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Summary

This work aims at developing a novel machine learning method to investigate heterogeneity in neurode-

velopmental disorders, with a focus on Autism Spectrum Conditions (ASCs). In ASCs, heterogeneity

is shown at several levels of analysis, e.g., genetic, behavioral, throughout developmental trajectories,

which hinders the development of effective treatments and the identification of biological pathways

involved in gene-cognition-behavior links.

ASC diagnosis comes from behavioral observations, which determine the cohort composition of

studies in every scientific field (e.g., psychology, neuroscience, genetics). Thus, uncovering behavioral

subtypes can provide stratified ASC cohorts that are more representative of the true population.

Ideally, behavioral stratification can (1) help to revise and shorten the diagnostic process highlighting

the characteristics that best identify heterogeneity; (2) help to develop personalized treatments based

on their effectiveness for subgroups of subjects; (3) investigate how the longitudinal course of the

condition might differ (e.g., divergent/convergent developmental trajectories); (4) contribute to the

identification of genetic variants that may be overlooked in case-control studies; and (5) identify

possible disrupted neuronal activity in the brain (e.g., excitatory/inhibitory mechanisms).

The characterization of the temporal aspects of heterogeneous manifestations based on their multi-

dimensional features is thus the key to identify the etiology of such disorders and establish personalized

treatments. Features include trajectories described by a multi-modal combination of Electronic Health

Records (EHRs), cognitive functioning and adaptive behavior indicators. This thesis contributes in

particular to a data-driven discovery of clinical and behavioral trajectories of individuals with complex

disorders and ASCs. Machine learning techniques, such as deep learning and word embedding, that

proved successful for e.g., natural language processing and image classification, are gaining ground

in healthcare research for precision medicine. Here, we leverage these methods to investigate the

feasibility of learning data-driven pathways that have been difficult to identify in the clinical practice

to help disentangle the complexity of conditions whose etiology is still unknown.

In Chapter 1 we present a new computational method, based on deep learning, to stratify patients

with complex disorders; we demonstrate the method on Multiple Myeloma, Alzheimer’s disease, and

Parkinson’s disease, among others. We use clinical records from a heterogeneous patient cohort (i.e.,

multiple disease dataset) of ∼ 1.6M temporally-ordered EHR sequences from the Mount Sinai Health

system’s data warehouse to learn unsupervised patient representations. These representations are

then leveraged to identify subgroups within complex condition cohorts via hierarchical clustering. We

investigate the enrichment of terms that code for comorbidities, medications, laboratory tests and

procedures, to clinically validate our results.
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A data analysis protocol is developed in Chapter 2 that produces behavioral embeddings from ob-

servational measurements to represent subjects with ASCs in a latent space able to capture multiple

levels of assessment (i.e., multiple tests) and the temporal pattern of behavioral-cognitive profiles. The

computational framework includes clustering algorithms and state-of-the-art word and text represen-

tation methods originally developed for natural language processing. The aim is to detect subgroups

within ASC cohorts towards the identification of possible subtypes based on behavioral, cognitive, and

functioning aspects. The protocol is applied to ASC behavioral data of 204 children and adolescents

referred to the Laboratory of Observation Diagnosis and Education (ODFLab) at the University of

Trento.

In Chapter 3 we develop a case study for ASCs. From the learned representations of Chapter 1,

we select 1, 439 individuals with ASCs and investigate whether such representations generalize well to

any disorder. Specifically, we identify three subgroups within individuals with ASCs that are further

clinically validated to detect clinical profiles based on different term enrichment that can inform

comorbidities, therapeutic treatments, medication side effects, and screening policies.

This work has been developed in partnership with ODFLab (University of Trento) and the Pre-

dictive Models for Biomedicine and Environment unit at FBK. The study reported in Chapter 1 has

been conducted at the Institute for Next Generation Healthcare, Department of Genetics and Genomic

Sciences, Icahn School of Medicine at Mount Sinai (NY).



List of abbreviations

AD Alzheimer’s Disease

ADHD Attention Deficit Hyperactivity Disorder

ADI-R Autism Diagnostic Interview - Revised

ADOS Autism Diagnostic Observation Schedule

ADT Androgen Deprivation Therapy

AE Autoencoder

ASCs Autism Spectrum Conditions

ASDEU Autism Spectrum Disorder in the European Union

BC Breast Cancer

BIQ Brief Intelligence Quotient

CD Crohn’s disease

CE Cross Entropy

CNN Convolutional Neural Network

COPD Chronic Obstructive Pulmonary Disease

CPTs Current Procedural Terminologies

CSS Calibrated Severity Score

DP Deep Patient

DSM-5 Diagnostic and Statistical Manual of Mental Disorders – Fifth Edition

ECG Electrocardiogram

EHRs Electronic Health Records

FMI Fowlkes-Mallows Index

FSIQ Full Scale Intelligence Quotient

GForms Google Form questionnaires

7



8

GI Gastrointestinal

GloVe Global vectors

GMDS Griffiths Mental Development Scales

GQ General Quotient

GWAS Genome Wide Association Studies

HCT Hematopoietic Cell Transplantation

IDs Intellectual Disabilities

IQ Intelligence Quotient

LSTM Long Short-Term Memory

ML Machine Learning

MM Multiple Myeloma

MSDW Mount Sinai Health System’s data warehouse

NLP Natural Language Processing

ODFLab Laboratory of Observation Diagnosis and Education

PAD Peripheral Artery Disease

PC Prostate Cancer

PD Parkinson’s disease

PDD-NOS Pervasive Developmental Disorders – Not Otherwise Specified

PPMI Progression Markers Initiative

PSA Prostate-specific Antigen

PSI-SF Parental Stress Index - Short Form

RF Random Forest

RRB Restricted and Repetitive Behaviors

RT Radiation Therapy

SA Social Affect

SNPs Single-Nucleotide Polymorphisms

SRS Social Responsiveness Scale

SVD Singular Value Decomposition



9

SVM Support Vector Machine

TD Typical Development

T2D Type 2 Diabetes

TFIDF Term Frequency - Inverse Document Frequency

UMAP Uniform Manifold Approximation and Projection



10



Chapter 1

Complex disorder stratification via deep unsupervised learning

of Electronic Health Records

Abstract

Hospital-based Electronic Health Records (EHRs) provide a heterogeneous but structured
information that can be used for the discovery of patterns associated to patient’s health status.
In particular, we aim at using EHRs to identify health (or disease) trajectories and possibly cluster
them into groups of patients that may have common patterns of disease progression or response
to treatment. However, there are multiple challenges in analyzing EHR data and obtaining a
coherent representation usable to train machine learning methods for early diagnosis, discovery
of most effective treatments, and prediction of disease progression.

In this chapter, we introduce a machine learning approach for the pre-processing of such
representation. In particular, we apply deep learning to learn individual patient representations
from heterogeneous EHR sequences. Such representations can be leveraged for disease subtyping,
considering EHRs from large scale hospital cohorts and comprising of different clinical concepts
(e.g., ICD-9 diagnosis, medications). In particular, to transform patient sequences into low-
dimensional latent vectors, we propose the ConvAE deep learning architecture, which provides
an end-to-end, unsupervised representation learning model. The ConvAE representations were
compared to different baselines in a disease-specific detection task aimed at disease stratification
analysis at scale.

The ConvAE architecture obtained the best results in identifying eight different complex
conditions, including neurodevelopmental (e.g. Attention Deficit Hyperactivity Disorder – ADHD)
and cancer (e.g. Multiple Myeloma). For disease subtyping, we applied hierarchical clustering to
complex disorder cohorts and we identified more homogeneous subtypes tied to different disease
progressions, symptoms, and response to treatments.

We discuss how the stratification of informative patient subgroups tied to characteristic pat-
terns within the possible heterogeneous conditions can guide personalized medicine.

1.1. Introduction

Electronic Health Records (EHRs) have revolutionized healthcare and biomedical research over the

past three decades. In recent years, with the advent of new hardware and storage capabilities, EHRs

have evolved into a complex framework, housing massive amounts of digital data. These digital

records can be structured, typically including disease diagnoses, medication prescriptions, performed

procedures, and laboratory test results, or unstructured, storing progress reports, and free-text clinical

notes. In providing a snapshot of a patient’s state of health, EHRs have created new opportunities

to investigate the predictors and properties of health-related events across large and heterogeneous

11



12 CHAPTER 1.

populations, which can provide clarity and insights into the future effects of medical decisions. At the

individual level, these trajectories are becoming the basis for personalized medicine. Across patient

cohorts, EHRs and derived trajectories provide a vital resource to understand population health

management and make better decisions for healthcare operational policies.

However, EHRs are challenging to represent and utilize in computational models because of their

high dimensionality, heterogeneity, sparseness, random errors, and systematic biases. Namely, patient

clinical annotations are not uniform across healthcare facilities, where the same clinical phenotype

can be expressed using different codes and terminologies. For example, a patient diagnosed with Type

2 Diabetes Mellitus (T2D) can be identified by a variety of EHR-related inputs, such as 1) labora-

tory values of hemoglobin A1C greater than 7.0%; 2) the presence of the 250.00 ICD-9 code; or 3)

“Type 2 Diabetes Mellitus” mentioned in free-text (i.e., unstructured) clinical notes. These challenges

have motivated recent developments of machine learning methods that attempt to accurately identify

diseases from EHRs for modeling and risk prediction (see, e.g., [1, 2, 3]).

Given a specific disease, heterogeneity among patients usually leads to different progression pat-

terns and may require different types of interventions, despite equivalence of these patients at the

diagnostic level. This is particularly evident for complex disorders, whose disease etiology is still

mostly unknown, possibly due to multiple genetic, environmental, and lifestyle factors. Patients with

complex disorders may differ on multiple levels of analyses (e.g., different clinical measures such as

laboratory tests or medications, or different comorbidities) and in response to treatments throughout

the disease trajectory, making these conditions difficult to evaluate. For example, heterogeneity of

Autism Spectrum Conditions (ASCs) has been detected by comorbidity stratification studies. In-

deed, coexisting conditions are registered in 70% of individuals with ASC [4]. Genetic studies report

hundreds of ASC-linked risk genes and a heritability at around 50 − 80% [5, 6] as well. Moreover,

the investigation of developmental trajectories [7] differentiates behavioral growth patterns according

to their progression and severity level of core symptoms along with differentiations of cognitive and

language impairments relative to the norm. This variability presumably reflects the existence of mul-

tiple subgroups tied to diverse genetic and environmental etiologies and that, although convergent to

the behavioral autistic profile, show a range of clinical phenotypic characteristics under behavioral,

linguistic and cognitive levels.

Several different conditions have been referred to as complex, such as Parkinson’s disease (PD),

Multiple Myeloma (MM) and T2D. Clinical heterogeneity is common among PD patients and includes

both motor and nonmotor symptoms (e.g., cognitive impairment) along with varying rates of disease

progression [8]. Stratification studies have addressed PD heterogeneity at the clinical, pathological,

and genetic level. Moreover, longitudinal approaches aim at informing prognostic models that can be

used at the individual level [9]. MM haematologic malignancy presents heterogeneity at the molecular,

clinical, and clonal level and only part of the prognostic variability can be explained by underlying

biology. In particular, age and the extent of disease involvement (e.g., renal function and number

of bone lesions) are considered important outcome determinants [10]. T2D is a metabolic disorder

strongly influenced by genetics and environment. Among lifestyle factors, obesity is considered a
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strong indicator of T2D risk. The multiple phenotypic manifestations of this condition are thought

to stem from the disruption of one or more etiological pathways, such as beta cell function, beta

cell mass, insulin action, glucagon secretion/action, incretin secretion/action, and fat distribution

[11]. While patients for these conditions all report with the same diagnosis, a range of etiologies and

manifestations are clearly present.

Personalized medicine focuses on the use of patient-specific data to tailor treatment to an indi-

vidual’s unique health status. However, even seemingly simple diseases can show different degrees

of complexity that can create challenges for identification, treatment, and prognosis. For instance,

despite being Mendelian disorders, both cystic fibrosis and Huntington’s disease exhibit a broad array

of symptoms and varying degrees of phenotypic manifestations [12, 13]. Multiple data types in pa-

tient EHR histories offer a way to examine disease complexity, and present an opportunity to refine

individually ICD-coded diseases into subtypes and tailor personalized treatments. Stratifying patients

according to their clinical phenotypes into informative subgroups can also help identify high-impact

biomarkers that can be overlooked. In Genome Wide Association Studies (GWAS), it has been re-

ported that phenotypic heterogeneity substantially reduces the magnitude of association of genetic

variants [14]. This suggests that the generalizability and subsequent validity of case-control studies

may suffer due to a failure to identify genetic heterogeneity. From a computational perspective, pa-

tient stratification (or patient subtyping) can be considered as an unsupervised learning task to group

patients according to their historical records [15] towards data-driven discoveries without an a priori

knowledge.

The method proposed in this chapter is a novel end-to-end, unsupervised deep learning architecture

to derive patient representations from heterogeneous cohorts of EHR sequences. The model learns

patient representations from a heterogeneous EHR dataset of ∼ 1.6M patients from the Mount Sinai

Health System’s data warehouse (MSDW) located in New York. To demonstrate the feasibility of

deriving clinically meaningful associations (e.g., diseases progression and clinical encounters) from

learned representations of diseases, we further cluster patients into subgroups within diagnoses using

hierarchical clustering to clinically evaluate them. We successfully identify informative subgroups

within different complex disorders. For example, patients with MM divide in 5 subgroups according

to comorbid conditions, treatments, and therapy side effects.

1.1.1. Background: searching for heterogeneity with deep learn-

ing embeddings

Studies on disease stratification in EHRs are often based on disease-specific cohorts of patients and

manually selected features. Generally, EHR clinical terms are aggregated at the patient level, and each

patient is represented by a vector. This vector can be used to derive disease subtypes in a population

via clustering or topological analysis. For example, Li and colleagues [16] identify three distinct sub-

groups of T2D from topology-based patient-to-patient networks. Subgroup I is characterized by T2D

complications, diabetic nephropathy, and diabetic retinopathy; subgroup II is enriched for cancer and
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cardiovascular diseases; and subgroup III is strongly associated with cardiovascular and neurological

diseases. These findings were then validated through genotyping, and demonstrate that the enriched

phenotypes and biological functions at gene level match the clinical differences and disease comorbidi-

ties within each subgroup. These distinctions suggest that tailored treatments rather than blanket

approaches for T2D may be more effective for disease outcomes. In other bodies of work, statistical

modeling and machine learning are applied to 1) stratify patients with hypertension and determine

their responsiveness to therapy [17]; 2) identify different subgroups of patients at risk of heart failure

in order to derive different types of treatments and considerations [18]; 3) separate progression stages

of chronic kidney disease [19]; 4) subgroup EHRs of children with ASCs via hierarchical clustering [20];

and 5) distinguish subgroups of patients with PD according to longitudinal data of motor progression

and cognitive functioning [21].

Natural Language Processing algorithms, such as Word2vec continuous Skip-gram and Bag-of-

words methods [22], have been tailored to EHRs to perform medical concept contextual embeddings

via neural networks. These contextual embeddings represent structured electronic records in a metric

space, and identify semantic similarities between terms. Utilizing these word encodings, patients can

be represented as a multidimensional vector that captures term dependencies throughout their health

trajectories.

By leveraging medical term encodings learned from over a million patients, Glicksberg et al. [23]

attempt to generate automated disease representations. Each patient’s clinical history is summarized

by weighted averages of the corresponding medical embeddings over time windows. Next, the distance

between the patient’s embedded history to a disease key-word representation is computed to generate

disease cohorts. Medical concept embeddings have also been used to extract supervised patient rep-

resentations for similarity studies. In particular, Zhu and colleagues [24] propose a patient similarity

evaluation framework that preserves the temporal properties of EHRs. Each patient is represented by

an embedding matrix of EHRs that include four years of data (i.e., 40 terms). Each matrix is then in-

put into a convolutional neural network trained to learn pairwise similarities of patients from Chronic

Obstructive Pulmonary Disease (COPD), diabetes, heart failure, and obesity cohorts. Similarly, Suo

et al. [25] develop a time fusion convolutional neural network trained on fixed-sized sub-frames of

the embedded patient matricies. After computing the weighted average of the output vectors, the au-

thors capture both the local and the global contributions of these at different time intervals. Patient

similarity scores are then used to predict COPD, diabetes, and obesity.

Recently, unsupervised deep learning has been applied to healthcare data for patient stratification.

Such approaches are generally tested on quantitative synthetic data or small cohorts of patients with

a specified disease, and explicitly model the timeline of care events. For example, Baytas et al.

[15] develop a time-aware Long Short-Term Memory (LSTM) that applies an autoencoder framework

to learn representations of patients for disease subtyping. The proposed model is initially tested

on synthetic EHRs. Afterwards, the model is used to stratify patient data from the Parkinson’s

Progression Markers Initiative (PPMI) clinical and longitudinal study. The authors are able to identify

two distinct subgroups of patients, one of which shows imaging assessment measures consistent with
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PD patients. Similarly, Zhang and colleagues [26] apply LSTM to 466 patients with idiopathic PPMI

markers to perform patient subtyping, and obtain three different subclusters that differ in disease

progression patterns and symptom severity.

From clinical features to unsupervised representations

From this body of work it emerges that existing studies have commonly identified patient subgroups

from disease specific EHR datasets by utilizing manually selected features [15, 16, 26]. Moreover,

unsupervised representations have also been derived without considering temporal aspects of data [27].

However, because EHRs are longitudinal, capturing the dependencies between elements of the patient

record in sequence allows models to learn more robust representations. These ordered representations

can then be used to obtain patient subgroups. Moreover, since EHRs tend to be incomplete, using

diverse cohorts to derive disease-specific subgroups allow us to adequately capture the features of

heterogeneity within the population of interest.

The proposed method is a novel end-to-end, unsupervised deep learning architecture to derive

patient representations from a large domain-free EHR dataset. This approach favors scalability and

generalizability: first, it includes embeddings of medical terms (i.e., ICDs, medications, procedure

codes, laboratory tests) to clinically contextualize concepts into clear subgroups of disorders, and,

second, a combination of convolutional neural networks and autoencoders (ConvAE), to model the

temporal aspects of patient data and to enable the application of an unsupervised architecture. This

architecture eliminates the need for manual ad hoc feature engineering. In addition, it processes

the whole EHR sequence, regardless of the length of patient history, and does not require explicit

modeling of events within patient care timelines. By generating empirically-based disease subgroups,

this architecture can help identify high-impact biomarkers within complex disorders, whose effect

may be masked in case-control studies. As such, we are able to isolate properties of these patient

subgroups that can then be used to advance precision medicine through the development of novel

and more personalized treatments. Ideally, when a new patient enters the medical system, their

health status progression can be tied to a specific subgroup, thereby informing prognosis and effective

treatments.

1.2. Material and methods

The proposed pipeline to derive patient representation subtypes from EHRs is based on three steps:

A) data pre-processing; B) end-to-end unsupervised modeling, which includes medical concept em-

beddings, and ConvAE (see Section 1.2.3); and C) clustering analysis (see Figure 1.1).

1.2.1. Patient medical records

We use an EHR dataset from the Mount Sinai Health System’s data warehouse, located in New York

City. This dataset is generated from Mount Sinai Health System’s healthcare and clinical operations,
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which includes a high volume of structured, semi-structured and unstructured data. These data

include inpatient, outpatient, and emergency room visits. Patients in the system can have up to 12

years of follow up data unless they are transferred or move their residence away from the hospital

system. The hospital dataset contains approximately 4.2 million patients, spanning the years from

1980 to 2015. For this study, we utilize pseudo de-identified patient histories, which include only

structured data including: diagnoses, medications, laboratory tests, procedures, current procedural

terminologies (CPTs), and patient demographics. EHR data for patients are first extracted from the

clinical data warehouse and every patient is represented as a longitudinal sequence sp of length Lp of

aggregated temporally-ordered medical terms, i.e., sp = (w1, w2, . . . , wLp
). Each term wi is a medical

concept (i.e., diagnosis, medication, procedure, CPT code, or laboratory test) that the patient p has

represented in their EHR history. As an example, a term wi can be ICD-9 diagnostic code 362.11,

which corresponds to Hypertensive retinopathy. The entire collection of terms makes up a vocabulary

V .

1.2.2. Data pre-processing

Data pre-processing comprises: 1) filtering of the least frequent medical terms; 2) dropping of re-

dundant terms within fixed time frames; 3) subsequencing of long sequences to include the complete

patient history while leveraging a convolutional framework.

Filtering Taking into account patient sequences, we evaluate medical concept occurrences to filter

the least frequent terms. To select clinical stop words, we consider the whole EHR corpus as a

document D and each patient sequence sp as a sentence. For each term w of the vocabulary V we

compute the probability of finding w in corpus D. We multiply this probability by the sum of the

probabilities to find w in a sentence sp for all sentences in the corpus. In particular, let P be the set

of all patients and V the vocabulary of terms, then ∀w ∈ V :

P(w ∈ D)
∑
p∈P

P(w ∈ sp) =
#{s ∈ D; w ∈ s}

|D|
∑
p∈P

#{wi ∈ sp, wi = w}
|sp|

(1.1)

where |D| is the number of sentences in document D and |sp| is the length of a patient sequence.

The filtering score from Eq. (1.1) includes document frequency, i.e., the number of patients with at

least one occurrence of a term w, and term frequency, which is the total number of occurrences of

term w in a patient sequence. To eliminate terms that constitute noise (i.e., occur multiple times in

few patients, or are too general and not informative) we drop terms with filtering scores inferior to a

cut-off.

Drop duplicates Every encounter of a patient with the healthcare system can span multiple days

and include repeated concepts. To avoid noise from overlapping medical concepts that are artifacts of

an EHR system with repeated codes, we further drop duplicate medical concepts in non-overlapping

intervals of length T days, as done previously by [23, 28]. Next, within the same time window, we
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randomly shuffle patient concepts after deletion, given that multiple events within the same encounter

occur randomly.

Subsequencing All sequences with less than 3 concepts are removed, and the longest sequences are

truncated to a maximum of 5, 000 terms. Patient sequences are then chopped into subsequences of

fixed length L that will be used to train ConvAE model. A typical value for L is 32, see Section 1.2.5.

Each patient sequence becomes

sp = [(w1, . . . , wL), (wL+1, . . . , w2L), . . . ]

and subsequences shorter than L are padded with 0 up to length L. This is done to account for the

complete patient care history in future processing, which requires uniform dimensions. For the sake of

clarity, in the following we present the architecture as applied to a subsequence of terms (w1, . . . , wL).

1.2.3. ConvAE architecture

Here, we describe the ConvAE architecture that models vector representations of patients from the

pre-processed raw patient subsequences obtained previously. The architecture consists of three stacked

modules that take patient term subsequences as inputs, and reconstruct them within an autoencoder

(AE). The hidden layer of the AE module becomes the latent patient history representation (see

Figure 1.1 B).

Medical concept embedding See Figure 1.1 (A). Given a subsequence s = (w1, w2, . . . , wL), the

first module assigns each medical concept w to an N -dimensional embedding vector vw. Specifically, a

subsequence can alternatively be represented as an (L×N) matrix E = (vw1 , vw2 , . . . , vwL
)T , where

L is the patient subsequence length, and N is the embedding dimension. The embedding matrix is

learned during training and is initialized with pre-trained embeddings on the complete Mount Sinai

data warehouse (∼ 4M patients). This step is conceived to simultaneously represent the semantic

relationships between medical concepts from contextual terms within an EHR, and derive a progressive

patient representation as well. This structure retains temporal information because the rows of matrix

E are temporally ordered according to patient visits, and also enables a fine-grained representation of

an individual medical history via vectors that represent a single medical term from a specific visit.

ConvAE See Figure 1.1 (B). The second module applies a convolutional neural network (CNN) to

extract local temporal patterns in patient subsequences, while the third module leverages an AE to

learn a representation of the encoded temporal patterns. The CNN applies temporal filters to each

patient EHR embedding matrix and returns the filtered response. CNN filters applied to an EHR

embedding matrix usually perform a one-side convolution operation across time. This means that

a filter can be defined as k ∈ Rh×N , where h is the variable window size and N is the embedding

dimension [24, 25]. Differently from images, where the convolutional filter generates relevant spatial



1.2. MATERIAL AND METHODS 19

information in 2 dimensions, the second dimension of a patient embedding matrix has no spatial

meaning. In fact, only the first dimension carries temporal information that can be captured via filter

sliding.

Our approach differs in that it processes embedding matrices as they were RGB images carrying a

third “depth” dimension. We reshape the (L×N) embedding matrix into Ẽ ∈ R1×L×N and we consider

the embedding dimensions as channels. We then apply f filters k ∈ R1×h×N to padded input to keep

the same output dimension and learn more sophisticated features that may grasp temporally-further

sequence characteristics. In particular, we obtain, for each filter j

(R)j = ReLU(

N−1∑
i=0

ki ? ẽi + bj), j = 1, . . . , f (1.2)

with the output matrix R ∈ R1×L×f , ki the h-dimensional weight matrix at depth i, ẽi ∈ R1×L the

input matrix i-th embedding dimension, and b the bias vector. In Eq. (1.2), ReLU(x) = max(0, x) is

the Rectified Linear Unit function, and (?) the convolution function. Max Pooling is then applied, and

the maximum filter activations are retained. The output is then reshaped into a concatenated vector

of dimension Lf . With images, we expect different neurons along the depth dimension to activate

in presence of edges or blobs of color. As a result, the algorithm would learn different weights for

each embedding dimension to highlight relevant interdependencies of medical terms, and tune vector

representations of patient histories to identify the most relevant characteristics of their semantic

space. These filtered responses are then applied to an AE which outputs a vector that estimates the

given input subsequence. Specifically, a one-layer AE takes a dense vector x ∈ RLf as an input and

transforms it to a hidden representation y = a(Wx+b), where a(·) is a non-linear activation function,

W is the weight coefficient matrix, and b is the bias vector. The latent representation is then mapped

back to a reconstructed vector z ∈ R|V |L that aims at recreating the initial one-hot encoded sequence

s with z = a(W′y + b′), and |V | the dimension of the vocabulary of medical terms. We extract the

hidden representation y, a H-dimensional vector, as the encoded representation of the initial patient

subsequence input. For each patient, we then compute the component-wise average of all subsequence

encodings to obtain a unique latent vector representation of dimension H.

To train the ConvAE architecture, we set up a multi-class multi-label classification task for ConvAE

to reconstruct each initial input subsequence of medical terms, from their one-hot encoded represen-

tations. These medical terms have been previously indexed in the medical concepts vocabulary from

our EHR data. Given a subsequence of medical concepts s, the ConvAE is trained by minimizing the

Cross Entropy (CE) loss

CE(Softmax(O), s) = − 1

L

L∑
j=1

log(Softmax(Oj)wj
),

where O is the output of the ConvAE module reshaped into a matrix of dimension |V | ×L, wj is the
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j-th element of sequence s that correspond to a term indexed in vocabulary V and

Softmax(Oj)i =
expOji∑|V |
i=1 expOji

i = 1, ..., |V |. (1.3)

Since the objective function consists of only self-reconstruction errors, the model can be trained

without any supervised training samples.

1.2.4. Hierarchical clustering

Agglomerative hierarchical clustering is a widely used technique to detect possible subgroups in a

dataset, identifying most similar elements according to a distance function. Each individual element

starts out as its own cluster, then clusters are progressively merged together minimizing a loss function.

Different choices for loss functions are available, e.g., Ward’s method recursively merges the pair of

clusters for which the within cluster variance increase is minimum. More specifically, the distance

between two points xi, xj is the Euclidean distance, i.e., d(xi,xj) =
√∑

k(xik − xjk)2, and the

distance that we want to minimize at subsequent iterations between clusters C1 and C2 is:

d̃(C1, C2) =

√
|C2|+ |s|

T
d(C2, s)2 +

|C2|+ |t|
T

d(C2, t)2 −
1

T
d(s, t)2

where T = |C2|+ |s|+ |t|, | · | denotes the set cardinality, and s, t are the elements of cluster C1.

Hierarchical clustering is an unsupervised clustering technique that aims at identifying patterns

in the absence of predetermined labels. We apply hierarchical clustering to our hidden patient repre-

sentations (see Figure 1.1 C) in order to validate the ConvAE architecture and identify informative

subgroups within complex conditions. A shortcoming of the hierarchical clustering method is that it

requires the number of clusters to be defined in advance. A way to automate this decision process

is via the Elbow Method, which empirically selects the smallest number of clusters that minimize

the increase in explained variance. With a top-down approach, first, it lists the minimum distances

d̃, which correspond to the within cluster variance increase at a new iteration. This variance tends

towards zero as the number of clusters increases, until we observe single-point clusters. Then, the

Elbow Method returns the minimum number of clusters for which the variance increase is relatively

small. This value corresponds to the “elbow” of the curve (nc, d̃(·)), where nc is the number of clusters,

and d̃(·) is the merging score from nc − 1 to nc clusters.

