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Abstract. We study the two-dimensional snake-like pattern that arises in phase separation of
alloys described by spinodal decomposition in the Cahn-Hilliard model. These are somewhat

universal patterns due to an overlay of eigenfunctions of the Laplacian with a similar wave-
number. Similar structures appear in other models like reaction-diffusion systems describing

animal coats’ patterns or vegetation patterns in desertification.

Our main result studies random functions given by cosine Fourier series with independent
Gaussian coefficients, that dominate the dynamics in the Cahn-Hilliard model. This is not a

cosine process, as the sum is taken over domains in Fourier space that not only grow and scale

with a parameter of order 1/ε, but also move to infinity. Moreover, the model under consideration
is neither stationary nor isotropic.

To study the pattern size of nodal domains we consider the density of zeros on any straight

line through the spatial domain. Using a theorem by Edelman and Kostlan and weighted ergodic
theorems that ensure the convergence of the moving sums, we show that the average distance of

zeros is asymptotically of order ε with a precisely given constant.

1. Introduction

We are interested in studying the patterns that form in the solution of the stochastic Cahn-
Hilliard equation during the separation process called spinodal decomposition. This equation,
originally introduced in [10] and [11], models the relative concentration of two components in an
alloy after quenching an initially homogeneous mixture.

Similar structures appear in many other situations. One example are the patterns in coats of
animals like zebras or tigers [31], where the underlying system is a reaction-diffusion system with a
Turing instability, as argued by Sander and Wanner in [36]. Another occurrence are the vegetation
patterns in desertification like the one observed for the tiger bush in Africa, as studied for example
by Siero, Siteur et al. in [37, 38]. In those papers they provide a mathematical study of the
emergence of pattern on an unbounded domain in the extended Klausmeier model, which is similar
to a reaction-diffusion system.

More similar to the Cahn-Hilliard setting is the Swift-Hohenberg equation (see for example the
review [14]). A result very much related to the result presented here is given by Blömker and
Maier-Paape in [5]. The main difference is that significantly fewer Fourier-modes determine the
pattern. The initial stage of hill formation of an example from surface growth [25, 32] also used in
ion sputtering [30] exhibits similar patterns, too. For details see the review article [9].

We believe that in all these examples the characteristic snake like pattern that appear initially is
mainly due to random composition of eigenfunctions of the Laplacian of similar wave-length, where
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the solution is described by a high dimensional strongly unstable space and the nonlinearity does
not yet play a significant role. In order to outline this idea, we focus in the following sections on
the stochastic Cahn-Hilliard equation on the square.

The main question that we want to answer rigorously in this paper is the following:

What is the characteristic thickness of the pattern (i.e. the snake-like structures)?

To address this, we count the (average) number of zeros on any straight line across the domain,
using a result given by Edelman and Kostlan in [19].

In the context of spinodal decomposition, a partial result was obtained by Maier-Paape and
Wanner in [28], where they tried to estimate the size of balls that would fit into the nodal domain.
A numerical computation of Betti numbers was performed in a series of papers [16,17,20].

Moreover the structure of nodal domains for Gaussian random fields is the topic of numerous re-
cent publications, which we do not try to survey in full detail. Under the assumption of stationarity
and isotropy there are asymptotic results on the numer of zeros along lines. See for example [18,27].
Minkowski-functionals are also treated (see [2] for a review), or [39] for references to asymptotic
results of the number of connected components. We comment on these approaches later on in more
detail.

1.1. The Cahn-Hilliard-Cook equation. The stochastic Cahn-Hilliard (or Cahn-Hilliard-Cook)
equation was introduced by Cook in [12] as a stochastic modification of the originally deterministic
model. It can be written as follows:

∂tu = −∆(ε2∆u+ f(u)) + ∂tW,

where the noise ∂tW is the derivative of a Q-Wiener process and f is the derivative of a double well
potential, where a standard choice is f(u) = u − u3, although the true nonlinearity introduced by
Cahn and Hilliard should exhibit logarithmic poles. We consider it on the square domain [0, 1]2,
with Neumann boundary conditions ∂νu = ∂nu∆u. In the physical model of alloys, u models the
rescaled concentration of one component, and the extreme values u = ±1 correspond to 0% and
100% concentration of the first component in any point.

The canonical initial condition for the phase separation in spinodal decomposition is a homoge-
neous concentration, constant on the whole domain. Due to the presence of the noise, after some
time the homogeneous picture is broken, decomposition starts playing its role and snake-like pattern
appear and persist, giving place to situations like the one simulated in Figure 1.

For the Cahn-Hilliard equation, one can consider the set of the most unstable eigenvalues, which
dominate the dynamics for a long time, also called “strongly unstable subspace”. This was studied
in the deterministic model by Maier-Paape and Wanner in [28,29] and later in the stochastic setting
by Blömker, Maier-Paape and Wanner in [6,8] (see also the review [7]). Later Sander and Wanner
extended in [35] the approximation result by linearisation to unexpectedly large radii.

It is interesting to notice that the evolution of pattern complexity in the spinodal decomposition
seems to be quite different in the deterministic model with random initial conditions or the stochastic
model with constant initial condition. In [20] it was shown numerically that the deterministic model
exhibits an unnatural increase of complexity during the separation process.

1.2. Linearised Cahn-Hilliard-Cook equation. While the Cahn-Hilliard equation is highly
nonlinear, its dynamics is reasonably well approximated by linearisation in the first phase up to un-
expectedly large radii. So let us discuss the linearised system (around the initial conditions u = m)
to motivate why we study random cosine series later.
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Figure 1. Pattern in Spinodal decomposition. The snake-like pattern appears as
the nodal domains in the level set of the average concentration 0.

Such linearised system can be written as

(1) ∂tu = Au+ ∂tW , u(0) = m,

where A = −ε2∆2−∆f ′(m) is a self-adjoint linear operator having a complete orthonormal system
of eigenfunctions. In our study we focus on the simple domain [0, 1]2 to avoid additional pattern
complexity introduced by a complicated shape of the boundary. The L2-basis on the square is made
of cosine functions

ek,l(x) = C cos(kπx) cos(lπy),

with Aek,l = λk,lek,l, where

λk,l = −ε2(k2 + l2)2π4 + (k2 + l2)π2f ′(m).

