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We study an infinite system of nonlinear differential equations coupled in a tree-
like structure. This system was previously introduced in the literature and it is the
model from which the dyadic shell model of turbulence was derived. It mimics
3D Euler and Navier-Stokes equations in a rough approximation of wavelet de-
composition. We prove existence of finite energy solutions, anomalous dissipation
in the inviscid unforced case, existence and uniqueness of stationary solutions (ei-
ther conservative or not) in the forced case. C⃝ 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4792488]

I. INTRODUCTION

A classical scheme used to explain energy cascade in turbulence is based on the picture of the
fluid as composed of eddies of various sizes.9, 12 Larger eddies split into smaller ones because of
dynamical instabilities and transfer their kinetic energy from their scale to the one of the smaller
eddies. One can think of a tree-like structure where nodes are eddies; any substructure father-
offsprings, where we denote the father by j ∈ J (J the set of nodes) and the set of offspring by
O j , corresponds to an eddy j and the set O j of smaller eddies produced by j by instability. In the
simplest possible picture, eddies belong to specified discrete levels, generations: level 0 is made of
the largest eddy, level 1 of the eddies produced by level zero, and so on. The generation of eddy j
may be denoted by |j|. Denote also the father of eddy j by ȷ̄ .

Phenomenologically, we associate to any eddy j a non-negative intensity Xj(t), at time t, such
that the kinetic energy of eddy j is X2

j (t). We relate intensities by a differential rule, which prescribes
that the intensity of eddy j increases because of a flux of energy from ȷ̄ to j and decreases because
of a flux of energy from j to its set of offspring O j . We choose the rule

d
dt

X j = c j X2
ȷ̄ −

∑

k∈O j

ck X j Xk, (1)

where the coefficients cj are positive.
This model has been introduced by Katz and Pavlović10 as a simplified wavelet description of

Euler equations, suitable for understanding the energy cascade. The coefficients cj = 2α|j| represent
in our model the speed of the energy flow from an eddy to its children. The coefficient α is an
approximation, averaged in time and space, of the rate of this speed. Regarding solutions of Euler
equations in dimension 3, it may happen (usually as a short term phenomenon) that this speed is
higher or lower, this is known as intermittency; sometimes that the process itself is reversed, that is
the energy flows from the smaller eddies to the bigger ones. Cheskidov, Friedlander and Pavlović4, 5
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showed using Bernstein’s inequality that the rate β for the dyadic 3D Euler model lies in the interval
[1, 5/2] which corresponds to α ∈ [5/2, 4] for the tree dyadic model. As explained in Sec. I A, the
order of magnitude of cj that correspond to K41 is

c j ∼ 2
5
2 | j |. (2)

The tree dyadic model (1) is a more structured version of the so called dyadic model of
turbulence. The latter is based on variables Yn which represent a cumulative intensity of shell n (shell
in Fourier or wavelet space) n = 0, 1, 2, . . . Here, on the contrary, shell n is described by a set of
variables, all Xj’s with |j| = n, the different intensities of eddies of generation n. The equations for
Yn have the form

d
dt

Yn = knY 2
n−1 − kn+1YnYn+1. (3)

Model (1) is thus a little bit more realistic than (3), although it is still extremely idealized with
respect to the true Fourier description of Euler equations.

All these models are formally conservative: the global kinetic energy E(t) =
∑

j X2
j (t), or

E(t) =
∑

n Y 2
n (t) depending on the case, is formally constant in time; it can be easily seen in both

cases, using the telescoping structure of the series dE(t)/dt . However in previous papers2, 5) it has
been shown that the dyadic model (3) is not rigorously conservative: anomalous dissipation occurs.
The flux of energy to high values of n becomes so fast after some time of evolution that, in finite
time, part of the energy escapes to infinity in n.

The same question for the tree dyadic model (1) is more difficult. Intuitively, it is not clear what
to expect. Even if the global flux from a generation to the next one behaves similarly to the shell
case (3), energy may split between eddies of the same generation, which increase exponentially in
number. Hence there is a lot of “space” (a lot of eddies) to accommodate the large amount of energy
which comes from progenitors in the cascade.

The main result of this paper, Theorem 2.1, is the proof of anomalous dissipation also for model
(1). To be precise, we have dissipation for a class of coefficients cj which covers (2). The proof is
similar to the one in Barbato, Flandoli and Morandin2 but requires new ideas and ingredients.

Apart from anomalous dissipation, we consider also stationary solutions, showing the existence
and uniqueness of such solutions in Theorems 2.2 and 2.3. This kind of argument allows and requires
a more general model to be studied, namely, one needs to insert a forcing term (to find nontrivial
stationary solutions) and we are able to treat also the viscous analogous of the tree dyadic model,
adding the viscosity term − ν2γ |j|Xj to Eq. (1). The most general model that we introduce is thus
system (7).

In Sec. II we describe the model and give a short summary of the main results of the paper.
In Sec. III we discuss elementary properties of the model and prove the existence of finite energy

solutions.
In Sec. IV we exploit the connection between the “classic” dyadic model on naturals and the

tree dyadic model. If the number of children is constant for every node in the tree, then, from each
solution of the former, one can build a “lifted” version on the tree which is a solution of the latter.

Sec. V is devoted to the proof of the anomalous dissipation Theorem 2.1 in the inviscid unforced
case. Self-similar solutions are also discussed.

In Sec. VI we study the stationary solutions. We prove existence and uniqueness of stationary
solutions of classic and tree forced systems (8) and (7) with and without viscosity. Here the positive
force f is required because otherwise the unique non-negative stationary solution is the null one.

A. The decay of Xj corresponding to K41 and anomalous dissipation

In the case of the classic dyadic model (3), Kolmogorov inertial range spectrum reads

Yn ∼ k−1/3
n .

The exponent is intuitive in such case. For the tree dyadic model (1) the correct exponent may look
unfamiliar and thus we give a heuristic derivation of it. The result is that Kolmogorov inertial range
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spectrum corresponds to

X j ∼ 2− 11
6 | j |. (4)

K41 theory states12 that, if u(x) is the velocity of the turbulent fluid at position x and the expected
value E is suitably understood (for instance if we analyze a time-stationary regime), one has

E
[
|u(x) − u(y)|2

]
∼ |x − y|2/3,

when x and y are very close each other (but not too close). Very vaguely this means

|u(x) − u(y)| ∼ |x − y|1/3.

Following Katz and Pavlović,10 let us think that u(x) may be written in a basis (w j ) (which are
norm-one vectors in L2) as

u(x) =
∑

j

X jw j (x).

The vector field w j (x) corresponds to the velocity field of eddy j. Let us assume that eddy j has
a support Qj of the order of a cube of side 2− |j|. Given j, take x, y ∈ Qj. When we compute
u(x) − u(y) we use the approximation u(x) = X jw j (x), u(y) = X jw j (y). Then

|u(x) − u(y)| = |X j | |w j (x) − w j (y)|,

namely

|X j | |w j (x) − w j (y)| ∼ |x − y|1/3, x, y ∈ Q j .