1.2.5. Implementation details

The implementation details reported here are empirically derived by trying to balance efficiency and

effectiveness of the model. We validate the model on smaller subsets of data (i.e., using disease cohorts

and random patients) with time interval T equal to {15, 30}; subsequence length L equal to {32, 64};

and embedding dimension N spanning {100, 128, 200}.

All modules are implemented in Python, version 3.5.2, and scikit-learn and pytorch libraries
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Fold-1 Fold-2

Training Test Training Test

Patients 741, 177 751, 979 740, 922 751, 900

Median sequence length 41 40 41 40

Subsequences 3, 636, 014 3, 656, 238 3, 644, 596 3, 647, 426

Mean N of subseq per patient (sd) 4.91 (12.13) 4.86 (12.06) 4.92 (12.14) 4.85 (12.06)

Vocabulary size 32, 799 32, 156 32, 875 32, 210

Table 1.1: Description of pre-processed training and test sets’ characteristics

[29, 30]. Computations were run on a server with an NVIDIA TITAN V GPU. Code can be found at

https://github.com/landiisotta/ehr_stratification.

Dataset For this study, we utilize pseudo de-identified health histories of 1, 608, 741 patients from

MSDW, which include 57, 464 clinical concepts in the form of structured data (see Section 1.2.1).

The medical concept dataset for this study consists of ICD-9 diagnosis codes (all ICD-10 codes are

backwards mapped to corresponding ICD-9 codes), medications (normalized with RxNorm), CPTs

and procedures, and laboratory tests (normalized with LOINC). The cohort includes 900, 932 fe-

males, 691, 321 males, and 16, 488 not declared; mean age of the population as of 2015 is 47.29 years

(sd = 23.79). Data is randomly partitioned into two-fold train and test sets at 50% resulting in two

mirror dataset splits, Fold-1 and Fold-2, which results in 804, 370 and 804, 371 subjects in test sets,

respectively.

During the filtering process, we use Eq. (1.1) to discard terms that return a score less than 10−6.

That is, we discard terms with a document frequency that range from 1 to 10. Examples of least

scoring terms (e.g., filter score < 10−10, and document frequency equal to 1) for Fold-1 and Fold-2

training sets are clotrimazole, an antifungal medication, and torsemide, a medication to reduce extra

fluid in the body, respectively. The upper bound of the term frequency list is composed of diagnostic

codes which are frequent in document and with multiple occurrences. These are central to patient

representations, and are retained. The clinical stop words are removed from both test sets.

After the filtering process, we remove duplicates in intervals of T = 15 days and shuffle the terms

in both training and test sets. Subsequently, patients with less than 3 medical terms are removed and

the longest sequences are cut at 5, 000 medical terms. Finally, sequences are split in subsequences of

length L = 32. In total, 24, 665 medical terms are filtered out from Fold-1, decreasing its vocabulary

size to 32, 799. On the other hand, 24, 589 terms are dropped from Fold-2, and the vocabulary size

becomes 32, 875. Description of folds’ characteristics are reported in Table 1.1.

Architecture implementation In total, we train the architecture on ∼ 3M subsequences that

represent the co-occurrence of medical concepts. To acquire an initialization baseline for the embedding

module of the ConvAE architecture, we use the Word2vec algorithm [22] to generate the initial 100-

dimensional medical concept embeddings. The semantic word embeddings are estimated using the
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continuous Skip-gram model. We consider all collected subsequences as sentences and medical concepts

as words. In total, we obtain 31, 659 medical concept embeddings in Fold-1 and 31, 715 in Fold-2,

after applying the Word2vec embedding algorithm. The remaining concepts are randomly initialized,

and subsequence padding is initialized at 0 (i.e. the null vector). These embedding vectors are then

used as input to the ConvAE module, and are trained within the architecture.

The convolutional neural network applies 50 filters of length 5 with stride size 1 followed by a

ReLU activation function. Next, we apply 1-dimensional Max Pooling, using the same convolution

parameters, to obtain the final filtered responses. The autoencoder is a fully-connected neural network

with 4 hidden layers with 200, 100, 200 and |V | × 32 hidden nodes in each layer, where |V | is the

vocabulary size of the selected training set. We use the ReLU activation function in the first three

layers and Softplus activation (i.e., a(x) = log(1 + exp(x))) in the output layer. Dropout layers with

p = 0.5 are applied in the first two layers for regularization. The model is trained using Cross Entropy

loss with the Adam optimizer (learning rate = 10−5 and weight decay = 10−5) [31]. The model is

trained for 5 epochs on all training data with batch size equal to 128.

To determine the optimal architecture configuration, we run alternative 1-layer, 2-layer, and mul-

tikernel CNN module configurations and compare performance on test sets. In the 2-layer CNN, all

parameters and structures remain unchanged, except for the number of filters set to 25 in the second

layer. Similarly, the multikernel CNN performs parallel training of distinct filters with different di-

mensions, while all other aspects remain unchanged. Then, the CNN concatenates the outputs and

feeds them to the next layer. In our study, we set parallel kernel dimensions to 3, 5, and 7.

1.2.6. Patient representation evaluation

To evaluate our model trained on the complete heterogeneous cohort of patients, we quantify the

extent to which patient representations from test sets reflect their clinical phenotypes, and determine

whether these representations can be leveraged for within-disorder stratification. First, we test model

performance against baseline models for the task of subgrouping specific cohorts of patients. Next, we

investigate if clinically relevant subtypes can be extracted from individual complex disorder cohorts.

In particular, patient representations are first learned from a heterogeneous dataset, and then these

representations are used to subtype different cohorts of patients via hierarchical clustering. This

replicates a common approach in clinical research, where attempts to identify latent patterns within

a cohort of patients can contribute to the development of improved personalized therapeutics [32].

To this aim, the clustering validation is based on two steps, and applies hierarchical clustering

with Ward’s method and Euclidean distance. First, we select a subset of patients with different com-

plex disorders (i.e., neoplasm, metabolic disorder, neurodevelopmental disorder, neurological disorder,

inflammatory disease) and run an external validation to investigate if patients with the same condi-

tion cluster together. Second, we perform an internal validation to identify the optimal number of

subclusters that best disentangles heterogeneity on the independent disorder dataset.
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External clustering validation External validation measures the extent to which cluster labels

match externally supplied labels. After selecting specific diseases, we perform hierarchical clustering

on the ConvAE representations of the heterogeneous cohort test sets with the number of clusters equal

to the number of selected diseases. We then measure the extent that externally supplied labels match

cluster labels using the cluster Entropy and Purity indicators.

In particular, for each cluster j, we compute pij , i.e., the probability that a member of cluster j

belongs to class i. Hence, pij =
mij

mj
, where mj is the number of elements in cluster j and mij is the

number of element in cluster j of class i. The Entropy for each cluster becomes: Ej = −
∑
i pij log2 pij .

The conditional Entropy H(disease|cluster) is then computed as

H(disease|cluster) =
∑
j

mj

m
Ej ,

where m is the total number of elements in the complex disease dataset.

We also use a purity measure to determine the most represented disease class in each cluster. For

a cluster j, the Purity Pj is defined as Pj = maxi pij , where pij is computed as before. The overall

purity of a clustering result is the weighted average of Pj :

P =
∑
j

mj

m
Pj

The best clustering configuration has low entropy and high purity.

Evaluation Baselines We compare the results of the ConvAE architecture to a set of baseline

algorithms on external clustering validation. Each approach outputs patient representations on test

sets that are externally validated via hierarchical clustering for a subset of patients with complex

disorders.

• Raw Count: a sparse patient representation, where each patient is encoded into a count vector

that has the length of the vocabulary. More specifically, each individual health history sp is

represented as an integer vector x ∈ Z|V |, where each element is the count of the corresponding

clinical word in the patient sequence, i.e., xi = #{wi; wi ∈ sp}.

• Singular Value Decomposition (SVD) of raw counts: SVD is a linear dimensionality

reduction technique that reduces a (m × n) real matrix X into its singular values (i.e., square

roots of non-negative eigenvalues), based on the decomposition X = UΣV T , were U and V are

and (m×m) and (n×n) real or complex unitary matrices, respectively. In this study, we apply

a truncated version of SVD transformation that only computes the k largest singular values of

the raw count encodings. Assuming fixed k = 100, the training matrix with m samples and n

features is decomposed into X = UkΣkV
T
k , with UkΣT of dimension (m×k). The transformation

of the test matrix X ′ with m′ samples and n features provides the matrix X ′Vk of dimension

(m′ × k).

• SVD of the Term Frequency - Inverse Document Frequency (TFIDF) matrix: The
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TFIDF weighting scheme combines term frequency and inverse document frequency scores to

produce a composite weight for each term in a corpus D. Given a document d comprised of

terms t, the normalized term frequency of a particular t̃ is defined as

tft̃,d =
#{t ∈ d; t = t̃}

#{t ∈ d}

i.e., the number of occurrences of t̃ over the total number of terms in a document d. The inverse

document frequency of the term t̃, on the other hand, is defined as

idft̃ = log
( N
dft̃

)
where N is the total number of documents in the corpus and document frequency dft̃ = #{d ∈

D; t̃ ∈ d}. The TFIDF score for the term t̃ in document d is defined as:

tf-idft̃,d = tft̃,d · idft̃

When truncated SVD is applied to term-document matrices, such matrices are transformed

to a semantic space of low dimensionality. In this context, we apply TFIDF computation to

patient sequences, which utilizes the entire dataset as a corpus and patient EHR sequences as

documents. Hence, we downscale the weights of terms that occur too often, and attribute more

relevance to terms that occur with less frequency. Each patient EHR is then represented as a

vector of length |V |, storing the corresponding weight for each term. In this application, the

TFIDF matrix is reduced via truncated SVD with feature dimension 100.

• Deep Patient [27]: each sequence of raw counts is input to a stack of denoising autoencoders

to produce latent representations of patient histories within the EHR. The architecture is im-

plemented as described in [27], with a deep feature dimension equal to 100, and trained with

batch size 32 until model convergence (< 5 epochs).

Recurrent Neural Networks

EHR sequences carry an intrinsic sequential pattern that encourages the use of Recurrent Neural

Networks, commonly utilized for time series data and text processing, as well as in a wide range of

other applications [33]. In particular, Long Short-Term Memory Units (LSTM) has been applied to

medical sequences to detect short- and long-range temporal dependencies for feature representations.

These feature representations are particularly useful in storing local and global information that can

be applied in both supervised and unsupervised settings [3]. LSTM core components are the cell

state and the forget, input, and output gates. Each cell state at time t carries relevant information

generated from input xt and hidden state ht−1, determined by the input and forget gates, along with

the previous cell state ct−1. The new cell state runs through the output gate, and combining the

previous hidden state along with the current input activations, form the hidden state at time t.
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A drawback of such an approach to EHR data is the assumption of uniformly distributed elapsed

time between elements of a sequence. EHRs lack a rigorous longitudinal structure of term sequences,

where subsequent visits can span from several days to several years. Such irregularity can affect the

representations of temporal changes throughout disease trajectories. To overcome this limitation, a

Time-aware LSTM (T-LSTM) architecture proposed by Baytas and colleagues [15] attempts to cap-

ture the temporal dynamics of sequential data with time irregularities. In particular, the T-LSTM

architecture discounts the short-term contributions by the amount of time spanning between two

subsequent records still retaining the global profile of patients. T-LSTM is trained on both a predic-

tion and an unsupervised task, where representations are learned within an autoencoder structure.

Experiments use both synthetic and real-world data (PPMI). Data structures are sequences of one

hot encoded vectors each one representing an admission event. While T-LSTM approach addresses

the temporal dimensions of disease progression representation, it still relies on highly engineered data

(need for an a priori definition of admission event) and only relies on term co-occurrences within

admission events. These shortcomings may result in representations with substantially lower reso-

lution. In discovering latent relationships and hierarchical concepts from real-world data we do not

significantly intervene on the temporal structure of the data. Hence, in this work, we do not include

Recurrent Neural Networks models as a baseline because, with their need for structured admission

events, they would not be directly comparable to our architecture.

Internal clustering validation To detect subclusters within each disorder, we apply hierarchical

clustering to patient representations from separate disorder cohorts with the number of clusters ranging

from 2 to 15. The best number of clusters is selected via the Elbow Method.

Frequent term inspection To investigate which clinical features best describe different subclusters,

we rank diagnosis codes, laboratory tests, medications, CPT codes, respect to the counts of terms

occurring in the concept histories of patients in the same cluster. We compute percentages of patients

whose sequence includes a specific term both with respect to the counts of patients within a subcluster

and among patients in the complete disease dataset. Ranking first maximizes the relative percentage

within the subcluster, and second, the percentage over the whole dataset. Most frequent concepts

are then analyzed and we use a pairwise chi-squared test to determine whether the distributions of

present/absent counts with respect to the detected subgroups are significantly different.

1.3. Results and discussion

To visualize the distribution of the encoded representations of patients and the labels of interest (i.e.,

disease classes, external clustering labels, subgroup labels) we apply Uniform Manifold Approximation

and Projection for dimensionality reduction (UMAP; [34]). UMAP number of neighbors and minimum

distance parameters are set at 20 and 0.0, respectively, for external validation, and at 10 and 0.0,

respectively, for internal validation. Recently, UMAP has been proposed as operative space for Deep

Clustering [35].
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Complex disorder Full dataset Test Fold-1 Test Fold-2

Type 2 diabetes 100, 580 50, 253 50, 327

Parkinson’s disease 6, 274 3, 124 3, 150

Alzheimer’s disease 6, 685 3, 374 3, 311

Multiple myeloma 3, 882 1, 947 1, 935

Prostate cancer 28, 909 14, 401 14, 508

Breast cancer 16, 486 8, 330 8, 156

Crohn’s disease 13, 409 6, 668 6, 741

ADHD 12, 822 6, 510 6, 312

ADHD = Attention Deficit Hyperactivity Disorder

Table 1.2: Disease cohort counts.

Entropy∗ Purity∗ N diseases†

ConvAE 1-layer CNN 2.61 (0.04, [2.58, 2.67]) 0.31 (0.02, [0.31, 0.35]) 6.50 (0.62)
ConvAE 2-layer CNN 2.75 (0.02, [2.74, 2.78]) 0.26 (0.01, [0.26, 0.29]) 5.93 (0.50)

ConvAE multikernel CNN 2.66 (0.03, [2.64, 2.70]) 0.30 (0.02, [0.29, 0.33]) 5.94 (0.47)

Raw count 2.90 (0.02, [2.88, 2.92]) 0.18 (0.01, [0.18, 0.20]) 4.76 (0.70)
SVD raw count 2.90 (0.01, [2.90, 2.92]) 0.19 (0.01, [0.18, 0.20]) 5.13 (0.79)

SVD TFIDF 2.85 (0.02, [2.84, 2.87]) 0.21 (0.01, [0.21, 0.23]) 5.83 (0.76)
DP 2.81 (0.02, [2.80, 2.84]) 0.24 (0.01, [0.23, 0.25]) 5.96 (0.74)

∗ Mean (sd, CI); † Mean (standard deviation)

CNN = Convolutional Neural Network; SVD = Singular Value Decomposition; TFIDF = Term Frequency - Inverse
Document Frequency; DP = Deep Patient

Table 1.3: External validation performances for ConvAE models and baselines.

1.3.1. External validation

We select 8 complex disorders to validate normalized patient encodings. In particular, we extract

patients with T2D, MM, PD, Alzheimer’s disease (AD), Crohn’s disease (CD), Malignant neoplasm

of female breast (BC), Malignant neoplasm of prostate (PC), and Attention Deficit Hyperactivity

Disorder (ADHD). For patient selection, we rely on SNOMED Clinical Term identifiers and we control

for a corresponding ICD-9 code in patient EHRs. We exclude patients with comorbidities. Disease

numerosities for the complete dataset and the two-fold test sets are reported in Table 1.2.

In an ideal validation setting, all patients with the same complex disorder are clustered together

yielding an entropy score of 0, and a purity score equal to 1 (i.e., probability that members clustered

together belong to the same cohort).

As can be observed in Table 1.2, disease cohorts in test folds are unbalanced, varying from 50K to

1.9K, so we randomly sample 5, 000 patients from each disease cohort in the full dataset and obtain

subsampled test sets from Fold-1 and Fold-2 of roughly 2, 500 subjects per disease cohort, respectively.

We iterate the subsampling process 100 times and average out the performance results. We report
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(a)

(b)

Figure 1.2: Uniform Manifold Approximation and Projection (UMAP) visualization of Fold-2 encod-
ings. (a) complex disorder classes; (b) hierarchical clustering labels.
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average Entropy and Purity scores, and the mean number of correctly detected diseases from the

purity score for the three ConvAE architectures (i.e., 1-layer CNN, 2-layer CNN, multikernel CNN)

and baselines in Table 1.3.

We observe that all three ConvAE model configurations perform better than the baselines in

entropy and purity scores, whereas DP encodings perform better than 2-layer and multikernel CNN

models in the average number of detected diseases. The 1-layer-CNN configuration has the best overall

performances in all three scores, closely followed by the architecture with multikernel CNN. UMAP

representation of 19, 409 encodings of patients from Fold-2 test set with their disease cohort labels

is shown in Figure 1.2 (a). The clustering labels and the purity percentage scores of each cluster

dominating disease are listed in the legend of Figure 1.2 (b).

The most visible and well separated points are from patients with ADHD detected with 80% purity

by hierarchical clustering. Two main clusters of patients with PC, and one cluster of patients with PD

are also visible. Most individuals with BC are scattered throughout the plot, except for a small group

in the top area of the figure that is detected by hierarchical clustering with 68% BC purity. Close to

a large assembly of individuals with MM, correctly identified by a cluster, a small sized subgroup of

subjects with CD is not detected by the clustering algorithm and it is included in the MM cluster. This

can be caused by shared phenotypic profiles (e.g., late-onset groups with similar comorbidities) that

lead to latent representations that end up close to each other. Furthermore, although patients with

T2D are mainly scattered across the center of the point cloud, a cluster with 61% purity is identified.

The encodings of the AD cohort are of particular interest. There are no visible clusters among these

patients, and corresponding clusters includes patients with other conditions. AD, CD, and T2D classes

are highly entangled, and the lack of patterning could be due to confounders, such as sequences lengths,

sex, age, or noise. Such entanglement may also reflect a shared phenotypic characterization that drives

the learning process into displaying similar EHR progressions closely together. An interactive plot,

implemented with Bokeh visualization library, that allows the visualization of individual diseases is

available in the Supplementary Material folder.

1.3.2. Internal clinical validation

The latent semantic spaces for the two-fold datasets are different by construction, and this influences

patient representations to an extent. We run internal validation on Fold-1 and Fold-2 disease cohorts,

considering separately their UMAP plots.

Next, we focus on T2D, PD, AD, MM, PC, and BC for internal validation. For each cohort, we

select patients with the corresponding ICD-9 code, in particular, Diabetes mellitus (250.00) for T2D;

Paralysis agitans (332.0) for PD; Alzheimer’s disease (331.0) for AD; Multiple Myeloma without

mention of having achieved remission (203.00) for MM; Malignant neoplasm of prostate (185) for

PC; and Malignant neoplasm of female breast (174.9) for BC. To reduce noise in the sequence encod-

ings, patient ConvAE subsequence representations are considered from the first instance of diagnosis

forward, and are averaged; sequences shorter than 3 terms are dropped.
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Fold-1 Fold-2

Numerosity N clusters Numerosity N clusters

T2D 48, 688 3 48, 759 3

PD 3, 052 2 3, 071 2

AD 3, 201 3 3, 150 3

MM 1, 884 5 1, 883 4

PC 8, 522 2 8, 645 3

BC 7, 964 2 7, 838 2

T2D = Type 2 Diabetes; PD = Parkinson’s Disease; AD = Alzheimer’s Disease; MM = Multiple Myeloma; PC =
Prostate Cancer; BC = Breast Cancer

Table 1.4: Disease cohorts and number of subclusters.

First, we find the best number of subclusters in each cohort via the Elbow Method applied to

hierarchical clustering, then we perform medical term enrichment analysis and clinical phenotyping.

In order to detect whether or not sex count distributions differ by group, we use multiple pairwise

chi-squared tests. The existence of differences in patient age and sequence length in the EHR is

determined using multiple pairwise two-tailed t-tests. To assess the significantly enriched terms in

subgroups we run multiple pairwise chi-squared tests. Significance level for the Bonferroni-corrected

p-values is set at 0.05. We expect cohorts from both folds to be similarly enriched and, when possible,

we aim to compare the subgroups that we find to subtypes from the literature.

In Table 1.4, the disease cohorts and the number of subgroups found are reported for both folds.

For each disease cohort, the top five most frequent terms from ICD-9, medications, laboratory tests,

and CPTs are listed in Tables 1.5 - 1.10 from Fold-1 and Tables 1.11 - 1.16 from Fold-2. We do

not report procedure terms because of their redundancy and overlapping with CPT codes. As an

example, Electrocardiogram complete, Electrocardiogram tracing are often found among procedures,

and they correspond to the CPT code 93000, Electrocardiogram, routine ECG with at least 12 leads;

with interpretation and report, which indicates that the clinical interpretation of the Electrocardiogram

(ECG) tracing always follows an ECG procedure. In the following, clinical subgroups for both folds

are described. Results from the two folds are mostly similar.

In the following, we report the clinical validation of disorder subgroups identified by hierarchical

clustering for six different complex disorders including neoplasms, metabolic disorder, and neurological

disorders to test the validity of our representations.

Fold-1 disease cohorts

Type 2 Diabetes T2D is characterized by hyperglycemia, insulin resistance, and relative impair-

ment in insulin secretion. An exact pathogenesis of T2D is still unknown because each clinical feature

can arise through genetic and/or environmental influences. The global prevalence of T2D among

adults over 18 years of age has risen to 8.5% in 20141. T2D is often accompanied by other conditions

1https://www.who.int/news-room/fact-sheets/detail/diabetes (Accessed on September 17, 2019)
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Type 2 diabetes Parkinson's disease

(a) (b)

Alzheimer's disease Multiple myeloma
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Prostate cancer Breast cancer

(e) (f)

Figure 1.3: Fold-1 complex disorder subgroups. A subsample of 5, 000 patients with T2D is displayed
in Figure (a).
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that also increase cardiovascular risk. These clinical conditions are referred to as metabolic syndrome

[36].

Patients with T2D are clustered into three different subgroups (see Figure 1.3 a) by our modeling

architecture. Subgroup I consists of 18, 325 patients, subgroup II of 22, 659, and subgroup III of

7, 704 patients. The most relevant terms among ICD codes, medications, laboratory tests, and CPTs

for each subgroup are reported in Table 1.5. Mean age is > 60 years and it increases progressively

across the three subgroups, with subgroup I consisting of the youngest cohort of patients (M =

64.77, sd = 14.32), and subgroup III consisting of the oldest cohort (M = 69.42 sd = 11.29). Sex

counts significantly differ between groups, with more females than males in subgroup I and more

males than females in subgroups II and III. Mean sequence lengths are significantly different between

groups, although they are similarly distributed. Older patients (subgroup III) have substantially

shorter sequences probably due to a greater probability of death and subsequently dropping out of

the EHR system.

In the stratification process of patients with T2D, we are able to identify a subgroup of patients

characterized by cardiovascular disorders (subgroup III). Patients in this group often have patient

records with terms for coronary artery diseases, i.e., Coronary atherosclerosis (414.00/01), Angina

pectoris (413.9), which are serious risk factors for heart failure. These subjects are also treated

with antiplatelet therapy (i.e., Acetylsalicylic acid, Clopidrogel) to prevent cardiovascular events (e.g.,

stroke) and are likely to receive invasive procedures to treat severe arteriopathy. For instance, among

the 10 most frequent terms, 30% of patients in subgroup III undergo Percutaneous Transluminal

Coronary Angioplasty (p < 0.001), a procedure to open up blocked coronary arteries. Subgroup II

appears to cluster patients that are more inclined towards or have developed diabetic nephropaty

and peripheral artery disease (PAD), defined as atherosclerotic occlusive disease of lower extremities.

In particular, Creatinine and Urea nitrogen laboratory tests, which measure creatinine and urea

metabolic byproduct levels to estimate renal function, suggest monitoring of kidney disease. Diabetic

nephropathy may lead to diabetic kidney disease, a complex and phenotypically heterogeneous disease

with overlapping etiological pathways [37]. Moreover, signs of metabolic syndrome, i.e., Hypertension

(401.9), Hyperlipidemia (272.4), combined with analgesic drugs (i.e., Paracetamol, Oxycodone), may

indicate the presence of vascular lesions at the peripheral level, manifested as ischemic rest pain or

ulceration. Previous estimates have shown that individuals with T2D older than 50 years have a

29% prevalence of PAD, with age, disease duration, and peripheral neuropathy that are associated

risk factors [38]. Subgroup I includes patients with signs of metabolic syndrome and are treated with

Metformin, an oral hypoglycemic medication.

Based on clinical profiles, we seem to identify subgroups tied to different disease progressions.

Subgroup I is the initial mild symptom severity group, characterized by common T2D symptoms (i.e.,

metabolic syndrome). Subgroups II/III show concomitant conditions associated to T2D progression

and worsening symptoms. Specifically, subgroup II is characterized by microvascular problems (i.e.,

diabetic nephropathy, neuropathy) and/or PAD, whereas subgroup III shows severe cardiovascular

problems (i.e., coronary atherosclerosis, angina pectoris).
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Our results confirm, in part, what observed by Li et al. [16], which report three distinct subgroups

of patients characterized by 1) microvascular diabetic complications (i.e., diabetic nephropathy, dia-

betic retinopathy); 2) cancer of bronchus and lungs; and 3) cardiovascular diseases and mental illness.

In particular, we detect the same microvascular and cardiovascular disease groups, which are con-

sequences of T2D. In contrast, we are unable to detect Li’s group 2 characterized by cancer, an

epiphenomenon that can be caused by secondary immunodeficiency in patients with T2D [39, 40]. Li

et al. utilize the same cohort of patient histories as in this study, and of the 2, 472 patients from

their study, we identified 1, 050 patients in Fold-1 data. We compare the similarity of the clusters we

have obtained to those found by Li and colleagues via the Fowlkes-Mallows index (FMI), which is an

external validation similarity measure of two cluster analyses [41, 42].

FMI is theorized for hierarchical clustering [41] and it assumes two hierachical clusterings of the

same number of objects n, named A1 and A2, with k clusters. Clusters are then labeled from 1 to k

and a matrixM = (mij), i, j = 1, ..., k is created, with mij the number of objects in common between

the i-th cluster of A1 and the j-th cluster of A2. The FMI then becomes:

FMI =
Tk√
PkQk

where

Tk =

k∑
i=1

k∑
j=1

m2
ij − n

Pk =

k∑
i=1

m2
i· − n

Qk =

k∑
j=1

m2
·j − n

with mi· =
∑
jmij , and m·j =

∑
imij .

FMI scores range from 0 to 1, where 1 represents identical clustering and 0 for purely independent

label assignments. More in general, it has been shown [42] that FMI can be defined as an information-

based index:

FMI =

√
TP

TP + FP
· TP

TP + FN

where TP is the number of true positives, i.e. the number of pairs of points that are assigned to the

same cluster in both A1 and A2, FP is the number of false positives, i.e., the number of pairs of points

that are in the same cluster for A1, but not for A2, and FN (false negatives) the opposite. We obtain

FMI = 0.40, which suggests that only a portion of patients in groups from [43] are identified by our

clustering as sharing the same characteristics. This may entails that associated clinical characteristics

overlap to a greater extent than hypothesized by Li and colleagues, which may have been overlooked

because they collected shorter EHR sequences (i.e., 60 day intervals).
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Parkinson’s Disease PD is a progressive neurodegenerative disease now recognized to be a complex

condition with diverse clinical features that include neuropsychiatric, motor, and nonmotor manifes-

tations [8]. PD prevalence increases with age and is estimated at 1% in people over 60 years old [44].

Pathophysiology of PD ascribes parkinsonian signs, such as bradykinesia, to dopamine depletion from

the basal ganglia, which results in major disruptions in the connections to the thalamus and motor

cortex.

From a PD cohort of 3, 052 patients, we identify two subgroups of 1, 368 and 1, 684 patients,

respectively, as shown in Figure 1.3 (b). Each subgroup’s most frequent clinical terms and statistics

are displayed in Table 1.6. We observe that there is no difference in the frequency distribution

of female/male counts between the two subgroups, whereas mean sequence length and mean age

significantly differ between the subgroups. In particular, PD-I has shorter sequences and lower mean

age in years (M = 70.76, sd = 13.52) than PD-II.

