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A B S T R A C T

Resting-state functional MRI (rs-fMRI) represents a powerful means to assess brain
functional connectivity in healthy subjects and in neuropsychiatric patients. Aber-
rant functional connectivity has been observed in subjects affected by Alcohol Use
Disorders (AUD) and other forms of substance dependence, a major health is-
sue worldwide with limited treatment options. Despite intense investigation, the
specific neuronal substrates involved and the functional implications of aberrant
connectivity in these patients remain unknown. Moreover, it is unclear whether
treatment can reverse these alterations, and normalize functional connectivity.

Several methodological and conceptual questions in the analysis of functional
connectivity are still open, and contribute to this uncertainty. Functional connec-
tivity is defined in terms of correlated MR-signal fluctuations, and in-scanner pa-
tient motion and other nuisance signals can introduce spurious correlations, thus
representing substantial confounding factors. At a more general level, understand-
ing the effects of complex conditions, like AUD, on brain connectivity and their
functional implications requires a deep comprehension of the brain organizational
principles at multiple scales, a tremendous challenge that is at the heart of modern
neuroscience.

In this PhD dissertation I address some of the outstanding questions in the anal-
ysis and interpretation of aberrant functional connectivity in AUD. To this end, I
have embraced the formalism of graph-theory, a powerful framework to assess the
effects of alcohol abuse on the local and global topological organization of resting
state connectivity. On the methodological side, I have investigated the effects of
subject’s motion on the structure of resting state networks, and compared efficacy
of different approaches to remove motion-related confounds. Moreover, I demon-
strate the importance of network sparsification to remove spurious connections
from the graph while maximizing the structural information that can be extracted
from the system.

Leveraging these methodological developments, I have evaluated functional al-
terations in different samples of AUD patients. In two independent studies, I
demonstrated specific alterations in the topological organization of the insular cor-
tex and subcortical basal structures in recently detoxified alcoholics. Interestingly,
protracted abstinence appears to partially normalize functional connectivity, thus
suggesting that alcohol-induced alterations in connectivity may be amenable to
treatment. Based on these findings, I have studied the effects on brain functional
networks of a putative novel treatment based on deep Transcranial Magnetic Stim-
ulation (TMS). Specifically, I analyzed resting state connectivity in AUD patients
subjected to repetitive TMS of the bilateral insula and of the anterior cingulate cor-
tex (ACC), and demonstrated treatment-induced changes that may underlie the
efficacy of this potential treatment in surrogate clinical read-outs.

Keywords: Functional Connectivity; Network Neuroscience; Graph theory;
Modularity; Alcohol Addiction; TMS
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P R E FA C E

This PhD thesis will mostly focus on the exploration of functional brain alter-

ations in Alcohol Use Disorder (AUD). The alcoholic brain has been observed to

present structural and functional changes that may be implicated in the inception

and maintenance of addictive behaviors. Yet, the specific functional substrates in-

volved remain unclear and highly complex. In recent years, increasing attention

has been put on the study of brain functional connectivity, the network of interac-

tions that determine the complex interplay between functional segregation and

integration in the brain. Identification of altered neural connectivity in neuropsy-

chiatric disorders may be of importance for the development of more targeted

treatment that may reverse the observed aberrancies. Main goals of my PhD work

are the study of brain functional connectivity in different samples of AUD patients,

and the evaluation of the effects of novel and promising treatment option based

on deep Transcranial Magnetic Stimulation (deepTMS).

For the evaluation of functional connectivity changes involved in AUD I de-

cided to resort to an advanced and complex methodological analysis based on a

graph theoretical approach. Graph theory represents the foundation of network

neuroscience, a powerful framework enabling the exploration of the topological

organization of brain functional network at different scales. Specifically, I focused

on the modular structure of functional connectivity, a descriptor of the embed-

ding of different functional units within the system and a means to identify the

topological role that specific brain structures can play within the entire network.

Yet, despite the promises and advances that graph theory contributes to the neu-

roscience community, this approach still presents several aspects that need to be

addressed. Thus, before the application of complex network neuroscience analy-

sis to the clinical and intervention studies evaluated in this thesis, I approached

some of the limitations present in the field. In detail, I examined the effects of

the application of a threshold to functional weighted brain graph, a crucial step in

data processing that is much debated due to a lack of agreement upon its use in

5
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the scientific community. A further critical point that I explored relates to the un-

derstanding of the effects that head movements and motion correction techniques

can have on the topological structure of the functional network.

This PhD Thesis is organized in 5 chapters.

In the first chapter I will explore the definition of addiction, a severe brain dis-

order which represents a major health issue in our modern society. Moreover, I

will delve into the details of Alcohol Use Disorders, one of the most prevalent

mental disorders worldwide. I will introduce methods to study and analyze brain

functional connectivity, and I will extensively review the state-of-the-art of the

scientific literature in the field. The second chapter will describe methodological

developments that will be subsequently applied to the analysis of clinical data.

In the first section of the chapter I will review the most salient aspects of the de-

bate upon the thresholding process in functional connectivity and I will explore

the definition of commonly applied thresholding techniques. Aim of this chapter

is the identification of the impacts that this particular step employed to reduce

the density of functional graphs can have on the topology of the network. To

achieve this, I will leverage two novel random graph models and the world of

spectral entropies extended to complex networks, which enables the comparison

of an empirical network to its randomized counterpart at all scales. Following this

investigation, I will present an example of the application of an optimal threshold

to a case-control study, thus proving its benefits in a real-world example. The sec-

ond section of this methodological chapter will explore the definition of the effects

of head movements over brain functional connectivity. To this end, I will employ

the same methods based on first principles described in the previous section of

the chapter. Importantly, this methodological chapter describes innovative and ad-

vanced tools that I will subsequently apply to the study of functional connectivity

alterations in clinical studies. Leveraging these findings, I will evaluate functional

connectivity alterations in different samples of AUD in the third chapter of this

thesis. Specifically, in the first half of this chapter I will report the investigation

of brain functional alterations in recently detoxified alcohol dependent patients

as compared to a matched sample of healthy controls. The focus of this study is

on the modular structure of the functional networks and the altered topological

role of key regions involved in AUD and reward processes. In the second part of
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this chapter I pursued replication of these findings in an independent sample of

AUD patients, with strikingly similar results. Importantly, the validation of these

novel findings in a separate cohort of patients strengthened the hypothesis of the

central role played by specific neural regions, such as the insular cortex, to main-

tain addictive behaviors. A natural development of these study will be reported

in the fourth chapter. Here, I will explore the efficacy of a novel treatment for

AUD patients, based on the application of deep TMS. Two studies with the same

experimental design will be addressed in this chapter. The first study will test

the efficacy of deep stimulation of the bilateral insula, the second will target the

anterior cingulate cortex. Besides testing the clinical efficacy of this novel treat-

ment, this chapter will also try to evaluate the functional neural changes induced

by a perturbation of the network by means of deep magnetic stimulations. The

fifth chapter, the last one of this thesis, will extend this approach to pharmaco-

logical studies. Indeed, in the central and main part of this thesis, I tested the

effects of a chronic exposure to a substance of abuse – alcohol – upon the func-

tional brain network. Conversely, in the last part, I will test the effects of an acute

injection of a drug of abuse, namely ketamine. Importantly, I will evaluate the

functional connectivity organization in a complex study design, where, besides

addressing ketamine-induced alterations, I will further assess the modulatory ef-

fects that two different pharmacological agents, risperidone and lamotrigine, can

have on ketamine-evoked changes.





1 I N T R O D U C T I O N

This first introductory chapter will describe Alcohol Use Disorder, together with a

short review of the identified alterations in the structural and functional alcoholic

brain. The neuroimaging of the addicted brain will be extensively described after

a closer evaluation of the most recently developed methodological approaches for

the evaluation of functional connectivity organization.

1.1 addiction as a brain disorder

Addiction is a severe and complex brain disorder. It is characterized by compulsive

substance seeking and intake, even despite severe consequences affecting patients’

social, economic, and working lives. It is a relapsing disorder, related to an in-

ability to reduce or inhibit drug intake, together with motivational and physical

withdrawal syndromes when the access to the drug is prevented (American Psy-

chiatric Association). The concept of addiction evolved in the past years. Indeed,

it is now applied also for the description of “behavioral addictions”, where a pro-

gressive loss of control over a specific behavior (gambling, internet, food, etc.) can

lead to a very similar symptomatology as the one induced by substances addiction

[Grant and Chamberlain, 2016]. In the 5th version of the Diagnostic and Statistical

Manual of Mental Disorders (DSM-5, [American Psychiatric Association, 2013]) an

important advancement has been made in the classification of this disorder, which

now falls under the chapter of “Substance-Related and Addictive Disorders”.

Specifically, substance-related disorders refer to recurrent drugs use causing

clinically and functionally significant impairments, such as health problems, dis-

abilities, and failure to meet responsibility. The advancement in its definition,

including its view as a brain disorder, comes from the rapid growth of the knowl-

edge in the field, its increasing prevalence worldwide, as well as a strong need to

9
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decrease social stigma related to addiction. The DSM-5 identifies nine classes of

substance addiction: alcohol, caffeine, cannabis, hallucinogens, inhalants, opioids,

sedatives, hypnotics and anxiolytics, stimulants and tobacco.

Among all the addictive substances, alcohol is the most abused. Despite being

highly socially accepted and legal in most of the countries, this addictive substance

presents severe deleterious effects related to its excessive use. Alcoholic beverages

contain ethanol, a psychoactive substance with strongly addictive properties. Al-

cohol Use Disorder (AUD) represents a major public concern worldwide, with a

high health and societal cost. In the worldwide population over 15 years of age,

total alcohol consumption is at the level of 6.4 liters per capita, with the high-

est amounts observed in European countries [World Health Organization (WHO),

2018]. In Europe, the 1-year prevalence of AUD is estimated to be at 3.4%, with

men drinking more than women, resulting in nearly 11 million people affected

[Rehm et al., 2015]. AUD is among the most prevalent mental disorders world-

wide, contributing to global comorbidities and mortality. Indeed, according to the

World Health Organization, in 2012, 5.3% of all global deaths were attributed to

alcohol consumption [World Health Organization (WHO), 2018].

As every form of addiction, AUD is a chronic brain disease, with several func-

tional and structural brain systems implicated, besides strong genetic, pharmaco-

logical, and sociocultural components [Volkow and Morales, 2015]. The interaction

between these different components is making it an extremely complex disorder.

The chronic abuse of alcohol, as well as any other drug of abuse, induces long-

lasting neuroadaptations, with a subsequent alteration and unbalance of neuronal

circuits. The severity and high prevalence of this chronic brain disorder empha-

size the need for an effective treatment, which is now lacking. The identification of

clinical endophenotypes, such as alterations and malfunctioning of underpinning

brain circuits, is crucial to seek therapeutic options, with the chance to improve

clinical outcomes and avoid relapse, a critical aspect of this complex and devastat-

ing disorder.
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Box 1 DSM-5 criteria

DSM-5 criteria for AUD are as follow:
“A maladaptive pattern of substance use leading to clinically significant im-
pairment or distress, as manifested by 2 or more of the following, occurring
at any time in the same 12-month period:

• Alcohol is often taken in larger amounts or over a longer period than
was intended.
• There is a persistent desire or unsuccessful efforts to cut down or con-

trol alcohol use.
• A great deal of time is spent in activities necessary to obtain alcohol,

use alcohol, or recover from its effects.
• Craving, or a strong desire or urge to use alcohol.
• Recurrent alcohol use resulting in a failure to fulfill major role obliga-

tions at work, school, or home.
• Continued alcohol use despite having persistent or recurrent social or

interpersonal problems caused or exacerbated by the effects of alcohol.
• Important social, occupational, or recreational activities are given up

or reduced because of alcohol use.
• Recurrent alcohol use in situations in which it is physically hazardous.
• Alcohol use is continued despite knowledge of having a persistent or

recurrent physical or psychological problem that is likely to have been
caused or exacerbated by alcohol.
• Tolerance, as defined by either of the following:

1. A need for markedly increased amounts of alcohol to achieve
intoxication or desired effect.

2. A markedly diminished effect with continued use of the same
amount of alcohol.

• Withdrawal, as manifested by either of the following:

1. The characteristic withdrawal syndrome for alcohol

2. Alcohol (or a closely related substance, such as a benzodiazepine)
is taken to relieve or avoid withdrawal symptoms.”

1.1.1 The addiction cycle

Social drinkers, limited to an occasional use of alcohol, are clinically highly dif-

ferent from patients indulging in an escalating alcohol use with loss of control.

In European regions, representing countries with the highest drinker rates, 59.9%

of people aged 15 or older are current drinkers, however, only the 8.8% of this

population developed AUD during their lifetime (Center for Behavioral Health

Statistics). As with most drugs of abuse, alcohol consumption starts with an ini-

tial recreational use, shifting into a severe addiction only in few users. However,
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the long-term exposure to alcohol, despite being a necessary condition, is not suffi-

cient to fall into the development of the disorder [Volkow et al., 2016], individuals’

vulnerability is a crucial key for the instauration of addiction. The transition from

the occasional use to the compulsive alcohol seeking that characterizes addiction is

involving genetic, environmental, cellular, and molecular mechanisms, which are

the focus of current neurobiological drug abuse research. Different stages charac-

terize the disorder, all with specific behavioral and neural critical aspects, mostly

comprising an interplay of impulsive control behaviors and compulsions. From

the voluntary to the chronic relapsing stage, the combination of these two elements

leads to an addiction cycle, comprising three stages, from an initial binge/intoxica-

tion, to withdrawal and negative affects, until preoccupation/anticipation [Koob

and Volkow, 2010]. Generally, the impulsivity domain dominates the early stages,

when individuals are predisposed towards unconsidered actions, regardless of the

consequences. Compulsivity, on the opposite, dominates the final stages, leading

to loss of control and perseveration over maladaptive behaviors (Figure 1.1).

Figure 1.1: The addiction cycle, adapted from [Koob, 2011]. On the left, stages of impul-
sive and compulsive disorders related to reinforcement. On the right, cycle of
impulsivity and compulsivity in addiction

The combination of these processes, leading to the shift from positive to nega-

tive reinforcements induced by alcohol, makes this cycle more and more intense,

driving the patient to develop severe pathological forms of addiction. The most

impacting aspects of the disorder consist on the inability of patients to break this

cycle, keeping on falling into relapse, followed by new stages of intoxication, binge,

and withdrawal. All these mechanisms and transitions are related to long-lasting

changes in several neural systems, altering the communication and interactions

between different brain regions. Neural areas with a central role in addiction

are mostly related to the mesocorticolimbic system [Volkow et al., 2013]. This

neural circuit is characterized by dopamine projections, crucial in the processing
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of reward-related stimuli and motivated behaviors. Indeed, as all other drugs,

alcohol activates these brain regions related to reward circuits, causing an imme-

diate release of dopamine, a central brain neurotransmitter. When the exposure to

the substance is protracted in time, our brain develops higher levels of tolerance

towards the drug, reducing its spontaneous release of dopamine [Volkow et al.,

2016]. This is finally leading to crucial neuroadaptations, which are playing a key

role in the shift towards maladaptive behaviors. Such pathological behaviors give

rise to subsequent inabilities to suppress impulsive and compulsive urges towards

drugs intake [Goldstein et al., 2009].

Given the strong impact that drugs of abuse have on the brain, the study of these

alterations, both at a structural and functional level, is now one of the centers of

attention of clinical research, thanks to the growing and fast development of a

precious tool: neuroimaging.

1.2 magnetic resonance imaging: a key to study brain

disorders

In the past decades, neuroscience has benefited from the fast development of

non-invasive technologies that give us the possibility to explore the details of

brain structures and functions in vivo. These include advanced neuroimaging

techniques, like Magnetic Resonance Imaging (MRI), magnetoencephalography

(MEG), or electroencephalography (EEG), all with different spatial or temporal

resolutions. EEG and MEG, for example, are both techniques that enables the

study of brain function with high temporal resolutions, in order of milliseconds,

lacking, however, in spatial details. These techniques are respectively based on the

detection of spontaneous electrical or magnetic fluctuations induced by neuronal

activity, and measured through sensors on the scalp. In contrast, MRI has emerged

as a dominant imaging method with high spatial resolutions, in the order of mil-

limeters, but lower temporal resolution that is however adequate to capture the

hemodynamic fluctuations that are thought to reflect changes in the underlying

neuronal activity. Importantly, the mix of these two aspects give us a key element
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for the study of brain functional and anatomical mechanisms in pathological and

healthy conditions.

MRI was first developed in the 1970s, and has undergone tremendous growth

since then. This technique exploits strong magnetic fields and radiofrequencies to

generate three-dimensional images, able to separate different tissues (e.g. white

matter, gray matter, cerebrospinal fluid) according to their intrinsic magnetic prop-

erties. Through the use of different magnetic gradients and electromagnetic fields

(i.e. pulse sequence), MRI can, indeed, detect tissue properties, thus distinguish-

ing different tissue types. Through this, it is now possible to map brain structures

details, such as gray matter thickness, or white matter fibers integrity. From a func-

tional perspective, fMRI represents a powerful means to evaluate the metabolic

correlates of neural activity, through the measurement of blood oxygen level-

dependent (BOLD) signal. Indeed, blood oxygenation levels change rapidly in

relation to the activity of groups of neurons, the localization of brain activity.

The world of functional neuroimaging provided neuroscientists with an essen-

tial tool to elucidate the relationship between brain function and anatomy, a topic

that previously had been explored mostly through the study of the effects of brain

lesions. The use of this novel technology led to incredible advancements in brain

understanding, from the idea of the specific specializations of brain regions, to the

concept of strong distributed networks underlying cognitive processes.

This technique has a long tradition of task-based measurements, where volun-

teers, while laying in the MR scanner, are asked to perform specific behavioral

tasks with the purpose to evaluate the activation of brain regions engaged by

that particular condition. This is extremely valuable for the identification of brain

structures responsible for specific complex processing functions, and a key to eval-

uate the basis of cognitive dysfunctions in brain disorders. Adding to this, in the

1990s, a breakthrough finding revealed the presence of spontaneous slow fluctu-

ations related to brain activity even at rest, in a task-free condition, signal that

was previously identified as noise [Biswal et al., 1995]. This result opened the

way for the study of brain functional connectivity, namely the identification of

brain regions whose spontaneous oscillations at rest are consistently correlated,

or statistically dependent, giving rise to underlying brain networks (Figure 1.2).

Specifically, these baseline fluctuations are related to cortico-cortical connections
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with a specific spatial structure [Lowe et al., 2000], and are consistent across sub-

jects, identifying patterns of functionally related regions [Damoiseaux et al., 2006].

These spontaneous fluctuations are distinctly observed in brain regions involved

in visual, motor, language, auditory, and higher-order processes. These correlated

fluctuations, forming resting state networks, are thought to reflect the spontaneous

communication between spatially distinct brain regions, indexing the strength of

their functional coupling. The complex and efficient continuous communication

between brain regions is crucial for a correct integration of information in the

whole brain. This is making the study of functional neural networks at rest of

central importance in brain disorders, to understand how anomalies in the flow of

information in the brain can result in pathological conditions.

In this work I will mostly review and dwell into the details of the study of

brain functional connectivity measured at rest. A number of different analysis

techniques have been developed for the study of this spontaneous intrinsic activ-

ity of the brain. One of the first and most applied approaches lays on the selection

of a targeted brain region, seed, to determine the temporal correlations between

this extracted area and other separated anatomical structures in the brain [Lowe

et al., 1998]. Another promising approach relies on an Independent Component

Analysis (ICA), a data-driven approach with no need of a priori selection of spe-

cific brain regions. The power of this technique comes from the use of algorithms

that, through the analysis of the whole temporal activity originated from all the

voxels in the brain, can decompose the BOLD signal into statistically maximally

independent components [Beckmann et al., 2005]. This decomposition reveals

components with specific spatial maps. From these spatial maps, it is possible to

identify components related to physiological fluctuations (e.g. heart beats, respi-

ration, head movements) or to neuro-functional systems. Given the strength of

ICA, this method is now also widely applied to regress out noise components

from functional images, preparing the data for subsequent analysis [Pruim et al.,

2015, Salimi-Khorshidi et al., 2014]. Moreover, the application of ICA reveals rest-

ing brain patterns with high spatial consistency across subjects. These patterns

encompass functionally related regions, e.g. structures implicated in motor func-

tions, visual processing, auditory processing, attention functions, and many more

[Damoiseaux et al., 2006]. It is now well-established that brain regions with simi-
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lar functional properties often show coherent spontaneous fluctuations also in the

absence of the functional task they sub-serve. All these components constitute

so-called resting-state networks, and are key elements in the fast development of

the field of resting-state functional connectivity (RSFC). Altogether, the analysis of

RSFC constitutes a precious tools in clinical settings, where we can map abnormal-

ities and alterations in these spontaneous activation patterns in populations with

neurological or psychiatric disorders.

Figure 1.2: Intrinsic correlations at rest identified through a seed region within the poste-
rior cingulate (PCC) reveal regions positively correlated within the medial pre-
frontal cortex (MPF), reflecting the so-called Default-Mode Network (DMN),
and a set of negatively correlated regions in the Inferior Parietal Sulcus (IPS),
from [Fox et al., 2005]

The study of brain functionality is an extremely complex endeavor; we are still

at the beginning of the understanding of all the facets of brain function, but the

exploitment of these technological and methodological developments gives us pre-

cious advancements to finally grab its finer details. Altogether, the analysis of

RSFC constitutes a precious tool in clinical settings, where we can map abnormali-

ties and alterations related to these spontaneous activation patterns in populations

with both neurological or psychiatric disorders. Moreover, RSFC studies allows us

to investigate clinical populations that might not be able to perform specific tasks

while laying still in an MR scanner.
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1.3 from functional brains to functional networks.

The study of brain functional connectivity has led to the emergence of a new

promising field: the world of connectomics. Connectome is a term coined a

bit more than ten years ago [Sporns et al., 2005], referring to a comprehensive

map of neural connections. The field recently experienced a rapid growth, and it

owes its increasing popularity to the simultaneous fast development of advanced

neuroimaging techniques and the growing confidence in handling complex sys-

tems, grounded in the physics world of network science [Fornito et al., 2016].

The merger of these two worlds, neuroscience and network science may help un-

derstand the topological organization of one of the most complex systems ever

studied, our brain. Despite being a relatively young field, we can now count more

than 2k scientific articles per year published in peer-reviewed journals.(Figure 1.3).

Figure 1.3: Number of publication in Network Neuroscience from 1990. Data from
PubMed, updated the 21st September, 2019.

A graph, or network, is a mathematical structure used to model the relations

between all the different components of a system. In a graph, these components

are represented as nodes connected by edges (or links; figure 1.4).

Figure 1.4: Example of a
graph with four
nodes and four
edges

The study of the connectivity patterns of these edges in a system provides infor-

mation on the topological organization of the interactions among its components.
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These mathematical tools are exploited in many scientific fields, from biology, to

informatics, finance, or social sciences. The brain can be naturally represented

as a graph, where anatomical regions can be mapped as nodes, and the relations

between them (structural or functional) constitute the edges. Through this frame-

work, we have the opportunity to investigate the topological organization of func-

tional and structural brain connectivity.

The first step in the representation of neuroimaging data in the form of a graph

is the definition, of nodes; this is normally achieved by a procedure dubbed par-

cellation, whereby anatomically or functionally defined regions are identified as

sufficiently homogeneous to represent a unit of the graph [Zalesky et al., 2010b].

The second step requires the adoption of a measure of similarity between nodes

to define the edges of the graph. Magnetic Resonance Imaging makes it possible

to model both structural and functional neural information as a graph. Structural

networks, for example, can be defined starting from imaging data of white mat-

ter axonal bundles, as measured with Diffusion Tensor Imaging techniques. With

white matter fibers it is therefore possible to characterize network’s edges, whose

strength can be defined by different structural measures, such as, for example, the

estimated number of streamlines between anatomical regions, or fibers integrity, as

defined by Fractional Anisotropy, a measure of water diffusion within the axonal

bundles [Jones et al., 2013]. A different perspective can be explored through func-

tional connectivity networks, central focus of this thesis work. As already revised,

through fMRI we can quantify spontaneous fluctuations of brain regions while at

rest. In this case the interconnecting links between brain nodes are defined based

on a measure of temporal correlation among time-series extracted from parceled

cortical and subcortical regions. In both cases, the definition of nodes and edges

within our network result in a final graph represented by an adjacency matrix –

also defined as connectivity matrix - where each element reflects the presence and

strength of connections between pairs of nodes. The connectivity matrix offers

a simpler and more comprehensive means to deal with complex networks. Each

row and column of such matrix represent a specific node N, whereas all the en-

tries reflect the pairwise connectivity between nodes, with the final construction

of an NxN matrix, as described in figure 1.5. Another strong advantage offered

by graph theory lays in the possibility to work with a number of different graphs.
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In network neuroscience, we can mostly address undirected graphs, represented

by symmetrical connectivity matrices, where the directionality of the influence

exerted from one node on another cannot be mapped.

When we deal with functional connectivity networks, we represent functional

relations between nodes through temporal correlations, as measured by Pearson

correlations. This approach gives rise to fully connected weighted graphs, indicated

as W = {ωij}, where the defined edges reflect the strength of the interaction be-

tween specific nodes, and the links represent different weights, ω. In some cases,

the binarization of the graph can be applied, resulting in simple binary graphs,

A = {Aij}, where the entries of the matrix equal 1 if a connection between nodes

is present, or 0, if no connection is present. In the functional connectivity domain,

however, binarization may discard important structural information. Given the

difficulty in dealing with fully connected graphs, it is common practice to sparsify

the matrix, namely applying a specific threshold and set to 0 all the matrix entries

below this given value [van den Heuvel et al., 2017b]. Afterwards, it is choice of

the experimenter, to subsequently work with sparse weighted networks, or with

binary networks, setting to 1 all the connections surviving the thresholding proce-

dure. This aspect, together with other methodological issues now present in the

network neuroscientific field, will be extensively reviewed and discussed in the

chapter 2 of this thesis.

Figure 1.5: Examples of graph matrices and networks. In Panel A, we show an undirected
full weighted graph. Panel B represents the same undirected graph after the
application of a given threshold. Panel C shows the same graph after binariza-
tion, where all the entries surviving the thresholding procedure are set to 1,
all the others to 0.
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1.3.1 Graph topological metrics and the brain

Network science contributes concepts and tools that enable the study of the brain

functional organization, such as the interplay between integration and segregation

in healthy and pathological conditions [Bullmore and Sporns, 2009]. Indeed, by

representing the brain as a graph, we can evaluate the topological properties at

global and local scales of the whole system, by means of the numerous metrics

that this theoretical approach offers (figure 1.6).

At the local scales, namely the topological organization at the node level, the

most straightforward and basic metric is represented by the degree. The degree

of a node in a graph – denoted as ki -, is defined as the number of edges connected

to it. It can also be defined as degree centrality, assuming that nodes with higher

numbers of connections will play a more central role within the whole system,

whereas regions with lower degree might subserve a more peripheral role. This

basic topological metric is mostly used with binary networks, given that it simply

quantifies the total number of links attached to a given node. In weighted graphs,

this measure can be equivalent to the node strength, computed as the sum of

the weights of all the edges connected to that node. These topological measures

are crucial to identify the so-called hubs, namely specific nodes in a network

with higher degree or strength compared to the others. The study of hubs is of

central importance in the evaluation of the organization of brain disorders, as it

was proved that when these core regions start losing their centrality the overall

network appears pathological [Fornito et al., 2015].

At the global scale, density of a network, a key aspect that will be addressed in

chapter 2, is defined as the proportion of the actual links present over the number

of all possible edges within the network, represented as:

ρ =
2E

N(N− 1)
, (1.1)

where N are all nodes in the network and E all the edges. Another core graph

metric defines the topological distance, or path length, that is the number of links

necessary to “travel” from one node to another. The characteristic path length, L,

reflecting a global measure, is the average shortest path length between all pairs

of nodes, and indicates how the graph is well integrated.
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Figure 1.6: Examples of common topological graph metrics

Based on this core metric, we can evaluate the so called global efficiency, an-

other measure of integration of the network, defined as the inverse of the average

path length of the network. Efficiency can moreover be measured at the local level.

Local efficiency reflects the extent to which a node is integrated within its neigh-

bor nodes, measured as the inverse of the average path length within a subgraph

comprising all its neighbors. These path based measures are indicative of the in-

tegration properties of the network, frequently addressed in neural networks as

means to evaluate how rapidly the functional – or structural – information can be

combined between anatomically separated brain regions. In lay terms, they can

estimate how information flows efficiently between one brain region and another.

Additionally to topological measures of integration, graph theory offers tools to

assess the segregation features of the system. In section 1.2, we have seen how our

functional brain presents anatomically separated groups of brain regions subserv-

ing specific cognitive or processing functions. Measures of segregation allow the

identification and quantification of these interconnected groups of neural regions

[Rubinov and Sporns, 2010]. At a local scale, the segregation level of a single node

is quantified through its clustering coefficient, which is the proportion at which a

node’s neighbors are also neighbors of each other [Watts and Strogatz, 1998]. This

reflects the presence of triangles in a network; the more triangles are present, the

more a graph shows segregation properties. Conversely, at a global scale we can

assess the brain modular organization.
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1.3.2 The Modular Brain

With a more complex framework, graph theory has also been extensively em-

ployed to study the presence, at a global scale of the network, of a modular

architecture. This is characterized by the presence of nodes more tightly con-

nected within themselves and loosely connected with the rest of the graph, form-

ing so called modules, supporting a balance of integration and segregation. These

subcomponents in a network are also dubbed “communities”, a term borrowed

from social sciences, used for the description of a natural trend in people to form

groups (i.e.circles of friends, families, etc. . . ) within society. The degree to which

the whole system can be subdivided into separately interconnected modules, re-

flects the modularity of the network [Newman, 2004]. The study of modular

organization is focus of attention in the study of most of real-world networks.