We consider reasonably correct this approximation when x, y ∈ Qj have a distance of the order of
2− |j|, otherwise we should use smaller eddies in this approximation. Thus we have

|X j | |w j (x) − w j (y)| ∼ 2− 1
3 | j |, x, y ∈ Q j , |x − y| ∼ 2−| j |. (5)

Moreover, we have

|w j (x) − w j (y)| = |∇w j (ξ )| |x − y|, (6)

for some point ξ between x and y (to be precise, the mean value theorem must be applied to each
component of the vector valued function w j ). Recall that

∫
w j (x)2dx = 1, hence the typical size sj

of w j in Qj can be guessed from s2
j 2

−3| j | ∼ 1, namely sj ∼ 23/2|j|. Since w j has variations of order sj

at distance 2− |j|, we deduce that the typical values of ∇w j in Qj have the order 23/2|j|/2− |j| = 25/2|j|.
Thus, from (6),

|w j (x) − w j (y)| ∼ 2
5
2 | j |2−| j |.

Along with (5) this gives us

|X j |2
5
2 | j |2−| j | ∼ 2− 1

3 | j |,

namely

|X j | ∼ 2(− 1
3 +1− 5

2 )| j | = 2− 11
6 | j |.

We have established (4), on a heuristic ground of course.
Let us give a heuristic explanation of the fact that, when anomalous dissipation occurs, the decay

(4) appears. In a sense, this may be seen as a confirmation that (4) is the correct decay corresponding
to K41. Let us start from Eq. (1) with cj ∼ 25/2|j|, the Katz-Pavlović prescription. Let En be the energy
up to generation n:

En =
∑

| j |≤n

X2
j .
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Then, as will be seen later with Eq. (9),

dEn

dt
= −2

5
2 (n+1)

∑

|k|=n+1

X2
k̄ Xk .

In order to have anomalous dissipation, we should have

dEn

dt
n∼ −C ̸= 0.

If we assume a power decay

X j ∼ 2−η| j |.

Then, since the cardinality of {Qj: |j| = n} should be of the order of 23n,

2
5
2 (n+1)

∑

|k|=n+1

X2
k̄ Xk ∼ 2

5
2 n23n2−3ηn = 2( 11

2 −3η)n,

and thus η = 11/6.

II. MODEL AND MAIN RESULTS

Let J be the set of nodes. Inside J we identify one special node, called root or ancestor of the
tree, which is denoted by 0. For all j ∈ J we define the generation number | j | ∈ N (such that |0|
= 0), the set of offsprings of j, denoted by O j ⊂ J , such that |k| = |j| + 1 for all k ∈ O j and a
unique parent ȷ̄ with j ∈ Oȷ̄ . The root 0 has no parent inside J, but with slight notation abuse we
will nevertheless use the symbol 0̄ when needed.

For sake of simplicity we will suppose throughout the paper that the cardinality ofO j is constant,
♯O j =: N∗ for all j ∈ J, but some results can be easily generalized at least to the case where ♯O j is
positive and uniformly bounded.

It will turn out to be very important to compare N∗ to some coefficients of the model. To this
end we set also α̃ := 1/2 log2 N∗ so that N∗ = 22α̃

The dynamics of the tree dyadic model is described by a family (Xj)j ∈ J of functions X j:
[0,∞) → R. Its general formulation is described by the equations below. (Notice that X 0̄ does not
belong to the family and merely represents a convenient symbolic alias for the constant forcing
term.)

⎧
⎪⎪⎨

⎪⎪⎩

X 0̄(t) ≡ f

d
dt

X j = −νd j X j + c j X2
ȷ̄ −

∑

k∈O j

ck X j Xk, ∀ j ∈ J.
(7)

Here we suppose that f ≥ 0, ν ≥ 0, and that the other coefficients have an exponential behavior,
namely cj = 2α|j|, dj = 2γ |j| with α > 0 and γ > 0.

If f = 0 we call the system unforced, if ν = 0 we call it inviscid.
This system will usually come with an initial condition which will be denoted by X0 = (X0

j ) j∈J .
One natural space for X(t) to live is l2(J ;R), which we will simply denote by l2, the setting being
understood. The l2 norm will be simply denoted by ∥ · ∥.

Definition 1. Given X0 ∈ RJ , we call componentwise solution of system (7) with initial condition
X0 any family X = (Xj)j ∈ J of continuously differentiable functions X j : [0,∞) → R such that X(0)
= X0 and all equations in system (7) are satisfied. If moreover X(t) ∈ l2 for all t ≥ 0, we call it an l2

solution.
We say that a solution is positive if Xj(t) ≥ 0 for all j ∈ J and t ≥ 0.

Existence of positive l2 solutions is classical and can be found in Sec. III, while uniqueness is
an open problem.
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This system of equations is locally conservative, in the sense made rigorous by Proposition 3.2
below, where the following energy balance inequality is proven

∥X (t)∥2 ≤ ∥X (s)∥2 + 2 f 2
∫ t

s
X0(u)du − 2ν

∑

j∈J

d j

∫ t

s
X2

j (u)du.

It turns out that in some cases this is in fact an equality and in some cases it is a strict inequality.
When the latter happens we say that anomalous dissipation occurs.

The main results of the paper deal with anomalous dissipation and stationary solutions.

A. Anomalous dissipation on the inviscid, unforced tree dyadic model

The proof of the next result is given in Sec. V.

Theorem 2.1. Let ♯O j = 22α̃ for all j. Suppose α̃ < α and f = ν = 0 in Eq. (7). Let X be any
positive l2 solution with initial condition X0. Then there exists C > 0, depending only on ∥X0∥, such
that for all t > 0

E(t) := ∥X (t)∥2 :=
∑

j∈J

X2
j (t) <

C
t2

.

This theorem holds also if we use the weaker hypothesis 1 ≤ ♯O j ≤ 22α̃ for all j. The statement tells
us that the energy of the system goes to zero at least as fast as t− 2. In Sec. V A we show that for this
model there are some self-similar solutions and that their energy goes to zero exactly like t− 2. So
the estimate of Theorem 2.1 cannot be improved much.

B. Stationary solutions for the forced classic dyadic model

It will be important for our purposes to switch between the tree dyadic model and the classic
one, where J is simply the set of non-negative integers with O j := { j + 1} for all j.

To avoid confusion we will use different symbols for the classic system, whose equations are
the following:

⎧
⎨

⎩

Y−1(t) ≡ f

d
dt

Yn = −νlnYn + knY 2
n−1 − kn+1YnYn+1, ∀n ≥ 0,

(8)

with f ≥ 0, ν ≥ 0, kn = 2βn, ln = 2γ n, β > 0 and γ > 0.
When this model is interpreted as a special case of (7) we will have N∗ = 1, α̃ = 0, and β = α.

Observe that the definitions of solutions given on the tree model extend easily to this one, but notice
that in this setting l2 will correspond to the standard space of sequences.

The following theorem deals with stationary solutions, namely solutions constant in time. We
do not detail the proof, since, by what we said above, it is a special case of the analogous statement
for the tree dyadic model, Theorem 2.3 which is proven in Sec. VI.

Theorem 2.2. If f > 0, then there exists a unique l2 positive solution Y of system (8) which is
stationary. Moreover

1. if ν = 0 then Yn(t) := f2− β/3(n + 1);
2. if ν > 0 and 3γ ≥ 2β, the stationary solution is conservative and regular, in that for all real

s,
∑

n[2snYn(t)]2 < ∞;
3. if ν > 0 and 3γ < 2β, there exists C > 0 such that for all f > C the invariant solution of (8) is

not regular and exhibits anomalous dissipation.