One group seems to be characterized by nonmotor/independent features and longer course of the

disease, whereas the other group is dominated by motor symptoms. In particular, subgroup I presents

as a tremor-dominant subgroup for the presence of Essential tremor (333.1) code, with Anxiety

state (300.00). Subgroup II is described by nonmotor and independent symptoms, i.e., Constipation

(564.00) and Fatigue (780.79), respectively. In subgroup I, motor clinical features have led, with all

probabilities, to a misdiagnosis of essential tremor, which is an action tremor that typically involves

the hands. Parkinsonian tremor, on the contrary, although can be present during postural maneuvers

and action, is much more severe at rest and decreases with purposeful activities. However, when the

tremor is severe, it may be difficult to distinguish action tremor from resting tremor. Moreover, some

patients with PD may have a re-emergent tremor, which is a postural tremor that manifests after

a latency of few seconds. These individual characteristics may lead to the misdiagnosis of essential

tremor [45]. Moreover, anxiety states, emotional excitement, and stressful situations can exacerbate

the tremor, and the presence of anxiety comorbidity may have delayed PD diagnosis. Brain MRI,

usually nondiagnostic in PD, is prescribed for few patients from subgroup I (13%) suggesting its use

for differential diagnosis, i.e., to investigate the presence of chronic/vascular encephalopathy.

Considering subgroup II characterization, constipation is one of the most common nonmotor prob-

lems related to autonomic dysfunction and slowed intestinal transit time in PD. Fatigue is a common

problem in patients with PD, with prevalence rates ranging from 33− 58%, that manifests as dimin-

ished activity level, and increased perception of effort, disproportionate to activities [46]. Fatigue is

considered a feature that does not depend on disease progression [47].

The PD stratification study on PPMI data by Zhang et al. [26] has identified three distinct

subgroups of patients with PD based on severity of both motor and nonmotor symptoms. In particular,

one subgroup includes patients with moderate functional decay in motor ability and stable cognitive

ability. Another subgroup presents mild functional decay in both motor and nonmotor symptoms, and

the third subgroup is characterized by rapid progression of both motor and nonmotor symptoms. The

representations of patient from EHRs for stratification purposes exclude the analysis of PD symptom

severity, in that EHRs lack quantitative measures of these. However, differently from Zhang and
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colleagues, our approach is able to discriminate between specific motor and nonmotor symptoms, and

also suggests a longer, but not necessarily more severe, disease course for subgroup II.

Alzheimer’s Disease AD is a progressive neurodegenerative disorder characteristic of older age

(> 65 years) and its causes and pathogenesis remain unknown. AD is the most common cause of

dementia, a decline in cognition involving one or more cognitive domains (e.g., learning and memory,

language, executive functioning) [48]. Globally, an estimated 43.8 million people are affected by

dementia [49] and there is very little difference between men and women in incidence and prevalence

of dementia or AD. Due to life expectancy, the raw numbers indicate that more women than men

present with AD, particularly over the age of 85 years, due to differences in life expectancy by sex.

The hallmark neuropathologic changes in AD are diffuse and neuritic plaques, marked by extracellular

amyloid beta deposition, and neurofibrillary tangles, comprised of the intracellular accumulation of

hyperphosphorylated tau protein.

We identify three subgroups within patients with AD (see Figure 1.3 c). In particular, AD-I

(N = 399) is characterized by younger age (M = 54.45 sd = 22.48) and shorter sequences (M = 32.24,

min/max = [3; 448]), subgroup II includes 1, 170 patients that are significantly older than subgroup

III patients (N = 1, 632), and sequence lengths are not significantly different between subgroups II

and III. Moreover, significantly more females than males are affected by AD in all subgroups. For

term frequencies and statistics, refer to Table 1.7.

Subgroup I appears to be characterized by patients with early-onset AD, i.e., patients whose demen-

tia symptoms have typically developed between the age of 30 and 60 years, and initial neurocognitive

disorder. Subgroup II includes patients with late-onset AD, mild neuropsychiatric symptoms and

cerebrovascular disease. Subgroup III is characterized by individuals with typical onset and mild-to-

moderate dementia symptoms. Early-onset AD affects 5% of the individuals with AD in the US2 and,

because clinicians do not usually look for AD in younger patients, the diagnostic process includes

extensive evaluations of patient symptoms. In particular, given that a certain AD diagnosis can only

be provided post-mortem through brain plaques examination and it is unlikely at a young age, clin-

icians first rule out other causes that can lead to early-onset dementia (i.e., differential diagnosis).

We find evidence of this practice in subgroup I, which includes postmenopausal women, identifiable

by mean age greater than 50, Osteoporosis (733.00) diagnosis with calcium supplement therapy, and

menopausal hormone treatment (i.e., Estradiol). Patients in this group are tested for infectious dis-

eases (i.e., HIV, Syphilis, Hepatitis C, Chlamydia/Gonorrhoea), that are possible causes of early-onset

dementia [50], and screened via structural neuroimaging, e.g., MRI/PET brain procedures (p < 0.01 I

vs II). As cognitive dysfunctions that may be mistaken for dementia can also be caused by depression

and other psychiatric conditions, the presence of CPT term Psychiatric service/procedure suggests

psychiatric evaluations to exclude depressive pseudodementia. After the differential diagnosis process

and the exclusion of other possible causes, eventually these patients have received a diagnosis of AD.

Subgroup II is identified by Dementia without behavioral disturbance (294.10) ICD-9 code. Neu-

2https://www.alz.org/alzheimers-dementia/what-is-alzheimers/younger-early-onset (Accessed on October 14, 2019)
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ropsychiatric symptoms are common in AD and other types of dementia and include behavioral

disturbances such as agitation, aggression, and delusions. One or more behavioral symptoms are ob-

served in 60− 90% of patients with dementia, and the prevalence increases with the onset of cognitive

impairment [51]. The absence of behavioral disturbances in 39% of patients, and their high average

age (M = 84.96, sd = 9.61), suggest a late AD onset, with a progression characterized by a slower

rate of cognitive ability decline. Moreover, the presence of Acetylsalicylic acid antiplatelet medication

possibly indicates the co-occurrence of cerebrovascular disease, which affects blood vessels and blood

supply to the brain. Cerebrovascular diseases are common in aging, and can be associated with AD

[52]. Among CPTs and procedures, Head CT (p < 0.001) may have been performed to prevent or

identify structural abnormalities related to cerebrovascular disease.

Subgroup III includes 408 patients treated with Donepezil, a cholinesterase inhibitor, that is a

primary treatment for the cognitive symptoms of AD and it is usually administered to patients with

mild-to-moderate AD producing small improvement in cognition, neuropsychiatric symptoms, and

activities of daily living [53].

Overall, we are able to distinguish patients with AD according to AD onset, disease progression,

and severity of cognitive impairment. Subgroups I and II, where Alzheimer’s associated dementia can

be mistaken for other forms of dementia such as infectious disease and vascular dementia, suggest the

need for extensive screening for comorbid diseases as a diagnostic tool for patients showing signs of

idiopathic dementia.

Multiple Myeloma MM is characterized by the clonal proliferation of plasma cells in the bone

marrow, producing a monoclonal immunoglobulin. Signs of MM can be: 1) bone pain with lytic

lesions; 2) increased total serum protein concentration and/or presence of a monoclonal protein in the

urine or serum; 3) anemia; 4) hypercalcemia; 5) acute kidney injury with or without proteinuria (i.e.,

light chain deposition disease, amyloidosis, myeloma kidney). Worldwide in 2016, there were 138, 509

cases of MM with an age-standardized incidence rate of 2.1 per 100, 000 persons [54]. MM is a disease

of older adults, with median age at diagnosis equal to 66 years [55].

Considering Figure 1.3 (d), we obtain 5 subgroups of patients with MM with mean age > 63 years,

and no differences across types in terms of count by sex, except for between subgroups IV and V (see

Table 1.8). Mean sequence lengths are significantly different across subgroups, except for those in

subgroups I and V, with subgroup III reporting the greatest mean sequence length (M = 1204.13,

min/max = [15; 4, 849]). Subgroup I includes older patients than all other groups (M = 69.97, sd =

14.00), whereas mean age for the other subgroups are not significantly different from one another.

Inspecting the most frequent ICD-9 terms for subgroup I (see Table 1.8), we observe that patients

are characterized by pulmonary manifestations. Subgroup II shows bone-related signs of MM, and

subgroup III shows signs of gastrointestinal problems. Among MM signs, renal function is estimated

for patients in subgroup IV, whereas subgroup V shows signs of peripheral neuropathy.

Pulmunary manifestations in subgroup I include Pleura effusion (511.9), which is a rare pulmonary

manifestation of amyloidosis [56] and MM coexists with primary amyloidosis in 10 − 15% of cases
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(i.e., superimposed amyloidosis). Moreover, when amyloidosis is accompanied by proteinuria (i.e.,

excess proteins in urine), this determines protein concentration in blood to decrease causing fluids

to accumulate in the pleural cavity. Subgroup I can thus include patients with amyloidosis and

proteinuria. More rarely, amyloidosis can develop into MM in older patients [57].

The presence of Disorders of bone and cartilage (733.99) ICD-9 code characterizes group II and,

moreover, Disease of salivary glands (527.9) can be a sign of superimposed amyloidosis in patients

with MM [58]. Gastrointestinal problems in subgroup III are associated with the ICD-9 code Diar-

rhea (787.91), whereas subgroup V shows Inflammatory/toxic neuropathy (357.9/89) diagnosis. We

expect these diagnoses to indicate side effects from anti-cancer medications. In particular, we find

Bortezomib in combination to Dexamethasone in both subgroups III and V. Bortezomib is adminis-

tered to 47% of patients from subgroup III, although not shown in Table 1.8 because ranked at 7th

position (p < 0.001), and to 26% of patients in group V. Bortezomib is used 1) for patients ineligible

for hematopoietic cell transplantation (HCT); 2) as a maintenance therapy; or 3) in conjunction with

HCT for newly-diagnosed patients [59]. Peripheral nerve damage is one of the most significant non-

hematologic toxicities of bortezomib [60]. Clinical manifestations are gastrointestinal side effects (i.e.,

diarrhea, constipation) [61] that are thought to be caused by autonomic peripheral neuropathy, and

motor neuropathy, consisting of mild to severe distal weakness in the lower extremities [62]. Although

unlikely, given the close distribution of clusters III and V in Figure 1.3 (d), and the clear presence of

side effects from anti-cancer drugs in subgroup III, neurologic complications can also be caused by MM

itself. Such neurologic complications can be due to spinal cord compression from an extramedullary

plasmacytoma, or by peripheral neuropathy, which is rare and usually caused by superimposed amy-

loidosis [63]. The ICD-9 term Counseling (V65.40) in subgroup V likely denotes an encounter to treat

severe pain linked to neurologic diseases or psychological support.

Creatinine laboratory testing indicates renal function estimate for patients in subgroup IV. More-

over, 30% of patients undergo surgery, and are likely eligible for HCT. Depending on eligibility, age,

and disease course, HCT can be autologous or allogenic, and nonmyeloablative or myeloablative (i.e.,

decreased bone marrow activity). Further analysis on the kind of HCT procedure performed would

provide information related to the probability of relapse, mortality risk, and response to treatment

for this group.

In conclusion, we have identified 5 subgroups of patients showing different typical signs of MM.

In some cases, these signs are further characterized by rare pulmonary diseases in older patients, and

possibly superimposed amyloidosis, therapy-related side effects, or non-specific HCT procedures.

Malignant neoplasm of prostate Prostate cancer is the most common cancer in men worldwide,

with an estimated 1, 600, 000 cases annually [64]. Clinical manifestations of prostate cancer are usually

absent at the time of diagnosis, and over 90% of patients present with local or locoregional disease

due to the widespread use of PC screening (i.e., use of prostate-specific antigen – PSA, or digital

rectal examination). In the remainder of patients, the diagnosis is typically based on symptoms of

advanced cancer (e.g., urinary tract obstruction, hematuria, bone pain). Specifically, at the time of
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diagnosis, it is estimated that 77% of patients have localized cancer, 13% show regional lymph node

involvement, and 6% present metastasis. PC is most frequently diagnosed among men aged 65− 74,

and median age at diagnosis is 66 years3. Clinical behavior of PC is heterogeneous and may range

from a screen detected asymptomatic, microscopic, well differentiated tumor, that may never become

clinically significant, to the rare screen detected or clinically symptomatic aggressive cancer, that

causes metastases, morbidity, and death. Treatment approaches to PC include: active surveillance,

radical prostatectomy, or radiation therapy (RT) for patients with low-risk PC; prostatectomy or RT

in combination with Androgen Deprivation Therapy (ADT) for patients with higher-risk, but localized

PC; RT and ADT for patients with clinical evidence of lymph node involvement.

We find 2 subgroups of patients with PC, that are displayed in Figure 1.3 (e). Mean age between

the two groups is not significantly different, whereas subgroup I includes patients with significantly

longer sequences (M = 219.18, min/max = [9; 4, 817]). Patients in subgroup I (20%) report Per-

sonal history of PC (V10.46) and Ondansetron medication, to prevent RT side effect (i.e., nausea).

The latter suggests that there exists patients with recurrent prostate cancer that have either received

prostatectomy in the past, and hence RT and ADT is required, or, have already received RT and

thus require a radical approach. Patients in subgroup II show signs of effective PSA screening, indi-

cating probable localized and asymptomatic PC. The diagnoses of Nocturia (788.43), Impotence of

organic origin (607.84), Urinary frequency (788.41), and treatments for male sexual dysfunctions,

i.e., Tadalafil, Sildenafil, can all be signs of side effects from PC treatments [65]. Among them, at

least 22% likely received a prostatectomy (Surgery CPT term). Dissimilarly to the second subgroup,

where PSA screening is highly frequent (see Table 1.9), patients in the first subgroup do not have PSA

terms among top-ranked terms. This suggests that subgroup I includes patients that already received

prostatectomy, and thus PSA screening is less frequent. Patients in subgroup I appear to have been in

the healthcare system for longer (i.e., similar age, but longer sequences than subgroup II), and also to

have been diagnosed with PC earlier (i.e., at a younger age) relative to patients clustered in subgroup

II.

According to our analysis, we are able to identify two same-age groups of patients along with

diverging disease courses. The first group includes patient with recurrent PC, whereas the second

includes patients showing prostatectomy treatment side effects, but for whom the screening policy via

PSA proved to be effective.

Malignant neoplasm of breast (female) Malignant neoplasm of breast is the most frequent

cancer in females worldwide, with more than 2, 000, 000 new cases registered in 20184. Female brest

cancer is most fequently diagnosed among women aged 55 − 64 and median age at diagnosis is 62

years5. BC shows both pathologic and biologic heterogeneity, with various types of breast carcinoma

that differ in appearance and behavior [43]. Different molecular subtypes of BC have been identified

based on gene expression profiling [66].

3https://seer.cancer.gov/statfacts/html/prost.html (Accessed on September 17, 2019)
4http://gco.iarc.fr/ (Accessed on September 17, 2019)
5https://seer.cancer.gov/statfacts/html/breast.html (Accessed on September 17, 2019)
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In our cohort, we are able to identify two subgroups (see Figure 1.3 f) that significantly differ in

average age and sequence length. In particular, subgroup I includes older patients (M = 66.67, sd =

14.27) and longer sequences (M = 323.43, min/max = [6; 4, 849]) than subgroup II. In inspecting

clinical terms from subgroup I (see Table 1.10), we observe that subjects in subgroup I do not display

a clear disease pattern. Patients in subgroup II, on the other hand, are younger and present a high

number of screening-related medical terms (e.g., Mammography screening). Moreover, the presence

of Abnormal mammogram (793.80) and Carcinoma in situ of breast (233.0) suggests an early-stage

diagnosis. However, the prescription of Ondansetron medication suggests the presence of patients

with more severe BC (e.g., metastatic) that receive chemotherapy treatment.

To describe subgroup I, we have investigated less frequent terms besides the first five and find

out that 30% of them display the Unlisted chemotherapy CPT term (p < 0.001), which accounts for

85% of all terms in EHR cohort. Moreover, Surgery is performed on 57% of patients in subgroup I

(p < 0.001), which accounts for 71% of all terms in the cohort. These findings suggest that these

patients may have a more advanced disease, as evidenced by lack of screening terms among the five

most frequent. As a result, they typically undergo chemotherapy treatment used for more advanced

cancer, whereas for early-stage cancer primary surgery (lumpectomy, mastectomy) with or without

radiation therapy is preferred. Moreover, this group includes subjects that have already received

surgical treatments and thus can show either BC in relapse or be disease-free.

In conclusion, it would be important to better characterize what the general term “unlisted

chemotherapy” specifically refers to in terms of more specific treatments to better understand the

clinical characteristics of patients. Moreover, hormonal profiles of patients can provide important

datapoints in terms of determining treatment options for different molecular subtypes of disease. The

two groups considered are possibly two consecutive groups, where patients in subgroup II are newly

diagnosed and patients in subgroup I may have had BC in the past and survived, either showing

relapse, a disease-free survival endpoint, or a late referral at diagnosis.

Fold-2 disease cohorts

Subgroups from Fold-2 disease cohorts are visualized in Figures 1.4 (a)-(f). It is straightforward to

observe that the number of clusters only differs for PC and MM between the two folds. In Table 1.11,

the analysis of most frequent terms that characterize patients with T2D in Fold-2 leads to very

similar results than Fold-1. However, it is worth noting that subgroup II, the one characterized by

microvascular diseases, also shows ICD-9 code Coronary artery atherosclerosis (414.01). This suggests

that also patients in subgroup II, to some extent, are affected by cardiovascular diseases, that can

hence be a common characteristic for more advanced disease courses shared by different phenotypes

(Mean age T2D-II 67.17 (14.73)).

Patients with PD are separated into two subgroups also in Fold-2 (see Figure 1.4 b). Moreover,

terms in Table 1.12 distinguish the motor and nonmotor subtypes previously found. Alzheimer’s

disease is again characterized by three groups in Fold-2 (Figure 1.4 c) with the same clinical profiles of

Fold-1 subtypes (see Table 1.13). MM encodings from Fold-2 detect 4 instead of the 5 subgroups from
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Figure 1.4: Fold-2 complex disorder subgroups. A subsample of 5, 000 patients with T2D is displayed
in Figure (a).
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Fold-1 (Figure 1.4 d). In particular, subgroups I, II, and III from Fold-2 have similar characteristics

to subgroups I, II, and V from Fold-1. Moreover, Fold-2 subgroup IV includes individuals with

characteristics similar to those in both subgroups III/IV from Fold-1 (see Table 1.14).

Patients with PC in Fold-2 are split into three subgroups (Figure 1.4 e), where subgroups II and

III appears to be a further division of the previously found subgroup II. Interestingly, Fold-2 subgroup

III includes significantly younger subjects compared to same fold subgroup II, but sequence lengths

are not significantly different. Unfortunately, it is not clear what makes the two subgroups different

and further analysis should be performed. Most frequent terms are reported in Table 1.15. Finally,

patients with BC in Fold-2 lead to equal number of clusters and clinical phenotypes than Fold-1 (see

Figure 1.4 (f), and Table 1.16).

1.4. Conclusions: indications for neurodevelopmental disorders

In this manuscript, we propose a deep learning ConvAE model to infer informative deep encodings

of patients from a large and heterogeneous EHR dataset, and leverage these representations for the

stratification of cohorts of patients with complex disorders. We demonstrate that when trained on a

diverse cohort of patients, we are able to extract latent semantic representations of individuals and

stratify them into informative subclusters within broader complex disorder designations.

We perform external validation by first categorizing patients with PD, AD, MM, T2D, PC, BC,

ADHD, and CD according to the total number of disease classes. We determine the extent to which ex-

ternally supplied labels of patient disorders match the categorizations identified by the model. Model

performance on this external validation is compared to four different baselines, with ConvAE repre-

sentations outperforming all baseline encodings. After performing external validation and verifying

that clustering of our model representations is effective in identifying the set of diseases of interest,

we are able to determine that the same paradigm allows us to detect clinically meaningful subtypes

within six of these high-level disease designations. To this aim, subclusters are inspected through the

ranking of most frequent occurrences of medical terms.

What emerged from the internal clinical validation of complex disorder subgroups is that sex may

play a central role in the heterogeneous manifestations of these conditions (e.g., Alzheimer’s disease)

and should be taken into account in stratification studies. The effect of sex on the clinical manifes-

tations may be the reason for apparently more homogeneous BC and PC subgroups, which include

only females and males, respectively. Second, disease progression, symptom severity, and comorbidi-

ties seem to contribute the most to the phenotypic variability of complex disorders. Patients with

T2D divides into three subgroups according to comorbidities (i.e., cardiovascular and microvascular

problems) and symptom severity (i.e. newly diagnosed with milder symptoms). Individuals with PD

show different disease durations and symptoms (i.e., motor, nonmotor). AD profiles distinguish early-

and late-onset groups and separate patients with mild neuropsychiatric symptoms and cerebrovascu-

lar disease from patients with mild-to-moderate dementia. Patients with MM are characterized by

different comorbidities (e.g., amyloidosis, pulmonary diseases) that manifest alongside precise typical
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signs of MM. Patients with PC and BC separate according to disease progression.

Stratification studies and phenotyping, in particular of complex neurological and neurodevelop-

mental disorders, can be beneficial to healthcare at different levels of analysis. At the clinical level,

establishing the common features of individuals within subgroup may allow us to better identify per-

sonalized care regimens that are more effective than blanket approaches. Such methods also allow

us to formulate hypothesis about diagnosis and prognosis as well. In a translational perspective, if

a new patient is assigned to a particular subtype, clinical characteristics of similar individuals may

help to evaluate the risk of treatment side effects and comorbidity onset. Furthermore, the identi-

fication of subtypes may foster specialized prevention and intervention programs. At the molecular

level, stratified disease cohorts can help in the discovery of new genetic variants in more homogeneous

subpopulations. At both the clinical and molecular level, we should aim at identifying the biological

factors that govern prognosis, e.g., patients with T2D in subgroup I can evolve into different clin-

ical profiles. Hence, discovering genetic variants associated to these patients can give insights into

their disease progression, symptom severity, and comorbidities. Finally, the description of phenotypic

profiles may also uphold clinical studies at the population level.

By learning from a large EHR that includes a diverse and heterogeneous population, our method

presents opportunity for both generalizability and scalability in the identification and categorization

of disease patterns using EHR specific data. Applied to complex disorders, this architecture can be

leveraged to detect disease subtypes that reflect disease heterogeneity within patient populations.

Moreover, in using the ConvAE model to infer the latent representations of new patients, it is possible

to derive the subtype of any particular patient for any particular disease, and track subsequent disease

progression and treatment effectiveness. Finally, a fully unsupervised approach is difficult to validate,

and translating its discoveries into clinical practice is particularly challenging. Nonetheless, such

findings can be leveraged to clarify disease subtypes and improve future disease-specific studies.

Processing EHR with minimum data engineering, on the one hand, preserves all the available infor-

mation and, to some extent, prevents systematic biases. However, medical records are redundant and

sometimes too generic and this complicates phenotyping via enrichment analysis of term occurrences.

As an example, we might be interested in the hematopoietic cell transplantation (HCT) technique

that is performed on patients with MM to better understand disease severity and progression. Fur-

thermore, it would be interesting to assign a specific type of chemotherapy treatment and hormonal

profiles to individuals with BC, in order to uncover the molecular type of the malignancy.

Moving forward, we intend to leverage finer and clearer constructs in the form of pre-processed

unstructured terms (i.e., clinical notes) from the EHR into patient sequences. Future work will also

focus on including patient genetic profiles in the stratification process.

Among complex disorders, ASCs are a group of neurodevelopmental conditions characterized by

heterogeneous manifestations at the genetic, behavioral, neurobiological, and clinical levels, that can

vary in the course of an individual developmental trajectory. We have already reported in Section 1.3.1

that encodings of individuals with ADHD are clearly detected during external validation. In the

context of neurodevelopmental conditions, this holds promise for translational research purposes.
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We intend also to investigate whether the learned representations successfully capture the clinical

variability within EHR trajectories of individuals with ASCs. We not only aim to detect subgroups

tied to sets of comorbid conditions, but also to inspect pharmacologic treatments, their possible side

effects, and screening protocols, to gain insight into tertiary care practices and their efficacy in the

management of individuals with ASC.
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(a)

(b)

Figure 1.5: UMAP visualization of Fold-1 encodings. (a) complex disorder classes; (b) hierarchical
clustering labels.
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Parkinson’s Disease Fold-1

Subgroup I Subgroup II
(N=1, 368) (N=1, 684) p-value

Female/Male 596/771 734/950 0.98a

Sequence length1 26 [3; 1, 088] 128 [12; 3, 104] < 0.05b

Age2 70.76 (13.52) 75.17 (14.11) < 0.05b

ICD-93 Essential tremor (333.1) - 21% (56%)∗ Hypertension (401.9) - 39% (81%)∗ ∗ < 0.001a

Anxiety state (300.00) - 20% (45%)ns Postprocedural hypertension (997.91) - 32% (83%)∗

Constipation (564.00) - 19% (34%)∗ Constipation (564.00) - 29% (66%)∗

Generalized anxiety disorder (300.02) - 17% (45%)ns Edema (782.3) - 29% (85%)∗

Counseling (V65.40) - 16% (42%)ns Other malaise and fatigue (780.79) - 25% (72%)∗

Medication Carbidopa/Levodopa combination - 51% (51%)∗ Levodopa - 45% (57%)ns ∗ < 0.001a

Levodopa - 42% (43%)ns Carbidopa - 45% (58%)∗∗ ∗∗ < 0.05a

Carbidopa - 40% (42%)∗∗ Cabidopa/Levodopa combination - 40% (49%)∗

Carbidopa 25 mg - 37% (57%)∗ Paracetamol - 39% (92%)∗

Levodopa 100 mg - 37% (58%)∗ Injection - 31% (88%)∗

Lab test Mean corpuscular hemoglobin - 3% (4%)∗ Glucose - 60% (97%)∗ ∗ < 0.001a

Leukocytes - 3% (4%)∗ Urea nitrogen - 60% (97%)∗

Mean platelet volume - 3% (4%)∗ Creatinine - 59% (97%)∗

Width - 3% (4%)∗ Leukocytes - 59% (96%)∗

Erythrocytes - 3% (4%)∗ Potassium - 59% (97%)∗

CPT Unlisted psychiatric service or procedure - 25% (47%)ns Calcium - 52% (92%)∗ ∗ < 0.001a

MRI (brain, brain stem) - 13% (36%)∗ Blood count - 52% (94%)∗

Surgery - 11% (24%)∗ ECG; interpretation, report - 51% (95%)∗

Tonsillectomy and adenoidectomy (< age 12) - 8% (27%)∗ Urea nitrogen - 48% (96%)∗

Tonsillectomy and adenoidectomy (≥ age 12) - 7% (26%)∗ Chloride - 47% (96%)∗

1 Median [minimum; maximum]; 2 Mean (standard deviation); 3 from ICD-9 on in-group and (total) percentages; a Multiple pairwise chi-squared test; b Multiple pairwise t-test

ns = not significant; ECG = Electrocardiogram; MRI = Magnetic Resonance Imaging

Table 1.6: Top 5 most frequent terms for the two subgroups of Parkinson’s disease cohort (Fold-1).
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Malignant neoplasm of prostate Fold-1

Subgroup I Subgroup II
(N=6, 916) (N=1, 606) p-value

Sequence length1 96 [9; 4, 817] 20 [3; 672] < 0.05b

Age2 69.64 (12.98) 69.78 (10.56) 0.68b

ICD-93 Hypertension (401.9) - 40% (92%)∗ Nocturia (788.43) - 29% (33%)∗∗ ∗ < 0.001a

Postprocedural hypertension (997.91) - 30% (93%)∗ Elevated PSA (790.93) - 18% (27%)∗ ∗∗ < 0.01a

Hyperlipidemia (272.4) - 28% (95%)∗ Impotence of organic origin (607.84) - 18% (35%)∗

Edema (782.3) - 24% (94%)∗ Urinary frequency (788.41) - 15% (27%)∗

Personal history of PC (V10.46) - 20% (97%)∗ Hypertension (401.9) - 14% (8%)∗

Medication Paracetamol - 44% (98%)∗ Midazolam - 17% (12%)∗ ∗ < 0.001a

Oxycodone - 40% (98%)∗ Tadalafil - 14% (35%)∗

Fentanyl - 38% (93%)∗ Fentanyl - 12% (7%)∗

Ondansetron - 33% (97%)∗ Sildenafil - 12% (33%)∗

Injection - 32% (99%)∗ Tamsulosin - 10% (12%)∗

Lab test Glucose - 66% (96%)∗ PSA total - 19% (18%)ns ∗ < 0.05a

Leukocytes - 63% (98%)∗ PSA post-prostatectomy - 17% (25%)∗∗ ∗∗ < 0.001a

Creatinine - 63% (99%)∗ Testosterone - 16% (26%)∗∗

Urea nitrogen - 63% (99%)∗ Glucose - 11% (4%)∗

Potassium - 62% (99%)∗ PSA free - 10% (27%)∗∗

CPT Calcium - 53% (98%)∗ PSA total - 73% (26%)∗ ∗ < 0.001a

Urea nitrogen - 50% (98%)∗ PSA free - 51% (27%)∗

Potassium - 49% (98%)∗ Testosterone total - 29% (32%)∗

Chloride - 49% (98%)∗ Surgery - 22% (14%)∗

Sodium - 49% (98%)∗ Ultrasound post-voiding residual urine/bladder capacity - 18% (29%)∗

1 Median [minimum; maximum]; 2 Mean (standard deviation); 3 from ICD-9 on in-group and (total) percentages; a Multiple pairwise chi-squared test; b Multiple pairwise t-test

ns = not significant; PSA = Prostate-Specific Antigen

Table 1.9: Top 5 most frequent terms for the two subgroups of prostate cancer cohort (Fold-1).

