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Abstract: The research in the design of self-driving vehicles has been boosted, in the last decades, by the developments
inthe elds of arti cial intelligence. Despite the growing number of industrial and research initiatives aimed at
implementing autonomous driving, none of them can claim, yet, to have reached the same driving performance
of a human driver. In this paper, we will try to build upon the reasons why the human brain is so effective
in learning tasks as complex as the one of driving, borrowing explanations from the most established theories
on sensorimotor learning in the eld of cognitive neuroscience. The contribution of this work would like
to be a new point of view on how the known capabilities of the brain can be taken as an inspiration for the
implementation of a more robust arti cial driving agent. In this direction, we consider the Convergence-
divergence Zones (CDZs) as the most prominent proposal in explaining the simulation process underlying the
human sensorimotor learning. We propose to use the CDZs as a “template” for the implementation of neural
network models mimicking the phenomenon of mental imagery, which is considered to be at the heart of the
human ability to perform sophisticated sensorimotor controls such driving.

1 INTRODUCTION not suf ciently factorized, and | think this is

one of the weaknesses of current neural nets”.
For the last two decades, arti cial neural networks . . .
(ANNSs) have been at the very heart of many technol- SUCh vulner_ab|I_|ty appears to be a serious h'_”dfance
ogy developments (Schmidhuber, 2015; Chui et al., in the application of arti cial neural nets inside

2018; Hazelwood et al., 2018). They have proved to safety-critical systems, like autonomous vehicles.
be the best available approach for a variety of differ- When treated as any other components of a car, neural

ent problem domains (Liu et al., 2017; Jones et al., networks should comply with the ISO 26Z6gafety

2017), and the design of autonomous vehicles is def- standard, which covers all aspects of automotive de-

initely one of the research areas to have amply ben_velopment, production and mgmtenance of safety-
e ted from the rise of deep learning, e.g., (Bojarski related systems. In fact, a major challenge that has

etal., 2017; Li et al., 2018; Schwarting et al., 2018). yet emerged in implementing self-driving cars is how

In the recent years, however, some concerns haveto perform quality assessment when key components

emerged regarding certain crucial features of arti cial are based on neural neftworks, as their 'Y‘t””s'c opaque
neural nets, which may call into question the relent- structure o!oes hot prO\_/lde any explanation on whatin-

less progress that was foreseen at rst. In a recent fo_rmat|or_1 n the Input is considered to produ_ce acer-

interview! at MIT, Yoshua Bengio, responsible for tain prediction. This is known as th@ack-boxissue,

many of the advancements of deep learning, pointed characteristic of deep neural networks (Samek et al.,

out the inherent weakness of arti cial neural networks 2017; Ras etal., 2018). .
as opposed to expert systems: A problem closely related to the above is how

“The knowledge in an expert systems is nicely to demonstrate that an autonomous d_riving agent is
decomposed into a bunch of rules, whereas (much) safer than a h_u_man driver. Obviously, the Qe—
neural nets [...] have this big blob o,f param- sire to deve_lop self-driving cars stems from the aspira-
eters which \}\}brk intensely together to repre- tion of achieving safer streets for everyone — drivers,

. . passengers and pedestrians. Yet, none of the current
sent everything that the network knows. It is

