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Abstract

Many critical systems are based on the combination of components from

different physical domains (e.g. mechanical, electrical, hydraulic), and

are mathematically modeled as Switched Multi-Domain Kirchhoff Networks

(Smdkn). In this thesis, we tackle a major obstacle to formal verification

of Smdkn, namely devising a global model amenable to verification in the

form of a Hybrid Automaton. This requires the combination of the local

dynamics of the components, expressed as Differential Algebraic Equations,

according to Kirchhoff’s laws, depending on the (exponentially many) op-

eration modes of the network.

We propose an automated SMT-based method to analyze networks from

multiple physical domains, detecting which modes induce invalid (i.e. in-

consistent) constraints, and to produce a Hybrid Automaton model that ac-

curately describes, in terms of Ordinary Differential Equations, the system

evolution in the valid modes, catching also the possible non-deterministic

behaviors. The experimental evaluation demonstrates that the proposed ap-

proach allows several complex multi-domain systems to be formally analyzed

and model checked against various system requirements.

Keywords

Switched multi-domain Kirchhoff networks, differential-algebraic equa-

tions, hybrid automata, model checking, satisfiability modulo theories
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Chapter 1

Introduction

1.1 General context

Complex critical systems are often formed by the interaction of compo-

nents from multiple physical domains (e.g. electrical, hydraulic, and me-

chanical). An example from aerospace is a landing gear system [BW14],

Figure 1.1: Landing Gear System with N = 2 hydraulic cylinder lines (Lgs[N ]).

depicted in Figure 1.1, where the pressure applied by a hydraulic circuit

(including pumps and valve) operates moving components from the hydro-

mechanical domain (e.g. a cylinder) that in turn drive mechanical loads.

A key aspect of these systems is that the basic components experience a

multidirectional interactions due to the bidirectional propagation of en-

ergy in the network (e.g. a short-circuit propagates bidirectionally in an

1



CHAPTER 1. INTRODUCTION

electrical network). Moreover, the basic components might react with non-

deterministic time delay to external events. The modeling formalism must

consider these aspects. Basic components (e.g. valves, and cylinders) have

multiple operation modes and exhibit hybrid dynamics. These dynamics

include continuous behaviors, typically described by Differential-Algebraic

Equations (DAE) associated to the modes, and instantaneous changes (or

switches) among modes. The connection of basic components into compos-

ite systems is often modeled as Switched Multi-Domain Kirchhoff Networks

(Smdkn) [Jan11]. Each combination of the components modes determines

a (global) mode of the network. For each global mode, the continuous

dynamics is represented by the system of DAE obtained by joining the

equations that characterize each component in the respective mode with

the equations that correspond to the Kirchhoff’s connection laws.

1.2 Challenges

In this thesis, we investigate methods for the formal analysis of Smdkn,

tackling two key challenges. The first challenge is to convert a DAE-based

network description into a formalism based on Ordinary Differential Equa-

tions (ODE) and that is amenable to formal verification. The existing

formal verification tools for hybrid systems [FGD+11, GKC13a, CGMT15]

take as input hybrid automata and, in most cases, require a description of

the continuous dynamics in the form of ODE. Obtaining an ODE from a

DAE is possible with a process called reformulation [Ria08]. One could

thus conceive an approach that iterates over the network modes, reformu-

lates for each of them the corresponding DAE into an ODE, and recom-

bines the resulting ODE into an automaton. Unfortunately, this iterative

approach is unfeasible in practice: the number of modes of a switched

network is exponential in the number of components.

2



1.3. CONTRIBUTIONS

The second challenge stems from the fact that the reformulation cannot

always map a DAE onto an ODE. In fact, a DAE is a relational character-

ization deriving from a constraint-based description of the reality, while an

ODE is in essence a functional description. Thus, under certain conditions,

a DAE may be inconsistent (i.e. infeasible from the physical standpoint) or

under-constrained (i.e. some physical quantities are undetermined). Un-

fortunately, inconsistencies and under-specifications may be hidden in the

(exponentially many) modes of the network, and may be hard to spot.

1.3 Contributions

In this thesis, we propose a general method to reformulate Smdkn into

hybrid automata with ODE dynamics. In order to deal with multi-domain

networks, we propose a purely algebraic, general argument, which guaran-

tees the existence of the reformulation, generalizing the Implicit Function

Theorem [Mun97] for linear systems. The method is able to synthesize the

modes free from inconsistencies and under-specifications, and to present

them in the form of diagnostic information.

1.4 Technical approach

We adopt an approach based on Satisfiability Modulo Theories

(SMT) [BSST09] to reason about the algebraic representation of DAE-

based networks. We build on the ability of modern SMT solvers to carry

out quantifier elimination and to deal with huge sets of assignments to dis-

crete variables. We exploit the algebraic nature of the problem, in particu-

lar the linearity principle holding for the DAE associated to each network

modes, to aggressively simplify the expensive quantifier elimination steps.

3



CHAPTER 1. INTRODUCTION

1.5 Evaluation

We perform an experimental evaluation on several multi-domain scalable

real-world benchmark applications and on a railway case study developed

in collaboration with the Italian train company [CCM+18]. The proposed

optimizations substantially increase the scalability of the procedures, al-

lowing us to validate and reformulate Smdkn featuring millions of modes.

We verify the hybrid automata resulting from our procedures by means of

some existing SMT-based verification tools (e.g. HyCOMP [CGMT15]).

1.6 Structure of the thesis

The thesis is organized as follows. In Chapter 2 we work out a complete

example to overview the key aspects of the entire work. In Chapter 3 we

present the mathematical background. In Chapter 4 we define the syntax

and semantics for Kirchhoff networks. Chapter 5 defines the validation

and reformulation problems for Smdkn. In Chapter 6 we first present a

baseline symbolic solution, and then we describe the optimized symbolic

approach that exploits the algebraic structure of the problem. Chapter 7

presents the experimental evaluation. and Chapter 8 discusses the railway

case-study. Chapter 9 discusses the related work. In Chapter 10 we draw

some conclusions and discuss the directions for future work.

1.7 List of publications

The work presented in this thesis appeared in three main conference papers

at FM16, FMCAD17, and FMCAD18.

At the conference FM16, the paper [CMS16] presented a method to

convert Switched Electrical Kirchhoff Networks into hybrid automata. The

work was limited to electrical networks because the SMT encodings of the
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conversion was built on well-known results from graph-theory on the graph

representation of the network. Additionally, non-deterministic behaviors

of the algebraic variables were not allowed.

At the conference FMCAD17, the work [CMS17] proposed a more

general validation and reformulation approach than [CMS16] in two re-

spects. First, we were able to deal with multi-domain networks, en-

abling mechanical, electrical and hydraulic domains, and their combina-

tion, whilst [CMS16] was restricted to electrical networks. Second, the

method in [CMS16] were only able to produce a hybrid automaton if the

electrical network fulfills the conditions of existence and determinism in

all the modes and for all the variables, while [CMS17] analyze Smdkn

with non-deterministic algebraic variables as well. Both extensions are

made possible by the adoption of a theoretical settings that is significantly

more general than the domain-specific topological approach on the network

graph used in [CMS16].

Finally, the work [CCM+18], appeared at FMCAD18, presented the ap-

plication of our SMT-based modeling and analysis approach to a railway

case study on Relay Interlocking System developed in collaboration with

the Italian train company. We experimented an approach based on this

work to understand legacy relay circuits in the railway domain. We rely on

an accurate representation at the physical level in form of Switched Kirch-

hoff Networks, that is then reduced to a symbolically represented network

of hybrid automata, and then analyzed by means of SMT-based model

checking. The experimental evaluation demonstrated the precision and

scalability of the analyses. The proposed methodology is at the core of an

ongoing research project aiming at the in-the-large analysis of legacy rail-

way interlocking and the open specification of computer-based solutions.

To the best of our knowledge, no other works address the verification prob-

lem of a Relay Interlocking System based on its hybrid physical behavior.
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Chapter 2

Overview of the approach

In this chapter, we progressively work out a full network in order to pro-

vide an overview of the basic concepts behind this work. Our goal is to

intuitively show the main challenges encountered to formally model-check

a switched Kirchhoff network with the existing tools, and to present the

key aspects of the proposed SMT-based approach. We believe that pre-

senting a simple electrical network will help to clarify the challenges and

the problems solved by our approach. We start from the description of the

electrical network, of the component interconnections and of the modeling

approach of the components. Then we describe the issues coming from

ill-posed network configurations encountered in the reformulation process

from Smdkn to a hybrid automaton with ODEs amenable to symbolic

model checking.

The Switched Multi-Domain Kirchhoff Network (Smdkn) formalism de-

scribes mechatronic systems that mix electrical, hydraulic, mechanical,

and thermal switching components. Figure 2.1 shows the diagram of the

Smdkn of an electrical circuit composed of a current source (IS), two re-

sistors (R0 and RS), three switches (S0, S1 and S2), and two capacitors

(C1 and C2). The positive and negative terminal of each component are

graphically denoted by a plus (+) and a minus (−) sign, respectively. The

7



CHAPTER 2. OVERVIEW OF THE APPROACH

Figure 2.1: Switched electrical Kirchhoff network of the battery charging system repre-

sented in the M1 discrete configuration where the switches S0, S1 and S2 are open. The

connection nodes between component terminals are denoted by blue circles. The positive

and negative terminals of the components are denoted by a + and - sign.)

interconnections of the component terminals form six connection nodes

(N1, N2, N3, N4, N5 and N6) graphically denoted by the blue circles.

The network models a simple two-phase battery charging system where

the current source charges the two batteries that are modeled as two ca-

pacitors. The first charging phase, characterized by a battery voltage lower

than a design threshold, must be performed with a constant-rate current;

the second charging phase, where the battery voltage is between the thresh-

old and the maximum voltage, must be performed with a constant-rate

voltage to prevent battery damages. The batteries must be charged one

at a time because they cannot be connected in parallel due to possible

overcurrents.

The switching behavior of the network depends on the three ideal

switches: every switch has an open and closed mode, consequently the

cross-product of the three switches modes returns the eight global modes of

Table 2.1. In general, the number of global modes of the network increases

8



2.1. MODELING OF THE INTERCONNECTIONS

exponentially with the number of switching components in the network.

Our SMT-based reasoning approach deals with this exponential complex-

ity of the problem to make the proposed solution feasible for real-world

application.

We assume that the switches are externally operated by a controller

(omitted in Figure 2.1) that, if properly designed, fulfills the specification

described above. The goal of the designer is to verify whether the compo-

sition of the network with the controller satisfies the system requirements.

Mode name Switch configurations

M1 S0 open, S1 open, S2 open

M2 S0 open, S1 open, S2 closed

M3 S0 open, S1 closed, S2 open

M4 S0 open, S1 closed, S2 closed

M5 S0 closed, S1 open, S2 open

M6 S0 closed, S1 open, S2 closed

M7 S0 closed, S1 closed, S2 open

M8 S0 closed, S1 closed, S2 closed

Table 2.1: The eight discrete configurations of the network of Figure 2.1

2.1 Modeling of the interconnections

A component can be considered as a box that connects with the other com-

ponents in the network via a set of terminals. A terminal represents a phys-

ical interface of the component that affects two physical quantities, called

in general the effort and the flow. Effort and flow generalize the physical

quantities exchanged between components in mechatronic systems. In ev-

ery physical domain the effort and flow take a particular dimension (see

Table A.1 for more details). For example, in the electrical domain the effort

corresponds to the electrical potential on the terminal while the flow cor-

responds to the electrical current flowing through a terminal. As reference

9



CHAPTER 2. OVERVIEW OF THE APPROACH

direction, the flow is considered positive when it goes from the terminal

to the internal of its component. All the components of the network of

Figure 2.1 are two-terminal components of the form shown in Figure 2.2.

Figure 2.2: Conceptual model of a two-terminal component. The positive reference direc-

tion of the flow variables is depicted with an empty arrow going from the terminal to the

component.

Multiple terminals are connected together forming a node of the net-

work, and the terminals involved in a node are subject to the Kirchhoff’s

connection laws. The two Kirchhoff’s laws state that the potential on

each terminal connected to the same node must be the same, and that

the algebraic sum of the terminal currents entering the node must be zero.

Figure 2.3 shows the generalization of the Kirchhoff’s connection laws to

the case of n terminals connected together. In Figure 2.1, for example, the

negative terminal of the switch S1 and the positive terminal of the capaci-

tor C1 are connected together forming the node N5. This connection forces

the potential on the two terminals to be the same, and the algebraic sum

of the terminal currents entering the node to be zero. Table 2.2 reports

the connection constraints for the six nodes of the network in Figure 2.1.

10



2.1. MODELING OF THE INTERCONNECTIONS

Figure 2.3: Kirchhoff’s conservation laws on the connection of n terminals. We use the

dotted-notation to refer to the effort and flow variables of a terminal: for instance, the

effort variable v− of the negative terminal of the component c1 is denoted with c1.v−.

Constraint Explanation

N1

IS.i− +R0.i− + C1.i− + C2.i− = 0 Conservation of currents law

IS.v− = R0.v− Equality of potentials law

IS.v− = C1.v− Equality of potentials law

IS.v− = C2.v− Equality of potentials law

N2

R0.i+ + S0.i− = 0 Conservation of currents law

R0.v+ = S0.v− Equality of potentials law

N3

IS.i+ + S0.i+ +RS.i+ = 0 Conservation of currents law

IS.v+ = S0.v+ Equality of potentials law

IS.v+ = RS.v+ Equality of potentials law

N4

RS.i− + S1.i+ + S2.i+ = 0 Conservation of currents law

RS.v− = S1.v+ Equality of potentials law

RS.v− = S2.v+ Equality of potentials law

N5

S1.i− + C1.i+ = 0 Conservation of currents law

S1.v− = C1.v+ Equality of potentials law

N6

S2.i− + C2.i+ = 0 Conservation of currents law

S2.v− = C2.v+ Equality of potentials law

Table 2.2: Explanation of the connection constraints in the switching differential-algebraic

equations of the network of Figure 2.1. All the constraints are algebraic and non-switching

(i.e. always valid).
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Constraint Type Switching Explanation

IS
IS.i− + IS.i+ = 0 algebraic No Conservation of current

IS.i− = is algebraic No Generated current equal to iS

R0

R0.i− +R0.i+ = 0 algebraic No Conservation of current

R0.v+ −R0.v− = VR0 algebraic No Voltage between the terminals

VR0 = r0 ∗R0.i+ algebraic No Ohm’s law with resistance r0

RS

RS.i− +RS.i+ = 0 algebraic No Conservation of current

RS.v+ −RS.v− = VRS
algebraic No Voltage between the terminals

VRS
= rS ∗RS.i+ algebraic No Ohm’s law with resistance rS

S0

S0.i− + S0.i+ = 0 algebraic No Conservation of current

S0.v+ − S0.v− = 0 algebraic Yes If S0 is closed, short-circuit law

S0.i+ = 0 algebraic Yes If S0 is open, open-circuit law

S1

S1.i− + S1.i+ = 0 algebraic No Conservation of current

S1.v+ − S1.v− = 0 algebraic Yes If S1 is closed, short-circuit law

S1.i+ = 0 algebraic Yes If S1 is open, open-circuit law

S2

S2.i− + S2.i+ = 0 algebraic No Conservation of current

S2.v+ − S2.v− = 0 algebraic Yes If S2 is closed, short-circuit law

S2.i+ = 0 algebraic Yes If S2 is open, open-circuit law

C1

C1.i− + C1.i+ = 0 algebraic No Conservation of current

C1.v+ − C1.v− = VC1 algebraic No Voltage between the terminals

c1 ∗
dVC1

dt
= C1.i+ differential No Capacitor charging law

C2

C2.i− + C2.i+ = 0 algebraic No Conservation of current

C2.v+ − C2.v− = VC2 algebraic No Voltage between the terminals

c2 ∗
dVC2

dt
= C2.i+ differential No Capacitor charging law

Table 2.3: Explanation of the constraints of the components that form the switching

differential-algebraic equations of the network of Figure 2.1. The resistances r0 and rS,

the capacitances c1 and c2, and the generated input current iS are real-valued constant

parameters fixed at design time. The value of the current variable IS.i− is externally

determined by the parameter iS and drives the evolution of the network, thus IS.i− is

the input real variable of the network. The values of the voltage variables VC1 and VC2

depends on the past-evolution of the network, thus VC1 and VC2 are the state real variables

of the network.

12



2.2. MODELING OF COMPONENTS

2.2 Modeling of components

Every component of the network is a box that contains the mathematical

description of its physical behavior in terms of basic principles of physics.

Table 2.3 shows all the constraints of the components deployed in Fig-

ure 2.1, while Chapter A provides further details on the components used

in this thesis.

2.2.1 Algebraic components

The electrical current source of Figure 2.4 is a two-terminal component

that forces the current i− on its network branch to be identically equal to

a continuous function of time provided by the designer as a parameter of

the component. In this thesis, for the sake of clarity, we consider mainly

constant functions of time, but the proposed approach works for general

continuous functions. Since the current i− drives the network with a user-

defined time-evolution, we say that i− is an input variable of the network.

An additional constraint i+ +i− = 0 describes the current conservation law

through the component: the current entering one terminal equals the cur-

rent exiting the other terminal. No equations about the potential variables

are defined because the voltage drop of the component will be determined

by the mutual-interaction of the component with the network.

Figure 2.4: Electrical current source.

The electrical resistor shown in Figure 2.5 follows the Ohm’s law

v+−v− = r∗ i+: the voltage drop v+−v− between the terminals is directly

proportional to the current i+ through the component with a positive pro-
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CHAPTER 2. OVERVIEW OF THE APPROACH

portionality constant r called resistance. Similarly to the current source

component, the additional constraint i+ + i− = 0 describes the current

conservation law through the component.

Figure 2.5: Electrical resistor with resistance r.

The key aspect of this component-based modeling approach is that the

component behavior is an acausal (see relational) description of the physi-

cal relationship among the effort and flow variables of the terminals. This is

in contrast with the traditional functional modeling approach that requires

to fix a-priori the input-output causality of an elementary building block on

the base of a detailed global knowledge of the entire system. The fact that

no functional dependencies are fixed a-priori in the components makes the

acausal modeling approach particularly suitable to build a library of gen-

eral components that are reusable in different designs. Figure 2.6 clarifies

the difference between the acausal and the functional modeling approach

on the resistor component. The acausal model on the left can be expanded

in several equivalent functional models that differ for the input-output de-

pendency between current and voltage (i.e. current computed from voltage

or vice versa).

The main drawback of the functional modeling is that the elementary

building block of the model are not reusable as with acausal modeling be-

cause the block causality strongly depends on the entire system design.

Figure 2.7 presents an example of this main issue. The electrical net-

works on the left just differ for the voltage and current sources that drive

the circuit. The acausal modeling approach allows the designer to reuse

the same resistor component in both circuits, despite of the nature of the

deployed power source, keeping a one-to-one mapping between the compo-
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Figure 2.6: Ohm’s law in its acausal form (on the left) and functional forms (on the right).

The symbol V is a shortcut for the potential difference v+ − v−, while the symbol I is a

shortcut for the current i+.

nents of the real system and the components of the model. On the other

side, the functional modeling approach requires to instantiate the resistor

block with the correct causality depending on the particular source applied.

In other words, the functional approach requires to explicitly unroll and

hard-code the system causality into the system model making the design

task exponentially more complex for large systems. On the other side,

the interconnection of acausal components actually interconnects systems

of equations in the individual components with one another. By inter-

connecting components, we do not define the calculation procedure (i.e.

the global functional dependencies), but rather the modeled reality. The

method of solving the equations is then “left to the machines” and we deal

with this problem in this thesis.

2.2.2 Differential components

The electrical capacitor of Figure 2.8 introduces a differential behavior in

the network of Figure 2.1. The capacitor is similar to a balloon that in-

creases its internal pressure when is inflated, while decreases its pressure

when is deflated. The charge law of the capacitor is c ∗ dV
dt

= I, where
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Figure 2.7: Comparison of the acausal (on the left) and functional (on the right) modeling

approach for a simple power source-resistor network. The functional approach requires to

unroll and hard-code into the model the functional dependencies between the variables.

The causality of the resistor block depends on the nature of the power source.

Figure 2.8: Electrical capacitor.

V is a shortcut for the voltage drop v+ − v− between the terminals, and

I is a shortcut for the current i+ through the positive terminal. This law

says that the voltage drop V of the capacitor increases when the current I

enters the positive terminal with a positive proportionality constant 1/c,

where the parameter c is called capacitance. Further details on the capac-

itor behavior are available in the Chapter A. Since the voltage drop V is

implicitly defined by means of its first-derivative
dV

dt
, we need to solve some

kind of differential equations starting from a known initial value V (t0) in

order to know the time evolution of V . The fact that the present value of V

depends on its past history makes the voltage drop V a state variable of the

network. We highlight that in the capacitor component, the first-derivative
dV

dt
is not directly provided as a function of the state variable V or of the

input variables of the current source (i.e. it is not an ordinary-differential

equations), but it is just related to the local current I that will be deter-
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mined by the mutual-interaction of the capacitor with the interconnected

network. In order to formally verify the network with the existing model

checkers we need to make explicit the functional dependency between the

state variable V , its first-derivative
dV

dt
and the input variables of the net-

work, performing what we call reformulation of the network dynamics into

an equivalent ODE dynamics.