The solution to (1) is given by the stochastic convolution (see [15]), which simplifies here to a
cosine series with random coefficients.

WA(t) =
∑
k,l∈N

∫ t

0

e(t−s)A dW (s) =
∑
k,l∈N

αk,l

∫ t

0

e(t−s)λk,l dBk,l(s)ek,l,

where the Bk are independent Brownian motions and the Q-Wiener process W has a joint eigenbasis
with A such that Qek,l = α2

k,lek,l. This is a usual but quite strong assumption, that Q commutes
with A. As this is only our motivating example, for simplicity of presentation we do not enter this
discussion here. Some details and further references can be found in [7]. One also could think of
space-time white noise, where Q is the identity and thus all αk are one.

The strongly unstable subspace also called “strong subspace”, for short, is defined in Fourier
space by the wave-vectors

Rγε := {(k, l) ∈ N2 : λk,l > γλmax},
for some γ ∈ (0, 1) close to 1. In particular, in the two-dimensional setting we consider, the set Rγε is
a quarter-ring in the N2 lattice, containing O(ε−2) many wave-vectors corresponding to eigenvalues
close to the maximum. In the following we do not always specify the explicit dependence of Rγε on
γ and write Rε for short. Note that this set not only is growing in size for ε → 0, but also moves
as a whole towards infinity.

As already outlined, as long as the solution is not too large, the dynamics of the nonlinear Cahn-
Hilliard equation is dominated by the projection PRε of the stochastic convolution on the strong
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subspace. By this we mean the restriction of the Fourier series to wave-vectors in Rε, which is given
by

PRεWA(t) =
∑

m=(k,l)∈Rε

αmcmem, with cm =

∫ t

0

e(t−s)λm dBm(s) .

The random variables in the family {cm}m∈Rε are by definition independent centred Gaussians. By
Itō-isometry the variance of cm is

Ec2m =

∫ t

0

e(t−s)2λm ds =
1

2λm
(1− e−2λmt) ≈ 1

2λm
= O(ε2),

for times t ≈ ε2, which is close to the time-scale on which the first phase of spinodal decomposition
was described (see [6]), recalling that λm = O(ε−2), as it is of order of the largest eigenvalue.
Hence after linearisation and projection via PRε , the solution at a fixed time t seems to be well
approximated by

(2) u(x, y) ≈
∑

(k,l)∈Rε

ck,l · cos(kπx) cos(lπy),

where the ck,l are independent centred Gaussians with similar variances. This motivates the choice
of our toy model, which we will present in the next subsection, fixing for ease of presentation all
the variances of the coefficients to be the same.

1.3. Random Fourier Series. For the main part of the paper we consider the random function

(3) f(x, y) =
∑

(k,l)∈Rε

ck,l · cos(kπx) cos(lπy),

on the unit square x, y ∈ [0, 1]2, with the random coefficients ck,l being independent and identically
distributed centred Gaussian random variables. Later we discuss also the impact of other domains
in Fourier space, and not only the ring.

As we showed in the previous subsection, this is a simplified version (adding the identically
distributed assumption) of the approximation (2) of the stochastic Cahn-Hilliard equation. We
furthermore set the variance to be 1, i.e. ck,l ∼ N(0, 1). Doing this, we ignore both the time-
dependence and the inhomogeneity in the growth rates of the strong Fourier modes for the sake of
simplicity.

We define the subset Rε of strong modes, introduced above in the Cahn-Hilliard case, as

Rε = {(k, l) ∈ N2| α	 <
√

(kε)2 + (lε)2 < α⊕},
where the parameters are

α⊕ =

√
1 +
√

1− γ
2π2

and α	 =

√
1−
√

1− γ
2π2

with γ ∈ (0, 1).

Although the model (3) is somewhat reminiscent of the cosine-process (see e.g. [1]) or the random
wave model (see e.g. [18]), it is fundamentally different in the sense that it is neither stationary
nor isotropic. The law of the random function f might change under translation or rotation (as a
function extended to R2). It is an easy calculation to show that f(x) is a centered Gaussian with
covariance

Ef(x)f(y) = q(x+ y) + q(x− y) for q(z) =
1

2

∑
(k,l)∈Rε

cos(kπz) cos(lπz) .
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Figure 2. A simulation of the function f for γ = 0.8 with a plot of its zero-
level set. On the latter we picked some measurements of the pattern thickness.
Empirically, the average distance is 2πε. There is of course some variation and
there are areas and directions where the thickness is much higher or lower.

1.4. Pattern size. A simulation of (3) is presented in Figure 2. We can see the snake-like patterns
which are characteristic of the Cahn-Hilliard model. It appears from the numerical simulations
that the thickness of the structures is somewhat proportional to ε, as it is shown in Figure 2. Here
we propose to measure such thickness as the distance between consecutive zeros of the solution
considered on an arbitrary line through the domain, as exhibited in Figure 3.

This definition of a pattern size is intuitively the right one, as the dominating Fourier space Rε
consists of frequencies given by the wave-vector (k, l) ∈ Rε are all of the order of magnitude of
the wave-number |(k, l)| which is ε−1, and hence the average distance is conjectured to be of the
same order as C ′ε. Although this line of reasoning sounds very plausible, in the wave-vector the
individual frequencies can vary vastly. Moreover we will also see later in the main results, that when
counting zeros on arbitrary straight lines, only the scaling of the upper bound for the wave number
seems to be essential. Let us remark that for stationary isotropic Gaussian fields there are quite a
few publications on the average density of zeros along lines. They already date back to the work
of Rice [33] or Longuet-Higgins [27], [26]. See also Dennis [18]. Their approach yields qualitatively
similar results of a pattern size of order ε for models given by cosine series similar to (3), but none
of those methods seem to apply straightforwardly to (3), in that they usually assume isotropy and
stationarity.