Ihttps://agi.mit.edu (transcription of video interview) Zhttps://www.iso.org/standard/43464.html
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available implementations of autonomous vehicle can trols are, in factJearnedthrough lifetime. The pro-
claim to be nowhere close to the driving performance cess of human sensorimotor learning involves sophis-
of a human being. The issue also arises from the factticated computational mechanisms, like gathering of
that humans — contrary to common belief — are very task-relevant sensory information, selection of strate-
reliable at driving: in the US there are just 1.09 fa- gies, and predictive control (Wolpert et al., 2011).
talities and 77 injuries per 100,000,000 human driven  The ability to drive is just one of the many highly
miles (NHTSA, 2017). specialized human sensorimotor behaviors. The brain
Such considerations lead to re ect on why the hu- learns to solve the driving task with the same kind
man brain is so ef cient in solving the driving task, of strategy adopted for every sort of motor plan-
and if it is possible to take inspiration from the mech- ning that requires continuous and complex perceptual
anisms whereby the brain learns to perform such afeedback. We deem that the sophisticated control sys-
complex task (inattention, alcohol, tiredness, drugs tem the human brain develops when learning to drive
etc., which are responsible for the vast majority of by commanding the ordinary car interfaces — steering
the very-few human accidents, would not affect the wheel and pedals — may reveal precious insights on
arti cial system of course). That said, it is not the how to implement a robust autonomous driving sys-
intention of this paper to argue against the use of neu-tem.
ral networks in the development of autonomous ve- It should be noted that the human sensorimo-
hicles. Rather, there is no question that nowadaystor learning is still far from being fully understood,
ANNSs represent the method of choice for implement- as there are several competing theories about which
ing an high-performing arti cial agent. components of the brain are engaged during learning.
This work, hence, would like to contribute with However, a huge body of research in neuroscience and
a novel perspective on how the capabilities of the cognitive neuroscience has been produced in the past
human brain can be used as inspiration for creating decades, which allows us to grasp some useful cues
an arti cial driving agent, still largely based on deep for designing an arti cial driving agent capable of
learning, but more robust. We propose to exploit the learning the sensorimotor controls necessary to drive.
current most established neurocognitive theories on
how the brain develops the ability to drive, to build 2.1 The Simulation Theory
a neural network architecture less susceptible to the
black-boxissues mentioned before. In the following A well-established theory is the one proposed by
Section we will overview the most compelling hy- Jeannerod and Hesslow, the so-cabedulation the-
pothesis on sensorimotor control learning of the brain, ory of cognition which proposes that thinking is es-
in the domain of cognitive neuroscience. In 83 we sentially simulated interaction with the environment
will show how these hypothesis can be considered as(Jeannerod, 2001; Hesslow, 2012). In the view of
a starting point for the development of a novel neural Hesslow, simulation is a general principle of cogni-
network architecture, and nally 84 will present the  tion, explicated in at least three different components:
results of applying our ANN to a simulated driving perception, actions and anticipation. Perception can
environment. be simulated by internal activation of sensory cortex
This paper results from one of the research in a way that resembles its normal activation during
projects carried out as part of the European project perception of external stimuli. Simulation of actions
Dreams4Cars, where we are developing an arti cial can be performed when activating motor structures,
driving agent inspired by the neurocognition of hu- as during a normal behavior, but suppressing its actual
man driving, for further details refer to (Da Lio et al., execution. Moreover, Hesslow argues that actions can

2018). trigger perceptual simulation of their most probable
conseguences.

The most simple case of simulation is mental im-

2 THE NEUROCOGNITIVE agery, especially in visual modality. This is the case,

POINT OF VIEW for example, when a person tries to picture an object

or a situation. During this phenomenon, the primary
. ) . visual cortex (V1) is activated with a simpli ed repre-
Humans are able to learn an impressive range of dif- sentation of the object of interest, but the visual stimu-

ferent, very complex, sensorimotor controls schemes |5 is not actually perceived (Kosslyn, 1994; Moulton
— from playing tennis to salsa dancing. The remark- 54 Kosslyn, 2009).

able aspect is that no motor skill is innate to humans,
not even the most basic ones, like walking or grasping
objects (Grillner and Waéin, 2004). All motor con-
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2.2 The Emulation Theory

Higher-order
Another proposal in understanding certain aspects of e
motor control and motor imagery, is themulation
theory of representatio(Grush, 2004), which can be L—J
seen as a bridge linking theoretical cognitive neuro-
science to the engineering domain of control theory
and signal processing. According to this theory, the
brain does not simply engage with the body and en-
vironment, it is also able to construct neural circuits
that act as models of them. These models can also be
run of ine, in order to predict outcomes of different
actions, and evaluate and develop motor plans.

Thus, the main difference between Hesslow's sim- Figure 1: Schematic representation of the CDZ framework
ulation theory and Grush's emulation theory is that by Meyer and Damasio. Neuron ensembles in early sen-
the latter claims that mere operation of the motor cen- sorimotor cortices of different modalities send converging
ters is not enough to produce imagery. According to forward projections (red arrows) to higher-order associa-
Grush, a bare motor plan is either a temporal sequence“on cortices, which, in turn, project back divergently (black

. arrows) to the early cortical sites, via several intermediate
of motor commands or a plan described by move- gieng

ments of joint angles. Conversely, motor imagery is a

sequence of simulated proprioception and kinesthesis, o prominent proposal in this direction has been for-
and it requires forward models of the musculoskeletal , jated in terms of convergence-divergence zones
system of the body. (CDZs) (Meyer and Damasio, 2009). They derive
One conceptual advantage of the emulation theory from an earlier model (Damasio, 1989) which high-
is that it solves the conundrum of how proprioception lighted the “convergent” aspect of certain neuron en-
and kinesthesis can exist during motor imagery in ab- semples, located downstream from primary sensory

sence of limbs modi cations. On the other hand, it and motor cortices. Such convergent structure con-

model of the musculoskeletal system can be realized cortical regions in a many-to-one fashion.
at all. Grush proposes it can be realized by Kalman- e primary purpose of convergence is to record,

like Iters, the most common system estimator used by means of synaptic plasticity, which patterns of fea-

in control engineering. While there are evidences {res — coded as knowledge fragments in the early
that Kalman Iter schemes can account for several ex- ~qrices — occur in relation with a speci ¢ concept.