2.2.3 Switched components

Differently from the standard literature in mechatronic systems [Jan11], we

focus on Switched Multi-Domain Kirchhoff Networks (Smdkn): differently

from a non-switched MDKN, in a Smdkn each component further models a

set of discrete states that can change instantaneously. A simple example of

such components in the electrical domain is the ideal switch of Figure 2.9

that can be either in the open state or in the closed state, and changes

its discrete state instantaneously (i.e., in a negligible physical time). In

every discrete state, called mode in the following chapters, the component

toggles between different physical behaviors, either enabling or disabling

different sets of equations. In the closed mode,, the electrical switch is

Figure 2.9: Electrical ideal switch.

equivalent to a short-circuit (i.e. zero voltage drop between terminals and

current determined by the mutual-interaction with the network). In the

open mode, the switch is equivalent to an open-circuit (i.e. zero current

through the terminals and voltage drop between terminals determined by

the mutual-interaction with the network). From the point of view of its

equations, in the closed mode the switch enables the constraint v+−v− = 0,
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while in the open mode the switch enables the constraint i+ = 0. Please

refer to the Table 2.3 for a full list of the switch constraints and to the

Chapter A for further details on the component.

Figure 2.10: Hybrid automaton of the electrical ideal switch.

In terms of hybrid automata, the switch can be graphically repre-

sented as the two-location automaton of Figure 2.10. The automaton does

not contain guards or switching rules on the discrete transitions because

in the network of Figure 2.1 we consider switches that can toggle non-

deterministically. Other switching components could define some switching

rules to control when a transition must be fired depending on the physical

state of the component. For instance, an electrical fuse is a kind of switch

that starts in the closed mode, and permanently toggles to the open mode

when the local current exceeds an overcurrent threshold.

2.3 DAE dynamics of the network

The introduction of discrete states complicates the analysis of the network,

forcing the designer to reason about a number of network configurations

that increases exponentially with the discrete modes of the components.

Consider the two distinct discrete configurations M3 and M7 of Fig-

ure 2.11 and Figure 2.12. They differ for the discrete mode of the switch

S0. In both configurations the switch S1 is closed and the switch S2 is

open. In the configuration of Figure 2.11 the switch S0 is open, while in
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Figure 2.11: Network in the discrete configuration M3 where switch S0 is open, the switch

S1 is closed, and the switch S2 is open. In M3 the current source IS charges the capacitor

C1 with a constant-rate current.

the configuration of Figure 2.12 the switch S0 is closed. Fixing these global

discrete configurations of the network, the physical behavior of the network

is described by the sets of equations shown in Table 2.4. The two sets of

constraints form two systems of differential-algebraic equations (DAE) that

contains:

• all the non-switching constraints of Table 2.2 and Table 2.3;

• the switching constraints of Table 2.3 associated to the proper discrete

modes of the switches S0, S1, and S2.

The two DAEs just differ for one constraint of the switch S0 that in the

first case represents an open-circuit, while in the second case represents a

short-circuit.

We cannot analyze this DAE continuous dynamics with the existing

model checkers. Existing model checkers for hybrid automata accept con-

tinuous dynamics as either explicit functions of time or implicit functions of

time in the form of differential equations. For formal analysis of Smdkn we
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Figure 2.12: Network in the discrete configuration M7 where switch S0 is closed, the

switch S1 is closed, and the switch S2 is open. In M7 the current source IS charges the

capacitor C1 with a constant-rate voltage.

are interested in differential dynamics. Model checkers allow the designer to

specify different classes of differential dynamics from simple constant-rate

dynamics to more complex ODE dynamics. Unfortunately, DAE dynamics

are not supported. Since Smdkn contains DAE dynamics, our approach

is based on a reformulation procedure of the DAE dynamics into ODE

dynamics in order to model check Smdkn with the existing tools. Unfor-

tunately, the DAE to ODE reformulation process is not always possible and

this depends on the structural properties of the DAE. In Section 2.4, we

describe the reformulation process of the network of Figure 2.1 for the dis-

crete configurations of the network that admit a reformulation. Section 2.5

introduces the validation problem of the network that aims at discovering

the discrete configurations that do not admit a reformulation.
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DAE of the discrete mode M3 DAE of the discrete mode M7

N1

IS.i− +R0.i− + C1.i− + C2.i− = 0 IS.i− +R0.i− + C1.i− + C2.i− = 0

IS.v− = R0.v− IS.v− = R0.v−

IS.v− = C1.v− IS.v− = C1.v−

IS.v− = C2.v− IS.v− = C2.v−

N2

R0.i+ + S0.i− = 0 R0.i+ + S0.i− = 0

R0.v+ = S0.v− R0.v+ = S0.v−

N3

IS.i+ + S0.i+ +RS.i+ = 0 IS.i+ + S0.i+ +RS.i+ = 0

IS.v+ = S0.v+ IS.v+ = S0.v+

IS.v+ = RS.v+ IS.v+ = RS.v+

N4

RS.i− + S1.i+ + S2.i+ = 0 RS.i− + S1.i+ + S2.i+ = 0

RS.v− = S1.v+ RS.v− = S1.v+

RS.v− = S2.v+ RS.v− = S2.v+

N5

S1.i− + C1.i+ = 0 S1.i− + C1.i+ = 0

S1.v− = C1.v+ S1.v− = C1.v+

N6

S2.i− + C2.i+ = 0 S2.i− + C2.i+ = 0

S2.v− = C2.v+ S2.v− = C2.v+

IS
IS.i− + IS.i+ = 0 IS.i− + IS.i+ = 0

IS.i− = is IS.i− = is

R0

R0.i− +R0.i+ = 0 R0.i− +R0.i+ = 0

R0.v+ −R0.v− = VR0 R0.v+ −R0.v− = VR0

VR0 = r0 ∗R0.i+ VR0 = r0 ∗R0.i+

RS

RS.i− +RS.i+ = 0 RS.i− +RS.i+ = 0

RS.v+ −RS.v− = VRS
RS.v+ −RS.v− = VRS

VRS
= rS ∗RS.i+ VRS

= rS ∗RS.i+

S0

S0.i− + S0.i+ = 0 S0.i− + S0.i+ = 0

S0.i+ = 0 S0.v+ − S0.v− = 0

S1

S1.i− + S1.i+ = 0 S1.i− + S1.i+ = 0

S1.v+ − S1.v− = 0 S1.v+ − S1.v− = 0

S2

S2.i− + S2.i+ = 0 S2.i− + S2.i+ = 0

S2.i+ = 0 S2.i+ = 0

C1

C1.i− + C1.i+ = 0 C1.i− + C1.i+ = 0

C1.v+ − C1.v− = VC1 C1.v+ − C1.v− = VC1

c1 ∗
dVC1

dt
= C1.i+ c1 ∗

dVC1

dt
= C1.i+

C2

C2.i− + C2.i+ = 0 C2.i− + C2.i+ = 0

C2.v+ − C2.v− = VC2 C2.v+ − C2.v− = VC2

c2 ∗
dVC2

dt
= C2.i+ c2 ∗

dVC2

dt
= C2.i+

Table 2.4: DAE dynamics of the network of Figure 2.1 in two different discrete configu-

rations: S0 open, S1 closed, S2 open (discrete mode M3), and S0 closed, S1 closed, S2

open (discrete mode M7). The DAE dynamics just differ for the highlighted constraint of

the switch S0.
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2.4 Network reformulation

Given the DAE dynamics of a discrete configuration of the network that

admits a reformulation, the problem of computing the reformulation con-

sists in finding a unique functional rewriting (i.e. the ODE) of the first-

derivative variables in terms of the input and state variables of the network.

This functional rewriting must also be coherent with the original DAE for

every value of the input and state variables. When the ODE function

over the first-derivative, state and input variables is found, the remaining

algebraic variables of the DAE can be expressed as an algebraic relation

between the input, state and algebraic variables by means of a syntactic

replacement of the first-derivatives in the DAE with their functional re-

formulations over state and input variables. The reformulation approach

based on the algebraic relation allows us to model and reason on possible

non-deterministic behavior of the algebraic variables.

For the network of Figure 2.1 only five of the eight possible discrete

configurations admit an ODE reformulation. Table 2.5 shows the ODE

reformulations for the five configuration. We recall from Table 2.4 that

the DAE of the discrete modes M3 and M7 just differ for one constraint.

Although this is a small difference, the reformulations of modes M3 and

M7 fall into two distinct classes of continuous dynamics because M3 has a

constant-rate dynamics while M7 has an ODE dynamics. It is important

to take into consideration the class of the reformulation because differ-

ent existing model checkers provide verification algorithms specialized for

particular continuous dynamics.
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Mode Switch configurations Reformulation Type

M2 S0 open, S1 open, S2 closed

dVC1

dt
= 0.0

Constant-rate
dVC2

dt
= 0.5 ∗ IS.i−

M3 S0 open, S1 closed, S2 open

dVC1

dt
= 0.5 ∗ IS.i−

Constant-rate
dVC2

dt
= 0.0

M5 S0 closed, S1 open, S2 open

dVC1

dt
= 0.0

Constant-rate
dVC2

dt
= 0.0

M6 S0 closed, S1 open, S2 closed

dVC1

dt
= 0.0

ODE
dVC2

dt
= −0.25 ∗ VC2 + 0.25 ∗ IS.i−

M7 S0 closed, S1 closed, S2 open

dVC1

dt
= −0.25 ∗ VC1 + 0.25 ∗ IS.i−

ODE
dVC2

dt
= 0.0

Table 2.5: ODE reformulations of the network of Figure 2.1 for the five discrete config-

urations that admit the reformulation. The ODE reformulations refers to the following

parameters assignments: r0 = rS = 1.0Ω, c1 = c2 = 2.0F .

Given the ODE reformulation of the first-derivative variables
dVC1

dt
and

dVC2

dt
, we compute the algebraic relation of a discrete mode replacing the

first-derivatives with their functional representation into the DAE equa-

tions of the network. Table 2.6 shows an example of this syntactic re-

placement for the mode M7. SMT engines are very efficient in reasoning

on this kind of relations and we use this approach to avoid to compute

the functional reformulation of all the algebraic variables. Moreover, the

algebraic relation allows us to model non-deterministic algebraic variables

that would be impossible to express in a functional way.
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DAE of the discrete mode M7 algebraic relation of the discrete mode M7

N1

IS.i− +R0.i− + C1.i− + C2.i− = 0 IS.i− +R0.i− + C1.i− + C2.i− = 0

IS.v− = R0.v− IS.v− = R0.v−

IS.v− = C1.v− IS.v− = C1.v−

IS.v− = C2.v− IS.v− = C2.v−

N2

R0.i+ + S0.i− = 0 R0.i+ + S0.i− = 0

R0.v+ = S0.v− R0.v+ = S0.v−

N3

IS.i+ + S0.i+ +RS.i+ = 0 IS.i+ + S0.i+ +RS.i+ = 0

IS.v+ = S0.v+ IS.v+ = S0.v+

IS.v+ = RS.v+ IS.v+ = RS.v+

N4

RS.i− + S1.i+ + S2.i+ = 0 RS.i− + S1.i+ + S2.i+ = 0

RS.v− = S1.v+ RS.v− = S1.v+

RS.v− = S2.v+ RS.v− = S2.v+

N5

S1.i− + C1.i+ = 0 S1.i− + C1.i+ = 0

S1.v− = C1.v+ S1.v− = C1.v+

N6

S2.i− + C2.i+ = 0 S2.i− + C2.i+ = 0

S2.v− = C2.v+ S2.v− = C2.v+

IS
IS.i− + IS.i+ = 0 IS.i− + IS.i+ = 0

IS.i− = is IS.i− = is

R0

R0.i− +R0.i+ = 0 R0.i− +R0.i+ = 0

R0.v+ −R0.v− = VR0 R0.v+ −R0.v− = VR0

VR0 = r0 ∗R0.i+ VR0 = r0 ∗R0.i+

RS

RS.i− +RS.i+ = 0 RS.i− +RS.i+ = 0

RS.v+ −RS.v− = VRS
RS.v+ −RS.v− = VRS

VRS
= rS ∗RS.i+ VRS

= rS ∗RS.i+

S0

S0.i− + S0.i+ = 0 S0.i− + S0.i+ = 0

S0.v+ − S0.v− = 0 S0.v+ − S0.v− = 0

S1

S1.i− + S1.i+ = 0 S1.i− + S1.i+ = 0

S1.v+ − S1.v− = 0 S1.v+ − S1.v− = 0

S2

S2.i− + S2.i+ = 0 S2.i− + S2.i+ = 0

S2.i+ = 0 S2.i+ = 0

C1

C1.i− + C1.i+ = 0 C1.i− + C1.i+ = 0

C1.v+ − C1.v− = VC1 C1.v+ − C1.v− = VC1

c1 ∗
dVC1

dt
= C1.i+ c1 ∗ (−0.25 ∗ VC1 + 0.25 ∗ IS.i−) = C1.i+

C2

C2.i− + C2.i+ = 0 C2.i− + C2.i+ = 0

C2.v+ − C2.v− = VC2 C2.v+ − C2.v− = VC2

c2 ∗
dVC2

dt
= C2.i+ c2 ∗ 0.0 = C2.i+

Table 2.6: Computation of the algebraic relation of the discrete configuration M7. The

first-derivative variables (
dVC1

dt
,
dVC2

dt
) in the DAE are syntactically replaced with their

ODE reformulation in terms of state variables (VC1 , VC2) and input variables (IS.i−).
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2.4.1 Shared reformulations

Let us focus on the rows of the reformulations of Table 2.5, namely on the

reformulation of a specific first-derivative variable (e.g.
dVC1

dt
). Although

there are five discrete modes that admit a reformulation, there are only

three distinct reformulations of
dVC1

dt
. In fact, the three modes M2, M5 and

M6 share the same reformulation
dVC1

dt
= 0.0. This is due to the structural

symmetries of the network that produce a clustering of the theoretical

continuous dynamics in only few distinct dynamics. In particular, the three

modes M2, M5 and M6 share the same dynamics for
dVC1

dt
because they

share the same open position of the switch S1. When S1 is open, despite of

the position of the other switches, the capacitor C1 is neither charged nor

discharged, thus M2, M5 and M6 collapse in a macro-configuration with

the same continuous dynamics. Similarly, the modes M3, M5 and M7 share

the same reformulation
dVC2

dt
= 0.0 for

dVC2

dt
.

Since SMT-based techniques are able to efficiently reason on this kind of

structural symmetries, in our approach we perform the reformulation of the

DAE dynamics by ODE-rows in order to exploit the network symmetries

and speed-up the reformulation process.

2.5 Network validation

2.5.1 Inconsistent configurations

The network of Figure 2.1 does not admit an ODE reformulation in the

discrete configurations M1, M4 and M8. Figure 2.13 shows the discrete

configuration M4. When both the switches S1 and S2 are closed, the two

capacitors C1 and C2 are connected in a loop, and, according to standard

results from the electrical theory [Ria08], this loop prevents the existence
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Figure 2.13: Network in the discrete configuration M4 where the switch S0 is open, the

switch S1 is closed, and the switch S2 is closed. In M4 the capacitors C1 and C2

form a capacitor-loop (generally called VC-loop) that prevents the existence of an ODE

reformulation.

of the ODE reformulation for the mode M4 because the two state vari-

ables VC1
and VC2

become mutually-dependent. From the physical point

of view, the parallel connection of two capacitors produces a fast electrical

transient with over-currents that could damage the system. The capacitor-

loop equivalently affects the discrete configuration M8.

The discrete configuration M1 (shown in Figure 2.1) exhibits a incon-

sistency of different nature that involves the current source and its input

variable IS.i−. When all the switches are open, the current source IS is

“obstructed”, thus the DAE equations are inconsistent.

For all these kinds of inconsistencies, the structure of the network in

all its discrete configurations needs to be analyzed before to perform the

reformulation. Our validation technique aims to spot and report to the

designer the harmful network configurations in the earlier stages of the

design process to prevent system failures in operation, and to guarantee

the correctness of the reformulation. The validation check is unfeasible
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in practice due to the exponential blow-up of discrete configurations and

to the alternation of universal and existential quantifiers involved in the

check. Our validation approach exploits the algebraic structure of the

problem to circumvent the nested quantifier elimination and to brake the

problem into simpler checks that rely on a single existential quantifier.

In the following section we explain how the check applies to the general

case of Switched Kirchhoff Network and why it is equivalent to the nested

quantifier elimination.

2.5.2 Under-specified configurations

A key aspect of the acausal modeling approach is that the physics of an

elementary components is by construction under-specified. In fact, the

equations of the component do not determine the actual behavior of all

its variables. They are (possibly) determined by the mutual-interaction of

the component with the interconnected network. Extending this concept

to the network, when a network is under-specified it does not contain a

sufficient amount of physical constraints w.r.t. its variables and some of

them might remain only partially determined. The designer must deal with

this aspect of the modeling to ensure the correctness of the analysis.

All the discrete configurations of the network of Figure 2.1 are under-

specified. In fact, the lack of a reference potential in the network (i.e. an

electrical ground component) make impossible to determine an exact value

of the terminal potentials w.r.t. an absolute value (e.g. the ground refer-

ence value). Nevertheless, the network is fully-specified in terms of branch

currents and voltage drops between terminals. Since the ODE reformula-

tion is expressed in terms of the fully-specified variables, we can perform

the reformulation of the five consistent modes M2, M3, M5, M6, and M7,

keeping the under-specified variables in the algebraic relation that can

handle their non-determinism. The network of Figure 2.14 adds the miss-
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Figure 2.14: Network in the discrete configuration M3 with the addition of the Ground

component G0 that makes deterministic the potential of all the terminals.

ing ground component G0 that makes the network fully-determined. In a

general Smdkn there are several sources of non-determinism that can pos-

sibly propagate to the ODE reformulation variables. In order to guarantee

the correctness of the ODE reformulation, we propose a validation proce-

dure that discovers and reports to the designer all the under-specification

of the network in order to fix the network models if necessary. In gen-

eral, the under-specification test checks whether a variable admits at most

one solution for every value of the input and state variables. This check

requires nested quantifier elimination. Our validation approach exploits

the algebraic structure of the problem to circumvent the nested quantifier

elimination and to reduce the validation problem to a single existential

quantification.
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Chapter 3

Background

In the following we provide the necessary background on Satisfiability Mod-

ulo Theory, Differential Algebraic Equations, and Hybrid Automata.

3.1 General Notation

We use R to denote the set of Real numbers. We denote the cardinality of

a set X with |X| and its powerset (i.e., the set of all X’s subsets) as 2X .

We denote with X ′ the set obtained from the set X replacing each

variable x with its “primed” version x′ (i.e., X ′ := {x′|x ∈ X}) and,

analogously, we denote with Ẋ the set obtained from X replacing each

variable x with its first derivative ẋ (i.e., Ẋ := {ẋ|x ∈ X}).
We further use the notation ~x to refer to the column-vector containing

all the variables in X ordered lexicographically (e.g., for the set X :=

{x0, x1}, its vector representation is ~x :=

[
x0

x1

]
). We will use both notations

depending on the context since X is more convenient when working with

first-order logic formulas, while ~x is more convenient when working with

the matrix equation form of a system of linear equations.
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3.2 Differential Algebraic Equations

We model the continuous evolution of a dynamical systems with respect to

time as differential equations. We first define the class of Ordinary Differ-

ential Equations (ODEs) and then the more general Differential Algebraic

Equations (DAEs). We further recall the problem of expressing a system

of Differential Algebraic Equations as a system of Ordinary Differential

Equations, restricting our focus to linear ODEs and DAEs.

3.2.1 Ordinary Differential Equations

A system of (linear) Ordinary Differential Equations (ODEs) defines the

first-derivative of a vector or real valued functions ~x : (R→ R)n:

~̇x(t) = ~A~x(t) + ~B ~u(t)

where ~̇x(t) is the column vector of first-derivatives with respect to time

of the state functions ~x(t), ~u ∈ (R → R)m is a vector of input functions,
~A ∈ R|~x|×|~x| and ~B ∈ R|~x|×|~u| are constant matrices, and t represents the

independent variable (time, in our case). In the following, we drop the

explicit dependence from time from ~x and ~u and we refer to them as state

and input variables, respectively. A solution of the system of ODEs is a

vector of functions ~x(t) that satisfies the system of equations. The system

of ODEs ~̇x(t) = ~A~x(t)+ ~B ~u(t) with continuous input functions ui(t) has a

unique solution to the initial value problem with ~x(t0) = ~x0 for all possible

times t0 > 0.