A rigorous quantification of the geometry and topology of Cahn-Hilliard-Cook patterns is still an
open problem, though. The first attempt in the setting of spinodal decomposition by Maier-Paape
and Wanner in [28] yielded a partial result by bounding the radii of balls that would fit into the
nodal domain. That strategy worked completely only in the setting of [5], where the ring Rε was
still growing, but its size was smaller by a small power in ε.

As already mentioned in the previous subsection, recent numerical work on the number of compo-
nents in the pattern has been done, using rigorous methods from computational algebraic topology
to compute the Betti numbers, by Gameiro, Mischaikow and Wanner in [20] or similarly by Day,
Kalies, Mischaikow and Wanner in [16,17]. See also Guo and Hwang [23] and Sander and Tatum [34]
for additional results on the pattern in Cahn-Hilliard equation. Let us recall that Betti numbers
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Figure 3. Pattern size computation of the function f by inserting arbitrary lines
through the spatial domain [0, 1]2, where we represent the zero level sets for our
model in the Fourier domain R0.01. The zeros are order ε apart, on average.

for the two-dimensional nodal domain count the number of connected components and the number
of holes.

For general stationary or isotropic Gaussian fields there is also some work on Minkowski func-
tionals measuring the area and the number of connected components of the nodal domain as well
as the length of the set of level 0. See [2], for a collection of results. But even the precise constant
in the asymptotic behaviour of the number of connected components seems to be still an open
problem. See [39] for further references. None of these results seems to fit to (3) anyway, not just
because of the assumptions on isotropy and stationarity, but also because we are summing over
index sets that are not only growing, but also moving, and thus the asymptotic limit is not clear.

2. Main result

The question we aim to rigorously answer is:

Question 1. What is the characteristic thickness of the pattern (i.e. snake-like structures) in our
model f(x, y) defined in (3), on the unit square (x, y) ∈ [0, 1]2?
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In Figure 2 we can see that the average thickness appears to be 2πε, which we will prove to be
the case.

To address Question 1, we take the following approach: we draw a straight line across the unit
square and we count the (average) number of zeros of f on that segment, see Figure 3. Then we
divide the length of the segment by the number of zeros, obtaining the average distance between
zeros, that is the average pattern size. So the problem reduces to counting the number of zeros of
f , a random function, and a way of doing this is provided (in a more general form than reported
here) by Edelman and Kostlan in [19]:

Theorem 1 (Number of real zeros of a random function). Let v(x) = (f0(x), . . . , fn(x))T be
any collection of differentiable functions and c0, . . . , cn be independent and identically distributed
Gaussians centred in 0. Given the function

h(x) =

n∑
k=0

ck · fk(x),

the density of real zeros of h on an interval I is

δ(x) =
1

π

∥∥∥∥ d

dx
w(x)

∥∥∥∥
Rn
, where w(x) =

v(x)

‖v(x)‖Rn
.

The expected number of real zeros of h on I is then∫
I

δ(x) dx.

Theorem 1 holds for functions h on the real line, so we need to translate our two-dimensional
problem f to an equivalent one formulated on a line. In the following first we consider f constrained
on an arbitrary horizontal line at height t, which is

Lt = {(x, t) : x ∈ [0, 1]} for t ∈ [0, 1] .

We obtain a function of one variable and can apply Theorem 1. The generalization to arbitrary
(non-horizontal) lines as the ones depicted in Figure 3 is a straightforward generalization and is
discussed in Section 6 but the underlying idea does not change.

We need to introduce, in the spirit of Theorem 1, the following notation:

wt(x) =

 cos(kπx) cos(lπt)√∑
m,n∈Rε cos2(mπx) cos2(nπt)


(k,l)∈Rε

Wt(x) =

∥∥∥∥∥
(

d

dx
wt(x)

)
(k,l)∈Rε

∥∥∥∥∥
2

=
S3

S1
−
(
S2

S1

)2

,

where we have

S1 =
∑

m,n∈Rε

cos2(mπx) cos2(nπt)

S2 =
∑

m,n∈Rε

mπ cos(mπx) sin(mπx) cos2(nπt)

S3 =
∑

m,n∈Rε

m2π2 sin2(mπx) cos2(nπt).
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Theorem 2. For any γ ∈ (0, 1) and any horizontal line Lt for x, t ∈ (0, 1) the function Wt(x)
defined on Lt behaves asymptotically as (2ε)−2 for ε→ 0.

This means in particular that the average number of zeros is (2πε)−1, so the mean pattern size
(i.e. the average distance from any zero on any line to the next zero) is 2πε.

Remark 3. It is a remarkable fact that the result of Theorem 2 is independent of γ, because the
number of Fourier modes involved is much smaller for γ ≈ 1 than for γ ≈ 0. As we can see in
Figure 4, while the average asymptotic pattern size along lines remains the same, the domain with
higher γ looks more organized. The pattern seems to be “more regular” in some sense that our
method cannot detect.

Figure 4. Patterns generated in the Fourier domains R0.1
0.01 (left) and R0.9

0.01 (right)

For the proof of Theorem 2 we have to show that

lim
ε→0

ε
S2

S1
= 0 lim

ε→0
ε2
S3

S1
=

1

4
,

which we do in Lemma 12. The main idea behind the proof is that the sums Si, i = 1, 2, 3 can be
calculated in the limit via ergodic-type theorems.

Remark 4. From here onwards we fix x, t ∈ (0, 1), as the functions behave a little differently on
the borders. If we have t = 0, 1, we lose all the terms in t, that become identically 1, but we obtain
anyway the same result. The cases x = 0, 1 are not interesting, as the sin is always zero and thus
Wt(0) = Wt(1) = 0. But since we are looking for a density in terms of x, considering it in a single
point does not provide any useful information.

We will prove the main result in Section 3. After that in Section 4 we state the generalization
of the main result to general domains in Fourier space different from the quarter-ring and give a
few explicit examples that the main result is still true, although the patterns appearing might look
quite different.