perimental data (Wolpert and Kawato, 1998; Colder, gy,ch records are built through experience, by inter-

2011), it is hard to tell if the brain actually solves  4cting with objects. On the other hand, a requirement
motor simulation in this way. In the Dreams4Cars o convergence zones (already found in the rst pro-
project we plan to experiment forward models based s3] of Damasio) is the ability to reciprocate feedfor-

on Kalman lters as well, but this is not the subject \yarq projections with feedback projections in a one-
of this paper. Therefore we will not get into more de- . many fashion. This feature is now made explicit in
tails of emulators, and we concentrate instead on otheryhe cpz naming.

proposals about how simulation may take place in the
brain.

Auditory

The convergent ow is dominant during percep-
tual recognition, while the divergent ow dominates
] imagery. Damasio postulates that switching between
2.3 Convergence-divergence Zones one of the two modes may depend on time-locking. If

activations in a CDZ is synchronous with activity in

Any neural theory claiming to explain the simulation Separate feeding cortical sites, than perceptual recog-
process, in the rst place, is required to simultane- nition takes place. Conversely, imagery is driven by
ously: synchronization with backprojecting cortical areas.

Convergent-divergent connectivity patterns can be
identi ed for speci ¢ sensory modalities, but also in
higher order association cortices, as shown in the hier-
archical structure in Fig. 1. It should be stressed that
2. recall related concepts from memory during im- CDZs are rather different from a conventional pro-

agery. cessing hierarchy, where processed patterns are trans-

1. identify the neural mechanisms that are able to
extract information relevant to the action, from a
large amount of sensory data,
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ferred from earlier to higher cortical areas. In CDZs, Hinton, 2011). In this kind of models the task to be

part of the knowledge about perceptual objects is re- solved by the network is to simulate as output the

tained in the synaptic connections of the convergent- same picture fed as input. The advantage is that while

divergent ensemble. This allows to reinstate an ap- learning to reconstruct the input image, the model de-

proximation of the original multi-site pattern of a re- velops a very compact internal representation of the

called object or scene. visual scene. Models able to learn such representa-
tion are closely connected with the cognitive activity
of mental imagery.

3 ARTIFICIAL MENTAL

IMAGERY 3.1 Autoencoder-based CDZ Models

) , In the context of autonomous driving agents, there
The CDZ hypothesis has found in the years support ig 5 range of different levels at which we can design
of a large body of neurocognitive and neurophysio- g qe|s with autoencoder-like architectures acting as
logical evidence. However, it is a purely descriptive cpzs  similarly to the hierarchical arrangement of
model and does not address the crugial issue of _hOWCDZs in the brain, as described by Meyer and Dama-
the same neural assembly, which builds connectionsgjq (again, Fig.1), autoencoder-based models can be
by experiences in the convergent direction, can com- njaced at a level depending on the distance covered

putationally work in the divergent direction'as well. by the processing path, from the lowest primary cor-
At the moment, there are no computational mod- e areas to the output of the simulation.

els that faithfully replicate the behavior of CDZs, In the context of Dreams4Cars. we considered as
however, we found that an independent notion, intro- yhe owest level of model design the processes that
duced inthe eld of arti cial intelligence for very dif- a1t from the raw image data and converge up to sim-

ferent purposes, bears s_ig_ni cant similariti_es with the ple visual features. Consequently, the divergent path
CDZ scheme. In our opinion, the most direct mech- outputs in the same format as the input image.

anism to simulate perception in the realm of arti cial At an intermediate level, the convergent process-

neural networks is thautoencoder ing path leads to representations that are no more in
Autoencoder architectures have been the corner-tomg of visual features, rather in terms of “concepts”.