Malignant neoplasm of breast (female) Fold-1

Subgroup I Subgroup II
(N=5, 971) (N=1, 993) p-value

Sequence length1 128 [6; 4, 849] 26 [3; 2, 010] < 0.05b

Age2 66.67 (14.27) 62.86 (13.73) < 0.05b

ICD-93 Hypertension (401.9) - 34% (89%)∗ Lump or mass in breast (611.72) - 27% (29%)∗ ∗ < 0.001a

Edema (782.3) - 28% (93%)∗ Abnormal mammogram (793.80) - 23% (37%)∗

Postprocedural hypertension (997.91) - 26% (94%)∗ Other screening mammogram (V76.12) - 19% (38%)∗

Other malaise and fatigue (780.79) - 25% (93%)∗ Carcinoma in situ of breast (233.0) - 15% (27%)ns

Constipation (564.00) - 25% (93%)∗ Hypertension (401.9) - 13% (11%)∗

Medication Paracetamol - 50% (92%)∗ Propofol - 27% (19%)∗ ∗ < 0.001a

Ondansetron - 46% (87%)∗ Fentanyl - 26% (16%)∗

Fentanyl - 45% (84%)∗ Lidocaine - 25% (21%)∗

Oxycodone - 43% (91%)∗ Midazolam - 22% (18%)∗

Propofol - 40% (81%)∗ Ondansetron - 21% (13%)∗

Lab test Glucose - 67% (97%)∗ Leukocytes - 7% (3%)∗ ∗ < 0.001a

Leukocytes - 67% (97%)∗ Glucose - 6% (3%)∗

Erythrocytes - 66% (97%)∗ Platelets - 6% (3%)∗

Width - 65% (97%)∗ Erythrocytes - 6% (3%)∗

Mean corpuscular hemoglobin - 65% (97%)∗ Mean corpuscular hemoglobin - 6% (3%)∗

CPT Calcium - 58% (95%)∗ Mammography - 35% (32%)∗ ∗ < 0.001a

Blood count - 55% (95%)∗ Ultrasound - 32% (27%)∗∗ ∗∗ < 0.05a

Urea nitrogen - 52% (97%)∗ Surgery - 30% (19%)∗

Potassium - 47% (97%)∗ Mastectomy, partial - 28% (22%)∗

Sodium - 47% (97%)∗ Mammography, bilateral - 26% (39%)∗

1 Median [minimum; maximum]; 2 Mean (standard deviation); 3 from ICD-9 on in-group and (total) percentages; a Multiple pairwise chi-squared test; b Multiple pairwise t-test

ns = not significant

Table 1.10: Top 5 most frequent terms for the two subgroups of breast cancer cohort (Fold-1).
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Parkinson’s Disease Fold-2

Subgroup I Subgroup II
(N=1, 851) (N=1, 220) p-value

Female/Male 799/1, 051 535/684 0.73a

Sequence length1 35 [3; 3, 855] 160 [12; 4, 369] < 0.05b

Age2 71.39 (12.76) 75.65 (15.25) < 0.05b

ICD-93 Anxiety state (300.00) - 24% (65%)∗ Hypertension (401.9) - 45% (64%)∗ ∗ < 0.01a

Constipation (564.00) - 23% (57%)∗∗ Postprocedural hypertension (997.91) - 31% (57%)∗ ∗∗ < 0.05a

Essential tremor (333.1) - 22% (79%)∗ Edema (782.3) - 30% (59%)∗

Generalized anxiety disorder (300.02) - 20% (65%)∗∗ Constipation (564.00) - 26% (43%)∗∗

Counseling (V65.40) - 19% (62%)ns Other malaise and fatigue (780.79) - 26% (53%)∗

Medication Carbidopa/Levodopa combination - 49% (68%)∗ Carbidopa - 47% (43%)∗∗ ∗ < 0.001a

Levodopa - 42% (58%)∗∗ Levodopa - 46% (42%)∗∗ ∗∗ < 0.05a

Carbidopa - 41% (57%)∗∗ Paracetamol - 45% (77%)∗

Carbidopa 25 mg - 37% (75%)∗ Sodium chloride - 42% (90%)∗

Levodopa 100 mg - 36% (75%)∗ Carbidopa/Levodopa combination - 36% (32%)∗

Lab test Glucose - 9% (15%)∗ Erythrocytes - 77% (85%)∗ ∗ < 0.001a

Leukocytes - 9% (15%)∗ Mean corpuscolar hemoglobin - 75% (86%)∗

Creatinine - 9% (15%)∗ Glucose - 75% (85%)∗

Erythrocytes - 9% (15%)∗ Width - 75% (86%)∗

Urea nitrogen - 8% (15%)∗ Leukocytes - 75% (85%)∗

CPT Unlisted psychiatric service or procedure - 29% (70%)∗ Blood count - 64% (84%)∗ ∗ < 0.001a

Surgery - 17% (48%)∗ Calcium - 62% (78%)∗

MRI (brain, brain stem) - 16% (58%)ns Urea nitrogen - 60% (85%)∗

Calcium - 12% (22%)∗ ECG - 59% (82%)∗

Tonsillectomy and adenoidectomy (< age 12) - 9% (43%)∗ Potassium - 58% (86%)∗

1 Median [minimum; maximum]; 2 Mean (standard deviation); 3 from ICD-9 on in-group and (total) percentages; a Multiple pairwise chi-squared test; b Multiple pairwise t-test

ns = not significant; ECG = Electrocardiogram; MRI = Magnetic Resonance Imaging

Table 1.12: Top 5 most frequent terms for the two subgroups of Parkinson’s disease cohort (Fold-2).
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Malignant neoplasm of breast (female) Fold-2

Subgroup I Subgroup II
(N=5, 601) (N=2, 237) p-value

Sequence length1 128 [6; 4, 785] 25 [3; 480] < 0.05b

Age2 66.98 (14.57) 61.94 (13.25) < 0.05b

ICD-93 Hypertension (401.9) - 37% (89%)∗ Lump or mass in breast (611.72) - 26% (33%)∗ ∗ < 0.001a

Edema (782.3) - 29% (93%)∗ Abnormal mammogram (793.80) - 22% (43%)∗ ∗∗ < 0.05a

Postprocedural hypertension (997.91) - 28% (93%)∗ Other screening mammogram (V76.12) - 19% (44%)∗

Shortness of breath (786.05) - 25% (95%)∗ Carcinoma in situ of breast (233.0) - 15% (32%)∗∗

Other malaise and fatigue (780.79) - 24% (93%)∗ Hypertension (401.9) - 11% (11%)∗

Medication Paracetamol - 50% (89%)∗ Propofol - 28% (23%)∗ ∗ < 0.001a

Fentanyl - 45% (80%)∗ Fentanyl - 28% (20%)∗

Ondansetron 44% (83%)∗ Midazolam - 24% (22%)∗

Oxycodone - 42% (88%)∗ Lidocaine - 23% (23%)∗

Propofol - 38% (77%)∗ Ondansetron - 23% (17%)∗

Lab test Leukocytes - 69% (97%)∗ Leukocytes - 6% (3%)∗ ∗ < 0.001a

Glucose - 69% (97%)∗ Glucose - 6% (3%)∗

Hematocrit - 67% (97%)∗ Width - 5% (3%)∗

Erythrocytes - 67% (97%)∗ Mean corpuscular hemoglobin concentration - 5% (3%)∗

Width - 66% (97%)∗ Erythrocytes - 5% (3%)∗

CPT Calcium - 57% (93%)∗ Mammography - 33% (36%)∗ ∗ < 0.001a

Blood count - 56% (95%)∗ Ultrasound - 32% (32%)∗

Urea nitrogen - 52% (97%)∗ Surgery - 30% (21%)∗

ECG; interpretation, report - 49% (96%) Mastectomy, partial - 28% (25%)∗

Potassium - 48% (97%)∗ Ultrasound, breast(s) - 24% (40%)∗

1 Median [minimum; maximum]; 2 Mean (standard deviation); 3 from ICD-9 on in-group and (total) percentages; a Multiple pairwise chi-squared test; b Multiple pairwise t-test

ECG = Electrocardiogram

Table 1.16: Top 5 most frequent terms for the two subgroups of breast cancer cohort (Fold-2).



Chapter 2

Behavioral embeddings for the stratification of

Autism Spectrum Conditions

Abstract

Autism Spectrum Conditions (ASCs) are a set of neurodevelopmental clinical conditions char-
acterized by impairment in social communication/interaction and restricted and repetitive pat-
terns of behavior/interests. ASC heterogeneity encompasses differences at multiple levels of analy-
sis (e.g., behavioral, genetic) throughout developmental trajectories. Disentangling heterogeneity
within ASC population can help develop effective individual treatments and discover high-impact
biomarkers that may be masked in case-control studies.

In this chapter, we present a computational approach to represent autistic individuals by
means of low-dimensional vectors from their behavioral/cognitive trajectories for stratification
studies. Each term of the trajectories is obtained from test scores with specific refinements,
that can include general scores (e.g., IQ), as well as “deeper” indices (e.g., cognitive assessment
subtests), according to the dimensions of interest.

Word embedding models, such as Word2vect, are applied to encode collections of test scores
from the battery of standard tests administered to children and adolescents with ASC referred
to the Laboratory of Observation, Diagnosis, and Education (ODFLab). The approach is then
used to group together the individual trajectories, offering a patient stratification by means of
hierarchical clustering.

Results on the ODFLab dataset show that the new embeddings better leverage the information
from sparse, longitudinal datasets, respect to standard quantitative behavioral data processing.
Moreover, we were able to identify ASC subgroups characterized by different age at diagnosis,
mild-to-severe core symptoms, and varying cognitive impairment.

2.1. Introduction

With the term Autism we refer to a set of behaviorally-defined neurodevelopmental conditions charac-

terized by difficulties in social communication, social interactions and repetitive and restricted behavior

and interests. The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [67]

describes autism in terms of a spectrum disorder with three levels of severity in the two core areas of

communication/interactions and behavior/interests. The etiology of autism is still unknown and it is

believed to be influenced by multiple genetic, environmental and lifestyle factors, which ensures great

heterogeneity that encompasses several levels of analysis (e.g., behavior, genetics, development).

To account for within individual differences at the genetic, neural, behavioral, cognitive and clinical

levels, it has been proposed [68] to approach autism in a neurodiversity framework, referring to a set of

55
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conditions entailing differences. Indeed, it is argued that the term “disorder” refers to a dysfunctional

state which cannot be ascribed to a specific cause or mechanism, whereas the term “difference” can

be used in the context of an individual that shows an atypical trait, which not necessarily affects

functioning or well-being, when compared to a population norm. Nevertheless, some forms of autism

need to be considered as disorders, especially the cases characterized by severe impairments or in

co-occurrence with other conditions (e.g., intellectual disability or language disorders), whereas other

forms (e.g., above average Intelligence Quotient and no history of language delay) are possibly better

addressed as differences, in that, in an autism-friendly environment, individuals may function even at

a higher level than typical individuals. The debate on whether to refer to autism as a disorder or a

condition is still ongoing, however, to emphasize its multiple-level variability, in the following, we will

adopt the term Autism Spectrum Conditions (ASCs).

According to the Centers for Disease and Control Prevention, in the United States, ASC prevalence

is estimated at about 1 in 59 children aged 8 years, and it is 4 times more common among males than

females [69]. The male/female ratio decreases to 1−2 : 1 when moderate to severe intellectual disability

is considered [70]. In Europe, a pilot project funded by the European Parliament and managed by the

European Commission (i.e., Autism Spectrum Disorder in the European Union - ASDEU) involving

12 European countries reports a prevalence of 1 in 89 children aged 7− 9 years1. Within the ASDEU

project, the Italian ASC prevalence study indicates a prevalence of 1 in 87 (1.15%) school-aged children

[71]. Although ASDEU has led to important findings at the European level, paving the way for the

development of future policies, neither the European multi-national study nor the Italian one reports

data on male/female ratio. At the population level, studies in Asia, Europe and North America

estimate ASC prevalence at 1− 2% for individuals with age ranging from 0 to 20 years2. Large-scale

population-based studies also indicate a male preponderance of the condition with a ratio of 2− 3 : 1

[4].

Behavioral phenotype refers to a set of behavior and cognitive characteristics that occur in in-

dividuals with a known genetic abnormality [72]. As an example, Fragile X syndrome, caused by

trinucleotide repeat expansion in the X chromosome gene FMR1, is characterized by behavioral phe-

notype associated with cognitive impairment, hyperactivity, social anxiety, and autistic-like features.

Nevertheless, from the other direction, interest in behavioral phenotypes has grown for idiopathic com-

plex conditions, such as ASCs, in order to understand the underlying biological pathways involved

[73].

The advent of computational psychiatry [74, 75], which stems from the increasing availability

of healthcare data, has encouraged the application of computational techniques, such as machine

learning (ML) and deep learning, for data-driven discoveries in clinical settings, in an attempt to

uncover the biological foundations of psychiatric conditions and develop new effective treatments

[3]. These techniques have also been applied to ASC data, and what has emerged is that autism

spectrum heterogeneity presumably reflects the existence of multiple subgroups tied to diverse genetic

1http://asdeu.eu/wp-content/uploads/2016/12/ASDEUExecSummary27September2018.pdf (Accessed on August
31, 2019)

2https://www.cdc.gov/ncbddd/autism/data.html (Accessed on August 31, 2019)
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and environmental etiologies and that, although convergent to the behavioral autistic profile, show a

range of clinical phenotypic characteristics under behavioral, linguistic and cognitive levels.

The heterogeneous display of clinical manifestations and phenotypic characteristics in autism com-

plicates diagnosis and treatments. Hence, understanding autism heterogeneity is key to 1) the devel-

opment of more accurate diagnostic tools, which take into account both the behavioral and the genetic

profiles; 2) fast and early diagnoses; and 3) timely and personalized treatments and interventions.

In this study, we propose a data analysis protocol that processes ASC psychometric data from

cognitive and behavioral assessment instruments via ML techniques from Natural Language Processing

(NLP) that aim at representing subjects as multidimensional vectors that include aspects of autism

heterogeneity (i.e., developmental and behavioral profiles). ML clustering techniques are then applied

for stratification purposes, i.e., to create stable clusters of more homogeneous clinical and behavioral

characteristics. In autism research, deep embedding representations are still an unexplored method;

a recent work [76] combines quantitative screening data and the embedding of categorical values from

diagnostic tools as input to a multi-layer neural architecture for autism screening. However, to the

best of our knowledge, the study we present is the first attempt to learn encodings of individual ASC

profiles, and leverage these encodings, in a completely unsupervised setting, which is designed to

learn patterns from data in the absence of an a priori knowledge. Deep representations of individuals

with ASC for behavioral phenotype stratification is a novel approach that can be groundbreaking to

elucidate autism heterogeneity.

2.2. Aspects of autism heterogeneity

We introduce here a review of autism research on the heterogeneous characterization of ASC symp-

tomatology. Furthermore, we describe the latest approaches of ML and deep learning to ASC data in

the context of how they can be leveraged for the investigation of autism heterogeneity. Within this

framework, we present a novel application of ML towards phenotypic stratification of autism.

Heterogeneity within individuals with ASC has been explored according to different clinical, bio-

logical, and developmental aspects. Furthermore, within each area, differences are showing at multiple

levels of analysis (e.g., genetic variants detected in both coding and non-coding regions from sequencing

studies).

2.2.1. Comorbidities

Coexisting conditions are registered in 70% of individuals [4]. In particular, developmental conditions,

once included in autism diagnostic criteria, are now enumerated in the set of medical and psychiatric

disorders that co-occur in individuals with ASCs. They include 1) atypical language development and

abilities, that show great variability within individuals, varying according to age and comorbid con-

ditions; and 2) motor abnormalities, that are reported in ∼ 79% of ASC cases. Individuals with age

< 6 years can show nonconforming language and delay in comprehension, together with difficulties
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in expressive phonology and grammar, whereas older individuals show nonconforming pragmatics,

semantics and morphology. Motor abnormalities comprise motor delay, hypotonia, catatonia, and

deficits in coordination, motor planning, gait, and balance. Among developmental conditions, Atten-

tion Deficit Hyperactivity Disorder (ADHD) is usually concomitant with ASCs (28− 44%) [4].

A retrospective study that evaluates the prevalence of medical and psychiatric conditions in 14, 381

individuals with ASC from four hospitals in the Boston area, leverages Electronic Health Records

(EHRs) to detect comorbidities significantly associated with ASC compared to the general population

[77]. For individuals younger than 35, epilepsy is found in 19.4% of cases, schizophrenia 2.4%, bowel

disorders 11.7%, inflammatory bowel disease 0.8%, type I diabetes mellitus 0.8%, autoimmune disor-

ders 0.7%, central nervous system and craniofacial anomalies 12.4%, sleep disorders 1.1%, muscular

dystrophy 0.47%, and single gene disorders (e.g., Fragile X Syndrome, Tuberous Sclerosis) < 1%.

With the exception of autoimmune disorders, all comorbidities have significant higher counts in ASC

cohort compared to the general population (∼ 2M patients).

2.2.2. Sex/gender bias

Male bias in ASC prevalence and more frequent co-occurrence of intellectual disabilities (IDs) and

different symptom manifestations reported in females [78] may suggest the presence of factors (e.g.,

genetic, epigenetic, environmental) that lead to female protection and/or male vulnerability. Numer-

ous studies have focused on the biological basis of male preponderance and characteristics of ASC

[70], and different theories, not necessarily mutually exclusive, have been proposed.

The Greater Variability model states that males show a greater genetic variability than females

resulting in an increased incidence of ASC diagnoses and a decreased severity in symptoms. The

Liability-threshold model reports that females meeting the diagnostic threshold for ASC carry higher

mutational load (i.e., the total genetic burden from deleterious mutations) than males, also carried by

relatives. Females with ASC have more genes with de novo mutations and genes central to biological

pathways more likely to be affected by deletions and duplications [70]. Within the liability-threshold

model, the Sex-chromosome theory proposes X chromosome in females to be protective. Although

ASC-linked genes largely involve autosomes, some of them reside on the X chromosome generating the

idea that X-inactivation, which occurs when one copy of X chromosomes in females is silenced, may be

protective. Sex hormones have also been accounted for influencing biological structures and processes

linked to ASC, such as immune system and neurotransmitter signalling. The Extreme Male Brain

theory states that males with ASC show more extreme profiles in the systemizing and empathizing

dimensions, key in defining male and female brain, possibly due to different levels of fetal testosterone

[79].

Together with the investigation of the genetic, epigenetic and environmental factors that may be

responsible for the difference in incidence and symptom severity between males and females with ASCs,

diagnostic biases towards males have also been explored and the theory that ascribes male prevalence

in part to underidentified female cases is gaining ground. Most research findings involving biological
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processes fail to be replicated and are usually based on small sample sizes or remain understudied.

Moreover, large-scale population-based studies report a lower male/female ratio and do not find an

association between gender ratio and ID suggesting that male prevalence could be less pronounced.

It is argued that behavioral differences and manifestations in females with ASC are overlooked by

current diagnostic and psychometric instruments, in that, despite unbalanced gender ratio is now

widely acknowledged, they could already be influenced by sex and gender because of the longstanding

male predominance in case identifications. Modifying the tools to leverage finer level constructs, e.g.,

social-emotional reciprocity and social anxiety instead of deficits in social communication and social

interactions, can help pin down the differences in ASC manifestations and provide better diagnostic

instruments in relation to sex and gender [78].

It has also been observed [80], that differences between males and females with ASC can stem from

sociocultural influences and expectations. Social and peer pressure can induce females with ASC to

camouflage core deficits and non-conforming behavior and gender stereotypes have been considered as

well as one of the possible causes of misdiagnosis and overlook. Males with ASC seem to be recognized

more easily in the familial and school settings because their behavior is identified as more in contrast

with gender role expectations, whereas female behavior stereotypes cause females with ASC to be

perceived as showing more accentuated typical behavioral characteristics (e.g., being shy, passive).

2.2.3. Genetic variants and biological pathways

At the genetic level, ASCs display a strong heritable component, in fact, hundreds of genes seem to

contribute to ASC risk and heritability is estimated to be between 50−80% [5, 6]. Variants associated

with ASCs include all possible mutations, from single-nucleotide variants, that manifest as an alter-

ation of single base pairs, to insertion and deletions, that involve thousands of base pairs (copy number

variants). Together with inherited variants, also de novo variants (i.e., variants detected in probands

and not present in parental genome) contribute to the etiology of autism. It is estimated that rare

genetic variants are the most frequent, causal in 10− 30% of cases, but it has been observed that also

common genetic variation contribute to ASC risk, even though they typically confer a much lower risk

in an individual [81]. Recessive mutations have also been investigated in a large ASC cohort study [82]

leading to the identification of biallelic disruption mutations of known recessive neurodevelopmental

genes as well as not previously implicated genes which are involved in the serotonergic circuit.

Transcriptome analysis (RNA-seq) is an important complement to genomic studies because it

allows to inspect both coding and non-coding transcriptional activities and it has been leveraged

to understand the common mechanisms underlying ASC. This approach yields information about

transcript abundance suggesting potential link between genomic variations and transcriptional dys-

regulation and can be applied to messenger RNA, that conveys genetic information, small or long

non-coding RNA, which regulates gene expression, and it can also investigate alternative splicing,

which is a regulatory process that allows a single gene to code for different proteins. Notable findings

have uncovered that RNA splicing regulatory programs are disrupted in ASC affecting neuronal activ-
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ity and that differences in the expression of neuronal genes in a cohort with ASCs respect to controls

are thought to be responsible for the disruption of cortex generation during development [5]. Single-

cell sequencing, a technique that generates expression profiles at the single cell level, has also been

used to investigate transcriptomic changes in specific cell types of the brain (e.g., excitatory neurons,

interneurons, astrocytes). A recent study [83] reports that the expression of genes involved in synaptic

signaling pathways of cortical neurons is affected in individuals with ASC and that dysregulation of

genes in cortical neurons correlates with clinical severity of autism.

Recent advancement in computational tools and sequencing techniques has led to the investigation

of the possible effects of non-coding variants in the context of large sample cohorts of individuals

with ASC. A study on the contribution of several non-coding genetic regions to ASC susceptibility

has been able to distinguish cases (N = 2, 182 children with ASC) from a separate, unrelated control

group. This was done applying a logistic regression classifier that performed best when trained on

simple repeat sequences, i.e., sequences of repeating base pairs in intergenic regions of DNA, that

have been linked to neuronal differentiation and brain development [84]. Another recent study has

applied a deep learning framework, namely convolutional neural networks (CNNs), to predict the

functional and pathogenic impact of de novo non-coding mutations on 2, 002 transcriptional and 232

post-transcriptional mechanisms. The architecture is trained on biochemical data marking interac-

tions between DNA- and RNA-binding proteins and their targets from 1, 790 simplex families. As

a result, a higher impact of de novo mutations is observed in probands as compared to unaffected

siblings. Moreover, the underlying processes and pathways that are more likely to be affected by these

mutations have been identified via a network-based statistical approach that aims at detecting genes

and pathways relevant to mutations that disrupt transcriptional and post-transcriptional regulations.

According to this study variants from the non-coding genome of ASC probands likely affect neuronal

development, synaptic transmission and chromatin regulation [85].

2.2.4. Behavioral and developmental trajectories

At the behavioral level, the broadening of the diagnostic definition in DSM-5 and the elimination of

previous subcategories (e.g., pervasive developmental disorder not otherwise specified, and Asperger’s

disorder) to the advantage of the term spectrum extends the concept of behavior heterogeneity [95].

In addition to the behavioral differences reported between males and females with ASC, also age,

language development, and cognitive abilities intervene in ASC behavioral presentations. Moreover,

all these factors affect the age at which atypical development is recognized, further complicating action,

intervention, and support consistent with the severity of manifestations [4]. For this reason, particular

attention has turned to the recognition of early signs of atypical development [96] with the aim to

lower the diagnostic age from 3− 4 years to 18− 24 months and provide better acknowledgment and

care [97].

Research on developmental trajectories provides evidence of a wide range of growth patterns in in-

dividuals with ASC. The identification of behavioral differences at multiple levels (e.g., core symptoms,
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symptom severity, adaptive behavior) throughout development and the role of language, co-occurring

conditions, and cognitive abilities in shaping ASC progression is crucial for the characterization of ASC

phenotype. To this aim, several studies have tried to separate trajectories into informative groups in

the attempt to provide fine grained taxonomies (see Table 2.1). The groups identified are often further

characterized respect to correlates, i.e., language, cognition, and co-occurring traits. From these stud-

ies it emerges a significant heterogeneity between trajectory subgroups that differentiate their growth

(i.e., worsening, stable, improving) and level of impairment (i.e., severe, moderate, mild), compared to

typical development. Language and non-verbal Intelligence Quotient (IQ) levels are often significant

predictors of class membership. A possible limitation to these studies is that, with the only exception

of [86], where 6, 975 children with ASC were followed from 4 to 14 years of age (≥ 4 evaluations), all

other studies rely on small sample sizes and few temporal data points (see Table 2.1).

2.2.5. Computational approaches and big data

The use of ML and deep learning for autism research stems from the increasing availability of massive

quantities of healthcare data from sources such as electronic medical records and genome sequencing.

This has recently led researchers to apply, alongside supervised learning techniques, unsupervised ap-

proaches in an attempt to pin down distinct clusters to discriminate autistic manifestations. Examples

of unsupervised methods are clustering algorithms, in which external labels are assigned to samples

that are more similar according to a metric, and more recently developed deep learning models, such

as Generative Adversarial Networks [98] that generate new sets of data capturing the distribution of

existing ones.

Supervised learning In this setting, predictive models are applied to labeled data (e.g., ASC di-

agnosis), which can be cross-sectional (i.e., single time point) or longitudinal, on features pertaining

to biology, medical imaging, or behavioral psychology [99]. Particular attention has focused on high-

lighting a set of key diagnostic behavioral features that should be considered to recognize individuals

with ASC, in order to reduce assessment time, provide an early diagnosis, and facilitate the diagnos-

tic process. In [100], Random Forest (RF) classifiers are trained on Autism Diagnostic Observation

Schedule (ADOS) and Autism Diagnostic Interview - Revised (ADI - R) behavioral scores and the

top ranked features that best discriminate between ASC diagnoses and controls in children between

18 and 84 months are extracted. Results suggest that the best features for younger subjects are non

verbal (eye contact, gestures, facial expressions), whereas for older subjects they are focused on verbal

communication and interaction. Other studies have attempted to select a subset of diagnostic items

from ADI-R, Social Responsiveness Scale (SRS), and ADOS applying classification methods and fea-

ture selection in discriminating children with ASC from normotypical controls to develop quick and

effective ASC diagnostic instruments. Chosen methods are Alternating Decision Trees and Support

Vector Machines (SVMs) [101, 102, 103].

To identify early biomarkers for ASC recognition, Li and colleagues [104] have applied multi-
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channel CNNs to brain imaging data trained on discriminating children with and without ASC at

24 months of age. ML models have also been leveraged in genetics. Krishnan and colleagues at

Princeton University and Simons Foundation have trained a weighted linear SVM on a brain-specific

gene-interaction functional network [105]. The model learned to discriminate known ASC-linked genes

from genes annotated to non-mental-health disorders and highlighted the network patterns in which

ASC-linked genes are involved. Genes whose interaction paths resemble those learned by the model

are then selected. To validate the results, an exome-sequencing study on de novo mutations of 2, 517

simplex families from the Simons Simplex Collection is used and it shows that genes with likely-

gene-disrupting mutations are significantly enriched in the top of the new candidate gene ranking.