3.2.2 Differential-Algebraic Equations

A system of Differential-Algebraic Equations DAEs is a system of equations

containing state variables ~x, their derivatives ~̇x, input variables ~u, and

algebraic variables ~y. The algebraic variables ~y evolve continuously in
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time, as the state variables, but their derivative is expressed implicitly in

the other constraints of the DAEs (i.e., their derivative never appears in

the equations). We define a linear system of DAEs as follows:

~M ~̇x+ ~N ~x+ ~O ~y + ~P ~u = ~0 (3.1)

where ~x, ~y, and ~u are the state, algebraic, and input variables, and
~M, ~N, ~O, ~P are constants real matrices.

Reasoning about DAEs (e.g., simulating the DAEs given an initial value,

computing the set of reachable states from an initial set of states) is further

challenging due to the algebraic constraints, which in turn impose implicit

constraints on the differential equations of the variables. In practice, for

both simulation and verification we aim to finding a representation of the

DAEs system of the form:

~̇x = ~A~x+ ~B ~u

~y =~C ~x+ ~D ~u

In several cases we can obtain the above representation automatically from

the DAE formulation of Equation 3.1, through a process called structural

analysis. For example, when the matrix ~M from Equation 3.1 is non-

singular we can obtain a system of ODEs for the state variables ~x just

inverting the matrix ~M . In this case, we say that the system of DAEs is

of structural index-1. If the index is greater than 1 (e.g., when the matrix
~M is non-singular) we have to apply an index-reduction algorithm (e.g.,

[Pry01]) trying to reduce the DAEs index using symbolic differentiation,

eventually getting an index-1 DAEs (and hence an ODEs). In this thesis,

we focus on systems of DAEs of index-1.

Additionally, we relax the requirement for the functional form ~y =
~C ~x + ~D ~u of the algebraic variables ~y allowing the algebraic variables

to be expressed as a more general relation φ(~y, ~x, ~u) that admits non-

deterministic behaviors.
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3.3 Satisfiability Modulo Theories

Our setting is standard first-order logic. Let Σ be a first-order signature

containing predicates and function symbols with their arity and X be a set

of variables. A 0-ary predicate symbol A is called a Boolean atom while a

0-ary function symbol c is called a constant. A Σ-term is either a variable

or it is built applying function symbols in Σ to Σ-terms. If p is a predicate

with arity n and t1, . . . , tn are Σ-terms, then p(t1, . . . , tn) is a Σ-atom. A Σ-

formula is either a Σ-atom, or the application of the Boolean connectives

∧,∨,¬ to two Σ-formulas, or the application of quantifiers (∃, ∀) to an

individual variable and a Σ-formula.

We use the standard abbreviations for the other Boolean operators,

φ1 → φ2 in place of ¬φ1∨φ2, and φ1 ↔ φ2 in place of (φ1 → φ2)∧(φ2 → φ1).

We further use the abbreviations ∃X.φ and ∃~x.φ, where φ is a Σ-formula,

X := {x1, . . . , xn} is a set of variables, and ~x := [x0, . . . , xn]
T is a vector of

variables, in place of the formula ∃x1. . . . ∃xn.φ.

A variable is free in a formula φ if it is not quantified, and is bound

otherwise. Given a formula φ we write φ(X) to denote that X is the set

of free variables in φ. A sentence with signature Σ is a Σ-formula without

free variables. A first-order Σ-theory T is a set of first-order sentences with

signature Σ. We assume that the symbols identity =, false ⊥, and true >
are always part of the language.

We assume the standard first-order notion of interpretation, satisfia-

bility, validity, and logical consequence. We write φ[s/t] for the formula

obtained from the formula φ substituting all the occurrences of the term

t with the term s. We use the abbreviation φ[~s/~t] where ~s and ~t have the

same length to denote the element-wise substitution of every occurrence

of the i-th element of ~t with the i-th element of ~s. We call µ a satisfy-

ing assignment or model of a formula φ(X) a total function that assigns
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to every x ∈ X an element c in the x’s domain such that the formula

φ[µ(X)/X] evaluates to > provided an interpretation of the function sym-

bols. A formula φ is T -satisfiable if there exists an interpretation and an

assignment µ such that φ[µ(X)/X] evaluates to >. Two formulas φ1 and

φ2 are T -equisatisfiable if and only if φ1 is T -satisfiable if and only if φ2 is

T -satisfiable.

The Satisfiability Modulo Theory problem (SMT (T )) [BSST09] is the

problem of deciding if a formula φ is T -satisfiable.

SMT can be seen as an extension of Boolean satisfiability (SAT), where

literals are interpreted with respect to a background theory T . In this work,

we interpret the formulas in the Linear Arithmetic on the rationals (LRA).

Its signature is ΣR = {0, 1,+,−,=,≥}, where 0 and 1 are the rational

number constants, +,− are the usual addition and subtraction operators,

and =,≥ are the equal and greater than or equal relational operators.

The resulting language consists of the formulas with atoms in the form∑
i aixi ./ a, where xi is a variable, ai, a ∈ R are real constants, and

./∈ {<,≤, >,≥,=, 6=} is a relational operator. Note that the satisfiability

of the LRA theory is decidable. In the following, we drop the LRA suffix

and write Γ |= φ instead of Γ |=LRA φ. We further write µ|X for the function

obtained restricting the domain of the assignment µ to the variables X.

3.4 Hybrid automata

Hybrid automata (HA) [Hen96] are a mathematical formalism for model-

ing dynamical systems in which instantaneous computations interact with

continuous physical processes. A hybrid automaton is a state machine

enriched with a finite set of continuous variables whose time evolution is

described by a set of differential equations. In Figure 3.1a we show the

hybrid automaton for a simplified cruise control system of a vehicle that
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either accelerates or brakes. The model represents the position and veloc-

ity of the vehicle (variables x and v), and the position of the preceding

vehicle (xp). The automaton’s modes model these two operating modes

(Accelerating and Breaking), defining a different dynamic for the vehicle

in each one of them. For example, in the Accelerating mode the system’s

dynamic is specified with the system of ODEs: ẋ = v, v̇ = 10, and ẋp = 20.

Furthermore, the invariant conditions (e.g., x ≤ xp−5 in the Accelerating

mode) define when the system can stay in a mode or not. Figure 3.1c shows

the difference between xp and x in a possible trajectory of the automaton.

The trajectory shows that the automaton switches from the Accelerating

to the Braking mode (when x = 5) forcing the vehicle to break.

Accelerating
x ≤ xp − 5

ẋ = v
v̇ = 10
ẋp = 20

x ≤ xp − 10
0 ≤ v ≤ 10

Breaking
xp − 10 ≤ x

ẋ = v
v̇ = −10
ẋp = 20

x ≤ xp − 8

x ≤ xP − 10

(a) Hybrid Automaton of the cruise control system.

〈{m}, {x, v, xp}, x ≤ xp − 10 ∧ 0 ≤ v ≤ 10,

(m→ x ≤ xp − 5) ∧ (¬m→ x− 10 ≤ xp),

(m ∧ ¬m′ ∧ x ≤ xp − 8)∨
(¬m ∧m′ ∧ x ≤ xp − 10),

ẋp = 20 ∧ ẋ = v∧
(m→ v̇ = 10) ∧ (¬m→ v̇ = −10)〉

(b) Symbolic representation.

time
0 1 2 3 4

xp − x

2

3

4

5

6

7

8

9

10

x = 5

x = 10

(c) Difference xp − x for a trajectory of

the hybrid automaton.

Figure 3.1: Explicit hybrid automaton, symbolic hybrid automaton, and trajectory of a

cruise control system of a vehicle. The variables x, v, and xp represent the position of

the vehicle, its velocity, and the position of the preceding vehicle. The preceding vehicle

moves with a constant velocity (20m/s), while the follower vehicle either accelerates (in

the Accelerating mode), or brakes (in the Braking mode).
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In the following, we use a symbolic representation of hybrid au-

tomata [CMT14]. We represent the states of the automaton with Boolean

and Real valued variables, and set of states as Σ-formulas φ(X) on such

variables. An assignment µ to the formula φ(X) then represents a state of

the hybrid automaton. Analogoulsy, we represent the transition relation in

the automaton as a formula φ(X,X ′). In this case, an assignment µ to the

formula φ(X,X ′) represents a possible transition in the automaton. We

further specify differential equations using Σ-formulas — however, their

interpretation is given in terms of “runs” of the hybrid automaton and not

in terms of the LRA theory1. A hybrid automaton H is the tuple:

H := 〈B,R, Init, Invar, Trans, F low〉

where:

• B is a set of Boolean variables encoding the discrete modes of the

automaton.

• R is a set of Real variables encoding the continuous variables of the

automaton.

• Init(B,R) is a ΣR-formula that represents the set of initial states.

• Invar(B,R) is a ΣR-formula that represents the set of invariant states.

• Trans(B,R,B′, R′) is a ΣR-formula that represents the set of discrete

transitions.

• Flow(B, Ṙ, R) is a ΣR-formula that represents the differential con-

straints on the continuous variables.
1While it is possible to formulate a fisrt-order theory of Ordinary Differential Equations, for example

following [GKC13b], here we take a different approach where the differential equations are taken into

account when defining the hybrid automata semantic, and not when defining the interpretation of the

first-logic formula.
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Figure 3.1b shows the symbolic representation of the (non symbolic) hybrid

automaton shown in Figure 3.1a. We see that the symbolic representation

may be more concise than the non-symbolic representation, for example

when specifying that ẋ = v for all the possible modes.

While in this thesis we assume that all the formulas Init, Invar, Trans

and Flow are quantifier-free formulas in the LRA Theory, the framework is

more general and can take into account other theories (e.g., Uninterpreted

Functions (UFs)).

A state of the hybrid automaton H is an assignment to the variables

B ∪R. For example, the state s0 = {x 7→ 1, v 7→ 20, xp 7→ 10} is the initial

state for the trajectory shown in Figure 3.1c.

Definition 1 (Hybrid Automaton Run.). A run π of the hybrid automaton

H is a sequence of states π := s0
δ1→ s1

δ2→ . . .
δk→ sk such that all the

following conditions hold:

• s0 |= Init and for all 0 < i ≤ k, si is a state of H.

• For 1 ≤ i ≤ k, δj ∈ R and si−1
δi→ si we have either a:

– discrete transition: δi = 0 and 〈si−1, δi, si〉 |= Trans, si−i |=
Invar, and si |= Invar.

– continuous transition: δi > 0 and:

∗ si−1|V = si|V ,

∗ there exists a continuous differentiable function f : [0, δi] →
R|R| such that:

· f(0) = si−1|R and f(δi) = si|R,

· si−1 |= Invar, si |= Invar,

· ∀ε ∈ [0, δi], 〈si−1|B , f(ε), ḟ(ε)〉 |= Flow,

· ∀ε ∈ [0, δi], 〈si−1|B , f(ε)〉 |= Invar.
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A run is a sequence of states such that the first state is in the set of

states specified in the initial condition Init, every state belongs to the

states specified in the invariant condition Invar, and each pair of consec-

utive states either satisfies the transition relation in a discrete transition

specified in Trans, or the differential constraints specified in Flow. Also,

the continuous transition ensures that the invariant condition holds at ev-

ery possible instant in time.

The semantics of the HA H is defined by the set of all its runs JHK.

Two hybrid automata H1 and H2 are equivalent if they accept the same

runs.

We say that the hybrid automaton has an ODE dynamics if, for each

discrete mode the flow condition takes the form of a system of ODEs.

Otherwise, the hybrid automaton has a DAE dynamics if the flow condition

takes the form of a systems of DAEs.

We are interested in the Safety Verification Problem for hybrid au-

tomata. A hybrid automaton H reaches a state s if there is a run

π := s0
δ1→ s1

δ2→ . . .
δk→ sk such that sk = s. The hybrid automaton

H satisfies the safety property P if there are no runs π ∈ JHK such that π

reaches a state s 6∈ P . That is, there are no runs of H that can reach an

“unsafe” state, a state outside the safety property P .
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Chapter 4

Formalizing Switched Multi-Domain

Kirchhoff Networks

In the following, we describe the syntax and semantics of Smdkn.

4.1 Defining the Smdkn Syntax

To define the syntax of Switched Multi-Domain Kirchhoff Networks we first

define the syntax of its components, and then we define how we connect

the terminals of the components to form a network.

The definition of a network component describes its internal state, both

the “physical” continuous state and the “digital” discrete state, and their

dynamics, how the component’s state changes either when time elapses

or when the network takes an instantaneous action. The component’s

definition further describes its terminals, its interface with the network.

While our component’s definition is similar to the syntactic definition of a

Hybrid Automaton, the two definitions differ in that a component carries

more structure (e.g., the algebraic variables, the terminals, . . . ) and that

we do not provide an execution semantic for a single component, but rather

the semantic for the whole network. The definition of the component’s

semantic is difficult to provide due to the “dangling” terminals and the
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algebraic differential equations.

Definition 2 (Network Component). A network component c is a tuple

c := 〈B,R, TC, Init, Invar, Trans, F low, Input〉

where:

• B is a set of Boolean variables describing the discrete state.

• R := X ∪U ∪ Y is the set of Continuous variables that represents the

physical quantities of the component and that can change value when

time elapses.

We further partition the set of continuous variables in three disjoint

sets to represent the partitioning of variables in a system of DAEs (see

Section 3.2.2):

– X is the set of state variables;

– U is the set of input variables; and

– Y is the set of algebraic variables. The effort and flow variables

of the terminals belong to the algebraic variables.

• TC ⊆ Y × Y is the set of terminals of the components.

An element (e, f) ∈ TC represents a terminal of the component, where

e ∈ Y is the effort variable and f ∈ Y is the flow variable. We require

each variable to appear at most once in the pair (e, f). In this way,

we ensure that each variable is used consistently either as an effort or

as a flow variable and that each variable is used in at most a terminal.

• Init(B,R) is a formula describing the set of possible initial states of

the component.
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• Invar(B,R) is a formula describing the invariant condition.

Such invariant condition holds for the component during its entire

execution.

• Trans(B,R,B′, R′) is a formula defining the transition relation that

describes how an instantaneous transition changes the discrete state

and the state variables.

• Flow(B, Ṙ, R) is a formula defining the flow condition.

The flow condition defines the constraints on the time derivative Ṙ of

the continuous variables X.

• Input(U,B) is a formula defining the value of the input variables.

We assume Input(U,B) to assign a unique and single value ~r ∈ R|U|

for every possible discrete state 2B. That is, we require Input to define

a function assigning a constant value to U for every possible discrete

configuration of the component1.

Remark 1 (Non-convexity of Invariant Conditions). We further require

both the conditions Flow and Invar to be convex once fixed a discrete

state. That is, the formula obtained from Flow (resp. Invar) after assign-

ing a value to all the Boolean variables B and interpreting the remaining

variables as reals must describe a convex set. This condition avoids to have

differential inclusions in Flow and complicated encoding of the invariants

(see the encoding in [CMT14] for a possible solution to this problem).
1 While in our presentation we assign a constant value to each input variable, we can generalize

our framework assigning a continuous function of time to each input variable. With such extension

we could model, for example, power generators with a sinusoidal input (e.g., u = sin(t), where t is the

continuous variable tracking the amount of time elapsed in the system). The algorithms we present below

for validating and reformulating the network still work, without any change, in such extended settings.

The verification techniques we use [CGMT15], instead, cannot currently analyze systems containing such

time-dependent signals, except when these signals is rewritten in the form of an affine ODE dynamic.
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Example 1 (Component description of a capacitor). We use our formal-

ism to model (the component of) a capacitor with capacitance 2 farad.

The capacitor has a single discrete state that we model with a single

Boolan variable m (B := {m}), further imposing that such configuration

never change (Trans := (m ↔ m′)). The capacitor has two terminals

(e1, f1) and (e2, f2), where e1, e2, f1, and f2 are the effort and flow output

variables. Our main goal is to model the relationship between the current

flowing between the two capacitor’s terminals and the voltage between the

two terminals. We introduce a continuous variable, X := {v}, representing

the voltage on the capacitor, and we specify its relationship with the current

flowing between the capacitor’s terminals: v̇ = 1
2f1 in the flow condition.

In the flow condition, we further specify the other relationships between the

state variable and the terminals: v = e1 − e2 ∧ f1 + f2 = 0. The definition

of the component is thus:

c := 〈{m},
{v, e1, f1, e2, f2},
{(e1, f1), (e2, f2)},
>,
>,
(m↔ m′ ∧ v = v′),

v̇ =
1

2
f1 ∧ v = e1 − e2 ∧ f1 + f2 = 0,

{}〉

Example 2 (Component description of an ideal switch). We model an ideal

switch just introducing a Boolean variable, m, and specifying the effect on

the component’s terminals when the switch is open (i.e., m) and closed

(i.e., ¬m):

42



4.2. DEFINING THE SMDKN SEMANTIC

c := 〈{m},
{e1, f1, e2, f2},
{(e1, f1), (e2, f2)},
>,
>,
>,
f1 + f2 = 0 ∧ (m→ (e1 = e2)) ∧ (¬m→ (f1 = 0)),

{}〉

Definition 3 (Smdkn Syntax). A Switched Multi-Domain Kirchhoff Net-

work N := 〈C, T〉 is composed by a list of components C := c1, . . . , cn and

a list of nodes formed by components’ terminals T := t1, . . . tk where for all

t ∈ T, t ⊆ ⋃ci
TCi.

4.2 Defining the Smdkn Semantic

We define all the possible runs of a Smdkn as a hybrid automaton. We

define a hybrid automaton from the definition of the network’s components

and the network’s topology using the Kirchhoff laws. The runs of the

network are exactly the runs of such hybrid automaton.

We first use the Kirchhoff laws to define the algebraic constraints KT

for the nodes of the network.

KT :=

(∧
t∈T

∑
(e,f)∈t

f = 0

)
∧
(∧

t∈T

∧
(e1,f1)∈t

∧
(e2,f2)∈t

e1 = e2

)
(4.1)

The first conjunct in the formula KT represents the conservation of flow

for each node in the network (i.e., the sum of all the flows on a node, rep-

resented as the flow variables on the terminals, must be zero). The second
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conjunct of the formula KT represents the conservation of the potential in

(every loop of) the network. The law imposes that the sum of the potential

(e.g., voltage in the electrical domain) in a closed path of the network must

be zero. Since the Smdkn represents directly the effort variables for each

terminal, the formula KT equivalently encodes that all the effort variables

on the same node are equal.

Definition 4 (Hybrid Automaton of a Smdkn). The hybrid automaton

HN := 〈B,R, Init, Invar, Trans, F low〉 of the Smdkn N := 〈C, T〉 is de-

fined as follows:

• B :=
⋃
c∈C Bc

• R :=
⋃
c∈C Rc

• Init(B,R) :=
∧
c∈C Initc

• Trans(B,R,B′, R′) :=
∧
c∈C Transc

• Invar(B,R) := KT ∧
∧
c∈C Invarc ∧

∧
c∈C Inputc

• Flow(B, Ṙ, R) :=
∧
c∈C Flowc

The hybrid automaton has the same state space of the network (same set

of discrete and continuous variables) and has the same initial conditions.

The hybrid automaton encodes the synchronous composition of the net-

work’s components where at every discrete transition all the components

perform a transition. The model is not restrictive in that an asynchronous

composition can be “encoded” using the synchronous framework, as done

for example in [CMT11a] introducing stutter transitions in the components.

We define the continuous evolution of the hybrid automaton in the

Invar and Flow constraints. The Flow constraint considers all the flow

conditions specified in each component — hence, the continuous variables

follow the set of trajectories specified locally in each components. However,
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the trajectories further depend on the invariant condition on each compo-

nent, which holds continuously in time, the input value in each component’s

state, and the composition of the components that the network’s topology

induces. The hybrid automaton considers such constraints in its invari-

ant definition (Invar). A “peculiar” characteristic of Kirchhoff Networks

is that the flow condition in a component defines a differential algebraic

equation instead of an ordinary differential equation. As an example, con-

sider the component definition in Example 1: the flow condition contains

the constraint 1
2f1, containing the continuous variable f1, but it does not

define ḟ1. Instead, we may determine if there exists a derivative for f1,

and hence an ordinary differential equation, only after we compose the

component with the rest of the network.

Definition 5 (Smdkn Semantic). A Smdkn N accepts all and only the

runs accepted by the hybrid automaton HN .
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Chapter 5

Validation and Reformulation

problems

5.1 Validation

Let a network N = 〈C, T〉 be given. Our first goal is to automatically check

ifN contains inconsistencies, which represent an unwanted condition in the

real system modeled by the network.

Definition 6. A mode m of a network N is consistent if, for every possible

assignment to the state (X) and input (U) variables, the linear system

Dae(m) has at least a solution.

An inconsistent mode in the network represents an undesired condition

in the physical system that must be avoided. Recalling the electrical net-

work of Figure 2.1, the discrete mode M1 of the network is inconsistent

because the current source IS tries to produce a current not allowed by

the the network because the three switches S0, S1, and S2 are open. This

inconsistency is hidden in the DAE constraints of the mode M1. Clearly,

inconsistent modes in the design are undesirable, since the behavior of the

real system would violate some physical laws. Thus, checking if a mode is

consistent is a fundamental step in the validation of N .
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Our second goal is to verify safety properties on N . In order

to leverage existing tools for the verification of hybrid systems (e.g.