stone of the evolution from shallow to deep neural o prain naturally projects sensorial information, es-
architectures (Hinton and Salakhutdinov, 2006; Vin- heially visual, into conceptual space, where the lo-
cent et al., 2010). The crucial issue of training neu- | perceptual features are pruned, and neural activa-
ral architectures with multiple internal layers was ini- - jong code the nature of entities present in the environ-

tially solved associating each internal layers with & ment that produced the stimuli. The conceptual space
Restricted Boltzmann Machine (Hinton and Salakhut- is the mental scaffolding the brain gradually learns

dinov, 2006), so that they can be pre-trained individu- ,5,gh experience, as internal representation of the
ally in unsupervised manner. The adoption of autoen- ;5114 (Seger and Miller, 2010). As highlighted by
coders overcome the training cost of Boltzmann Ma- (Olier et al., 2017) CDZs are a valid systemic candi-
chines: each internal layer is trained in unsupervised 4te for how the formation of concepts takes place at
manner, as an ordinary fully connected layer. The key i |evel. There is clearly no single uni ed center in
idea is to use the same input tensor as target of theyhe prajn acting as conceptual space, the organization
output, and therefore to train the layer to optimize the g ¢4y more complex. There are distinctive properties
reconstruction of the input (Larochelle et al., 2009). objects like shape, way of moving and interacting
Inthe rstlayer the inputs are that of the entire neural with, which are represented in the same sensory and
model, for all subsequent layers the hidden units’ out- 1,44y systems that are active when information about
puts of the previous layer are now used as input. The \hese properties was acquired. There are also other
overall result is a regularization of the entire model regions that seem to show a categorical organization
similar to the one obtained with Boltzmann Machine (Martin, 2007; Mahon and Caramazza, 2011). In the
(Bengio, 2009), or even a better one (Vincent et al., grving context it is not necessary to infer categories
2010). for every entity present in the scene, it is useful to

_ Soon after, re nement of algorithms for initial-  yrgject in conceptual space only the objects relevant
ization (Glorot and Bengio, 2010) and optimization 4 the driving task, in the models here presented we

(Kingma and Ba, 2014) of weights, made any type of ¢psose to consider the two main conceptsarsand
unsupervised pre-training method super uous. HOW- |5nes

ever, autoencoders nd a new role for capturing com-
pact information from visual inputs (Krizhevsky and
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complexity of the environment scenario, and so on.
For these sort of purposes Blender is often the soft-
ware of choice, thanks to its exible programmability
(Mayer et al., 2016; Biedermann et al., 2016). Fig. 2
shows the road track used in the experiments.

The rst neural network here presented corre-
sponds to the lowest level model, its divergent path
produces a prediction in visual space reconstructing

Figure 2: Orthographip ViEV\/_ of the road track created in the same color image received as input_ The archi-
Blender, used for the simulation of road traf c. tecture, shown in Fig. 3, is composed of a stack of
. . convolutional layers, followed by at layers, then a

A model at a higher level associates the conver- gymmetric stack of deconvolutional layers. There is
gent paths from visual processes with motor com- 4'cjeqr discrepancy between the physical structure of
mands, and its divergent path outputs in the format biological CDZs and this model. In the CDZs the
of action representations. For the purpose of driving, same neural assemblies are able to compute the for-
we will use as representation format a space of two di- yy4rq direction (acting as convergent processors) and
mensions, the steering refem) and the longitudinal  he packward direction (when acting as divergent pro-
jerk (m=). The choice for this motor space derives ceggors). In our model there are two distinct blocks: a
from the Optimal Control (OC) theory. More speci - gtack of convolutions working as convergent proces-
cally, the minimization of the squared jerk integral i gorg and a stack of deconvolutions working as diver-
known to lead to smooth human-like control actions gent processors. However, the similarity between our
(Bertolazm et al., 2003; Liu and Todorov, 20(?7). This  model and Damasio's CDZs is preserved from a com-
higher level has not been fully developed in neural tational point of view, as the structure of each con-
networks yet, therefore this paper will not focus on it \,gytion in the stack is specular to the corresponding

Atall levels, the implementations presented in this geconvolution transformation in the second stack, and
paper are synchronous: the convergent phase is appoth transformations derive their kernel parameters
plied to data locked in time to the same of the diver- from learning on the same image samples. As stated
gent phase. An extension under development in OUrjn §3.1, this implementation is purely synchronous,
project is to delay in time the divergent phase. In this yithout temporal delay between convergence and di-
case, for all levels it becomes necessary the integra-yergence, therefore there is no need for proprioceptive
tion of an additional convergence zone, corresponding jnpyt, in addition to the visual one. The autoencoder
to cortical proprioception. In the context of the driv- a5 trained on a dataset of 100,000 images generated
ing task, itis the processing of information about ego- j, Blender, with 10% of samples used as validation
velocity and ego-heading, together with their time set \We adopted Adam as gradient-based optimizer
derivatives. This sort of information is clearly neces- (kingma and Ba, 2014), and the mean squared error
sary in order to imagine, when driving, a visual scene 55 |oss function. The nal loss obtained wa®025,
projected in the future. computed on the test set.