Furthermore, gene expression signatures of spatiotemporal regions of the developing brain are reported

to be enriched among the newly-predicted genes. The study lists hundreds of new candidate genes

converging on key pathways (e.g., synaptic transmission, neuronal function) and that are likely to be

linked to early development phenotypes (e.g., enteric nervous system development, fetal prefrontal,

temporal and cerebellar cortex development). These genetic discoveries add to the thousands of genes

that have already been linked to ASC, increasing genetic heterogeneity and further complicating

therapeutic translations.

Unsupervised learning Unsupervised ASC stratification aims at identifying data-driven patterns

in the absence of explicit labeling. Most works focus on clustering analysis of symptom scores. The

identified clusters are then further externally validated by cognition, behavioral and emotional func-

tioning measures [99]. Subtype stratifications define informative clinical profiles for further genetic

evaluations or to investigate the effectiveness of a specific treatment [106] for more personalized in-

terventions. Clustering and profiling of individuals with ASC usually rely on ADI-R, ADOS core

symptom and Vineland Adaptive Behavior Scale evaluations.

Clustering algorithms on ADI-R/ADOS scores has led to the identification of 4 and 2 severity-

based subclusters in two studies that subsequently pair the clustering with genetic [107] and Single-

Nucleotide Polymorphism (SNP) frequencies [108], respectively. Hu and colleagues have identified 4

subgroups from ADI-R scores on several domains (e.g., language, nonverbal communication, social

interactions), characterized by 1) severe language deficits; 2) milder symptoms across the domains; 3)

noticeable savant skills; 4) intermediate severity across domains, with lower frequency of savant skills.

Veatch et al. have revealed the presence of two subgroups of individuals with ASC, based on ADI-R,

ADOS, and Vineland scores. One group is described as “more severe”, i.e., with increasing severity in

social and communication scores and motor skills; the other is described as “less severe”.

Interestingly, a work by Lombardo et al. [109] applies hierarchical clustering to the evaluation of

mentalizing domain, a cognitive phenomenon linked to difficulties in social-communicative features,

and it is one of the few stratification studies, together with [108], that replicates its findings in an inde-

pendent dataset, reporting the existence of 5 subclusters showing different patterns. Another approach

[20] leverages EHRs and hierarchical clustering for the identification of ASC subgroups according to

their comorbidities towards the discover of different genetic and environmental contributions to etiol-
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ogy. In particular, 4 different subgroups are identified, with prevalence of 1) epilepsy and recurrent

seizures; 2) gastrointestinal and auditory disorders; 3) psychiatric conditions (e.g., bipolar disorder,

anxiety, depression); and 4) not better specified comorbidities.

A work by Feczko and colleagues [110] combines supervised and unsupervised techniques to iden-

tify subgroups within an ASC cohorts of 47 children between the ages of 9 and 13. Measures from

seven different tasks (e.g., Delay Discounting, Spatial Span) are input to a RF classification algorithm

to predict individuals with ASC from children with Typical Development (TD; N = 58). The RF

algorithm produces a proximity matrix, that shows how often a pair of subjects are grouped into the

same terminal node by the RF algorithm. This proximity matrix is then considered as a graph and a

community detection algorithm is used to identify subgroups in both ASC and TD groups. Feczko et

al. report three ASC subgroups and four TD groups that show similar cognitive profiles based on mea-

sures of individual impulsivity, visuospatial working memory capacity, and vigilance, among others,

suggesting that typical variation in cognitive profiles may impact ASC manifestations. Moreover, no

differences in severity of symptoms have been found between ASC subgroups. To externally validate

the subgroups, differences in functional brain organization from resting-state functional connectivity

MRI between ASC groups are investigated. Results identify one group with altered visual processing

mechanisms, a second group with altered attention mechanisms, and a third with both.

2.2.6. Subject embeddings for behavioral phenotyping

To shed light on ASC etiology a possible approach requires: large sample sizes, stratified cohorts, and

clinical domain expertise.

• Large datasets: small sample studies are usually characterized by low statistical power (i.e., the

probability to correctly reject the null hypothesis when it is false), unless the true size of an

effect is large and can reliably be observed in reduced samples. Button and colleagues [111]

have estimated statistical power in neuroscience (e.g., neuroimaging studies, animal models)

deriving the best effect size estimate from a meta-analysis. They have calculated the power of

each selected study to detect the effect indicated by the meta-analysis and reported that it does

not reach 20%.

A simulation of sample effect size estimates at different sample sizes across a range of true

population effects for a hypothetical case-control study in [95] reports that small sample studies

are more likely to show biased effect size estimates compared to the population, due to sampling

variability, and that this is attenuated only in large sample size studies (n > 1000) irrespective

of the true effect. Moreover, these simulations also suggest that small true effect sizes (Cohen’s

d = 0.1) lead to inflated effect estimates (∼ 350% inflation on average) potentially due to skewed

distribution in the direction of the effect, particularly in small sample studies (n < 50). If the

true population effect increases (d > 0.5) this phenomenon is attenuated and, notably, very little

inflation is detected in large sample sizes (n > 100).
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• Stratified cohorts: for disorders and conditions displaying heterogeneity, case-control studies

might suffer from the lack of stratified population samples and fail to identify the likely under-

lying genetic and phenotypic heterogeneity. It has been shown [14], that increased phenotypic

heterogeneity affects the effect size of findings in Genome Wide Association Studies. In partic-

ular, genotypic data for 2, 938 control individuals, and 1, 936 individuals with Type 1 Diabetes

(T1D), and 1, 924 individuals with Type 2 Diabetes (T2D) are analyzed to investigate the effect

of phenotypic heterogeneity on the 20 SNPs most significantly associated with T1D or T2D.

Two sets of experiments are run progressively increasing the numerosity of T1D or T2D sam-

ples, respectively and associations are investigated via chi-squared tests. Results report that,

increasing the numerosity of one stratum over the other, the magnitude of the association of the

SNPs declines substantially. At a relatively low degree of stratum “inflation” (∼ 20/30%) most

of the significantly associated SNPs become equivocal. This entails that, even in the case of a

large sample size, if a highly stratified population is considered as homogeneous, effects can be

overlooked.

• Clinical validation: validation of results by clinical domain experts is central to translational

discoveries. Moreover, it is necessary to avoid methodological and clinical inaccuracies and errors

that will eventually lead to fallacies in the results [112].

In ASC studies, population heterogeneity is not necessarily reflected by the sample drawn. In

fact, if strata exist, samples can be biased by the enrichment of certain strata of the population over

others. As an example, this is presumably what happens in most case-control studies in which the

enrichment of male over females leads to male-biased conclusions. The use of a large sample size

should guarantee a sufficient sampling that reflects the true prevalence of all the population strata

[95]. The lack of knowledge of clear ASC subtypes prevents the construction of stratified cohorts and,

although this can be overcome by large datasets, it urges stratification studies that investigate ASC

behavioral phenotype subgroups that can be leveraged to uncover their genetic contributions. In this

unsupervised framework, the design of the experiment and the validation and interpretation of results

should carefully be backed up by clinical experts to effectively provide insights into ASC heterogeneity.

Tackling ASC heterogeneity at the cognitive, and behavioral level not only allows to increase the

power of analysis at the genetic level, possibly uncovering new genetic variants linked to ASC, but also

favors the identification of stronger associations to subgroups of individuals. Unsupervised approaches

applied to observational psychological measures also facilitate the development of fine-grained instru-

ments and the identification of additional specifiers that can help identify reliable subtypes avoiding

diagnostic biases (e.g., sex/gender). Moreover, phenotypic refinements may facilitate early diagnoses

and the development of targeted interventions towards personalized treatment [113].

Observational data that give insights into ASC manifestations are, as an example, psychome-

tric measures collected via administered tests or recorded video of interventions and home-setting

interactions from which it is possible to extract behavioral features, such as eye contact and social

smile. Assessment instruments are highly heterogeneous, because they include different data types
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(e.g., numerical, ordinal, categorical), and they address ASC phenotypes at multiple levels of analysis

(e.g., cognitive, behavioral, core symptoms). Moreover, they can be longitudinal, i.e., administered at

multiple time points throughout development, to keep track of the progression of the condition, the

impact on individual’s well being, and to provide feedback on interventions and treatments.

A downside to this plethora of collections is the large amount of missing information usually

accompanying ASC data. This, not only regards the absence of labels for subject stratification within

ASC, but also input data, that are often incomplete, and small sized. The data collection process is

time consuming and requires lots of resources. Furthermore, it is difficult to generate unique large

psychological datasets, gathering information from multiple clinical sites, due to the lack of shared

assessment protocols that uniform the great variability of observational instruments. ML can be

leveraged to overcome the issue of missing information, and to simultaneously grasp the information

provided by the longitudinal interdependencies and the multidimensional heterogeneity of clinical

scores. In particular, NLP methods and clustering algorithms can be applied to ASC data to, first,

provide a subject representation of the developmental and behavioral profile, second, it can assign

individuals with ASC to the most similar subgroup according to their profile.

In recent years, NLP has been employed in healthcare, in particular for the secondary use of EHRs

[114]. Patients medical records are sequences of both structured (e.g., diagnostic codes, medications,

laboratory tests) and unstructured (e.g., clinical notes) data, that provide a snapshot of a person’s

health status, acting as fingerprints of disease progressions. In this context, clinical terms can be

treated as words to provide a representation of patients that reflects their health status and disease

course. Text mining methods, based on word counts in documents, and word embeddings, i.e., the

deep representation of words in a vector space that aims at maintaining their similarity to other

words and their semantic and syntactic attributes in texts, have been applied to EHRs. The goal is

to produce patient representations able to capture the temporal development of patient’s status for

patient similarity [24] and/or to extract patient phenotypes [23]. Moreover, these methods can also

be used in stratification studies, see Chapter 1.

In Section 2.3, we combine NLP, and ML unsupervised clustering techniques in a novel data anal-

ysis protocol, designed to learn behavioral embeddings of individuals with ASCs with a generalizable

and scalable stratification method. This method can then be leveraged to 1) investigate genetic het-

erogeneity; 2)identify fine-grained, and unbiased ASC profiles to provide early diagnoses; 3) predict

ASC characteristics throughout development; and 4) help develop personalized treatments and in-

terventions. Ideally, when neuropsychological and behavioral tests are administered to an individual

referred to the healthcare system that displays characteristics compatible with ASC, these information

are encoded via trained models and the subject is assigned to the most similar cluster of individuals

showing homogeneous characteristics and condition progression.

Data used to test the stratification model are from 204 children and adolescent with ASCs (169

males, 35 females) from the Laboratory of Observation, Diagnosis and Education (ODFLab - Uni-

versity of Trento, Italy). Features of the ASC ODFLab dataset are detailed in Section 2.3.3. Data

from cognitive, behavioral, and screening instruments are considered, and each subject is represented
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by a sequence of terms created from administered instruments and the correspondent scores, ordered

according to the date of assessment. The analysis protocol we have developed allows the processing of

longitudinal information as well as multiple instrument scores and it includes methods for behavioral

term embeddings and clustering algorithms. In the dataset, the minimum number of encounters (i.e.,

sessions during which a battery of tests is administered to a subject) is 1 and the maximum number is

5, with median equal to 1, whereas the number of administered instruments throughout development

ranges from 3 to 24 with median 5. The unsupervised framework we have developed (see Section 2.3.2)

is data-specific (i.e., it is not tested on an independent dataset), due to the reduced sample size of our

dataset. Most importantly, the clinical interpretation and validation of ASC subgroups is provided in

Section 2.4.1.

2.3. Material and methods

In the following, we describe our analysis framework for behavioral phenotyping (see Figure 2.1). First,

we introduce how ASC behavioral phenotype can be assessed through psychometric instruments, both

at a general and a more specific level. Then, we outline the pipeline implemented for the stratification

of subjects with ASC. The modules include: 1) pre-processing steps applied to ASC behavioral data; 2)

initialization of raw representations of individuals with ASC; 3) embedding methods for latent patient

representations that are designed to capture the multidimensional aspects of ASC assessment and/or

the progression of cognitive and behavioral characteristics throughout time; 4) clustering algorithms

for stratification; 5) visualization tools; and 6) post hoc analyses.

2.3.1. Behavioral phenotype

Multiple depth levels

We introduce the battery of standard tests that are administered to assess behavioral phenotypes of

children and adolescents with ASC and that provide features of the ODFLab dataset. We adopt a

multi-scale approach considering the hierarchical structure of each instrument. At the finer detail level,

the descriptions are formed by single subtests for the assessment of specific skills or behavioral aspects.

Progressively, we aggregate them to form more general composite measures of latent, theoretical

constructs. We enable our pipeline to select the level of detail of interest for the characterization

of a behavioral profile. Based on instruments’ structure, we identify three depth levels that yield to

progressively more general descriptors. As an example, the cognitive profile of an individual between

the ages of 6 and 16 can be assessed with the Wechsler Intelligence Scale for Children - Fourth Edition

(WISC-IV) via the Full Scale Intelligence Quotient composite index (FSIQ). FSIQ summarizes the

general cognitive ability of an individual, hence it can be considered as the highest level of information,

i.e., Level 3. However, four composite scales contribute to the FSIQ, namely, Verbal Comprehension,

Perceptual Reasoning, Working Memory, and Processing Speed (Level 2), each of which investigates

different cognitive abilities. Furthermore, each composite index is obtained from multiple subtests
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[Courtesy of Nicole Bussola, PhD candidate]

Figure 2.1: Behavioral phenotyping pipeline. (A) Pre-processing steps; (B) Raw subject representa-
tions and embedding methods; (C) Clustering algorithms and visualization.
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that refer to the assessment of specific tasks at a finer level of analysis, i.e., Level 1. As an example,

Verbal Comprehension is derived from Similarities, Vocabulary, Information, Comprehension, and

Word Reasoning subtests.

In the following, we mainly consider scaled scores for instrument subtests, i.e., each subtest raw

score is converted to a standardized scale, and standard scores for composite indices, that indicate

the performance of an individual compared to a population norm. To describe behavioral phenotypes,

we include a battery of tests that measure: 1) core symptom severity; 2) cognitive functioning; 3)

adaptive behavior skills; 4) social impairment severity; and 5) level of dysfunctional interactions with

child’s caretaker(s) and stressful situations.

Assessment instruments

Autism Diagnostic Observation Schedule - Second Edition (ADOS-2) ADOS-2 is a clinician-

administered observational assessment with two diagnostic algorithms that comprise the core behav-

ioral domains Social Affect (SA) and Restricted and Repetitive Behaviors (RRB). SA domain measures

social-communication as a lack of typical behaviors that are pervasive across social contexts. In par-

ticular, reduced use of gestures or eye contact, and reduced frequency of appropriate social responses.

RRB measures atypical behavior, e.g., hand flapping, sensory examination of materials, and excessive

reference to a particular topic. ADOS-2 provides a standardized continuous measure of autism spec-

trum symptom severity, the Calibrated Severity Score (CSS), that it is not influenced by individual

characteristics such as age and language skills, and it is used to compare symptom severity across

individuals of different developmental levels [115]. ADOS-2 has 5 age-related modules, with separate

algorithms according to the language skill level. Toddler Module is designed for the assessment of

children from 12 to 30 months of age as an early diagnostic tool; Module 1 is administered to children

with no verbal skills or few verbal skills; Module 2 is constructed for children with less than, or more

than 5 years of age; Module 3 is for verbally fluent children and adolescents, typically younger than

16 years; and Module 4 is for verbally fluent adolescents and adults. Although CSS can be employed

as a score for univocal comparisons of symptom severity, the nature of the symptoms underlying an

individual’s CSS may vary greatly. In fact, the highest level of severity can be assigned to individuals

that present significant social-communication impairments, but exhibit few repetitive behaviors, or

vice versa. Therefore, it is critical to include SA and RRB scores in ASC studies to provide a clearer

picture of individual characteristics, although an effect of child characteristics should be taken into

account in the absence of calibrated scores [116]. This in-depth analysis can go further and consider

a finer level of items. As an example, SA domain score for ADOS-2, Module 1, algorithm “few to no

words”, is the sum of scores in items verbalizations, gestures, eye contact, facial expressions, gaze and

social overture, shared enjoyment, showing, initiation of joint attention, response to joint attention,

and quality to overtures. Scores in Level 1 items are integers ranging from 0 to 2. In summary,

Level 1 includes the items that constitute directly observed behaviors, and can vary according to

modules. Level 2 corresponds to SA and RRB domains for modules Toddler, 1, 2, and 3, and Com-

munication, Reciprocal Social Interaction (RSI), and Stereotyped Behaviors and Restricted Interests
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domains for Module 4. Level 3 comprises composite CSS for all modules, except for Module Toddler

and 4, which report SA-RRB score, that is the sum of the two core domain scores, and composite

Communication-RSI score, respectively.

Griffiths Mental Development Scales (GMDS) GMDS is a well-established instrument to mea-

sure child level of psychological and motor general development from 0 to 8 years [117]. This procedure

provides a Level 2/3 General Developmental Quotient (GQ) and 6 separate Level 1 subscales that

assess functioning on areas of development (i.e., Locomotor, Personal-Social, Hearing and Language,

Eye and Hand Coordination, Performance, and Practical Reasoning). GMDS quotient and subscales

have a theoretical mean of 100 and a standard deviation of 16 and GQ score is the mean of the scores

from the six subscales. A score less than 68 is considered to be associated with child’s impairment in

a specific domain.

Leiter International Performance Scale - Revised (Leiter-R) Leiter-R is a nonverbal measure

of cognitive functioning that can be administered to individuals between the ages of 2 and 20 years.

Differently from IQ-based cognitive measurements, Leiter-R is based on fluid reasoning, which is an

index less influenced by individual characteristics, such as language and education [118]. The short-

form for the Visualization and Reasoning batteries comprises, at Level 1, the subtests figure ground,

form completion, sequential order (SO), and repeated patterns (RP). As a whole, they compose Level

2/3 Brief IQ (BIQ), whereas SO and RP contributes to the Fluid Reasoning composite index that is

included in all levels.

Wechsler tests Wechsler tests are individually-administered tests that measure intelligence and

cognitive abilities in children, adolescents, and adults. There are different test versions according to

subject’s age, but they all provide a Level 3 index of general cognitive ability, the FSIQ, that results

from the combination of Level 1 subtests. Wechsler Preschool and Primary Scale of Intelligence

(WPPSI) measures the cognitive development of children between 2 and 7 years of age. Edition

III (WPPSI-III) [119] includes 14 subtests (Level 1) for verbal, performance, and processing speed

tasks that can vary according to two age ranges, 2.6 − 3.11 and 4.0 − 7.3 years. These subtests are

combined in composite Verbal, Performance, General Language, and Processing Speed (only for age

range 2.6 − 3.11) indices, that form Level 2. A previous edition of WPPSI [120] only includes 12

subtests, six for Verbal composite index, and six for Performance.

For children and adolescents from 6 years to 16 years and 11 months of age, we consider the

Wechsler Intelligence Scale for Children (WISC) editions III and IV [121, 122]. They comprise 13

and 15 subtests, respectively, at Level 1, that constitute Verbal and Performance composite indices

(Level 2). Finally, Wechsler Adult Intelligence Scale, editions Revised (WAIS-R) and IV, is designed

for adolescents and adults from 16 years of age and above. WAIS-R [123] has 11 subtests, of which 6

contribute to the Verbal scale, and 5 to the Performance scale. WAIS-IV [124] has 15 subtests that

contribute to four composite indices, i.e., Verbal Comprehension, Perceptual Reasoning, Working

Memory, and Processing Speed. All composite scores of Wechsler tests have mean 100 and standard



2.3. MATERIAL AND METHODS 71

deviation 15, scores between 90− 109 are considered average. Subtest scaled scores have mean 10 and

standard deviation 3. To uniform and simplify scores between different editions and age-related tests,

only subscales and composite indices in common to all Wechsler tests are considered.

Vineland Adaptive Behavior Scales - Second Edition Vineland-II [125] evaluates the adaptive

behavior skills of children and adolescents up to 18 years of age. It is based on caregiver’s report of

observed behavior and it provides an overall composite standard score (Level 3), i.e., the Adaptive

Behavior Composite. It contains 4 domains, each with 2/3 subdomains. The main domains are

Communication, Daily Living Skills, Socialization, and Motor Skills. Domain standard scores are

considered as Level 2, whereas scaled subdomain scores constitute Level 1. Standard composite scores

have mean 100 and standard deviation 15. Standard scores < 70 are considered of interest. Scaled

scores have mean 15 and standard deviation 3 (possible range 1−24). Vineland-II scores are considered

irrespective of caretaker’s sex.

Parental Stress Index - Short Form (PSI-SF) PSI-SF is a 36-item self-report questionnaire

of parenting stress for caretakers of children up to 12 years of age [126]. It consists of three Level 1

subscales: Parental Distress (PD), Parent-Child Dysfunctional Interaction (PCDI), and Difficult Child

(DC). PD scale measures caretaker’s level of distress related to conflicts with a partner, social support,

and stress resulting from life restrictions due to child rearing. PCDI subscale reflects caretaker’s

dissatisfaction about interaction with the child and their perception of the child in comparison to other

children. DC scale assesses caretaker’s perception of child’s regulatory abilities (e.g., temperament,

defiance, non-compliance, demandingness). We consider raw scores on these domains, which range

from 12 to 60. Moreover, their sum generates a Level 2/3 Total Stress score, which ranges from 36 to

180, and it is considered significant if greater than 85. Higher scores indicate higher levels of stress.

Caretaker’s sex is considered to account for possible differences in stress levels. This because research

on stress level differences between males and females in their relationship with a child with ASC is

still ongoing and requires further investigation. In fact, together with sex differences in caretaker

stress levels, with females significantly more stressed than males [127], also no significant differences

between stress levels [128] have been reported. Stress levels and caretaker-child interaction scores can

be informative for structuring interventions and developing programs that help caretakers to cope

with stress and focus on the key factors to improve child well being and their relationship with the

child. Moreover, DC domain is a measure of child regulatory abilities that should be included in the

behavioral characterization of an individual with ASC.

Social Responsiveness Scale (SRS) SRS identifies the presence and severity of social impairment

within the autism spectrum for children of age ranging from 4 to 18 years [129]. It is a self-report

questionnaire for child’s caretaker(s) that comprises 5 Level 1 subscales, i.e., Social Awareness, Social

Cognition, Social Communication, Social Motivation, Restricted Interests and Repetitive Behaviors.

Raw subscale scores are considered, and their sum contributes to the Total raw score (Level 2/3) that

quantifies the severity of social deficits in ASC. The Total score is the sum of the responses to 65
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questions, scored on a Likert Scale (i.e., from 1 “not true” to 4 “almost always true”), the higher the

score the more severe is the impairment in social interactions. Scores are considered irrespective of

caretaker’s sex.

2.3.2. Pipeline

We introduce here the data analysis protocol (or pipeline) implemented for the analysis of the ODFLab

data, adapting the modeling framework presented in Chapter 2 for the Mount Sinai health system’s

data warehouse. A pipeline consists of data processing elements executed in series that perform

different tasks, from data pre-processing to visualization of results. The pipeline is designed for

exploratory purposes. Our aim is to derive meaningful embeddings of words and patients where

test score data are available. Further, we leverage them within an unsupervised machine learning

approach, viable also when labels on endpoints are lacking. In the following, we outline the steps

that have been implemented (see Figure 2.1); code is available at https://github.com/landiisotta/

behavioral_phenotyping.

Data pre-processing

Our implementation is designed for a relational database of behavioral data stored in structured tables

that include patient scores to test items from each instrument presented in Section 2.3.1. Table rows

are anonymized subject IDs, and columns store individual information that can be mandatory (i.e., sex,

date of birth, and date of assessment), or optional (i.e., age), along with subtest and composite index

scores. All tables are first dumped and then filtered according to the study design. In particular, either

entire tables or single subjects can be dismissed. After the filtering process, we store demographics

and encounter details that we derive from tables for each patient. Patient demographics include sex,

date of birth, and number of encounters, i.e., clinical referrals during which all or part of the battery

of tests is administered. Encounter data comprise patient sex, date of birth, and list of administered

instruments with the corresponding date of assessment.

Raw individual representations

After the desired level is set, the behavioral dataset can be created. Specifically, each subject is

represented by the list of tokens generated combining: 1) instrument name; 2) item name; and 3)

corresponding score of every administered instrument scores. As an example, let us consider depth-

level 3 and a subject p that has received two ADOS-2 Module 3 assessments, one at 8, and the other

at 12 years of age. First, our model selects the comparison score column from the table corresponding

to the diagnostic instrument. Second, it concatenates the information and returns a string of text.

Let us suppose that the comparison scores for p are 4 and 6, respectively, i.e., the subject worsen their

symptom severity from “low” to “moderate”. Then subject p is represented as the ordered vector:

(ados::comparison_score::4, ados::comparison_score::6)
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More generally, let L be the chosen level of depth for N administered instruments {I1, ..., IN}. Each

instrument Ik has a set of {hk} indices depending on the level L, i.e.,

Ik = {jk1, . . . , jkhk
}, k = 1, . . . , N

If we consider a subject p and we indicate with Np the number of the instruments administered to

them at encounter t (Np ≤ N), we obtain that, for each encounter, p is represented as the ordered

sequence:

p = (wtj11 , . . . , wtj1h1
, . . . , wtjNp1

, . . . , wtjNphNp
)t, t ∈ E (2.1)

where E is the sequence of encounters in chronological order and Np may vary respect to t. Subjects

are hence represented by behavioral term sequences that vary in length. The complete set of tokens

{w··}, for all t, k, builds up vocabulary V . Too short sequences, i.e., with |p| < 3, are dropped.

Embeddings

The patient embedding module enables the application of three different algorithms, i.e., Time Fre-

quency - Inverse Document Frequency (TFIDF), Global vectors (GloVe) for word representations, and

Word2vec, for the representation of subjects with ASC leveraging their behavioral sequential records.

Time Frequency - Inverse Document Frequency This approach makes use of word counts to

reflect individual term co-occurrences, as introduced in Section 1.2.6. As a result, it does not take into

account the temporal dimension of data, in that each behavioral term count is derived from the entire

sequence irrespective of the time at which each term is collected. Applied to our framework, TFIDF

aims to weight terms to reflect their importance to a subject in a cohort. Terms that appear more

frequently in general are weighted less than less general words. This can be effective in the context

of autism heterogeneity research in that we need to weight as more relevant the characteristics that

are unique to patients, instead of the ones that are shared by the entire cohort. After weights are

generated for a desired level, each subject is represented as a sparse vector of dimension equal to

vocabulary size. Then, Singular Value Decomposition is applied to the TFIDF matrix obtained for

dimensionality reduction (SVD-TFIDF), as described in Section 1.2.6.

GloVe [130] The Global vectors model is an unsupervised method based on statistics of word

occurrences to learn meaningful word representations [130]. Let us consider the set of behavioral term

sequences of all subjects as a corpus D and each patient as a sequence of terms t. Let |V | be the

vocabulary dimension, i.e., the number of unique terms t in corpus D. For each term ti ∈ V we build

a count vector (Xij)j for j = 1, . . . , |V | that stores the number of times a term tj occurs in the context

of word ti. The context is a window of fixed size k that moves over the sequences masking the words

outside the context to count co-occurrences only in that subsequence. We define X = (Xij)ij as the

matrix of word-word co-occurrence counts of dimension |V | × |V |, where Xi =
∑
hXih is the number

of times any word appears in the context of word ti. Finally, let Pij =
Xij

Xi
be the probability that
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a word tj appears in the context of ti. We introduce now the ratio of co-occurrence probabilities for

words ti, tj , th as Pih

Pjh
. This ratio is large if word th is related to (i.e., appears in the context of) ti,

but not tj ; it is small if th is related to tj , but not ti; and it is close to 1 if th is related/not related

to both ti and tj . By construction, the ratio is able to distinguish, relevant words from irrelevant. To

learn word representations we need to find the solutions to

F (wi, wj , w̃h) =
Pih
Pjh

(2.2)

where w and w̃ are word and context vectors of a fixed dimension d, respectively. Each term is both

considered as a target word and a context word. We require F (·) to 1) encode information in a linear

space; 2) output a scalar; 3) be symmetric; and 4) not ill-defined. Hence, equation (2.2) becomes

wTi w̃h + bi + b̃h = log (1 +Xih)

where bi, b̃h are the bias for wj , w̃h, respectively. The word representations are learned via a weighted

least square regression model with cost function

J =

|V |∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − log (1 +Xij))

2

where f(·) is a weight function that prevents the overweight of frequent co-occurrences. In particular,

the weight function is defined as

f(x) =


(

x
xmax

)α
if x < xmax

1 otherwise

where xmax is a cut-off parameter, i.e., the maximum co-occurrence frequency that can be considered,

and α a constant.