As our result is a purely asymptotic one, we give a few examples in Section 4, where the number
of zeros agrees very well with the asymptotic prediction even for moderate ε. In Section 5, we
calculate numerically the functions δ(x) or Wt(x) for different values of ε. There (cf. also Figure 8)
we see already for moderate ε a fast and uniform convergence apart from any small layer at the
boundary.
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Finally in Section 6 we briefly discuss the case of sloped lines, which is a straightforward gen-
eralization, up to some additional technicalities. In the Appendix we show that we can establish
convergence in the rational case not treated in the proof, where we cannot use Birkhoff’s ergodic
theorem.

Let us comment on further generalizations that are within the scope of this approach. First we
can easily incorporate the case where the Gaussians are not all identically distributed. For instance
when the noise is diagonal w.r.t. the cosine modes, we just obtain additional weights in the main
result, coming from the eigenvalues of the covariance operator of the noise.

For different domains in Fourier space we always get the same order of zeros on any line through
the domain, but as we can see in Figure 7 the pattern might look quite different. Further char-
acterizations using Betti numbers as in [20], the Minkowski-functionals as in [2] or bounds on the
radii of balls in the nodal domains as in [28] might help to understand why the pattern in spinodal
decomposition is so special, as it appears to be quite regular, but not too symmetric.

Moreover, we believe that the result on the square [0, 1]2 is not that special, and with the
same method we should be able to treat three or higher dimensional problems. We have to stress
that there are technical problems extending the result to general domains, especially when the
boundary has a complicated geometry. In the proof for arbitrary domains we only need to replace
the cosines by the corresponding eigenfunctions. We should then use the ergodic theorem to recover
the convergence of the sums, but there is no guarantee that we can still do that, the main technical
problem being that we cannot easily isolate the wavenumber as an argument of the function.
Moreover, even if we could, the reduction of the two-dimensional Birkhoff ergodic theorem to
the one dimensional case is not always possible: we would need to prove a true two-dimensional
ergodic theorem, but such results are available in the literature.

3. Proof of the main result

The main result is on one hand based on an application of the theorem by Edelman and Kostlan.
On the other hand, for the asymptotic behaviour we need the convergence of series over growing
domains and the value of the limit. This is established by a two-dimensional weighted Birkhoff
ergodic theorem. There is a vast literature on ergodic theorems, and the theory is far developed,
so we do not attempt to give an overview. We just refer to [21,22] for ergodic theorems on abstract
groups or subgroups of lattices.

In the following we first state the one dimensional ergodic theorem, then give a direct prove for
a weighted ergodic theorem on arbitrary domains based on the analogous result on squares (see for
example [24]). We also give an elementary proof that the usual ergodic theorem implies (under some
conditions on the weights) a weighted version. Let us remark that the results we need are not in the
usual setting of weighted ergodic theorems, as for example in the theory of “good weights” (see for
example [3, 4]), because we allow the weights to grow and furthermore we change the normalising
constant in front of the sum.

3.1. Ergodic theorem. Given a σ-algebra, a transformation T is said to be uniquely ergodic if it
has a unique ergodic measure. The map z 7→ z+α on the unit circle is uniquely ergodic if and only
if α is irrational. In this case the unique ergodic measure is the Lebesgue measure.
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Theorem 5 (Birkhoff ergodic theorem, see [13]). Let (X,µ) be a probability space. If T is µ-
invariant and ergodic and g is integrable, then for a.e. z ∈ X

(4) lim
N→∞

1

N

N∑
k=1

g
(
T k (z)

)
=

∫
X

g(ζ) dµ(ζ).

Moreover if T is continuous and uniquely ergodic with measure µ and if g is continuous, then (4)
holds for all z ∈ X (instead of a.e.).

Remark 6. Having the result to hold for all initial conditions is of paramount importance, as we
require it to hold for some specific initial values. We will then look for uniquely ergodic transfor-
mations.

Remark 7. If X has dimension 2, Theorem 5 can be stated in the following form. See for example
Theorem 1.9 of [21] for an abstract version of this theorem on groups.

lim
N→∞

1

N2

∑
k,l∈{1,...,N}2

(g ◦ T (k,l))(y, v) =

∫∫
X

g dµ

Nevertheless, we do not need an abstract proof of a two-dimensional ergodic theorem, as all our
functions factor, so we can always reduce the ergodic theorem on the square directly to the one-
dimensional case.

3.2. The weighted averaging condition. First we draft a necessary requirement for averaged
weighted sums fulfilling an ergodic-type property on a rectangle-shaped summation domain. Then
we show that this can be used to obtain summation on more general domains. In our case this is a
quarter-ring-shaped subset in N2.

After that we show that the sums we need to calculate all fulfil this requirement.

Requirement (Weighted averaging condition). Let ([0, 1]d, λ) be the probability space with the
Lebesgue-measure λ. We say that (f, (am)) with f : [0, 1]d → R continuous and extended by peri-
odicity to Rd and am ∈ R fulfils the weighted averaging condition, if for every x0 ∈ [0, 1]d, every
α ∈ Nd and

QL =

d⊗
i=1

[1, . . . , αiL] ∩ Nd,

the following assumption holds:

1∑
m∈QL am

∑
m∈QL

am · f(m1x
0
1,m2x

0
2, . . . ,mdx

0
d)

L→∞−−−−→
∫
[0,1]d

f(x) dx .

For any open set M ⊂ Rd+ we define

ML = (L ·M) ∩ Nd,

the projection on the positive integers of its scaled version. We define

|ML|a =
∑

m∈ML

am

and denote by |ML| the cardinality of ML.
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Requirement (Generation of measures). We require that the weights a = (am) generate a measure
λa on Rd+ which is equivalent to the Lebesgue measure λ, i.e. there exists an α > 0 such that for

each set with open interior M ⊂ Rd+,

L−α|ML|a
L→∞−−−−→ λa(M).

Let us remark that in general, we could get the result for a weaker assumption on the measure λa
than being equivalent to Lebesgue measure. But as in all our examples this is the case, we assume
this for simplicity of presentation.

The trivial example for the generation of measures are the constant weights ak,l = 1 that generate
the Lebesgue measure with α = d.