In the inviscid case, this theorem extends an analogue result of Cheskidov, Friedlander and
Pavlović5 where it is proved for β = 5/2. In the viscous case it extends a result of Cheskidov and
Friedlander,4 in which existence and uniqueness of stationary solutions are proved for γ = 2 and β

∈ (3/2, 5/2].
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C. Stationary solutions for the forced tree dyadic model

An analogous of Theorem 2.2 holds for the tree dyadic model too. This is proved in Sec. VI.

Theorem 2.3. Let ♯O j = 22α̃ for all j. Suppose α̃ < α and f > 0 in Eq. (7). Then there exists a
unique l2 positive solution X which is stationary. Moreover

1. if ν = 0 then X j (t) := f 2−(2α̃+α)(| j |+1)/3 for all j ∈ J;
2. if ν > 0 and 0 < α − α̃ ≤ γ 3/2, the stationary solution is conservative and regular, in that

for all real s,
∑

j ∈ J[2s|j|Xj(t)]2 < ∞;
3. if ν > 0 and α − α̃ > γ 3/2, there exists C > 0 such that for all f > C the invariant solution of

(7) is not regular and exhibits anomalous dissipation.

III. ELEMENTARY PROPERTIES

We will provide, in this section, some basic results on the tree dyadic model. The results are
analogous to those provided for the dyadic model,1, 2, 8 but the proofs require some new ideas to cope
with the more general structure.

We will suppose throughout the paper that the initial condition X0 is in l2 and that X0
j ≥ 0 for

all j ∈ J. It will turn out that these two properties hold then for all times.

Definition 2. For n ≥ − 1, we denote by En(t) the total energy on nodes j with |j| ≤ n at time t
and E(t) the energy of all nodes at time t (which is possibly infinite):

En(t) :=
∑

| j |≤n

X2
j (t), E(t) :=

∑

j∈J

X2
j (t).

Note in particular that E−1 ≡ 0.

We will use very often the derivative of En , for n ≥ 0,

d
dt

En(t) = 2
∑

| j |≤n

X j
d
dt

X j (t)

= −2ν
∑

| j |≤n

d j X2
j + 2

∑

| j |≤n

c j X2
ȷ̄ X j − 2

∑

| j |≤n

∑

k∈O j

ck X2
j Xk

= −2ν
∑

| j |≤n

d j X2
j + 2c0 X2

0̄ X0 − 2
∑

|k|=n+1

ck X2
k̄ Xk .

so we get for all n ≥ 0

d
dt

En(t) = −2ν
∑

| j |≤n

d j X2
j (t) + 2 f 2 X0(t) − 2

∑

|k|=n+1

ck X2
k̄ (t)Xk(t). (9)

Proposition 3.1. If X0
j ≥ 0 for all j, then any componentwise solution is positive. If X0 is in l2,

any positive componentwise solution is a positive l2 solution, in particular for all t ≥ 0,

E(t) ≤ (E(0) + 1)e2 f 2t . (10)

Proof. From the definition of componentwise solution we get that for all j ∈ J

X j (t) = X0
j e

−
∫ t

0 (νd j +
∑

k ck Xk (r ))dr +
∫ t

0
c j X2

ȷ̄ (s)e−
∫ t

s (νd j +
∑

k ck Xk (r ))dr ds, (11)

yielding Xj(t) ≥ 0 for all t > 0 and all j ∈ J.

Downloaded 30 May 2013 to 192.167.204.253. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



021507-7 Barbato et al. J. Math. Phys. 54, 021507 (2013)

Now we turn to the estimates of E(t). In (9), since Xk(t) ≥ 0 we have two negative contribution
which we drop and we use the bound X0(t) ≤ X2

0(t) + 1 ≤ En(t) + 1 to get that for all n ≥ 0,

d
dt

En(t) ≤ 2 f 2(En(t) + 1),

so by Gronwall lemma En(t) + 1 ≤ (En(0) + 1)e2 f 2t . Letting n → ∞ we obtain (10). !

Proposition 3.2. For any positive l2 solution X, the following energy balance principle holds,
for all 0 ≤ s < t.

E(t) = E(s) + 2 f 2
∫ t

s
X0(u)du − 2ν

∑

j∈J

d j

∫ t

s
X2

j (u)du

− 2 lim
n→∞

∫ t

s

∑

|k|=n

ck X2
k̄ (u)Xk(u)du, (12)

where the limit always exists and is non-negative. In particular, for the unforced, inviscid (f = ν

= 0) tree dyadic model, E is non-increasing.

Proof. Let 0 ≤ s < t, then by (9) for all n ≥ 0,

En(t) = En(s) − 2ν
∑

| j |≤n

d j

∫ t

s
X2

j (u)du + 2 f 2
∫ t

s
X0(u)du

− 2
∫ t

s

∑

|k|=n+1

ck X2
k̄ (u)Xk(u)du.

As n → ∞, since the solution is in l2, En(s) ↑ E(s) < ∞ and the same holds for t. The viscosity
term is a non-decreasing sequence bounded by

2ν
∑

| j |≤n

d j

∫ t

s
X2

j (u)du ≤ E(s) + 2 f 2
∫ t

s
X0(u)du < ∞,

so it converges too. Then the border term converges being the sum of converging sequences. !

Definition 3. We say that a positive l2 solution X is conservative in [s, t] if the limit in (12) is
equal to zero that is if

E(t) = E(s) + 2 f 2
∫ t

s
X0(u)du − 2ν

∑

j∈J

d j

∫ t

s
X2

j (u)du.

Otherwise we say that X has anomalous dissipation in [s, t].

Theorem 3.3. Let X0 ∈ l2 with X0
j ≥ 0 for all j ∈ J. Then there exists at least a positive l2

solution with initial condition X0.

Proof. The proof by finite dimensional approximates is completely classic. Fix N ≥ 1 and
consider the finite dimensional system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X 0̄(t) ≡ f
d
dt

X j = −νd j X j + c j X2
ȷ̄ −

∑

k∈O j

ck X j Xk j ∈ J, 0 ≤ | j | ≤ N

Xk(t) ≡ 0 k ∈ J, |k| = N + 1

X j (0) = X0
j j ∈ J, 0 ≤ | j | ≤ N ,

(13)
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for all t ≥ 0. Notice that Proposition 3.1 is true also for this truncated system (with unchanged proof),
so there is a unique global solution. (Local existence and uniqueness follow from the local Lipschitz
continuity of the vector field and global existence comes from the bound in (10).) We will denote
such unique solution by XN.

Now fix j ∈ J and consider on a bounded interval [0, T] the family (X N
j )N>| j |. By (10) we have

a strong bound that does not depend on t and N

|X N
j (t)| ≤ (E(0) + 1)

1
2 e

1
2 T f 2 ∀N ≥ 1 ∀t ∈ [0, T ] ,

thus the family (X N
j )N>| j | is uniformly bounded, and by applying the same bound to (13), equicon-

tinuous. From Arzelà-Ascoli theorem, for every j ∈ J there exists a sequence (Nj, k)k ≥ 1 such that
(X N j,k

j )k converges uniformly to a continuous function Xj. By a diagonal procedure we can modify the

extraction procedure and get a single sequence (Nk)k ≥ 1 such that for all j ∈ J, X Nk
j → X j uniformly.