As TFIDF, also GloVe method leverages term co-occurrences. However, the context structure and

the weight process, which attempt to capture word meanings according to their relative position, can

be leveraged in this study to grasp the temporal information of behavioral development. Patient raw

representations (2.1) are used as input to the GloVe module. First, the terms occurring in the same

encounter are shuffled, as done in [23, 28], because the order in which instruments are administered is

negligible within encounters and only the temporal order of encounters is of interest. Afterwords, the

co-occurrence matrix is built and the model trained to return learned word representations. Finally,

patient encodings are derived averaging the vectors of terms that constitute individual behavioral

sequences.

Word2vec [22] The Word2vec method architectures are designed to learn distributed representa-

tions of words by neural networks. In particular, we use the continuous Skip-gram model that has

the best performance in learning the semantic relationships between words [22]. Given terms in a
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vocabulary t1, . . . , t|V |, the goal of the Skip-gram model is to find word embeddings that are useful to

predict the surrounding words in a document D, i.e., to maximize the average log probability

1

|V |

|V |∑
i=1

∑
−k≤j<k, j 6=0

log (p(ti+j |ti)) (2.3)

where k is the context window dimension. Given a term tI and a context term tO, the probability in

Eq. (2.3) is the Softmax function

p(tO|tI) =
exp (wTtOwtI )∑|V |
t=1 exp (wTt wtI )

where wtI and wtO are the input (i.e., center word) and output (i.e., context word) vector represen-

tations, respectively. The model is trained by minimizing the negative log likelihood.

This approach, in learning the semantic relationship between words in a context, is particularly

suited to our purpose of learning latent representations of clinical terms able to reflect the proximity

of terms occurring before or after throughout the longitudinal developmental trajectory. To apply this

module, first, we shuffle the behavioral terms within encounters as previously done. Second, we fix a

context dimension k and we build the center-context pairs for the prediction task. The input layer

is the one-hot encoded center word, i.e., a vector of length |V | with 1 at the position corresponding

to the term and 0 elsewhere. The hidden layer stores the word embeddings of fixed dimension, and

the output layer generates a vector of length |V |, which represents the probability mass function that

for a perfect prediction is concentrated in the position corresponding to the context vector. After

training, the embeddings learned for each term in subject sequences are averaged to output individual

representations (i.e., subject embeddings).

Clustering

This module enables clustering via either hierarchical clustering algorithm or k-means. For a detailed

explanation of the former with Ward’s method see Section 1.2.4. Clustering with k-means tries to

separate samples in k groups of equal variance minimizing the within-cluster sum-of-squares. More

specifically, given x1, . . . , xn elements, each sample is assigned to the closest cluster, i.e., the one that

minimizes

J =

k∑
j=1

n∑
i=0

||xi − µj ||2 (2.4)

where µj is a cluster centroid, and it is randomly initialized and then replaced by the mean of all

points in the cluster. As in hierarchical clustering, k-means requires the number of clusters to be

defined a priori. The Elbow Method (see Section 1.2.4) can also be applied in this context, and the

number of clusters corresponds to the point after which the objective function in Eq. (2.4) starts

decreasing in a linear fashion. More specifically, if the number of clusters increases, the quantity J

tends to zero, until we reach k = n, i.e., number of clusters equal to the number of points. The best

number of clusters is the one for which adding a cluster would result in a minimum decrease of the
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objective function.

Subject embeddings can be input to both clustering algorithms and the optimum number of clusters

is returned along with the Silhouette score, a clustering performance score, defined as the average over

the entire dataset {xi}, i = 1, . . . , n of:

s(i) =


1− a(i)

b(i) if a(i) < b(i)

0 if a(i) = b(i)

b(i)
a(i) − 1 if a(i) > b(i)

where, for each data point xi in cluster Ci, we define a(i) as the average Euclidean distance between

xi and all the other elements in the cluster, i.e., a measure of how well xi is assigned to its cluster, and

b(i) as the smallest mean distance of xi from another cluster Ck 6= Ci, i.e., the neighboring cluster.

a(i) =
1

|Ci| − 1

∑
j∈Ci, i 6=j

||xi − xj ||

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

||xi − xj ||

The average of s(i), for i = 1, . . . , n, becomes a measure of how well the data have been clustered. In

fact, −1 ≤ s(i) ≤ 1 is close to 1, when a(i) << b(i), i.e., x(i) is well matched to cluster Ci, and it

is close to −1 when b(1) << a(i), i.e., x(i) would have been better clustered if it was assigned to its

neighboring cluster.

Visualization

After each subject has been assigned to their cluster, our pipeline uses a visualization module to ex-

plore possible candidates for stratification. Specifically, the following plots are produced: 1) Uniform

Manifold Approximation and Projection - UMAP [34] for dimensionality reduction, that enables the

visualization of the individual representations with their clustering labels; 2) Elbow Method curve,

both for hierarchical clustering and k-means; 3) dendrogram for hierarchical clustering, i.e., a hierarchi-

cal tree that shows the distances at which single elements and clusters are merged during hierarchical

clustering; and 4) heatmap, a table with instrument items as rows, and subject IDs and cluster labels

as columns. Each table cell of the heatmap is progressively colored according to the scaled value in

the corresponding instrument item. Repeated measure scores, when available, are averaged.

Post hoc comparisons

Statistical analysis module includes two parts: first we test the effect of possible confounders on

clustering, in order to investigate if other variables, and not solely the learned representations, play

a role in the detection of ASC subgroups. Second, we compare instrument scores, used to construct

behavioral terms, between subgroups of individuals to discover possible significant differences and

behaviorally characterize ASC subtypes. Confounders are sex, age, mean age at assessment, number
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of encounters, behavioral sequence length and percentage of missing data. For sex categorical variable

and missing information we run chi-squared multiple comparisons in order to investigate whether

sex count and available data distributions over subgroups are independent. The remaining variables

are compared via pairwise two-tailed t-tests. Mean age at assessment, number of encounters, and

behavioral sequence length, if significantly different between subgroups, can suggest that subject

representations have failed to learn behavioral term multidimensional and temporal characteristics,

but are driven by presence/absence of terms according to assessment age, and the number of terms

in a sequence. For behavioral phenotype characterization instrument scores are compared through

pairwise two-tailed t-tests. Repeated measure scores are averaged before comparisons and missing

data, if present, are dropped.

2.3.3. Implementation details

The behavioral phenotype of children and adolescents with ASC referred to ODFLab (University of

Trento, Northern Italy) is used to test the pipeline presented in Section 2.3.2. The laboratory started

its activity in 2003 and since then more that 1, 000 subjects with different developmental conditions

(e.g. ASCs, ADHD, Developmental Dyslexia - DD) have been referred to the Laboratory for diagnosis

and/or treatment.

We first present the preliminary investigations that were done to estimate ASC data availability

and the following implementation of an efficient laboratory database for ASC data. Furthermore, we

describe the characteristics of the dataset for the present study and the model parameteres we use for

the analyses. All modules are implemented in Python, version 3.6.8, except for post hoc analyses that

are implemented in R, version 3.4.3 [131]. For embedded representations and clustering algorithms

we use scikit-learn and pytorch libraries [29, 30]. Computations were run on a MacBook Pro

featuring a 2.8 GHz Intel Core i7 processor.

Data availability The implementation of a structured laboratory database for the secondary use

of ASC data is the result of an initial investigation to provide a reliable summary of all the available

information, both as tables and text files, reported by clinicians after every assessment. We focused

on subjects who had received an ASC diagnosis (N = 283), either from the laboratory or previous

to their referral. We aimed to determine the availability of longitudinal assessments. Moreover,

we tried to quantify the amount of missing information and whether this could be, to some extent,

recovered. We implemented a Python script that, simply counting, for each administered instrument,

the corresponding files in anonymized patient folders on the laboratory server, was able to provide a

general view of the longitudinality of the data collection process, along with the available information.

The instruments we included were: 1) diagnostic (e.g., ADOS); 2) instruments for cognitive as-

sessment; 3) caretaker-administered; and 4) observational codes. We found that only 55 subjects out

of 283 had at least 2 different ADOS evaluations, already in tabular format, and 29 had at least 2

cognitive evaluation scores reported in tables. It emerged that several scores were only reported in
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Instrument Entries

ADOS-2

MT 14

M1 97

M2 40

M3 96

M4 50

Observational codes EAS 18

Developmental
GMDS 141

cognitive scales

Nonverbal cognitive
Leiter-R 92

functioning

Intelligence scales

WPPSI 1

WPPSI-III (2.6 – 3.11) 4

WPPSI-III (4.0 – 7.3) 23

WISC-III 16

WISC-IV 66

WAIS-R 8

WAIS-IV 21

Caretaker-administered
PSI-SF 285

SRS 209

Vineland-II 141

ADOS-2: Autism Diagnostic Observation Schedule - Second Edition, MT-M4: Module Toddler - Module 4; EAS:
Emotional Availability Scales [132]; GMDS: Griffiths Mental Development Scales; Leiter-R: Leiter International Per-
formance Scale - Revised; WPPSI: Wechsler Preschool and Primary Scale of Intelligence; WISC: Wechsler Intelligence
Scale for Children; WAIS: Wechsler Adult Intelligence Scalel; PSI-SF: Parental Stress Index - Short Form; SRS: Social
Responsiveness Scale; Vineland-II: Vineland Adaptive Behavior Scales - Second Edition

Table 2.2: ODFLab database instruments and correspondent number of entries.

the evaluation text documents, which are available for all subjects, but that were not transcribed to

a computer-readable format. In conclusion, the number of repeated measures could be improved. For

these reasons, we decided to start the process of missing information recovery and database construc-

tion to keep laboratory data up-to-date.

ODFLab database To manage ASC data in an user-friendly and straightforward way we created

Google Form questionnaires (GForms) to collect anonymized data from children, adolescents, and

adults with ASC referred to the laboratory during past years, up to now. In particular, this plan has

been devised to recover data incompletely stored or missing altogether, and to store scores from new

assessments. The advantages of using a GForm framework to enter patient data are several:

• It is possible to create “Required” items, i.e., the form cannot be closed until the corresponding

information is provided. In this way, it is possible to minimize missing information;

• Depending on the data type, a “Response validation” can be added, with warning messages that

guide the user throughout the process. The format of mandatory items can be described via
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regular expressions, which are, in formal language theory, a sequence of characters that define a

pattern. In this way, demographic information, which is required for all instruments in clinical

setting can be uniformly collected;

• Data collected via GForms can be transformed into a table, that is continuously updated and

can be leveraged for secondary analysis, or as a building block of a relational database;

• When the form is divided in sections, if-statements can be implemented. This proves to be

useful for reporting ADOS-2 modules that are characterized by different algorithms, depending

on specific subject’s characteristics (e.g., age, language level). Because each algorithm has

different subtests, if algorithm A, whether than B, is selected, the user will only see the correct

subtests for that dimension.

Google Spreadsheets generated by the forms populate a relational database stored on the server of the

University of Trento and managed by the database management system MySQL. To interact with the

database (e.g., run queries, create new tables, populate existing tables) we use the object-relational

mapping sqlalchemy [133] for Python programming language. GForms are available for instruments

listed in Table 2.2, displayed along with their current number of entries3. Data insertion started in

June 2017 and it is still ongoing; multiple instrument scores from 255 individuals have been so far

included in the database.

Dataset Of the 255 subjects in the database we drop adults (i.e., first assessment age ≥ 18) and

children with solely observational code scores (i.e., EAS, see [132]). After filtering out 49 individuals,

the study dataset contains 206 children and adolescents with scores in at least one instrument from

the battery presented in Section 2.3.1. ADOS-2 Module 4 has also been dropped after filtering.

Behavioral term sequences Together with the three levels described in Section 2.3.1, we include

a fourth instrument depth level (Level 4), which is a custom level that reflects the specific clinical

guidelines of ODFLab and that provides an individual clinical profile for ASC evaluation, see Table 2.3.

This new level also maximizes the items shared among different editions and modules of the same

instruments. As an example, at Level 4 we only select the FSIQ index from all Wechsler intelligence

scales (i.e., revisions and age-related versions) to directly compare individuals and maximize the

number of available measurements of general intellectual ability.

In Section 2.4, we present results from the pipeline only applied to Level 4 behavioral phenotypes

to detect fine-grained subgroups that are not biased by data structural heterogeneity. In fact, because

results from multiple instrument revised editions and age-related versions are tied to unique indices

and subtests, structural heterogeneity stems from the great number of behavioral terms that are less

represented in cohort behavioral sequences (i.e., they involve fewer subjects than more general terms).

Level 4 instrument depth can be a good trade-off between fine-grained individual characterization and

statistically relevant patterns of terms. Moreover, because it is tailored to clinical requirements, it

might provide a more useful characterization towards translational goals.
3Accessed on September, 2019
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Instrument Index

ADOS-2
SA
RRB
CSS

GMDS

A
B
C
E
F
GQ

Leiter-R
Brief IQ
FR

Wechsler FSIQ

Vineland-II

CD
DLS
SD
MS
ABC

PSI-SF caretaker TS

SRS
RIRB
Total

ADOS-2: Autism Diagnostic Observation Schedule - Second Edition, SA: Social Affect, RRB: Restricted and Repetitive
Behaviors, CSS: Calibrated Severity Score; GMDS: Griffiths Mental Development Scales, A: Locomotor, B: Personal-
Social, C: Hearing and Language, D: Eye and Hand Coordination, E: Performance, F: Practical Reasoning; Leiter-R:
Leiter International Performance Scale - Revised, Brief IQ: Brief Intelligence Quotient, FR: Fluid Reasoning; FSIQ:
Full Scale Intelligence Quotient; CD: Communication Domain, DLS: Daily Living Skills, SD: Socialization Domain, MS:
Motor Skills, ABC: Adaptive Behavior Composite; PSI-SF: Parental Stress Index - Short Form, TS: Total Stress; SRS:
Social Responsiveness Scale, RIRB: Restricted Interests and Repetitive Behaviors

Table 2.3: Level 4 features for behavioral phenotyping.
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After behavioral term sequences are constructed, as described in Section 2.3.2, we drop subjects

with sequences shorter than 3 terms (N = 2). The final cohort comprises 204 de-identified behavioral

records collected from the 27th of January 2010 to the 12th of September 2019 of 35 females and 169

males, with mean age equal to 11.24 (sd = 5.10). The median number of encounters is 1 with range

from 1 to 5. The median number of assessments, i.e., the total number of administered instruments,

is 5, with minimum 1 and maximum 24. Mean age at assessment is 6.84 (sd = 3.58). Behavioral

sequences at Level 4 have mean length 15.86 (sd = 11.93) and median 13.5, with minimum fixed

length 3 and maximum 71. Vocabulary size is 1, 186.

Embeddings The embedding dimension is set at 10 for all models.

• TFIDF matrix is normalized with Euclidean norm and input to Truncated SVD function to

obtain patient encodings from term co-occurrence weighted counts.

• GloVe model co-occurrence matrix X is constructed so that terms that are d words apart con-

tribute 1
d to the total count. In this way, we weight less distant word pairs, that correspond

to temporally distant behavioral terms, in order to account both for the developmental and the

multidimensional aspects that characterize ASC trajectories. Distance d depends on the context

window size, which is set at 10 words to the left and 10 to the right. The cut-off parameter

xmax is 10 and α = 3
4 . The model is trained using AdaGrad [134] with learning rate 0.025 for

100 epochs with batch size equal 20. GloVe method generates two sets of word embeddings, W

and W̃ , from selected words and context words, respectively. In our case, X is symmetric and

hence the word embedding sets only differ as a result of random initialization. As suggested by

Pennington et al. [130], we consider the sum W + W̃ as our word vectors. For each patient the

term encodings corresponding to the terms in their sequence are averaged to create individual

representations. All parameters are chosen according to the details reported in [130], except for

batch size, xmax, and learning rate that have been reduced consistent with a smaller dataset.

• Word2vec model is implemented with pytorch library [30] and it is trained using Stochastic

Gradient Descent and backpropagation with learning rate 0.001 for 150 epochs on all data with

batch size 20. Window context size for context prediction is set at 10. Parameters are empirically

set to reduce computational cost and account for a small dataset.

Language-inspired embeddings Each language has specific rules of grammar (i.e., syntax), which

provide sentences with meaning. Moreover, each word carries its own literal meaning (i.e., denota-

tion) and suggestive meaning (i.e., connotation). These aspects should be taken into account in

multi-language embedding. However, the EHR (see Chapter 1) and behavioral sequence embeddings

discussed in this Chapter are in principle not tied to a particular language; each word is rather a code

than part of a specific natural language vocabulary. The sentences we consider are not tied to any

rule of syntax, in that sequence order does not follow predetermined structures. On the contrary, code

semantics (i.e., meaning) is more similar to words in natural languages, i.e., they have connotations

and annotations.
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In this body of work, we have processed normalized codes (e.g., ICD-9) according to international

standards, and structured behavioral observations, leveraging instruments that have been translated

into several languages with a 1-1 item-level correspondence. For this reason, the denotation of each

term is independent of the language used to collect it. The processing of free-text clinical notes or

psychological assessment reports would indeed require a different treatment. Code connotations, on

the other hand, are inherited from the context and contribute to the general meaning of the sentence.

As such, in both applications our models try to capture the semantic relationship between terms

via CNNs, word context, and term co-occurrences. We argue that term context and progression con-

tributes to the sequence general meaning and regulate the embedded representation. As an example,

the term ICD-9 code Diarrhea (787.91) can have different connotations. If it is next to an anti-cancer

medication, such as Bortezomib, it can indicate a side effect. If the same ICD-9 code is found in the

context of a diagnosis of Autistic disorder, current or active state (299.00), it can refer to a common

comorbid condition [20]. Accordingly, a low GMDS scale C score (i.e., hearing and language) and a

high GMDS subscale A score (i.e., locomotor) indicates an autistic subject who has compensated the

lack of communication and language with motor abilities. If, however, the same GMDS C score is

accompanied by a high ADOS-2 SA score and a high RRB score, it indicates an individual affected

by a severe form of autism that need very substantial care and support [115].

Clustering and visualization Most unsupervised approaches to ASC stratification leverage hier-

archical clustering as clustering algorithm. We hence select the same approach, with Ward’s linkage

criterion and Euclidean distance. Best number of clusters is selected by the Elbow Method, with

cluster number ranging from 2 to 15. In the experiments, for cluster visualizations, UMAP number

of neighbors is set at 5 and minimum distance at 0.0.

Representation evaluation

The unsupervised approach and the small sample size, together with the presence of missing informa-

tion, complicate the implementation of a validation framework. In particular, the lack of a groud-truth

(i.e., known ASC subtypes) calls for an unsupervised approach, that does not allow to validate our

models. Moreover, the small sample size hinders the possibility to test the trained unsupervised em-

beddings on a separate, unseen dataset. In fact, splitting our behavioral sequences into training and

test, not only means that the training process would have a smaller dataset to learn representations

from, but also, that the test dataset may contain words that are absent from the training dataset and

that would be lost. Given the exploratory nature of our study, we rely on clinical validation to inspect

the subgroups we obtain from different models. Moreover, clusters obtained from the three methods

are compared with the Fowlkes-Mallows index (FMI), as described in Section 1.3.2. In addition, in

order to prove the promise of our approach, we compare its performance to a baseline clustering of

quantitative ASC feature data.
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Method N clusters Subgroup numerosites Silhouette score

SVD-TFIDF 2 (137, 67) 0.29

GloVe 3 (65, 10, 67, 11, 24, 20, 7) 0.19

Word2vec 3 (115, 42, 47) 0.12

Features 5 (155, 35, 5, 1, 8) 0.10

Table 2.4: Hierarchical clustering results for the implemented methods.

Quantitative features baseline Model baseline relies on clustering of vectors of instrument scores

ordered according to the association to a particular age period. Age groups have been defined together

with a clinician to reflect the developmental phases of an individual from infancy to late adolescence.

Specifically, we define 5 age groups, i.e., group 1 that includes children from 0 to 2.5 years of age;

group 2 with children older than 2.5 and up to 6.0 years; group 3 that corresponds to individuals

older than 6.0, up to 13.0 years of age; group 4 that includes adolescents, i.e., more than 13.00 and

less than 17.0 years of age; and group 5 with individuals with age greater equal than 17.0 years. For

each phase, we select the set of instrument that are usually administered and we consider Level 4

index scores. The resulting dataset has subjects as rows and instrument indices as features, that are

lexicographically ordered within each phase, and temporally ordered according to age periods. The

resulting dataset has 204 observations and 110 features. When the same instrument was administered

more than once in the same time period, the scores are averaged. Scaled scores are then clustered via

hierarchical clustering.

Clinical validation and post hoc comparisons We want to investigate if behavioral embeddings

can be leveraged to represent subjects with ASC and divide them into clinically relevant subgroups,

compared to typical quantitative approach. To do this, we validate the groups obtained from each

implemented model first ruling out the influence of possible confounders, second comparing quanti-

tative average scores between groups. The significant clinical patterns are highlighted and compared.

Multiple comparisons in post hoc analysis are corrected with Holm-Bonferroni method and level of

significance is set at 0.05.

2.4. Results and discussion

In the following, we report the number of clusters found by hierarchical clustering performed on each

method encodings and the quantitative feature dataset (see Table 2.4). Moreover, we describe the

clinical validation of the results (see Tables 2.5-2.9). Finally, all clustering performances are compared

via FMI scores (see Table 2.10) to assess consistency of the results.

2.4.1. Clinical validation
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Figure 2.2: Word2vec encoding subgroups. Dendrogram (a), blue (I), purple (II), red (III); Elbow
curve and second derivatives (b); and UMAP encoding projections with subgroup labels and trajec-
tory of ADOS-2 core symptoms [Mean (sd); SA = Social Affect; RRB = Restricted and Repetitive
Behaviors] (c) are displayed. In plot (b) the blue curve is the Elbow curve, i.e., the variance explained
at the next iteration, and the orange curve is the second derivative curve, that is maximum in presence
of inflection points.
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Word2vec

Subgroup I Subgroup II Subgroup III
(N=115) (N=42) (N=47) p-value

Current age 10.70 (4.82) 11.28 (6.27) 12.32 (4.66) ns

N encounters 1.57 (0.94) 1.43 (0.77) 1.15 (0.36) I vs III∗∗

Female/Male 16/99 13/29 6/41 nsa

Assessment age 5.90 (3.42) 6.34 (3.14) 7.62 (3.47) < 0.01

Sequence length 17.03 (12.84) 17.55 (10.10) 8.66 (4.68) III vs I/II∗∗∗

Missing values 42% 34% 65% < 0.001a

ADOS-2
CSS 6.16 (1.64) 6.54 (1.31) 4.30 (2.76) III vs I/II∗∗∗

RRB 2.66 (1.82) 3.90 (1.71) 0.63 (1.04) < 0.001

SA 10.48 (3.52) 12.35 (3.64) 7.85 (5.18) < 0.01

GMDS

A 79.82 (15.39) 63.28 (20.66) 81.73 (24.76) II vs I/III∗∗

B 73.13 (17.05) 52.36 (23.02) 70.55 (30.52) II vs I/III∗

C 69.26 (28.92) 46.97 (33.20) 68.91 (40.00) II vs I∗

D 77.58 (18.42) 54.85 (20.10) 67.55 (29.30) II vs I∗∗∗

E 92.12 (21.10) 67.74 (24.95) 86.27 (35.19) II vs I/III∗

F 75.42 (23.41) 53.10 (30.11) 72.55 (34.27) II vs I∗∗

GQ 77.3 (17.11) 56.41 (23.11) 73.73 (31.17) II vs I/III∗

Leiter-R
BIQ 87.25 (22.40) 68.90 (25.01) 85.86 (12.27) I vs II∗

Fluid reasoning 89.83 (20.36) 72.00 (22.60) 83.71 (10.31) I vs II∗

PSI-SF
Total stress (F) 89.21 (24.34) 92.32 (25.82) 85.31 (20.18) ns

Total stress (M) 83.35 (22.07) 84.92 (19.55) 82.17 (19.46) ns

SRS
RIRB 17.20 (7.79) 16.38 (6.84) 18.36 (8.30) ns

Total 92.51 (30.62) 90.43 (27.87) 105.10 (45.68) ns

Vineland-II

ABC 70.12 (12.29) 55.02 (14.65) 62.73 (20.26) I vs II∗∗∗

CD 70.16 (12.09) 51.93 (16.17) 64.64 (20.41) I vs II∗∗∗

DLSD 75.57 (13.62) 59.81 (16.48) 67.27 (20.53) I vs II∗∗∗

MSD 77.56 (10.73) 62.69 (15.91) 71.14 (11.16) I vs II∗∗∗

SD 71.16 (12.82) 57.30 (14.11) 61.55 (16.14) I vs II∗∗∗

Wechsler FSIQ 85.84 (19.62) 96.00 (27.45) 98.43 (21.64) I vs III∗

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; a χ2 test; ns = non significant comparisons

ADOS-2: Autism Diagnostic Observation Schedule - Second Edition, SA: Social Affect, RRB: Restricted and Repetitive
Behaviors, CSS: Calibrated Severity Score; GMDS: Griffiths Mental Development Scales, A: Locomotor, B: Personal-
Social, C: Hearing and Language, D: Eye and Hand Coordination, E: Performance, F: Practical Reasoning; Leiter-R:
Leiter International Performance Scale - Revised, Brief IQ: Brief Intelligence Quotient; PSI-SF: Parental Stress Index
- Short Form, Total Stress (F/M): female/male; SRS: Social Responsiveness Scale, RIRB: Restricted Interests and
Repetitive Behaviors; ABC: Adaptive Behavior Composite; CD: Communication Domain, DLSD: Daily Living Skills
Domain, MS: Motor Skills Domain, SD: Socialization Domain; FSIQ: Full Scale Intelligence Quotient

Table 2.5: Confounder and feature statistics for Word2vec encodings [Mean (sd)].
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Word2vec Individual Word2vec representations are divided into three subgroups (see Figure 2.2

c). Investigating the external factors that may have influenced subgroup structure we report that

subgroup III shows a significantly higher number of missing values (65%), lower sequence lengths

(M = 8.66, sd = 4.68, p < 0.001), and lower average number of encounters (M = 1.15, sd = 0.36, p <

0.001) respect to the other subgroups. The identification of subgroup III can have been influenced by

these factors and, more generally, by lack of information. However, this group is also characterized

by individuals that have received a late diagnosis, i.e., they report a significantly higher mean age of

assessment (M = 7.62, sd = 3.47) respect to the other subgroups. Hence, the investigation of the

associated behavioral phenotype can lead to relevant discoveries of the cognitive and symptom severity

profiles associated to delayed diagnosis, that can inform screening practices, lowering the age at which

specific manifestations are detected. Investigating the male/female ratio, we observe that only 13%

of individuals in subgroup III are females, whereas subgroup II reports the highest percentage (31%).

The three subgroups can be described by their symptom severity profiles, i.e., mild (subgroup

III), moderate (subgroup I), and severe (subgroup II) core symptom severity (see Figure 2.2 (c) and

Table 2.5). Furthermore, we observe that subgroup II includes low-functioning individuals (GMDS

GQ < 70) with impairment in social communication and interaction and strongly characterized by

restricted and repetitive behaviors. SA and RRB domains of ADOS-2 have significantly higher scores

compared to the other two groups. Moreover, group II presents a concordance between caretaker-

reported impairment in communication, daily living skills, socialization, motor skills and the develop-

mental level reported by GMDS scales. Individuals in subgroup II are also characterized by greater

nonverbal cognitive impairment (Leiter BIQ and GMDS GQ indices, respectively) compared to the

other groups and significant deficits in motor skills (M = 63.28, sd = 20.66).

Subgroup I includes individuals with moderate functioning, and difficulties in social interactions

and repetitive behaviors, although not as severe as those characterizing subgroup II (SA score sig-

nificantly lower than subgroup II and higher than subgroup III). Moreover, they report language

difficulties, i.e., GMDS Hearing and Language subscale has mean score of 69.29 (sd = 28.92) and it is

significantly lower than the other subscale scores within the same group (two-tailed t-test comparisons,

p < 0.05), except for practical reasoning. This suggests that these subjects activate compensatory

mechanisms involving other developmental functioning dimensions to overcome verbal difficulties.