Modularity, indeed, is a feature that can be observed in most complex systems,

and provides strong advantages also from an evolutionary perspective, conferring

more robustness and adaptability [Sporns and Betzel, 2016]. From this perspective

it has been shown that modular organizations emerge spontaneous in biological

systems, comprising brain networks, promoting a crucial flexibility, essential in

ever-changing environments [Kashtan and Alon, 2005]. In the details of brain

functional networks, it is proven that a modular system allows a more flexible

organization of neural functioning, together with a faster rate of transformation

of information within the network. With the organization of different nodes into

segregated communities, the brain is more adaptable both to external perturba-

tions and to continuous changes in loads of cognitive demand and environmental

conditions [Meunier et al., 2010]. The robustness conferred by this topological

architecture favors, indeed, the possibility to re-arrange only specific clusters of

nodes - and not the whole system - when the network is forced to face external

challenges. This notion comes from the idea firstly introduced in the early 60s

by Simon [Simon, 1962], who elegantly discussed the complexity of hierarchical

systems and coined the concept of “nearly-decomposable systems”. According to

his view, complex systems evolve into a hierarchical structure, composed by sub-

elements that more strictly interact with a subset of other elements closer to them,

and less with elements outside this subset. Interestingly, this definition appears
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strongly analogous to the concept of modularity previously discussed. In his el-

egant essay, Simon observed that this feature is indeed shared by most complex

systems, from social, to physics, chemistry and so on. As a matter of fact, this

property allows simplification of a system, it provides increasing stability among

compartments (i.e. modules) and would subsequently grant the adaptation of one

module without affecting the others, conferring important evolutionary and adap-

tive advantage. With a number of clear and effective examples, Simon efficiently

explains the crucial benefits that this feature handles to most real-world network.

Among these, the robustness gained by the system is neatly discussed thanks to

the intuitive watchmakers’ example. This short example sees two watchmakers,

Hora and Tempus, who differently assembled their products:

“The watches the men made consisted of about 1,000 parts each. Tempus had so con-

structed his that if he had one partly assembled and had to put it down-to answer the phone

say-it immediately fell to pieces and had to be reassembled from the elements. The better

the customers liked his watches, the more they phoned him, the more difficult it became

for him to find enough uninterrupted time to finish a watch. The watches that Hora made

were no less complex than those of Tempus. But he had designed them so that he could put

together subassemblies of about ten elements each. Ten of these subassemblies, again, could

be put together into a larger subassembly; and a system of ten of the latter subassemblies

constituted the whole watch. Hence, when Hora had to put down a partly assembled watch

in order to answer the phone, he lost only a small part of his work, and he assembled his

watches in only a fraction of the man-hours it took Tempus.”

In this very short but compelling anecdote, the strong advantages that a modular

organization confers to the whole network is clear. First of all, modular structures

allow the evolution or modification of one module at a time without affecting the

rest of the system, which is already well-adapted. For example, in neural net-

works, thanks to this feature, if one brain region is damaged, only a sub-element

of the whole network is affected, leaving the rest of the system unaltered. Fur-

thermore, after damage of one single community, its re-arrangement will be more

rapid and efficient [Meunier et al., 2010]. Overall, such compartmentalization does

not, of course, prevent communication between separated modules, yet, allows

an optimal trade-off between the segregation and integration of the information

flow. This further translates into another crucial feature essential for functional
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brain networks: the time-scale separation. Indeed, this hierarchical decomposi-

tion grants a faster intra-modular processing of the information, coupled with a

slower inter-modular processing, a key characteristics of complex cognitive and

behavioral functioning [Meunier et al., 2009]. In the details of neural networks,

our brain is continuously subject of developmental changes, and the presence of

well-segregated neural structures is a key element to limit the impact that these

external perturbations can exert over the system. Such compartmentalization can

prevent global functional disruptions, as it allow the system to rewire, in case of

perturbations, only specific modules, leaving unaffected the global architecture.

Given the strong benefits that modular structures handle to the functional brain,

it is of no surprise the popularity that this approach gained to study these underly-

ing organizations in both healthy and pathological conditions [Meunier et al., 2010,

Sporns and Betzel, 2016, Alexander-Bloch et al., 2010, Bordier et al., 2018, de Haan

et al., 2012]. Such attractiveness consequently led to the development of complex

community detection methods, employed to unravel the underlying organization

of cortical and subcortical neural nodes. The most implemented methodological

technique for community detection lays on the modularity maximization [Newman,

2004].

Modularity maximization is, indeed, the most commonly applied method in

network neuroscience. It consists in the maximization of a modularity quality

function, resulting in a partitioning of all nodes into non-overlapping communi-

ties. A specific formulation of a multiresolution maximized modularity commonly

evaluated is defined as Q¸ and represented as:

Q =
∑
i,j

[
Aij − γPij

]
δ(Ci,Cj), (1.2)

where Aij is the studied adjacency matrix, with i being a node assigned to the

community Ci, and j a node assigned to the community Cj. The function δ(Ci,Cj)

is here set to 1 if the two nodes, i and j, are assigned to the same communities,

and to 0 otherwise. The parameter γ represents a resolution parameter, set by the

experimenter, with values ranging from 0 to 1. The smaller the values, the more

the maximization function will tend to identify smaller communities. To conclude,

the element Pij represents the expected weight of the edge connecting the two
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nodes, under a specific network null model, typically the configuration model

[Garcia et al., 2018]. The resulting Q value will range from 0 to 1, the stronger

the modular architecture detected at the large scale of the network, the more this

value will be close to unity. In a random network, for example, lacking of a well-

structured organization at large scales, Q will be close to 0. The simplicity of this

algorithm made it the most employed technique for the study of brain functional

and structural architecture. However, despite being simple to use and computa-

tionally tractable, this algorithm comes with different shortcomings. Among these,

the present algorithm may generate degenerate solutions. Indeed, the output of

the partitions identified with such approach can be highly different in terms of

their similarity, but present a nearly identical maximal modularity value [Good

et al., 2010]. This degeneracy phenomenon stands in the identification of these sub-

optimal partitions, which can be, however, misinterpreted as optimal. Because

of this intrinsic characteristic of modularity, it is clearly not optimal to choose a

partition based on the identified maximum value of Q. One common solution re-

quires the computation of a large number of different partitions, thus selecting a

median of all the solutions. This requires, after the computation of several parti-

tions, the creation of an association matrix A, whose edges are proportional to the

probability that two nodes fall into the same community. Following, the commu-

nity detection algorithm is applied to this consensus matrix. However, modularity

maximization suffers another important shortcoming, the resolution limit. Modu-

larity, indeed, is not able to correctly identify communities smaller than a certain

scale, determined by the square root of the total number of edges in the network.

Specifically, it is not able to detect modules with a total number of links lower than

the square root of all the links present in the graph. Trying to overcome this limi-

tation, it is common to test the algorithm several times setting different values of

the γ parameter [Garcia et al., 2018]. Examples of functional modules commonly

revealed with modularity maximization are depicted in figure 1.7.

Another methodological approach employed for community detection comes

from the world of information theory, and exploits random walkers to detect the

optimal graph partition. Considering a network, we can imagine a random walker

going from one node to another, using edges as “paths” to traverse the whole net-

work. In this case, the random walker is used as a proxy for information diffusion
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Figure 1.7: Examples of modules commonly identified in resting-state functional net-
works, comprising the DMN, the somatosensory network, and the visual sys-
tem.

within the graph. If a graph presents a strong community structure, with mod-

ules containing more internal links – thus, more paths for the walker – it is highly

plausible that the walker will remain trapped within such structure for more time,

highlighting the presence of a module. The most commonly applied strategy im-

plementing this approach is InfoMap [Rosvall and Bergstrom, 2008]. The idea

behind this technique is to maximally compress the information diffusion that can

be decoded within the graph. From this, the optimal partition is identified as the

one yielding the minimum description length of an infinite random walk. InfoMap

is considered as one of the best-performing algorithms for community detection,

and is therefore now often applied also within the framework of network neuro-

science [Power et al., 2011, Avena-Koenigsberger et al., 2018, Gordon et al., 2018].

Compared to Q maximization, this method suffers from degeneracy and resolu-

tion limit to a smaller extent [Nicolini et al., 2017]. The resolution limit of InfoMap,

indeed, does not depend on the size of the whole network such as in Modularity,

but depends on the number of inter-cluster edges [Kawamoto and Rosvall, 2015].

This algorithm can also detect much smaller communities than those revealed by

the maximization of the Q function [Yang et al., 2016b], a crucial aspect when we

need to address functional brain systems. Similarly, its degeneracy landscape is

much less critical compared to the one observed with Modularity [Nicolini et al.,

2017].
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Given the advantages of this latter method, in the present thesis work I will most

implement the InfoMap algorithm, with a consensus approach, when addressing

the modular organization of RSFC in healthy and clinical populations.

So far, I have thoroughly discussed the importance of the evaluation of a mod-

ular structure in real-world brain networks, representing a key strength for the

evolution and survival of the system. Importantly, the detection of the modular

structure in a network allows the identification of key regions playing specific roles

within the overall organization in terms of network integration and segregation.

Two topological metrics give us an index of the role of a given node, according

to the modular architecture: the participation coefficient and the module degree.

Participation coefficient, indicated by Pi, is an inter-modular connectivity mea-

sure, related to the proportion of links of a given node towards nodes belonging

to external modules. It is defined as:

Pi = 1−
∑
c

(
kic
ki

)2
, (1.3)

where kic is the number of links of node i to nodes in module c and ki is the total

degree of node i.

On the opposite, the within-module degree, indicated by zi, relates to the

proportion of links of a node towards other nodes within its own module, and is

defined as:

zi =
ki − 〈kci〉
σkci

, (1.4)

where 〈kci〉 is the average degree of nodes in the same module c of node i and

σkci is the standard deviation of degrees of nodes in module c.

With the combination of these two metrics it is possible to classify nodes on the

basis of the role they play within the network. For example, if a node presents

high values in its participation coefficient, we could conclude that this specific

region has a central role in connecting one module to others, i.e. in the inte-

gration of the modules into a cohesive structure. Hubs with high participation

coefficient are therefore dubbed connector hubs. Conversely, nodes with high

within-module degree and low participation coefficient i.e. strongly embedded

within their own module, determine the presence of segregated subnetworks, and
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are dubbed provincial hub ([Guimera and Amaral, 2005]; figure 1.8). It is crit-

ical, when addressing the modular organization of brain networks, to be able to

interpret and classify the role that different brain regions play within the global

architecture [Sporns et al., 2007]. All these special nodes are crucial for a correct

flow of information within the network; with the disruption or alteration in the

segregation or integration of central hubs, the system can develop pathological

conditions [Fornito et al., 2016].

Figure 1.8: Role of nodes classified by
means of participation coeffi-
cient and module-degree, re-
flecting their function withi
the global brain architecture
[Guimera and Amaral, 2005].

Overall, network neuroscience can elucidate the specific role of different regions

within the system, clarifying as well the way the network would be affected in the

case of local or global topological alterations.

1.4 neuroimaging of the addicted brain

So far, I reviewed the most recent technologies and techniques that have been im-

plemented in the study of brain functioning. One of the most important keys that

these methods provide is the chance to also grasp how structural and functional

brain systems are misshaped by neurological and psychiatric disorders.

In this section, I will review the recent and breakthrough findings that neu-

roimaging brought to the understanding of brain alterations induced by long-

lasting and chronic alcohol intake. In details, the understanding of how spe-

cific neural regions are altered in their structures and functioning in addiction
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is hopefully leading to the development of new possible treatments. Finding tar-

get regions for effective treatments is, indeed, center of attention in functional

neuroimaging studies. Ideally, we could evaluate how to manipulate functional

aberrancies detected in brain disorders, such as addiction, bringing the neural

activity of specific regions back to their baseline “healthy” functioning.

Related to addiction, the prolonged intake of drugs, such as alcohol, can even-

tually alter the transmission of specific neurotransmitters in the brain, leading to

subsequent aberrancies in overall brain function and structure. The first impact

that substances have on the brain is the sudden and sharp increase in dopamine

release. Dopamine is an important neurotransmitter in the human brain, whose

function is mostly related to the so called “brain reward system”. The brain re-

ward pathway comprises specific neural regions, from the basal ganglia (striatum,

globus pallidus, thalamus), to the nucleus accumbens, amygdala, and prefrontal

cortex area. This neural circuit is responsible for the response to pleasurable and

motivating behaviors, evolved for the motivational learning. When any kind of

reward – from behaviors to substances – activates this system, dopamine is re-

leased, producing a feeling of pleasure, and we learn the association between that

trigger and pleasure. Drugs can, indeed, activate the brain reward system, elic-

iting a reward signal subsequently learned and associated to pleasurable effects

of these substances [Volkow et al., 2016]. Addiction works exactly as a learning

process: repeated intakes of a specific drug of abuse cause a subsequent associa-

tion with the environmental stimuli related to the experienced pleasure. However,

with more and more exposures to the same rewarding stimuli and effects, our

brain gets desensitized, and dopamine neurons stop firing when the substance is

taken, but start firing, instead, in response to stimuli related to the drug (i.e. condi-

tioned stimulus). These events lead to compulsive drug-seeking behaviors, typical

in addiction, increasing strong cravings for the drug, and incentive salience mech-

anisms. The motivational learning phase of addiction, comprising crucial neu-

roadaptations, underlies the first stage of the addiction cycle previously reviewed,

namely the “binge-intoxication” stage.

Overall, addiction strongly affects the brain reward system. This pathway loses

its natural orientation towards ordinary pleasurable rewards, reorienting to the

more powerful release of dopamine that drugs and their environmental cues ex-
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ert. This results in a severe change in motivation and behavior [Volkow et al.,

2016]. With prolonged and chronic intakes, the reward circuitry experiences an

important reduction in the release of dopamine, as well as in dopamine D2 re-

ceptors [Volkow et al., 2002]. This reduction in the functioning of the dopamine

system seems to be directly related to a subsequent increase in the reward thresh-

old [Koob, 2013]. As a consequence, the motivation naturally experienced towards

non-drug-related stimuli is severely affected, falling into an increased sensitivity

to the abused drug [Volkow and Fowler, 2000]. Addicted people will thus stop

feeling the strong euphoria and positive feelings associated to the drug intake,

and will start, instead, to feel increasing urges to take the drug as to reduce the

negative affects experienced. During the withdrawal stage, indeed, negative af-

fects, such as anxiety, dysphoria, stress, irritability, dominate the addicted person.

All these neurochemical adaptations drive towards severe negative reinforcements,

becoming a core aspect in addiction. The addicted behavior is no longer driven

by voluntary actions seeking rewards, but by strong and negative compulsions.

In this phase, drug intake becomes purely a means to counteract the negative

emotional state associated to withdrawal. At this stage, compulsivity becomes an

important negative reinforcement that perpetuates addiction, leading to relapses.

Relapse is one of the most crucial keys in alcohol addiction. Despite repeated

therapeutic interventions, most patients experience relapse, falling back into the

addiction cycle.

1.4.1 Structural and functional alterations in alcohol addiction

All the internal and external processes underlying addiction may affect the brain at

a structural and functional level. Imaging techniques open a view over these alter-

ations. Over the years, thanks to the use of structural and functional MRI, different

findings increased the knowledge regarding brain aberrancies induced by chronic

alcohol intake. At a structural level, acute and chronic effects induced by alcohol

consumption have been consistently revealed to involve both white matter and

gray matter volume changes [Fritz et al., 2019]. One of the most common analysis

techniques aiming at the evaluation of regional WM and GM partitions, without

the necessity to predefine a region of interest, is Voxel-Based Morphometry (VBM).
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This methodological analysis allows a voxel-wise comparison of the whole brain.

Related to the study of addiction, several studies reported neurotoxicity effects

induced by a long-lasting alcohol intake which led to important brain atrophy

in different regions [Gazdzinski et al., 2005, Chanraud et al., 2007, Mechtcheri-

akov et al., 2007, Wrase et al., 2008, Rando et al., 2011, Fritz et al., 2019]. Impor-

tant reductions in GM volumes have been shown to involve focal regions such

as frontal and prefrontal cortices, temporal cortex, insular cortices, hippocampus,

thalamus, and cerebellum (figure 1.9, [Dupuy and Chanraud, 2016, Chanraud

et al., 2007, Mechtcheriakov et al., 2007]). Significant WM loss is also reported in

alcohol addiction, mostly comprising the corpus callosum [Chanraud et al., 2007],

the largest white matter structure in the human brain connecting the two hemi-

spheres. Interestingly, some of these damages also seem to be related to the symp-

tomatology underlying alcohol addiction. For example, correlations of volumes

reductions have been reported between corpus callosum changes and executive

functions impairments. In addition, brain regions volumes appears to be sensitive

also to drinking related measures. A correlation between GM decreased volumes

in temporal cortices and age at first drinking is, indeed, reported by the same

authors [Chanraud et al., 2007]. Neuroimaging-based measures may also give

insights over future drinking behaviors, such as GM volumes reductions in frontal

and prefrontal cortices predicting earlier relapse [Rando et al., 2011]. More severe

brain atrophies is, indeed, present in patients that later relapse, compared to ab-

stainers [Gazdzinski et al., 2005], with a particular involvement of the amygdala,

which appears smaller in relapsers [Wrase et al., 2008]. This knowledge might be

crucial for therapeutic options, reinforcing personalized treatments. Overall, some

of the volume changes mostly reported involve the basal ganglia. As previously

mentioned, the basal ganglia are a core ensemble of brain regions crucial within

the reward system. Structural alterations in alcohol addiction include the caudate,

putamen, amygdala, and nucleus accumbens [Dupuy and Chanraud, 2016, Fritz

et al., 2019]. The progression of alcohol addiction, shaping rewarding behaviors as

extensively reviewed, may be the key contribution to the changes experienced in

these central regions, which are, indeed, related to motivational learning, reward

evaluation, and cue-induced relapse [Fritz et al., 2019].
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Figure 1.9: Areas of significant GM and WM reductions in alcohol addiction, from
[Mechtcheriakov et al., 2007]

Functional alterations in alcohol addiction, measured by fMRI, are found both

during task performance and at rest. Measuring BOLD activity changes in re-

sponse to specific tasks is often applied to evaluate functional brain alterations re-

lated to cue-reactivity, craving, impulsivity, or self-control [Fritz et al., 2019]. This

approach is crucial to understand functional brain alterations that might lead to

subsequent behavioral deficits, possibly driving patients to the inability to evaluate

risks and dangers related to alcohol consumption, maladaptive decision-making,

and to the incapacity to quit drinking. It has been proven, for example, that alcohol

dependent patients show a strong alcohol cue-induced attentional bias. Moreover,

this attentional bias to alcohol cues was related to an activation of visual and atten-

tion brain areas, such as the occipital cortex, anterior cingulate cortex, amygdala,

insula, and thalamus [Vollstädt-Klein et al., 2012, Wrase et al., 2008]. In line with

this, AUD patients seem to more strongly recruit several networks in response to

alcohol cues, such as the default mode network (DMN), the salience network, and

the executive control network [Myrick et al., 2004].

The study of functional connectivity has also proven increasingly helpful in the

evaluation of brain alterations involved in alcohol addiction. The first network

that was proven to be disrupted in alcoholic patients was the DMN [Chanraud

et al., 2011]. The DMN is considered as the most representative network found in

resting conditions, it comprises a set of brain regions that appear to be more highly

synchronized when the brain is not performing specific tasks. This includes the
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posterior cingulate cortex, inferior parietal cortex, medial prefrontal, medial tem-

poral cortices, and the precuneus. Alongside, disconnectivity patterns in alcohol

addiction involve specifically also the executive, salience, basal ganglia, and vi-

sual networks [Chanraud et al., 2011, Müller-Oehring et al., 2014, Weiland et al.,

2014, Vergara et al., 2017]. The reduction in functional connectivity in specific brain

regions such as the precuneus, insula, and visual cortex could be a hint related to

the dysfunctional interoceptive awareness typical of alcoholic patients [Vergara

et al., 2017]. What seems more striking is that AUD patients specifically show an

increase in between network connectivity, but, at the same time, a weaker pattern

of within network connectivity. Altogether, these functional alterations raised in-

sights towards the hypothesis of a “disconnection syndrome” in alcohol addiction

[Dupuy and Chanraud, 2016]. A related striking finding, in addition, linked this

altered pattern of between and within networks connectivity to the severity of the

disorder [Fede et al., 2019]. It was, indeed, possible to predict the severity of the

Alcohol Use Disorders Identification Test (AUDIT) scores, a common self-report

questionnaire used in clinical settings to assess alcohol dependence, through the

disrupted resting-state functional connectivity identified in patients. These find-

ings are critical for clinical settings. The ability to predict the severity of the dis-

order by means of fMRI, without the necessity to rely on self-reports, is of crucial

relevance and may provide insights regarding target structures for treatments.

In recent years, however, a distinct region, key in the control of conscious emo-

tional experience, gained increasing attention: the insula, a central station for

interoceptive signals, processing bodily sensations [Naqvi and Bechara, 2009].

1.4.2 Insular cortex and its role in interoception

The insular cortex is a core region of the brain responsible for interoception, the

sense of physiological condition of the body ( 1.10; [Craig, 2009]). This collection

of processes is key in the set of awareness we daily experience, such as hunger,

thirst, pain, or even, for example, the need for alcohol. Given the strong impact

that alcoholic beverages, as well as other set of drugs, have on the body, it is not

surprising that interoceptive processes might play such a central role in the onset

and maintenance of addiction. The interest in the involvement of the insula in
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addiction took more hold from the observation that smokers with damages in this

region were able to quit smoking much easily than smokers with damages in other

areas of the brain. These patients even reported that “their body forgot the urge

to smoke” [Naqvi et al., 2007].

Figure 1.10: Neuroanatomy of the insular cortex. Case courtesy of A.Prof Frank Gaillard,
Radiopaedia.org, rID: 46846

The insula is a complex brain structure, anatomically divided into various sub-

regions (figure 1.10) . From a cytoarchitectonic point of view, it can be split into

granular and agranular insular cortex [Chikama et al., 1997]. The former compre-

hends the posterior portion, mostly responsible for somatosensory, vestibular and

motor integration. More interest for addiction lays, instead, in the latter subdi-

vision, comprising the anterior portion of the insula. This portion receives input

from limbic regions, both cortical and subcortical, processing autonomic and vis-

ceral information into emotional functions [Naqvi and Bechara, 2009]. The bodily

representation of visceral needs directly influences feeling states, with the subse-

quent formation of emotional cues, guiding our behavior and needs. The central

role played by the insula is, indeed, to translate interoceptive signals generated by

substances intake into conscious bodily appreciations of these effects ( 1.11). Each

drug of abuse has a specific bodily effect, which sometimes becomes more addic-

tive than the drug itself. The feeling of smoke flowing into the upper airways,

plays, for example, a crucial role in the establishment of nicotine addiction. The
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more substance users fall into addiction, the more these stimuli, both physical and

environmental, gain an emotional valence, mediated by interoceptive centers with

their base in the insular cortex. The insula would encode these interoceptive effects

of drugs, leading to the formation of conscious cue-induced urges, through its con-

nection towards frontal regions. Such process would consequently increase drug

craving, defined as a “pathological desire” of the substance of abuse. The growing

evidence coming from neuroimaging studies now corroborates the involvement of

this central region in addiction, consistent with this interoception-centered model

of addiction [Verdejo-Garcia et al., 2012].

1.4.3 Insular alterations evidence from clinical neuroimaging

From neuroimaging, insular anomalies have been consistently identified in alcohol

dependent patients, both from a structural and a functional perspective. From a

structural perspective, neuroimaging techniques have been applied to the evalua-

tion of cortical thickness as well as differences in structures volume. Morphometric

methods have identified brain tissue shrinkage and changes related to alcohol con-

sumptions. Mechtcheriakov and colleagues [Mechtcheriakov et al., 2007] were the

first to identify gray matter alterations in the insula, together with other cortical

regions, providing one of the first evidence associating alcohol addiction to abnor-

mal neural density. Shortly after this study, Jung et al. [Jung et al., 2007] focused

their attention on the evaluation of specific anatomical alterations in the insular

cortex. This work led to the identification of shape abnormality in the insula,

with a consistent reduction of left-right asymmetry. Interestingly, these anomalies

correlated to the duration of the illness, suggesting an association of insular de-

formities with chronic alcohol consumption. Neuropsychological scores, related

to executive functions disrupted in alcoholic patients, were also found to correlate

with reduced insular volume [Chanraud et al., 2007]. Furthermore, corroborating

insula role in compulsive alcohol intake, its volume was found to be related to ab-

stinence length, with a recovery of its tissue in patients abstaining from drinking

alcohol (figure 1.12, [Cardenas et al., 2007, Demirakca et al., 2011, Durazzo et al.,

2011, Makris et al., 2008, van Eijk et al., 2013]. Both abstinence and binge drinking

affect insular volume, with more severe shrinkage associated with high frequency
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Figure 1.11: From [Naqvi and Bechara, 2009]. Schematic model of the interoceptive func-
tions of the insula. The insula is necessary for the formation of drug-use
rituals, representing the interoceptive effects of drugs. Once the subject is
exposed to environmental drug cues, the system reactivates the representa-
tions of these interoceptive effects, involving higher-order processes driving
decision-making (ACC and DLPFC) and conscious feelings.

drinking [Chung and Clark, 2014]. Moreover, among all the regions of the brain

reward system, the insula shows the most pronounced structural alterations, fur-

ther suggesting its central role in the overall addiction system [Makris et al., 2008].

Altogether, an increasing number of studies identified gray matter reductions in

the insular cortex of alcohol dependent patients [Yang et al., 2016a, van Holst

et al., 2012, Senatorov et al., 2014].
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Figure 1.12: Voxel-based morphometry of gray matter loss in the insular cortex for alcohol
dependent patients, from [Demirakca et al., 2011]

Similarly, also functional alterations seem to be prominent in the insular cor-

tex of alcohol dependent patients. Several tasks designed to evaluate changes in

the functioning of specific brain regions involved in addiction-related behaviors

reported altered insular activity in alcoholic patients. The functional responses in

this region in alcohol use disorder patients is, however, not as clear as its anatom-

ical shrinkage. During social exclusion tasks, for example, alcoholics revealed

higher insular activation compared to healthy volunteers, reflecting difficulties

in negative emotional regulation [Maurage et al., 2012]. An increased activation

is also present in heavy drinkers compared to light-drinkers when exposed to

alcohol-related cues, related to higher compulsivity, establishing a likely neural

correlate of compulsive alcohol seeking [Grodin et al., 2018]. Abnormal higher ac-

tivity of the bilateral insula was shown also in binge drinkers in a well-established

decision-making task, with its activation correlating with urgency scores [Xiao

et al., 2013]. Impulsiveness was also found to be related to a higher activity of

the insula during reward anticipation in patients compared to control, emphasiz-

ing again the role of this structure in conscious urges [Villafuerte et al., 2012].

Moreover, alcoholic cue presentation was found to increase insular activation with

this altered activity being related to the severity of the disease [Claus et al., 2011].

Conversely, decreased activation is reported during risk-taking decisions [Li et al.,

2009], similar to a trend in decreased activity recently found in alcoholic patients

in an Ultimatum Game task, which evaluates rational decision making [Cortes

et al., 2018]. Reductions in the connectivity between putamen and insular cortex

has been reported in patients during tasks of response inhibition [Courtney et al.,

2013]. Conversely, meta-analyses addressing neural basis related to cue-reactivity

[Chase et al., 2011] and craving [Kühn and Gallinat, 2011] in drug addict did not

find any specific activation of the insula. Altogether, these findings show some
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inconsistencies, with a general trend towards abnormal activation of the insular

cortex when patients are exposed to alcohol-related cues or emotional decision-

making. Interestingly, insular anomalies in alcohol addiction seem to be mostly

associated to compulsions and urges [Grodin et al., 2018, Xiao et al., 2013]. These

evidence would confirm an altered interoceptive role played by the insula, un-

able to adjust external environmental cues and internal needs. From task-based

functional neuroimaging, however, findings regarding alcohol addiction remain

controversial, probably due to the heterogeneity of tasks. These contrasts pose the

need for further research investigating what abnormal insular functionality can be

related to.

1.4.4 Evidence from the emerging field of functional connectivity

I already highlighted some of the main disruptions reported in the resting-state

functional connectivity in alcohol addiction, which led to the definition of a “dis-

connection syndrome” hypothesis. Among these alterations, one of the functional

resting state networks of greatest interest in the field of addiction is the so-called

salience network (figure 1.13, [Seeley et al., 2007]). This specific functional net-

work is composed by insular regions coupled with the anterior cingulate cortex.