HyCOMP [CGMT15]), we need to express the continuous dynamics of

N as ODEs. This means, for every discrete mode of the network, being

able to rewrite the DAE Dae(m) as

~̇X = ~A · ~X + ~B · ~U

where ~A ∈ R|X|×|X|, and ~B ∈ R|X|×|U |. This amounts to find a function

that, for every possible value of the state variables X and input variables

U , returns a value for the first derivative variables Ẋ. The existence of the

ODE function requires two necessary conditions: consistency, and deter-

minicity of the values assigned to Ẋ.

Definition 7. A mode m of a network N is deterministic if, for every pos-

sible value of the state X and input variables U , the linear system Dae(m)

admits at most one solution of the first derivative Ẋ.

In the example of Figure 2.1, the DAE of the discrete modes M4 and

M7 contain a capacitor-loop that make the modes inconsistent. Addition-

ally, this discrete modes are also non-deterministic in terms of the first-

derivative
dVC1

dt
and

dVC2

dt
because the currents C1.i+ and C2.i+ through

the capacitors cannot be uniquely determined due to the capacitor-loop.

Thus, the ODE reformulation cannot be computed in the mode M4 ad M7.

Definition 8. A mode m of a network N is valid if it is both consistent

and deterministic. The network N is valid if all the modes m ∈ 2B are

valid.

Definition 9 (Validation problem). Given a network N , the validation

problem consists of deciding if N is valid.
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Remark 2. According to this definition of validity, we note that a mode

is valid if it is associated to a index-1 DAE, while it is invalid for higher-

index DAEs.

5.2 Reformulation

Definition 10 (Reformulation problem). Given a valid network N , the

reformulation problem consists of obtaining a hybrid automaton H with

ODE dynamics that is equivalent to HN .

The reformulated automaton represents the same discrete modes as the

network N , but its continuous dynamics is expressed as a system of ODEs.

Such representation exists since the network is valid.
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Chapter 6

Validation and Reformulation of

SMDKN

6.1 Basic Validation and Reformulation

Our technique performs the following steps to produce a symbolic hybrid

automaton HN amenable to verification from the network N = 〈C, T〉:

1. Check if all the modes of N are consistent. If it is the case, we proceed

to the next step.

2. Check if all the modes of N are deterministic. If it is the case, N is

valid and we proceed to the reformulation.

3. Reformulate all the modes of N and define HN .

In the case N is not consistent, our approach finds all the non-consistent

modes, that can be used by the designer to fix the network. While we

restrict the presentation to the case where N is consistent, our approach

also performs a partial reformulation, that reformulates the DAEs only for

the consistent modes. The partial network is necessary in the common

scenario where a discrete controller is composed with the network with

the goal of keeping the network outside the non-consistent states. In this

scenario, our approach allows us to verify if such controller is correct.
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Validation and reformulation steps can be done for each mode m ∈ 2B

of N . However, this is not feasible since the number of modes is exponen-

tial in the number of the discrete variables of N . To scale and analyze real

networks, we use a symbolic approach. In this section, we present a sym-

bolic validation and reformulation for multi-domain networks. The idea is

to express the validation and reformulation problems as a first-order logic

formula.

6.1.1 SMT encodings of the network DAEs

We represent all the DAEs of the network N as the quantifier-free formula:

ψDae(B,X,U, Y, Ẋ) :=
∧
c∈C

Flowc ∧KT (6.1)

ψDae predicates over the same variables of the network, so we reuse the

same notation introduced in Chapter 4 for the network variables, and con-

tains the Boolean variables B, and the Real variables X,U, Y, Ẋ. The

validation and reformulation problems only consider the algebraic rela-

tionships among the variables defined by the DAE, while they disregard

their dependence on time. Thus, the derivative variables in Ẋ are treated

as Real, and not Continuous, variables. Note that the provided encoding

enumerates the network components in place of the network global modes

that are exponential in the components, thus preventing the exponential

blow-up of the formula ψDae.

Lemma 1. µ is a satisfying assignment of ψDae iff µ|R is a solution of

Dae(µ|B), where R := X ∪ U ∪ Y ∪ Ẋ

6.1.2 Checking the network for consistency

All the modes of N are consistent iff the following formula is valid:

ψcon(B) :=∀X,U.∃Y, Ẋ.ψDae(B,X,U, Y, Ẋ)
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ψcon represents the set of all the consistent modes.

6.1.3 Checking the network for determinicity

All the modes of N are deterministic iff the following formula is valid:

ψdet(B) := ∀X,U, Ẋ1, Ẋ2.

((∃Y.ψDae(B,X,U, Y, Ẋ1)∧
∃Y.ψDae(B,X,U, Y, Ẋ2))→ Ẋ1 = Ẋ2)

ψdet represents the set of all the deterministic modes.

6.1.4 Reformulating the network

We reformulate a valid network N into the hybrid automaton Hr
N = 〈Br,

Rr, Initr, Invarr, T ransr, F lowr〉. Hr
N is defined as the hybrid automaton

HN in the Definition 4, except for Invarr and Flowr. The invariant con-

dition is given by Invarr := ψY ∧ Invar(B,R), while Flowr := ψẊ . The

formula ψẊ is the ODE reformulation of the variables Ẋ, while ψY is a

relation that represents the values of the algebraic variables Y w.r.t. the

state X and input U variables. While we can compute the relation for

ψY as ∃Ẋ.ψDae(B,X,U, Y, Ẋ), finding the ψẊ is a more difficult task that

requires to solve a quantified formula expressed with non-linear arithmetic

terms (that synthesize the coefficients of the ODE). We know that such

formula cannot be solved efficiently. We do not try to compute it and in

our experiments we try to compute ∃Ẋ.ψDae(B,X,U, Y, Ẋ). This formula

does not reformulate the system into an ODE, but the time necessary to

solve it provides a lower bound for a more complex formula (i.e. with more

quantifiers and over non-linear arithmetic predicates).
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6.2 Optimized Validation and Reformulation

We improve the basic validation and reformulation procedures by applying

an extension of the implicit function theorem [Axl97]. Given a system of

linear equalities, the theorem gives the necessary and sufficient conditions

that allow us to express the values of a subset of the system variables (the

dependent variables) as a function of the remaining variables (the inde-

pendent variables). For our application, the linear system is the DAE of

a mode, the dependent variables are the first-derivatives Ẋ, and the inde-

pendent variables are the state X and input U . Our problem is slightly

more complex, since the DAE also contains the algebraic variables Y . One

option is to consider them as dependent variables, requiring to find a func-

tion that expresses the value of all the variables in Y . However, this limits

the applicability of our approach: while we have to express Ẋ as a system

of ODEs, the underlying verification tool does not impose any restriction

on the algebraic variables Y that, for example, can assume a value non-

deterministically. For this reason we extend the implicit function theorem

as follows.

6.2.1 Implicit Function Theorem

Theorem 1 (Implicit Function Theorem). Let m, n, l be positive integers.

Let F : Rm+n → Rl be a homogeneous implicit linear function F (~w, ~z) :=
~A~w + ~B~z = ~0, where ~w ∈ Rm×1, ~z ∈ Rn×1, ~A ∈ Rl×m, and ~B ∈ Rl×n. Let
~bi be the i-th column vector of the matrix ~B, where i ∈ {1, ..., n}. Let wj be

the j-th variable of ~w, where j ∈ {1, ...,m}. The following two conditions

hold:

1. consistency condition: for all 1 ≤ i ≤ n, the linear system ~A~w = ~bi is

solvable, and
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2. determinicity condition: the linear system ~A~w = ~0 does not admit any

homogeneous solution ~̄wh such that its j-th component wj is different

from zero

iff there exists a unique linear function fj : Rn → R1 such that wj = fj(~z)

and F (w1, ..., fj(~z), ..., wm, ~z) = ~0.

The condition (1) guarantees that the system ~A~w = − ~B~z admits at least

one solution ~̄w for every assignment to the variables ~z, reducing the prob-

lem to a finite number of n checks; the condition (2) guarantees that,

for every assignment to the variables ~z, every solution ~̄w admits a unique

assignment to its j-th component wj.

Consider the DAE Dae(m) of the mode m and its matrix representation
~M ~̇x + ~N ~x + ~O ~y + ~P ~u = ~0 (see Equation 3.1). One can directly apply

Theorem 1, just by noticing that Dae(m) is indeed a linear homogeneous

implicit function F (~w, ~z), where ~w :=

[
~̇x

~y

]
, ~z :=

[
~u

~x

]
, ~A :=

[
~M ~O

]
, and

~B :=
[
~P ~N

]
. If the first condition of Theorem 1 holds for all the columns

~bi of the concatenated coefficient matrix ~B :=
[
~P ~N

]
, then the discrete

mode m is consistent, while if the second condition holds for all ẋ ∈ Ẋ,

then discrete mode m is deterministic. Then, if both conditions hold, the

discrete mode m is valid.

6.2.2 Validation

Our goal is to check the validity of the network avoiding the universal

quantification on the state and input variables introduced in the formulas

in Section 6.1. We achieve this by directly checking the conditions of

Theorem 1. The consistency condition (1) of the Theorem 1 is encoded as:

ψcon(B) :=
∧
zi∈U∪X ∃Ẋ, Y.

(
ψDae

[
δ
~U · ~X
zi

/~U · ~X
])
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where δ
~U · ~X
zi

represents the vector of size |
[
~u

~x

]
|, whose elements are identi-

cally zero except for the one corresponding to position of the variable zi.

The formula ψcon (B) represents all the consistent modes. The determinic-

ity condition (2) is encoded in the formula:

ψdet (B) :=¬∃Ẋ, Y.
(
ψDae

[
~0/~U

] [
~0/ ~X

]
∧
(
~̇X 6= ~0

))
The formula ψdet (B) represents all the deterministic modes of N . We

notice that the effect on ψDae of the X and U substitutions is equivalent to

symbolically “turning on and off“ a subset of the columns of the coefficient

matrix ~B :=
[
~P ~N

]
in order to symbolically check the conditions of the

Theorem 1.

Lemma 2. A network N is consistent iff for all m ∈ 2B, m |= ψcon(B),

and is deterministic iff for all the modes m ∈ 2B, m |= ψdet(B)

6.2.3 Reformulation

The algorithm PerVariableRef (Figure 6.1) synthesizes the formulas

ψẊ and ψY used in the reformulated automaton Hr
N , by using Theorem 1

and Lemma 4.

In the algorithm, we use the SMT solver primitives push, assert, isSat,

pop, reset (see e.g. [CGSS13]), getModel, to get a satisfying assignment to

all the free variables of the formula, and quantify to eliminate the quanti-

fiers from the formula.

PerVariableRef invokes the Reform procedure (Figure 6.2) on each

variable ẋ ∈ Ẋ (Line 3), computing the reformulation Refẋ of the variable

ẋ and the formula ψY,ẋ. In the algorithm, we compute ψY by directly

substituting in ψDae the variables Ẋ with their reformulated value. Since

the reformulation of a variable ẋ ∈ Ẋ depends on the discrete modes,

we store this value in a variable ẋs (we add a the set of variables Ẋs =
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PerVariableRef (ψDae, X, U):

1.(ψẊ , ψY ) := (>, >)

2.for each ẋ ∈ Ẋ:

3. (Refẋ, ψY,ẋ) := Reform (ψDae, X, U , ẋ)

4. ψẊ := ψẊ ∧Refẋ
5. ψY := ψY ∧ ψY,ẋ

6.ψY := ψY ∧ ψDae[Ẋs/Ẋ]

7.return (ψẊ , ψY )

Figure 6.1: Reformulation algorithm for N .

{ẋs | ẋ ∈ Ẋ}). ψY,ẋ represents the values that Ẋs takes depending on the

discrete state of the network. At Line 6, the algorithm constructs ψY , that

encodes the reformulation values for Ẋs and the ψDae formula where all

the Ẋ variables have been substituted with the Ẋs variables.

Reform works under the validity assumption, that ensures the exis-

tence of a reformulation, and uses the linearity Lemma 4 to synthesize the

reformulation. According to Lemma 4, we know that, for a mode m ∈ 2B

and a variable ẋ, the function fẋ(

[
~u

~x

]
) such that ẋ = fẋ(

[
~u

~x

]
) is defined as

fẋ(

[
~u

~x

]
) := ~̄wj

p1
z1 + ...+ ~̄wj

pn
zn, where j is the index corresponding to the

variable ẋ in the vector ~w :=

[
~̇x

~y

]
, and ~̄wj

pi
is the element corresponding

to ẋ in the i-th particular solution ~̄wpi. Thus, we can synthesize the coeffi-

cients of the function fẋ(

[
~u

~x

]
) by computing all the n particular solutions

of the system and taking their j-th element.

Figure 6.2 shows the reformulation procedure for a single variable ẋ:

each execution of the loop at Line 4 finds a mode m ∈ 2B (Line 5) for

which the ẋ reformulation is still unknown. Then (Line 6) the algorithm
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Reform (ψDae, X, U , ẋ):

1.Refẋ := >
2.ψY,ẋ := >
3.solver.assert(>)

4.while solver.isSat():

# Get a fresh mode

5. m := solver.getModel()

# Get the row vector of coeff. that

# contributes to ẋ in m

6. D := GetCoeff (ψDae, X, U , ẋ, m)

# Get the cluster of modes that share the

# same coeff.

7. β := GetEqMod (ψDae, X, U , ẋ, D)

# Prune the cluster of modes from the search

8. solver.assert(¬β)

# Build the reformulation equation

9. Eq := ẋ = D

[
~u

~x

]
10. Refẋ := Refẋ ∧ (β → Eq)

11. ψY,ẋ := ψY,ẋ ∧ β → ẋs = D

[
~u

~x

]
12.return (Refẋ, ψY,ẋ)

Figure 6.2: Reformulation of a single variable ẋ.

computes the coefficients D of the ẋ reformulation in m. The procedure

computes (Line 7) the cluster β of all the modes that share the same

coefficients D, and hence the same reformulation, for ẋ. At Line 8, we

prune the search space removing β. Eq is created (Line 9) by computing

the product of the coefficients row vector D and the variables column vector[
~u

~x

]
.

At Line 10, we accumulate the reformulation (one for each cluster) in

the returned formula Refẋ. At Line 11, we construct ψY,ẋ that constraints
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the values of the additional variable ẋs. Reform terminates when the

reformulation of ẋ is known for all the modes m ∈ 2B.

GetCoeff (ψDae, X, U , ẋ, m):

# D row vector of coeff. w.r.t. U ∪X
1.coeffSolver.assert(ψDae ∧m)

2.for each zi ∈ U ∪X:

3. coeffSolver.push()

# build the rhs corresponding to zi

4. rhszi := zi = 1 ∧∧l∈(U∪X)\{zi} l = 0

5. coeffSolver.assert(rhszi)

# get a system solution

6. µ′ := coeffSolver.getModel()

# µ′(ẋ) is the coeff. w.r.t. zi

7. D[i] := µ′(ẋ)

8. coeffSolver.pop()

9.return D

Figure 6.3: Computes the coefficients D of the reformulation of ẋ.

GetCoeff is shown in Figure 6.3. For each variable zi ∈ U ∪ X, the

condition built at Line 4 reduces the matrix product ~B

[
~u

~x

]
of the ψDae

formula to the column vector ~bizi = ~bi1 = ~bi that corresponds to the i-th

iteration. This formula is asserted in the solver at Line 5. At Line 6, the

algorithm finds a particular solution µ
′

to the system ~A~w = −~bi. Then

(Line 7) we assign the value µ
′
(ẋ) of the ẋ element of the solution µ

′
to the

i-th reformulation coefficient D[i].

The procedure GetEqMod (Figure 6.4) builds the condition γ that is

satisfiable in every m ∈ 2B that shares the same reformulation coefficients

for ẋ. In Line 7, we symbolically compute the set of equivalent modes β.

Theorem 2 (Correctness of the reformulation). Given a valid network N ,

the hybrid automaton Hr
N is equivalent to the hybrid automaton HN that
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GetEqMod (ψDae, X, U , ẋ, D):

1.eqSolver.reset()

2.γ := >
3.for each zi ∈ U ∪X:

4. rhszi := zi = 1 ∧∧l∈(U∪X)\{zi} l = 0

5. γzi := ẋ = D[i] ∧ rhszi
6. γ := γ ∧ ∃X,U, Y, Ẋ.(ψDae ∧ γzi)
7.β := eqSolver.quantify(γ)

8.return β

Figure 6.4: Find the cluster of modes that share the same coefficients D for ẋ.

defines the network semantics.
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Chapter 7

Experimental evaluation

This experimental evaluation compares the performance of the proposed

encodings on different scenarios. The algorithms are compared in terms of

their execution time and scalability on several scalable benchmarks taken

from literature and industrial applications. First, we compare the valida-

tion algorithms to analyze both valid and invalid networks. Second, we

apply the reformulation algorithms to the network, restricting the refor-

mulation to the valid modes of the networks that are globally not-valid.

Last, we model-check safety properties on the reformulated networks to

demonstrate the practical applicability of the proposed SMT framework.

7.1 Setup

We implemented the symbolic validation and reformulation approaches

using the pySMT [GM15] python library and the MathSAT5 [CGSS13]

SMT-solver. At the verification core, we use the symbolic model checker

HyCOMP [CGMT15]. Our work-flow takes as input a Smdkn and a

safety property, and performs validation (Val), reformulation (Ref), and

verification (Ver). The validation and the reformulation come with two

variants, basic (Bas), and optimized (Opt). Bas refers to the algorithms

of Section 6.1, Opt refers to those of Section 6.2.
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We run the experiments on a 3.5 GHz cpu with 16GB RAM, with time

out (to) set to 7200s for Val and Ref, and 18000 s for Ver. The tools

and the benchmarks are available at http://es.fbk.eu/people/sessa/

attachment/phdthesis/phdthesis.tar.bz2.

7.2 Benchmarks

We consider six scalable benchmarks chosen to stress the main aspects of

our approach in the validation, reformulation, and verification tasks. The

benchmarks come from four families of systems: the Water Tank System

(Wts), the Non-Linear Transmission Line (Nltl), the Wheel Braking

System (Wbs), the Landing Gear System (Lgs). Table 7.1 summarizes

the characteristics of the benchmark families.

Wts Nltl Wbs Lgs

Valid No Yes Yes Yes

Dynamics ODE ODE ODE PWL

Table 7.1: Main properties of the benchmarks.

The Water Tank System (Wts) is a set of monolithic hydraulic bench-

marks. The WtsLin[N ] and WtsRing[N ] benchmarks of Figure 7.1 rep-

resent networks of N hydraulic tanks connected at the base and subjected

to the same atmospheric pressure. The connection channels between tanks

are composed of valves and pipelines. The connection topology is linear in

WtsLin[N ] (Figure 7.1a) and circular in WtsRing[N ] (Figure 7.1b). The

flow pump on the left provides water to the tanks, while the flush valve on

the right discharges water from the system. When a channel between two

tanks is open, the water bidirectionally flow across the tanks according to

the communicating vessels principles. A full tank cannot accept further

incoming fluid. This is not an harmful condition by itself, but it may lead

to a pump failure if the pump is connected to a full tank and to a closed
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7.2. BENCHMARKS

channel. This is an hazardous condition for the entire system and we will

detect it discovering the invalid modes of the models. The Wts bench-

marks are originally proposed in [BBGJ15], with a hand-crafted technique

meant for the automatic generation of hybrid benchmarks that abstracts

away the mutual interactions among the water levels stored in the tanks.

On the contrary, our work aims at faithfully representing the physics of the

real system, retaining the compositional structure of the physical system.

(a) Linear topology (WtsLin[N ])

(b) Ring topology (WtsRing[N ])

Figure 7.1: Water tanks system with N tanks.

The Non-Linear Transmission line (Nltl) benchmarks of Figure 7.2 is

commonly used in the engineering practice to represents the propagation of

an electromagnetic signal along a non-linear transmission line in the form

of a an electrical lumped element model. We recall that a lumped element

model simplifies the description of the behavior of spatially distributed

physical systems (eg the non-linear transmission line) into a topology con-

sisting of discrete entities that approximate the behavior of the distributed
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system.

Figure 7.2: Lumped element model of the Non-Linear Transmission Line with N pairs of

stages (Nltl[N ]).

The Wheel Braking System (Wbs) discussed in the SAE standard

AIR6110 [SAE11] is a monolithic power-redundant hydro-mechanical sys-

tem designed to stop an aircraft. The two architectures WbsA2[N ] and

WbsA4[N ] of Figure 7.3 dispatch energy either from the main pressure

pump or the redundant accumulator on the left to the N wheel braking

lines on the right through a network of hydraulic pipelines and valves. In

turn, the brakes discharge their energy towards the fluid reservoir. The

selector valve disables the braking function by disconnecting the braking

lines from the power units. WbsA2[N ] and WbsA4[N ] differ for the inser-

tion point of the accumulator line: WbsA2[N ] contains a design flaw, fixed

in WbsA4[N ], because the accumulator is connected downstream of the

selector valve, and this may inadvertently activate the brakes even if the

selector valve is closed. The models consider several pipeline faults in the

form of fluid leakages. First, when the pipeline of the main pump fails, the

redundant hydraulic accumulator still supplies energy to the braking lines

while the isolation valve prevents the accumulator to discharge through

the broken pipeline. Second, when the pipeline of a braking line fails the

corresponding hydraulic fuse detects and stops the fluid leakage, isolating

the faulty brake. Since our modeling framework preserves the composition-

ality of the original systems, we highlight that a fault-free model is easily
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fault-extended by connecting additional faulty components to the nominal

model. Such components introduce into the model new discrete modes

with the physics necessary to describe the faults, e.g. the fluid leakages of

our Wbs benchmarks.