Now we can pass to the limit as k → ∞ in the equation

X Nk
j = X0

j +
∫ t

0

[
−νd j X Nk

j (r ) + c j
(
X Nk

ȷ̄ (r )
)2 −

∑

i∈O j

ci X Nk
j (r )X Nk

i (r )
]
dr,

and prove that the functions Xj are continuously differentiable and satisfy system (7) with initial
condition X0

j . Continuation from an arbitrary bounded time interval to all t ≥ 0 is obvious. Finally,
X is a positive l2 solution by Proposition 3.1. !

We conclude the section on elementary results by collecting a useful estimate on the energy
transfer and a statement clarifying that all components are strictly positive for t > 0.

Proposition 3.4. The following properties hold:

1. If f = 0, for all n ≥ − 1

2
∫ +∞

0

∑

|k|=n+1

ck X2
k̄ (s)Xk(s)ds ≤ En(0); (14)

2. if exists M ≥ 0 such that X0
j > 0 for all j with |j| = M, then Xj(t) > 0 for every j with |j| ≥ M

and all t > 0.

Proof. 1. If n = − 1 the inequality is trivially true. If n ≥ 0, by integrating Eq. (9) with f = 0,
we find that

En(t) + 2ν

∫ t

0

∑

| j |≤n

d j X2
j (s)ds = En(0) − 2

∫ t

0

∑

|k|=n+1

ck X2
k̄ (s)Xk(s)ds.

The left hand side is non-negative for all t, so taking the limit for t → ∞ in the right hand side
completes the proof.

2. For |j| = M we have from (11)

X j (t) ≥ X0
j e

−
∫ t

0 (νd j +
∑

k ck Xk (r ))dr > 0.

Now suppose that for some j ∈ J\{0}, X ȷ̄ (t) > 0 for every t > 0. Then again by (11),

X j (t) ≥
∫ t

0
c j X2

ȷ̄ (s)e−
∫ t

s (νd j +
∑

k∈O j
ck Xk (r ))dr ds > 0.

By induction on |j| ≥ M we have our thesis. !
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IV. RELATIONSHIP WITH CLASSIC DYADIC MODEL

Recall the differential equations for the tree and classic dyadic models.
⎧
⎪⎨

⎪⎩

X 0̄(t) ≡ f
d
dt

X j = −νd j X j + c j X2
ȷ̄ −

∑

k∈O j

ck X j Xk, ∀ j ∈ J, (15)

⎧
⎨

⎩

Y−1(t) ≡ f
d
dt

Yn = −νlnYn + knY 2
n−1 − kn+1YnYn+1, ∀n ≥ 0,

(16)

where f ≥ 0, ν ≥ 0 and for all n ∈ N and j ∈ J,

c j = 2α| j |, kn = 2βn, d j = 2γ | j |, ln = 2γ n.

Again we assume that ♯O j = N∗ = 22α̃ for all j ∈ J, but we stress that for this section this is a
fundamental hypothesis and not a technical one.

The following proposition shows that examples of solutions of the tree dyadic model (15) can
be obtained by lifting the solutions of the classic dyadic model (16).

Proposition 4.1. If Y is a componentwise (resp. l2) solution of (16), then X j (t) := 2−(| j |+2)α̃Y| j |(t)
is a componentwise (resp. l2) solution of (15) with α = β + α̃. If Y is positive, so is X.

Proof. A direct computation shows that X is a componentwise solution. Then observe that, for
any n ≥ 0,

∑

| j |=n

X2
j = 22α̃n X2

j = 22α̃n2−(2n+4)α̃Y 2
n = 24α̃Y 2

n ,

so

En =
∑

| j |≤n

X2
j =

∑

k≤n

24α̃Y 2
k ≤ 24α̃∥Y∥2.

Positivity is obvious. !

Remark 1. If we consider α fixed, since β = α − α̃, for small values of N∗ we will have larger
values of β, and the other way around. That is to say, the less offspring every node has, the faster
the dynamics will be.

Remark 2. Let us stress that β > 0 when N∗ < 22α . Since the behavior of the solutions of (16)
is strongly related to the sign of β, then the behavior of the solutions of (15) is strongly connected
to the sign of α − α̃. For example, in the classic dyadic there is anomalous dissipation if and only if
β > 0, and hence in the tree dyadic there will be lifted solutions with anomalous dissipation when
α > α̃ and lifted solutions which are conservative when α ≤ α̃.

V. ANOMALOUS DISSIPATION AND SELF-SIMILAR SOLUTIONS IN THE INVISCID
AND UNFORCED CASE

Throughout this section we will consider system (7) in its unforced (f = 0) and inviscid (ν = 0)
version.

⎧
⎪⎪⎨

⎪⎪⎩

X 0̄(t) ≡ 0

d
dt

X j = c j X2
ȷ̄ −

∑

k∈O j

ck X j Xk, ∀ j ∈ J.
(17)

Equation (9), that is the derivative of energy up to the nth generation becomes

d
dt

En(t) = −2
∑

|k|=n+1

ck X2
k̄ (t)Xk(t), n ≥ 0.
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Since only the border term survives, one would expect it to vanish in the limit n → ∞. This can
be rigorously proven only if the solution lives in a sufficiently regular space, that is to say that X2

j
goes fast to zero as |j| → ∞. For the classic dyadic Kiselev and Zlatoš11 proved that solutions that
are regular in the beginning, stay regular for some time but then lose regularity in finite time. Thus
our analysis is not restricted to regular solutions, and in fact we will prove in this section that for
sufficiently large times all solutions dissipate energy.

Let us give some definitions. Let us denote by γ j the energy at time 0 in the subtree Tj rooted
in j plus all the energy flowing in j from the upper generations,

γ j :=
∑

k∈Tj

X2
k (0) +

∫ ∞

0
2c j X j X2

ȷ̄ ds.

Let 0 ≤ s < t and define for all j ∈ J

m j := inf
r∈[s,t]

X j (r ) .

Lemma 5.1. Let X be a positive l2 solution of system (17). The following inequalities hold for
all n ≥ 0.

En(t) − En−1(s) ≤
∑

| j |=n m2
j ≤ E(0),

∑
| j |=n γ j ≤ E(0),

∑
k∈Tj

Xk(r )2 ≤ γ j , ∀r ≥ 0.

Proof. The upper bound is obvious, since
∑

| j |=n

m2
j ≤

∑

| j |=n

X j (s)2 ≤ En(s) ≤ E(0),

where we used Proposition 3.2. Now let j ∈ J. From (17) we have for the differential of X2
j

d
dt

X2
j = 2c j X2

ȷ̄ X j −
∑

k∈O j

2ck X2
j Xk ,

Let r ∈ [s, t] and integrate on [s, r], yielding

X2
j (r ) = X2

j (s) +
∫ r

s
2c j X2

ȷ̄ (τ )X j (τ )dτ −
∑

k∈O j

∫ r

s
2ck X2

j (τ )Xk(τ )dτ.

Choosing now r ∈ argmin[s,t] X j , we get

m2
j ≥ X2

j (s) −
∑

k∈O j

∫ t

s
2ck X2

k̄ (τ )Xk(τ )dτ.