It has been suggested that this resting-state system sub-serves the capacity of the

brain to integrate sensory information with visceral, autonomic and hedonic stim-

uli. This network shows aberrant connectivity in a number of different studies

addressing resting state functionality in alcohol dependent patients, leading to fur-

ther evidence of insular alterations related to alcohol drinking [Camchong et al.,

2013, Müller-Oehring et al., 2014, Sullivan et al., 2013, Vergara et al., 2017, Zhu

et al., 2015]. However, even for functional connectivity related studies, it is possi-

ble to observe some discrepancies and controversial findings concerning the role of

the insula. A very interesting result relates to the evidence of reduced resting state

synchrony within the insular network. This reduction was found to be present in

detoxified patients that later relapsed, compared to patients that, in the opposite,

remained abstinent [Camchong et al., 2013]. This suggests a critical role of resting

state functional synchrony in maintaining abstinence during detoxification. Specif-

ically, in this case, the role of the insular network seems predominant. Strong re-
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ductions in synchrony were identified also with the dorsolateral prefrontal cortex

network, a central system in the brain, sub-serving executive control processes reg-

ulating emotions. Further reductions in between regions synchrony in relapsers

were present in the connectivity within the visual and the insular networks.

Figure 1.13: Salience network identfied by means of Independent Component Analysis

Altogether, this suggests faulty processing in sensory awareness and attention,

most likely leading to aberrant decision-making, which can later evolve into re-

lapse. Such findings can be crucial for further investigation of effective treatments

for this chronic brain disorder, having highlighted the important role that the

insula can play in remaining abstinent. In line with this evidence, a lack of syn-

chrony between the insular regions and the DMN was later found in early absti-

nent patients [Sullivan et al., 2013]. Decreased synchrony between the insula and

parietal or frontal cortices was similarly reported in this last study, confirming

previous evidence of an altered communication within this core region and many

other brain networks. In addition, a study by Müller-Oehring and colleagues

[Müller-Oehring et al., 2014] reported a reduction in the within-network connectiv-

ity of the salience system. However, opposite to previous findings, this functional

connectivity investigation revealed excessive outside-network connectivity, in turn

related to poorer performance. Here, results revealed a likely inability to confine

brain activation to specific functional areas in AUD, with the necessity to involve
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external regions, differently from healthy individuals; this aberrant involvement

of functionally different brain areas may probably be in line with the excessive

activation of brain regions observed through task-based fMRI studies. As men-

tioned previously, hypo-connectivity within the salience network was specifically

identified in alcohol drinkers when compared to smokers, suggesting a possible

specificity driving underlying mechanisms of alcohol and nicotine [Vergara et al.,

2017]. Here, drinking, as well as cigarette smoking, also reduced the connectivity

among the insula and different cortical areas. Contrasting results show, instead,

an increase in within-network connectivity for different resting state systems, in-

cluding the salience network [Zhu et al., 2015]. In line with previous investiga-

tions, this study revealed an increase in between-network connectivity, among the

salience and executive control systems. Being the insular cortex a central area for

reward processing, interoception, and, among many other functions, emotional

decision-making, all these growing evidence addressing its aberrant connectivity

corroborate its central role in the development and maintenance of alcohol addic-

tion. Good integration between different brain regions is necessary for the stability

and functioning of the network. Alterations in these systems may cause aberrant

behaviors, such as an excessive craving of alcoholic beverages leading to the in-

ability of patients to avoid relapse. Specifically, this observed hypo-connectivity

within the insular system can underlie a reduction in substance use awareness. It

is interesting to observe, however, some discrepancies present in functional connec-

tivity investigations. Functional brain activity can be easily influenced by external

factors. Even a subtle difference in the number of abstinent days from alcohol

can alter systems of hypo- or hyper-connectivity. Müller-Oehring and colleagues

[Müller-Oehring et al., 2014] , for example, identified increased between-networks

connectivity, opposed to a decreased within-network reduction in connectivity

strength, by evaluating long-term abstinent patients, similar findings as those re-

ported by Sullivan group [Sullivan et al., 2013] in abstainers. Patients from the

group of Zhu [Zhu et al., 2015] were, instead, short-term abstainers (less than two

weeks), and showed both between and within networks increase in connectivity.

Hypo-between network connectivity is also reported in the investigation carried

out by Vergara and colleagues [Vergara et al., 2017], which was, on the contrary,

assessing functional activity in drinking patients. It might be possible to hypothe-
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size that an increase in between-region connectivity appears during a withdrawal

state, opposite to a reduced functional synchrony likely induced by the presence

of ethanol.

1.4.5 New promises from network neuroscience: a graph theoretical approach

In the previous sections, I introduced the fast development of a novel emerging

field, grounded in the physics world of network science, and which has proven to

be incredibly precious for the identification of subtle topological organizations in

the network of the human brain.

However, so far, very few studies investigated alterations in the network organi-

zation of alcohol dependent patients [Morris et al., 2017, Sjoerds et al., 2015, Zorlu

et al., 2017]. Even though only few studies are present in the literature, a clear

trend has now emerged. Specifically, decreased functional connectivity strength

and efficiency of the overall network have been reported in alcohol dependent

patients in all these studies. In network science, the efficiency of a network in-

dexes how efficiently the information flows between different nodes and part of

the system. Interestingly, the reduction in the global system efficiency has been re-

ported to correlate with the duration of alcohol dependence [Sjoerds et al., 2015],

reflecting the disruption of network integrity with continuous alcohol drinking.

Alcohol dependence seems to be associated with a lower efficiency of local sub-

cortical brain regions of the reward system, such as the thalamus, pallidum, and

caudate [Sjoerds et al., 2015, Zorlu et al., 2017]. Conflicting findings report an

increase in local efficiency in alcohol dependent patients compared to poli-drug

users, reflecting stronger segregation of neural systems induced specifically by

alcohol consumption [Morris et al., 2017]. Interestingly, this alteration in local ef-

ficiency was normalized by a single dose of naltrexone, a common drug used for

the treatment of alcohol addiction [Morris et al., 2017]. This same study, in line

with previous investigations, revealed a reduction in global functional connectiv-

ity in alcoholic patients compared to both poli-drug users and healthy volunteers.

Decreased global efficiency was also observed in a different sample of poli-drug

users (comprising patients with an AUD diagnosis) coupled, however, with an in-

crease in the local degree of different regions, comprising the insula [Wang et al.,
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2015]. The imbalance between overall functional connectivity reduction and the

increase in local degree or local efficiency reported may reflect alterations of the

flow of information in specific functional areas. The presence of regions with a

higher efficiency may underlie an exaggerated role of these regions, such as the

insula, which might unbalance the system normal functioning.

Taken together, these few investigations show a trend towards a reduction in

the overall efficiency of the network, with an unbalanced integration of specific

regions involved in addiction in the whole system. This new and advancing

graph theoretical approach promises to identify finer alterations underpinning

brain pathologies, revealing the specific topological organization through which

different brain regions communicate with each other. Hence, more studies in this

growing field are necessary to shed light over the network functioning of alcohol

addiction, with a focus on the integration and segregation of the insula within this

complex brain system.

1.4.6 A new target for alcohol addiction?

Understanding brain functional alterations involved in addiction is of tremendous

importance for the development of new treatment options, improving the clinical

outcome of this chronic relapsing disorder. The research of a successful pharmaco-

logical or behavioral therapy in alcohol addiction is, however, extremely complex.

As I reviewed, different studies seeking neurological biomarkers of addiction re-

port discrepant results. Addiction is a highly heterogeneous disorder, and an

efficient treatment might depend on a number of distinct factors [Heilig et al.,

2011], comprising genetic variability, duration of the disorder, abstinence days

when starting the treatment, and many other factors. Few pharmacological treat-

ments are now available, and they do not show efficacy in all patients. The first

medication approved for alcohol addiction was naltrexone, an opioid antagonist,

found to reduce craving as well as the experienced reward when drinking alcohol.

Unfortunately, not all patients respond to treatments with naltrexone, with a rate

of response found to be highly related to a genetic variance. Alcoholics with a pos-

itive family history of addiction better responded to treatment [Monterosso et al.,

2001]. Another line of pharmacological treatment for alcohol dependence com-
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prises, instead, the use of a glutamate antagonist, acamprosate. The use of such

drug is related to evidence suggesting the development of a hypergluatametrgic

state in the brain with the progression of alcohol dependence [Heilig and Egli,

2006]. Similar to naltrexone, the use of acamprosate decreases craving, however,

its efficacy in the whole AUD population remains modest. Chronic exposures to

alcohol induce long-term and long-lasting neural changes, which can be challeng-

ing to reverse and avoid relapse for a good clinical outcome.

A new promising treatment option rely on techniques of neural stimulation

(figure 1.14). Transcranial Magnetic Stimulation (TMS) is a non-invasive method,

with both neurostimulatory and neuromodulatory characteristics. By delivering

magnetic pulses over the scalp, TMS generates electrical activity in targeted brain

regions, altering neuronal excitability [Spagnolo and Goldman, 2016]. This new

treatment approach has already been approved for treatment resistant depression,

through a stimulation of prefrontal cortices [Lam et al., 2008], and for obsessive

compulsive disorders. The most common approach, investigated as a possible

therapy for addiction with TMS, exploited the delivery of repetitive pulses over the

scalp, targeting the dorsolateral prefrontal cortex (DLPFC), a region easily reach-

able by TMS and demonstrated to reduce craving [Johann et al., 2003]. However,

studies exploiting this specific approach report contrasting findings, likely due to

small sample sizes, or by the lack of follow-up controls on alcohol consumption

[Del Felice et al., 2016, Herremans et al., 2012, Mishra et al., 2015]. The strongest

limitation of this specific stimulation protocol lies in the depth of the targeted re-

gions. As extensively reviewed, the insula plays a critical role in the maintenance

of addictive behaviors, with morphological and functional alterations. However,

this cortical region is embedded deeper in the brain. The development of a specific

magnetic stimulation coil, the H-coil, represented a tremendous development in

the field, as it allows targeting deeper brain regions, delivering a simultaneous bi-

lateral stimulation [Roth et al., 2007]. Having the chance to artificially manipulate

the activity of the insular cortex could represent a critical treatment option, as it

could give us the possibility to reverse the unbalanced and altered activity that this

region presents in addiction. Insular gray matter volume, as well as its functional

activity, is found to be correlated to the severity of alcohol addiction, meaning that

if we could act on its functioning we might be able to finally improve the clinical
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outcome of many addicted patients [Jung et al., 2007, Chanraud et al., 2007, Sjoerds

et al., 2015, Grodin et al., 2018]. Moreover, immediate smoking cessation induced

by lesions in the insular cortex seems to confirm the view that manipulation of the

activity of this central region may help control addictive behaviors [Naqvi et al.,

2007]. Unfortunately, H-coils are not widely diffuse, being a new and expensive

technique, not extensively corroborated, yet; hence, not many studies addressing

its functionality are present in the literature. An impressive study, however, tested

this specific coil stimulating the insula and prefrontal cortices on smoking addicts,

with very promising results in the reduction of cigarettes craving [Dinur-Klein

et al., 2014]. Clinical trials in alcohol-addicted patients, testing the efficacy of this

encouraging treatment option, are now ongoing, hopefully leading to a final and

efficient therapeutic mechanism.

Figure 1.14: Schematic representation of TMS functioning

Specifically, the evaluation of changes, both at a behavioral and at a brain func-

tional level, after the application of a treatment exploiting deep TMS is under in-

vestigation ( http://sybil-aa.eu/). By scanning treatment-seeking patients with

MR technologies before and after several sessions of TMS, it will be possible to

look at changes in brain activity patterns induced by magnetic perturbations. Ex-

ploiting the emerging field of network science, extensively reviewed, it is possible

to specifically evaluate how the brain network organization can be altered. As

the insular cortex has been found to play an excessive role in the overall func-

http://sybil-aa.eu/


1.4 neuroimaging of the addicted brain 45

tional network of AUD (Bordier et al., in prep), it would be possible to address

how its embedding within the system may change after repetitive stimulations.

Indeed, we could consider a deep TMS treatment as a focal perturbation of con-

nectivity networks. This approach can help in a finer understanding of how the

flow of information through the insular cortex can be altered and manipulated.

If coupled with a successful behavioral outcome, such as a reduction in alcohol

craving, the evaluation of network characteristics before and after treatment could

highlight possible predictors of response as well as biomarkers of alcohol addic-

tion. This novel treatment approach is now promising, but in need of thorough

investigations and clinical assessment. Altogether, alterations in the role played

by the insular cortex in AUD are now well established, from brain morphology to

abnormal functional activity patterns. Alcohol addiction is a severe and chronic

disorder; it is not only affecting patients’ lives, but also their families, with social,

economic, and health consequences. The identification of biomarkers and possi-

ble predictors of response to treatment for this disorder has a crucial importance.

Merging novel neuroimaging techniques, with advanced methodological and ana-

lytical approaches, together with the use of new treatment options, can have an im-

portant impact over the understanding of the biological basis for alcoholism. Still,

more work is needed to shed light over the specific malfunctioning mechanisms

of the insula in alcohol addiction, being the present literature rich of controversial

results. This direction, however, is now promising, given the growing evidence

of the exaggerated and altered role played by this interoceptive region in alcohol

addiction, likely being the final target of this chronic brain disease.

In the present work, I will try to go into the details of the altered functional

mechanisms in alcohol dependent patients, through the evaluation of a cross-

sectional study assessing differences between a cohort of patients and a sample

of healthy volunteers. I will explore these characteristics by means of a graph

theoretical approach, with a specific emphasis over the modular architecture iden-

tified in these samples. Following, I will test the efficacy of the novel proposed

treatment based on a deep brain stimulation of the insular cortex. However, be-

fore dwelling into the details of these clinical study, I will have to address several

methodological issues now present in the world of network science, such as how
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to deal with head movements and their correction during preprocessing steps, and

how to properly threshold the resulting functional connectivity matrices.



2 E VA L U AT I O N O F M E T H O D O LO G I C A L

I S S U E S

As disclosed in the introductory chapter, before dwelling into the clinical aspects

of this work I will explore some open questions present in the methodological

façade of the functional connectivity world.

Indeed, despite the growing confidence in handling complex network systems,

a number of critical methodological issues remains open. Despite the strengths

of this approach, several critical questions need to be considered for the sake of

populations’ comparability. Among these, the sparsification procedure is one of

the most debated aspects now present in the scientific literature. This controversy

is particularly crucial for the evaluation of functional brain networks, which, as

previously mentioned, are by definition complete networks. However, complete

networks are intractable and spurious correlations might affect the majority of

links. For this reason, thresholding seems an essential step. Nevertheless, it is

argued that the application of a specific threshold might substantially impact the

topological organization of the final extracted network, and this uncertainty has

now led to a trend in the community to completely avoid this procedure and

directly work with full systems. Yet, the lack of a sparsification procedure might be

misleading and hinder the real organization of the network. Deeper investigation

of this aspect is thus crucial to subsequently carry out accurate network analysis.

Another crucial aspect that might hinder the topological organization of the net-

work, by injecting spurious correlations within the system, stands in the presence

of motion artifacts in functional brain data. In the following chapter, I will thus

face another critical debate present in the resting-state functional connectivity field,

related to the correction of small head movements that the participant can make

while laying in the MRI scanner. The finding of the dramatic effects that motion

can have on resting-state functional connectivity data resulted in an explosion of

novel strategies aiming at the removal of such artifacts. Unfortunately, the lack

of a ground-truth functional architecture of the human brain make it extremely

47
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hard to evaluate the effects of a thresholding procedure and the efficacy of the

introduced pre-processing techniques, which might “clean-up too much”. Both

operations might, indeed, risk to remove genuine neural correlates together with

artifactual signals.

These issues are particularly relevant when we compare clinical populations,

where we need to maximize comparability across different samples. Given these

strong impacts, I dug into more details, and developed a brief methodological

study with the aim to evaluate specific effects of the thresholding procedure, ques-

tioning the existence of an optimal threshold point, as well as effects of head

movements over functional connectivity data and their modulation by different

motion-correction techniques.

Specifically, I will introduce procedures to generate null models of a functional

connectivity network, i.e. a randomized version of the graph, and tools grounded

in information theory to measure the distance between the empirical network and

its corresponding random counterpart. This approach enables assessing the ef-

fects of sparsification or motion correction on the structure of the network at var-

ious scales by measuring the gain in structural information with respect to the

null model, thus circumventing the lack of a ground-truth structure. Following

a description of the methods, I will apply this approach in an exemplary patient-

control study, to demonstrate its use, and will extend it to the demonstration of the

existence of an optimal threshold for network sparsification, and to the evaluation

of various pipelines for the removal of the effects of in-scanner head motion.

2.1 thresholding functional connectivity networks

As I thoroughly reviewed, the study of the brain as a complex network experi-

enced a tremendous growth in the past decade. Yet, it still faces major debates.

Indeed, given the promises of handling complex networks, a growing num-

ber of studies resorted to the application of graph theoretical methods to char-

acterize both the healthy and the diseased brain [Fornito et al., 2015, van den

Heuvel and Hulshoff Pol, 2010]. This is mostly achieved by means of resting-state

functional connectivity (RSFC) measurements, where inter-regional correlations in
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spontaneous low-frequency oscillations (0.01 Hz – 0.1 Hz) of brain activity can be

extracted, mapped as a graph, and thus reflect the underlying brain functional

architecture.

Despite its increased popularity, this approach still experiences a lack of agree-

ment on several methodological aspects related to network construction [Hallquist

and Hillary, 2019], possibly hindering replicability and study reliability. One of the

most contentious methodological issue lays in network sparsification. Specifically,

functional connectivity networks are generally derived from pairwise correlations

of spontaneous fluctuations extracted from each pair of brain regions, resulting,

by definition, in a fully connected weighted matrix. However, dense networks are

computationally demanding. In addition, weak links, which represent the over-

whelming majority of edges, might contain spurious correlations, and the inter-

pretation of the biological meaning of negative links is somewhat dubious [Saad

et al., 2012, Murphy and Fox, 2017]. For these reasons, it is common to artificially

remove such links from the system, thus working with sparse networks, where all

the entries below a given value (the threshold) are set to 0. Ideally, this approach

would ensure the removal of spurious links, and maximize the identification of

the underlying functional architecture. To achieve this, the application of a global

threshold to weighted dense matrices is the most popular approach, thus reduc-

ing the density of the graph. Given the importance of this procedure, a growing

number of thresholding techniques are reported in the literature [Hallquist and

Hillary, 2019, van den Heuvel et al., 2017a, Bordier et al., 2017, Santarnecchi et al.,

2014, Lohse et al., 2014, Schwarz and McGonigle, 2011]. The two most common

approaches rely on the application of an “absolute threshold” or a “proportional

threshold” [van den Heuvel et al., 2017a]. Yet, both suffer from several shortcom-

ings, resulting in an arbitrary choice of the final threshold applied. The former

approach requires the choice, a priori, of an absolute threshold t, where all the

links below this given value are excluded from the network and set to 0. An issue

associated to this method lays in the risk to obtain networks with different levels

of density (defined as the proportion of all possible connections in the network)

which might be significantly problematic when addressing case-control studies,

as patient groups may have a different edge-weight distribution compared to con-

trols. Given that many graph topological metrics are sensitive to the number of
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edges in the network, the latter approach –proportional thresholding- tries to over-

come this aspect [Achard and Bullmore, 2007]. Here, the density of the network

is fixed, only retaining a proportion of the strongest edges in the network. To

rule out the possibility that subsequent results may be driven by the choice of

this proportional threshold, many studies evaluate a range of different densities

(e.g. from 5% to 25% of density) [Hallquist and Hillary, 2019]. Again, also this

approach suffers from a similar drawback as the application of an absolute thresh-

old: in case-control studies, patients often present a lower functional connectivity

strength, and fixing a specific density may include weaker and spurious links in

the patient group, while possibly discarding valuable information in the control

group. It is therefore suggested to give closer attention to the choice of the thresh-

old, controlling either for individual density or functional connectivity strength,

when possible [van den Heuvel et al., 2017a].

Still, the choice of the threshold in this framework remains arbitrary. Many

other solutions have been proposed, such as “soft thresholding” [Schwarz and

McGonigle, 2011] or “windowed thresholding” [Santarnecchi et al., 2014]. Both

methods stress the importance of negative and weaker connections, which might

not be related to experimental noise, but contain valuable information. For exam-

ple, Santernecchi and colleagues [Santarnecchi et al., 2014] reported a high cor-

relation between weakest links and subject-specific features, thus proposing the

application of “windowed thresholds”, where the average edge weight of connec-

tions is fixed within a certain range. Others, instead, revealed the randomness of

these weaker and negative connections [van den Heuvel et al., 2017a, Zalesky et al.,

2016]. Other methods introduced for the analysis of brain networks comprise, for

example, the minimum spanning tree (MST; [Tewarie et al., 2015], or efficiency cost

optimization (ECO; [de Vico Fallani et al., 2017]. The former interestingly defines a

fully connected sub-network minimizing the link weight while capturing essential

properties of complex networks. Conversely, the latter approach aims to remove

weakest connections while ensuring an optimal trade-off between the efficiency

and the economy of the network. Overall, an increasing number of threshold-

ing techniques has been introduced, yet, the topic is still center of a heated and

opened debate, concerning the significance of negative links, the “correct” density

retained, or the “correct” significance level of a specific edge.
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All these methods, however, do not consider a crucial aspect that should be

the center of attention when sparsifying a matrix: the underlying topology of the

network. Indeed, it is possible that the removal or the inclusion of key edges can

alter both the mesoscopic and microscopic topology of a network [Esfahlani and

Sayama, 2018, van Wijk et al., 2010]. Under this framework, a percolation-based

procedure has been proposed [Gallos et al., 2012, Bordier et al., 2017, Esfahlani

and Sayama, 2018]. A percolation analysis [Gallos et al., 2012] is a data-driven

approach, which identifies a sparsification threshold proved to maximize the mod-

ular information that can be extracted from the network [Bordier et al., 2017]. This

procedure iteratively removes all the weakest edges, to the point where the net-

work starts breaking apart. This ensures the connectedness of all nodes in the

network, and maintains its topological integrity [Esfahlani and Sayama, 2018] (fig-

ure 2.1).

In principle, the search for an optimal trade-off between discarded spurious cor-

relations and retained structural information from the network should be the main

goal in the sparsification process. However, there is no ground truth for real-world

networks, and the identification of a correct approach, as extensively reviewed, is

not straightforward and is often considered an arbitrary choice. Adding to this,

it is now argued whether the sparsification procedure itself might actually inject

artifacts within the network of interest. In line with this idea, a recent study re-

vealed the introduction of some complex features in the network as a pure effect

of thresholding [Cantwell et al., 2019]. Considering the lack of agreement and this

arbitrariness, together with an uncertain significance of the weakest and negative

links, there is now a trend in the literature to completely avoid the application

of a threshold, directly working with fully connected networks [Schlesinger et al.,

2017, Goulas et al., 2015, Bassett et al., 2011, Rubinov and Sporns, 2011].

In the present work, we try to overcome some of these methodological aspects,

and tested the effects of global thresholding on structural information by resort-

ing to a novel tool grounded in information theory. Specifically, we embrace the

framework of maximum entropy random graph models in its classical and spectral

perspective, based on the pioneering work by De Domenico and Biamonte who en-

abled the extension of Von Neumann entropy to complex networks [De Domenico

and Biamonte, 2016]. Specifically, this approach provides an information-based
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measure that takes into account the entire network structure [Squartini and Gar-

laschelli, 2017]. In lay terms, we can use spectral entropies as a tool to assess

the structural information contained in a network as function of a scale factor,

β [Nicolini et al., 2018, De Domenico and Biamonte, 2016]. The strength of this

formalism lays in the dynamical description of a diffusion process taking place

over the network. Hence, spectral entropies provide a scale-resolved, information-

based metric to define and optimize network models. The same framework en-

ables the measure of distance between networks which can be rigorously defined

in terms of quantum relative entropy, or information divergence [Wilde, 2013].

This quantifies the information gain when a model is used to explain an empirical

observation, and gives us a measure of how much two networks are distant in

terms of entropy, at all scales. Through the implementation of models of maxi-

mally random networks with specific local or global properties, we can evaluate

the deviation of these random systems from their empirical counterpart at dif-

ferent scales. Specifically, in our case we fit classical maximum entropy network

models to RSFC empirical networks, and compare them with their maximally ran-

dom counterparts. A strong advantage of spectral entropies is the possibility to

explore differences between real and random networks, at all possible thresholds

and scales. For this reason, we seek the existence of an optimal point where the em-

pirical network is maximally distant, at all scales, from its random counterpart. By

revealing a threshold maximizing the divergence of a network from a null model,

we can prove the existence of an optimal balance between the removal of spurious

links and precious structural information. Hence, we can provide a means for

the choice of the threshold and its identification, in a completely data-driven and

theoretically sound procedure.

In the present thesis I will not dwell into all the mathematical details of spec-

tral and relative entropies and the aforementioned random models, which can be

found in Nicolini et al. [Nicolini et al., 2019], yet, I will try to disseminate in lay

terms the power of these methods.

First, I will show the effects of the thresholding procedure over a functional

connectivity network from a healthy populations, identifying an optimal thresh-

old points which maintains the network fully connected. Afterwards, I will re-

port an example of an application of this procedure on a case-control study with
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schizophrenia patients. Indeed, the application of this specific threshold maxi-

mizes the structural information that can be extracted, and we could, thus, reveal

modular alterations that were never identified before [Bordier et al., 2018].

2.2 materials and methods

In this methodological section I will briefly introduce the novel methods that we

employed to evaluate the thresholding effects over functional networks. First, I

resorted to two random network models used to fit the empirical systems. The

technical details of these models can be found in Nicolini et al. [Nicolini et al.,

2019]. To address the distance between the generated random networks and the

empirical resting-state network, I applied the spectral entropy formalism, and de-

fined a measure of network distance based on relative entropy.

2.2.1 Data and preprocessing

To evaluate the effects of different thresholding on the network structure, we have

chosen a standard available resting-state network computed as a group average of

27 healthy volunteers as in Crossley [Crossley et al., 2013]. Functional data was

acquired with a Siemens Tim Trio 3T scanner, with a TR=2s, TE=31ms, recorded

for 5 minutes. Regional timeseries were extracted for 638 nodes, head rotations

and translations together with their derivatives and mean cerebrospinal fluid time

series were regressed and band-passed (0.01 – 0.1 Hz). The functional connectivity

matrix was derived by means of pairwise Pearson correlations, normalized by the

Fisher transform, and finally averaged over each subject. The network corresponds

to the unthresholded version made publicly available through the Brain Connec-

tivity Toolbox (BCT, [Rubinov and Sporns, 2010]). We leverage this network to

evaluate the effects of thresholding on the system. For this purpose, we apply a

range of different absolute threshold, from w = 0.1 till the point when the network

starts breaking apart. Here, absolute thresholding corresponds to the removal of

all edges with weight wij < t, where t is a real positive number. With the term

percolation threshold we mean the highest value of absolute threshold such that
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the undirected network remains connected, hence with one connected component.

The percolation analysis of the Crossley network is shown in Figure 2.1.

Figure 2.1: Percolation analysis for the group average matrix. The blue lines The blue
lines corresponds to threshold values from 0.1 to 0.5, the orange line is the
percolation threshold, where the largest connected component starts breaks
apart.

2.2.2 Random Graph Models

In network neuroscience null models have been extensively used for the statistical

testing of hypothesis, namely, to determine whether specific topological metrics

are informative or not for a given system when compared to a random network

[Fornito et al., 2016]. An example of a straightforward method used to generate

random networks relies on rewiring algorithms [Maslov and Sneppen, 2002]. Such

systems iteratively reshuffle graph links, while maintaining constrained topologi-

cal features. However, due to the high number of rewirings needed, this approach

has a very large cost and results to be biased [Cimini et al., 2019]. For these reasons,

to build maximally random counterparts of the empirical networks, we resort to

a more theoretically sound method based on first principles, grounded in infor-

mation theory and statistical mechanics. This is based on the Maximum Entropy

method [Park and Newman, 2004]. This framework lays its basis in the connection

between information theory and the physics of many interacting elements [Cimini

et al., 2019]. The main concept of this method is the notion of Entropy, which can

be defined as a measure of uncertainty. In lay terms, we have zero entropy when

observed events only have one possible state. Contrary, if we are completely igno-
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rant with respect to all the possible states of a system (i.e. maximum uncertainty),

the entropy is maximum. From the principle of maximum entropy we can build

null models by means of the Exponential Random Graph (ERG) model. Here, null

models are defined as objects matching some properties of an empirical network,

while remaining maximally non-committal with regard to all other properties not

explicitly specified. Null models are thus used to describe maximally random

networks with specific features. Importantly, within the Maximum Entropy for-

malism a model is not simply defined as a single network, but as a probability

distribution over many possible networks. Indeed, from a set of given constraints

observed in an empirical system, an ensemble of networks is constructed, resulting

in a probability distribution over all the possible allowed configurations [Squartini

and Garlaschelli, 2017]. The model is hence defined by the probability distribution

that maximizes entropy (i.e. gives the maximally uncertain solution). This results

in the construction of networks that have the same properties enforced from the

empirical system, but are otherwise maximally random. This is crucial to detect

statistically significant patterns in real-world networks. A schematic representa-

tion for the creation of null models is depicted in figure 2.2. For example, we

could create a network simply by fixing the number of nodes and edges, where the

pattern of connectivity links is drawn randomly (defined as Erdos-Renyi graph).

From this we can compute some topological metrics, if such metrics match those

evaluated from a neural graph, we could conclude that these features of the brain

network are completely random.