Subgroup III reports mild ASC symptom severity and higher cognitive functioning (FSIQ M =

98.43, sd = 21.64). These subjects have low RRB scores and moderate social impairment (see Ta-

ble 2.5). Interestingly, 57% of subjects report a verbal Wechsler assessment, which suggests that

they are characterized by greater language and communication abilities respect to the other sub-

groups. Moreover, they report a lower number of Vineland-II assessments (17% of subjects), which

is usually not administered to caretakers of high-functioning individuals (see interactive heatmap in

Supplementary Material folder).

In conclusion, we identify two subgroups (I/II) with similar ASC behavioral characteristics and

different cognitive profiles, i.e., subgroup I less impaired than subgroup II (all GMDS scales com-

parisons are significant). The third subgroup includes high-functioning individuals who received a
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Figure 2.3: GloVe encoding subgroups. Dendrogram (a), blue (I) - gold (VII); Elbow curve and second
derivatives (b); and UMAP encoding projections with subgroup labels (c) are displayed.

late diagnosis and that show mild ASC symptoms. Less severe core symptoms are usually observed in

high-functioning and older individuals, whom have probably developed compensatory mechanisms and

camouflaging of ASC behaviors throughout development. As reported in Section 2.2, females with

ASC are more likely to show intellectual disabilities respect to males, either because of protective

factors, camouflaging, or male diagnostic bias. This is particularly evident for subgroups II and III,

with less females included in the high-functioning group (subgroup III) than in the low-functioning

subgroup II. This suggests the need for a deeper investigation of subgroup III profiles in females

with ASC, possibly considering larger numerosities of females with ASC showing similar subgroup

characteristics.

GloVe GloVe individual representations are distributed in seven groups (see Figure 2.3 c) that dis-

play less clear patterns than Word2vec representation groups. Mean assessment age is not significantly

different between subgroups VI and VII, and sequence lengths mean differences are not significant for

the group profiles we discuss in the following. This entails reliability of the clinical profiles attributable

to the subgroups found. However, it is worth saying that none of the pairwise mean score comparisons

between groups was significant, except for ADOS-2 scores. This is possibly due to the reduced sample
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size, however, for this reason, the following clinical validation is purely qualitative and based on the

observation of mean scores reported in Table 2.6.

We find that subgroups VI and VII are characterized by late diagnoses that identify social commu-

nication/interaction impairment and reduced repetitive behaviors. On the other hand, subgroups II

and IV include late diagnosed high-functioning individuals that display mild core symptoms. Finally,

subgroups I, III, and V include younger subjects (see Table 2.6), with moderate ASC symptoms and

heterogeneous developmental profiles (i.e., cognitive functioning and adaptive skills). An interesting

aspect that emerges from subgroup investigation concerns caretaker stress levels. High level of stress

are reported, by both female and male caretakers, for older subjects with mildly-impaired or within

the norm cognitive levels and reduced social-communication skills. This is evident for subgroups VI

and VII, where reported total stress scores are higher than all other subgroups. Specifically, subgroup

VII shows a distinct social impairment (SA score M = 13.80, sd = 1.62), mildly-impaired nonverbal

cognitive functioning (BIQ score M = 66.00, sd = 16.43), and total caretaker stress greater than 90

(PSI-SF cut off is set at 85). Moreover, subgroup VI includes subjects that show less social impairment

(SA scoreM = 8.39, sd = 4.91), higher cognitive functioning (BIQ scoreM = 89.14, sd = 33.84), and

total stress scores similar to subgroup VII (i.e., > 90.00). At the clinical level, social-communication

impairment, especially in older subjects, influences caretaker stress more than the presence of intellec-

tual disabilities or the combination of stereotypical movements and good cognitive functioning (i.e.,

scores > 70) as in subgroups III and V. This can be ascribed to the lack of successful interactions

between caregiver and child and to the prolonged unsuccessful effort of caretakers in engaging with

the child before they receive an ASC diagnosis. A correct and timely identification of such situations

is key to the development of clinical practices that aim at alleviating caretaker stress and improve

caretaker-child interaction. Subgroup III shows adaptive skill scores lower than 70 in all domains,

whereas subgroup V reports low (i.e., < 70) GMDS scores in all subscales. Between subgroups I and

III, subgroup I display less motor skills than subgroup III and similar profiles according to the other

domains.

In conclusion, this result suggests the presence of further subgroups within individuals with similar

core symptom and general cognitive functioning profiles (e.g., subgroups II, IV, VI, VII). Deeper

characterizations of individuals with ASC by means of other clinical markers (e.g., genetic profiles,

biological pathways, neural systems) can further clarify the phenotypic differences detected by the

psychometric instruments. Moreover, we observe that the inclusion of caretaker aspects of child rearing

in stratification studies to early identify stressful situations arising from caretaker-child interaction

can be crucial to lower the diagnostic age for individuals showing ASC symptoms with high cognitive

functioning.

SVD-TFIDF The SVD of TFIDF matrix produces individual representations that are separated by

hierarchical clustering into two clearly distinct subgroups (see Figure 2.4 c). Observing the heatmap of

instrument scores for each subject (see Supplementary Material folder) it is evident that subgroup II

(N = 67) includes high-functioning, late diagnosed individuals. On the contrary, subgroup I (N = 137)
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Figure 2.4: SVD-TFIDF encoding subgroups. Dendrogram (a), blue (I) and purple (II); Elbow curve
and second derivatives (b); and UMAP encoding projections with subgroup labels (c) are displayed.
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SVD-TFIDF

Subgroup I Subgroup II
(N=137) (N=67) p-value

Current age 10.09 (5.11) 13.60 (4.22) < 0.001

N encounters 1.58 (0.94) 1.15 (0.36) < 0.001

Female/Male 29/108 6/61 ns

Assessment age 5.57 (3.01) 9.91 (2.90) < 0.001

Sequence length 19.15 (12.00) 7.30 (2.97) < 0.001

Missing values 33% 70% < 0.001a

ADOS-2
CSS 6.00 (1.69) 5.55 (2.58) 0.09

RRB 3.12 (1.92) 1.07 (1.16) < 0.001

SA 11.10 (3.76) 8.52 (4.43) < 0.001

GMDS

A 75.19 (19.30) NA -
B 66.89 (22.15) NA -
C 62.76 (32.51) NA -
D 70.20 (22.38) NA -
E 84.54 (25.99) NA -
F 68.44 (28.21) NA -
GQ 70.90 (22.32) NA -

Leiter-R
BIQ 83.67 (23.44) 84.28 (22.80) 0.48

Fluid reasoning 86.91 (21.83) 82.94 (18.56) 0.88

PSI-SF
Total stress (F) 90.91 (24.66) 85.57 (22.02) 0.16

Total stress (M) 84.55 20.99 81.17 (21.16) 0.29

SRS
RIRB 16.06 (7.64) 19.11 (7.52) 0.12

Total 90.41 (29.79) 101.47 (39.18) 0.25

Vineland-II

ABC 64.72 (15.36) NA -
CD 63.91 (16.42) NA -
DLSD 69.88 (16.73) NA -
MSD 72.17 (14.40) NA -
SD 65.97 (14.90) NA -

Wechsler FSIQ 86.16 (20.02) 93.43 (22.10) < 0.05

a χ2 test; NA = not available

ADOS-2: Autism Diagnostic Observation Schedule - Second Edition, SA: Social Affect, RRB: Restricted and Repetitive
Behaviors, CSS: Calibrated Severity Score; GMDS: Griffiths Mental Development Scales, A: Locomotor, B: Personal-
Social, C: Hearing and Language, D: Eye and Hand Coordination, E: Performance, F: Practical Reasoning; Leiter-R:
Leiter International Performance Scale - Revised, Brief IQ: Brief Intelligence Quotient; PSI-SF: Parental Stress Index
- Short Form, Total Stress (F/M): female/male; SRS: Social Responsiveness Scale, RIRB: Restricted Interests and
Repetitive Behaviors; ABC: Adaptive Behavior Composite; CD: Communication Domain, DLSD: Daily Living Skills
Domain, MS: Motor Skills Domain, SD: Socialization Domain; FSIQ: Full Scale Intelligence Quotient

Table 2.7: Confounder and feature statistics for SVD-TFIDF matrix encodings [Mean (sd)].
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Figure 2.5: Quantitative feature subgroups. Dendrogram (a), blue (I) - grey (V); Elbow curve and
second derivatives (b); UMAP encodings projections with subgroup labels (c); and percentages of
missing data in F1 - F5 time periods (d) are displayed.

includes all the remaining individuals and their corresponding behavioral profiles, with no distinctions.

Subgroup I shows all levels of core symptom severity and cognitive functioning. Individuals in subgroup

II report a significantly higher FSIQ than subgroup I (M = 93.43, sd = 22.10, p < 0.05). Moreover,

subjects in subgroup II are older than subjects in subgroup I (M = 9.91, sd = 2.90) and their core

symptoms are less severe (SA, RRB p < 0.001).

As observed for Word2vec representations, the percentage of females in subgroup II (10%) is lower

than subgroup I (27%), again suggesting a possible diagnostic male bias, and/or camouflaging effect

in high-functioning females with less severe ASC symptoms. Although subgroup II is consistent with

a known clinical profile, all tests performed to check for possible confounders are significant (see

Table 2.7). This, together with the noisy subgroup I, seems to invalidate the effectiveness of TFIDF

representations to isolate meaningful subgroups.

Quantitative features Quantitative feature data are divided into 5 time periods (F1 - F5), accord-

ing to subject development phases. They are processed via hierarchical clustering and return 5 highly

unbalanced subgroups (see Figure 2.5 c). As displayed by the heatmap in Supplementary Material
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ADOS-2 GMDS Leiter-R PSI-SF SRS Vineland-II Wechsler

F1 93.63 (2.08) 95.10 (1.01) 99.51 (0.00) 97.55 (0.49) 98.04 (0.00) 96.57 (0.00) 99.51

F2 61.27(0.00) 60.29 (0.00) 83.82 (0.00) 72.79 (0.74) 85.78 (0.00) 71.08 (0.00) 90.20

F3 55.88 (0.00) 87.32 (0.17) 81.86 (0.00) 71.32 (1.72) 74.51 (0.00) 81.57 (4.31) 72.55

F4 91.18 (0.00) NA 96.08 (0.00) 97.30 (0.25) 97.55 (0.00) 97.84 (0.59) 94.12

F5 99.51 (0.00) NA 99.02 (0.00) NA 99.51 (0.00) 98.73 (0.39) 99.02

NA = not available

ADOS-2: Autism Diagnostic Observation Schedule - Second Edition; GMDS: Griffiths Mental Development Scales;
Leiter-R: Leiter International Performance Scale - Revised; PSI-SF: Parental Stress Index - Short Form; SRS: Social
Responsiveness Scale

Table 2.8: Percentages of missing values for quantitative feature data.

Quantitative features

Subgroup I Subgroup II Subgroup III Subgroup V
(N=155) (N=35) (N=5) (N=8) p-value

Current age 11.73 (5.16) 9.18 (4.56) 7.20 (0.89) 14.01 (3.84) I vs II∗

N encounters 1.36 (0.72) 1.43 (0.74) 3.80 (1.10) 1.38 (0.52) III vs I/II/V∗∗∗

Female/Male 26/129 7/28 0/5 2/6 -
∗∗∗p < 0.001

Table 2.9: Confounder statistics for quantitative feature data.

folder, we have imputed missing information with mean feature scores. Between-group comparisons of

current age, number of encounters and female/male counts are reported in Table 2.9. The percentages

of missing data in each time period, averaged over every instrument scales, are reported in Table 2.8.

The amount of missing data, see Figure 2.5 (d) is greater than 90% for all features except the ones

spanning periods F2, F3 (< 90%). Clinical profile inspection does not identify uniform behavioral

profiles. This result suggests that considering quantitative features for stratification of longitudinal

trajectories, either requires a great amount of data to overcome missing information, or a complete

longitudinal dataset, which can be very uncommon because of the amount of time and clinical activity

required to build it.

FMI scores for clustering performance comparisons are reported in Table 2.10. We expect higher

FMI scores for hierarchical clustering of subject encodings derived from NLP methods, i.e., Word2vec,

GloVe, and SVD-TFIDF. We expect low scores for comparisons to quantitative feature clustering. On

SVD-TFIDF GloVe Word2vec

GloVe 0.51 - -
Word2vec 0.49 0.30 -
Features 0.63 0.42 0.55

Table 2.10: Fowlkes-Mallows index scores for clustering comparisons.
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the contrary, the lowest score (FMI = 0.30) is reported when comparing Word2vec and GloVe repre-

sentation clusterings. This result suggests that pair of individuals encoded by one method are more

likely to be clustered separately when represented by the other method. This can be a consequence

of the different number of clusters identified, i.e., 3 and 7, respectively. Moreover, higher scores in

the other comparisons may be caused by the presence of high-dimensional subgroups (N > 100)

found both with SVD-TFIDF and quantitative feature representations. This increases the probabil-

ity of finding the same pairs of individuals in the same cluster when we compare SVD-TFIDF and

quantitative features to other clusterings.

In conclusion, from these results it arises that, in this context, longitudinal behavioral phenotypes

are better detected by Word2vec and GloVe methods. In particular, clinically relevant and known

subtypes are identified by the Word2vec method, whereas GloVe method appears to identify less clear

subtypes that should be further investigated for novel behavioral and developmental phenotypes.

Despite being differently characterized, ASC subgroups found via clustering of Word2vec and

GloVe representations show characteristics in common to previous studies on stratification of behav-

ioral aspects of ASC profiles. From both Word2vec and GloVe representations we obtain age-specific

subgroups of late diagnosed individuals that are characterized by mild ASC symptoms (i.e., reduced

repetitive and restricted behaviors and moderate social-communication impairment) and high cogni-

tive functioning. Moreover, we identify subgroups including younger subjects with moderate or severe

symptoms and moderate/low cognitive functioning. These findings are in line with ASC subgroups

identified in [106, 107, 108].

In particular, all three studies detect groups that vary according to symptom severity and cogni-

tive functioning. Moreover, Veatch and colleagues [108] report a more severe subgroup with increasing

severity in motor skills, which is comparable to subgroup I of GloVe encodings that includes subjects

with impaired motor skills and moderate symptom severity, and to subgroup II of Word2vec encodings

that include individuals with severe core symptoms and deficits in motor skills. Word2vec representa-

tions lead to the identification of a subgroup of moderate symptom severity (subgroup I) with language

difficulties, and a subgroup of moderate social impairment and good language/communication skills.

These findings are comparable to results from [107], where a subgroup of severe language deficits is

identified, together with a group characterized by milder symptoms across all considered domains

(e.g., nonverbal communication, social interactions, play skills), including language domain.

Results from Stevens et al. [106] differentiate 5 ASC subtypes according to: high-functioning indi-

viduals; increased language/skill domains; low-functioning individuals with impairment in all domains

except for motor skills; and high skill development in play, language, academic, and motor domains,

and variable skill development in social, adaptive, cognitive, and executive domains. This result is

comparable to what we have obtained from Word2vec representations. In fact, subgroup I of Word2vec

model is characterized by significantly higher adaptive behavior skills, although with moderate symp-

tom severity, while subgroup II shows impaired adaptive behavior, and severe symptoms.

Finally, the higher number of females in low-functioning subgroups, respect to other groups, for

both Word2vec and GloVe representations, is in line with the reports of more frequent co-occurrence
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of intellectual disabilities and different symptom manifestations detected in females with ASC [78].

Moreover, in this study, we observe a reduced proportion of females in late-diagnosed mild core

symptom subgroups of subjects with ASC and high cognitive functioning. This supports the hypothesis

of a diagnostic bias towards males or female camouflaging of less severe core deficits [80], which can

both lead to the overlook of female cases when not accompanied by severe symptoms and intellectual

disabilities.

2.5. Conclusions

This work has introduced a data-driven behavioral profiling tool leveraging NLP methods for strati-

fying individuals with ASCs. To the best of our knowledge, this approach is novel and shows promise

as a way to provide personalized care and treatment, test the efficacy of an intervention, and inform

diagnosis. Moreover, every behavioral term embedding learned from heterogeneous datasets can be

used in transfer learning settings. For example, to initialize embedding matrices or patient encodings

for other secondary uses (e.g., predictive modeling). Finally, identifying informative and more homo-

geneous subtypes within ASCs, leveraging both the longitudinality and the multidimensionality (e.g.,

cognitive, adaptive behavior, symptomatology) of clinical measures, can help framing genetic studies

that, moving away from the case-control paradigm, may lead to the discovery of biomarkers whose

effect can be overlooked in more heterogeneous and not stratified cohorts.

In this experiment, results from NLP methods applied to behavioral data, compared to results

from the quantitative behavioral dataset, suggest that behavioral embeddings can be considered as a

promising tool able to leverage all the available information from sparse longitudinal datasets. Specif-

ically, within NLP algorithms, Word2vec and GloVe representations lead to more encouraging results

than SVD-TFIDF, possibly due to the use of context of words for term representation learning. While

TFIDF matrix stores term co-occurrences from behavioral term sequences irrespective to time, GloVe

returns a word-word co-occurrence matrix built from a fixed context surrounding a term. On the

other hand, Word2vec algorithm learns term embeddings from a classification task that aims at pre-

dicting the context of every word. Fixing the context dimension, as to represent an individual clinical

encounter, should allow to consider the multidimensionality of terms derived from the battery of tests

and provide latent representations of individuals with ASC that take into account all the aspects of

a behavioral profile. Sliding the context throughout the developmental trajectory, when available,

should help grasping the developmental interdependencies of terms, which shape an individual clinical

profile.

Such an approach can be leveraged in the context of developmental psychology to extract latent

representation of developmental behavioral phenotypes in individuals with ASCs and other neurode-

velopmental conditions. An important aspect of the method presented is that the stratification process

can be addressed using all the available information that is generally very sparse. Our approach is

novel in the context of psychological data and behavioral phenotyping, however, a shortcoming is the

small sample size of its real-world application. This may hinder the ability to detect all possible ASC
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subtypes, due to their underrepresentation in the cohort, furthermore, it complicates the application

of other NLP techniques that leverage deep learning methods, such as LSTM recurrent networks, also

applied to text data for word embedding (e.g., [135]). In the future, we plan to apply our pipeline

on larger datasets and to integrate other NLP methods to derive patient behavioral encodings and

compare them to the existing ones. We plan to validate models and compare performances (i.e., on

the number of detected clusters, clustering performance scores, and clinical descriptions of subgroups)

on new datasets unseen by the models (i.e., test sets) and to tune model parameters. Moreover, we

plan to conduct a more rigorous investigation of the possible changes in condition severity through-

out development withing each identified subgroup. We also intend to include treatment information

to predict its efficacy and indicate the behavioral profile of individuals that report best intervention

effects. Finally, subgroups validation should also include external information about genetic profiles,

through gene expression data, and brain activity, determined by fMRI, and EEG, in order to inves-

tigate how behaviorally-detected subgroups may reflect heterogeneity at different levels, e.g., genetic,

neural systems.



Chapter 3

Clinical heterogeneity in Autism Spectrum Conditions: a big

data approach

Abstract

In this chapter, we investigate the generalizability of the patient representations learned in
Chapter 1. We selected the clinical sequences of subjects with ASC within the Mount Sinai
EHR collection (for a total of 1,439 subjects) and we stratified their latent representations to
discover more homogeneous subgroups. We found three separate subgroups of individuals that
differ according to age at diagnosis, clinical practices (e.g., hearing assessment), treatments (e.g.,
anti-seizure drugs) and comorbid conditions (e.g., constipation, convulsions). These subgroups
can inform individual risk to adverse reactions, successful screening procedures, and co-occurrent
condition prognosis.

3.1. Introduction

This chapter focuses on the use of de-identified Electronic Health Records (EHRs), presented in Sec-

tion 1.2.1, for the stratification of Autism Spectrum Conditions (ASCs). We have extensively discussed

ASCs in Sections 2.1 and 2.2, where supervised and unsupervised learning methods for classification

and stratification studies were introduced. Here, we further develop the concept of ASC heterogeneity

at the genetic, behavioral, and neurobiological levels. Making sense of ASC heterogeneity is key to 1)

provide early diagnosis, through early sign detection; 2) identify the characteristics that may present

differently in females and males to improve the diagnostic process; 3) develop more personalized

and effective treatments; and 4) discover high-impact biomarkers from more homogeneous cohorts of

individuals.

Currently, ASC diagnosis relies on behavioral observation combined with clinical judgment and,

when not concomitant with severe comorbidities, e.g., Intellectual Disabilities (IDs), it might be

overlooked (e.g., males bias and female camouflaging effect), or delayed (e.g., late-diagnosed subgroups

as identified in Chapter 2). Heterogeneity throughout development results in distinct developmental

profiles, which complicate the implementation of effective treatements [95]. The investigation of

clinical practices in tertiary care can be useful to identify the clinical characteristics shown and the

treatments received by subjects with ASC within health facilities. The clinical features extracted and

97
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their developmental patterns can be used to identify relevant subgroups of individuals showing similar

profiles and help practitioners in their challenging management process [136].

EHRs, with their structured and unstructured records provide an invaluable source of information

about individual health histories and patient interaction with the healthcare system. In the context

of ASCs, diagnostic codes (i.e., ICD-9 codes) and clinical notes (i.e., unstructured records) within an

EHR have been leveraged to detect subgroups of individuals with ASC according to their comorbid

conditions [20, 137], and automate the extraction of diagnostic criteria and individual classification

[138]. In the work of Doshi-Velez and colleagues [20], ICD-9 codes are aggregated into 45 categories

with at least 5% prevalence in a sample of 4, 927 individuals with ASC from Boston Children’s Hospi-

tal. Individual’s age ranges from birth to 15 years and their clinical record sequence is represented as

a co-occurrence vector divided into 30 6-month windows. These vectors are clustered via hierarchical

clustering (Euclidean distance, Ward’s method) and three high-morbidity subgroups and one with no

significantly elevated comorbidities are obtained. Comorbidities from the three high-morbidity groups

are then investigated. One subgroup is characterized by seizures, gastrointestinal (GI) conditions,

cerebral palsy, and disorders of the visual pathways. Subgroup 2 includes GI disorders, disorders and

infection of the ear, cardiac disorders, and congenital anomalies. Subgroup 3 is characterized by psy-

chiatric disorders (e.g., episodic mood disorders, bipolar disorder, depression, anxiety dissociative and

somatic symptom disorders, conduct disorders, and hyperkinetic syndrome of childhood). Similarly,

Lingren et al. [137] have developed an automated cohort selection algorithm that leverages ICD-9

codes and clinical notes to more clearly select a sample of individuals who not only received an ASC

diagnosis, but also met the clinical diagnostic standards. Patient count vectors of aggregated ICD-9

codes are clustered via k-means clustering and result in 3 − 4 subgroups from multiple site datasets

(e.g., Boston Children’s Hospital, Cincinnati Children’s Hospital Medical Center). As in the previous

study, the groups identified show similar dominant categories: 1) psychiatric problems (i.e., anxiety

disorder, hyperkinetic syndrome, obsessive compulsive disorder, and depression); 2) developmental

disorders (i.e., dyslexia, lack of coordination, disorders of ear, skin); and 3) epilepsy and recurrent

seizures. In another study [138], Word2vec Skip-gram model (see Section 2.3.2) is used to create

an automated lexicon for diagnostic criteria extraction and classify individuals with ASC from EHR

clinical notes.

In these studies, engineered (i.e., aggregation into categories) ICD-9 codes and diagnostic clinical

notes are used, and vectors of term counts are used to represent patients. Monitoring of condition

progression is only addressed in [20] by considering the co-occurrence of terms restricted to subse-

quences respect to time (i.e., 6-month windows). The examination of comorbid conditions that are

significantly more likely in individuals with ASC than in the general population is key to the inves-

tigation of whether there are actual subtypes tied to distinct etiologies, with different genetic and

environmental contributions. Reducing EHR histories to engineered diagnostic codes and limit the

investigation to comorbidity detection tasks can help overcome structural problems. EHR sequences

are noisy and redundant, in particular, patients medical histories include generic terms such as Virus

among medications, or Counseling not otherwise specified (V65.40) among ICD-9 codes. Moreover,
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redundancy not only stems from the repetition of codes at every encounter (e.g., diagnostic codes),

but also from terms referring to the same practice that are coded differently; e.g., Lisdexamfetamine

is a medication that is used to treat Attention Deficit and Hyperactivity Disorder (ADHD), which can

also be reported in EHRs with its correspondent brand name Vyvanse. Nonetheless, structured codes

can 1) inform a patient status at a finer level, e.g., among gastrointestinal problems we can distinguish

Nausea (787.02), Vomiting alone (787.03), i.e., without nausea, and Persistent vomiting (536.2);

2) be combined to assess the risk for adverse drug reactions, or better explain a clinical screening

process, e.g., presence of Audiometry procedure and Expressive language disorder in subjects with

ASC indicate a common screening procedure in children with ASC [139].

This analysis is presented as a case study, where we leverage the latent patient representations of

individuals with ASC to stratify patient medical records. We select individuals from Fold-2 test set

EHRs (see Chapter 1) of the Mount Sinai Health System’s data warehouse (MSDW). These records

include ICD-9 codes, medications, laboratory tests, and Current Procedural Terminologies (CPTs).

The encodings selected are clustered via hierarchical clustering and clinical validation of the results

is performed. We aim to show that the model, trained on a domain-free dataset, successfully learns

informative encodings from EHR trajectories of individuals with ASC. We process 1, 439 subjects

who have received an ASC diagnosis and we identify three separate subgroups. We obtain results

comparable to [20, 137] in terms of comorbid conditions with less engineered features (no aggregation

or time frame definition). Moreover, adding medication, laboratory test and procedure codes, we are

able to better contextualize individual health status (e.g., medication side effects), and also gain a

general overview of the tertiary care diagnostic process and intervention (e.g., ADHD treatements and

screening procedures). Finally, we have considered the complete EHR sequences in the analyses to

leverage all the available information.

The distinction of subjects with ASC from an urban tertiary care service according to comorbidi-

ties, treatments, and drug adverse reaction risk can inform the way autism is recognized in a specific

context and support clinician in the diagnostic and management process towards the development

of personalized treatements and more effective clinical practices. Clinical findings from stratifica-

tion studies in autism research should be integrated with findings from different research fields (e.g.,

genetics, neurobiology) to contribute to the uncovering of ASC etiology [4].

3.2. Autism Spectrum Condition records

We select individuals with ASC from the ∼ 1.6M MSDW records presented in Section 1.2.5. We

identify patients that include in their EHR histories ICD-9 diagnostic codes related to ASC and

also report corresponding SNOMED Clinical Term identifiers. In particular, among ICD-9 terms,

we check for: Autistic disorder, current or active/residual state (299.00, 299.01), Other specified

pervasive developmental disorders (299.80, 299.81), and Unspecified pervasive developmental dis-

orders (299.90, 299.91). Among SNOMED codes we check for Active infantile autism, Residual

infantile autism, and Pervasive developmental disorder codes. We obtain 2, 908 individuals with both
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diagnostic concepts in the entire dataset, of which 1, 439 are included in Fold-2 test set (see Sec-

tion 1.2.5). Number of females in the cohort is 443 and number of males is 996. Mean age at 2015

is 21.47 (min/max = [7.00; 40.00]) years, and mean age at diagnosis is 17.39 (sd = 16.40) years. Of

the individuals included, 97% report Autistic disorder, current or active state (299.00) among ICD-9

terms. The remaining subjects report diagnostic terms that are no longer included in the Diagnostic

and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [67] description of autism spec-

trum. In particular, Pervasive Developmental Disorders - Not Otherwise Specified (PDD-NOS) is a

term used in both ICD-9 and more recent ICD-10 editions1 and refers to children that show impair-

ments in socio-pragmatic communication and absent repetitive and restricted behaviors. In line with

DSM-5 manual, which introduces the term Autism Spectrum Disorder, the new ICD-11 edition will

eliminate PDD-NOS diagnosis2. Moreover, Other specified pervasive developmental disorders corre-

spond to Asperger’s disorder and SNOMED concept Residual infantile autism, which is introduced in

and limited to DSM-III, encompasses individuals who once met criteria for infantile autism, but no

longer do so [140]. This entails that only a fraction of subjects with PDD-NOS will meet the diagnostic

criteria of autism and receive an autism diagnosis. Because we include adults in the cohort, who may

have received a diagnosis before the release of DSM-5 guidelines, we have decided to include all terms

in the selection process to avoid the elimination of subjects who could be otherwise diagnosed with

ASD according to DSM-5. We shorten the encoded sequences at the time of the first diagnosis, as

done in Section 1.3.2, to reduce the noise and we average the subsequences into a unique latent vector

for each individual. These vectors are then input to hierarchical clustering (with Euclidean distance

and Ward’s method) and the best number of clusters is selected via the Elbow method. We check

differences between groups for confounders, i.e., age at diagnosis, current age, and sequence lengths,

via pairwise t-tests with Bonferroni correction. The distributions between subgroups of male/female

counts and diagnostic code frequencies as clinical descriptions are investigated via pairwise chi-squared

tests with Bonferroni correction.