(a) Arch.2 (WbsA2[N ])

(b) Arch.4 (WbsA4[N ])

Figure 7.3: Wheel Braking System with N braking lines

The Landing Gear System (Lgs) of Figure 1.1 is a monolithic hydro-

mechanical system that control the undercarriage of an aircraft. The flow

pump operates two series of hydraulic cylinders that in turn drive mechan-

ical loads along a straight line. For every series of cylinders, a distribution

valve determines the moving direction of the cylinder rod by routing the

fluid through the two chambers of the cylinders. When the hydraulic pres-

sure in the left chamber is greater than the pressure in the right chamber,

the rod moves from left to right. Similarly in the other direction. A shut-
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off valve disconnects the pressure pump from the cylinders in order to lock

down the rod positions. Lgs[N ] is inspired to [BW14], and is parameterized

with respect to the number N of hydraulic cylinder lines.

Boolean vars Real vars

N 2 4 6 8 10 2 4 6 8 10

WtsLin[N ] 4 8 12 16 20 58 100 142 184 226

WtsRing[N ] 5 9 13 17 21 70 112 154 196 238

Nltl[N ] 4 8 12 16 20 70 126 182 238 294

WbsA2[N ] 11 19 27 35 43 119 185 251 317 383

WbsA4[N ] 11 19 27 35 43 119 185 251 317 383

Lgs[N ] 9 13 17 21 25 94 142 190 238 286

Table 7.2: Size of the encoding of the benchmarks in terms of Boolean and Real variables.

Table 7.2 and Table 7.3 report the size of the SMT encoding of the

benchmarks in terms of the Boolean and Real-valued variables needed to

encode the discrete modes and physical parts of the models, respectively.

Clearly, the size of the state-space makes manual inspection extremely

time-consuming, expensive, and unfeasible in practice.

Most of the benchmarks considered in this evaluation cannot be ana-

lyzed with the approach presented in [CMS16]. There are several reasons

for this. First, the benchmarks different from the Nltl are out of the

electrical domain. Even if [CMS16] deals with some simple hydraulic com-

ponents by means of the hydraulic-electrical analogy, the cylinder compo-

nent used in the Lgs does not fit in the domain analogy. Second, [CMS16]

cannot deal with non-deterministic algebraic variables. Our Wbs bench-

marks yield under-specified algebraic variables that were not present in the

much simpler and less complete model used in [CMS16]. Also, note that

our modeling of the Wbs benchmarks is different than the model presented

in [Bea15], which is an abstract, discretized and causal model of the system

suitable to perform a formal system safety assessment analysis in a single
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2 3 4 5 6 7 8 9 10

WtsLin[N ]

Input 1 1 1 1 1 1 1 1 1

State 2 3 4 5 6 7 8 9 10

Output 53 72 91 110 129 148 167 186 205

WtsRing[N ]

Input 1 1 1 1 1 1 1 1 1

State 2 3 4 5 6 7 8 9 10

Output 65 84 103 122 141 160 179 198 217

Nltl[N ]

Input 1 1 1 1 1 1 1 1 1

State 8 12 16 20 24 28 32 36 40

Output 101 145 189 233 277 321 365 409 453

WbsA2[N ]

Input 1 1 1 1 1 1 1 1 1

State 3 4 5 6 7 8 9 10 11

Output 112 143 174 205 236 267 298 329 360

WbsA4[N ]

Input 1 1 1 1 1 1 1 1 1

State 3 4 5 6 7 8 9 10 11

Output 112 143 174 205 236 267 298 329 360

Lgs[N ]

Input 3 4 5 6 7 8 9 10 11

State 2 3 4 5 6 7 8 9 10

Output 87 108 129 150 171 192 213 234 255

Table 7.3: Size of the encoding of the benchmarks in terms of input/state/output Real

variables. The number of the reformulated variables (i.e. the dotted variables) is equal

to the state variables.

global discrete mode of the network. Instead, in our Wbs benchmark we

model the real continuous physics of the system.

7.3 Validation

The results of the evaluation are summarized in Table 7.4. First, we con-

sider the runtime of the basic (Bas) and the optimized (Opt) encodings

for validation. We see that Opt solves 46 out of 54 instances, while Bas

times out on the 29 biggest instances. Focusing on the instances solved

by both encodings, Opt outperforms Bas by three orders of magnitude
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2 3 4 5 6 7 8 9 10

WtsLin[N ]

Bas 1 1 3 14 127 1426 to to to

Opt 1 1 1 1 2 4 7 9 15

WtsRing[N ]

Bas 1 4 47 661 to to to to to

Opt 1 1 2 3 4 12 22 38 89

Nltl[N ]

Bas 1 1 2 12 124 1837 to to to

Opt 1 1 1 1 1 2 2 2 2

WbsA2[N ]

Bas 10 252 to to to to to to to

Opt 1 2 20 195 2578 to to to to

WbsA4[N ]

Bas 9 279 to to to to to to to

Opt 1 2 15 156 1913 to to to to

Lgs[N ]

Bas 1 5 26 218 4074 to to to to

Opt 1 1 2 5 13 37 122 413 1284

Table 7.4: Validation time [s]. (to = timeout)

and scales much better w.r.t the benchmark size. Noteworthy, the Opt

method validates 227 discrete modes of the WbsA4[6] instances within 1913

seconds. These results provide a clear evidence that the Bas encodings is

infeasible for real life systems, while Opt offers an efficient solution to solve

the validation problem.

The Nltl, Wbs, and Lgs benchmarks have only consistent modes.

This does not hold for the Wts benchmarks, where a full tank cannot

accept further incoming liquid from the pump. We remind that the full

mode of the tanks may lead to several hazardous configurations of the

network, that correspond to all the valve configurations that connect the

pump to a sequence of full tanks ended by a closed channel. Our validation

approach is able to detect and report such bad configurations.

Although the reported validation runtimes make the proposed SMT-

based approach feasible for real-size application, the general trend of the

validation runtime appear to increase exponentially with the number of the

switching components in the network. Noteworthy, this exponential trend
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does not affect the Wts and Nltl benchmarks where the validation time

appears independent from the network size. We can make two considera-

tions about the better efficiency of the SMT engine on this benchmarks.

The Wts benchmarks are not-valid because they contain several incon-

sistent modes and the SMT engine is much more efficient in discovering

non-valid modes rather than valid modes. On the other side, the struc-

ture of the Nltl benchmark contains strong symmetries that maximize

the sharing of continuous dynamics, exploiting the symbolic ability of the

SMT engines that are really efficient on this kind of encodings. In the

following reformulation Section, we provide further details on the sharing

of continuous dynamics.

7.4 Reformulation

We consider the runtime for the Bas reformulation, and the Opt reformu-

lation. The reformulation is performed only for the benchmark instances

that completed the validation procedure; the reformulation not run are

marked with a na symbol in the results. From the results of Table 7.5, the

Bas encoding cannot deal with the benchmarks, whereas the Opt encod-

ing successes in reformulating all the instances that were validated in the

previous Section, except for the WbsA4[6] and Lgs[10] instances that run

out of time. Again, this happens because the Opt encoding exploits the

properties of the algebraic structure of the problem to mitigate the compu-

tational complexity of the quantifier elimination in the computation of the

first-derivative reformulations. Additionally, the syntactic substitution of

the first-derivative reformulation into the network DAE formula completely

avoids the need for the quantifier elimination step in the reformulation of

the algebraic variables.

We notice that the reformulation of the Wts benchmarks is restricted
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2 3 4 5 6 7 8 9 10

WtsLin[N ]

Bas 8 1072 to to to to na na na

Opt 1 1 3 7 17 34 62 118 213

WtsRing[N ]

Bas 39 to to to na na na na na

Opt 1 2 8 21 52 114 243 498 1732

Nltl[N ]

Bas 100 to to to to to na na na

Opt 3 6 13 22 40 69 104 135 183

WbsA2[N ]

Bas to to na na na na na na na

Opt 3 11 97 1072 na na na na na

WbsA4[N ]

Bas to to na na na na na na na

Opt 3 12 89 905 to na na na na

Lgs[N ]

Bas 187 to to to to na na na na

Opt 2 4 13 46 138 486 1636 5330 to

Table 7.5: Reformulation time [s]. (to = timeout, na = not available because the

validation run out of time and the reformulation is not performed).

to the valid modes. The ability of representing these non-valid networks

is crucial when considering the functional verification of the network com-

posed with a controller designed to prevent the reachability of hazardous

configurations.
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2 3 4 5 6 7 8 9 10

WtsLin[N ]

Total 10 22 40 65 98 140 192 255 330

Max 6 9 12 16 20 25 30 36 42

Min 4 5 6 7 8 9 10 11 12

Avg 5.0 7.3 10.0 13.0 16.3 20.0 24.0 28.3 33.0

WtsRing[N ]

Total 14 53 110 200 320 483 686 942 1248

Max 8 20 32 46 62 80 100 122 146

Min 6 15 23 35 47 63 79 98 117

Avg 7.0 17.7 27.5 40.0 53.3 69.0 85.7 104.7 124.8

Nltl[N ]

Total 12 18 24 30 36 42 48 54 60

Max 2 2 2 2 2 2 2 2 2

Min 1 1 1 1 1 1 1 1 1

Avg 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

WbsA2[N ]

Total 35 98 269 720 na na na na na

Max 17 41 97 225 na na na na na

Min 9 19 43 99 na na na na na

Avg 11.7 24.5 53.8 120.0 na na na na na

WbsA4[N ]

Total 39 119 345 955 to na na na na

Max 17 41 97 225 to na na na na

Min 11 26 62 146 to na na na na

Avg 13.0 29.7 69.0 159.2 to na na na na

Lgs[N ]

Total 12 32 88 218 540 1270 2960 6706 to

Max 6 12 22 46 90 186 370 754 to

Min 6 10 22 42 90 178 370 738 to

Avg 6.0 10.7 22.0 43.6 90.0 181.4 370.0 745.1 to

Table 7.6: Size of the reformulation. Total represents the sum over the reformulated

variables of the discovered equivalence classes. Max/Min is the size of the largest/smallest

partition in terms of equivalence classes. Avg is the size in terms of equivalence classes of

the average partition over the reformulated variables.

Similarly to the validation problem, the general trend of the reformu-

lation time is exponential in the number of switching components. This

trend is much less pronounced for the Nltl benchmark. Table 7.6 shows

the size of the reformulations in terms of the discovered distinct continuous
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dynamics. The average size of a first-derivative reformulation of the Nltl

benchmark is constant in practice and equal to 1.5 distinct dynamics. In

fact, thanks to the symmetries of the Nltl network, every reformulated

first-derivative variable experiences at most two distinct continuous

dynamics regardless of the size of the network. This extreme sharing of

continuous dynamics makes the total number of discovered dynamics linear

in the number of switching components, and the SMT engine can benefit

from this structural property of the network.

7.5 Verification

We model check the Wbs and Lgs benchmarks with the symbolic model

checker HyCOMP [CGMT15]. We use the HyCOMP tool as-is and with-

out any tight integration of our procedure into the model checker source

code.

For both Wbs benchmarks we consider the safety property “when the

selector valve is closed, a brake command cannot actuate any brake”. Con-

sistently with the SAE standard AIR6110 [SAE11], that describes such

design flaw, the safety property is violated for WbsA2[N ] and is verified

by WbsA4[N ]. For the Lgs benchmark, we check the existence of an

expected execution scenario with the invariant property “the first cylin-

der cannot reach its end-of-stroke”. The property is violated as expected,

demonstrating the existence of the execution scenario for the first cylinder.

The verification on the hybrid automata from the Opt reformulation

completes within the time out on all the benchmarks, returning the ex-

pected results. Finding the violation in WbsA2[N ] is slightly faster than

proving the property in WbsA4[N ]. Overall, these results provide empiri-

cal evidence of the applicability of our approach in the formal verification

of real world hybrid system represented as a Smdkn.
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Chapter 8

Case study: Railway Relay

Interlocking Systems

We present the results of the experimentation of our methodology on a

railway case-study developed in collaboration with Italian railway company

(Rete Ferroviaria Italiana). The work appeared in [CCM+18].

Figure 8.1: An example of railway system controlled by Ris.
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Railway signaling systems guarantee the safe operation of train traffic.

Trains run between points of the rail network, moving from section to

section along exclusively allocated routes and crossing roads (Figure 8.1).

Protection against catastrophic events, such as train-to-train and train-

to-car collisions, is devoted to various devices such as semaphores, barriers

at the level crossing, and train detection systems. These devices must be

suitably controlled and coordinated by a logic that ensures the safety of

operation even in case of multiple device faults.

Traditionally, the logic has been implemented by means of the Re-

lay technology, in the form of networks of interconnected analog electro-

mechanical components, such as power supplies, contacts, circuit breakers,

and many forms of electrically-controlled contacts, also known as relays.

This components are allocated in physical rack similar to those shown in

Figure 8.2.

Ris are progressively being replaced by computer-based logics (CBL),

that ensure greater flexibility and lower cost. The key question is how

to ensure that the CBL is compliant with the (trusted) behavior of the

relay-based interlocking being replaced. In some sense, the specification

for the CBL is hidden in the relay circuit. Unfortunately, Ris are often

old, legacy systems, hard to understand for software engineers at the level

of abstraction required to specify the CBL. Thus, the valuable information

they encode is not readily available.

Although relays may be thought of as Boolean components, that is just

open or closed, this turns out to be a gross simplification. In order to

operate (e.g. switching from open to closed), relays may require time,

and go through transients required to fully excite the circuitry. Hence, a

simple Boolean propagation is in fact a coarse abstraction of a sequence

of intermediate states before stability. Furthermore, relays are subject to

faults that may either delay or prevent the correct operation. Thus, relay

74



Figure 8.2: Traditional deployment of realy racks in relay room.
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networks are often designed in a redundant fashion in order to mitigate the

effect of faults and to ensure safety (at the cost of liveness) in all conditions.

In this thesis, we propose a methodology and a tool chain to analyze

and understand legacy Ris, adopted in an ongoing research project of

Rete Ferroviaria Italiana (RFI). At the surface, a graphical tool supports

the component-based modeling of the Ris. The designer selects compo-

nents from a palette of over 100 elements, and connects them according

to the input description – typically, a printout of the electrical schematic.

This step does not require any deep understanding of the nature of the

circuit, and ensures that the semantic gap w.r.t. the legacy description

is as limited as possible. The corresponding internal representation is re-

duced to a Switched Multi-Domain Kirchhoff Network (Smdkn), which

has a semantic based on Differential Algebraic Equations (DAE). In turn,

the Smdkn is compiled into a network of hybrid automata, based on the

techniques proposed in [CMS17]. Then, various forms of formal analysis

are supported by means of SMT-based model checking. At its core, the

approach is based on the modeling of the Ris analog signals (i.e. currents

and voltages) over continuous time. The ability to analyze the circuit at

the physical level supports a comprehensive understanding at the symbolic

level in terms of railways control actions. This is done by defining suitable

symbolic predicates in terms of the analog state: for example, a green light

to the train may correspond to a suitable current and voltage drop in the

corresponding semaphore lamp.

The methodology is fully supported by an automated SMT-based veri-

fication tool chain. We evaluated the approach on a set of industrial-size

railway Ris, with schematic having more than a thousand components

and four-meter long plotter printouts. The results demonstrate practical

scalability: we are able to prove (or disprove) conjectured properties, simu-

late scenarios, and construct fault-trees (FT) corresponding to undesirable
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Figure 8.3: Conceptual architecture of a Ris.

events.

This approach was devised as a consequence of a previous unsatisfying

modeling attempt we carried on basing our analysis on the traditional

formal modeling at the Boolean level. Since relays are not instantaneous

Boolean switches, substantial ingenuity from the modeler was required to

bridge the gap with respect to the electrical semantics. This made the

modeling task unmanageable in terms of conceptual hardness, and led to

imprecise results (due to spurious behaviors) that we will report in the

following sections. From a pragmatic perspective, the proposed approach

provides invaluable support for the understanding of the legacy circuit (and

ultimately the reverse-engineering of requirements for the CBL design).

8.1 Relay Interlocking Systems

A Relay Interlocking System (Ris) is an electro-mechanical system that

conveys messages between the railway agents (e.g., trains, dispatchers,

technicians). Figure 8.3 shows the conceptual architecture of a Ris: the

agents interacts with the field devices (e.g., semaphores, level crossing bar-

riers, railroad switches) that are in turn controlled through the relay control

logic (an interconnection of relays).

The agents interact with the field devices observing their state (e.g., if a
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semaphore light is on or off, the position of a barrier or of a railroad switch)

and perform some actions (e.g., toggling an electrical contact, pushing a

button) to change the current state of the Ris. The field devices are then

connected to the relay control logic that reacts to the state change to

implement the signaling system (e.g., lower the barrier of a level crossing

when a train is approaching).

The Ris is implemented as a network of switching electro-mechanical

components where relays are the main switching components. Relays are

electrically-controlled analog switches that implement the relay logic. A

relay contains a mechanical contact that can open or close a contact (e.g.,

a relay can open or close the circuit of a semaphore light turning it on or

off). A relay controls its contact with a coil that is physically disconnected

from the contact itself. The relay switches the contact when the current

that flows in the coil falls within or exceeds a current threshold. The relay

is in the dropped state when the coil’s current is below the threshold and

it is in the drawn state otherwise. When a component in a Ris switches

to a different state, for example when an agent pushes a button, it induces

different circuit contacts and hence a different behavior of the currents and

voltages in the Ris. The changes in the currents and voltages can in turn

change the state of the relays in the circuit (e.g., the change of the current

on the relay coil switches the state of the relay). Thus, a single state change

in the Ris may generate a sequence of subsequent state changes.

A principle schemata is the standard graphical representation1 of the

design of a Ris. Figure 8.4 shows the principle schemata for the Ris that

controls the semaphore lights for a level crossing (we will refer to this

example as R2G1). In the Ris a lever handle (the component named L1

in the lower left part of the diagram) controls the semaphore for the level

1We use the graphical representation defined in the Italian railway regulation UNIFER-CEI S-461

[Com76].
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Figure 8.4: Principle schemata of the Ris R2G1 that controls the semaphore lights for

a Ris level crossing. The Ris is formed by 4 sub-circuits not connected electrically —

from left to right: a lever handle, the lever sub-circuit, the sub-circuit that controls the

red lights of the traffic semaphore, and a sub-circuit that controls the green light of the

train semaphore.

crossing (the red lights R1 and R2) and the semaphore for the train track

(the green light G1).

Each connected set of components in the Ris represents a sub-circuit

(i.e., sub-circuits are not connected electrically to each other). In Figure 8.4

there are 4 sub-circuits — from left to right, the sub-circuits are the lever

handle L1 (note that the lever handle is by itself a sub-circuit), the sub-

circuit that is controlled by L1, the sub-circuit that controls the red lights,

and the sub-circuit that controls the green light.

The sub-circuits are not connected electrically (i.e., with a wire), but

are “connected” with some other means (e.g., mechanically, as for a lever,

or magnetically, as for a relay coil). A component on one sub-circuit (e.g.,
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a relay coil) opens or closes its contacts (e.g., the relay contacts) that are

on other (electrically disconnected) sub-circuits. The principle schemata

separates the representation of the components (e.g., a relay coil) and their

contacts (e.g., the relay contact). In Figure 8.5 we show the symbols for a

relay coil and its contacts. In a schemata, the components and their con-

tacts are identified by name: the contacts for a relay coil named RL1 will

be also named RL1. In a well formed schemata the same component name

is used only for a component and its contacts (e.g., two relay coils cannot

have the same name) and a contact must have a correspondent component

(e.g., if a schemata has a contact named RL1, it must also have a relay coil

named RL1). We say that there is a logical connection between a compo-

nent and its contacts. The contact symbols in the diagrams further define

Figure 8.5: Symbols of the relay coils and their contacts.

when the contact should be open or closed. The two left-most components

in Figure 8.5 are the relay coil RL1 and an “open” contact RL1 (in this

case, the “open” qualifier identifies a contact that is open by default). The

downward arrow shown on the left of the “open” relay contact specifies

what will be the state of the contact (i.e. open or closed) depending on

the state of its relay coil. In Figure 8.5, the contact RL1 is open when the

relay coil RL1 is dropped and closed otherwise. Note that for the “closed”

contact RL3 of Figure 8.5 the downward arrow specifies that the contact

is closed when the relay coil RL3 is dropped, and open otherwise.
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The graphical representation of the components further defines the elec-

trical terminals of the components with blue square boxes and the electri-

cal connections among terminals with black solid lines. The orientation of

a component (important to determine the physical position, such as if a

lever in the left, center, or right position), is uniquely represented with a

red triangle in the bottom right corner of the component. The graphical

representation describes also the initial state of switching components like

lever handles and relay coils. For relay coils (see Figure 8.5) the initial

state is determined by the upward or downward arrow at the left of the

component, while for lever handles the initial state is the position (left,

center, right) of the lever handle (e.g., in the schemata of Figure 8.4, the

lever handle L1 is initially in the left position).