Example 8. An example that is used frequently later is ak,l = k2 for dimension d = 2. Then by
Riemann sum approximation

L−4|ML|a = L−4
∑

(k,l)∈L·M

k2 =
∑

(k,l)∈M∩ 1
LN2

k2L−2
L→∞−−−−→

∫
M

ξ2 d(ξ, η) .

Thus the measure λ(k2,1) generated by the weight has a Lebesgue-density (ξ, η) 7→ ξ2. As the density
is up to the Lebesgue null set ξ = 0 everywhere strictly positive, the measures λ(k2,1) and λ are
equivalent.

Lemma 9. Let (f, (am)) fulfil the weighted averaging condition with the weights a generating a
measure. Then for any open measurable set S ⊂ Rd+

1

|SL|a

∑
m∈SL

am · f(m1x
0
1,m2x

0
2, . . . ,mdx

0
d)

L→∞−−−−→
∫
[0,1]d

f(x) dx .

Proof. We prove this in two steps. We call SL the summation domain. First we show that the
weighted averaging condition also holds for summation domains which are rectangles not aligned
at the origin (i.e. we shift the QL out of the origin). Second, we cover S by a disjoint union of such
rectangles and conclude the proof. Consider the scaled rectangle RL = ⊗di=1{βiL, . . . , γiL} ⊂ Nd.

Q1
L

Q2
L

Q3
L

RL

Figure 5. Construction of RL from rectangles with one vertex in the origin: RL =
Q3
L \ (Q1

L ∪Q2
L)

Then RL can be constructed by making unions and subtractions of origin-aligned rectangles of the
form QL as depicted in Figure 5. Thus

1

|RL|a

∑
m∈RL

am · f(m1x
0
1,m2x

0
2, . . . ,mdx

0
d)

L→∞−−−−→
∫
[0,1]d

f(x) dx,
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follows immediately.
For every approximation threshold δ > 0 there are finite sets of squares {Pi}i and {Oi}i fulfilling

Mδ =
⋃
i

Pi ⊂ S ⊂
⋃
i

Oi = Nδ.

with λ(Nδ \ S) ≤ λ(Nδ \ Mδ) < δ. Write (Mδ,L = Mδ · L) ∩ Nd, Pi,L = (Pi · L) ∩ Nd and
Nδ,L = (Nδ ·L)∩Nd analogously to S and SL. We write f(m�x0) = f(m1x

0
1,m2x

0
2, . . . ,mdx

0
d) for

brevity. Then we can derive the following error estimate

Err =

∣∣∣∣∣∣ 1

|Nδ,L|a

∑
m∈Nδ,L

amf
(
m� x0

)
− 1

|SL|a

∑
m∈SL

amf
(
m� x0

)∣∣∣∣∣∣
=

1

|Nδ,L|a · |SL|a

∣∣∣∣∣∣|SL|a
∑

m∈Nδ,L

amf
(
m� x0

)
− |Nδ,L|a

∑
m∈SL

amf
(
m� x0

)∣∣∣∣∣∣
=

1

|Nδ,L|a · |SL|a

∣∣∣∣∣∣(|Nδ,L|a − |SL|a)
∑
m∈SL

amf
(
m� x0

)
+ |SL|a

∑
m∈Nδ,L\SL

amf
(
m� x0

)∣∣∣∣∣∣
≤ 1

|Nδ,L|a · |SL|a

∣∣∣∣∣(|Nδ,L|a − |SL|a) ‖f‖∞
∑
m∈SL

am

∣∣∣∣∣+
1

|Nδ,L|a · |SL|a

∣∣∣∣∣∣|SL|a · ‖f‖∞
∑

m∈Nδ,L\SL

am

∣∣∣∣∣∣
= 2‖f‖∞ ·

||Nδ,L|a − |SL|a|
|Nδ,L|a

= 2‖f‖∞ ·
|Nδ,L \ SL|a
|Nδ,L|a

L→∞−−−−→ 2‖f‖∞ ·
λa(Nδ \ S)

λa(Nδ)

δ→0−−−→ 0,

where in the last step we use that the weight a generates a measure λa equivalent to the Lebesgue
measure. Thus λa(Nδ)→ λa(S) > 0 and λa(Nδ \ S)→ λa(∅) = 0.

Hence the approximation error has for all δ > 0 a limit for L→∞ which is arbitrarily small for
δ → 0, and it remains to check the limit on the cubical approximation Nδ instead of S, but this is
straightforward:

1

|Nδ,L|
∑

m∈Mδ,L

f(m� x0) =
1

|Nδ,L|
∑
Pi,L

∪iPi,L=Nδ,L

|Pi,L| ·
1

|Pi,L|
∑

m∈Pi,L

f(m� x0)
L→∞−−−−→

∫
[0,1]d

f(x) dx,

according to the first step of this proof. �

3.3. Weighted averages. Here we present an elementary result showing that if the averages con-
verge then the weighted averages do, too.

Lemma 10. Given two sequences {bk}k and {fk}k, such that bk ≥ 0 for all k, if

FN =
1

N

N∑
k=1

fk
N→∞−−−−→ 0,

and also aN ·N∑N
k=1 ak

N→∞−−−−→ a, for some a ∈ R, with ak =
∑k
n=1 bn, and

∑N
k=1 ak

N→∞−−−−→∞, then∑N
k=1 ak · fk∑N
k=1 ak

N→∞−−−−→ 0.
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Proof. Consider first

N∑
n=1

n · bn =

N∑
n=1

bn ·N −
N−1∑
n=1

1 ·
n∑
k=1

bk = N · aN −
N−1∑
n=1

an,

which means that ∑N
n=1 n · bn∑N
n=1 an

N→∞−−−−→ a− 1.

Now ∑N
k=1 akfk∑N
k=1 ak

=

∑N
k=1

∑k
n=1 bn · fk∑N
k=1 ak

=

∑N
n=1 bn ·

∑N
k=n fk∑N

k=1 ak

=
N∑N
k=1 ak

N∑
n=1

[
bn · FN − bn ·

n

N
· Fn

]
= FN ·

N · aN∑N
k=1 ak

−
N∑
n=1

Fn ·
n · bn∑N
k=1 ak

.