3.3. Results

We obtain three distinct clusters of individuals (see Figure 3.1) in which a high percentage of pa-

tients ≥ 95% shows a diagnosis of Autistic disorder, current or active state (299.00), see Table 3.1.

Interestingly, Autistic disorder, residual state (299.01) is more common for subgroups that include

older individuals, i.e., subgroups II/III, whereas PDD-NOS diagnosis is more frequent in children,

i.e., individuals in subgroup I. Residual state autistic disorder converts to Autistic disorder (F84.0)

in ICD-10 version. This suggests that clinicians might be more prone to overlook ASC symptoms in

older individuals, possibly because of the comensatory mechanisms developed during adolescence and

adulthood. Moreover, PDD-NOS diagnosis for children can suggest a difficulty in the early assessment

of ASC symptoms. We do not find individuals with the diagnostic code corresponding to Asperger’s

disorder.
1https://www.who.int/classifications/icd/en/bluebook.pdf (Accessed on October 20, 2019)
2https://icd.who.int/browse11/l-m/en (Accessed on October 20, 2019)
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ASC

Figure 3.1: ASC subgroups of 1, 439 individual EHRs from the Mount Sinai Health System’s data
warehouse.

MSDW ASC cohort

Subgroup I Subgroup II Subgroup III
(N=346) (N=717) (N=376) p-value

Age at diagnosis2 4.12 [2.30; 7.69] 16.68 [8.61; 35.10] 10.85 [5.04; 17.94] < 0.001

Current age1 11.67 (7.65) 28.18 (17.89) 17.70 (13.33) < 0.001

Sequence length2 64.00 [5; 2, 112] 128.00 [9; 4, 625] 18.00 [3; 992] < 0.001

Female/Male 68/278 276/441 99/277 II vs I/III∗∗∗a

Autistic disorder, current or active state (299.00) 0.98 0.96 0.98 nsa

Autistic disorder, residual state (299.01) 0.46 0.62 0.57 I vs II/III∗a

PDD-NOS (299.90) 0.22 0.11 0.11 I vs II/III∗∗∗a

1 Mean (standard deviation); 2 Median [minimum; maximum]; ∗p < 0.05; ∗∗∗p < 0.001; a χ2 test; ns = non significant

PDD-NOS = Pervasive developmental disorder, not otherwise specified

Table 3.1: Characteristics of ASC subgroups. Two-sided multiple pairwise t-tests and chi-squared
tests with Bonferroni correction are performed for subgroup comparisons.

Most frequent disorders

Subgroup I Subgroup II Subgroup III

Constipation (564.00) 0.18 0.26 0.13 II vs I/III∗

Anxiety state (300.00) 0.08 0.25 0.25 I vs II/III∗∗∗

Diarrhea (787.91) 0.32 0.23 0.07 < 0.05

Generalized anxiety disorder (300.02) 0.07 0.21 0.24 I vs II/III∗∗∗

ADHD (314.01) 0.11 0.10 0.20 III vs I/II∗∗

Developmental speech or language disorder (315.39) 0.31 0.11 0.18 < 0.01

Malaise and fatigue (780.79) 0.11 0.20 0.13 II vs I/III∗

Hallucinations (780.1) 0.02 0.07 0.11 I vs II/III∗∗

Asthma, unspecified type, unspecified (493.90) 0.41 0.19 0.07 < 0.001

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ADHD = Attention deficit hyperactivity disorder

Table 3.2: Percentage of comorbidities in ASC subgroups. Multiple pairwise chi-squared with Bon-
ferroni correction are performed for subgroup comparisons.
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Subgroup I includes youngest patients at the time of diagnosis (M = 6.34, min/max = [2.30; 7.69])

and medium sequence lengths. Individuals in subgroup II are adults (mean age at diagnosisM = 24.29,

min/max = [8.61; 35.10]) with significantly longer sequence lengths. Subgroup III clusters adolescents

(mean age at diagnosis M = 14.40, min/max = [5.04; 17.94]) with shortest sequences (M = 54.74,

min/max = [3; 992]). Subgroup II includes 64% of females from the entire cohort, that corresponds

to the 38% of subjects in the group. Results from the comparison of age at diagnosis, current age,

and sequence length are significant (Table 3.1). This can be explained by the presence in the EHRs

of medical terms that are specifically age related, e.g., Visual reinforcement audiometry procedure,

which is specifically designed to assess hearing in infants from 6 months to 3 years. Moreover, also

the list of medications differs between children and adults, e.g., Oxycodone, an opioid medication

used for treatement of moderate to severe pain, is tipically administered to adults. As expected,

95% of oxycodone terms in the dataset is clustered in subgroup II. The identification of age-related

subgroups is similar to what we report in Section 2.4 when describing behaviorally defined subgroups.

In that case, we identify subgroups of high-functioning adults. Mean sequence lengths between groups,

although significantly different, do not vary according to age, with shorter sequences for younger

subjects, as we may have expected. On the contrary, sequence lengths for subgroup I have mean equal

124.05, min/max = [5; 2, 112] terms, whereas they are shorter for subgroup III. These considerations

support the possibility that sequences of terms are properly represented and that this result should

be read within a neurodevelopmental framework, which is reflected in the presence/absence of specific

clinical terms.

Subgroup validation consists in reporting the most frequent terms among ICD-9 codes, medications,

laboratory tests and CPTs and test if they distribute independently among groups through chi-squared

tests with Bonferroni correction. First, we report most frequent terms for the entire dataset (see

Table 3.2). We observe that subgroup I is characterized by GI problems from the presence of Diarrhea

(787.91) diagnosis, language impairment, and respiratory problems, from the presence of Asthma

(493.90) diagnosis. Subgroup II reports a high percentage of individuals with Constipation (564.00),

and anxiety disorders (Anxiety (300.00, 300.02) terms). Subgroup III shares with subgroup II

significantly high percentages of individuals with anxiety. Moreover, 20% of patients have ADHD as

a comorbid condition, and 11% suffers from Hallucinations (780.1). Anxiety state, detected in both

subgroup II and III, is common in individuals with ASC and may contibute to aggressive, explosive,

or self-injurious behavior. Anxiety treatment includes pharmacotherapy, cognitive behavioral therapy,

or accommodation to address sensory sensitivities. Maladaptive behaviors in children with ASC may

occur in response to anxiety or frustration, e.g., from core symptoms or GI problems [141], that might

be true for subgroup II, where anxiety state is concomitant with constipation.

We now validate the single subgroups at the clinical level and then compare their comorbidities to

the those from the literature. In Tables 3.3-3.6, we list most frequent clinical terms (with a maximum of

10) that are statistically significant at the α = 0.05 level for each subgroup after Bonferroni correction.

From the term lists we dropped uninformative concepts, such as diagnostic and procedural general

terms, e.g., General medical examination for administrative purposes (V70.3), Unlisted special service,
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procedure or report. Moreover, we drop terms related to patient anamnesis (i.e., medical history), e.g.,

vaccinations received in the context of standard immunization protocols of children and adolescents,

because not informative for the clinical ASC profiles. Furthermore, also too rare terms (< 1%) are

eliminated, e.g., Arylsulfatase laboratory test.

Subgroup I Individuals grouped in cluster I show common diseases of childhood, along with ASC-

related conditions and medical procedures that point to communication disorders and sensory dif-

ferences. In particular, we identify Otitis media (382.9), Throat pain (784.1), Dermatitis (691.8),

Asthma (493.92), and Mumps (072.9) as common diseases of childhood. We also find associated

clinical terms, such as Inhalation spacing device among asthma medications, or Cetirizine to treat

dermatitis. Asthma is one of the most common chronic diseases of childhood. In the United States,

over six million individuals less than 18 years of age have asthma3. Moreover, allergic disease is asso-

ciated with the development, severity, and persistence of asthma. Up to 80% of children with atopic

dermatitis develop asthma and/or allergic rhinitis later in childhood [142]. This characterization is

supported by the presence of allergen-specific IgE tests (see Table 3.5).

Among ASC-related terms, we find Chronic gingivitis (523.10) and Expressive language disorder

(315.31). Atypical sensory behaviors/aberrant sensory perception is common in children with ASC

[143]. They include preoccupation with sensory features of objects, over- or underresponsiveness to

environmental stimuli, or paradoxical responses to sensory stimuli. This can hinder the development of

self-care skills, including dental hygiene. The presence of periodontal disease and CPT terms Fluoride,

Teeth radiologic examination, and Dentoalveolar structure, suggest the presence of sensory differences,

which require the implementation of strategies to address daily-living routines. The presence of com-

munication disorders and hearing tests (e.g., Speech audiometry) is consistent with the practice of

performing an audiologic evaluation on children with language delays [139]. Language development is

tied to social/relational aspects. In typical infants, gestural communication is followed by verbal com-

munication. Between the age of six and twelve months, children consistently respond to their names.

Individuals with impaired language development may fail in the task of responding appropriately to

external verbal stimuli. Within early signs of autism surveillance, hearing is assessed to rule out a

possible cause of impaired communication skills.

Interestingly, Lead, capillary blood test (see Table 3.5) also refers to tests of potential treatable

etiologies for developmental problems. In general, neurologic effects of lead poisoning in children

include neurobehavioral deficits. Also low-level lead poisoning may affect the cognitive and behavioral

development of children [144]. Furthermore, within atypical sensory differences, children with ASC

may develop pica (i.e., repeated eating of nonfood substances), or a preoccupation with licking nonfood

items, and therefore may be at increased risk for lead poisoning [145]. Eating disorders may also be the

cause of GI problems, such as diarrhea, which affects at a higher percentage individuals in subgroup

I.

3http://www.cdc.gov/asthma/most_recent_data.htm (Accessed on October 21, 2019)
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Subgroup II Subgroup II includes patients with GI problems, intellectual disabilities (IDs), and

cardiovascular symptoms. IDs affect ∼ 45% of individuals with ASC [4], whereas among GI problems,

common symptoms include Constipation (564.00), that we find for 26% of subjects in this subgroup

(see Table 3.3). In Table 3.4, we find drugs corresponding to constipation treatments (e.g., Docusate

sodium). Among frequent terms in subgroup II, we also find Convulsions (780.39) term, which refers

to single seizure episodes and not necessarily to epilepsy. However, some comorbid conditions, such as

epilepsy, may develop later during adolescence or adulthood [4] and this can be consistent with seizure

epileptic manifestations in subgroup II. Among medication terms, anti-seizure medication Lorazepam

is administered, which can also be used to treat anxiety. Hallucinations, detected in 7% of subjects

in subgroup II, can be an adverse reaction to the anti-seizure drug. Among cardiovascular prob-

lems we find Hypertension (401.9) and Chest pain (786.50) and related treatments, i.e., Magnesium,

Lidocaine, that are administered to treat ventricular arrhythmias and abnormal heart rhythm. Consti-

pation, but, most importantly, cardiovascular symptoms, may be related to antipsychotic drugs that

can be administered to individuals with ASC to treat irritability, including aggression, self-injurious

behavior, and quickly changing moods [146]. Among most frequent administered drugs, not displayed

in Table 3.4, we find that antipsychotic Risperidone is administered to 11% of patients in subgroup

II, accounting for the 73% of all terms in the cohort.

Subgroup III Individuals in subgroup III are characterized by the co-occurrence of ADHD (20%)

and medication-associated side effects. Together with ADHD, Attention deficit with no hyperactivity

(314.00) is diagnosed to 9% of individuals in subgroup III and it accounts for 52% of all diagnostic

terms. ADHD comorbidity is found in 30− 50% individuals with ASC and, in such cases, it has been

observed an increased risk for greater severity of psychosocial problems. Children with ASC aged 4−8

years, whose caregivers report significant symptoms of ADHD, show lower cognitive functioning, more

severe social impairment, and greater delays in adaptive functioning than children with ASD-only [147].

Among medications, we find an alpha-2-adrenergic agonist, i.e., Guanfacine, and Lisdexamfetamine

stimulant. According to the US clinical guidelines for ADHD treatment [148], effects of nonstimulants

on core ADHD symptoms are weaker than stimulant medications. Guanfancine is usually reserved

for children and adolescents who respond poorly to a trial of stimulants. Given their recent use,

their efficacy have been less assessed and they have not been approved for use in preschool-aged

children. On the other hand, stimulants are most commonly prescribed for ADHD treatments. Among

amphetamines, lisdexamfetamine can be administered to children from 6 years of age and prove to be

effective in lowering core symptom severity [149]. However, registered adverse effects include, among

others, abdominal pain, and, more rarely, hallucinations. Both conditions are found among ICD-9

codes in subgroup III. Another characteristic that is observed with more frequency in individuals

with ASC and may be caused by medication-associated side effects is obesity, that we find coded as

Overweight (278.02) in subgroup III, see Table 3.3.
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ICD-91

Subgroup I Subgroup II Subgroup III

Chronic gingivitis, plaque induced (523.10) - 16% (76%) Constipation (564.00) - 26% (62%) ADHD (314.01) - 20% (40%)

Otitis media (382.9) - 16% (64%) Malaise and fatigue (780.79) - 20% (62%) Unspecified fall (E888.9) - 9% (17%)

Throat pain (784.1) - 16% (46%) Nausea (787.02) - 19% (68%) Attention deficit with no hyperactivity (314.00) - 9% (52%)

Dermatitis (691.8) - 14% (71%) Postprocedural hypertension (997.91) - 18% (82%) Vomiting (787.03) - 6% (9%)

Asthma (493.92) - 11% (67%) Hypertension (401.9) - 17% (96%) Persistent vomiting (536.2) - 6% (10%)

Mumps (072.9) - 11% (70%) Chest pain (786.50) - 14% (71%) Shortness of breath (786.05) - 5% (10%)

Hearing loss (389.9) - 10% (39%) Intellectual disabilities (319) - 13% (80%) Abdominal pain (789.00) - 5% (9%)

Nocturnal enuresis (788.36) - 10% (44%) Esophageal reflux (530.81) - 13% (70%) Overweight (278.02) - 3% (13%)

Impacted cerumen (380.4) - 8%(49%) Convulsions (780.39) - 11% (70%) Edema (782.3) - 3% (5%)

Expressive language disorder (315.31) - 8% (56%) Dizziness and giddiness (780.4) - 10% (69%) Disorder of parathyroid gland (252.9) - 3% (91%)

1 in-group and (total) percentages; ADHD = Attention deficit hyperactivity disorder

Table 3.3: Most frequent ICD-9 terms in ASC subgroups.

Medication1

Subgroup I Subgroup II Subgroup III

Inhalation spacing device - 14% (73%) Oxycodone - 18% (95%) Guanfacine - 6% (50%)

Cetirizine - 11% (59%) Acetaminophen 325 mg - 17% (92%) Miralax - 4% (13%)

Amoxicillin 400 mg - 11% (67%) Vitamin D - 16% (76%) Lisdexamfetamine - 3% (68%)

Ear drops - 8% (47%) Ergocalciferol - 14% (76%) Lisdexamfetamine - 3% (75%)

Montelukast - 8% (53%) Docusate sodium 100 mg - 14% (95%) Electrolyte IV line - 3% (12%)

Budesonide - 8% (70%) Magnesium - 14% (84%) Polyethylene glycol - 3% (11%)

Carbamide peroxide - 7% (58%) Lidocaine - 12% (88%) Cholesterol - 3% (10%)

Loratadine 5mg - 7% (89%) Lorazepam - 11% (86%) Tuberculin - 3% (10%)

Budesonide - 7% (72%) Morphine - 11% (94%) Benadryl - 3% (7%)

Prednisolone sodium - 7% (68%) Lorazepam - 11% (90%) Paracetamol - 3% (5%)

1 in-group and (total) percentages.

Table 3.4: Most frequent medication terms in ASC subgroups.

Laboratory test1

Subgroup I Subgroup II

Lead, capillary blood - 7% (92%) Amylase - 29% (92%)

Peanut ige - 5% (90%) Gamma-glutamyltransferase - 27% (92%)

Timothy ige - 5% (71%) pH - 25% (86%)

Der. pteronyssinus ige - 5% (71%) Lactate dehydrogenase - 22% (94%)

Cat dander ige - 5% (71%) CO2 - 21% (90%)

Cashew nut ige - 5% (94%) Lactate - 17% (94%)

Brazil nut ige - 5% (94%) Lipoprotein lipase - 17% (93%)

Walnut ige - 5% (94%) aPTT panel - 17% (95%)

Hazel nut ige - 5% (94%) PT/INR - 17% (94%)

Birch ige - 5% (76%) Blood gas testing - 15% (97%)

1 in-group and (total) percentages;

aPTT = Activated Partial Thromboplastin Time;

PT/INR = prothrombin time/international normalized ratio

Table 3.5: Most frequent laboratory test terms in ASC subgroups. Subgroup III does not include any
laboratory test terms.
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CPT1

Subgroup I Subgroup II Subgroup III

Fluoride - 18% (77%) Urea nitrogen - 48% (88%) Skin test; tubercolosis - 3% (10%)

Tympanometry (impedance testing) - 12% (67%) Chloride - 45% (89%) Blood count; HGB - 3% (4%)

Speech audiometry threshold - 9% (74%) Sodium - 45% (90%) Enzyme - 3% (6%)

Speech audiometry threshold - 9% (75%) Potassium - 44% (90%) Blood count - 1% (5%)

VRA - 8% (66%) Glucose - 44% (90%) Radiologic examination, chest - 1% (3%)

Percutaneous tests allergenic extracts - 8% (78%) Creatinine - 44% (89%) Blood count - 1% (2%)

Radiologic examination, teeth - 8% (74%) Phosphatase, alkaline - 40% (89%) Radiologic examination, chest, 2 views (frontal/lateral) - 1% (1%)

Dentoalveolar structure - 8% (68%) Phosphatase, alkaline - 39% (89%) -
Hearing disorder assessment - 7% (64%) Albumin - 38% (87%) -
Audiometry - 5% (76%) TSH - 37% (82%) -

1 in-group and (total) percentages; CPT = Current Procedural Terminology; VRA = Visual Reiforcement Audiometry; TSH = Thyroid Stimulating Hormone; HGB = hemoglobin

Table 3.6: Most frequent CPT terms in ASC subgroups.

3.4. Discussion

Comparing comorbidities in the entire dataset with findings from [20] we observe that two of the

subgroups found by Doshi-Velez and colleagues report higher prevalence of autism diagnosis, whereas

the third subgroup includes more individuals with Asperger’s syndrome. Moreover, PDD-NOS pro-

portions are low in all subgroups. Our result, despite the wider age range in the cohort considered,

has a comparable distribution of diagnosis, if we take into account that we do not have Asperger’s

syndrome code within our EHRs. In [20], two subgroups are characterized by GI disorders, as we

also report for subgroups I/II, whereas the third subgroup is characterized by psychiatric disorders,

including anxiety. In our case, we find anxiety diagnostic terms both in subroup II and III, although

a higher proportion is found in subgroup III, which also shows psychotic symptoms that can be as-

sociated with a wide variety of primary psychiatric disorders (i.e., hallucinations). We observe that

the general characterization of subgroups appears to mirror, to some extent, the one reported in the

literature.

Investigating the most significantly frequent terms in each subgroup, Doshi-Velez and collaborators

describe subgroup 1 as characterized by seizures (77.5%) and IDs (60%). Subgroup 2 is characterized

by cardiac and auditory disorders, asthma, and congenital anomalies involving the ear, eye, and cranial

nerve. Both groups are described as showing more severe autistic symptoms. Finally, subgroup 3

has the highest rate of individuals with Asperger’s syndrome and the lowest rate of IDs (27.8%).

Comorbidities for this group are mainly psychiatric disorders [20]. In this study, we have identified

three subgroups characterized by: 1) communication disorders and atypical sensory differences; 2) GI

problems, IDs, and cardiovascular symptoms; 3) ADHD and pharmacologic treatment side effects.

We have also argued that cardiovascular symptoms in subgroup II can be linked to risperidone side

effects.

Comparing the results to subgroup comorbidities from [20], what emerges more evidently is that not

taking into account all the available codes included in EHRs can mask what drives the presence of co-

occurrent conditions. More specifically, cardiac problems and psychiatric conditions can be treatement

side effects (e.g., anti-seizure, antipsychotic drugs), whereas hearing problems can actually refer to

screening clinical practices that arise from caretaker concerns due to communication difficulties.
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Our findings show that our ConvAE architecture successfully learns latent representations of in-

dividuals with different conditions. In this application, we confirm ASC heterogeneity at the clinical

level and provide a useful report on how important it is to include all available clinical terms for

a comprehensive description of clinical trajectories of individuals with ASC. In fact, drug prescrip-

tions and assessment/screening protocols may influence the characterization of individual trajectories.

Moreover, we observe that the presence of a higher percentage of females (38%) in subgroups II, which

includes older subjects at diagnosis, cannot be completely explained by the presence of IDs (13%).

Results in Section 2.4, report older individuals at diagnosis as those that are more hardly identi-

fied because of the compensatory mechanisms that they may develop throughout development, and

for this reason fewer females are included in such subgroups. By means of EHRs, it appears that

more females detected at a older age are identified, hence, combining clinical stratification results

with findings from developmental psychology may advance the uncovering of the neurodevelopmental

differences that differentiate males and females with ASC.

3.5. Conclusions

We have presented here a novel approach to EHRs of individuals with ASC, leveraging latent repre-

sentations of clinical trajectories to identify informative subgroups within ASC. To this aim, we do

not limit such an approach to diagnostic codes for comorbidity detections, but we have also included

medications, laboratory tests and procedures. We obtain three distinct subgroups that characterize

individuals with ASC according to comorbidities, but also to screening procedures and medication

side effects. Ideally, identifying new patients with latent representations similar to those used for clus-

tering can inform individual risk to adverse reactions, successful screening procedures, and prognosis

of co-occurrent conditions.

Limitations to our approach mainly reside in the temporal resolution and investigation of clinical

trajectories. Although our model proposes to process multi-dimensional longitudinal clinical histo-

ries, we should take into account that high-age diagnosis might include individuals that have been

diagnosed during infancy and treated elsewhere, before arriving at the hospital facility. In the fu-

ture, we aim to combine whole-sequence analysis and time structure by dividing sequences into age

ranges of developmental milestones. More specifically, we propose to divide individual EHRs into

fixed age-range subsequences and perform a clustering analysis on this stratified cohort. Then, we

aim to investigate whether clusters are differently characterized and observe how individuals might

move from a cluster to another throughout development. In conclusion, future work will also include

filtering of less informative and redundant terms to investigate how this might translate in different

results that should then be compared to the ones obtained here, for a further validation of our method

efficiently deals with noise.
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Conclusions

The advent of precision medicine is based on the increasing availability of big data in healthcare; in

this context, artificial intelligence methods are offering novel predictive methods to reduce the impact

of heterogeneity, personalizing at the individual level prognosis and estimates of efficacy of treatments.

Autism Spectrum Conditions (ASCs), and more in general neurodevelopmental conditions, often con-

verge phenotypically to a similar diagnostic profile, but they show wide heterogeneity in terms of

clinical manifestations and response to treatment along time.

This fact supports the importance of unsupervised learning techniques for patient stratification,

in order to identify informative subgroups of more homogeneous characteristics and a similar disease

evolution within a larger patient cohort. With a translational perspective, making sense of hetero-

geneity would help develop new personalized treatments and interventions and detect new biomarkers,

whose effect might be masked in the absence of data enriched in population strata.

To this aim, this thesis introduces a set of novel unsupervised learning methods; we apply such

methods to represent individuals with ASCs and complex disorders in a latent space that includes en-

codings of multi-source clinical and behavioral-cognitive information and their differentiation through-

out time. To extract these latent representations of patients we combined Convolutional Neural

Networks and Autoencoders in an end-to-end architecture that learns to reconstruct the original se-

quence of clinical terms. These representations are then clustered towards discovering of informative

subgroups. In particular, we find that individuals with ASCs can be clustered into representations

that leverage Electronic Health Records (EHRs) and behavioral-cognitive profiles. The approach is

demonstrated first on the structured EHR sequences of a cohort of ∼ 1.6M subjects from which

patient clinical representations are learned. The encodings successfully contextualize concepts into

clear subgroups of disorders. From these representations we select individuals with complex condi-

tions, in particular ASCs, and investigate how the subgroups identified differed in terms of medication

prescriptions, procedures, laboratory tests, and comorbid conditions. We have found that individual

subgroups within ASC can inform clinical practices, e.g., screening policies, co-occurrent diseases,

and adverse reaction to treatments (e.g., stimulant side effects). On the other hand, when complex

disorders, such as Multiple Myeloma, and Alzheimer’s disease, were selected, we have found that clin-

ical trajectories differed according to disease progression, symptom severity, and comorbidities (e.g.,

cardiovascular and microvascular problems coexisting with Type 2 Diabetes Mellitus).

Second, word embedding methods, i.e., Word2vec and Global vectors for word representations,

have been applied to behavioral profiles of children and adolescents with ASC referred to an academic

reference centre (ODFLab at the University of Trento, Italy). This is a novel approach, where each
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subject is represented by their ordered sequence of instrument scores collected from a battery of tests

designed for diagnostic purposes and intervention monitoring. Such an approach not only makes use

of the deep embedding of clinical terms related to behavioral and cognitive functioning throughout

development at multiple levels of refinement, but also provides quantitative scores that can be used to

assess symptom severity and level of functioning. Results show promise in the detection of subgroups

with different symptom severity and diverse developmental profiles.

The lack of known etiologies and the behavioral definition of ASC phenotype complicates clinical

activity in cognitive psychology. The diagnostic process is time-consuming and sometimes challenging,

in that not all individuals present with a clear ASC symptomatology. Interventions are not always

effective, because they are not tailored to every subject with ASC. Stratifying ASC populations based

on behavioral manifestation of symptoms not only carries promises in research studies, but also an-

ticipates translational perspectives. Ideally, behavioral characteristics of every subject with suspected

ASC can be tied to specific subgroups supporting clinicians in providing a diagnosis, developing effec-

tive treatments, and informing personalized prognosis.

The EHR data considered in Chapters 1 and 3 come from the Mount Sinai Data Warehouse and

they are analyzed as EHR sequences where each term carries a literal meaning in English well de-

fined by standard ICD-9 diagnosis codes, medications normalized to RxNorm, standard CPT-4 codes,

and lab tests normalized to LOINC (e.g., icd9::Alzheimer’s disease::331.0 indicates a patient

with Alzheimer’s diagnosis). As the clinical terms follow international standards, the pipeline can

be transferred “as is” to clinical data collected from different healthcare facilities, provided that term

correspondences are available. In case other ontologies or medical terms descriptive systems are used,

these should be pre-processed using tools based on annotation systems to preserve their generalizabil-

ity. Free-text clinical notes, whose meaning is tied to the language used, could be preprocessed with

tools such as the Open Biomedical Annotator.

Differently, data from Chapter 2 are assembled from clinical instruments administered in Italian:

e.g. gmds::gq::70 indicates an autistic subject with GMDS General quotient of 70. Still, these scales

are highly standardized: the same codes are actually used across international versions of the tests

in a 1-1 item-level correspondence, and thus they could can be back translated to English to connect

embeddings at the international scale.

Notably, the two embedding spaces that have been built in the two applications have different

scopes of analysis. The EHR-based embedding space learns term connotations from context to provide

meaning to and characterize patient sequences. We already mentioned (see Chapter 2) that the ICD-9

term Diarrhea (787.91) next to an anti-cancer medication, such as Bortezomib, can indicate treatment

side effects. At the same time, next to a diagnosis of Autistic disorder, current or active state (299.00)

can refer to common comorbid conditions. The EHR embeddings should be trained to encompass at

best the possible contextual meanings of terms.

While the same core machine learning pipelines are used to develop the embeddings for patient

EHRs and for behavioral profiles of autistic children, the embeddings are kept separate and are

supported by diverse ontology terms, thus, there is no direct need to correct for different languages.
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However, there is a logical connection between EHR embeddings and those developed from the

ODFLab collection. Indeed, the behavioral embedding space from ODFLab data can be combined

as a vertical specification of fine-grained phenotypes specific to ASCs. Finally, the development of a

more complete system could be based on the standard acquisition of terms from different ontologies for

which correspondences can be developed, preserving their generalizability and enabling multi-center

data collection.

A drawback of unsupervised machine learning studies for complex conditions is the lack of a priori

information that can be used to validate models. In fact, model validation mainly relies on clinical

inspection of enriched terms or quantitative scores. More effort should be spent in the development

of reliable unsupervised approaches for translational purposes: we have presented here one of the first

attempts in that direction.
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