In the Ris R2G1 we further have other electrical components like power

generators (PS1, PS2, and PS3) that generate a current on the sub-circuit

and “ground components” (GND1, GND2, and GND3) that determine

the ground for each sub-circuit. The lever “open” contact L1 in the Ris

R2G1 is further closed only if the lever handle L1 is in the center position

(see the position of the lever on the left of the L1 contact in Figure 8.4).

The Ris R2G1 implements a control logic that ensure that every time

the green light is on (i.e. the train can travel through the track section with

the level crossing), the red lights are also on (i.e. the cars have to stop at

the level crossing). In the initial configuration of the Ris R2G1 both the

red lights and the green lights are off. This is because the lever handle L1 is

in the left position, thus the lever contact L1 is open, and hence no current

flows in the sub-circuit and the coil RL1 is dropped. Since the coil RL1

is dropped, the contact RL1 is open and no current flows through the red

lights and the relay coil RL2, which are respectively off and dropped. The

contact RL2 is further open and the green light is off. When an operator

moves the lever handle L1 to the center position she starts a sequence of
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state changes in the Ris.

1. The operator moves the lever handle L1 to the center position. This

change instantaneously closes the lever contact L1, and the current

starts flowing on the coil RL1.

2. After a small amount of time (the “transient” time of the relay), the

relay coil RL1 switches from the dropped to the drawn state, and the

relay contact RL1 closes. At this point, some current flows on the red

lights and on the relay coil RL2. The red lights turn on.

3. After a small amount of time, the relay coil RL2 switches to the drawn

state and the relay contact RL2 closes, powering the green light that

turns on.

8.2 Modeling approach

8.2.1 Choosing the modeling abstraction level for relays

The physical behavior of a Ris is determined by the complex electro-

mechanical phenomena of the relays. The “stationary” relay’s states are

the drawn and dropped states. However, the real behavior of a relay is

more complex due to inertial electro-mechanical phenomena: the transi-

tion between two stationary states is not instantaneous when the current

on the relay’s coil exceeds (or falls below) the threshold. Thus, we face the

problem of modeling the relay’s “transient states”.

On the one hand a precise modeling of the “transient states” of the

relays is challenging. First, such modeling requires complex differential

equation; second, a Ris designer cannot reason precisely about the dynamic

of the relay in the transient states. On the other hand, a purely “Boolean

abstraction” approach that abstracts the physical quantities of the relay

(e.g., the current on the coil) is also not adequate. Such abstraction does
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not permit reasoning about the physical quantities and the relative time

between events.

We adopt an intermediate approach where we model the physical quan-

tities of the system but we abstract the “transient state” of the relays.

We model that after the relay’s current crosses the threshold the change

of state of the relay happens in a non-deterministic (but bounded) time

interval. This time interval is a known design parameter of a relay. Our

approach preserves the actual stationary physics of the system and enables

automatic reasoning on the relative time distance between events, that are

two key aspects for the designer. In our ongoing project we identified this

abstraction level as the suitable trade-off between the designer’s needs and

the availability of precise and efficient model checking algorithms.

8.2.2 Modeling Ris with Smdkn

Ris are networks of components electrically connected by means of the

Kirchhoff conservation laws. For this reason, we model Ris with Smdkn.

The main advantages of the Smdkn modeling are: (i) Preserve the Ris

structure. We model the Ris network as a Smdkn that has the same

network structure (i.e. electrical connections on the components’ termi-

nals). Thus, Ris designer can easily model the Ris principle schemata as

a Smdkn. (ii) Compositional modeling. Smdkn allow us to define the

component behaviors independently. Our modeling effort is thus limited

to create a library of components for the Ris domain. (iii) Smdkn are

an expressive and flexible modeling language. Smdkn allow us to

model the behavior of switching components as hybrid automata. With

hybrid automata we can easily model the “abstraction level” described

above. (iv) Availability of formal analysis techniques. There already

exist efficient formal verification techniques Smdkn [CMS16, CMS17] that

we can apply off-the-shelf.
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In the following, we describe in depth our modeling of the principle

schemata as Smdkn, focusing on the components, their electrical connec-

tions, and the logical connections.

Components. We model a component in the Ris domain as a compo-

nent in the Smdkn with a hybrid automaton. The hybrid automaton is

standard [Hen96]: it defines a finite set of discrete modes and continuous

variables. In each discrete mode the automaton defines with a differential

equation how the contiguous variables change in function of time, and with

a conjunction of Boolean inequalities the invariant conditions. Transitions

between discrete modes model the instantaneous state changes. Both Ris

and Smdkn components have electrical terminals. We follow the stan-

dard approach in acausal modeling [Fri14] to encode terminals with two

variables, the flow and effort variables. In the electrical domain, the flow

variable represents the current on the terminal, while the effort variable

represent the potential on the terminal. Flow and effort variables will then

be used to model the Kirchhoff conservation laws. The terminal implicitly

has two continuous variables to represent flow and effort. Note that a com-

ponent only exposes the effort and flow variables to the other components.

We describe in depth the modeling of a relay coil and of a faulty lamp.

Both components are representative of the Ris library we developed that

contains more than 100 components.

The model of the delayed relay coil shown in Figure 8.6 follows the

abstraction level described above where the transient states of the relay coil

are modeled non-deterministically. The two modes Dropped and Drawn of

the automaton represent two stable states where the coil has completely

actuated its contacts. The two modes Drawing and Dropping encodes the

transient states of the coil. The automaton uses a clock variable clock to

encode the bounded and non-deterministic transition delays between the
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stable modes. In particular, the automaton transition from the Dropped to

the Drawn mode only fires when the electrical current I through the coil

continuously exceeds the current threshold Ith for a non-deterministic time

within the specified time interval [∆T−,∆T+]. The same happens for the

transition from the Drawn to the Dropped mode.

Figure 8.6: Hybrid automaton of the delayed relay coil.

Figure 8.7 shows the model of a faulty lamp, a lamp that can fail either

creating a short-circuit or opening the circuit. The Nominal mode encodes

the correct behavior of the lamp, which behaves as an ohmic load resistor.

The automaton encodes the two fault conditions in the FaultShort and

FaultBlown modes, where the lamp behaves respectively as a short-circuit

and as an open circuit. The automaton can non-deterministically tran-

sition from the nominal mode to the two faulty modes. Since the lamp

does not exhibit commutation delays, the hybrid automaton does not have

continuous variables.
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Figure 8.7: Hybrid automaton of the faulty-lamp.

Physical connections. The semantics of the terminal connections follows

the Kirchhoff’s conservation laws. Given a set of connected terminals, all

the effort variables of the terminals take the same value, and the sum of

all the flow variables of the terminals equals zero. The Smdkn semantics

already considers the Kirchhoff’s law.

Logical connections. We model the logical connection among two compo-

nents (e.g., a relay coil and one of its contacts) with additional synchro-

nization constraints among the discrete modes of the hybrid automata of

two components. For instance, for the relay coil RL1 and the relay contact

RL1 of Figure 8.5 the constraint encodes that the coil is in the Dropped

mode if and only if the contact is in the Open mode, and in the Closed

mode otherwise. Similarly, for the lever handle L1 and its lever contact L1

of Figure 8.4, we say that the handle is in the Center mode if and only if

the contact is Closed mode.

Physical behavior of the running example. We present the relevant elec-

trical behavior of the R2G1 system when lamps can fail either blown or

short-circuited. The relay coil RL2 of Figure 8.4 senses the electrical cur-

rent IPS2
flowing through the parallel connection of the red lamps R1 and

R2 in order to monitor their status. The current threshold of the coil RL2

should be properly set to prevent inadvertent activation of the green lamp
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G1 when the red lamps are either off or faulty. Table 8.1 shows the value

of the current IPS2
as a function of the 9 possible system modes resulting

from the cross product of the 3 modes of the red lamps (see Figure 8.7).

System mode Current IPS2

Both red lamps failed blown 0.0 Ampere

One red lamp failed blown, one red lamp nominal 3.0 Ampere

Both lamps nominal 4.0 Ampere

At least one red lamp failed short-circuited 6.0 Ampere

Table 8.1: Values of the electrical current IPS2
sensed by the relay coil RL2 when the

red lamps are power supplied by the closed relay contact RL1.

To detect the simultaneous activation of the red lamps, the current

threshold of the relay RL2 must be set in the interval ]3.0A, 4.0A[, for

instance to 3.5A. Notice that, in the system design of Figure 8.4, the con-

figurations “both lamps nominal” and “at least one red lamp failed short-

circuited” are indistinguishable to the coil RL2 because in both cases the

current IPS2
exceeds the coil threshold of 3.5A. In the following section,

we discuss the implication of this consideration on the overall system safety

and we show how the proposed methodology supports the designer on this

kind of quantitative reasoning.

8.3 Formal analysis

In a Ris, the agents determine their next action observing the state of

the field devices. Thus, the agents observe a partial-state of the system

because the internal state of the control logic is hidden from their point of

view. Nevertheless, the correctness of the signaling protocol is implicitly

dependent from the implementation of the relay logic.

In our methodology, we propose to analyze the system at two levels of

detail: at the higher railway level we consider only high-level properties

87



CHAPTER 8. CASE STUDY: RAILWAY RELAY INTERLOCKING SYSTEMS

over the field devices (e.g., the lamp emits light, the barrier is closed),

despite the technological details of the control logic; at the lower physical

level we consider properties that investigate the internal technological as-

pects of the control logic and of its physics (e.g., two terminals must be

short-circuited when a relay is in a specific mode). This layered approach

reduces the total effort to specify properties: the properties at the railway

level are independent from the implementation of the control logic and can

be reused for multiple control logic implementations.

8.3.1 Properties specification

a property at the physical level predicates on low level aspects of the sys-

tem such as physical quantities and operating modes of the components.

Focusing on the electrical domain, we can predicate either on the voltage

drop ∆V across a pair of terminals, or on the current I that flows through

a terminal. A similar approach holds in the mechanical domain replac-

ing current and voltage with torque and angular velocity. A property can

further predicate on the operational modes of the components.

A railway property is automatically mapped onto a combination of phys-

ical properties, hiding its implementation details. For instance, consider

the sentence “the lamp G1 emits light”. Since a lamp is electrically equiv-

alent to an ohmic load resistor, the property is equivalent to “the lamp

G1 consumes electrical power” that in turns is equivalent to the first-order

logical formula IG1
6= 0.0 ∧ ∆VG1

6= 0.0. Notice that in the context of

physical reasoning it is necessary to predicate on both currents and volt-

age drops in order to distinguish the nominal behavior of the lamp from

the faulty ones (i.e. those in which the lamp is power supplied, but does

not emit light). In fact, a short-circuited lamp is traversed by a non-null

current (IG1
6= 0.0), but its voltage drop is zero (∆VG1

= 0.0); similarly,

a blown lamp is traversed by a null current (IG1
= 0.0) even if its voltage
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drop is different from zero (∆VG1
6= 0.0). In our specification settings, we

could also refine the property exploiting detailed information available to

the designer. Assuming to know the range of nominal currents absorbed

by the lamp (e.g., from its data sheet), we could rewrite the predicate

IG1
6= 0.0 into a more precise one such as 1.5 ≤ |IG1

| ≤ 2.3.

8.3.2 Analysis of the running example

in the following we demonstrate the need of the quantitative reasoning,

which is enabled by our modeling approach, using the Ris R2G1 of Fig-

ure 8.4. We further consider variants of the R2G1 model changing the

fault model for the red lamps and the current threshold of the relay coil

RL2. The red lamps may either not fail, or the red lamps may blown

(see the FaultBlown state in Figure 8.7), or the red lamps can introduce a

short circuit (see the FaultShort state in Figure 8.7). The current threshold

on the relay coil RL2 may be either 2.5A, or 3.5A, or 4.5A. We consider

the reachability property RP := “the green lamp G1 can emit light”, and

the safety property SP := “if the green lamp G1 emits light, then both red

lamps R1 and R2 emit light”. We expect RP to hold for R2G1, witnessing

an execution scenario where green lamp is on, and SP to hold to ensure

the safety of the R2G1 system. The verification results are available in

Table 8.2.

When the current threshold of the relay coil RL2 is over-dimensioned to

4.5A, the unexpected verification of the property RP proves that the green

lamp cannot emit light because the relay contact RL2 will never supply

power to the lamp (rows 3, 6). Decreasing the threshold, RP always holds

and this fact guarantees that the green lamp can turn on.

When the current threshold is under-dimensioned to 2.5A, the safety

property SP is violated in the system variant with blown lamps (row 4).

The counterexamples returned by the model checker provide execution
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Nr. R2G1 Variants Verification results

Faults RL2 thresh. RP SP

1 None 2.5A Hold Hold

2 None 3.5A Hold Hold

3 None 4.5A Doesn’t hold Hold

4 Blown 2.5A Hold Doesn’t hold

5 Blown 3.5A Hold Hold

6 Blown 4.5A Doesn’t Hold Hold

7 Short 2.5A Hold Doesn’t hold

8 Short 3.5A Hold Doesn’t hold

9 Short 4.5A Hold Doesn’t hold

Table 8.2: Verification results (property holds or does not hold) on variants of R2G1

introducing faults on the red lamps and changing the current threshold on the relay coil

RL2.

scenarios able to reach the violation, but do not represent an exhaustive

analysis. To determine all the minimal configurations of faults that lead to

the violation, we perform formal safety assessment to compute fault-trees.

For the system variant of row 4, the fault-tree of the safety property SP

shows two possible fault configurations: when one red lamp fails blown,

the other red lamp can still emit light absorbing 3.0A (see Table 8.1) from

the power supply PS2. The 3.0A current exceeds the under-dimensioned

threshold of 2.5A, thus the relay RL2 inadvertently supplies power to the

green lamp, violating the safety property. We fix this design flaw setting

the coil threshold to 3.5A (row 5).

Unfortunately, the safety violation still occurs when the lamps fail short-

circuited (row 8). The safety assessment process reveals that if any red

lamp fails short-circuited, a current of 6.0A is drawn from PS2 (see Ta-

ble 8.1), and the relay coil RL2 is again deceived. This design flaw cannot

be fixed by simply adjusting the electrical parameters of the system, but

requires the upgrade of the entire design as shown in Figure 8.8. In the

90



8.3. FORMAL ANALYSIS

system upgrade, the additional relay coil RL3 is Drawn when the current

IPS2
exceeds the threshold of 4.5A, that makes its contact RL3 open, thus

preventing the green lamp from turning on if a red lamp is short-circuited.

8.3.3 Need of quantitative modeling for verification

Figure 8.8: Upgraded design of the Ris R2G1 from Figure 8.4

We make a small digression to report the main limitations we encoun-

tered while applying the traditional Boolean modeling approach (i.e. the

one based on the concept of conductive paths) that led us to this work.

Referring to the upgraded R2G1 design of Figure 8.8, Figure 8.9 shows the

value of the current IG1
flowing through the green lamp G1 as a function

of the current IPS2
sensed by the relay coils RL2 and RL3. Our physi-

cal modeling approach (Figure 8.9-(2)) is able to properly discriminate the
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faulty scenarios (i.e. IPS2
< 3.5A and IPS2

> 4.5A, where 3.5A is the RL2

threshold and 4.5A is the RL3 threshold), keeping the green lamp properly

turned-off (i.e. IG1
= 0.0A). Differently, the expressiveness of the Boolean

approach ((Figure 8.9-(1))) cannot discern between different values that

are greater than zero. This means that, for every current IPS2
> 0.0A,

the relay coils RL2 and RL3 would be considered always Drawn, resulting

in a spurious behavior with the green lamp always turned-off.

Figure 8.9: Spurious behavior on the green lamp G1 introduced by the Boolean modeling.

The relay coils RL2 and RL3 are permanently Drawn, and keep G1 always turned off.

8.4 Tool Chain

The proposed methodology was implemented in a tool chain composed of

various blocks and represented in Figure 8.10.

The first block is a graphical front end (Figure 8.11) based on a cus-

tomization of the DIA [GNO17] modeling environment. The palette of the

front end supports over 100 distinct graphical symbols, corresponding to a

subset of the components that can be found in Ris according to the Italian

regulation. Each symbol is associated to an internal data structure, where

parameters of various kinds are associated (e.g. delay in response time,

resistance, and angular velocity).
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Figure 8.10: Overview of the tool chain implemented for the analysis of Ris.

The front end supports the connection between components, and carries

out a number of sanity checks to pinpoint errors such as dangling termi-

nals, missed components in logical connections, and conflicting logical con-

nections between incompatible symbols. The front end also supports the

definition of railway predicates representing some relevant physical condi-

tions. Properties are expressed in form of linear temporal logic over both

railway and physical predicates.

The second block is a compiler from Smdkn to hybrid automata net-

work, symbolically expressed in the HyDI language [CMT11b]. The com-

piler is written in Python, and implements the conversion traversing the

network based on an extensible library of behavioral component descrip-

tions.

The third block is the HyCOMP model checker [CGMT15], that pro-

cesses the resulting HyDI network and carries out the required analyses,

leveraging various SMT-based engines for model checking [CCD+14], to-
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gether with xSAP [BBC+16] for safety analysis and fault-trees production.

8.5 Experimental Evaluation

8.5.1 Benchmarks

We evaluated the proposed methodology analyzing a scalable, industrial-

size Ris referred to as RIScs. Figure 8.12 shows a simplified layout of the

RIScs, omitting both the electrical connections among devices and other

confidential details of the relay logic. The RIScs[i] system represents a

railway section along a bidirectional train line containing a sequence of i

level crossings, with 1 ≤ i ≤ 10. The section is protected on each track

side by a warning and a protection semaphore. The warning/protection

semaphores have three yellow/red lamps (Wyl/Prl) and two green/green

lamps (Wgl/Pgl). The lamps of the same color are electrically connected

in parallel to improve the redundancy of each semaphore. Every level cross-

ing is protected on each street side by a barrier (Lcb) and by a vehicular

semaphore consisting of one red lamp (Lcl). The presence of the train

along the line is detected by means of the train approaching pedals (Tap)

and of the train detection pedals (Tdp). The maintainers can complete-

ly/partially disable the section acting on several maintenance levers (Gml,

Taml, Lcml) at the maintenance place. The train dispatcher can activate

the section acting on the section enabling lever (Sel) at the train station.

The relay logic is electrically connected to all the devices shown in Fig-

ure 8.12. The relays sense the electrical currents flowing through every

connected device and actuate a specific control sequence, transferring en-

ergy between the devices. For instance, when the train pushes the left train

approaching pedal (left Tap), closing its sub-circuit, the logic checks the

magnitude of the current flowing through the level crossing lamps (up/-

down Lcl) of the vehicular semaphores, and, if all the lamps work properly,
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the logic powers on the engines of the barriers (Lcb) to start the lowering

sequence.

We modeled the RIScs case studies with our tool, selecting and mod-

eling the components and their parameters, their interconnections, and

verifying properties of interest. The overall modeling task lasted for about

3 weeks, including the creation of a reusable behavioral component library.

The largest system RIScs[10] contains 141 power supplies, 22 resistors,

113 relays, 15 levers, 12 pedals, 678 contacts, 40 lamps, 23 maintenance

lights, and 54 circuit breakers (printed on twenty A4-sheets of paper).

These components are distributed over 125 sub-circuits. The conversion

of the corresponding Smdkn into hybrid automaton returns an SMT en-

coding that uses 437 Boolean variables to encode the discrete part, and

6281 real-valued variables to encodes the physical part. Clearly, the size

of the state-space makes traditional manual inspection extremely time-

consuming, expensive, and unfeasible in practice.

We present the results of the analysis on the nominal and faulty variants

of the RIScs system, where up to 80 electrical faults (i.e. blown or short-

circuited lamp) are injected on the 40 semaphore lamps in the case of the

RIScs[10] benchmark.

8.5.2 Verification

We model checked the RIScs system against 190 invariant properties, run-

ning the two verification algorithms IC3 [CGMT16] and BMC [BCC+03]

that represent complementary techniques to either verify or falsify prop-

erties. We run the experiments on a 3.5 GHz cpu with 16GB RAM, with

time out (to) set to 3600 seconds. About half of the properties represent

scenarios that are supposedly feasible, and are used to validate the system

design. The first validation round reported that some scenarios were found

to be (unexpectedly) unfeasible. Upon fixing some buggy components in
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the behavior library, all the scenarios were proved to be feasible, within the

timeout of 3600s, in both the nominal and faulty case. The resulting execu-

tion traces were analyzed and validated by the domain experts. Examples

of scenario include that every lamp of every semaphore can be turned on

and then off (Figure 8.13), or that every barrier can be completely lowered

and then raised (Figure 8.14).