Note that
∑N
n=1 Fn ·

n·bn∑N
k=1 ak

is bounded by a constant C and there is N1 such that |FN · N ·aN∑N
k=1 ak

| < ε
3

for n > N1. Also, there exists N2, such that for n > N2 we have∣∣∣∣∣
N2∑
n=1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣ ≤ C ·
∑N2

k=1 ak∑N
k=1 ak

≤ ε

3
.

Lastly we can choose N3 such that for N ≥ N3∣∣∣∣∣
N2∑
n=1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣ < ε

3
.

Then ∣∣∣∣∣
∑N
k=1 akfk∑N
k=1 ak

∣∣∣∣∣ ≤
∣∣∣∣∣FN · N · aN∑N

k=1 ak

∣∣∣∣∣+

∣∣∣∣∣
N2∑
n=1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣+

∣∣∣∣∣
N∑

n=N2+1

Fn ·
n · bn∑N
k=1 ak

∣∣∣∣∣
< ε

for n > max(N1, N2, N3). �

The following corollary follows immediately by setting f = g − C.

Corollary 11. Let the coefficients ak be as in Lemma 10. If

1

N

N∑
k=1

gk
N→∞−−−−→ C,

then ∑N
k=1 ak · gk∑N
k=1 ak

N→∞−−−−→ C.
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3.4. Asymptotic behaviour of the Si. Now we turn to the main technical tool to prove the
main result.

Lemma 12. For x, t ∈ (0, 1),

lim
ε→0

1

|Rε|
· S1 =

1

4
(5)

lim
ε→0

ε2 · S3

S1
=

1

4
(6)

lim
ε→0

ε · S2

S1
= 0.(7)

Remark 13. In the following proof we will show that the weighted averaging condition holds for
x, t /∈ Q by using Birkhoff’s ergodic theorem 5. This leaves out the case when either x or t are
in Q. We have two ways of addressing this issue. We can compute explicitly the terms and obtain
analytically the convergence required for the weighted average condition; these are straightforward
but tedious computations, a sample of which is provided in the appendix, in Subsection A.

At the same time we can observe that it is enough to have the limits almost everywhere in x, t,
as we are integrating Wt(x) and the Lebesgue integral ignores sets of null measure.

Proof of Lemma 12. As discussed above, we will consider only the case x, t /∈ Q.
We first prove (5). We can use Birkhoff’s ergodic theorem. Define Tx(z) = z + x: this is a

measure-preserving and uniquely ergodic transformation (since x 6∈ Q). Then

1

N

N−1∑
k=0

cos2(πkx) =
1

N

N−1∑
k=0

cos2
(
πT kx (0)

) N→∞−−−−→
∫ 1

0

cos2(πx) dx =
1

2
.

All the coefficients am are 1 in this case and the function is multiplicative. Then the result follows
immediately from Lemma 9 and the fact that∫

[0,1]2
cos2(πx1) cos2(πx2) d(x1, x2) =

1

4
.

We prove now (6). For x, t 6∈ Q we know from (5) that the denominator S1 ∼ |Rε|
4 as ε → 0 for

x 6= 0, 1. Hence the term in question has the same asymptotic behaviour as

(8) ε2
S3

S1
∼ 4π2 ε2

|Rε|
·
∑
k,l∈Rε

k2 sin2(kπx) cos2(lπt).

We define a = (ak,l)k,l with ak,l = k2, where we already saw in our example that his generates a
measure with Lebesgue density such that

(9) lim
ε→0

ε2 · |Rε|a
|Rε|

= lim
ε→0

ε2 · 1

|Rε|
∑
k,l∈Rε

k2 =
λa(R)

λ(R)
,

where the rescaled domain is

R = {(η, ξ) ∈ R2| α	 <
√
ξ2 + η2 < α⊕},

which gives

Rε = ε−1R ∩ N2.
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As dλa = η2 d(η, ξ) we obtain by elementary calculations using polar coordinates

λa(R)

λ(R)
=

4

π(α2
⊕ − α2

	)

∫
R

η2 d(η, ξ)

=
4

π(α2
⊕ − α2

	)

∫ π/2

0

∫ α⊕

α	

r3 cos(ϕ)2 dr dϕ =
1

α2
⊕ − α2

	

∫ α⊕

α	

r3 dr

=
1

4

α4
⊕ − α4

	
α2
⊕ − α2

	
=

1

4
(α2
⊕ + α2

	) =
1

4π2
.

Combining (8) and (9), it remains to show that we can apply the averaged Birkhoff ergodic theorem
to the sum. We already saw that it is sufficient to check this on large rectangles containing the
origin. We define QL as in the weighted averaging condition for α ∈ (0,∞)2 so that

QL = [1, α1L]× [1, α2L] ∩ N2 = I
(1)
L × I

(2)
L with I

(j)
L = [1, αjL] ∩ N .

Because of the rectangular shape we can split the sum

1

|QL|a
·
∑

(k,l)∈QL

k2 sin2(kπx) cos2(lπt) =
1∑

k∈I(1)L

k2
·
∑
k∈I(1)L

k2 sin2(kπx) · 1∑
l∈I(2)L

1

∑
l∈I(2)L

cos2(lπt)

∼ 1

|I(1)L |
·
∑
k∈I(1)L

sin2(kπx) · 1

|I(2)L |

∑
l∈I(2)L

cos2(lπt)

L→∞−−−−→ 1

4
,

by the standard one-dimensional ergodic theorem, where we used Corollary 11 to remove the
weights. We can now use Lemma 9 to extend this to the ring and obtain

ε2 · S3

S1
∼ 4π2ε2 · |Rε|a

|Rε|
· 1

|Rε|a
·
∑
k,l∈Rε

k2 sin2(kπx) cos2(lπt)
ε→0−−−→ 1

4
,

where we evaluated the value of the limit in (9).
Finally, we prove (7). As it was the case in (6), we can calculate the sum of the coefficients,

factor them out and see that the orders of magnitude of ε cancel out. Then everything is reduced
to the integral ∫

[0,1]2
cos(πx1) sin(πx1) cos2(πx2) d(x1, x2) = 0. �

3.5. Proof of main result. We have now all the ingredients to complete the proof of Theorem 2.

Proof of Theorem 2. From Lemma 12 we know that

Wt(x) =
S3

S1
−
(
S2

S1

)2

∼ 1

4ε2
as ε→ 0.