Overall, null models should not be either too complex or too simple. Indeed, by

building random networks with too few parameters we would risk to oversimplify

our system. On the contrary, if we impose too many constraints on our model, we

might over-fit it, and the random system would perfectly match the empirical data,

describing all its features [Betzel and Bassett, 2017].

The application of the ERG models formalism to the study of brain connectiv-

ity networks allows a better evaluation of the complexity of the system and can

be crucial to assess complex brain properties [Azondekon et al., 2018]. Yet, very

few studies explored the strong potential of this approach as applied to the neu-

roimaging field [Simpson et al., 2011, Sinke et al., 2016, Obando and De Vico Fal-

lani, 2017, Azondekon et al., 2018]. First application of this methodology to the
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study of brain networks comes from the study of Simpson and colleagues [Simp-

son et al., 2011], where they systematically assessed the advantages in using ERG

models to model, analyze, and simulate whole-brain networks. Importantly, they

underlie their utility as means to assess simultaneously a number of complex net-

work properties. As an important contribution, this study suggests the powerful

insights that this family of models can contribute to the investigation of the brain

architecture, from its local to global properties, by simulating single subjects’ orig-

inal networks. Furthermore, ERG models appeared particularly promising for

the construction of group-based resting-state functional networks [Simpson et al.,

2012]. Application of this formalism has proven successful also to reproduce EEG

brain networks [Obando and De Vico Fallani, 2017], where ERG models could cap-

ture both integration and segregation topological properties. Such findings were

further confirmed by the application of this family of models to combined MEG

and fMRI data [Azondekon et al., 2018], where it was possible to statistically repro-

duce main properties of brain networks. Overall, these few studies importantly

revealed the power of this formalism as applied to the study of the brain topo-

logical architecture. Importantly, one of the main contributions of this approach

comes from the possibility to explore simultaneously several local properties and

subsequently evaluate how they can give rise to global topology [Sinke et al., 2016].

Through this approach we can, indeed, create families of model networks sharing

similar properties of the empirical data, and provide a more robust network-based

diagnostic [Azondekon et al., 2018].

Given the unbiased result and more analytically tractable features of this model,

here, we embraced the Maximum Entropy formalism. Specifically, we generated

random models for RSFC networks that are complex enough to match simple lo-

cal features of the network, but remains uninformative over higher order patterns.

Importantly, these models have to take into account the continuous nature of link

weights, the density and weighted structural patterns. From these, we analyti-

cally build the maximally random counterpart of empirical networks, where only

specific properties are maintained, on average.

The first model employed, the simpler, constrains the number of links and total

weight of our thresholded resting-state network, together with an external thresh-

old parameter t. This model is dubbed Continuous Weighted Thresholded Enhanced
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Random Graph Model, CWTERG. This simple model describes an ensemble of net-

works whose total weight and number of links are constrained, thus it can be con-

sidered an extension of the Erdos-Renyi random graph to thresholded weighted

networks. The second model we used is more complex in nature, as both the de-

gree and strength sequences of the random network are constrained to match the

empirical ones. Importantly, this model also considers the inhomogeneity of the

degrees and strengths present in the empirical network. We refer to this model

as the Continuous Weighted Thresholded Enhanced Configuration Model (CWTECM).

The technical and mathematical details of these models can be found in [Nicolini

et al., 2019] and in appendix A of this thesis.

Figure 2.2: The real network G? is the source of constraints on the ensemble. In this
case, the constraints are the degrees k∗ of G?. The microcanonical approach
relies on the link rewiring method to numerically generate several network
configurations, each with exactly the same degree sequence of G?. The prob-
ability P(G) of a network G in the ensemble is non-zero only for the subset
of graphs that realize the enforced constraints exactly, as indicated by the
schematic probability distribution. Provided the sampling is unbiased, P(G)
is uniform for these graphs. The canonical approach obtains P(G) by maxi-
mizing the Shannon entropy S while constraining the expected degree values
within the ensemble and then maximizing the likelihood LL of P(G?) to find
the ensemble parameters θ?, such that the expectation values of the degrees
match the observations in G?. Thus, P(G) is non-zero for any graph, ranging
from the empty to the complete one, as indicated by the schematic probability
distribution. From [Cimini et al., 2019].

Thanks to these models, we finally get two different random counterparts for

the resting-state empirical network, and we can evaluate how distant the brain
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system is from its random at all scales. We achieve this by means of spectral and

relative entropies.

An appendix is present at the end of this thesis to clarify the mathematical

formulations underlying the classical formalism of the maximum entropy random

graph models and the two null models introduced in this work.

2.2.3 Spectral and relative entropies

To address how far from random a brain network can be, we embraced Maximum

Entropy random graphs models. However, the simple definition of these models

is not enough to disentangle the significance of the information contained in the

network at all scales. Hence, to quantify the similarity between a network and

its randomized counterpart, we resort to the Von Neumann relative entropy. This

measure of spectral entropy is crucial to capture the intrinsic multiscale structure

of brain networks. It represents a natural generalization of classic Shannon en-

tropy, which, thanks to the work of [De Domenico and Biamonte, 2016] can be

extended as a means to define distances between pairs of complex networks. In

contrast to Shannon entropy, here the classical probability distribution is replaced

by a density matrix ρ that describes the result of constraining the diffusion prop-

erties on the network. In details, the Shannon entropy replaced within the Von

Neumann Entropy can be represented as:

S(ρ) = −Tr [ρ logρ] , (2.1)

where, the density matrix ρ is defined as follows:

ρ =
e−βL

Tr [e−βL]
. (2.2)

Similarly to its classical form, Von Neumann entropy is a mathematical function

that corresponds to the amount of information contained in a system. Indeed, this

measure can quantify the information contained at all scales of a network, as a

function of a scale factor β [Nicolini et al., 2018]. The role of the β parameter is

crucial, and provides an important means to assess the network structural infor-

mation at different scales. An intuitive description of this formalism is based on
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the diffusion of a random walker over the network. β represents a normalized dif-

fusion time of the diffusion process. We can imagine a random walker diffusing

over the network, it will first diffuse over local nodes, to finally reach diffusion

at the larger component scale when we tune the scaling factor. Specifically, in

the β → 0 limit, the Von Neumann entropy carries information related to local

connectivity patterns. If we move to the limit of β → ∞ it will describe the large

scale structure of the graph. If the network comprises modules of densely inter-

connected nodes that are more loosely connected with the rest of the network, the

random walker will spend more time within the module, generating a plateau in

distribution of spectral entropy as a function of β. The cartoon depicted in figure

2.3 shows a clearer explanation of the behavior of spectral entropies. Comparing

the spectral entropy of an empirical network with that of a null model, e.g. ob-

tained by randomization of the edges of the original network, enables the analysis

of the structural information at different scales. For small value of β, the spec-

tral entropy reflects node-wise structure, and differences between the empirical

network and a null model obtained by constraining local features is small. For

larger β, the spectral entropy reflects structure at larger scales, e.g. the presence of

modules that cannot be captured by the random model, and differences are larger.

Thanks to its intrinsic properties spectral entropy can disentangle a large number

of properties of the network, aggregated in a single quantity.

Of critical relevance, Von Neumann entropy allows the definition of a metric for

the comparison of two different networks, which are represented by their respec-

tive density matrices (ρ and σ). Through this, we can measure network similarity,

by means of relative entropy S(ρ‖σ), a positive quantity which results zero if

and only if ρ = σ. This powerful approach allows the crucial quantification of

similarity between an empirical network and its random counterpart. Namely, we

can assess, from local to large scales, how much a brain system is distant from

random.

Here, we compared real-world networks with their randomized counterparts

defined from both maximum entropy models CWTERG and CWTECM. As men-

tioned, the two models preserve different degrees of complexity. The CWTERG

model constrains local features. As a result, the randomized network, when com-

pared to the empirical, will show very similar spectral entropy in the β → 0
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Figure 2.3: Von Neumann spectral entropy of a highly ordered network (orange), and its
randomized counterpart (blue). For small values of β the spectral entropy
reaches its maximum value S = lnn, while in the large β limit it tends to
the logarithm of the number of connected components (lnC) (zero for weakly
connected graphs). Intermediate values of β highlight mesoscopic structures.
The height of the plateau is related to the overall modularity of the network,
while its positioning on the x-axis depends on network link density. Differ-
ently from the highly regular ring of cliques (orange), the randomized net-
work (blue) shows no structure at all scales, hence its Von Neumann entropy
decreases rapidly. Panel B shows that low β correspond to local features while
large β describes large scale features.

but will strongly differ at larger β where the local properties imposed cannot

model the mesoscopic structures. The outcome should differ when consider-

ing the CWTECM, which forces the model to maintain degree and strength se-

quences, two global features that might model more complex features of the net-

work. Therefore, we would expect similar values of relative entropy not only at

very small β, but also at a larger domain.

2.3 results and discussion

As mentioned previously, one potential issue in the rsFC field lays in the choice of

the thresholding level, which might affect to a great extent the subsequent graph

theoretical analysis [Bordier et al., 2017]. Here we use our theoretical framework

to explore the effects of thresholding in functional connectivity networks, and to

evaluate the existence of an optimal thresholding point.

To address this issue, we considered an empirical network of resting-state func-

tional connectivity from a cohort of healthy participants, and we applied different

levels of absolute thresholds (from 0.10 till the point where the network breaks
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apart). Hence, we first computed the spectral entropies of thresholded networks

and corresponding null models, at all scales. We then used relative entropy to

quantify the information theoretic distance as a function of threshold.

Figure 2.4 shows spectral and relative entropies for the empirical network and

both models, at all the investigated threshold points. First, we observe that at

lower threshold levels (depicted in light blue) the diffusion time of the empiri-

cal network is much faster, reflecting the effect of network density. As expected,

diffusion time at all scales decreases with increasing sparsity, as shown by the

right-shift of the resting-state network spectral entropy curves in panels A and D.

This same thresholding effect is clear also when observing the spectral entropy

curves of both null models (dashed lines in panels A, D) which, in turn, reveal

a right-shift dependent on network density. However, these shifts in the random

networks do not reach the same larger β domain as their empirical counterpart.

Another relevant effect of thresholding is the revelation of a clear-cut mesoscopic

diffusion pattern for increasingly sparser networks. Indeed, large scale structures

of the empirical network are emerging only for higher thresholds (darker blue), as

reflected in figure 2.4A by the presence of "information shoulders", i.e., parts of

the spectral entropy curve where the slope changes relatively fast . Yet, this phe-

nomenon is not equally present in the two null models. Should the thresholding

procedure highlight mesoscopic structures only accounted by local constraints, we

would expect similar high values of S on both the thresholded random counter-

parts of the empirical graph. However, the CWTERG shows no indications of a

high-level organization at any threshold, as seen by the sharply falling entropy

within a very small range of β (Figure 2.4C). Indeed, as previously demonstrated,

the CWTERG destroys the local structure by completely shuffling nodes’ neigh-

borhoods. As a result, diffusion rapidly covers the whole network, as every node

forms connections to any other node with uniform probability.

On the other hand, the spectral entropy of the CWTECM closely corresponds

to the one of the empirical network over a broad range of β values. This result is

clear once interpreted in terms of the preservation of the local structure described

by the degree and strength sequence that is enforced by the CWTECM. Noticeable

differences only appear at large scales for increasing thresholds. In accordance

with the results of reference [Cantwell et al., 2019], we observed that as a function
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of the threshold, the community structure is the only feature that is not accounted

for by local properties.

This is even more evident from the observation of their respective relative en-

tropies, in panels B and C. The resulting relative entropy from the CWTERG is

very high, and attains its maximum at slightly lower values of β than for the

CWTECM: it takes less time for a random walker to explore a random network

than a complex network where modules and local structures may hamper the dif-

fusion process. Moreover, for both cases, relative entropies accentuate the effects

of thresholding, as they present higher values with higher levels of threshold, and

reach their maximum peak around the percolation point, just before the network

starts breaking apart.

Importantly, the results in Figure 2.4 demonstrate that in both cases the maxi-

mal distance in spectral entropy of the empirical network from the null model is

obtained at percolation level. This is an indication that the community structure

is highlighted around the percolation point. Indeed, the rapidly falling entropy of

the CWTECM for this specific sparsity indicates uniformity at large scales.

The importance of the thresholding procedure revealed by this approach, is also

reflected by the very small relative entropies of the CWTECM at lower thresholds.

Indeed, at lower thresholds (0.1 6 t 6 0.4) the empirical network follows its

random counterpart even at large scales, confirming how the correct threshold is

crucial for the identification of clear-cut structures.

Taken together, these results show that complete, unthresholded network is

close to its null model and presents a high level of randomness. This is due to

the presence of spurious correlations that affect particularly the weaker edges. Re-

moval of weak edges by thresholding is beneficial, and the distance between the

empirical network and its random version is maximal at percolation point, just

before the network starts breaking apart. After this point, the network is not fully

connected, with single nodes separated from the rest, a condition which would

not ensure, for example, optimal detection of the underlying community struc-

tures. For this reason, we did not subsequently evaluate thresholding approaches

that would not ensure full connectedness of the system (e.g. ECO, [de Vico Fallani

et al., 2017].
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This is the sparsification threshold that strikes the optimal balance between re-

moval of spurious correlations and undesirable suppression of structural infor-

mation that may be contained in the weaker edges. Importantly, this result is

independent of the particular choice of null model.

Figure 2.4: Spectral entropies and relative entropies of the group average brain functional
network compared to its randomized counterparts. Blue shaded lines repre-
sent networks thresholded at absolute values from 0.1 to 0.5. Orange lines de-
note the network at percolation threshold. Solid lines are the curves relative to
the empirical network. Dashed lines are the curves relative to the randomized
networks.Panels A,B show the results with respect to the CWTECM model.
Panels C,D show the results with respect to the CWTERG model.

2.4 the application of a percolation threshold to

case-control studies

Here, we could prove by means of first principles methods the critical impor-

tance of the application of a sparsification procedure to complex systems. More

importantly, we revealed the existence of an optimal thresholding point, which

crucially allows the identification of higher-order level structures. A number of

suboptimal approaches have been applied in network neuroscience, ranging from

proportional thresholding, i.e. the imposition of a predetermined network density,

to the avoidance of any sparsification at all. Hence, we hypothesize that previous

studies might have failed to reveal a clear-cut high level structure in functional



64 evaluation of methodological issues

brain networks by applying the same absolute or proportional threshold to differ-

ent populations.

For this purpose, I will briefly present here an example of a case-control study

where we investigated differences in the modular architecture after the application

of a percolation thresholding. Complete dissemination of this study can be found

in [Bordier et al., 2018]. In details, we assessed differences in the modular orga-

nization in a sample of patients affected by schizophrenia (SCZ) compared to a

sample of healthy controls (HC). Schizophrenia is a complex and devastating psy-

chiatric disorder, it severely affects patients and relatives’ lives. For these reasons,

it is one of the most studied psychiatric disorders in the neuroscientific community.

Specifically, aberrant functional connectivity has been thoroughly reported in a va-

riety of studies [Friston and Frith, 1995, Liu et al., 2008, Calhoun et al., 2009, For-

nito et al., 2012, Anderson and Cohen, 2013]. In addition, with the use of a graph

theoretical approach, functional connectivity strength as well as Modularity were

found aberrant in SCZ patients, , related to an imbalance between functional inte-

gration and segregation [Bassett et al., 2008, Yu et al., 2011, Alexander-Bloch et al.,

2012, Yu et al., 2012, Lerman-Sinkoff and Barch, 2016].

Here, we specifically investigate the modular organization, resorting to a com-

munity detection function that we previously proved to be resolution-limit free.

This method relies on Asymptotical Surprise, a fitness function rooted in prob-

ability theory [Nicolini and Bifone, 2016]. Interestingly, the application of this

specific algorithm revealed a heterogeneous modular organization of the human

brain, with a distribution of communities spanning multiple scales [Nicolini et al.,

2017]. Thanks to this approach, it is possible to identify even more subtle alter-

ations in the structural architecture of the functional brain, allowing to appreciate

differences across groups that might not be detected by more common resolution

limited methods.

Through the application of both a percolation threshold and a Surprise algo-

rithm, we proved the presence of specific local fragmentations within the patient

group that were not previously identified but that might be key for the under-

standing of schizophrenia functional aberrancies.

This section does not specifically aim to unravel the functional alterations under-

lying schizophrenia, but intends to highlight the benefits of a percolation thresh-



2.4 the application of a percolation threshold to case-control studies 65

olding as applied to a case-control study. For this reason, I will not dwell into all

the details of the study, which can be found in [Bordier et al., 2018].

2.4.1 Matherials and Methods

We selected MRI data from the open COBRE database ( http://fcon_1000.projects.

nitrc.org/indi/retro/cobre.html, [Ambite et al., 2015]). This specific dataset

involves one group of 91 healthy controls (64 males, 14 females) and one group of

78 patients diagnosed with schizophrenia according to the DSM-IV (65 males, 26

females). Age ranged from 18 to 65 years in both groups.

EPI images at rest were acquired with a Siemens MIND TRIO 3T Scanner, with

a TR=2s and TE=29ms. More details can be found in [Çetin et al., 2014]. A

total of 150 volumes were acquired for each subject. Standard preprocessing was

done as in [Bordier et al., 2018], based on the regression of 6 standard movement

parameters extracted with SPM8.

Following, BOLD time series were extracted for each participant from 638 brain

regions, by averaging the voxel timeseries within each ares, defined by a template

[Crossley et al., 2013], and band-passed (0.01–0.1Hz). Functional connectivity was

defined in terms of pairwise Pearson correlations at a subject’s level. Finally, a

group-level functional connectivity matrix was calculated by averaging individu-

als’ matrices after Fisher-transform.

As already introduced, we applied a percolation threshold to both groups in

order the reduce link density and maximize the structural organization that can

be extracted from the network. Following this sparsification procedure we applied

the Asymptotical Surprise quality function, as means to detect modular architec-

ture.

Furthermore, by means of the two null models introduced in the previous sec-

tion, I describe the relative entropies for both groups; first with the application of

a common proportional thresholding, then at percolation.

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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2.4.2 Results and discussion

To evaluate differences in overall functional connectivity at the group level, we ex-

amined the edge-weight distribution for both full networks, depicted in figure 2.5.

From this, we observed a significant left-shift in the average z-score distribution of

the SCZ patients matrix (p<1016). This is line with previous findings of a substan-

tially reduced global functional connectivity in schizophrenia [Lynall et al., 2010].

Similarly, the SCZ group presented a significant reduction in global efficiency (HC:

0.32; SCZ: 0.23), further demonstration of altered network integration in patients.

Figure 2.5: Edge-weight distribution of
the adjacency matrix for the
two experimental groups.

Relative entropies

To better appreciate the advantage of the proposed percolation thresholding we

show here the relative entropies for two conditions. In the first we evaluate the

application of one of the most common thresholding techniques in network neu-

roscience, i.e. proportional thresholding (figure 2.6). In the latter we show, in

contrast, spectral and relative entropies of both groups at percolation figure 2.7 .

For the former example, we fixed a link density of 10%. Considered the relation

of most graph topological metrics to the network density, this is one of the most

common approaches employed in brain network studies [Hallquist and Hillary,

2019, van den Heuvel et al., 2017a]. Following, we generated for both groups

two maximally random counterparts: the first by means of the CWTECM, where

both the strength and degree sequences are constrained, and the second by means
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of the CWTERG, which only preserves the number of links and the total weight.

In the panels A and B of figure 2.6, we plot the spectral and relative entropies

for both groups of healthy controls and patients, compared to their null models.

Again, we first observe, that, in contrast to the simpler CWTERG, the CWTECM,

with its large number of parameters, can better reproduce the features of the em-

pirical networks over a larger intervals of β. Indeed, the local properties of the

empirical network, which are described in the small β range, are closely matching

the model.

Importantly, healthy controls consistently display higher Von Neumann entropy

at medium-large scales, a typical fingerprint of community structure. Moreover,

the shoulder in the large β domain, which are associated to reduced inter-modular

density, are lacking in the patient group. In addition, for both null models, the

spectral entropies for healthy controls deviate more from their random counter-

parts, than for the patients, as reflected by their respective relative entropies. Here,

the maximum peak for healthy controls is both higher and towards the right hand

of the interval. From a direct inspection of the relative entropy curves of patients,

in the domain of mesoscopic structures (1 6 β 6 102), the randomized network is

much closer to the empirical, strong indication of a lack of clear-cut modular archi-

tecture. Interestingly, the reduction in relative entropies for the patients’ network

is observed in both models. To sum-up, from this observation we could conclude

that the network derived from patients groups is closer to random compared to the

one of healthy controls. However, if we examine the same networks thresholded

at percolation, we can observe a very different pattern (figure 2.7).

In panel A of figure 2.7, we can observe the spectral entropy curves for both

controls and patients at percolation, together with their respective null models

obtained by means of CWTECM. From this plot we can clearly appreciate an op-

posite trend as the one previously examined in figure 2.6. Notably, the curve from

schizophrenia patients (in blue) now shows higher spectral entropies at all scales

as compared to controls. This effect can be explained in terms of density of the

final sparse matrices at percolation. Indeed, the network of patients shows lower

density (density: 0.04, at t=0.62) in contrast to healthy controls (density: 0.08, at

t=0.61). Yet, we still cannot appreciate any shoulder at larger beta domains, oppo-

site to controls, possibly reflecting a global structure with similar intra-modular
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Figure 2.6: Spectral entropies of group average fMRI matrices from control and
schizophrenic patients. Panels A,B show the entropy and relative entropy
of controls and patients networks, thresholded at a 10% fixed density, with
respect to their randomized counterpart with the CWTECM and CWTERG.

density across different communities. An interesting observation comes from the

inspection of the relative entropies presented in panel B of figure 2.7. Unexpect-

edly, we see a strong increase in the relative entropy of SCZ patients, reflecting a

higher detachment of this network from its randomized counterpart at percolation,

computed by means of the CWTECM.

In the case of this patients-control study, we could thus demonstrate that the

application of a specific threshold, which ensures fully connectedness of all nodes,

can maximize the distance of a given network from its random counterpart. This

observation is of critical importance. Indeed, when taken at a fixed proportional

density, as commonly applied in many network studies, we could conclude that

the network extracted from patients would appear much closer to random as com-

pared to healthy controls. In contrast, thanks to the application of a percolation

approach we demonstrated larger distance for SCZ patients, a finding that would

not be otherwise appreciated.

Modular structure in SCZ patients

To determine modular partitions for both groups, we applied maximization of

Asymptotical Surprise by PACO, a resolution-limit free method. Further details in

[Nicolini et al., 2017].
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Figure 2.7: Spectral entropies of group average fMRI matrices from control and
schizophrenic patients. Panels A, B show respectively the entropy and relative
entropy of controls and patients networks, thresholded at percolation (Con-
trols: t=0.61; Patients: t=0.62.) with respect to their randomized counterpart
with the CWTECM.

Interestingly, we found 44 communities in the control group (module size range:

144-1 nodes) and 39 communities in the patient group (module size range: 73-1

nodes). Despite the reduced number of modules found for SCZ, we observed an

overall modular fragmentation and reorganization. Namely, larger communities

in controls appeared broken-up into smaller modules in patients. These specific

fragmentations are particularly evident in sensorimotor, visual, and auditory cor-

tices (Figure 2.8). Considering the visual module (first biggest community in HC),

we found this region to be split in the patients’ group, with primary visual cor-

tex standing as an independent community together with the caudal part of the

inferior temporal gyrus. A similar pattern can be observed in the second largest

community of HC, the sensorimotor cortex. Indeed, in the healthy group this

module comprises the somatosensory, sensorimotor, and temporal auditory cor-

tices. Opposite, the modular organization of SCZ patients revealed a substantial

fragmentation of this module, which breaks-up dorsoventrally intro four different

clusters. Further fragmentations and reorganizations are present also in temporal

and language regions, whereas superior frontal cortices appeared intact.

Overall, we identified substantial alterations in the modular structure of func-

tional connectivity in schizophrenia patients. This major reorganization predomi-

nantly affects primary sensory regions, while leaving unaffected higher-order cor-

tices. Interestingly, this is in line with previous documentations related to altered

sensory experience and processing in SCZ [Bleuler, 1950, McGhie and Chapman,

1961, Chang and Lenzenweger, 2005]. The aberrancies localized here in primary

sensory brain regions might indeed drive the impairments in basic perceptual

processing, suggesting that disorders in SCZ may occur already at the level of
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early sensory processing. The inefficiency in sensory systems in this population

of patients is also consistent with the hypothesis of aberrant “efference-copy” pro-

cessing which might underlie the occurrence of positive symptoms [Pynn and

DeSouza, 2013]. It is argued that altered sensory processing can lead to a fail-

ure in disentangling internal from external stimuli, thus giving rise to auditory

hallucinations and delusions often experienced by SCZ patents. The sensory frag-

mentation in motor and primary sensory regions identified in this study might

suggest the altered role that different sensory modalities play in this devastating

disorder. A promising follow-up to this investigation could evaluate the relation at

a single-subject level between the severity of positive symptoms in these patients

and the underlying break-up of motor and primary sensory regions into separated

smaller modules. Unfortunately, this could not be explored in the present study.

Indeed, the main goal of this study was to evaluate the performance of a novel

partition algorithm (i.e. Asymptotical Surprise; [Nicolini et al., 2017] in the detec-

tion of the brain modular architecture. To ensure an optimal performance, this

resolution-limit free method requires a big sample size. For this reason, we specif-

ically selected a publicly available dataset which could comprise a sufficient num-

ber of patients (78 SCZ) and controls (91). Unfortunately, the selected database did

not provide clinical data sufficiently complete for all participants, thus preventing

single-subject analysis and the investigation of the relation between individual

brain network measures and symptomatology.

In conclusion, with this study we successfully replicated some of the most com-

monly observed functional connectivity alterations in SCZ, comprising a reduction

in functional strength, overall disconnectivity, and reduced network efficiency at

a global level. Notably, a similar modular fragmentation has never been reported

in these patients. A study from [Lerman-Sinkoff and Barch, 2016] revealed sim-

ilar partitions between patients and controls at the group level, yet, specific local

alterations in nodal membership were identified at the single subject level in so-

matosensory, auditory, and subcortical regions. This is strongly in line with the

alterations we identified here. It is likely that our use of a more sophisticated par-

tition algorithm, together with the application of a percolation threshold, which

maximizes the structure that can be extracted from the network, helped us in

revealing specific local fragmentations that could not be identified otherwise.
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Figure 2.8: Specific modular fragmentations in SCZ compared to the HC group. Panel A:
Community 1 of control group and overlapping communities in the patients’
group. We can observe a prominent fragmentation of the visual cortex in SCZ.
Panel B: Community 2 of control group and overlapping communities in the
patients’ group.

Altogether, we have demonstrated with theoretically sound methods based on

first principles, the existence of an optimal thresholding point, which can maxi-

mize the structural information that can be extracted from a complex network. In

addition, we showed the benefits of its application to a case-control study, where

we could identify specific structural alterations in the functional network that were

never previously reported.

2.5 the impact of motion on resting-state functional

connectivity

At the beginning of this chapter I already introduced another contentious debate

in the brain functional connectivity community: the impact of motion and its

correction. The investigation of functional connectivity patterns been thoroughly

used to explore neural differences among clinical populations, across lifespan, or

personality traits. The popularity of this approach also comes from the simplicity

of data acquisition, which simply requires the participant to lay still in the MR

scanner for periods ranging from 5 to 15 minutes. The acquired timecourses are

then used to extract correlation patterns between segregated brain areas, reflecting
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the underlying organization of our brain when it is not engaged in any task-based

activity.

Unfortunately, the measurements of resting-state functional connectivity is ex-

tremely sensitive to even very small head movements (<0.2mm) that the partici-

pants can do while in the scanner. The knowledge of the introduction of spurious

changes in signal intensity caused by these movements has been clear since the ini-

tial applications of this approach [Biswal et al., 1995, Friston et al., 1996]. However

the real dramatic effects of these confounds have started to emerge only recently,

as revealed by [Van Dijk et al., 2012, Power et al., 2012, Satterthwaite et al., 2012].

These three studies, independently published in NeuroImage just a few months

apart, revealed the critical effects that even very subtle head movements can have

over resting-state functional data. Specifically, they highlighted the necessity to

re-evaluate findings from previous published data related to clinical populations

that might move more in the scanner, such as children, patients, or elderly cohorts,

and further stressed the importance to more strictly control the presence of motion

in functional data. The occurrence of motion might, indeed, hinder the robustness

and reliability of functional connectivity measures, possibly leading to misinter-

pretation of subsequent findings. This happens because of sudden changes in the

signal intensity of all voxels in the brain in relation to the movement.

Figure 2.9: Examples of effects that motion can have over functional connectivity. Panel A
shows differences in activation map between groups with different degrees of
motion. Specifically, shows an artefactual lower functional connectivity in the
DMN in a group of participants with higher degrees of motion (from [Van Dijk
et al., 2012]. Panel B shows alterations in the topological organization in a
sample of children moving more in the scanner as compared to adults, and
an example of how specific techniques of data cleaning (i.e. scrubbing) could
partially restore the functional brain architecture (from [Power et al., 2012].