Figure 8.13: Graphical representation of the property “Every semaphore lamp can turn

off/on”.

Figure 8.14: Graphical representation of the property “A complete lowering-raising se-

quence of the barriers is possible”.

The remaining properties express the absence of safety violations. Most

of them are verified in the nominal case within the timeout, except for

three properties on the synchronization among the warning and protection

semaphores.

Some relevant properties expressing the proper synchronization between

the semaphore lights and the barriers positions hold also under the non-

nominal case (i.e. when components are subject to faults). For instance,

the model guarantees that the green lamps of the protection semaphores are

off when the level crossing barriers are not completely closed (Figure 8.15).
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Figure 8.15: Graphical representation of the property “The train semaphores never grant

access to the train when the barrier is not completely closed”.

Moreover, we are guaranteed that the colors of every semaphore are

turned on in a mutually-exclusive way (Figure 8.15).

Figure 8.16: Graphical representation of the property “The two semaphore colors are

always mutually exclusive”.

Noteworthy, we successfully verified an electrical safety requirement (a

low-level electrical property) prescribed by the national regulation: the

level crossing lamps are short-circuited when the barriers are open and

resting to prevent inadvertent activation.

59 safety properties were violated in the faulty case. Some of them

check for each semaphore if there is always at least one lamp turned on.

Of course, in case of multiple lamp faults, this condition cannot be avoided

because all the lamp might fail. With formal safety analysis, we compute

the fault tree responsible for the violations. For a warning semaphore,

the fault tree (Figure 8.17) shows that the violation might be reached in

7 distinct circumstances: either all yellow lamps are blown, or all green

lamps are blown, or at least one yellow lamp is short-circuited, or at least

one green lamp is short-circuited. The first two circumstances represent

fault configurations of size 3 and 2, respectively the number of yellow and
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green lamps, that would be hard to spot by manual inspection.

100



8.5. EXPERIMENTAL EVALUATION
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Chapter 9

Related Works

Multi-Domain Kirchhoff Networks are widely used in various engineer-

ing applications [YONS16, EOS97, DMBF13]. Different tools support the

acausal modeling phase [Fri14, Mat18, Bro99], also for networks with dis-

crete switches. The main analysis tools are based on numerical simulation

and use numerical integration. Although simulation provides high scalabil-

ity and enables the analysis of complex dynamics [Ria08, Ben14, Ska01], a

preliminary validation of the network modes is not provided. Therefore, a

hidden inconsistent mode can be discovered only if the user designs a sim-

ulation trace that is able to reach it. Furthermore, numerical simulators

(e.g. [Mat18]) restrict the use of components equipped with ideal behav-

iors, leading to the model pollution due to parasitic effects, that are hard to

quantify and deviate the simulation results from the intended nominal be-

havior. The INTO-CPS project [LFW+16] realized an integrated tool chain

for comprehensive model-based design of cyber-physical systems. The tool

chain supports the multidisciplinary, collaborative modeling of CPSs from

requirements, through design, down to source code generation and deploy-

ment on hardware. Model exchange and co-simulation of dynamic model

is supported by a tool-independent standard named Functional Mock-up

Interface (FMI) [BOA+11]. Although the INTO-CPS tool chain mainly
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focuses on co-simulation, some model checking features are provided as

well. The continuous dynamics of the cyber-physical system is abstracted

using discrete-event abstractions which are expressed as state machines.

The overall cyber-physical system is then represented as the composition

of discrete-event components only. The tool chain provides SMT-based

reasoning on this network of components. INTO-CPS supports three dif-

ferent kinds of abstractions of continuous dynamics: based on intervals,

based on the derivative of the signal values, and based on interval ab-

stractions specifically generated from concrete simulations. Our SMT-base

approach is positioned at a higher level with respect to the abstraction

of a specific continuous dynamics performed by the model checker. Our

validation and reformulation approach aims at reformulating the DAE dy-

namics into a hybrid automaton wit ODE amenable to formal verification

with the existing SMT model checkers. Our reformulation process is pre-

cise in the sense that the abstraction of the continuous dynamics is not

involved. Additionally, our approach is general in the sense that does not

rely on any particular model checking engines and abstraction technique.

We think that our approach might be complementary with respect to the

co-simulation approach.

In the following, we focus on works based on formal methods.

The closest related work is [CMS16], that presents a method to con-

vert Switched Electrical Kirchhoff Networks (SEKN) into hybrid au-

tomata. The work proposed here is more general than [CMS16] in two

respects. First, we are able to deal with multi-domain networks, en-

abling mechanical, electrical and hydraulic domains, and their combina-

tion, whilst [CMS16] is restricted to electrical networks. Second, the

method in [CMS16] is only able to produce a hybrid automaton if the

electrical network fulfills the conditions of existence and determinism in

all the modes and for all the variables, while here we analyze Smdkn

104



with non-deterministic algebraic variables as well. Both extensions are

made possible by the adoption of a theoretical settings that is significantly

more general than the domain-specific topological approach on the network

graph used in [CMS16]. We remark that all the experiments presented in

the previous chapter are based on benchmarks that are out of reach for

the method in [CMS16]. In [BBGJ15], a framework for generating hybrid

automata benchmarks from a hydraulic domain is presented. This work is

only seemingly related to ours. The domain knowledge in [BBGJ15] (e.g.

that a pump cannot draw a constant flow from an empty tank) appears

to be hard-coded in the generation scripts; in our case, the detection of

these conditions and the generation of the hybrid automata are direct con-

sequence of the algebraic approach applied to the network description. As

discussed in the experimental evaluation, our approach is able to deal with

a significantly larger class of benchmarks than those in [BBGJ15], and also

to automatically identify invalid modes in the network, reasoning on its

algebraic properties.

Most of the formal verification tools are unable to deal with DAE. An

exception is KeymaeraX [FMQ+15], a theorem prover for hybrid sys-

tems represented with Differential-Algebraic Equations. In principle, the

KeymaeraX proof system can support the proof of safety properties over

Smdkn, by means of compositional reasoning. Key differences with our

approach are that KeymaeraX is not fully automatic, and has no specific

methods to address the validation problem.

The existing tools for formal verification of hybrid systems [Alu11] do

not directly consider Multi-Domain Kirchhoff Network, but work on hy-

brid automata [Hen96]. Tools like SpaceEx [FGD+11] or Flow* [CÁS13]

work on an explicit representation of the system and hence they suf-

fer from the explosion in the number of modes of the system. Other

tools [Tiw12, CGMT15, KGCC15, BKG15] reason on the symbolic rep-
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resentation of the system. HybridSAL [Tiw12] and HyComp[CGMT15]

analyze linear hybrid systems whose continuous dynamics is specified with

a linear ODE. dReach [KGCC15, BKG15] can be used to either perform

Bounded Model Checking or apply induction to verify a system expressed

with ODEs. From a DAE-based network, our reformulation step produces

this kind of formal models.

Other verification techniques focus on analog-mixed-signals cir-

cuits [ZTB06, DDM04, FKRM06, LAH+15, ZSS12]. They take the hybrid

automata representation of the electrical circuit, so do not face the val-

idation and reformulation problems. Additionally, they do not consider

multi-domain networks and perform an analysis explicit in the modes that

might exponentially blow-up.

Other approaches exist to generate a formal representation

from Simulink and other causal component-based modeling lan-

guages [MMBC11, MF16]. This causal semantics considers systems

represented as a connection of input-output functional blocks, posing

a major obstacle to the modeling of Smdkn. Our work differs from

those approaches since we natively accept the more suitable acausal

component-based modeling, that, on the other side, requires to tackle the

reformulation problem.

From the point of view of the railway case study, formal methods

have been heavily applied in the railway domain. Important works on

the verification of interlocking systems include (but are not limited to)

[HØ16, HHP17, FHM17, HCC+00, CCL+12, CGM+98]. These works are

not related, since they do not consider the specific case of relay circuits.

To the best of our knowledge, no works address the verification problem

of a Ris based on its hybrid physical behavior, except our work [CCM+18].

Closely related works are [BFBT16, BFB+13, HKB11, Eri04]. While we

model the evolution of continuous signals over time, the above works model
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Boolean signals evolving over discrete time. Furthermore, these works as-

sume that the interaction with the environment is limited to one input

per cycle to ensure that the internal micro-sequence of relay commutations

started from an input command is fully extinguished (run to completion)

before the arrival of the next input. In [Eri04], two interesting observa-

tions are made. First, the discrete model of time does not support reason-

ing about relative time distances (e.g., between events, and on parasitic

delays); second, the restriction on the number of inputs per execution cy-

cle only works under the assumption that the control logic reacts “quickly

enough” to every change in its environment. Our approach overcomes both

limitations adopting a continuous model of time and not imposing restric-

tions on the environment. Thus, we deal with an arbitrary number of

concurrent inputs and analyze the effect of inputs received in the middle

of an internal micro-sequence.

We now analyze these works in more detail. The works [BFBT16,

BFB+13] present a practical approach to the Ris safety certification.

A Boolean model is extracted from the Ris and analyzed via SAT-

based abstraction-refinement. Our SMT-based approach enables more fine

grained analyses, modeling the precise physics of the system and prevent-

ing spurious behaviors introduced by the Boolean abstraction. The work

[HKB11] builds a Boolean model based on the abstraction concept of con-

ductive path: a relay coil is drawn iff all the conduction conditions along

a conductive path from a power supply to the coil are satisfied. This

approach is subject to several limitations: it is only valid under some as-

sumptions on the system physics (e.g., all the power supplies are always

up and running); it requires the enumeration of a potentially exponential

number of conductive paths; it does not permit a quantitative reasoning

(e.g., how much current flows through a conductive path). There is only

one work [Eri04] that considers risk analysis and the effects of single-mode
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faults on the system safety. These faults are Boolean and limited to the

discrete state of relays (e.g., stuck at dropped/drawn). In our work we al-

low the designer to specify a larger class of faults, both on the discrete and

physical state of components, with no limitation on the contemporaneity

of fault occurrences.
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Chapter 10

Conclusion

We presented an SMT-based method for the formal analysis of Switching

Multi-Domain Kirchhoff Networks (Smdkn), that is able to automatically

validate and reformulate a Smdkn into a symbolic Hybrid Automaton,

amenable to be formally verified with the existing model checkers. The

approach covers networks spanning multiple physical domains and exhibit-

ing non-deterministic behaviors, achieving substantial improvements over

a pure SMT-based approach by leveraging general results in linear algebra.

We implemented and evaluated the SMT-based procedures to validate and

reformulate the network, demonstrating the potential of complete verifica-

tion workflow on real-world systems and on a railway case study developed

in collaboration with the Italian train company.

We plan to extend the approach to incorporate networks with discon-

tinuous state variables [Mea97], produce a network of HA instead of a

monolithic HA.

In the railway case-study we experimented an approach based on this

work to understand legacy relay circuits in the railway domain. We rely

on an accurate representation at the physical level in form of Switched

Kirchhoff Networks, that is then reduced to a symbolically represented

network of hybrid automata, and then analyzed by means of SMT-based

109



CHAPTER 10. CONCLUSION

model checking. The experimental evaluation demonstrates the precision

and scalability of the analyses. The proposed methodology is at the core

of an ongoing research project aiming at the in-the-large analysis of legacy

railway interlocking and the open specification of computer-based solu-

tions. Directions for future research include the definition of a library of

property patterns, the definition of specific verification engines, and the

integrated animation of counterexamples.
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ences. Springer, Birkhäuser Mathematics, 2014.

111



BIBLIOGRAPHY

[BFB+13] Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini,

Matteo Tempestini, and Leonardo Cipriani. Validation of rail-

way interlocking systems by formal verification, A case study.

In Software Engineering and Formal Methods - SEFM 2013,

pages 237–252, 2013.

[BFBT16] Andrea Bonacchi, Alessandro Fantechi, Stefano Bacherini, and

Matteo Tempestini. Validation process for railway interlocking

systems. Sci. Comput. Program., 128:2–21, 2016.

[BKG15] Kyungmin Bae, Soonho Kong, and Sicun Gao. SMT encoding

of hybrid systems in dReal. In ARCH14-15. EasyChair, 2015.

[BOA+11] Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze

Bausch, Christoph Clau, Hilding Elmqvist, Andreas Jung-

hanns, Jakob Mauss, Manuel Monteiro, Thomas Neidhold, Di-

etmar Neumerkel, Hans Olsson, Jrg-Volker Peetz, and Susann

Wolf. The functional mockup interface for tool independent

exchange of simulation models. pages 105–114, 03 2011.

[Bro99] Jan F. Broenink. 20-sim software for hierarchical bond-

graph/block-diagram models. Simul. Pr. Theory, 7(5-6):481–

492, 1999.

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and

Cesare Tinelli. Satisfiability modulo theories. In Handbook of

Satisfiability. IOS Press, 2009.

[BW14] Frédéric Boniol and Virginie Wiels. The landing gear system

case study. In ABZ 2014: The Landing Gear Case Study, pages

1–18. Springer International Publishing, 2014.

112



BIBLIOGRAPHY
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Appendix A

Library of components

We provide several details on the library components that we use in the

models presented in this thesis. Table A.1 shows the physical dimension

of the effort and flow variables in several physical domains.

Physical domain Effort Flow

Electrical Potential Current

Hydraulic Pressure Volumetric flow-rate

Gas Pressure Mass flow-rate

Mechanical translational Linear velocity Force

Mechanical rotational Rotational velocity Torque

Thermal Temperature Heat flow

Magnetic Magnetomotive force Magnetic flux

Table A.1: Dimension of the effort and flow variables in different physical domains.

A.1 Algebraic components

We start from the description of algebraic components that does not con-

tain differential behaviors.
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A.1.1 Electrical reference

The electrical reference of Figure A.1, also called ground, is a one-terminal

component with one operating mode. The terminal is an electrical ter-

minal. The component provides a reference potential to a node of the

network. This reference is conventionally equal to zero v− = 0. There are

no additional constraints on the terminal current that is determined by the

mutual-interaction of the component with the network.

Figure A.1: Electrical reference.

A.1.2 Electrical current source

The electrical current source of Figure A.2 is a two-terminal component

with one operating mode. The terminals are electrical terminals. The com-

ponent forces the current i− on its network branch to be identically equal

to a continuous function of time provided by the designer as a parameter

of the component. Since the current i− drives the network with a user-

defined time-evolution, we say that i− is an input variable of the network.

An additional constraint i+ + i− = 0 describes the current conservation

law through the component: the current entering one terminal equals the

current exiting the other terminal. No equations about the potential vari-

ables are defined because the voltage drop of the component is determined

by the mutual-interaction of the component with the network.

122



A.1. ALGEBRAIC COMPONENTS

Figure A.2: Electrical current source.

A.1.3 Electrical voltage source

The electrical voltage source of Figure A.3 is a two-terminal component

with one operating mode. The terminals are electrical terminals. The

component forces the voltage drop v+ − v− between the terminals to be

identically equal to a continuous function of time provided by the designer

as a parameter of the component. We call V the voltage drop v+− v− and

we say that V is an input variable of the network because it drives the

network with a user-defined time-evolution. An additional constraint i+ +

i− = 0 describes the current conservation law through the component: the

current entering one terminal equals the current exiting the other terminal.

No equations about the current variables are defined because they are

determined by the mutual-interaction of the component with the network.

Figure A.3: Electrical voltage source.

A.1.4 Electrical resistor

The electrical resistor shown in Figure A.4 is a two-terminal component

with one operating mode. The terminals are electrical terminals. The

resistor implements the Ohm’s law v+ − v− = r ∗ i+: the voltage drop
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v+ − v− between the terminals is directly proportional to the current i+

through the component with a positive proportionality constant r called

resistance. The additional constraint i+ + i− = 0 describes the current

conservation law through the component. Currents and potentials of the

terminal are determined by the mutual-interaction of the component with

the network.

Figure A.4: Electrical resistor.

A.1.5 Hydraulic reservoir

Figure A.5 shows the hydraulic reservoir component. It is a one-terminal

component with one operating mode. The terminal is an hydraulic ter-

minal. The reservoir represents an ideal buffer for the fluid that exceeds

the network capacity. The component provides a reference linear velocity

to a node of the network. This reference is conventionally equal to zero

pA = 0. There are no additional constraints on the terminal flow-rate

that is determined by the mutual-interaction of the component with the

network.

Figure A.5: Hydraulic reservoir.

A.1.6 Hydraulic flow-rate pump

The hydraulic flow-rate pump of Figure A.6 is a two-terminal component

with one operating mode. The terminals are hydraulic terminals. The
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component forces the flow-rate fT on its network branch to be identically

equal to a continuous function of time provided by the designer as a pa-

rameter of the component. Since the flow-rate fT drives the network with

a user-defined time-evolution, we say that fT is an input variable of the

network. An additional constraint fT + fP = 0 describes the flow-rate

conservation law through the component: the flow-rate entering one ter-

minal equals the flow-rate exiting the other terminal. No equations about

the pressure variables are defined because the pressure drop of the compo-

nent is determined by the mutual-interaction of the component with the

network.

Figure A.6: Hydraulic flow rate pump.

A.1.7 Hydraulic pressure pump

The hydraulic pressure pump of Figure A.7 is a two-terminal component

with one operating mode. The terminals are hydraulic terminals. The

component forces the pressure drop pP − pT between the terminals to be

identically equal to a continuous function of time provided by the designer

as a parameter of the component. We call P the voltage drop pP−pT and we

say that P is an input variable of the network because it drives the network

with a user-defined time-evolution. An additional constraint fP + fT = 0

describes the flow-rate conservation law through the component: the flow-

rate entering one terminal equals the flow-rate exiting the other terminal.

No equations about the flow-rate variables are defined because they are

determined by the mutual-interaction of the component with the network.
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Figure A.7: Hydraulic pressure pump.

A.1.8 Hydraulic pipeline

The hydraulic pipeline shown in Figure A.8 is a two-terminal component

with one operating mode. The terminals are hydraulic terminals. The

pipeline implements the law pA − pB = r ∗ fA that is similar to the Ohm’s

law of the electrical domain: the pressure drop pA − pB between the ter-

minals is directly proportional to the flow-rate fA through the component

with a positive proportionality constant r called resistance. The additional

constraint fA + fB = 0 describes the flow-rate conservation law through

the component. Flow-rates and pressures of the terminals are determined

by the mutual-interaction of the component with the network.

Figure A.8: Hydraulic pipe.

A.1.9 Mechanical reference

The mechanical reference of Figure A.9, is a one-terminal component with

one operating mode. The terminal is an mechanical-translational termi-

nal. The component provides a reference linear velocity to a node of the

network. This reference is conventionally equal to zero vA = 0. There are

no additional constraints on the terminal force that is determined by the

mutual-interaction of the component with the network.
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Figure A.9: Mechanical reference.

A.1.10 Mechanical force source

The mechanical force source of Figure A.10 is a two-terminal component

with one operating mode. The terminals are mechanical translational ter-

minals. The component forces the force fR on its terminal to be identically

equal to a continuous function of time provided by the designer as a pa-

rameter of the component. Since the force fR drives the network with

a user-defined time-evolution, we say that fR is an input variable of the

network. No equations about the linear velocity variable is defined be-

cause it is determined by the mutual-interaction of the component with

the network.

Figure A.10: Mechanical force source.

A.2 Algebraic switching components

A.2.1 Electrical two-way switch

The electrical two-way switch shown in Figure A.11 is a two-terminal com-

ponent with two operating modes open and closed. The terminals are

electrical terminals. The two-way switch implements the open-circuit law

i− = 0 in the open mode, and the short-circuit law v+ − v− = 0 in the
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closed mode. The additional constraint i+ + i− = 0 describes the current

conservation law through the component.

Figure A.11: Electrical two-way switch.

A.2.2 Electrical linear diode

The electrical linear diode shown in Figure A.12 is a two-terminal compo-

nent. The terminals are electrical terminals. The diode has two operating

modes direct reverse. It is in the direct mode when the voltage drop is

non-negative (i.e. v+−v− ≥ 0), otherwise the diode is in the reverse mode.

The linear diode implements the Ohm’s law v+ − v− = r ∗ i+ in the di-

rect mode, and the open-circuit law i− = 0 in the reverse mode. The

resistance parameter r is almost zero because the component is similar to

a short circuit in the direct mode. The additional constraint i+ + i− = 0

describes the current conservation law through the component.

Figure A.12: Electrical linear diode.

A.2.3 Hydraulic two-way valve

The hydraulic two-way valve of Figure A.13 is a two-terminal component

with two operating mode open and closed. The terminals are hydraulic

terminals. When the valve is open, it connects its terminals allowing the
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fluid to move through the component without any pressure loss pA−pB = 0

(i.e. it is similar to a short-circuit between two terminals in the electrical

domain). When the valve is closed, it stops the fluid (fA = 0) regardless

of the pressure difference applied by the circuit to the valve (i.e. it is

equivalent to an open-circuit in the electrical domain). The additional

constraint fA + fB = 0 describes the flow-rate conservation law through

the component.

Figure A.13: Hydraulic 2-way valve.