By summation over all nodes j with |j| = n we have

∑

| j |=n

m2
j ≥

∑

| j |=n

X2
j (s) −

∫ t

s

∑

|k|=n+1

2ck X2
k̄ (τ )Xk(τ )dτ.

Finally, we apply for m = n − 1, n the following integral form of (9) to get the first part of the
thesis. (Even if n = 0 and m = − 1 this is true, trivially.)

Em(t) − Em(s) = −
∫ t

s

∑

| j |=m+1

2c j X2
ȷ̄ (τ )X j (τ )dτ.

We turn to the second part. Sum γ j on every j with |j| = n to get

∑

| j |=n

γ j =
∑

|k|≥n

X2
k (0) +

∫ ∞

0
2

∑

| j |=n

c j X2
ȷ̄ X j ds,
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by (14) the integral term is bounded above by En−1(0), so
∑

| j |=n

γ j ≤
∑

|k|≥n

X2
k (0) + En−1(0) =

∑

k∈J

X2
k (0) = E(0).

Finally, the third part. Let r ≥ 0. By computing the time derivative of
∑

k∈Tj , |k|≤n X2
k which is

analogous to (9), dropping the border term and integrating on [0, r], we have,
∑

k∈Tj
|k|≤n

Xk(r )2 ≤
∑

k∈Tj
|k|≤n

Xk(0)2 + 2
∫ r

0
2c j X j X2

ȷ̄ du ≤ γ j .

Now, let n → ∞ to conclude. !

The following statement will be used in the proof of Lemma 5.3.

Lemma 5.2. For every h > 0 and λ > 0 the following inequality holds:
∫ h

0

∫ s

0
e−λ(s−r )dr ds ≥ h

2λ

(
1 − e−λ h

2

)
.

Proof.
∫ h

0

∫ s

0
e−λ(s−r )dr ds ≥

∫ h

h
2

∫ s

s− h
2

e−λ(s−r )dr ds = h
2λ

(
1 − e−λ h

2

)
. !

Lemma 5.3. Assume that α > α̃, where 22α̃ = N∗ = ♯O j is the constant number of children for
every node. Let X be a positive l2 solution of (17). Let (δn)n ≥ 0 be a sequence of positive numbers
such that

∑
nδn and

∑
n δ−2

n 2−(α−α̃)n are both finite. Then there exists a sequence of positive numbers
(hn)n ≥ 0 such that

∑
nhn < ∞ and for all n ≥ 0 for all t > 0

En(t + hn) − En−1(t) ≤ δn. (18)

In particular, for every M ≥ 0,

E
( ∞∑

n=M

hn

)
≤ EM−1(0) +

∞∑

n=M

δn. (19)

The sequence

hn = E(0)3/2

δ2
n

2−(α−α̃)n+3/2, (20)

satisfies (18) and (19).

Proof. Fix n ≥ 0 and positive real numbers t, hn. For all j of generation n, let
m j := infr∈[t,t+hn ] X j (r ). We claim that if hn is defined by (20), then

∑
| j |=n m2

j ≤ δn , which to-
gether with Lemma 5.1 completes the proof of (18).

We prove the claim by contradiction: suppose that
∑

| j |=n m2
j > δn . We will find a contradiction

in the estimates on E(0). By Proposition 3.4

E(0) ≥ 2
∫ hn

0

∑

| j |=n

∑

k∈O j

ck Xk(t + s)X2
j (t + s)ds.

We have a lower bound for Xj, namely mj, but we need one also for Xk.
For all j ∈ J, let , j := max(γ j , E(0)N−| j |

∗ ). From Lemma 5.1 we have
∑

| j |=n γ j ≤ E(0) and
hence

∑
| j |=n , j ≤ 2E(0); by the same lemma, for all i ∈ Tj we have X2

i ≤ γ j ≤ , j uniformly in
time, so for all k ∈ O j ,

Ẋk = ck X2
j −

∑

i∈Ok

ci Xi Xk ≥ ckm2
j − λ j Xk,
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where λ j = N∗2nα+2α
√

, j . This gives

Xk(t + s) ≥ ckm2
j

∫ s

0
e−λ j (s−r )dr.

We can write

E(0) ≥ 2
∑

| j |=n

m4
j

∫ hn

0

∫ s

0
e−λ j (s−r )drds

∑

k∈O j

c2
k ,

and by Lemma 5.2 we have

E(0) ≥ 2
∑

| j |=n

m4
j

hn

2λ j

(
1 − e−λ j hn/2) ∑

k∈O j

c2
k .

Let us focus on the exponential. We substitute (20) and make use of the inequality , j ≥ E(0)N−n
∗

= E(0)2−2α̃n ,

λ j hn

2
= N∗2nα+2α

√
, j

√
2E(0)3/2

2(α−α̃)nδ2
n

≥ E(0)2

δ2
n

√
2.

By the hypothesis that
∑

| j |=n m2
j > δn and Lemma 5.1, we know that δn < E(0) we get

1 − e−λ j hn/2 > 1/2. We obtain

E(0) >
∑

| j |=n

m4
j

hn

2λ j

∑

k∈O j

c2
k =

√
2E(0)3/2

2−α̃nδ2
n

∑

| j |=n

m4
j√

, j
. (21)

Now we can use Cauchy-Schwarz and the AM-QM inequalities to get

∑

| j |=n

m4
j√

, j
≥

(∑
| j |=n m2

j

)2

∑
| j |=n

√
, j

≥

(∑
| j |=n m2

j

)2

√
N n

∗
∑

| j |=n , j

,

again by the hypothesis that
∑

| j |=n m2
j > δn and thanks to

∑
| j |=n , j ≤ 2E(0),

∑

| j |=n

m4
j√

, j
>

δ2
n√

2E(0)2α̃n
,

so that the right-hand side of (21) becomes larger than E(0), which is impossible.
We turn to the second part. Let M ≥ 0 and define the following sequence (tn)n ≥ M − 1 by tM − 1

= 0 and tn = tn − 1 + hn. By (18) with t = tn − 1 we get

En(tn) − En−1(tn−1) ≤ δn.

We sum for n from M to N, yielding

EN (tN ) − EM−1(0) ≤
N∑

n=M

δn,

which, due to monotonicity of EN , yields

EN

( ∞∑

n=M

hn

)
≤ EN (tN ) ≤ EM−1(0) +

N∑

n=M

δn.

Now we let N go to infinity to get the thesis. !

Remark 3. It is easy to prove this result also if relaxing the condition on the number of children
from constant number to 1 ≤ ♯O j ≤ N∗. One has to change slightly the definition of hn, which
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becomes

hn = E(0)3/2

δ2
n

2−(α−α̃)n+2α̃+3/2.

Theorem 5.4. Assume that α > α̃, where 22α̃ = N∗ = ♯O j is the constant number of children
for every node. Then for every ε > 0 and η > 0 there exists some T > 0 such that for all positive l2

solution of (17) with initial energy E(0) ≤ η one has E(T ) ≤ ε. In particular

lim
t→∞

E(t) = 0,

i.e., there is anomalous dissipation.

Proof. Given ε > 0 let us take a sequence of positive numbers (δn)n ≥ 0 such that
∞∑

n=o

δn = ε and
∞∑

n=o

1
2(α−α̃)nδ2

n
< +∞.