Importantly, a single head movement can induce changes in BOLD signal spread-

ing to the whole brain in a regionally specific manner. In this case, it is likely
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that in one specific brain regions we would assist to an increase in the signal,

whereas another portion of the brain can simultaneously show decreased signal

intensity, artefactually injecting anticorrelations. Even more striking, Van Dijk and

colleagues [Van Dijk et al., 2012] revealed that groups with different degrees of

head movements yielded different activation maps (figure 2.9). In details, motion

was associated with decreased functional coupling in the DMN and frontoparietal

networks. This is induced by an increased local coupling related to these sub-

tle movements, together with a reduction in the long-range correlations strength

[Power et al., 2012]. The dramatic finding is furthermore emphasized by the rev-

elation that these substantial changes are present in the timecourses despite the

compensatory spatial realignment and regression of the six head motion param-

eter that has always been applied to functional data. Indeed, it appeared that

the spatial realignment of the data could only correct the spatial shifts induced

by head movements, but the changes in signal intensity cannot be corrected from

this procedure [Power et al., 2012]. For these reasons, the evaluation of head mo-

tion within resting-state functional connectivity data is of critical importance, as it

might result in different activation patterns across groups that could be mistakenly

interpreted as neuronal effects.

Unfortunately, the description of motion by means of realignment estimates,

described as three translational and three rotational displacements, are only a sim-

plification of head movements, being a representation of absolute displacements

related to a fixed position. Conversely, relative movements, measured from one

volume to the next, better represent the overall signal disruptions. Relative dis-

placement measures, such as Framewise Displacement (FD; [Power et al., 2012]),

have thus been introduced to track head movements. Importantly, FD highly cor-

relates to rapid signal changes, measured by means of DVARS, a metric indexing

the rate of change of BOLD signal across the brain [Power et al., 2012]. An effective

approach to assess the impact of motion over the functional timecourse simply con-

sists in plotting signal intensity of all voxels in the brain throughout time. Such

representations are dubbed grayplots, as depicted in figure 2.10. Here, we can

clearly see the sudden signal disruptions induced by even very small head move-

ments (0.35mm). Critically, from these graphics it is evident how these motion-
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induced alterations are broadly shared across all voxels and can further spread

also to the following time points.

Figure 2.10: Grayplots showing the effects of head movements of resting functional signal

Given the difficulties in detecting neurophysiological events if the data is con-

taminated with movement artifacts, methods to recover signal of interest are cru-

cially important [Siegel et al., 2014]. From this insight, the RSFC world expe-

rienced a proliferation of denoising strategies aiming to mitigate the influence

of movement artefacts on functional connectivity timeseries [Power et al., 2012,

Pruim et al., 2015, Salimi-Khorshidi et al., 2014, Muschelli et al., 2014, Satterthwaite

et al., 2013]. However, not all pipelines exhibit equal efficacy and efficiency in re-

moving spurious signal, and this ambiguity introduced high uncertainty among

investigators as to which approach to use. First attempts for the removal of head

movements effects from functional MRI data dates back to the early investigations

in the field, and relied on rigid body transforms for images’ realignment [Friston

et al., 1996]. This approach has now become a mandatory step in the preprocessing

of MR functional data, where the head position at each time point, with respect

to a reference scan, is described by six standard movement parameters. Follow-

ing, these motion estimates have been introduced as optional steps employed to

correct motion-related disruptions, by including them as nuisance variables re-

gressed out from the BOLD signal by means of GLM estimations. Unfortunately,

the correction of motion artefacts simply based on these head movements param-

eters are now proven to fail in disentangling spurious effects from the signal of

interest [Ciric et al., 2017], even if their first derivatives and squared terms are

included as regressors in the model [Friston et al., 1996]. Adding to this strategy,

one of the now most common approaches also further requires the inclusion of

regressors extracted from signal originated in noise-related tissues, such as ventri-
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cles and white matter, regions mostly susceptible to physiological artefacts (heart

beats, respiration, etc.) which may interfere with the resting BOLD signal [Cole

et al., 2010]. These are just some of the increasing number of denoising strategies

now employed in the field. For example, some other popular approaches rely on

models that remove from the data timeseries obtained from signal decompositions,

such as Principal Component Analysis (PCA) or Independent Component Anal-

ysis (ICA), which display improved performance compared to the more simple

regression of noise-related time courses. PCA based methods, dubbed CompCor

[Behzadi et al., 2007, Muschelli et al., 2014], aim at removing principal components

within high-noise areas, which can be defined in anatomical terms (aCompCor),

thus extracting the first principal components from white matter or ventricles time-

series, or in terms of temporal variance (tCompCor), through the identification of

high-variance voxels. Even more popular are the approaches based on ICA. By

means of decomposition of the signal generated from all voxels in the brain, it

is possible to specifically separate neural-related signal from different sources of

noise, both motion-related and physiological. Here, noise components are char-

acterized as time-series associated to specific spatial maps that define motion

or physiological artefact effects. In details, noise components can be identified

through some of their most relevant characteristics, such as their spatial maps (lo-

calized in white-matter, ventricles, or the edges of the brain), their time course

(i.e. characterized by irregular oscillation patterns), and the distribution of their

power in frequency domain (i.e. very high or very low frequencies; [Griffanti et al.,

2017]). The increasing popularity of this approach comes from the development

of specific algorithms that help in the selection of such components, either with

a trained classifier (ICA-FIX; [Salimi-Khorshidi et al., 2014], or by means of a pri-

ori heuristics (ICA-AROMA, [Pruim et al., 2015]). Another mostly controversial

denoising strategy, seemingly highly effective for the removal of widespread arti-

facts, resorts to the removal of the so called Global Signal (GSR; [Fox et al., 2009]).

This consists in the regression from functional data of the time course of the mean

signal computed across all voxels in the brain. This particular approach presents

important controversies. Despite appearing effective for the removal of artifactual

signal [Power et al., 2015], its application is still under debate, given the increased

number of anticorrelations following its application, together with the uncertainty
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related to the risk of also removing genuine signal [Saad et al., 2012]. Interest-

ingly, all these techniques appear to markedly benefit from the further application

of censoring operations [Power et al., 2012, Satterthwaite et al., 2012, Ciric et al.,

2017]. Precisely, temporal censoring requires the identification of specific volumes

affected by artifacts, generally flagged as outliers by means of FD and DVARS,

which are subsequently discarded and removed (or interpolated) from the time

course. Most common procedures include scrubbing [Power et al., 2012], spike

regression [Satterthwaite et al., 2012], or despiking [Patel et al., 2014].

It is now clear that the introduction of all these different denoising pipelines

also installed uncertainty in neuroscientists, who are thus facing the dramatic ef-

fects of motion while not having a real agreement as to which operation, among

all the possible cleaning strategies, can be a better fit for resting-state functional

data. Several studies tried to address this issue the efficacy and efficiency of all

these pipelines against different benchmarks. For example, a brilliant work from

Ciric and colleagues [Ciric et al., 2017] revealed better efficacy of the application of

GSR together with censoring operations as means to more effectively reduce noise.

However, at the same time, they also stressed the importance of the evaluation

of the specific final goal of functional connectivity analysis, given the heterogene-

ity of the investigated methods. Indeed, different strategies may be differently

appropriated according to the specific analysis design. Similarly, the combina-

tion of both FIX and GSR was reported to be the most effective approach for the

removal of motion-related effects in a similar study conducted by Burgess and

colleagues [Burgess et al., 2016]. However, it is important to notice that the appli-

cation of GSR, which introduces an important number of anticorrelations within

the functional timeseries, can affect network based studies, by altering the degree-

distribution. Furthermore, it is not clear whether some of the aforementioned

approaches might also remove genuine functional signals.

Here, we decided to evaluate how motion and motion correction strategies can

influence the topological structure of functional connectivity networks, by means

of the previously introduced novel methods based on first principles. These ef-

fects are of critical importance, mostly when addressing studies with clinical pop-

ulations that might move differently, as we must ensure maximal comparability

across groups. Thus, our goal here is not to evaluate which pipeline can most ef-
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fectively remove the spurious effects injected by movement artifacts, but to study

and identify an optimal trade-off between motion artifact removal and loss of

structural information at all scales. To do this, we resorted to a publicly avail-

able dataset, and the evaluation of both spectral and relative entropies on groups

of participants with different degrees of motion after the application of the most

popular denoising strategies. Specifically, we evaluate three different groups of

healthy participants, perfectly balanced for age and gender, with exactly same ac-

quisition procedures, but different for in-scanner motion. Thus, at the group level,

we would expect these participants to share same global functional connectivity

characteristics. If we spot differences, they should be driven by the presence of

motion, altering the time series. From an entropy point of view, if motion is in-

jecting spurious structures within the network, we would expect higher degrees

of relative entropies. Opposite, if the injection of motion within the time course

simply adds random noise, we expect lower relative entropies, namely we would

expect that the network mostly affected by motion would be closer to randomness.

Furthermore, we apply a set of different motion-correction strategies, based on

different principles. First of all, we hypothesize that an effective pipeline would

reduce the differences induced by head movements across the three groups. Nev-

ertheless, an effective pipeline which also does not remove genuine signal from the

network should further maximize the relative entropies, thus making the network

as far away from its random counterpart as possible.

2.5.1 Materials and Methods

Aim of this brief side-project is the evaluation of the effects of head movements

over the structural organization of functional resting-state data analyzed by means

of a network theoretical approach. Specifically, I applied 3 different motion cor-

rection techniques to three different groups of healthy volunteers extracted from

a publicly available dataset, and differing only in the amount of motion artifacts

within the functional time course. To assess these impacts over functional data

at all scales, we resorted to the previously introduced random graph models, to-

gether with the evaluation of both spectral and relative entropies, as means to

compare resting-state networks to their random counterparts.
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Data and preprocessing

We selected neuroimaging functional data from the MPI - Leipzig Study for Mind-

Body-Emotion Interactions project (LEMON, [Mendes et al., 2019]), obtained from

the OpenfMRI database, accession number ds000221.

From this dataset, participants were selected according to the age range; only

subjects ranging from 20 to 30 y.o. were included in our study, to avoid age effects

in subsequent analyses. All MRI data were acquired with a 3T scanner (Mag-

netom Verio, Siemens Healthcare, Erlangen, Germany). A total of 117 subjects

were selected. Structural and functional images were preprocessed with FSL (v

5.0, [Jenkinson et al., 2012]). High-resolution structural images were registered

to the MNI template and segmented (fast segmentation), separating white matter

and ventricles masks. Functional preprocessing included motion correction and

realignment (mcflirt), coregistration to the structural image using boundary based

registration (BBR) and then normalized to the MNI template.

Motion groups

For the purpose of the study, all participants were divided into three different

groups according to their degree of motion (Low, Medium, and High motion),

measured as the proportion of outlier volumes present within the time series. To

evaluate the motion level of each subject, Framewise Displacement was computed

according to Power [Power et al., 2012]. Timepoints were flagged as outliers af-

fected by motion when FD > 0.3mm. Criteria for group subdivision were the

following:

• Low motion (N 39) = <1% data affected

• Medium motion (N 39) = 1-5%data affected

• High motion (N 39) = >5% data affected

We finally included 39 subjects per group, balanced for age and gender (X=0.571,

p=0.752), but different for in-scanner motion (ANOVA: F=152.136; p<0.0001). Sum-

mary of the groups is further presented in table 2.1. Given the otherwise ho-

mogeneous characteristics of these three evaluated groups, we hypothesized that
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Table 2.1: Summary demographics and motion estimates employed for the distinction
into three different motion groups.

Motion Groups Stats
Low Medium High

N 39 39 39

Gender
Men 28 26 27 X=0.571,

p=0.752Women 11 13 12

Proportion outliers
Mean 0.0018 0.0255 0.1649

SD 0.0023 0.0113 0.0931

Min 0.0000 0.0108 0.0618

Max 0.0077 0.0495 0.3771

FD
Mean 0.1152 0.1449 0.2084

F=152.136,
p<0.0001**

SD 0.0184 0.0185 0.0325

Min 0.0711 0.0968 0.1549

Max 0.1423 0.1716 0.3114

potential between-group in functional organization should be driven by motion

effects.

Motion-correction pipelines

Based on the growing debate related to the correct noise-correction technique to

apply on resting-state data, we tested two different and popular pipelines, plus

one pipeline where no de-noising strategy was applied. We selected and analyzed

the results on the following pipelines:

P0: no motion-correction technique applied beside image realignment with

carried out with mcflirt (FSL; [Jenkinson et al., 2002];

FIX: based on the FMRIB trained classifier of Independent Component Analysis,

components related to noise (FIX, [Salimi-Khorshidi et al., 2014], extracted from

single-subjects timeseries;

9P: regression of different factors, including 6 movement parameters, the aver-

age signal extracted from white matter and ventricles, plus the regression of the
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global signal (GSR), measured as the average of all the voxels of the brain extracted

from subject-specific brain masks;

Altogether, I specifically selected pipelines based on different principles. One

strategy relies on independent components classification (FIX), the second includes

the regression of the global signal (P9), a controversial practice. As reference, for

the simple evaluation of pure effects of motion over the architecture of the func-

tional network, I consider a pipeline where only the mandatory image preprocess-

ing steps (realignment, normalization, coregistration, filtering) have been applied

(P0).

Before the regression of all the confound parameters from subjects’ time series,

a butterworth bandpass filter of 0.01 and 0.1 Hz was applied to all the regressors,

avoiding reintroduction of signal related to nuisance covariates [Lindquist et al.,

2019].

From an effective pipeline we would expect a reduction in the differences in-

duced by motion in the three groups. At the same time, we would expect that the

attenuation of these differences would not alter the topological structure of the

functional networks.

Functional Connectivity Networks

For each participant, we extracted regional mean time series from 638 parceled

areas, based on the same functional template employed for the datasets analyzed

in the previous sections [Crossley et al., 2013]. A Butterworth bandpass filter

of 0.01 and 0.1 Hz was applied to all the time series. Following, we generated

functional connectivity adjacency matrices by means of Pearsons correlations. All

individual matrices were z-Fisher transformed as to ensure comparability. Finally,

we built group matrices by averaging all individual networks.

Overall functional connectivity strength in every network is addressed as the

mean of all positive links [van den Heuvel et al., 2017a]. Differences among groups

in terms of connectivity strength are measured by means of simple t-tests. Follow-

ing, spectral entropy is evaluated on networks thresholded at percolation, whereas

to address relative entropies we investigated a similar range of thresholds as the

one assessed in the previous example (absolute thresholds from 0.1 till the point

when the network breaks apart).
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First, we evaluate the effects of motion and denoising strategies over functional

connectivity strength. An increase in the overall functional strength induced by

motion has already been reported in the literature [Ciric et al., 2017]. Yet, we

specifically want to replicate this effect, together with the evaluation of the effects

of different pipelines over our three motion groups. The assessment of spectral

and relative entropies of all groups will follow.

2.5.2 Results and Discussion

Here, I will briefly report and discuss the main results revealed by this method-

ological side-project. First, I will simply introduce the effects of motion on the

overall functional network by means of functional connectivity strength. Second,

I will investigate whether these motion-induced effects can be related to a reduc-

tion or increase of entropy in the system. As an important remark of this sec-

tion, I will address how different denoising strategies can mitigate or exacerbate

these effects. Specifically, we considered the three pipelines described before: P0

with no motion correction, a second pipeline based on FIX, and 9P a pipeline

that includes global signal regression. We applied these pipelines on three mo-

tion groups: low, medium, and high motion (see data and preprocessing section).

These three groups are defined on the framewise displacement (FD), a metric com-

monly used to evaluate the amount of head motion in rsFC [Power et al., 2012],

which is computed as the sum of the absolute values of the derivatives of the six

motion parameters.

First of all, we leveraged these three groups with different degrees of motion

without the application of any kind of denoising strategy (P0) as means to evaluate

the pure effects of motion.

In line with previous reports, we first observed a substantial increase in func-

tional connectivity induced by motion in P0. As we can observe from panel A

of figure 2.11, the distribution of link weights for the medium and high mo-

tion groups is right-shifted compared to the low groups, reflecting higher func-

tional strength. At the subject level this shift is highly significant across all groups

(medium>low: p<0.00001; high>low: p<0.0001). Through the application of spe-

cific denoising strategies we sought to investigate at what degree they could re-
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duce this spurious difference in functional strength between groups. As we can

observe from the histograms depicted in panels B and C of figure 2.11, both

pipelines appear to significantly decrease the differences in the edge-weight dis-

tribution at the group level across different motion conditions. Specifically, the

pipeline based on independent components classification (FIX) substantially re-

duces the right shift of the medium and high motion groups that was previously

revealed in P0. Importantly, in this condition the edge-weight distribution of

the medium group now almost completely overlaps with the low motion curve.

Yet, at the individual level the functional connectivity strength, measured as the

mean of all positive edges in the graph, shows statistical difference (medium>low:

p=0.007). In contrast, the histogram representing the edge-weight distribution ex-

tracted from the high motion group still presents a highly significant right shift

reflecting higher functional strength (high>low: p<0.001). A different pattern is

revealed in the strength distribution after the application of GSR. In this case, all

curves are highly overlapping, indicating similar functional connectivity across the

three groups. This is furthermore revealed by the lack of significant differences at

the individual level in edge strength (high>low: p=0.8; medium>low: p=0.48). Yet,

the distribution of these curves presents a concerning issue, related to their cen-

tering around zero. After GSR the number of negative correlations dramatically

increases, involving half of the edges within the network. These observations are

in line with previous reports and concerns related to the controversial application

of this denoising approach [Ciric et al., 2017].

As stated previously, the aim of this brief methodological study does not involve

the simple evaluation of the effects of motion and motion correction techniques

over the functional connectivity distribution, which was already extensively ex-

plored in previous investigations [Ciric et al., 2017]. In addition to the replication

of previous findings, we resorted to the application of our null models as to assess

whether these techniques could render the overall network closer or more distant

from its random counterpart, by means of relative entropies.

In figure 2.12 we show the spectral entropy curves and relative entropies for

the three pipelines considered. In light of the previous findings, we present here

only the results related to the CWTERG, given the constraints present also at large

scales from the CWTECM. Panels A, B, and C show the Von Neumann entropy



2.5 the impact of motion on resting-state functional connectivity 83

Figure 2.11: Effects of motion and commonly applied motion-correction techniques over
the distribution of functional connectivity strength. Panel A depicts effects
of motion as assessed by means of a pipeline where no motion correc-
tion strategies has been applied (P0). As a consequence of motion, we ob-
serve strong changes in the functional connectivity strength across the three
groups (medium>low: p<0.0001; high>low: p<0.00001). Panel B represents
the effects of the application of FIX over edge-weight distribution. Differ-
ences among groups are still present but attenuated (medium>low: p=0.007;
high>low=p<0.001). Panel C shows the effects of application of GSR. Dif-
ferences among groups are not present (medium>low: p=0.48; high>low:
p=0.8).

curves of the differently pre-processed resting-state networks across three degrees

of motion. In this specific case, we applied one single thresholding procedure,

namely the lower absolute threshold that would ensure connectedness in all three

motion groups within the same pipeline (t=0.44 for P0, t=0.29 for GSR, t=0.25 for

FIX). We can observe that, when considered at the same absolute threshold, the

low motion group always shows higher spectral entropy across the entire β range.

This is especially evident in the P0 pipeline. It appears, indeed, that movement

artifacts significantly affect the mesoscopic patterns within the empirical network.

This trend is confirmed by the smaller entropy values of the high motion group

compared to the medium, which is observed across all analysis pipelines. In the

details of the P0 pipeline (Fig. 2.12A), this point is further highlighted by the

lack of a clear-cut modular structure in both the medium and high motion groups,

whereas a small shoulder present at medium scales for the low motion group high-

lights a different degree of inter-modular density. A similar trend suggests that

head movements tend to make the network closer to its null model, i.e. more ran-

dom. Popular correction techniques mitigate this confounding effect, decoupling

functional connectivity and motion.

Panels B and C of Figure 2.12 show spectral entropy curves for the pipelines FIX

and GSR, respectively. As already discussed, both pipelines importantly reduce

the difference in spectral entropy between the three groups.
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It is noteworthy that the application of the FIX pipeline, in panel B, highlights

the presence of more prominent shoulders in all groups, again a signature of meso-

scopic organization. From this view, the cleanup of resting-state data through in-

dependent component analysis would help in emphasizing the global structure of

the network, despite the presence of head movements. The same cannot be appre-

ciated in the groups pre-processed with a GSR pipeline, where the differences in

spectral entropies are reduced, but no clear large-scale structure seems to emerge

from these curves.

Notably, these effects are observed when the same absolute threshold is applied

to the three motion groups. Indeed, we should remark that the difference observed

across the three motion groups in terms of their spectral entropy curves, despite

the application of robust motion-correction strategies (panels B and C, figure 2.12),

strongly depends on the different densities resulting from the application of the

same absolute threshold. It is important to notice that, although FIX and GSR

strongly reduced the difference in functional connectivity strength across condi-

tions, the medium and high motion groups still present higher overall strength,

induced by the introduction of spurious correlations by motion. This results in

denser networks when the same absolute threshold is applied, subsequently re-

ducing entropy. Yet, from the relative entropies generated over several different

absolute thresholds, we can appreciate a strong effect related to the sparsification

procedure. In Panels D, E, F of figure 2.12, the relative entropies of the high mo-

tion groups for all pipelines and their respective null models are presented. In the

interest of space, we report only the high motion group, which is more affected

by head movements and shows more evidently the beneficial effects of the appli-

cation of different preprocessing pipelines and thresholds. Here, we observe a

very similar pattern to the one already studied in the thresholding effect example.

Indeed, with the application of increasing thresholds, the distance of the empirical

network from its random counterpart with same density gets higher, and it reaches

maximum at percolation, despite the presence of motion and independently from

the pipeline applied. Specifically, we can observe a higher relative entropy at per-

colation for the pipeline based on GSR (panel F). This pre-processing technique

notably benefits from the thresholding procedure, considering the substantial dif-

ference between the maximum relative entropy attained at percolation and its val-
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ues for denser networks. In line with previous studies [Ciric et al., 2017], the main

effect of GSR is an increase in network modularity, mirrored by greater values

of relative entropies at large scales, suggesting a well-organized high-order archi-

tecture. Yet, the lack of an “information shoulder” in the spectral entropy curve

suggests the presence of a more uniform structure, with similar intra-modular

density across different communities, and similar size of the modules.

This last observation further supports the application of a thresholding proce-

dure, in contrast to the new trend in the literature which completely avoids the

application of a threshold, directly working with fully connected networks, in or-

der to elude the lack of agreement upon the threshold to implement [Schlesinger

et al., 2017, Goulas et al., 2015, Bassett et al., 2011, Rubinov and Sporns, 2011].

Hereby, we demonstrate the importance of application of a threshold, as it allows

the network to deviate from its random thresholded counterpart, even despite the

presence of high degrees of movement, and irrespectively from the pre-processing

pipeline in use. Importantly, through the application of an optimal thresholding it

is possible to recover the medium-scale structure that would otherwise appear as

“lost” as a consequence of motion effects.

Figure 2.12: Panels A,B,C show the spectral entropies of networks for the pipelines 0,FIX
and GSR (solid lines), together with their randomized counterpart (CWTERG,
dashed lines) over all motion groups. The relative entropies of networks from
the high motion group are shown in panels D,E,F where the blue shades cor-
respond to increasing absolute thresholds, while the orange lines correspond
to percolation threshold, which has the maximum relative entropy at large
scales.
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2.6 conclusion

The nature of resting state functional MRI networks based on pairwise association

measures, like the Pearson correlation, is of a dense square matrix. Several ex-

perimental factors are involved in shaping the properties of these matrices and no

consensus exists in the literature on the best practice for the definition and process-

ing of these matrices and the associated connectivity graphs. In the present work,

I leveraged some newly introduced tools, critical for making graph-theoretical

analyses of networks more robust and theoretically sound [Nicolini et al., 2019],

as means to evaluate the effects of contentious debated processing steps over the

functional network topology. Importantly, we could bring together two novel pre-

cious null models, which for the first time extends the maximum entropy random

graph formalism to networks with threshold and real positive weights, and a spec-

tral entropy framework, essential to appreciate the differences of networks with

respect to their random versions from local to global scales. This promising ap-

proach made it possible to quantitatively determine the effects of experimental

factors on the properties of functional networks.

In light of this newly developed approach, we studied how thresholding proce-

dures, motion and correction pipelines are essential factors in shaping the network.

The application of a threshold to resting-state networks is now one of the most con-

tentious steps debated in the field. Most studies now resort to the application of

a fixed density to networks when studying different populations. However, this

approach presents several drawbacks, pointed out by various authors [van den

Heuvel et al., 2017a, de Vico Fallani et al., 2017, Bordier et al., 2017]. These pit-

falls led to an increasing trend to altogether avoid any sparsification of the studied

graphs, thus eluding the issue. Even more striking is the recent finding that the

application of a threshold itself could inject some complex structure within the net-

work, thus representing an important confounding artifact [Cantwell et al., 2019].

Here, by means of advanced information theory tools, we have found that the

thresholding procedure is an essential step in analysis pipelines and helps to dif-

ferentiate networks from their random version. Indeed, we hypothesized that if

the thresholding procedure would actually inject structure within a network, it

would do so also in the random counterparts of the empirical networks evaluated.
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Conversely, we show how the role of the threshold itself is crucial and highly bene-

ficial to study the large scale architecture of real-world networks. Importantly, our

results point to the existence of an optimal sparsification threshold, and provide a

procedure, based on percolation analysis, for its identification

The importance of sparsification can also be appreciated through the evaluation

of the effects of motion and different preprocessing pipelines. Importantly, the

introduced formalism has proven crucial for the identification of the effects of

head movements over all scales of the network. Motion seems, indeed, to increase

randomness and to reduce spectral entropies across different scales, bringing the

network closer to its random counterpart. However, a reported finding revealed

that this motion effect is critically reduced when we apply stringent thresholds,

until reaching percolation, where the network, even in presence of strong head

movements, is maximally distant from the null model.

Altogether, thanks to this methodological advancement, I could appreciate the

importance of some critical pre-processing steps which should be more carefully

evaluated when facing complex network analysis applied to functional brain im-

ages. These tools are critical to conduct graph theoretical analysis on functional

data from different clinical populations, as described in the next chapters of my

thesis.





3 F U N C T I O N A L C O N N E C T I V I T Y

A LT E R AT I O N S I N A U D

After tackling a few critical aspects for the application of network theory to the

study of functional connectivity, I extended these methods to the analysis of rest-

ing state data from AUD patients and healthy controls. As reviewed in the first

introductory chapter of this thesis work, the neural mechanisms involved in al-

cohol addiction are not fully understood, and a number of questions remains

open. Moreover, one specific region recently caught the attention of the clinical

community, playing a central role for the translation of interoceptive states into

decision-making processes: the insular cortex. Here, I first evaluate differences

identified between a sample of AUD patients and one of healthy volunteers by

means of a graph theoretical approach, with a specific focus on the role played by

the insula within the network. The work disseminated here is now under peer-

reviewed publication process (Bordier et al. in prep). Following, I will evaluate

an independent sample of patients, with the aim to possibly replicate previously

discussed findings.

3.1 increased network centrality of the anterior in-

sula in early abstinence

Alcohol addiction is among the most prevalent disorders worldwide, it repre-

sents a severe social burden and critical danger for patients. Indeed, 5.3% of all

global deaths can be attributed to alcohol consumption [World Health Organiza-

tion (WHO), 2018]. It is a chronic and relapsing brain disorder, and the prolonged

alcohol intake further complicates the identification of neural circuits involved in

the rise and maintenance of the disease. Ethanol, the addictive and rewarding

substance present in alcoholic beverages,can exert crucial prolonged actions on

the brain and desensitize neural circuits. Unfortunately, the reversal of these ef-

89
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fects appears critical. As I extensively disclosed in the first chapter of this these,

AUD has been associated to several brain alterations, both at a structural and at

a functional level suggesting a complex framework. Altogether, brain alterations

identified in this neuropsychiatry disorder, previously reviewed, point towards

the severe symptomatology of alcohol-addicted patients, comprising the loss of

self-control and reflective-thinking in presence of alcoholic cues, or altered inte-

roception and memory functions. Yet, the lack of clear-cut findings in the field

can originate from the high variability of the disorder and in the samples of pa-

tients investigated. Indeed, clinical variables such as days of abstinence or age at

first drinking can significantly change the underlying functional pathways. This

further complicates the identification of clear endophenotypes of AUD, which is

crucial for the development of targeted treatments.

The application of graph theoretical approaches to AUD is still in its infancy, and

just few studies investigated the topological organization of the alcohol-addicted

functional brain [Sjoerds et al., 2015, Morris et al., 2017, Wang et al., 2018, Zhu

et al., 2018]. Altogether, these studies mostly addressed local properties such

as nodal degree, efficiency, and clustering coefficient, or global topology mea-

sures by means of overall functional connectivity and global efficiency. The trend

highlighted by these reports is clear when evaluating global metrics, where AUD

patients mostly present reduced global efficiency and functional strength when

compared to samples of healthy volunteers. Opposite, conflicting results are re-

ported at the local level, with different patterns of increased and decreased nodal

efficiency and nodal segregation in separated brain regions involving the reward

system, frontal and temporal regions, and the insula [Wang et al., 2018, Wang et al.,

2015, Sjoerds et al., 2015]. To the best of our knowledge, no study to date evalu-

ated the functional architecture of the addicted brain with the use of modularity

algorithms.