By Theorem 1, the number of expected zeros on the horizontal line Lt of length 1 is, for a given ε,

N =
1

π

∫ 1

0

√
1

4ε2
dx =

1

2π · ε
.

This is the same as saying that the average pattern size is 1
N = 2πε. �
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k

l

k1 k2

k1

k2

Rγε

k

l

k2

k2

Q1
ε

k

l

k1 k2

k1

k2

Q2
ε

k

l

k1 k2

2 · k1

k1 + k2

Q3
ε

Figure 6. The ring Rγ and the alternative mode domains Qi, i = 1, 2, 3.

4. General Fourier domains

We can consider domains in Fourier space that are different from the ring. The main difference
is that we get a different constant, which depends on the shape of the Fourier-domain. Also the
constant might be different along different directions if we lose the symmetry in k and l in the
Fourier space, but we will discuss that later in Section 6. On the other hand for horizontal lines
we can give an explicit constant, in terms of the measure λa, and for vertical lines we can argue by
symmetry. Let us discuss a few explicit examples.

Consider the following mode domains where we define as before for some γ ∈ (0, 1)

k1 =
α	
ε

=

√
1−
√

1− γ
2π2ε2

and k2 =
α⊕
ε

=

√
1 +
√

1− γ
2π2ε2
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Rγε = {(k, l) ∈ N2| k1 <
√
k2 + l2 < k2},

Q1
ε = {(k, l) ∈ N2| 0 < k, l < k2},
Q2
ε = {(k, l) ∈ N2| k1 < k, l < k2},
Q3
ε = {(k, l) ∈ N2| k1 < k < k2, 2k1 < l < k1 + k2}.

Note that Rγε is the same quarter-ring-shaped domain as before and the others are certain rectangles,
all of them represented in Figure 6. For our main result, we will also use the scaled ε-independent
versions

Rγ = {(η, ξ) ∈ R2| α	 <
√
ξ2 + η2 < α⊕}

Q1 = (0, α⊕)2, Q2 = (α	, α⊕)2, Q3 = (α	, α⊕)× (2α	, α	 + α⊕),

so that

Rγε = ε−1Rγ ∩ N2 and Qiε = ε−1Qi ∩ N2 for i = 1, 2, 3 .

We provide numerical simulations on how the patterns look like on such domains in Figure 7.
They look quite different, although as we will see in the following Lemma 14, the main result about
the asymptotic distribution of zeros is the same in all four cases, only the constants change.

Lemma 14. Let Dε = ε−1D ∩ N2 be a scaled domain in Fourier space (for example Rγε or Qiε for
i = 1, 2, 3). Then the asymptotic (for ε → 0) density of zeros δ is on horizontal lines through the
pattern

δ(x) ∼ 1

2πε
·

√
λ(k2,1)(D)

λ(D)
,

while on vertical lines it is

δ(x) ∼ 1

2πε
·

√
λ(1,l2)(D)

λ(D)
.

Proof. This is a proof analogous to the one of Lemma 12. We obtain the following asymptotic
equivalences

δ(x)2 ∼ S3

S1
∼ 1

4
·
|Dε|(k2,1)
|Dε|

∼ 1

4ε2
·
λ(k2,1)(D)

λ(D)
.

The statement on vertical lines simply follows by symmetry. �

The correction factors λa(D)/λ(D) for the weights ak,l = k2 and the pattern sizes in the following
domains are
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Domain Correction coeff. Avg. number of zeros Avg. pattern size

Rγε 1
1

2πε
2πε

Q1
ε

2

3
(1 +

√
1− γ)

√
2

3
(1 +

√
1− γ)

2πε

2πε√
2

3
(1 +

√
1− γ)

Q2
ε

2

3
(2 +

√
γ)

√
2

3
(2 +

√
γ)

2πε

2πε√
2

3
(2 +

√
γ)

These are due to symmetry the same results for horizontal or vertical lines, while for the non-
symmetric Q3 we have

Q3
ε Correction coeff. Avg. number of zeros Avg. pattern size

horizontal
2

3
(2 +

√
γ)

√
2

3
(2 +

√
γ)

2πε

2πε√
2

3
(2 +

√
γ)

vertical
2

3
(8− 6

√
1− γ + 4

√
γ)

√
2

3
(8− 6

√
1− γ + 4

√
γ)

2πε

2πε√
2

3
(8− 6

√
1− γ + 4

√
γ)

.

In Figure 7 the simulations are run with γ = 0.7 and 10−2. In those cases we have the following
rounded off asymptotic values for the number of zeros on a line:

Domain Correction coeff. Avg. number of zeros Avg. pattern size

R0.7
0.01 1 15.915 (×1) 0.062832

Q1
0.01 1.032 16.167 (×1.016) 0.061856

Q2
0.01 1.891 21.887 (×1.375) 0.045690

Q3
0.01 (hor.) 1.891 21.887 (×1.375) 0.045690

Q3
0.01 (ver.) 5.374 36.894 (×2.318) 0.027105.

If we sample random vertical lines in the numerical simulations represented in Figure 7, we get
the following number of zeros, which are in good agreement with the predicted asymptotic results.

Domain Avg. number of zeros (sampled)

R0.7
0.01 16.413

Q1
0.01 16.984

Q2
0.01 21.931

Q3
0.01 (ver.) 37.315.
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x

y

x

y

x

y

x

y

R0.7
0.01 Q1

0.01

Q2
0.01 Q3

0.01

Figure 7. Patterns generated by the Fourier domains presented in Figure 6

5. Numerical Simulations

In Figure 8 we plot the (rescaled) density of zeros εδ(x) =
ε

π

√
Wt(x) for various values of ε on

the domain R0.8. We scale by ε so that the convergence to 1/2π is easily seen. We can observe that
the density in fact converges pointwise (apart from x = 0, 1). It even seems that the convergence is
uniform away from an arbitrarily small boundary layer.