This is possible, for example, taking δn = ε(1 − 2−(α−α̃)/3)2−(α−α̃)n/3. Now Lemma 5.3 applies, so
by the definition of hn given in (20)

hn ≤ 2
√

2η3/2

2(α−α̃)nδ2
n

and
∞∑

n=0

hn ≤ 2
√

2η3/2

(1 − 2−(α−α̃)/3)3
=: T .

Take M = 0 in (19) and by monotonicity of energy E(T ) ≤ ε. !

We are finally able to prove Theorem 2.1, which is a consequence of Theorem 5.4 with a
rescaling argument based on the fact that the nonlinearity is homogeneous of degree two.

Proof of Theorem 2.1. By Theorem 5.4 for every 0 < ρ < 1 there exists τ > 0 depending only
on ρ and E(0), such that E(τ ) ≤ ρ2E(0). We will apply this bound to many different solutions, all of
which have energy at time zero not above E(0).

Let ϑ = 1/ρ > 1. We can define the sequence

X (0) = X

X (n)(t) = ϑ X (n−1)(ϑ t + τ ) = ϑn X
(

ϑnt + ϑn − 1
ϑ − 1

τ

)
, n ≥ 1.

It is immediate to verify that all of these satisfy the system of Eq. (17), but with possibly different
initial conditions. We have

∑

j∈J

(
X (n)

j (0)
)2 = ϑ2

∑

j∈J

(
X (n−1)

j (τ )
)2

.

Recalling the definition of τ , the above equation allows to prove by induction on n that for all n ≥ 0
one has

∑
j∈J

(
X (n)

j (0)
)2 ≤ E(0). For all n ≥ 0, let

tn = ϑn − 1
ϑ − 1

τ.

Then by the definition of X(n), we have proved E(tn)2 ≤ ϑ−2nE (0). Since ϑ > 1, tn↑∞, hence given
t > 0 there is n such that tn ≤ t < tn +1. That means we have by monotonicity

E(t) ≤ ϑ−2nE(0) and
1

t2
n+1

<
1
t2

.

Finally, by definition tn +1 < τϑn + 1/(ϑ − 1) = ϑnτ /(1 − ρ), so for C = E(0)
(
τ/(1 − ρ)

)2 we get

E(t) ≤ ϑ−2nE (0) <
C

t2
n+1

<
C
t2

.
!
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A. Self-similar solutions

We devote the end of this section to prove the existence of self-similar solutions. We call self-
similar any solution X of system (17) of the form Xj(t) = ajϕ(t), for all j and all t ≥ 0. By substituting
this formula inside (17) it is easy to show that any such solution must be of the form

X j (t) = a j

t − t0
,

for some t0 < 0. The condition on the coefficients aj is much more complicated
⎧
⎪⎨

⎪⎩

a0̄ = 0

a j + c j a2
ȷ̄ =

∑

k∈O j

cka j ak, ∀ j ∈ J,

so it is convenient to take advantage of previous results for the classic dyadic, for which existence
and some kind of uniqueness of self-similar solution are known.2 We obtain the following statement.

Proposition 5.5. Given t0 < 0 there exists at least one self-similar positive l2 solution of (17)
with a0 > 0.

Proof. We use Theorem 10 in Barbato, Flandoli and Morandin2 which, translated in the notation
of this paper, states that there exists a unique sequence of non-negative real numbers (bn)n ≥ 0 such
that b0 > 0 and Yn := bn/(t − t0) is a positive l2 solution of the unforced inviscid classic dyadic
(8). Thanks to Proposition 4.1 this solution may be lifted to a solution of the inviscid tree dyadic (7)
with the required features. !

Remark 4. For the tree dyadic model self-similar solutions are many. In the standard dyadic
case2 it is shown that given t0 < 0 and n0 ≥ 1 there is only one l2 self-similar solution such that
n0 is the index of the first non-zero coefficient. If n0 > 1, this solution can be lifted on the tree to
a self-similar solution which is zero on the first n0 − 1 generations. We can then define a new
self-similar solution which is equal to this one on one of the subtrees starting at generation n0 and
zero everywhere else. Finally, we can combine many of these solutions, even with different n0, as
long as t0 is the same for all and their subtrees do not overlap.

VI. STATIONARY SOLUTIONS

In this section we will study the stationary solutions for both the classic dyadic model (16) and
the tree dyadic one (15). We will in particular restrict ourselves to study positive l2 solutions which
are time independent. Proposition 4.1 allows us to link the two models, in that for any solution of the
classic dyadic model one can build a solution of the tree dyadic model. Thus is it enough to prove
existence for the classic dyadic and uniqueness for the tree dyadic.

One purpose of this section is to prove the existence and uniqueness of the stationary solution
on the tree dyadic model and extend existence and uniqueness results for the dyadic model.4, 5

Cheskidov, Friedlander and Pavlović proved5 that the inviscid dyadic model with β = 5/2 has a
unique stationary solution and that such a solution is a global attractor.6 One should notice that these
results on the dyadic model are stronger than what can be proven for more realistic shell models
such as Sabra (see for example Constantin, Levant and Titi7).

For the viscous dyadic model, when β ∈ (3/2, 5/2] the stationary solution is unique and is a
global attractor.4 Nevertheless it is possible to explicitly provide examples of non-uniqueness of
the stationary solution, dropping the Yn ≥ 0 condition.3 In this paper we prove the existence and
uniqueness of stationary solutions in l2 for every positive value of the β and γ parameters both
in viscous and inviscid dyadic models. This will provide a corresponding result of existence and
uniqueness for α > α̃ and γ > 0 in the tree dyadic model. Furthermore in the inviscid case we will
explicitly provide those solutions (Proposition 6.1), while in the viscous case we will prove that the
stationary solutions are regular if and only if N∗ is big enough, N∗ ≥ 22α − 3γ or the forcing term f
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is small. For f = 0 the unique (non-negative) stationary solution is trivially the null one, so in this
section we assume f > 0.

A. Stationary solutions in the inviscid case: Existence

In the inviscid case, the differential equation is very simple, so it is easy to find stationary
solutions in the class of exponential functions. One immediately finds the following result.

Proposition 6.1. Consider the tree dyadic model (15) and the classic dyadic model (16), both
inviscid (ν = 0). Let 22α̃ = N∗ = ♯O j be constant for all j ∈ J. Then:

1. the sequence of constant functions Yn(t) := f2− (n + 1)β/3 is a positive l2 solution of the system
(16).

2. the family of constant functions X j (t) := f 2−(2α̃+α)(| j |+1)/3 for j ∈ J is a positive componentwise
solution of system (15); it is also an l2 solution iff α > α̃;

Proof. A direct computation shows that X and Y are componentwise solutions. To show that Y is
l2 observe that, since β > 0, ∥Y∥ < ∞. To check whether X is l2 compute the energy by generations;
we have for n ≥ 0,

En − En−1 =
∑

| j |=n

X2
j = 22α̃n f 22− n+1

3 (4α̃+2α) = C2
2
3 (α̃−α)n,

with C not depending on n. Hence X is l2 if and only if α − α̃ > 0. !

B. Stationary solutions in the viscous case: Existence

In the viscous case, the recurrence relation coming from the definition of stationary solution
is more complex, and has no solutions in the class of exponential functions. Anyway, by careful
control of the recurrence behavior, we are able to prove that a stationary solution exists, and also to
distinguish if it is conservative or has anomalous dissipation.