I already thoroughly highlighted in the first introductory chapter of this thesis

the important role covered by the modular organization of complex systems, char-

acterized by the presence of subclusters of nodes more tightly connected within

themselves, forming so called modules, or communities. This feature ensures an

optimal balance between segregation and integration of different regions. A mod-

ular network benefits of strong evolutionary advantages, as the subdivision of the
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system into separated yet connected modules confers robustness and adaptability

[Sporns and Betzel, 2016]. Indeed, a modular networks is more flexible in case of

external perturbations, allowing only the impact over specific segregated modules

in contrast to a reshape of the whole system when facing an external environmen-

tal challenge. However, alterations of the modular organization can rearrange and

disrupt the communication pathways between separated neural regions. The dis-

ruption in the segregation and integration balance between different brain cortices

might, indeed, lead to pathological conditions [Fornito et al., 2016].

Here, we intend to evaluate the modular organization of functional connectivity

networks in detoxified alcohol-dependent patients. To achieve this we resort to

the application of an InfoMap approach, which, as described in chapter 1, bene-

fits from higher resolution compared to Newman’s approach, the mostly applied

partition algorithm. Indeed, the detection of differences related to the modular

architecture in psychiatric patients has often proven difficult, most likely because

of the critical resolution limit of the modularity maximization approach. The im-

portant resolution limit of the Newman algorithm might hinder the identification

of specific fragmentations in key neural structures, thus hampering the investiga-

tion of subtle alterations within functional neural networks. For this reason, in

this study we leveraged the benefits of the InfoMap algorithm with a Consensus

approach, with the aim to possibly identify functional alterations that could not

be previously revealed by means of simple evaluation of local topological met-

rics. The identification of neural regions presenting an altered integration within

the whole systems might be crucial for the identification of therapeutic targets.

Ideally, we could, indeed, select the altered structure, subsequently target it for

treatment, and evaluate the effects over the whole network in case of an external

perturbation aiming the affected region. Hence, we evaluate possible differences

at a modular level in a sample of AUD patients, as compared to the healthy func-

tional organization detected in a sample of volunteers.
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3.1.1 Methods and Materials

Participants

The investigation was carried out in the framework of the ERA-NET NEURON

TRANSALC study (WHO-International Clinical Trials Registry Platform: DRKS00003357).

Thirty-five recently detoxified, abstinent AUD patients, all males (age=45±9, absti-

nence days 21±7, 260±120 [g]/day of alcohol pretreatment), and 37 male healthy

volunteers (age=41±10) were recruited for the study. Patients were included if

they satisfied AUD diagnostic criteria as listed in the DSM-IV and after comple-

tion of medically supervised detoxification (treatment of withdrawal symptoms

with short-acting benzodiazepines had to be completed for at least 3 days), with

at least 2 weeks of abstinence prior to the MRI session. All participants were as-

sessed by Structured Clinical Interview for DSM-IV to identify patients who met

criteria for AUD; participants were excluded from the study if they met criteria

for Axis I or II psychiatric disorder within the past 12 months (except alcohol or

nicotine dependence), had current use of psychotropic or anticonvulsive medica-

tion, had positive urine drug screening (opiates, cannabinoids, benzodiazepines,

barbiturates, cocaine, amphetamines), or unstable medical conditions. After this

baseline assessment, patients were offered the choice between of two treatment

options: either a multi-professional medically-supervised therapy schedule (IWT),

or the same therapy schedule together with adjuvant oral Naltrexone (NTX, 50mg

per day) in a naturalistic open-label free-choice design. Twenty-nine patients were

included in this arm of the study, with 12 subjects receiving IWT only, and 17

NTX. A follow-up fMRI scan was scheduled for all patients two weeks into treat-

ment with either NTX plus treatment as usual or ITW only (M = 15.5 days, SD =

3.5). The study was approved by the local ethics committee in accordance with the

Declaration of Helsinki.

Image acquisition and preprocessing

Functional data was acquired with a 3T MR scanner (MAGNETOM Trio, Siemens,

Erlangen, Germany), using echo-planar imaging (EPI) and simultaneous acquisi-

tion of physiological data. T2* weighted echo-planar images (EPI) were acquired
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in a transversal orientation 30° clockwise to AC-PC-line covering the whole brain

with the following parameters: TR=1.5 s, TE=28 ms, flip angle = 80°, 24 slices,

slice thickness 4 mm, 1 mm gap, voxel dimensions 3 x 3 x 5 mm−2, FOV 192x192

mm−2, 64x64 in-plane resolution. This short TE and the 30° flip to ACPC orien-

tation were chosen to minimize susceptibility artifacts. In total, 240 timepoints

were acquired per each participant. Physiological data were acquired with the

SIEMENS standard sensors for pulse oximetry and respiration with a sample rate

of 50 Hz. During the resting-state scan participants were instructed to keep their

eyes closed.

The fMRI data were preprocessed using SPM8 (Welcome Trust Centre for Neu-

roImaging, London, UK). After discarding the initial 10 volumes of each partici-

pant, the remaining volumes were processed to remove physiological confounds

(heartbeat, respiration) from the raw data using the Aztec toolbox (7). The re-

sulting corrected volumes were slice-time corrected, head-motion realigned (pa-

tients average maximum translation = 0.545±0.465, average maximum rotation=

0.007±0.006; control average maximum translation = 0.502±0.474, average maxi-

mum rotation= 0.007±0.007) and normalized to the standard MNI EPI template

space (voxel-size resampled to 3x3x3mm3). The signal related to head movement

was removed using a multiple regression model. Potential differences in motion re-

lated artifacts between groups were assessed using Framewise Displacement (FD)

and DVARS. No significant between-group differences were observed in these met-

rics (FD: t=0.214, p=0.831; DVARS: t=0.151, p=0.88).

Functional connectivity graphs

Nodes were defined according to the functional template described in [Crossley

et al., 2013], comprising 638 cortical and subcortical nodes. BOLD time series

were then extracted and averaged for each parceled region, and Pearson corre-

lation coefficients were calculated for all pairs of nodes to compute a functional

connectivity matrix for each participant. Finally, subjects’ specific adjacency matri-

ces were Z-Fisher transformed and averaged to obtain two group-level functional

connectivity matrices for healthy controls and AUD patients. As described in the

previous chapter, in order to remove weak and spurious edges from the group-

average network we apply a thresholding procedure based on percolation analysis,
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to maximize the structural organization that can be extracted from the system. Op-

timal sparsification thresholds were determined independently in the patient and

control to enable unbiased comparison of the respective community structures.

Modular organization and nodal centrality measures

The modular architecture of the functional network was computed using the In-

foMap approach [Rosvall and Bergstrom, 2008], based on the optimization of a

cost function dubbed map equation. To reduce the effects of degeneracy of so-

lutions - still present in Infomap, although to a lower extent than in the more

popular Modularity optimization method - , we resort to a Consensus approach.

This method provides a means to compute a stable partition that is representative

of the consensus of all nearly-optimal solutions generated by different runs of the

community detection algorithm.

First, we generated the consensus matrix (nxn, with n the number of nodes),

which is obtained by running the community detection InfoMap method 1000

times and assigning a value to the element tij of the matrix that corresponds to

the number of times nodes i and j appear in the same community. Second, we

ran the community detection algorithm (InfoMap, in our case) on the consensus

matrix to generate the consensus partition. The computation of the consensus

partition was performed using a modified version of the function provided by

the Brain Connectivity Toolbox [Rubinov and Sporns, 2010] adapted to weighted

networks. All visual representations of the anatomical distribution of modules

and topological parameters were produced using the BrainNet viewer toolbox [Xia

et al., 2013] and MRIcron [Rorden and Brett, 2000].

To address the role of all nodes within the overall network, we considered the

classification, based on the modular organization, proposed by [Guimera and

Amaral, 2005] and described in the chapter 1 of this thesis. According to this,

nodes are classified by their within-module degree (proportion of connection of a

node to all other nodes belonging to its own module) and their participation coef-

ficient (proportion of connections of a node towards external modules). To assess

statistical differences across the two groups, we computed participation coefficient

of each node for each participant and ran a t-test, Bonferroni corrected. By means
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of this classification it is possible to evaluate the central or peripheral roles that

specific regions can play within the overall system.

3.1.2 Results

As a first step, we evaluated global differences in overall functional connectiv-

ity strength. This was assessed by the edge-weight distribution between patients

and controls, as shown in figure 3.1. The two histograms depict the z-transformed

edge distributions for the two groups. Here, we can first observe an important left-

shift in the edge distribution of AUD patients, reflecting a reduction in the overall

strength. The global functional connectivity strength measured at the subject level

was significantly different across the two groups, with patients showing a reduced

edge-weight strength, as reflected by the z-Values distribution (t=1.78; p=0.03).

In addition, also the global efficiency, a measure of integration of the network,

resulted significantly decreased in patients (t=2.186; p=0.015). This reduction in

global connectivity is in line with previously reported findings in alcohol depen-

dent patients of a decreased functional strength and efficiency, when explored

with a graph theoretical approach [Sjoerds et al., 2015, Morris et al., 2017, Wang

et al., 2018, Zhu et al., 2018].

Figure 3.1: Edge-weight dis-
tribution of HC
and AUD groups.
Patients show
a right-shift in
the distribution,
representing a sig-
nificant reduction
in the overall func-
tional connectivity
strength (p=0.03).

Disruption of modular organization in alcoholics

Following the application of the InfoMap algorithm, we detected 14 and 21 mod-

ules in the control and patient groups respectively, result of a fragmentation and

reorganization of certain communities in AUD. Interestingly, the modular struc-
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ture for the two groups appears largely consistent, and a significant fragmentation

in patients was visible only in a few modules. Figure 3.2 shows the modular struc-

ture of the two groups, together with the adjacency matrices re-ordered according

to nodes partitions.

Figure 3.2: Comparison of modular architectures between HC and AUD patients. Panel
A: Group-level adjacency matrices for the two groups with nodes re-ordered
according to modular membership. Modules are outlined with their respective
color represented in community organization mapped on the cortical surface
of the brain in panel B.

The fragmentation of two modules most prominently involved is shown in fig-

ure 3.3. Among these, we detected a crucial re-organization of the basal ganglia

sub-module, a region well-known to play a critical role in substance addiction.

In HC this community includes the amygdala, pallidum, putamen, hippocam-

pus, and thalamus. In contrast, these regions are organized into three distinct

sub-modules in AUD, the amygdala, the thalamus, and pallidum-putamen. The

other structure involved is the supramarginal temporal module. In controls, this

community shows dissociation of the anterior part of the insula forming an inde-

pendent module in patients. From panel B of figure 3.3 we can appreciate this

break-up of the insula into two sub-modules in AUD, corresponding to the insular

anatomical separation into its anterior and posterior portion (see also figure 1.10

for the anatomical representation). Opposite, in HC all the nodes of this region

falls within the same community structure, reflecting
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Figure 3.3: Local fragmentations identified in AUD patients compared to HC. Panel A
shows the differences in the modular organization in basal ganglia structures.
In patients these structures are organized into three separated communities,
including amygdala, the thalamus, and pallidum-putamen. Panel B shows the
separation of the insular cortex in AUD. The insula is separated into anterior
(blue) and posterior (red) sections.

Increased centrality of the anterior insula in AUD

The modular architecture of the brain functional network is essential for the iden-

tification of so-called connector hubs, nodes with a higher number of connections

pointing towards different modules, thus playing a strong integrative role. To as-

sess this aspect, we addressed the participation coefficient of all nodes in the net-

work, and subsequently evaluated differences between node-wise participation co-

efficient in patients and controls. Consistent with the overall decreased functional

connectivity in AUD, patients show more widespread reduction in participation

coefficient as compared to HC, mostly including visual regions, sensory and au-

ditory cortices, and parts of middle frontal gyrus. Yet, some nodes surprisingly

show an opposite trend, with an increase in participation coefficient in the patient

group, comprising frontal regions, superior parietal areas and, most prominently,

the bilateral anterior insula (Figure 3.4). In contrast, the posterior insula exhibits

significant reduction in participation coefficient.
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Figure 3.4: Differences in participation coefficients of nodes in the insula cortex mapped
on the brain cortical surface. P-values obtained by a one-tailed Student’s test,
Bonferroni corrected. The anterior insula shows significantly increased central-
ity in patients, while participation coefficient in the posterior insula is reduced.

Voxel-Based Morphometry

Importantly, this case-control study so far revealed altered functional connectivity

organization in basal ganglia structures and the insular cortex. However, as ex-

tensively reviewed, these regions were previously reported to show altered gray

matter volumes. Specifically, a study from [Senatorov et al., 2014] revealed enlarge-

ment of the amygdala and reduction of the insular volume in AUD patients. To

rule out the possibility that our results might be influenced by these alterations, we

subsequently performed a Voxel-Based Morphometry (VBM) analysis. We found

no evidence of significant morphometric differences between patients and con-

trols, thereby excluding potential confounding effects driven by these alterations

on functional connectivity organization.

Effect of treatment on network properties

In the combined group of 29 patients participating in treatment, IWT alone or

in combination with NTX, we observed a modest but significant increase in the

strength of functional connectivity (p=0.007). Interestingly, the initial fragmenta-

tion of the supramarginal module was reversed, with the anterior insula reunited

with the supramarginal nodes after 2 weeks of treatment (figure 3.5). Similarly,

the participation coefficient of the anterior insula showed significant reduction

after 2 weeks with a trend towards normalization of its topological centrality. Con-

versely, the basal module organization remained fragmented over time, and no

significant effects on participation coefficient of the nodes included in this module

were observed.
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Analyses of the two subgroups of patients treated with IWT plus adjunct NTX

(n=17) or ITW alone (n=12) showed very consistent results, with recovery of the

supramarginal module in both cases, and no significant effects in the basal mod-

ule.

Figure 3.5: Effects of treatment on the basal and supramarginal modules in AUD patients.
Panel A shows the fragmentation of the insular cortex before the additional
two weeks of treatment. In panel B we observe the normalization of the organi-
zation of this module after two weeks of treatment. The modular organization
is identical for participants treated only with IWT and for patients treated also
with NTX.

3.1.3 Discussion

To the best of our knowledge, this is the first case-control study evaluating the func-

tional modular organization in AUD. Interestingly, we revealed region-specific

alterations in the functional architecture of the alcoholic network, assessed in re-

cently detoxified patients. In details, we detected local fragmentations in neural

regions already well-known to play a central role in addiction.

First, the basal ganglia structures appeared to break up into separated sub-

modules in the patient group, in contrast to the identification of a single module

comprising basal sub-structures in HC. These regions are central in the overall

brain reward system, and different studies already identified anomalies in their

structure and function in relation to substance addiction [Wrase et al., 2008, Dupuy

and Chanraud, 2016, Fritz et al., 2019]. Here, we further proved the altered func-

tional embedding of these subcortical regions within the overall brain network in
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AUD. As discussed, the modular architecture is crucial for an efficient informa-

tion flow of the whole brain system, ensuring an optimal balance of integration

and segregation. The identified fragmentation of these regions suggests an abnor-

mal communication among these areas, in line with their role and their functional

recruitment as related to the negative emotional states and withdrawal/negative

affect stage of addiction [Koob and Volkow, 2016].

A second particular aspect, highlighted by this study, is the role played by the

anterior insular cortex within the overall functional network. First of all, we re-

vealed an important fragmentation of the insular region in AUD, which matches

the anatomical and functional architecture of this cortical area. Specifically, we ob-

served a separation of the anterior portion of the insula from the rest of the region,

in contrast to the organization identified in healthy controls, where all its nodes

fall into the same community connected to the superior temporal cortex and some

inferior frontal nodes. Importantly, this cortical region recently gained increasing

attention in the study of addiction disorders. This area, embedded within the tem-

poral and the frontal lobe (Fig1.10), is the main region of the brain responsible for

interoception. Furthermore, thanks to its connections towards more frontal and

subcortical areas, the insula plays a critical role in the translation of interoceptive

feelings into emotional and decision-making behaviors [Craig, 2009]. In lay terms,

this cortical system informs us about the needs and urges of our body, and subse-

quently sends this information to other cortices as to act and behave accordingly.

Surprisingly, its role seems to be crucial for the maintenance of addiction, and the

presence of lesions can abruptly interrupt the addictive cycle. This is clear from the

findings of Naqvi and colleagues [Naqvi et al., 2007], who observed that patients

that experienced damages comprising the insular cortex suddenly quit smoking.

From this observation, a number of studies investigate its potential role in drug

addiction. For example, task-based functional studies reported increased reactiv-

ity of this region in AUD patients elicited by alcohol cues [Naqvi and Bechara,

2009]. This further suggested the importance of this region in drug craving and

cue-triggered urges, particularly involving its anterior portion [Craig, 2009].

In line with this concept, we surprisingly revealed an increased centrality of the

anterior insula in AUD patients, as revealed by a higher participation coefficient,

possibly indicating an exaggerated role of this region in the integration of inte-
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roceptive states into emotional and decision making processes in patients [Naqvi

and Bechara, 2009].

The effects of protracted abstinence was explored in patients who underwent a

standardized therapy program with or without adjuvant naltrexone, an opioid re-

ceptor antagonist with demonstrated albeit modest efficacy for relapse prevention

[Jonas et al., 2014]. We observed a partial recovery of connectivity strength, and

normalization of the structure of the supramarginal module. The participation co-

efficient of the insular cortex was significantly lower after two weeks of treatment.

Importantly, these findings demonstrate that at least some alterations in functional

connectivity observed in early withdrawal are actually reversible. Moreover, the

observation of a normalization by treatment of the integrative role of the insula

suggests a potential mechanism underlying amelioration of the condition.

Whether partial normalization in the strength and structure of functional con-

nectivity networks was driven by continued abstinence, or reflected the phsychoed-

ucational or pharmacological intervention remains unclear from the post-hoc anal-

yses of the two subgroups of patients receiving daily adjunct NTX or IWT only.

Normalization of the supramarginal module was observed in both cases, thus

suggesting that they are not related to the specific pharmacological mechanism

of NTX, but rather reflect the change in the state of the condition during pro-

tracted abstinence. These effects appear to be driven by insular connectivity, since

no significant changes were observed at the level of the basal module, the latter

comprising dopaminergic pathways that are central to the brain reward system.

A recent study by Morris et al. [Morris et al., 2017] showed reduced connectiv-

ity in AUD patients, consistent with our results, and an effect of NTX on some

topological parameters like local efficiency.

Overall, here we importantly revealed, for the first time by means of complex

network analysis, the exaggerated centrality that the anterior portion of the in-

sula acquires in AUD patients. Given the novelty of these observations, together

with the high variability of the functional architecture in individual patients and

healthy volunteers, we subsequently decided to try and validate these conclusions

also on a separate dataset comprising alcohol dependent patients. Indeed, func-

tional connectivity studies in humans suffer of the high heterogeneity and vari-

ability of brain organization in the overall population; for this reason validation



102 functional connectivity alterations in aud

studies aiming to replicate specific findings in independent cohorts are of critical

importance.

3.2 validation in a separate sample of aud patients

The case-control study previously described assessed functional alterations in the

modular architecture in alcohol dependent patients as compared to a sample of

healthy volunteers. Noteworthy, this investigation revealed an important frag-

mentation of specific regions involved in addiction, namely basal ganglia struc-

tures and the insular cortex. Furthermore, a significant increase in a topological

measure indexing the integrative role of local nodes, the participation coefficient,

highlighted an excessively central role of the anterior portion of the insula within

the overall functional network. These findings are particularly relevant as they

demonstrate, for the first time, that patients with a history of alcohol addiction

present specific alterations in the integration and segregation of these key regions.

Replication of results is critically important to increase confidence in neuroimag-

ing findings. Several reports recently tried to focus the attention of scientists

over this crucial aspect leading to the subsequent growth of “open science”, thus

promoting openness, transparency and data sharing in functional neuroimaging

[Nickerson, 2018]. Limited reproducibility of neuroimaging studies comes from

several sources. For example, even slight changes of the parameters for image

preprocessing might impact the final results, as well as different methodological

approaches for network analysis can lead to different outcomes. The lack of a well-

established unique pipeline from image processing to network construction and

evaluation further complicates replicability. For this reason, scientists are asked

to be as transparent as possible when disseminating their results, thus giving the

chance to other researchers to subsequently evaluate the same findings. More-

over, from these alerts, the presence of freely available neuroimaging datasets is

rapidly growing, making neuroscience more accessible to everyone. Yet, the ap-

preciation of functional brain effects in different studies is still challenging, mostly

for what concerns human studies. Brain conditions, often studied by means of

cross-sectional and case-control studies, are highly heterogeneous and the effects
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might be so subtle that we would need very big sample sizes to evaluate specific

findings. This is particularly true also when we consider the high variability, both

at a structural and functional level, in the brain organization of the global popu-

lation as well as differences in the origin, development, and maintenance of the

investigated psychiatric or neurologic disorders. In the case of brain disorders

the lack of replicability is furthermore critical given the subsequent difficulties in

the identification of specific altered neural regions that might be perfect target

for treatment options. For these reasons, we considered crucial the necessity to

further replicate our recent findings also on different cohorts of patients.

In the case of AUD patients local alterations in sub-cortical structures (amygdala,

hippocampus, thalamus, etc.) and in the insular cortex were already consistently

reported [Wrase et al., 2008, Senatorov et al., 2014, Fritz et al., 2019]. The involve-

ment of the insula in drug addiction gained centrality from the observation of the

sudden interruption of smoking-addiction in patients who suffered from a stroke

affecting this area [Naqvi et al., 2007]. Thus, detailed investigations related to the

functional embedding of this cortical region in addiction is essential, as it might

prove to be an optimal target for addiction treatments. Surprisingly, the study dis-

seminated in the previous section is the first in revealing the involvement of these

regions, both sub-cortical and cortical, also in the modular organization of the

functional brain network in these patients. However, further evaluations should

be carried out before assessing possible effects of a treatment targeting these re-

gions.

Hence, I leveraged an independent sample of AUD patients to evaluate whether

the specific modular alterations previously identified could be detected also in a

separate cohort. Here, I will evaluate the functional strength and modular archi-

tecture in this independent group of patients and I will subsequently compare it,

qualitatively, to the previously investigated samples of AUD and HC.

3.2.1 Materials and Methods

In this section I will describe the independent sample of AUD patients kindly

shared with us by Anneke Goudriaan, from the Arkin Mental Health Institute and

from the Amsterdam University Medical Center (UMC), department of Psychiatry
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(University of Amsterdam). To distinguish this cohort from the sample of AUD

patients previously investigated I will refer to it as AUD_A (Alcohol Use Disorder

– Amsterdam). The other sample will be here referred as AUD_T (Alcohol Use

Disorder – Transalc). The sample of healthy controls employed here will be the

same as the one introduced in the previous section.

Participants

A total of 38 AUD patients were recruited at UMC from addiction treatment cen-

ters in the city area of Amsterdam, the Netherlands. Participants recruited were

screened with a Composite Diagnostic Interview (CIDI; [World Health Organi-

zation (WHO), 1990]) to assess presence and severity of AUD according to the

DSM-IV criteria. Inclusion criteria required sobriety for at least three weeks, as

confirmed by a urine test. All participants were screened for MR suitability, cur-

rent psychiatric disorders, including anxiety, major depression and abuse of sub-

stances other than alcohol. The study was approved by the local Medical Ethical

Committee of the Academic Medical Center of the University of Amsterdam. All

participants signed the informed consent form, consistent with the declaration of

Helsinki, before participating in the study.

Image acquisition and preprocessing

Resting-state functional images were acquired on a Philip Achieva 3T scanner at

the Spinoza Imaging Center, Amsterdam, the Netherlands. Acquisition param-

eters by means of field-echo EPI sequence were as follow: TE=27.3ms; TR=2s;

FOV=240x240mm; 37 slices; slice thickness 3mm; 0.3mm slice gap; flip angle=76.1°.

Images were oriented axially along the anterior-posterior commissure to the posterior-

commissure (AC-PC) line. Scanning time was 7 minutes, for a total of 210 dynamic

volumes acquired. During resting-state scan acquisition participants were asked

to keep their eyes closed.

Preprocessing steps were highly similar to those implemented in the previously

described study with AUD patients. Functional images were preprocessed with

SPM12 (Wellcome Trust Center for NeuroImaging, London, UK). The first 10 vol-

umes for each participant were discarded as to ensure signal stability. Resulting

volumes were slice-time corrected, head motion realigned, and normalized to the
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standard MNI EPI template space (voxel-size resampled to 3x3x3mm−3). The sig-

nal related to head movement, extracted from the image realignment step, was

removed by means of a multiple regression model. Given that we did not have

any pre-recorded physiological signal for this study, in contrast to the Transalc

study, we further extracted time series from white-matter and ventricles regions

and added this spurious information to the multiple regression model.

Graph-theoretical analysis

Construction of the network followed the very same procedure previously de-

scribed in section 3.1.1. All images were parceled according to the functional tem-

plate described in [Crossley et al., 2013], with a final definition of 638 cortical and

subcortical nodes. BOLD time series were subsequently extracted from each node,

and Pearson correlation coefficients were calculated for all pairs of nodes. Subjects’

specific adjacency matrices underwent a z-Fisher transform and were averaged to

obtain the group-level functional connectivity matrix. A percolation approach was

implemented as means to discard weak and spurious edges.

The modular architecture was detected with InfoMap [Rosvall and Bergstrom,

2008], employing a consensus approach.

3.2.2 Results

Similar to previous findings, we observed an important reduction in the overall

functional connectivity in AUD_A. Through the evaluation of the edge-weight

distribution from both groups of patients and HC we detected an even stronger

right-shift of the AUD_A group, denoting a strong and significant decrease in

functional connectivity (figure 3.6). If compared to the HC group, this reduc-

tion appears highly significant (t=9.16; p=2.6−13). This strong significance might

be caused by the different acquisition scans, as the simple weight strength can

be strongly affected by the intensity of the BOLD signal. Yet, also the evalua-

tion of the binary global efficiency, indexing the efficiency in the information flow

and not dependent on the weight strength, revealed a significant reduction in the

AUD_A group, in line with our previous report (t=2.63; p=0.01). No differences
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between the two patient groups are appreciated in relation to global efficiency

(t=0.74; p=0.45).

Figure 3.6: Edge-weight dis-
tribution of the
three experimental
groups.

Modular organization

Again, we detected the modular architecture for the second group of patients by

means of InfoMap (Figure 3.7). Interestingly, AUD_A did not show a widespread

modular fragmentation, revealing a total of 13 modules (range 164 – 6 nodes) de-

noting the overall functional modularity, a number of communities very similar

to the one encountered in HC (13 communities). Observing the overall global

modular architecture we can appreciate in this group a different reorganization

as compared to HC, mostly related to the frontoparietal network, which seems

to present a non-pathological diversification in AUD_A, mostly likely originating

from the different acquisition scans and parameters. Yet, specific local fragmenta-

tions can be appreciated also in this independent sample of patients.

Figure 3.7: Modular architecture in the independent sample of AUD patients. Panel A
shows the group-level sparsified adjacency matrix re-ordered according to
nodes’ modular membership. Panel B represents the community organiza-
tion mapped on the cortical surface of the brain. The two images are color-
matched.
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Surprisingly, we could detect also in this patient group specific local fragmenta-

tions situated at the level of the basal ganglia structures and the insular cortex (fig-

ure 3.8). In details, AUD_A patients presented a re-organization of basal regions

even more prominent than the one detected in the AUT_T group. Indeed, here we

revealed a division into four different modules comprising pallidum-putamen, the

thalamus, and a further fragmentation of the hippocampus, which appears split

into two distinct sub-modules, one comprising also the bilateral amygdala. Fur-

thermore, this independent sample of patients revealed a very similar fragmen-

tation of the insular cortex as the one previously described in AUD_T patients.

Indeed, the bilateral anterior portion of the insula stands in a separate community,

while the more posterior area now lays together with the somatosensory module.

Interestingly, as we can appreciate from both panels of figure 3.8, the two groups

of AUD patients appears to share the specific local alterations in areas with a key

role addiction.

Figure 3.8: Representation of the local modular fragmentations observed in the two in-
dependent samples of AUD patients as compared to a sample of HC. Panel
A shows the re-organization localized in the basal ganglia structures; Panel
B represents the similar fragmentation of the anterior and posterior insula
detected in the AUD groups in contrast to HC.

3.2.3 Discussion

This study further supported the involvement of region specific alterations in the

overall modular organization of alcohol dependent patients. By means of a data-

driven approach we could successfully replicate very similar findings as those

already discussed in the previous case-control study. Specifically, we detected
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in an independent sample of AUD patients a specific fragmentation of the basal

ganglia, subcortical regions with a prominent role in the reward system, and of the

insular cortex, a critical area that gained increasing attention for its involvement in

addiction disorders. Given the nature of this exploratory study,comprising cohorts

of patients acquired in different centers and with different acquisition protocols,

we could not test further statistical measures. Yet, these results appear robust

across different studies, and interesting in the light of the strongly debated role of

the insula in drugs addiction including alcoholism [Senatorov et al., 2014, Sullivan

et al., 2013, Gaznick et al., 2013, Scuppa et al., 2019].

In conclusion, I extensively reviewed the central role of the insular cortex as

the main interoceptive center of the brain, and its critical involvement in addic-

tion suggests how drug craving and cue-induced urges might be considered as

complex interoceptive feelings. Specifically, this information seems to be predom-

inantly processed in the anterior portion of the insula, which appears to have an

altered embedding within the overall functional network. The observed separation

of this region from the more posterior portion reflects an underlying alteration in

the communication of this area. Furthermore, its abnormal integration is also

suggested from the identification of an exaggerated integrative role that the ante-

rior insula presents within the system, as highlighted by its significant increase

in participation coefficient. These findings, together with the accumulating evi-

dence reported in the scientific literature, point towards a complex involvement of

the insula in the control of addictive behaviors [Scuppa et al., 2019]. As already

stressed, its specific role in the translation of internal urges into emotional and

decision-making processes might be a central aspect driving addiction.

