-2106.

C. Feichtenhofer, A. Pinz, and R. P. Wildes, ““Spatiotemporal multiplier
networks for video action recognition,” in Proc. IEEE Int. Conf. Comput.
Vis. Pattern Recognit., Jul. 2017, pp. 7445-7454.

I. C. Duta, B. Ionescu, K. Aizawa, and N. Sebe, ““Spatio-temporal vector
of locally max pooled features for action recognition in videos,” in Proc.
IEEE Int. Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 3205-3214.
J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” in Proc. CVPR, Jul. 2017, pp. 4724-4733.

WEI WANG received the Ph.D. degree from the
University of Trento, Italy, in 2018. He currently
holds a Postdoctoral position with the Ecole
Polytechnique Fédérale de Lausanne (EPFL).
His research interests include computer vision,
deep learning, and augmented reality, particularly
human centered perception, including face and
hand analysis.

VOLUME 7, 2019

SIYUAN HAO (M’17) received the Ph.D. degree
from the College of Information and Commu-
nications Engineering, Harbin Engineering Uni-
versity, Harbin, China, in 2015. She is currently
a Researcher with the Qingdao University of
Technology, Qingdao, China, where she teaches
remote sensing and electrical communication. Her
research interests include hyperspectral imagery
processing and machine learning.

YUNCHAO WEI received the Ph.D. degree
from Beijing Jiaotong University, Beijing, China,
in 2016, advised by Prof. Y. Zhao. He is cur-
rently a Postdoctoral Researcher with the Uni-
versity of Illinois at Urbana—Champaign. He has
published more than 30 papers in top-tier confer-
ences/journals, with over 1000 citations in Google
Scholar. His current research interest includes
computer vision techniques for large-scale data
analysis; specifically, he has been involved in
weakly supervised and semi-supervised object recognition, multi-label
image classification, image/video object detection, and multi-modal analy-
sis. He received the Excellent Doctoral Dissertation Awards of the Chinese
Institute of Electronics (CIE), in 2016, the Winner Prize of the Object
Detection Task (la) in ILSVRC 2014, and the Runner-Up Prizes of all the
video object detection tasks in ILSVRC 2017.

SHENGTAO XIAO received the B.Eng. degree
from the National University of Singapore,
Singapore, in 2013, where he is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering.

His research interests include computer vision,
deep learning, facial landmark detection, 3D face
reconstruction, and human—computer interaction.

JIASHI FENG received the Ph.D. degree from the
National University of Singapore (NUS), in 2014.
He was a Postdoctoral Research Fellow with the
University of California at Berkeley, Berkeley.
He joined NUS as a Faculty Member, where he is
currently an Assistant Professor with the Depart-
ment of Electrical and Computer Engineering. His
research areas include computer vision, machine
learning, object recognition, detection, segmenta-
tion, robust learning, and deep learning.

NICU SEBE (SM’96) received the Ph.D. degree
from Leiden University, The Netherlands, in 2001.
He is currently with the Department of Infor-
mation Engineering and Computer Science, Uni-
versity of Trento, Italy, where he is leading the
research in the areas of multimedia information
retrieval and human behavior understanding. He is
a Senior Member of the ACM and a Fellow of
IAPR. He was the General Co-Chair of ACM
Multimedia 2013 and the Program Chair of ACM
Multimedia 2011, ECCV 2016, and ICCV 2017.

117175

http://dx.doi.org/10.1109/ICCV.2011.6126543
http://dx.doi.org/10.1109/ICCV.2011.6126543