Definition 4. We say that a stationary positive l2 solution X is regular if for all h ∈ R
∑

j∈J

[2h| j | X j ]2 < ∞. (22)

Theorem 6.2. There exists a stationary positive l2 solution of the classic dyadic model (16)
when ν > 0.

Theorem 6.3. Consider any stationary positive l2 solution of the classic dyadic model (16) with
ν > 0.

1. If 3γ ≥ 2β then it is regular and conservative.
2. If 3γ < 2β then there exists some C > 0 such that if f > C the stationary solution is not regular

and there is anomalous dissipation.

Before we go into the proofs of these theorems, let us introduce a useful change of variables,
that will come handy in both proofs. If Y is a stationary solution of (16) then, for every n ≥ 0, we
have

−ν2γ nYn + 2βnY 2
n−1 − 2βn+βYnYn+1 = 0.

This equation can be made into a recurrence, and the change of variables that best simplifies its form
is

Zn := ν−12
β
3 (n+2)Yn. (23)
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Since the stationary solution in the inviscid case decreases like 2− nβ/3, the exponent’s rate nβ/3 is
in some sense expected. The system of differential equations for Z becomes

⎧
⎪⎨

⎪⎩

Z−1 = ν−12
β
3 f =: g

Zn+1 =
Z2

n−1

Zn
− 2(γ− 2

3 β)n ∀n ≥ 0.
(24)

Proof of Theorem 6.2. Let us consider the change of variable (23), we have to show that the
system (24) has a positive solution for which Y is l2. System (24) gives a recursion which, given
Z− 1 = g and Z0 allows to construct the sequence (Zn)n ≥ − 1 in a unique way. Any such sequence
will give a stationary componentwise solution. What we want to prove is that there is some value
of Z0 such that this turn out to be a positive l2 solution. Let we exploit the dependence from Z0 by
defining a sequence of real functions

Z−1(a) = g,

Z0(a) = a,

Zn+1(a) = Z2
n−1(a)
Zn (a) − 2(γ− 2

3 β)n, n ≥ 0.

(25)

Now we construct a descending sequence of open real intervals (In)n ≥ 0 such that (0, ∞)
= I0 ⊃ I1 ⊃ I2 ⊃ . . . and such that Zn is continuous and bijective from In to (0, ∞), with Zn

strictly increasing for even n and strictly decreasing for odd n.
Let I0 = (0, ∞). Z0(a) is monotone increasing, continuous and bijective from I0 to (0, ∞).
By (25) we have that Z1(a) = g/a2 − 2(γ − 2β/3) is monotone decreasing, continuous and

bijective from I0 to ( − 2(γ − 2β/3), ∞) so there exists a limited interval (b1, c1) := I1 ⊂ I0 such that
Z1(a) is monotone decreasing, continuous and bijective from I1 to (0, ∞).

Now suppose we already proved for m ≤ n that Zm(a) is continuous and bijective from Im to
(0, ∞), with Zm strictly increasing for even m and strictly decreasing for odd m.

Suppose that n is odd (resp. even). Then by (25) Zn +1(a) is monotone increasing (resp. decreas-
ing), continuous and bijective from In to ( − 2(γ − 2β/3)n, ∞) so there exists an interval (bn +1, cn +1)
:= In +1 ⊂ In such that Zn +1(a) is monotone increasing (resp. decreasing), continuous and bijective
from In +1 to (0, ∞).

Observe moreover that the borders of these intervals are not definitively constant, since for all
n, bn +2 ̸= bn and cn +2 ̸= cn. Hence if we define b = limnbn and c = limncn, it is clear that for all n,
bn < b ≤ c < cn, that is the closed interval (possibly degenerate) [b, c] is contained in every In.

Now we choose any ā ∈ [b, c] and we know that the sequence Zn(ā) is strictly positive. We are
left to prove that it is also l2. To this end let Yn be any stationary, positive componentwise solution.
Let En =

∑n
k=0 Y 2

k in analogy with the definition for the tree model. We compute the derivative

0 = d
dt

En(t) = −ν
∑

k≤n

lkY 2
k + f 2Y0 − kn+1Y 2

n Yn+1,

hence, since lk ≥ 1, En ≤
∑

k≤n lkY 2
k ≤ ν−1 f 2Y0 for all n. !

Proof of Theorem 6.3. Let us consider again system (24) and let µ := γ − 2β/3. If µ > 0 the
corrective term goes to infinity, while if µ < 0 it goes to zero, so we expect two different behaviors
in the two cases. We will show that in the first case Zn goes to zero super-exponentially for n → ∞,
while in the second one Zn ↓ z and z > 0 if g is large enough.

Case µ := γ − 2β/3 ≥ 0. From (24) we get

2µn Z2
n = Z2

n−1 Zn − Z2
n Zn+1.

Sum over n to get
∑

k≤n

2µk Z2
k = g2 Z0 − Z2

n Zn+1. (26)
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Since µ ≥ 0, by positivity of Z, we have

lim
n→∞

Zn = 0. (27)

From (24) and Zn +1 > 0 we get Zn < Z2
n−1 and since by (27) Zn̄ =: λ < 1 for some n̄, by iterating

the above equation we get for all m ≥ 0

Zn̄+m ≤ λ2m
,

that is to say that Zn goes to zero for n going to infinity like the exponential of an exponential, so for
every s > 0 we have

∑

n

(
2sn Zn

)2
< +∞ and

∑

n

(
2snYn

)2
< +∞.

It is now clear that limn kn+1Y 2
n Yn+1 = 0, so Y is conservative by Definition 3.

Case µ := γ − 2β/3 < 0. The first step is to prove that Zn is non-increasing in n. Suppose by
contradiction that for some n we have Zn/Zn − 1 = λ > 1, then we claim that Zn +2/Zn +1 > λ4 > 1
and hence by induction Zn+2m/Zn+2m−1 > λ4m

. By (24) for all k ≥ 0

Zk+1 <
Z2

k−1

Zk
= Zk−1

Zk
Zk−1.

This can be used iteratively together with the claim to show that

Zn+2m+1 =
Z2

n+2m−1

Zn+2m
− 2µ(n+2m)

<
Zn+2m−1

Zn+2m

Zn+2m−3

Zn+2m−2
. . .

Zn−1

Zn
Zn−1 − 2µ(n+2m)

< Zn−1λ
−4m − 2µ(n+2m),

so we get a contradiction because Zn +2m + 1 < 0 for some m.
We prove the claim. Let x = 2µn Zn/Z2

n−1 = 2µnλ2/Zn . Observe that

Zn+1 =
Z2

n−1

Zn
− 2µn = 2µn

x
(1 − x). (28)

We divide by Zn (and we notice that x < 1),

Zn+1

Zn
= λ−2(1 − x). (29)

Now

Zn+2 = Z2
n

Zn+1
− 2µ(n+1) >

Z2
n

Zn+1
− 2µn,

so dividing by Zn +1 and substituting (29) and (28), we get

Zn+2

Zn+1
> λ4(1 − x)−2 − 2µn

Zn+1
>

λ4

1 − x
− x

1 − x
.

Since λ > 1 > x > 0, it is now clear that (λ4 − x)/(1 − x) > λ4. So we have proven the claim and
showed that {Zn}n ≥ 0 is non-increasing in n.