Unfortunately, studies carried out in human patients present critical interpre-

tative issues. Indeed, it is not possible to manipulate and control a number of

important variables that might lead to misleading interpretations. Importantly,

from these studies it is not possible to assume whether the identified functional

alterations are driven by the extended exposure to alcohol, or whether they play a

central role as predisposition factors. To answer these questions animal models of

alcohol addiction represent a more powerful approach [Meinhardt and Sommer,

2015]. Significantly, a very recent study carried out by Scuppa and colleagues

[Scuppa et al., 2019] in our group revealed important alterations of the functional
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connectivity in the insular cortex only in rats that were exposed for a prolonged

period of time (8 weeks) to ethanol, and such aberrancies were at least partially re-

versed by a pharmaceutical treatment. This is in line with the second development

of our study (Bordier et al in prep) which similarly reported a reversal of insular

alterations following a prolonged period of abstinence. Indeed, in the same pa-

tients, after few more weeks of detoxification, the role of the insula appeared to

be normalized, with a reduction in the participation coefficient and a lack of frag-

mentation of the anterior portion. Altogether, these findings appear to suggest

that the altered role acquired by the insula in addiction can be a consequence of

drug intoxication and possibly amenable to treatment. Yet, from the first findings

reported from Naqvi and colleagues [Naqvi et al., 2007] it further appears that the

role played by the insula is critical for the maintenance of addictive behaviors. Le-

sions of the insular cortex, indeed, suddenly block craving and cue-induced urges,

suggesting that its altered function is necessary for the continuation of addiction

disorders.

Now, considering all these findings, a further question arises: can we artificially

manipulate the pattern of connectivity of the insular cortex? Would this manipula-

tion reverse and normalize both functional alterations and addictive behaviors? A

novel and promising approach might help us in answering these questions, relying

on a magnetic stimulation of the brain cortex by means of TMS. From the obser-

vation of the critically altered role played by the insular cortex within the whole

system, we could ideally evaluate how the effects of a perturbation of the network,

targeting this key region, might re-shape the overall topological organization. If

successful, this promising approach might represent a possible novel option for

treatment of alcohol addiction, hopefully avoiding relapses and improving clini-

cal outcomes. These questions are at the basis of the next thesis chapter. Indeed,

after the promising findings reported in these described case-control studies, we

aimed to evaluate whether the stimulation of the insular cortex, or the stimulation

of addiction-related regions, could reverse the dramatic behavioral and functional

connectivity effects of this disorder. Hence, in the next chapter I will report results

from two studies, carried out in the framework of the European Sybil-AA consor-

tium, assessing the effects of a magnetic stimulation targeting the insular cortex

and the Anterior Cingulate Cortex (ACC), a region part of the salience network
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and previously found to be involved in addictive disorders, in AUD patients. The

results of these studies will, hopefully, help further elucidate the topological role

that the insula acquires in addiction.



4 I N T E R V E N T I O N S T U D I E S I N A LC O H O L

A D D I C T I O N B Y M E A N S O F D E E P T M S

The identification of key nodes involved in alcohol addiction networks can be cru-

cial for the development of targeted treatments. With this aim, after the evaluation

of altered structures in the resting state networks of alcoholic patients, we tested

how focal perturbations of the system could lead to changes in alcohol use and

abuse.

In the present chapter, I will describe two studies independently carried out in

two different centers: at the Center for Social and Affective Neuroscience (CSAN),

university of Linköping (Sweden), and at the Ben-Gurion University of Negev (Is-

rael), respectively. These comprise two human intervention studies, with the aim

to challenge resting state networks of alcohol dependent patients, by means of

deep Transcranial Magnetic Stimulation (dTMS), a technique recently approved

by the FDA for the treatment of depression and obsessive-compulsive disorders.

These interventions targeted regions implicated in alcohol addiction: the bilat-

eral insula, and the anterior cingulate cortex (ACC). Together, these studies will

address changes in functional connectivity induced by deep rTMS, and evaluate

relations of these changes with clinical outcomes. These studies are carried out in

the framework of the SyBil-AA consortium (“Systems Biology of Alcohol Addic-

tion: Modeling and validating disease state networks in human and animal brains

for understanding pathophysiology and predicting outcomes and improving ther-

apy”).

4.1 introduction

Besides being the most prevalent psychiatric disorder worldwide, Alcohol Use Dis-

order (AUD) is a highly heterogeneous disorder and treatment options available

are currently lacking. Few medications have been made available for alcoholic
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patients, however their efficacy has proven inconclusive. A number of different

conditions might influence the clinical outcome in AUD patients, who repeatedly

risk to fall into relapse. For example, the efficacy of specific medications seems to

be related to genetic factors, duration of the period of abstinence, or age of first

onset of addiction [Heilig et al., 2011]. Among these medications, two drugs cur-

rently represent a first line treatment for alcohol addiction, namely naltrexone and

acamprosate. Naltrexone has been the first pharmacological treatment approved

for AUD; both drugs appear to reduce alcohol craving, but the long-lasting neu-

ral adaptations induced by chronic alcohol intake seem to be difficult to reverse

by means of these pharmacological treatments alone. In addition, a second line

treatment for AUD includes the use of disulfiram, an inhibitor of the enymeac-

etaldehyde dehydrogenase enzyime. However, this drug does not reduce alcohol

craving; it functions through the aversive effects that ethanol exerts over the body

when taken. By blocking the enzymes responsible for ethanol degradation, disul-

firam causes strong hangover symptoms in the patient, discouraging subsequent

alcohol intakes. Notably, these strongly aversive effects often lead to poor compli-

ance and discontinuation of pharmacological treatment by the patient.

The limited number of treatment options now available in clinical settings, and

their low efficacy in the general patients’ population, might be specifically partially

due to the lack of a clear understanding of the neurobiological substrates of alcohol

addiction.

In previous chapters (1,3), I extensively reviewed the main neural aberrancies

most commonly reported in AUD patients, plus some of our most recent find-

ings related to functional connectivity alterations in different samples of patients.

Interestingly, brain areas more consistently related to alcohol induced alterations

comprise the reward system, together with insular cortices and medial frontal re-

gions [Dupuy and Chanraud, 2016, Camchong et al., 2013]. The identification of

neural substrates that might potentially increase the propensity to relapse in pa-

tients is crucial for the advance in medication or treatment development for AUD.

Ideally, we could interfere with the functional activity of these putative areas in

clinical populations, with the aim to reverse the critical neuroadaptations induced

by prolonged alcohol intake. Innovative and non-invasive clinical tools now offer

the opportunity to alter the cortical excitability of these regions, challenging func-
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tional states of the networks. Specifically, recently developed non-invasive neuro-

modulatory techniques, such as the Transcranial Magnetic Stimulation (TMS) have

proven efficacious for the treatment of different psychiatric disorders [Fitzgerald,

2009, Trevizol et al., 2016]. This approach involves the application of a magnetic

field that penetrates the skull, and, in turn, induces electric currents that can alter

the underlying neuronal excitability [Cho and Strafella, 2009].

Specifically, the use of repetitive TMS can induce cortical changes in excitabil-

ity, blood flow, or neurotransmitters release. Stimulation of the dorsolateral pre-

frontal cortex (DLPFC) appears to be effective for the treatment of drug-resistant

major depression [Noda et al., 2015], and accumulating evidence now suggest

its efficacy also for the treatment of addiction to different substances of abuse

[Camprodon et al., 2007, Rapinesi et al., 2016]. Related to addiction, rTMS has

been found to specifically alter release of dopamine [Strafella et al., 2001, Strafella

et al., 2003, Cho and Strafella, 2009, Malik et al., 2018], a neurotransmitter known

to be critically involved in addiction. The study from Strafella and colleagues

[Strafella et al., 2001] reported increased release of dopamine in the ipsihemisphere

of the TMS stimulation over the DLPFC. This further suggests the utility of neu-

romodulatory approaches in psychiatric conditions with dopamine dysfunctions.

In line with this, the treatment of addiction can benefit from the application of

non-invasive rTMS. A number of studies already tested its efficacy in AUD. How-

ever, reported findings in the literature are not always consistent across studies,

and despite most applications seem to reduce immediate cravings, no real follow-

ups have been recorded [Luigjes et al., 2019]. Repeated sessions of rTMS over

several weeks proved to be effective in the reduction of alcohol craving [Mishra

et al., 2010, De Ridder et al., 2011], but other conflicting findings report no effects

on craving after single session stimulations [Herremans et al., 2012, Herremans

et al., 2013]. Some evidence, moreover, report efficacy in alcohol craving reduc-

tions both after sham and active stimulations [Höppner et al., 2011, Ceccanti et al.,

2015]. The different stimulation parameters, comprising current intensity as well

as stimulation duration, might significantly hinder the actual effects that rTMS can

exerts over AUD patients [Hone-Blanchet et al., 2015]. Specifically, the number of

stimulation sessions seems to be particularly crucial, as proven by Herremans and

colleagues [Herremans et al., 2015], where reductions in craving were established
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only after 15 rTMS sessions. Another impacting factor relates to the use of a cue

provoking paradigm, namely the exposure to drug related cue before the rTMS

session (such as exposure to their favorite alcoholic drink). Studies that exploited

this paradigm were, indeed, the most effective in reducing craving levels [Hone-

Blanchet et al., 2015].

All the aforementioned studies picked as target of stimulation the DLPFC. This

frontal region is very easy to access through TMS, and seems to be relevant for

alcohol craving [Nardone et al., 2012]. However, as previously discussed, other

areas are implicated in alcohol addiction, with strong functional and structural al-

terations, such as the insular cortex and medial frontal regions. Unfortunately, the

more classic TMS figure eight coils can only provide focal stimulation of cortical

surfaces. The development of more sophisticated coils, the so called H-coils, finally

brought about the opportunity to reach brain structures more deeply embedded,

such as the insular cortex, or the anterior cingulate cortex [Roth et al., 2002]. The

H-coils can induce deeper and wider distribution of the magnetic fields. Thanks

to these technical advances, the application of deep repeated TMS (deep rTMS)

for the treatment of different disorders is more frequently investigated. Indeed,

its application already has FDA approval for the treatment of major depression

and obsessive compulsive disorder. Specific coils have been developed, targeting

different neural regions deeper in the cortex. For example, by reaching the insular

cortex, an H-coil has been proven to actively decrease the dopamine level in the

substantia nigra and striatum, with strong implications for its possible use in the

treatment of addiction [Malik et al., 2018]. A pioneering study, tested its efficacy in

the reduction of cigarettes smoking and by manipulating different variables, such

as stimulation intensity or cue-provoking stimuli exposure, tried to determine the

optimal settings [Dinur-Klein et al., 2014]. As a result, smoking cessation, main-

tained for at least 12 weeks after 15 sessions of treatment, was obtained in patients

that received an excitatory stimulation (10Hz), together with a cue-exposure just

before the deep rTMS sessions. This further suggests that neuromodulations ap-

plied while craving can enhance the temporarily change in craving measures and

reduce intake of the drug of abuse.

Deep rTMS may provide a means to target the neural substrates we have iden-

tified as involved in AUD, and to try and reverse the alterations induced by pro-
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longed alcohol exposure. Through this approach, we can attempt to reduce crav-

ing levels and relapse rates in AUD. Importantly, using neuroimaging techniques

we can further identify possible correlations between clinical and neuronal modi-

fications induced by the treatment.

From this idea, in collaboration with the European consortium Sybil-AA (“Sys-

tems Biology of Alcohol Addiction: Modeling and validating disease state net-

works in human and animal brains for understanding pathophysiology, predicting

outcomes and improving therapy”) funded within the “Horizon 2020” framework,

we specifically evaluated the effects that such perturbations can have on the whole

functional connectivity network. Two double-blind, sham-controlled, randomized

studies were carried out with identical experimental design and stimulation pro-

tocols, with the only difference laying in the area targeted by deep rTMS. A first

study, carried out at the Center for Social and Affective Neuroscience (CSAN),

university of Linköping (LIU, Sweden), targeted the bilateral insula. Given the

strong implications, extensively reviewed, that this cortical region exerts on the

mediation of drug rewards and addictive processes, its modulation could be a po-

tential powerful therapeutic strategy to treat addiction. Furthermore, by means

of deep rTMS, we may not only manipulate alter the intrinsic functional activity

of the insula, but act over its entire circuit, which comprises reciprocal connection

to the orbitofrontal cortex, the ACC, thalamus, amygdala, and globus pallidus, all

structures importantly implicated in the addiction process.

A second study carried out at the Ben-Gurion University of Negev (BGU, Is-

rael), targeted directly the ACC. Here, an identical protocol tested the effects of

treatment sessions over frontal regions, which may play a critical role in alcohol

craving, reduced inhibitory control, and relapse to alcohol use. It was, indeed,

previously reported that the altered and reduced activation of the ACC in AUD

patients could subsequently predict relapse. Furthermore, TMS effects over the

ACC proved to be state-dependent, as the lower the baseline activity, the more

TMS could increase its activity [Herremans et al., 2016].

Altogether, with these two studies we aim to evaluate the effects of interferences

to nodes in then network that appear to play a key role in alcohol addiction. By

artificially manipulating brain activity and perturbing the network, we seek to

avoid relapse, a critical step in the addiction cycle. Furthermore, we intend to
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Figure 4.1: Deep TMS model developed by BrainsWay LTD. used for the BGU study

evaluate the effects over the whole network when a focal perturbation is applied

to a specific set of nodes.
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4.2 materials and methods

4.2.1 Experimental design

The experimental design was identical for the two studies carried out in two differ-

ent centers, at the Center for Social and Affective Neuroscience (CSAN), university

of Linköping (LIU, Sweden), and at the Ben-Gurion University of Negev (BGU, Is-

rael), respectively.

In both studies, patients seeking treatment were randomized into sessions of

either active or sham deep rTMS treatment. Participants underwent a total of 15

rTMS sessions, over 3 weeks (5 sessions per week). High frequency stimulations

of 10Hz were delivered at an intensity of 120% of the Motor Threshold (MT), as

50 trains of 30 pulses. Each train had a duration of 3 seconds, with a 20 seconds

of inter-train interval, for a total of 1500 pulses delivered over approximately 20

minutes. To ensure adaptations to the repetitive stimulations, the very first two

sessions had lower intensity strength, starting from 100% of the MT for the first,

and 110% for the second session.

For both stimulations, deep TMS H-coils developed by the Brainsway LTD.

(model 102B) were implemented. H-coils are designed to target specific brain

regions. Specifically, the study carried out at LIU targeted the bilateral insula,

whereas the one carried out at BGU targeted the ACC.

Immediately before and after each deep rTMS session participants filled-out

craving questionnaires (Alcohol Urge Questionnaire- AUQ), to evaluate differ-

ences in craving scores induced by single treatment sessions. Before undergoing

deep rTMS, patients were also exposed to alcohol, by sniffing their favorite drink

for two minutes. Exposure to the substance of abuse just before treatment has been

proved to increase effectiveness in the reduction of craving induced by stimulation

[Dinur-Klein et al., 2014].

In addition to the 3 weeks of dTMS treatment, all participants underwent two

MRI sessions, one before the beginning of the treatment period, and a second one

at the end of the stimulation sessions.

To evaluate clinical outcomes, patients were followed-up for a total of 12 weeks

after the end of the treatment, specifically at 2, 4, 8, and 12 weeks after completion.
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Here, both self-reports of heavy drinking days and biomarkers of alcohol use were

collected.

Figure 4.2: Experimental design of the two dTMS studies, carried out over approx. 5

months

4.2.2 Participants and clinical measures

Participants were recruited through local clinics, flyers, and advertisements on the

local media, and consisted in patients voluntarily seeking treatment for alcohol

use disorder. Exclusion criteria for the admission to the study comprised: MR

incompatibility (presence of pacemakers or iron plaques), history of neurological

disorders, pregnancy, TMS incompatibility (history of seizures).

Details of the groups recruited at the two sites are reported below. Shortly, for

the study carried out at LIU, 50 participants were recruited and screened. Among

these, only 41 patients completed all the treatment sessions (mean age 51.7±9.1, 6

females). At BGU, 61 participants were recruited and screened, 51 completed all

the deep rTMS treatment sessions (mean age 41±9.8, 15 females).

At first admission, patients were screened for disorder severity, craving, and

alcohol consumption. Questionnaires common to both centers included: AUDIT

scores and Alcohol Dependence Scale (ADS) for the evaluation of disorder severity

before and after the three weeks of treatment, and during follow-up weeks; Penn

Alcohol Craving Scale (PACS) at first screening, after the completion of every week

of treatment, and at the follow-up weeks.

LIU study also comprised the collection of urine samples, every week for the

whole duration of the experimental study, to assess the level of Phosphatidylethanol

(Peth), a biomarker for ethanol presence in the body.
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All clinical measures were evaluated for changes induced by treatment and over

time by mans of repeated measures ANOVAs.

To be admitted to the TMS session, patients were required to be sober. Soberness

was estimated through a breathalyzer test. Total abstinence was not required dur-

ing the entire experimental period. Participants were excluded from the study if:

so requested; did no longer meet eligible criteria despite a positive initial screening;

did not comply with instructions of treatment staff; were intoxicated by alcohol;

developed serious alcohol withdrawal complications (seizures, delirium tremens,

anxiety, etc. . . ); became or were found pregnant; showed emergence or worsening

of psychiatric symptoms.

4.2.3 MR data acquisition

Imaging parameters were identical for the two studies. At the LIU center, MR

images were acquired with a Philips Ingenia 3 Tesla scanner (Philips Healthcare,

Best, The Netherlands).

First, a high resolution 3D T1-weighted scan was acquired, with TS=7ms, TE=3.2ms,

flip angle=8°, FOV=256x240x170, voxel resolution=1x1x1mm, no slice gap, for a to-

tal scantime of 5min and 34sec. Functional resting-state images were acquired with

an Echo-Planar Imaging (EPI) sequence. Six dummy volumes were firstly acquired

to allow the spin system to reach steady-state longitudinal magnetization and re-

duce effects of partial saturation. The EPI sequence consisted in: TR=2s, TE=30ms,

flip angle=77°, FOV=220x220, in-plane resolution=3.4x3.4, slice thickness=4mm,

no slice gap, number of axial slices=32. Functional runs had duration of approx-

imately 12 minutes, for a total of 353 volumes acquired. Before the resting-state

images acquisition, participants were asked to perform specific behavioral tasks,

while laying in the MR scanner, which are not going to be reported here.

4.2.4 Image preprocessing

Imaging data were preprocessed using SPM12 (Wellcome Trust Center for Neu-

roimaging, London, UK). Functional volumes were corrected for slice-timing, re-
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aligned, normalized to the standard MNI EPI template, and co-registered to the

high-resolution image. Structural images were normalized to standard MNI tem-

plate and segmented, in order to extract subject-specific white matter and CSF

masks. Effects of motion were assessed on all scans, by means of Framewise

Displacement (FD) and DVARS, computed following Power [Power et al., 2012].

Resting-state volumes were corrected for motion and physiological noise through

a method based on principal components analysis, namely aCompCor. The first

five principal components from WM and CSF, together with the six standard move-

ment parameters extracted by SPM, were regressed out from the timeseries. A

butterworth band-pass filter of 0.01-0.1 Hz was applied to both regressors and

timeseries.

4.2.5 Functional connectivity graphs

Functional connectivity graphs were generated in the same way as described in the

previous chapters. We parceled the preprocessed data into 638 nodes, following

the functional template generated in Crossley [Crossley et al., 2013]. Connectivity

matrices for each patient, pre and post rTMS, were generated by means of inter-

regional pairwise correlation (based on Pearson coefficient). Following, correlation

coefficients were z-Fisher transformed to ensure comparability across individuals.

We then computed pre and post-treatment group matrices (Sham vs rTMS) by

averaging each individual’s adjacency matrix. Finally, to ensure maximization

of community detection, we thresholded group matrices through a percolation

approach, retaining all the strongest edges that would ensure full connectedness

of the matrices, as previously discussed.

4.2.6 Modular organization and graph metrics

As described in the previous studies, we compared modular architectures across

deep rTMS conditions as well as before and after stimulation. Modular organiza-

tion was detected at the group level though the consensus approach of InfoMap,

and computed with the igraph-0.7.1 package.
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Global and local graph topological metrics were subsequently computed from

single-subject sparse adjacency matrices. At the global level, we addressed overall

functional connectivity, global efficiency, and matrix density after percolation (as

described in previous chapters 2,3). Next, at the local level of every single node,

we computed degree centrality, strength centrality, and local efficiency. Related to

the modular architecture, at the nodal level, we evaluated participation coefficient,

to detect nodes playing more central roles within the global organization. All topo-

logical metrics were evaluated by means of paired t-test, to assess within-subjects

changes before and after treatment, and through simple 2 tailed t-tests. Further-

more, given the application of a percolation procedure to sparsify individual ma-

trices, which might lead to different edge density across subjects, all statistical tests

were carried-out by co-varying for individual matrix density, using analysis of co-

variance (ANCOVA). Statistical significance of topological metrics, addressing all

638 nodes at the local level was evaluated by means of non-parametric permuta-

tions. All reported results are corrected for multiple comparison correction (false

discovery rate, [Genovese et al., 2002]). As in the aforementioned studies, all graph

topological metrics were computed with the Brain Connectivity Toolbox (BCT).

Furthermore, to estimate functional connectivity changes induced by the treat-

ment, we exploited the Network Based Statistics (NBS) toolbox [Zalesky et al.,

2010a]. This toolbox allows to run non-parametric testing over all links in the

graph to evaluate statistical differences between groups overcoming the multiple

comparison correction problem. We applied paired t-tests to question within-

subjects changes in pre and post-stimulations.

4.3 results liu study

4.3.1 Clinical data

For the purpose of this study, 50 patients were recruited, only 41 successfully

completed all the treatment sessions (mean age 51.7±9). Out of these participants,

20 patients (mean age 50.55±10; 17M/3F) were randomly assigned to the active

TMS treatment, and 21 patients (mean age 53.1±7; 17M/4F) to the sham control
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Figure 4.3: Panel A shows scores of PACS during the three treatment weeks and during 5

weeks of follow-up. Panel B shows AUDIT scores evaluated at screening and
for the first two follow-up weeks. Panel C shows Peth level measured every
week, from screening to follow-up.

condition. The two groups were matched for age ( t=0.894, p=0.37) and gender

(χ=0.119, p=0.731). Two participants from the TMS condition were subsequently

discarded from the analysis due to motion in the MRI sessions (mean FD>0.5mm).

We first evaluated effects of treatment by means of self-reported questionnaires.

No treatment effects could be observed in neither PACS nor AUDIT scores. How-

ever, significant effects of time could be observed during the treatment period (3

weeks) in PACS scores [ F(1,2)=5.042, p = 0.009, η2=0.012]. In contrast, a non-

significant increase in scores was found during follow-up [ F(1,4)=2.156, p=0.079,

η2=0.07]. A strong reduction in AUDIT scores, assessing alcohol consumption

and drinking-behaviors, was found for both groups after treatment [ F(1,2)=37.541,

p<0.001, η2=0.556]. Similar trend was observed when evaluating the presence of

ethanol in the body. Peth levels, indeed, did not show any difference across TMS

and sham conditions, however an effect of time is found during the three weeks of

treatment [ F(1,3)=17.778, p<0.001, η2=0.331]. No significant effect was observed

during follow-up weeks, where Peth levels increased [ F(1,4)=1.227, p=0.305,

η2=0.05]. Course of these effects are depicted in figure 4.3.

4.3.2 Effects of TMS on global functional connectivity

To evaluate the effects of deep rTMS of bilateral insula on functional connectiv-

ity we ran paired tests between follow-up and pre-treatment conditions, for both

sham and active TMS treatments. No differences in the overall functional connec-

tivity were highlighted at the individual level after sham condition, as measured

by means of paired t-tests ( t=-1.58, p=0.12). No significant differences could be
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appreciated either after the active TMS treatment, despite the presence of a ten-

dency in reduced overall functional connectivity ( t=1.69, p=0.09). The histograms

in figure 4.4 show the group-average edge-weight distribution for both follow-ups

when compared to baseline. Considered the well-known, and already discussed,

effects that head movements can exert over functional connectivity, we evaluated

motion for the experimental groups. No significant differences were observed by

Framewise Displacement across groups (pre-sham vs post-sham: t=-1.02, p=0.31;

pre-tms vs post-tms: t=0.007, p=0.99).

Figure 4.4: Edge-weight distribution for the group-average functional connectivity matri-
ces, comparing follow-up sessions to their respective baseline conditions.

In order to compute subsequent graph topological metrics at the individual level

we applied a thresholding procedure based on a percolation approach. The result-

ing sparse matrices did not reveal differences in edge density across conditions

(sham pre vs sham post: t=0.63, p=0.53; tms pre vs tms post: t=1.05, p=0.31).

Yet, given that many graph topological metrics can be influenced by different den-

sity, in all following tests we used individual density values as a covariate variable.

A similar pattern was observed for global efficiency. No significant differences

were identified before and after treatments, but a non-significant trend of reduced

global efficiency was present after treatments, predominantly in the active TMS

condition (pre-sham vs. post-sham: F=-1.63, p=0.11; pre-tms vs post-tms: F=-

1.88, p=0.06).

Details related to the means and standard deviations for all the investigated

topological metrics are reported in table 4.1.
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FD (mm) Functional Connectivity (FC) Density Global Efficiency (GE)

Pre-TMS 0.25±0.1 t=0.007,

p=0.99

0.26±0.08 t=1.69,

p=0.09

0.14±0.06 t=0.63,

p=0.52

0.29±0.05 F=-1.88,

p=0.069Post-TMS 0.25±0.09 0.22±0.03 0.13±0.06 0.26±0.03

Pre-Sham 0.21±0.07 t=-1.024,

P=0.31

0.25±0.08 t=-1.582,

p=0.12

0.13±0.04 t=1.05,

p=0.31

0.29±0.05 F=-1.63,

p=0.11Post-Sham 0.24±0.08 0.22±0.02 0.12±0.03 0.26±0.02

Table 4.1: Global functional connectivity metrics

4.3.3 Effects of TMS on local functional connectivity

The edge-wise investigation of functional connectivity changes investigated by

means of NBS did not reveal any significantly different link, in any direction.

Following, we evaluated effects of the treatment on local topological metrics by

means of non-parametric paired tests, covaried by density, for all the 638 nodes,

and run over 5000 permutations. Thus, all the significant results reported are

corrected for multiple comparison correction.

First, we addressed changes in binary degree centrality. A pattern of reduction

and increase in degree centrality was present in both sham and TMS conditions

before and after treatment. In total, 17 nodes showed reduced degree centrality

after both sham and active TMS treatments, comprising mostly right precuneus

and postcentral gyrus, hippocampus (right and left), and calcarine regions. In

contrast, frontal superior regions, the caudate, and the thalamus presented higher

degree centrality after sham stimulation. Active TMS caused an increase in binary

degree in 13 nodes, comprising inferior and medial frontal cortices, left angular

gyrus, and right inferior parietal cortex.

In line with the reduction of degree centrality in posterior regions, node strength

appeared decreased in precuneus and postcentral gyrus, calcarine regions and hip-

pocampus after sham. Conversely, no increase in strength was detected. A very

similar pattern was present for the active TMS condition. After treatment, a re-

duction in nodal strength was present in posterior regions, comprising precentral

gyrus, precuneus and postcentral gyrus, calcarine regions, and cuneus.

The pattern of reduction in functional connectivity observed in posterior regions

after three weeks of treatment is present also when evaluating local efficiency. In

both sham and active TMS conditions, a decrease in nodal efficiency is found
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in the precentral gyrus, posterior cingulate, occipital medial regions, and in the

supplementary motor area.

4.3.4 Effects of TMS on modular architecture

To assess the overall changes in functional organization induced by TMS at the

global level, we investigated the modular structure before and after treatments.

First, we checked possible differences at the individual level related to Q modular-

ity, measured with the community Louvain algorithm. Specifically, no differences

were present in Q values, co-varied for density, across conditions (pre-tms vs post-

tms: F=-0.133, p=0.91; pre-sham vs post-sham: F=0.08, p=0.92). Following,

modular organization was generated both at the group and at the individual lev-

els by means of an InfoMap consensus approach. At the group level, we did not

observe important differences between conditions. Before treatment the number of

communities identified was very similar between sham and active TMS (pre-TMS:

23 modules, ranging from 92 to 4 nodes; pre-sham: 24 modules, ranging from 90

to 2 nodes), whereas at follow-up, we appreciated a reduction in the number of

modules detected (post-TMS: 18 modules, ranging from 91 to 8 nodes; post-Sham:

20 modules, ranging from 86 to 7 nodes). However, at the individual level, the

number of modules between conditions was not statistically different (pre-tms vs

post-tms: t=1.15, p=0.26; pre-sham vs post-sham: t=-0.72, p=0.46).