The second model aims at diverging into a space

which is still retinotopically bounded, but with neu-
4 RESULTS ral activation coding for “concepts”. As described in

§3.1 we take into account the conceptscafs and
Here we present the implementations of two mod- lanes Each concept has its own corresponding di-
els of arti cial visual imagery, corresponding to the vergence path in the network, while the convergence
two lower levels described in 83.1. Both models pathway is common and is the same of the previous
are implemented as arti cial neural networks with model, since it shares the same basic visual features.
autoencoder-like architectures. In all the experiments The model is depicted in Fig. 4. The innermost layer
here presented, the training samples are generateadtan be seen as a compact representation of the scene,
through a customized simulation of road traf c, real- made by 384 neurons, disentangled into three par-
ized with the 3D computer graphics software Blender. tially distinct classes: visual representations irrespec-
In this phase of the project the availability of a cus- tive of concepts, representations selectivedaren-
tomized dataset is precious, for the most exible con- tities, and representations selective fane entities.
trol of the training set composition, with respect to Each of the disentangled representations is made of
parameters such as ego-velocity range, range of ve-128 neurons. Note that there is no special architec-
locity of the other cars, range of road bending radius, tural design for disentangling thear andlane con-
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Figure 3: Scheme of the neural network implementing the lower level CDZ model.

Figure 4: Scheme of the neural network implementing the intermediate level CDZ model.

cepts, the only difference is in the training regimes in the dataset. The parameteis used to smooth the
upon which the different divergence pathways were effect of weighting by the probability of ground truth,
trained. In the case of concepts, the target output of a value evaluated empirically as valid is 4.

each divergent pathway is a binary image with true

Although the two conceptual divergence pathways

values signaling pixels belonging to the concept at are trained separately, several of the training input
hand, as shown on the right of Fig. 4. Being the target samples are common, while the target outputs are dif-
pixels Boolean values, the loss function is the cross- ferent, depending on the class of Concept_ This pro-
entropy. Since there is a large imbalance of pixels that cedure bears resemblance with the work of (Kulka-
do not belong to either concepts — with respect to pix- rnj et al., 2015), where groups of neurons in an inner
els that do belong to — the cross entropy is weighted |ayer of a CNN model have been “encouraged” (in the
to tackle class imbalance (Sudre et al., 2017). In our Aythors' words) to learn separate representations. In

formulation the losd. of a prediction of the mode
against a ground truthis the following:

N
Lo = <Ak awn) @
ply) = (1 Py+P(1 vy) 2
ayy) = ylogv+(} y)log(l 9 (3)
1y ok
P = MEJ_IYJ “4)

whereN is the number of pixels in an imag#) is

the case of Kulkarni and co-workers the disentangled

representations are classes of graphic primitives, such
as poses or lightnings, while in our case the disentan-
gled representations are foar andlane entities.

Fig. 5 shows prediction of the two implemented
models, on two input samples (leftmost pictures). The
results of the lowest level model are shown in the cen-
tral pictures. It is well visible how the outcome of
this model is fairly faithful with respect to the over-
all scene, including the far landscape. It is, how-
ever, scarcely sensible to the features that change in
time faster than the surround, and appear more rarely

the number of all pixels in the training dataset, and compared to other features. This is exactly the case
P is the ratio of true value pixels over all the pixels of other cars, some of which disappear almost com-
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Figure 5: Results of the models' predictions: on the left the original frames; on the center the outputs of the model diverging
in visual space; on the right the frames predicted by the intermediate level moddamétmtities highlighted in yellow and
car entities highlighted in green.

pletely in the samples shown in Fig. 5. ible, in the sense that our framework can be extended
The results of the CDZ model in conceptual space to simulate other complex human motor abilities, as

are shown in the rightmost pictures. The output of the supported by the logical evidences of the CDZ hy-

two conceptual divergent paths are merged into sin- pothesis.

gle images for better visibility, the green overlays are Our future plans involve the nalization of the

the output of thecar divergent path, and the yellow higher level model of the architecture which computes

overlays are the output of thenedivergent path (the  motor commands from the conceptual representation

background image is the same output of the lower di- of the environment presented in this work.

vergent path). Note that the true aim of our model is

not to produce a semantic segmentation of the input

images, but to induce the model to learn disentangledACKNOWLEDGEMENTS

representations of the main conceptual features fun-

damental to the driving task. The resulting images

nicely show how the projection of the sensorial in-

put (original frames) into conceptual representation is

very effective in identifying and preserving the sensi-

ble features otarsandlanes even in the situations

when the lowest level model failed to capture them,

like in the case of cars moving at a high speed.
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