A.2.4 Hydraulic three-way valve

The hydraulic three-way valve of Figure A.14 is a three-terminal component

with three operating mode left, center, and right. The terminals are

hydraulic terminals. In every mode the valve establishes at most one direct

connection between two terminals, blocking the liquid flow through the

other terminals. When the valve is in the left mode, it connects the A

and P terminals with zero pressure drop (pA − pP = 0), and closes the T

terminal (fT = 0). When the valve is in the center mode, closes all the

terminals (fA = 0∧fP = 0∧fT = 0). When the valve is in the right mode, it

connects the A and T terminals with zero pressure drop (pA−pT = 0), and

closes the P terminal (fP = 0). The additional constraint fA+fP +fT = 0

describes the flow-rate conservation law through the component.
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Figure A.14: Hydraulic 3-way valve.

A.2.5 Hydraulic four-way valve

The hydraulic four-way valve of Figure A.15 is a four-terminal component

with three operating mode left, center, and right. The terminals are

hydraulic terminals. In every mode the valve establishes at most two direct

connections between pairs of terminals, blocking the liquid flow through

the other terminals. When the valve is in the left mode, it connects the

A and P terminals with zero pressure drop (pA − pP = 0 ∧ fA + fP = 0),

and it connects the B and T terminals with zero pressure drop (pB − pT =

0 ∧ fB + fT = 0). When the valve is in the center mode, it closes all the

terminals (fA = 0 ∧ fB = 0 ∧ fP = 0 ∧ fT = 0). When the valve is in

the right mode, it connects the A and T terminals with zero pressure drop

(pA − pT = 0 ∧ fA + fT = 0), and it connects the B and P terminals with

zero pressure drop (pB − pP = 0∧ fB + fP = 0). The additional constraint

fA+fB +fP +fT = 0 describes the flow-rate conservation law through the

component.

A.2.6 Hydraulic isolation valve

The hydraulic isolation valve shown in Figure A.16 is a two-terminal com-

ponent. The terminals are hydraulic terminals. The component has two

operating modes direct reverse. The isolation valve is in the direct mode

when the pressure drop is non-negative (i.e. pA − pB ≥ 0), otherwise the
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Figure A.15: Hydraulic 4-way valve.

isolation valve is in the reverse mode. The isolation valve implements the

pipeline law pA − pB = r ∗ fA in the direct mode, and the open-valve

law fA = 0 in the reverse mode. The additional constraint fA + fB = 0

describes the flow-rate conservation law through the component.

Figure A.16: Hydraulic isolation valve.

A.2.7 Hydraulic fuse

Figure A.17

Figure A.17: Hydraulic fuse.
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A.3 Differential components

A.3.1 Electrical capacitor

The electrical capacitor of Figure A.18 is a two-terminal component with

one operating mode. The terminals are electrical terminals. The capacitor

stores energy, or equivalently charge, in the form of electric field. The

charge law of the capacitor is c ∗ dV
dt

= I, where V is a shortcut for the

voltage drop v+ − v− between the terminals, and I is a shortcut for the

current i+ through the positive terminal. This law says that the voltage

drop V of the capacitor increases when the current I enters the positive

terminal with a positive proportionality constant 1/c, where the parameter

c is called capacitance. In order to know the actual voltage drop of the

capacitor, we need to integrate its differential law along the time starting

from an initial condition. The additional constraint i+ + i− = 0 describes

the current conservation law through the component.

Figure A.18: Electrical capacitor.

A.3.2 Electrical inductor

The electrical inductor of Figure A.19 is a two-terminal component with

one operating mode. The terminals are electrical terminals. The inductor

stores energy in the form of magnetic field. The induction law of the

inductor is l ∗ dI
dt

= V , where I is a shortcut for the current i+ through

the positive terminal, and V is a shortcut for the voltage drop v+ − v−

between the terminals. This law says that the current I of the capacitor

increases when the voltage drop V with a positive proportionality constant
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1/l, where the parameter l is called inductance. In order to know the

actual current of the inductor, we need to integrate its differential law

along the time starting from an initial condition. The additional constraint

i+ + i− = 0 describes the current conservation law through the component.

Figure A.19: Electrical inductor.

A.3.3 Hydraulic tank

The hydraulic tank of Figure A.20 is a one-terminal component with two

operating mode full and not-full. The terminal is an hydraulic terminal.

The tank stores energy in the form of stored liquid. When the liquid enters

the tank, the internal liquid height and internal energy increases. We need

to integrate the differential law of the tank starting from an initial liquid

height to compute the current liquid level. When the tank is full it cannot

accept further incoming liquid from its terminal, otherwise the liquid level

varies according to the rate-flow through the terminal.

Figure A.20: Hydraulic tank.
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A.3.4 Hydraulic accumulator

The hydraulic accumulator of Figure A.21 is a one-terminal component

with one operating mode. The terminal is an hydraulic terminal. The

accumulator stores energy in the form of internal pressure. The internal

pressure increases when the liquid enters the accumulator. We need to

integrate the differential law of the accumulator along the time, starting

from a known initial condition, to compute its current pressure.

Figure A.21: Hydraulic accumulator.

A.3.5 Hydro-mechanical double-acting cylinder

The hydro-mechanical double-acting cylinder of Figure A.22 is a three-

terminals component with three modes left, center, and right. The ter-

minals A and B are hydraulic terminals, while the terminal R is a me-

chanical translational terminal. The modes of the component depend on

the position of its rod: when the rod is at left/right end-of-stroke the com-

ponent is in the left/right mode, otherwise it is in the center mode when

the rod has an intermediate position. The cylinder works as power trans-

ducer from the hydraulic to the mechanical domain. The hydraulic circuit

pumps in and out fluid at some pressure from the two hydraulic terminals

of the cylinder chambers. When the rod is in an intermediate position

of the chambers, the pressures in the chambers create two opposite me-

chanical forces on the cylinder rod that sum up with the force applied by

the external load applied to the mechanical terminal of the cylinder. The

net force on the rod determines its direction and the flow rates through

the chambers, that in turn determines the linear velocity of the rod. The
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mechanical terminal is integral with the rod, so they have the same linear

velocity. When the rod reaches its left or right end-of-stroke the hydraulic

flow rate through the chambers is blocked (i.e. the cylinder behaves like

a closed valve). The position of the rod is a state variable of the system

because we need to track it to determine the global state of the circuit.

The differential law that governs the position of the rod relates the rod

velocity (i.e. the first derivative of the position) and the flow rate of the

hydraulic circuit. This flow rate globally depends on the configuration of

the system and on the external stimuli that come from the pump flow rate

and from the load force (the input variables).

Figure A.22: Double-acting cylinder.
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Appendix B

Background on Linear Systems

We represent a system of linear equations using the matrix notation ~A~x =
~b, where ~A ∈ Rn×n and ~b ∈ Rn, and ~x is a n-dimensional vector of real-

valued variables. We recall the linear algebra results we will use in the

rest of the paper and refer the reader to the book [Axl97] for a detailed

treatment.

A system is homogeneous if ~b = ~0 (i.e., ~A~x = 0). An homogeneous

system always admits at least the trivial solution ~̄w = ~0.

Given a solvable system ~A~w = ~b, its general solution is ~̄w = ~̄wp + ~̄wh,

where ~̄wp is a particular solution of the inhomogeneous system ~A~w = ~b

and ~̄wh is the homogeneous solution of the homogeneous system ~A~w = ~0.

The existence of the particular solution ~̄wp guarantees the existence of at

least one solution ~̄w.

Definition 11 ((Uniquely)/ solvable linear system). A linear system
~A ~w = ~b is called (uniquely)/ solvable linear system if there exists (a

unique)/an assignment ~̄w to the variables ~w that satisfies the system.

Lemma 3 (Homogeneity). Let ~A ~w = ~b be a linear system. The system
~A~0 = ~b is solvable for any matrix ~A iff ~b = ~0 is the zero vector.

Consequently, the homogeneous system ~A ~w = ~0 always admits at least

the zero solution ~̄w = ~0.
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Theorem 3 (General solution). Given a solvable linear system ~A~w = ~b,

its general solution is ~̄w = ~̄wp + ~̄wh, where ~̄wp is any particular solution

of the inhomogeneous system ~A~w = ~b and ~̄wh is a homogeneous solution

of the homogeneous system ~A~w = ~0.

The existence of the particular solution ~̄wp guarantees the existence of at

least one solution ~̄w. The uniqueness of such ~̄w depends on the properties

of the homogeneous solution ~̄wh. ~̄wh belongs to a family of (potentially

infinite) solutions. For instance, when such family reduces to the singleton

{~0}, the solution ~̄w of ~A~w = ~b is guaranteed to be unique, that is for

every component of the vector ~̄w exists a unique assignment that satisfies
~A~w = ~b.

Corollary 1 (Component uniqueness). Given a solvable linear system
~A~w = ~b, its general solution ~̄w admits a unique assignment to the j-th

component wj iff there exists no a homogeneous solution ~̄wh with j-th com-

ponent different from zero.

Given a linear system, we are interested in studying: i) the existence of

a particular solution to guarantee the existence of a general solution, and

ii) the shape of the family of homogeneous solutions, in order to guarantee

the uniqueness of a specific component of the general solution.

Lemma 4 (Linearity ). Let ~A ~w = ~b1, ..., ~A ~w = ~bn be n distinct linear

systems and z1, ..., zn ∈ R n real variables. The systems ~A ~w = ~b1, ...,
~A ~w = ~bn are all solvable iff the system ~A ~w = ~b1 z1 + ... +~bn zn is solvable

for all values of the variables z1, ..., zn.

Lemma 4 (Linearity). Let ~A~w = ~b1, ..., ~A~w = ~bn be n linear systems

and z1, ..., zn ∈ R n real variables. The systems ~A~w = ~b1, ..., ~A~w = ~bn

are solvable iff the system ~A~w = ~b1 z1 + ... + ~bn zn is solvable for every

assignment to the variables z1, ..., zn.
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If we call ~̄wp1, ..., ~̄wpn the particular solutions of the systems ~A~w = ~b1,

..., ~A~w = ~bn, respectively, then the particular solution ~̄wp of the system
~A~w = ~b1 z1 + ...+~bn zn is the linear combination ~̄wp = ~̄wp1 z1 + ...+ ~̄wpn zn

of the ~̄wpi weighted by the coefficients zi.

Known the coefficient vectors ~bi, we can see the general solution ~̄w as

described by (at least) a linear function f(z1, ..., zn) of the variables zi.

Again, the uniqueness of such linear function depends on the shape of the

family of homogeneous solutions of the system ~A~w = ~b1 z1 + ...+~bn zn.
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Proofs

Theorem 1 (Implicit Function Theorem). Let m, n, l be positive integers.

Let F : Rm+n → Rl be a homogeneous implicit linear function F (~w, ~z) :=
~A~w + ~B~z = ~0, where ~w ∈ Rm×1, ~z ∈ Rn×1, ~A ∈ Rl×m, and ~B ∈ Rl×n. Let
~bi be the i-th column vector of the matrix ~B, where i ∈ {1, ..., n}. Let wj be

the j-th variable of ~w, where j ∈ {1, ...,m}. The following two conditions

hold:

1. consistency condition: for all 0 ≤ i ≤ n, the linear system ~A~w = −~bi
is solvable, and

2. determinism condition: the linear system ~A~w = ~0 does not admit any

homogeneous solution ~̄wh such that its j-th component wj is different

from zero

iff there exists a unique linear function fj : Rn → R1 such that wj = fj(~z)

and F (w1, ..., fj(~z), ..., wm, ~z) = ~0.

Proof. (⇒) We can interpret every system ~A~wi = ~bi as the system ~A~w =

− ~B~z whose rhs − ~B~z is obtained as the product −~bi zi of the i-th column ~bi

of the matrix ~B and the coefficient zi = 1, namely ~A~wi = −~bi1. According

to the Lemma 4, the first condition guarantees that at least one particular

solution ~̄wp = f(z1, ..., zn) exists for the system ~A~w = − ~B~z, for every
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assignment to the independent variables ~z.

The second condition states that the family of homogeneous solutions does

not contain any vector whose j-th component wj is different from zero.

Thus, according to the Corollary 1, for every assignment to the variables

~z, the solvable system ~A~w = − ~B~z admits a general solution ~̄w whose j-th

component wj is uniquely assigned.

(⇐) Let us assume that a unique linear function fj : Rn → R1 exists

and that F (w1, ..., fj(~z), ..., wm, ~z) = 0 holds for every assignment to the

variables ~z.

For any of the n assignments ~z = (0, 0, ..., 1, ..., 0, 0) to the independent

variables ~z, the implicit function F (~w, ~z) reduces to ~A~wi = −~bi1. For the

assumption that F (~w, ~z) is solvable for every assignment to the indepen-

dent variables ~z, also any of the n ~A~wi = −~bi is solvable.

For the assignment ~z = (0, 0, ..., 0, 0), the implicit function F (~w, ~z) re-

duces to ~A~w = ~0, and, according to the Lemma 3 it is solvable for ~̄w = ~0,

thus for the existence of fj, wj = fj(~0) = 0. For the uniqueness of fj, no

other solutions of ~̄w = ~0 exist such that their j-th component wj takes

values different from 0.

Lemma 1. µ is a satisfying model of ψDae iff µ|R is a solution of Dae(µ|B)

Proof. (⇒) If µ |= ψDae, then µ |= Flowi(µ|Bi
) for all c1 ∈ C, µ |= k for all

k ∈ K. Hence, Dae(µ|B).

(⇐) Let µ′ be a solution (defined over the variables R) to Dae(m), for

a m ∈ 2B. Then, it is easy to see that µ′′ = µ′ ∪ m is a model for ψDae

(where µ′ ∪m denotes the union of the two models).

Lemma 5. Given a network N and a mode m ∈ 2B, m belongs to the

set represented by the formula ψcon (B) (i.e. m |= ψcon (B)) iff the DAE
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Dae(m) satisfies the condition (1) of Theorem 1.

Proof. (⇒) Assume that m |= ψcon (B). This means that m satisfies all

the quantified formulas ∃Ẋ, R.
(
ψDae

[
δU ·Xzi

/U ·X
])

that can be rewritten

as the formulas ∃~w, ~z.
(
Dae(m)

[
δ~zzi/~z

])
that are equivalent to the formu-

las ∃~w, ~z.
(
~A~w = −~bi

)
, where ~bi is the i-th column of the concatenated

coefficient matrix ~B. This means that the DAE Dae(m) satisfies the con-

dition (1) of the Theorem 1.

(⇐) Assume that the DAE Dae(m) satisfies the condition (1) of the

Theorem 1. This means that, for the mode m, every system ~A~w = −~bi
is solvable, consequently every quantified formula ∃~w, ~z.

(
~A~w = −~bi

)
is

satisfied from the mode m. Thus, m |= ψcon (B).

Lemma 6. Given a network N and a mode m ∈ 2B, m belongs to the

set represented by the formula ψdet (B) (i.e. m |= ψdet (B) ) iff the DAE

Dae(m) satisfies the condition (2) of the Theorem 1 for all the variables

in Ẋ.

Proof. (⇒) Assume that m |= ψdet (B). This means that m sat-

isfies the quantified formula ¬∃Ẋ, R.
(
ψDae

[
~0/U

] [
~0/X

]
∧
(
Ẋ 6= ~0

))
,

and equivalently that m does not satisfy the quantified formula

∃Ẋ, R.
(
ψDae

[
~0/U

] [
~0/X

]
∧
(
Ẋ 6= ~0

))
that can be rewritten as the for-

mula ∃~w, ~z.( ~A~w = ~0 ∧ ∨l∈Ẋ (l 6= 0)). Since the existential quantification

distributes over the logical disjunction, we can rewrite the formula as∨
l∈Ẋ ∃~w, ~z.( ~A~w = ~0 ∧ (l 6= 0)). For the assumption, the mode m does not

satisfy any disjunct ∃~w, ~z.( ~A~w = ~0 ∧ (l 6= 0)) for all l ∈ Ẋ. Thus, the

homogeneous system ~A~w = ~0, that always admits the trivial solution, does

not admit any solution whose component l is different from zero. Conse-

quently, the DAE Dae(m) satisfies the condition (2) of the Theorem 1 for

all the variable in Ẋ.
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(⇐) Assume that the DAE Dae(m) satisfies the condition (2) of the

Theorem 1 for all the variable l ∈ Ẋ. This means that the homogeneous

system ~A~w = ~0 does not admit any a solution whose component l 6= 0.

Consequently, all the disjunct ∃~w, ~z.( ~A~w = ~0∧ (l 6= 0)) are not satisfied by

the mode m, thus m |= ψdet (B).

Lemma 2. A network N is consistent iff for all m ∈ 2B, m |= ψcon(B),

and is deterministic iff for all the modes m ∈ 2B, m |= ψdet(B)

Proof. The proof trivially follows from the application of Lemmas 5 and 6

to all the network modes m ∈ 2B.

Lemma 7. Let N be a valid network, ẋ a variable in Ẋ, m a mode in

2B, D the coefficients returned by GetCoeff (ψDae, X, U, ẋ,m), and fẋ :

Rn → R1 the unique linear function that reformulates ẋ from Dae(m)

(according to Lemma 4), where n = |~z|.
The equation ẋ = D~z has the same set of solutions as ẋ = fẋ(~z), where

~z := (U ·X).

Proof. GetCoeff asserts the formula ψDae∧m that, by Lemma 1, encodes

Dae(µ|B).

In each iteration of the loop, GetCoeff computes the i-th value of

the coefficients vector D. This amounts to find a solution for the system
~A~w = −~bi (encoded at Line 5 of the algorithm by asserting zi = 1 ∧∧
l∈(U∪X)\{zi} l = 0). The coefficient ~̄wẋ

pi
of the function fẋ(~z) := ~̄wẋ

p1
z1 +

... + ~̄wẋ
pn
zn (as described in Lemma 4) is the value assigned to ẋ in the

solution (Line 7).

Hence, at the end of GetCoeff, D is the vector of coefficients of the

linear function fẋ(~z).
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Lemma 8. Let N be a valid network, ẋ a variable in Ẋ, β the set of modes

returned by GetEqMod (ψDae, X, U, ẋ,D).

For all m ∈ 2B, m ∈ β iff the equation ẋ = D~z has the same set of solu-

tions as ẋ = fẋ(~z), where fẋ is the unique linear function that reformulates

ẋ in Dae(m), and ~z := (U ·X).

Proof. The lemma can be proved by noticing that GetEqMod encodes in

a formula the set of all the possible modes that assign the coefficients D to

ẋ. These are also the same coefficients of fẋ(~z), by applying the reasoning

done in the proof of Lemma 7.

Theorem 2 (Correctness of the reformulation). Given a valid network N ,

the hybrid automaton Hr
N is equivalent to the hybrid automaton HN that

defines the network semantics.

Proof. (⇒) Hr
N and HN have the same state variables, initial states and

transition relation 1. If π = s0; s1; . . . ; sn is a path of Hr
N , then π is a path

of HN . We prove that π is a path of HN by induction. Clearly, so |= Init.

By hypothesis, s0; s1; . . . ; si−1, i ≤ k is a path of HN .

We prove that si−1
δi→ si is a transition of HN .

If the transition is discrete, δi = d, then 〈si−1, δi, si〉 |= Trans.

If the transition is continuous, δi > 0 ∈ R, then there exists a continuous

differentiable function f : [0, δi]→ R|Rr| such that:

1. f(0) = si−1|Rr and f(δi) = si|Rr ,

2. si−1 |= Invarr and si |= Invarr,

3. ∀ε ∈ [0, δi], 〈si−1|Br , f(ε), ḟ(ε)〉 |= Flowr

4. ∀ε ∈ [0, δi], 〈si−1|Br , f(ε)〉 |= Invarr.

1In practice, when constructing Hr
N we do not explicitly enumerate all the modes m ∈ 2B . The

equivalence between Trans and Transr is straightforward.
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The function f : [0, δi]→ R|Rr| is also such that:

1. si−1 |= Invar and si |= Invar.

We know that si−1 |= ψY . We know that si−1|Ṙr∪Rr is a solution for

ψY,ẋ(si−1|Br) (i.e. every time we have a model in Invarr we also have

a model in Invar).

The same reasoning applies for si.

2. ∀ε ∈ [0, δi], 〈si−1Br , f(ε), ḟ(ε)〉 |= Flowr

By Lemma 7 and Lemma 8, we know that the reformulation

Refẋ(si−1|Br) is equivalent to ẋ = fẋ(~z), for every ẋ ∈ Ẋ.

Hence, f is a solution to the system of differential equations formed

by all the equations ẋ = fẋ(~z), for all ẋ ∈ Ẋ, and hence is a solution

for Flow

3. ∀ε ∈ [0, δi], 〈si−1|B, f(ε)〉 |= Invarr.

This can be proved again by observing that f is a solution for Flow,

that the invariants hold for all the possible ε in Invarr and every time

we have a model in Invarr we have also a model in Invar.

Then, si−1
δi→ si is a continuous transition in HN .

By induction π is a path of HN .

(⇐) If π = s0; s1; . . . ; sn is a path of HN , then π is a path of Hr
N .

This direction can be proved similarly to (⇒).
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