The last step is to show that for g large enough Zn ↓ z > 0. By rearranging (26) and recalling
what we proved above,

Z3
n ≥ Z2

n Zn+1 = g2 Z0 −
n∑

k=0

2µk Z2
k ≥ g2 Z0 − gZ0

n∑

k=0

2µk > gZ0

(
g − 1

1 − 2µ

)
,

so if g > 1/(1 − 2µ) then Zn converges to a strictly positive constant z.
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To prove anomalous dissipation we compute the limit

lim
n→∞

kn+1Y 2
n Yn+1 = lim

n→∞
2βn+βν32−βn−7β/3 Z2

n Zn+1 = 2−4β/3ν3z3 > 0.

So by Definition 3 there is anomalous dissipation. !

C. Stationary solutions in the inviscid and viscous case: Uniqueness

We prove uniqueness in the class of stationary positive l2 solutions for the tree dyadic model.
The result also holds for the classic dyadic, because it is a particular case of the former, or by virtue
of the lifting Proposition 4.1.

Theorem 6.4. Consider the tree dyadic model (7) and assume that α > α̃, where 22α̃ = N∗
= ♯O j is the constant number of children for every node. Then there exists a unique stationary
positive l2 solution.

Proof. Existence is a consequence of Proposition 6.1 in the inviscid case (ν = 0) and Proposition
4.1 and Theorem 6.2 in the viscous case.

To prove uniqueness we apply a change of variables similar to (23)

Z j := 2
(2+| j |)α

3 X j , ∀ j ∈ J. (30)

Then from (7) we have

d
dt

Z j = −ν2γ | j | Z j + 2
2
3 α| j | Z2

ȷ̄ −
∑

k∈O j

2
2
3 α| j | Z j Zk, (31)

so if X is a stationary solution, Z must satisfy
⎧
⎪⎪⎨

⎪⎪⎩

Z 0̄ = f 2α/3

∑

k∈O j

Zk =
Z2

ȷ̄

Z j
− ν2(γ− 2

3 α)| j |.
(32)

Moreover observe that the condition X ∈ l2 is equivalent to
∑

j∈J

(
2− α

3 | j | Z j
)2

< ∞. (33)

Assume by contradiction that there are two different stationary solutions of (32) which we
denote by W = {W j } j∈J and Z = {Zj}j ∈ J. Let n be the smallest integer such that there exist j1 ∈ J
with |j1| = n and W j1 ̸= Z j1 . Without loss of generality we can take W j1/Z j1 =: λ > 1.

Let j0 = k0 = ȷ̄1 and k1 = j1. Extend these to two sequences of indices (jm)m≥0 and (km)m ≥ 0

with jm ∈ O jm−1 and km ∈ Okm−1 , picking alternatively among those that maximize or minimize W jm
and Zkm .

More precisely for m ≥ 2 choose jm ∈ O jm−1 and km ∈ Okm−1 in such a way that if m is even

W jm = min{Wi : i ∈ O jm−1} Zkm = max{Zi : i ∈ Okm−1},

and if m is odd

W jm = max{Wi : i ∈ O jm−1} Zkm = min{Zi : i ∈ Okm−1}.

The idea supporting the definition of these sequences is to choose the indices so that

W j1 < Zk1 , W j2 > Zk2 , W j3 < Zk3 , . . .
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We will now prove that, with our construction, those inequalities hold and, moreover, the ratio
between Wm and Zm grows according to

Zkm

W jm
≥

W jm−1

Zkm−1

Z2
km−2

W 2
jm−2

> λ2m−2 ∀ m ≥ 2 even (34)

W jm

Zkm

≥
Zkm−1

W jm−1

W 2
jm−2

Z2
km−2

> λ2m−2 ∀ m ≥ 3 odd. (35)

We prove inequalities (34) and (35) by induction on m ≥ 2. First note that for m = 0 and m = 1,

Zk0

W j0
= 1 and

W j1

Zk1

= λ. (36)

Now we proceed by induction. Let m ≥ 2 even. By the definition of jm, km and by (32) we get

W jm = min
i∈O jm−1

Wi ≤ N−1
∗

∑

i∈O jm−1

Wi = N−1
∗

[W 2
jm−2

W jm−1

− ν2(γ− 2
3 α)(n+m−2)

]
,

Zkm = max
i∈Okm−1

Zi ≥ N−1
∗

∑

i∈Okm−1

Zi = N−1
∗

[ Z2
km−2

Zkm−1

− ν2(γ− 2
3 α)(n+m−2)

]
. (37)

By (36) when m = 2 or by inductive hypothesis (34) and (35) when m ≥ 4,

Z2
km−2

Zkm−1

/ W 2
jm−2

W jm−1

=
Z2

km−2

W 2
jm−2

W jm−1

Zkm−1

>

{
λ m = 2

(λ2m−4
)2λ2m−3 = λ2m−2

m ≥ 4,

so in particular the ratio is above 1 and, since for every a > b > c ≥ 0 we have (a − c)/(b − c)
≥ a/b, for m ≥ 2 even

Zkm

W jm
≥

Z2
km−2

Zkm−1
− ν2(γ− 2

3 α)(n+m−2)

W 2
jm−2

W jm−1
− ν2(γ− 2

3 α)(n+m−2)
≥

Z2
km−2

Zkm−1

/ W 2
jm−2

W jm−1

> λ2m−2
.

This concludes the inductive step for m even; for m odd the reasoning is analogous. We now want
to use inequalities (34) and (35) to get a contradiction. We will consider separately the cases ν > 0
and ν = 0.

Case ν > 0. Let m be even; by (34)

Z2
km−2

Zkm−1

> λ2m−2 W 2
jm−2

W jm−1

,

applying (32) to W jm−1 we have

W 2
jm−2

W jm−1

≥ ν2(γ− 2
3 α)(n+m−2),

so from (37), putting everything together, we get

Zkm ≥ N−1
∗

[ Z2
km−2

Zkm−1

− ν2(γ− 2
3 α)(n+m−2)

]
≥ N−1

∗ ν2(γ− 2
3 α)(n+m−2)(λ2m−2 − 1

)
.

For m even going to infinity we have obviously that Zkm grows as the exponential of an exponential,
which is in contradiction with (33).

Case ν = 0. If ν = 0 we already know one explicit stationary solution, by Proposition 6.1,
namely X j = f 2−(2α̃+α)(| j |+1)/3. By the usual change of variables (30) Vj = f 22(α−α̃(| j |−1))/3 is a
solution of (32) satisfying the regularity condition (33). Without loss of generality we can suppose
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that W j = Vj or Z j = Vj . In the first case, for m even

Zkm > W jm λ2m−2 = f 2
2
3 (α−α̃(n+m−2)λ2m−2

,

in the second case for m odd

W jm > Zkm λ2m−2 = f 2
2
3 (α−α̃(n+m−2)λ2m−2

.

In both cases the right-hand side grows super-exponentially as m → ∞ and this is in contradiction
with (33). !

Proof of Theorem 2.3. Existence and uniqueness are given by Theorem 6.4.
If ν = 0 the solution is identified by Proposition 6.1. If ν > 0, by uniqueness, the solution is the

lift of the stationary solution of the classic dyadic with β = α − α̃, as per Proposition 4.1. Then the
two regimes are proven in Theorem 6.3. !
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