It is interesting to fix a point x0 ∈ (0, 1) and to track the value of εδ(x0) for ε→ 0. This is done
in Figure 9.

Once again we can read off the convergence to 1/2π but we can also quantify the convergence’s
disturbance by the “travelling wave” which goes to the borders of the interval: even if we choose a
point which is very close to 0 (the critical points), for example x0 = 10−2, we see that the magnitude
of the density grows very quickly at first until it hits the limit value and then exhibits a damped
oscillation around that asymptotic growth rate. When compared to Figure 8, we can imagine those
travelling waves approaching and going through such a value x0 until after some threshold ε, the
oscillation is negligible.
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0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

ε = 10−1.5

ε = 10−2

ε = 10−2.5

Figure 8. Zeros density for t = 0.5 and γ = 0.8 (multiplied by ε) for some values
of ε on the ring-shaped domain. These pictures are a graphical representation of
the pointwise limit εδ(x)→ 1

2π proven in Theorem 2.

6. Sloped lines

As we have already mentioned, the result given in Theorem 2 is proven only for horizontal lines
and by symmetry for vertical lines. We claim that the result is far more general. In order to do
so, we consider any sloped line through the origin. For the ring Rγ we will see that we obtain the
same asymptotic behaviour.

To fix the setting we assume y = µx, with µ ∈ (0, 1]. This last assumption is just for simplicity
of presentation, as we can use the reflection at the diagonal to get the analogous result for the
remaining half square.

Note that considering lines through the origin is not restrictive, we do this only for simplicity of
presentation. The more general case y = µx+ τ behaves in the same way, using the trigonometric
formulas for the cosine of a sum, which just adds to the number of the terms involved.
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1.5 2 2.5 3 3.5
1e-3

1e-2

1e-1

1e+0

n, where ε = 10−n

ε
·δ

(x
0
)

x0 = 10−1

x0 = 10−2

x0 = 10−3

Figure 9. Values for εδ(x0) for various values of x0. The parameter ε is on the
abscissa and the scaled value of the density is on the ordinate.

The important thing in that situation is to consider only the intersection (x, µx+ τ)∩ [0, 1]2, so
we have to pay attention to the x’s that are in our domain, and to the corresponding length of the
segment we need for the renormalisation.

For y = µx, we have, instead of wt(x), the following vector of functions:

wµ(x) =

cos(kπx) cos(lπµx)/

(∑
m,n

cos2(mπx) cos2(nπµx)

)1/2

k,l
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and also

Wµ(x) =

∑
k,l

[
−S1(kπ sin(kπx) cos(lπµx) + lπµ sin(lπµx) cos(kπx)) + cos(kπx) cos(lπµx)S̃2

]2
(S1)3

=

∑
k,l(kπ sin(kπx) cos(lπµx) + lπµ sin(lπµx) cos(kπx))2

S1
−

(
S̃2

S1

)2

=
S̃3

S1
−

(
S̃2

S1

)2

,

where S1 is as in the horizontal case with t := µx and

S̃2 =
∑
k,l

cos(kπx) cos(lπt)(kπ sin(kπx) cos(lπt) + lπµ sin(lπt) cos(kπx))

S̃3 =
∑
k,l

(kπ sin(kπx) cos(lπt) + lπµ sin(lπt) cos(kπx))2,

which are the generalisations of the S2 and S3 encountered before. To prove that things work the
same way in this case, we have to prove first the following:

(10) lim
ε→0

ε2

(
S̃2

S1

)2

= 0.

This can be shown with arguments analogous to those for horizontal lines. The main new tool
we need is that the averaging works for weights (k, 1), (1, l), and (k, l). Then we need to notice
that any term with a sin-function averages in the limit to 0 in the Birkhoff ergodic theorem. This
implies (10).

Secondly, with the same argument, we see the following asymptotic equivalence

ε2
S̃3

S1
∼ ε2 1

S1

(∑
k,l

k2π2 sin(kπx)2 cos(lπµx)2 + µ2
∑
k,l

l2π2 sin(lπµx)2 cos(kπx)2
)

This implies the following Theorem:

Theorem 15. For sloped lines y = µx with µ ∈ [0.1] and general Fourier-domains D we have that

δ(x)2 ∼ 1

4ε2
· 1

λ(D)

(
λ(k2,1)(D) + µ2λ(1,l2)(D)

)
.

If the domain D is symmetric with respect to the reflection along the diagonal like the ring Rγ

or the squares Q1 and Q2. Then δ(x)2 is compared to a horizontal line just modified by a factor

(1+µ2). But this just compensates the length of the segment, which is not 1 as before but
√

1 + µ2.
Now the two factors cancel and the average pattern size is for every sloped line the same as for the
horizontal line.

Thus we obtain in the symmetric examples like Rγ , Q1, and Q2 that for any sloped line the
average pattern size is for every sloped line the same and of order ε.
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Appendix A. The rational case

In the proof of Lemma 12 we only considered irrational values of x and t. This is sufficient
because we are interested in the density on a set of Lebesgue-measure 1 because we integrate it
anyway. But as an additional consideration, for rational values, the periodicity of trigonometric
functions yields a non-ergodic averaging result of the same type as on the irrational numbers.

We restrict ourselves to a particularly easy case but the actual proof is a straightforward gener-
alization.

Let x = 1
n and N = l · n for l, n ∈ N without loss of generalization and consider

1

N

N∑
k=1

cos2(kπx) =
1

2N

N∑
k=1

cos(2πk
1

n
)

=
1

2
+

1

2
·

(
1

2

sin( 2πN+π
n )− 1

sin(πn )

)

=
1

2
− 1

4N

N→∞−−−−→ 1

2
.

This corresponds nicely to the ergodic result

lim
N→∞

1

N

N∑
k=1

cos2(kπx) =
1

2

for irrational x. In this way, we can for example prove

1

|Rε|
S1 =

1

|Rε|
∑
k,l∈Rε

cos2(kπx) cos2(lπt)
N→∞−−−−→ 1

4
.
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