At the global level, we appreciated specific re-organizations of the modular

structure of basal ganglia after sham and active TMS treatments, whereas a re-

organization of frontal regions was present only after active TMS treatment (fig-

ure 4.5). To evaluate significance of this reorganization, we compared the number

of modules belonging to these structures across all individuals’ modular parti-

tions. In more detail, for every participant, we extracted modules from basal and

superior frontal structures, and compared the number of communities across con-

ditions. The re-organization identified in the basal ganglia appeared statistically

significant only after the active TMS treatment (pre-tms vs post-tms: t=2.043,

p=0.005; pre-sham vs post-sham: t=-0.476, p=0.61). In contrast, re-organization of

superior frontal regions was not significant (pre-tms vs post-tms: tt=1.868, p=0.07;

pre-sham vs post-sham: t=1.14, p=0.26).
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From each individual partition, we subsequently extracted participation coef-

ficient information for all nodes. At the nodal level, we did not find statistical

differences in terms of inter-community participation coefficient for any condition.

Figure 4.5: Panel A shows modular re-organization of the basal ganglia structures after
both treatments. Panel B shows modular re-organization in frontal regions
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4.3.5 Effects of TMS on insular connectivity

To evaluate the efficacy of the TMS stimulation over the bilateral insular, we sepa-

rately evaluated, through post-hoc and hypothesis-driven analysis, degree central-

ity, strength, local efficiency, and density of insular connections. No differences

were reported in any local topological metric across conditions. Related to the

modular organization of the insular cortex, one node from the left and right ante-

rior insula were separated in all conditions.

4.3.6 Correlation with clinical variables

After completion of the analysis of functional connectivity changes induced by

deep rTMS, we further addressed relations between clinical measures and global

functional metrics. For this purpose we conducted partial correlations, co-varying

for density.

No relation between global topological metrics (global efficiency, functional con-

nectivity, Q scores) was found at baseline with clinical measures (AUDIT, ADS,

PACS). Interestingly, baseline PACS scores, a measure of craving, correlated with

global metrics at follow-up, namely with global efficiency (r=-0.403, p=0.01) and

with overall functional connectivity (r=-0.463, p=0.004). We further tested possi-

ble relations between changes in functional connectivity or global efficiency and

changes in craving. The difference between global metrics at follow-up and at base-

line did not show any significant correlation with the difference of craving scores

at the end of the treatment and at screening. No correlations were identified with

clinical variables collected after treatment (Figure 4.6).

Furthermore, we evaluated edge-wise correlations with clinical variables, to

identify sub-networks within the system that could possibly be related to clinical

response. To this end, we tested for correlations by means of the Network-Based

Statistics (NBS; [Zalesky et al., 2010a] toolbox, a precious tool allowing to test all

edges in the network with non-paramatric tests. Specifically, we tested for correla-

tions of all functional connectivity links, at the individual level, with clinical vari-

ables conducting 5000 non-parametric permutations co-varied with density. No
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significant sub-network was found to correlate with either craving scores (PACS)

nor severity of the disorder (ADS) at baseline or follow-up.

Figure 4.6: Plots showing correlation between PACS at baseline and global metrics at
follow-up. Panel A represents correlation between PACS scores and overall
functional connectivity (r=-0.463, p=0.004). Panel B shows correlation between
PACS and global efficiency (r=-0.403, p=0.01).

4.4 results bgu study

4.4.1 Clinical Data

At the Israeli research center, 51 participants were recruited for this study. Among

these patients only 44 completed the treatment and were randomly assigned to

either TMS condition (23 AUD patients, mean age 43±9; 15M/8F) or Sham (21

AUD patients, mean age 41±10; 14M/8F). The two groups were matched for age

( t=0.465, p=0.647) and gender (χ=0.01, p=0.917). For the functional imaging

analysis two participants from the TMS condition and 4 from sham were discarded

due to excessive motion (mean FD>0.5mm).

Only self-reported questionnaires were available for this dataset. Only self-

report questionnaires were available for this dataset. Effects of treatment and

time were evaluated by means of PACS and AUDIT scores with repeated mea-

sures ANOVA. As we can observe from the plot in panel A of figure 4.7, a strong

reduction in craving levels, measured by means of PACS scores, is present in

both treatment groups. This strong effect of time is strongly significant in both

conditions from baseline to the final week of treatment (TMS: [ F(1,21)=62.036,

p<0.0001, η2=0.74]; Sham: [ F(1,21)=17.018, p<0.0001, η2=0.44]). We further ob-

served an interaction between stimulation and time during the three weeks of
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treatment [ F(2,84)=3.641, p=0.041, η2=η2=0.08]. Examining the two groups sepa-

rately, we observe a significant reduction of PACS scores during the three weeks

of treatment in the TMS group [ F(2,42)=4.003, p=0.04,η2=0.16], which is not

present in the sham condition [ F(2,42)=0.288, p=0.751,η2=0.01]. At follow-up,

TMS treatment shows a not-significant trend of increased craving [ F(4,68)=2.598,

p=0.095,η2=0.13]. Opposite, this trend in increased PACS scores appears signifi-

cant during the follow-up period in the sham condition [ F(4,64)=4.547, p=0.01,η2=0.22].

Clinical results are represented in figure 4.7.

Figure 4.7: Panel A shows PACS craving scores during treatment and at follow-up. Panel
B shows AUDIT scores at screening and after treatment.

4.4.2 Effects of TMS on global functional connectivity

Similar to the previous study we evaluated the effects of deep TMS over global

functional connectivity measures by means of paired tests between follow-up and

pre-treatment conditions. No significant differences were present after either TMS

or Sham in overall functional connectivity strength (pre-tms vs. post-tms: t=0.04,

p=0.96; pre-sham vs. post-sham: t=0.24, p=0.8). Histograms in figure 4.8 show

the group-average edge-weight distribution for both conditions at follow-up as

compared to the baseline groups. To ensure that the overall functional connectiv-

ity at the subjects’ level was not influenced by the presence of head movements,

we tested whether the groups moved differently as measured by FD. No differ-

ences across any condition were present in terms of motion (pre-tms vs. post-tms:

t=0.33, p=0.73; pre-sham vs post-sham: t=0.03, p=0.26).
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FD (mm) Functional Connectivity (FC) Density Global Efficiency (GE)

Pre-TMS 0.23±0.07 t=0.33,

p=0.87

0.25±0.03 t=0.04,

p=0.96

0.18±0.05 t=0.3,

p=0.76

0.29±0.03 F=0.012,

p=0.99Post-TMS 0.24±0.08 0.25±0.03 0.18±0.06 0.29±0.03

Pre-Sham 0.26±0.1 t=0.03,

P=0.96

0.24±0.05 t=0.24,

p=0.8

0.16±0.07 t=0.409,

p=0.8

0.29±0.03 F=0.239,

p=0.81Post-Sham 0.27±0.08 0.24±0.05 0.17±0.08 0.29±0.04

Table 4.2: Global functional connectivity metrics

As already discussed in the previous studies, we applied a thresholding pro-

cedure based on percolation as to obtain graphs both at the group and at the

individual level. No differences were found in edge density across conditions at

the individual level (pre-tms vs. post-tms: t=0.3, p=0.76; pre-sham vs post-sham:

t=0.409, p=0.76). To ensure comparability across conditions when evaluating topo-

logical metrics at the individual level we used density values as a covariate vari-

able.

Differences in global efficiency were measured in thresholded graphs, covarying

for density. As observed with the overall functional connectivity strength, no

differences were found across conditions in global efficiency (pre-tms vs. post-

tms: F=0.012, p=0.99; pre-sham vs. post-sham: F=0.239, p=0.81). Details related

to the global topological metrics are described in table 4.2.

Figure 4.8: Edge-weight distribution for the group-average functional connectivity matri-
ces, comparing follow-ups sessions to their baseline conditions.

4.4.3 Effects of TMS on local functional connectivity

As addressed in the LIU study, we evaluated treatment effects over local topolog-

ical metrics by means of non-parametric paired tests, covaried by density, for all
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638 nodes, over 5000 permutations. Thus, only results significant after multiple

comparison correction are reported here.

We tested differences induced by treatment in degree centrality and nodal strength.

Here, we could only identify a reduction in both binary and weighted degree after

treatment with a sham condition in 10 nodes, surviving FDR correction (t>2.5), in-

volving occipital regions (bilateral lingual gyrus, bilateral medial occipital cortex,

and bilateral calcarine sulcus). No changes surviving multiple comparison correc-

tion are present after the real TMS condition for any node. Similarly, we did not

identify changes in the nodal local efficiency for neither sham nor TMS groups.

4.4.4 Effects of TMS on modular architecture

For the evaluation of changes induced by three weeks of deep rTMS treatment at

a global scale we further assessed the modular architecture in all conditions. First,

we looked for differences at the individual level in modularity measured with

Q scores extracted by means of the community Louvain algorithm. No changes

are present for Q values, when co-varying for density, after active TMS ( F=0.766,

p=0.448) or after sham ( F=0.659, p=0.514). To further evaluate the overall commu-

nities’ organization we detected the modular architecture by means of InfoMap

with a consensus approach, both at the group and at the individual level. At

the group level no important differences were found when comparing follow-up

conditions to their baseline. For the TMS condition, 15 modules were identified

before treatment, with modules size ranging from 178 to 5 nodes. Similar, after

active TMS treatment 15 modules are found, ranging from 179 to 4 nodes. A

greater number of modules is detected in the sham condition before treatment (18

communities, ranging from 143 to 3 nodes), and after treatment (20 communities,

ranging from 158 to 3 nodes). The modular architecture was overall highly similar

among all conditions (figure 4.9). In line with this, no differences in the number of

modules detected at the individual level are present (pre-tms vs- post-tms: p=0.24;

pre-sham vs. post-sham: p=0.41). Opposite to what observed in the LIU dataset,

frontal regions showed very similar organization in all conditions, with 3 to 4

communities. Sub-cortical structures were identical before both active and sham

treatments, with important fragmentations of the basal ganglia. Pallidum and
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putamen structures are found to be always part of one single module, whereas

thalamus, caudate, and hippocampus are separated into different communities in

all conditions.

From the global functional architecture we could detect changes in the different

roles played by nodes within the whole network by measuring participation coef-

ficient at the individual level. Here, we could only detect few significant changes

surviving FDR, mostly showing a reduction in the participation coefficient in spe-

cific nodes after active TMS. Specifically, only three nodes comprising the right

caudate and right hippocampus shows a reduction in participation coefficient af-

ter active TMS.

Figure 4.9: Modular architecture detected with InfoMap for all conditions before and after
deep rTMS treatment.

4.4.5 Effects of TMS on insular and ACC connectivity

This study aimed to target the anterior cingulate cortex by means of deep rTMS.

As reviewed, the ACC is part of the salience network, strongly connected to the

insular cortex, a central hub in addiction. Thus, we further evaluated changes in

the ACC and in the insular connectivity following treatment as a post-hoc data-

driven analysis. No differences could be identified in any local topological metrics

in either the insular cortex nor in the ACC after sham or TMS treatments.

Related to the modular organization of the insular cortex, we observe a fragmen-

tation of the anterior insular from its posterior portion only in the sham conditions
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(both pre and post). In the active TMS group, all nodes of the insula fall within

the same community, together with somatosensory cortices.

4.4.6 Correlations with clinical data

Following the analysis of the functional connectivity topological organization from

a local to a global scale, we evaluated possible correlations between clinical vari-

ables (AUDIT, PACS, ADS) and global metrics (global efficiency, functional con-

nectivity, and Q values). Given the dependency of these metrics on graph sparsity,

we ran partial correlations co-varied for density.

Interestingly, PACS scores, measuring craving, negatively correlated with the

global efficiency (r=-0.403, p=0.004) and functional connectivity at baseline (r=-

0.354, p=0.013). Furthermore, global efficiency was found to negative correlate

with ADS, scores reflecting the severity of alcohol dependence (r=-0.435, p=0.004).

ADS scores strongly correlated also with the overall functional connectivity at

baseline (r=-0.438, p=0.004; figure 4.10). No correlations were identified with

AUDIT scores and topological measures at baseline. Interestingly, at follow-up,

only functional connectivity and global efficiency for the real TMS treated group

negatively correlated with PACS scores collected at the end of the last week of

treatment (r=-0.5, p=0.03 and r=-0.479, p=0.04, respectively).

We further tested the presence of correlations between the change in functional

connectivity and efficiency at follow-up compared to their baselines with the

change in craving scores at the end of the treatment and at screening. In line

with the relation present between global metrics and craving at follow-up in the

real TMS condition, a significant correlation was present only between the change

in functional connectivity (δFC) and global efficiency (δGE) with the change in

craving for the TMS treated group (tms δFC: r=-0.551, p=0.015; TMS δGE: r=-0.574,

p=0.01; Sham δFC: r=-0.078, p=0.79; Sham δGE: r=-0.165, p=0.574; figure 4.11).

Following, we evaluated correlations between all functional edges and clinical

variables by means of 5000 non-parametric permutations conducted with the NBS

toolbox. Here, we revealed a correlation between functional connectivity matrices

at the individual level and PACS scores at baseline ( t=3.1, p=0.049, figure 4.12).

The sub-network identified comprised 372 functional links, including widespread
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Figure 4.10: Plots showing identified correlations between clinical measures and global
metrics at baseline. Panel A shows correlation between global functional con-
nectivity and ADS scores at baseline (r=-0.435, p=0.004**). Panel B represents
correlation between global efficiency and ADS (r=-0.438, p=0.004**). Panels
C and D show correlation between topological metrics and craving PACS
scores (global efficiency: r=-0.403, p=0.004**; functional connectivity: r=-
0.354, p=0.013). Panels E and F show correlations identified for the real TMS
treatment group at follow-up between craving scores at the third week of
treatment with functional connectivity (r=-0.5, p=0.03) and global efficiency
(r=-0.479, p=0.04). ** indicates tests surviving Bonferroni correction.

cortico-cortical connections. In detail, highest significances are found in interhemi-

spheric frontal connections . In contrast, no relation was found between functional

connectivity at follow-up and clinical variables, neither at baseline nor during

follow-up.
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Figure 4.11: Correlations changes in connectivity and craving for active TMS and sham.
Panels A and C show correlation between the change in global metrics (func-
tional connectivity and global efficiency, respectively; follow-up minus base-
line) and the changes in craving scores (PACS at T3 minus PACS at screen-
ing). Significant relations are found only for the active TMS treated group
δFC: r=-0.551, p=0.015; δGE: r=-0.574, p=0.01). Panels B and D show the
same relations but investigated in the sham group (δFC: r=-0.078, p=0.79;
Sham δGE: r=-0.165, p=0.574).

Figure 4.12: Graphical representation
mapped on the brain
surface of the strongest
functional connections
correlating with craving
scores at baseline. Statistical
measures are computed
by means of partial cor-
relations co-varied for
density.
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4.5 discussion

The aim of these two studies, carried out with an identical design but in different

research centers, was to evaluate the efficacy of a possible novel treatment for al-

cohol dependence disorder, targeting specific regions involved in addiction. The

first study performed at the University of Linköping in Sweden (LIU), aimed to

target the bilateral insula, a cortical region crucial in craving and addictive behav-

iors [Naqvi and Bechara, 2009, Naqvi and Bechara, 2010]. In contrast, the second

study, developed at the Ben-Gurion University in Israel (BGU), employed a TMS

coil targeting the anterior cingulate cortex (ACC), key part of the salience net-

work fundamental in the top-down control of conscious behaviors, such as drug

urges. Interestingly, only one of the two studies here evaluated revealed a sig-

nificant treatment effect. Indeed, it appears evident that the stimulation of the

ACC, as assessed at BGU, reduces craving to a greater and significant extent after

a protracted treatment with an active deep rTMS stimulation. Reductions in both

craving and disorder severity scores (measured by means of PACS and AUDIT,

respectively) are evident as an effect of time in both treatment groups. Indeed, we

clearly observed a strong and significant reduction during treatment, as compared

to the baseline self-reports. Yet, this reduction is more significantly prominent in

the active TMS condition, reflecting potential efficacy of this treatment in modu-

lating alcohol craving, one of the most dramatic factors inducing patients towards

subsequent relapse. Importantly, this effect appeared to be present, to a lesser

extent, also after three months, in contrast to patients assigned to the sham con-

dition who show increasing patterns of craving at a much faster rate during the

follow-up period.

Conversely, we could not demonstrate any clinical effect of this novel treatment

in the first study here evaluated, where the bilateral insular cortex was targeted

with deep rTMS. Indeed, in the LIU study we revealed a general reduction in all

clinical variables, comprising craving scores (PACS) and alcohol disorder severity

scales (AUDIT), regardless of the treatment condition. In details, patients were

asked to try and remain abstinent during the three weeks of treatment, still they

would not have been excluded from the trial if found drinking small amounts of

alcohol. As proved by the presence of ethanol in urine samples collected in the LIU



4.5 discussion 137

study, patients assigned to both the active TMS and the sham conditions strongly

reduced their alcohol intakes during the three weeks when they daily went to the

clinic to receive deep rTMS treatment. However, ethanol concentrations appear

to increase, in both conditions, just after the end of the trial, when they were not

supposed to be present daily in a hospital setting. This is similarly observed in

patients recruited at the BGU center, where craving and severity scores appear

to increase (not statistically significant) during follow-up weeks. Altogether, this

specific clinical results seems to suggest a placebo effect induced by the clinical

setting where patients were supposed to go to every day for the duration of the

treatment.

Repeated Transcranial Magnetic Stimulation represents a novel and promising

technique to treat several psychiatric disorders, including depression, obsessive-

compulsive disorders, and perhaps addiction [Fitzgerald, 2009, Trevizol et al.,

2016]. To date, only a few studies have investigated the effects of rTMS in re-

ducing craving symptoms in AUD patients, reporting contrasting results. Impor-

tantly, all these studies targeted left or right dorsolateral prefrontal cortex (DLPFC;

[Mishra et al., 2010, Herremans et al., 2012, Höppner et al., 2011, Herremans et al.,

2015, Mishra et al., 2015]). In details, findings reported from these previous stud-

ies suggest that one single session of rTMS does not show efficacy in reducing

craving scores [Höppner et al., 2011, Herremans et al., 2012], and a trend towards

reduction appears from both active and sham stimulations. In contrast, success-

ful reduction of craving is prominent only after at least 10-15 treatment sessions

[Mishra et al., 2010, Mishra et al., 2015, Herremans et al., 2015]. These three stud-

ies reported, indeed, an amelioration of addictive behaviors. However, only the

first study from Mishra and colleagues [Mishra et al., 2010] also included a sham-

controlled group which did not reveal significant reductions in craving after 10

rTMS stimulation sessions. Efficacy of the treatment is further reported after 10

[Mishra et al., 2015] and 15 sessions [Herremans et al., 2015], as measured by a

decrease in self-reported craving scores by AUD patients. Yet, these two studies

did not include a sham-control group.

All previous studies, studies stimulated the right or left DLPFC. The choice

of stimulation of this frontal cortical region is related to several factors, among

these the ease in reaching it with conventional rTMS coils, and the accumulating
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evidence of its efficacy for the treatment of other psychiatric disorders such as de-

pression [Loo and Mitchell, 2005]. Moreover, it was proven that the repeated stim-

ulation of the frontal cortex has modulatory effects over the dopaminergic system,

facilitating the release of dopamine [Strafella et al., 2001]. For this reason, the stim-

ulation of this region in disorders showing alteration in the dopaminergic system,

such as addiction, appears promising. Interestingly, a pilot study employing a

deep TMS over the DLPFC in AUD patients reported a significant reduction in the

dopamine transporter availability in caudate and putamen only after active TMS

treatment as compared to sham [Addolorato et al., 2017]. No effects on craving

measures were present; however this study only reports findings from very few

participants (5 active TMS, 6 sham) and clinical outcomes are to be interpreted

with caution. Another pilot study evaluated the efficacy of the deep TMS H-coil

over the medial PFC on AUD patients, and successfully reported a manipulation

in the release of dopamine in active TMS as compared to sham [Ceccanti et al.,

2015]. Furthermore, this study identified a reduction in both craving measures

and in alcohol drinking days in both stimulation groups (sham and active), yet

this change was more prominent and significantly different only in patients who

underwent an active TMS as compared to patients assigned to sham. However,

similar to the study from Addolorato [Addolorato et al., 2017], this pilot study

only presents findings related to a very small sample of patients (9 active TMS, 9

sham).

Altogether, the existing scientific literature does prove that magnetic stimulation

of frontal cortical regions can manipulate the dopaminergic system, but results

related to a reduction in craving measures are conflicting.

With the two sham-controlled longitudinal studies evaluated in this chapter we

significantly shed more light over the potential efficacy of this novel treatment

based on deep TMS. Specifically, the stimulation of the ACC appears promising for

the treatment of alcohol addiction, as suggested by a significant reduction in crav-

ing scores. Another interesting aspect, in line with previous studies, comes from

the number of treatment sessions necessary to induce a reduction in addictive-

behaviors. In the BGU study, indeed, the differentiation between the active rTMS

and the sham condition appears only at the end of the second week of treatment,

after 10 consecutive treatment sessions, as already indicated by [Mishra et al.,
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2010, Herremans et al., 2015, Mishra et al., 2015]. At the end of the third week,

after the 15th stimulation, the difference in craving between the two groups is fur-

ther increased. Yet, it is important to state that the clinical effect here evaluated,

despite being significant, does not appear to be particularly prominent, given the

lack of a big effect size. For this aspect, the limited number of participants should

be taken into account. Specifically, patients are still being recruited at the BGU

center, aiming to collect more valuable data for the purpose of this clinical study.

In relation to the effects of deep rTMS treatments over the functional connec-

tivity organization in alcohol dependent patients, only one of the two studies

here evaluated proved some significant modulations in reward-related regions af-

ter stimulations. Specifically, the deep stimulation of the bilateral insula, despite

the lack of efficacy in the clinical outcomes, appeared to significantly re-organize

sub-cortical regions as well as frontal cortices. We previously proved that AUD pa-

tients present a substantial fragmentation in sub-cortical basal ganglia structures

(Bordier et al. in prep; chapter 3 of this thesis). Both samples of patients from the

LIU and BGU studies present similar fragmentation thus providing independent

corroborating evidence. However, only patients from the LIU sample revealed a

statistically significant re-organization of the basal structures after active stimula-

tion of the insular cortex, with a tendency towards a reduction in fragmentation.

Importantly, the insula has reciprocal connections towards these regions, form-

ing a key pathway in the brain reward-system [Craig, 2009, Malik et al., 2018].

From these findings, it appears that stimulation of this cortical area would be

effective in modulating the organization in these central reward-related regions.

Yet, another interesting observation comes from the non-statistically significant

re-organization of these sub-cortical structures also in the sham treated group. In-

deed, we observed a rearrangement of specific structures (i.e. caudate, pallidum,

putamen) very similar to the one observed in patients treated with real TMS. It

is possible that this subtle functional re-organization relates to the reduction of

alcohol intake that these patients experience during the three weeks of treatment.

As reported in the previous chapter of this thesis (chapter 3) we already observed

in AUD patients a substantial re-organization of reward-related regions after sev-

eral weeks of detoxification, irrespectively of the treatment option received (IWT

or IWT+NTX; Bordier et al in prep.). Furthermore, in this TMS study, patients
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were supposed to go daily to a clinic to receive treatment. Here, they would find

themselves in a supportive clinical setting, and they would consistently interact

with experienced and caring clinical staff. It is likely that the combination of

the reduction in alcohol intake and a supportive environment might help in the

re-organization of functional brain regions strictly involved in reward processes.

However, such manipulation might not be strong or protracted enough as to result

in significant clinical and behavioral changes. The modulatory effects induced by a

stimulation of the insula by means of a deep TMS H-coil over sub-cortical regions

(pallidum and striatum) was already reported by a pilot study from Malik and

colleagues [Malik et al., 2018]. This study revealed reductions in dopamine levels

after one session of low frequency stimulations in healthy volunteers, and thus

suggested the possibility to employ such stimulation as a treatment for addiction.

However, the present study involved high frequency stimulation, as suggested by

the efficacy in reducing craving measures in smokers, reported by Dinur-Klein

and colleagues [Dinur-Klein et al., 2014]. It might be possible that the applica-

tion of a more protracted low-frequency stimulation to the insular cortex in AUD

patients could show stronger long-term efficacy as suggested by Malik and col-

leagues [Malik et al., 2018]. The active stimulation employed in the LIU study,

further induced re-organization of superior frontal regions, fundamental for the

top-down control of impulsive behaviors. This might additionally suggest the ef-

ficacy of the stimulation in manipulating the underlying functional organization

of the network. Unfortunately these perturbations of the system do not prove to

be sufficient to show clinical long-term effects. In contrast, we could not identify

important changes in the functional connectivity networks from the BGU study,

wich involved the stimulation of the ACC. Basal structures were found to be sim-

ilarly fragmented in this sample of patients, with no re-organization after active

stimulation despite the positive clinical outcome defined by craving scales. This

suggests that the alterations in these sub-cortical regions is neither sufficient nor

necessary for the improvement in craving for these patients.

A secondary interesting result from these studies lays in the observation of a sig-

nificant relation of clinical variables with functional connectivity topological met-

rics. Specifically, in the BGU study we revealed a significant correlation between

alcohol dependence severity (ADS) and both global efficiency and overall func-
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tional connectivity strength. Furthermore, craving scores measured with the PACS

questionnaire correlated with global efficiency and overall functional connectivity,

and with the functional connectivity strength of a widespread brain sub-network.

The relation of alcohol dependence severity with whole-brain functional network

alterations were similarly reported by Sjoerds and colleagues [Sjoerds et al., 2015].

Of important notice, we observed that functional brain networks show lower ef-

ficiency and functional strength with higher severity of alcohol dependence and

self-reported urges. Another critical findings comes from the correlation reported

between changes in connectivity and changes in craving. Specifically, the more

functional connectivity – and global efficiency – improved as a consequence of

treatment, the more craving was reduced after three weeks of active TMS stimula-

tion. Yet, the increase in overall functional strength is not significant after delivery

of TMS, thus possibly suggesting that by significantly increasing the functional

connectivity in AUD we could induce a further reduction of addictive-behaviors

in AUD patients.

At a local scale, craving measures significantly correlated, with a negative di-

rection, with a sub-network comprising widespread cortical connections more

prominently located in frontal areas. Interestingly, task-based studies already

identified a relation of craving urges with functional frontal activation [Myrick

et al., 2004, Grüsser et al., 2004, Heinz et al., 2009]. Notably, also the changes

in activation of prefrontal regions observed in alcohol-dependent patients when

observing alcohol-related images appeared to significantly correlate with craving

self-reported scores [Myrick et al., 2004].

However, these significant relations are present here only in one sample of AUD

patients (from the BGU study). Unfortunately, given the nature of these clinical

studies, we cannot disentangle whether these effects are related to the toxic effect

that ethanol exerts on the brain or whether they play a role as a predisposition

factor. Moreover, the number of participants in these two clinical studies is lim-

ited (43 patients BGU; 41 patients LIU) and we could be under-powered for an

examination of specific relations between clinical variables and functional related

measures in both samples. Yet, the identification of specific correlation patterns

can represent an important factor that should be further addressed in other sam-

ples of AUD patients, as well as in other addictive disorders. Importantly, it should
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be more carefully evaluated whether these functional alterations related to craving

and addiction severity might be a possible target for treatment options.

To conclude, in these two clinical studies we aimed to evaluate the efficacy of a

possible novel treatment for alcohol addiction, by means of transcranial magnetic

stimulation of the insular cortex and the ACC. Contrary to our expectations, the

application of deep TMS did not reveal specific functional connectivity changes

that could be translated into a clinical outcome. Thanks to the induction of ex-

citability changes in the cortex, it is thought that an active TMS stimulation might

be able to induce long-term functional changes and plasticity in the human brain.

Yet, the two studies here investigated did not prove prominent functional effects.

Importantly, in both studies we observed an important reduction in craving and

disorder severity for both stimulation conditions. Yet, only stimulations targeting

the ACC proved efficacy in more significantly reducing craving in the active TMS

group. Moreover, this was the only group furthermore proving partial stability

during follow-up months, whereas both craving and alcohol consumptions signifi-

cantly increased in the sham group and in both conditions for the LIU study. This

effect subsequently indicates that deep high-frequency rTMS of medial frontal re-

gions can reduce alcohol craving. Further investigations should be carried out in

order to better understand the duration of these stimulation effects and whether

this promising approach may become an established treatment for alcohol depen-

dent patients.



5 K E TA M I N E - I N D U C E D A LT E R AT I O N S

A N D R E V E R S A L B Y R I S P E R I D O N E

In the present thesis I methodically addressed the application of a complex graph-

theoretical approach to resting-state functional networks. After the closer evalu-

ation of some methodological open questions in the network science world, I ap-

plied graph theoretical methods to different clinical datasets. Specifically, I investi-

gated alterations in brain functional connectivity underlying AUD, and identified

brain areas that may be amenable to therapeutic targeting through neuromodu-

latory approaches. Importantly, the alterations investigated so far were related

to long-lasting effects or longitudinal observations. Neural effects of alcohol on

AUD patients are studied after prolonged substance intake, whereas treatments

efficacy is addressed after few weeks of deep TMS. The concepts and methods I

have developed may be useful to study the effects of other drugs of abuse, and

therapeutic approaches more conventional than TMS.

Here, I will apply the graph theoretical framework to evaluate the effects of

acute administration of ketamine, a multifaceted drug whose effects on brain func-

tion are still the subject of investigation. Ketamine is a psychotomimetic drug with

strong abuse liability. However, at higher doses it can be employed as an anesthetic

and sedative. In addition, its use as a powerful antidepressant has been recently

approved by the Food and Drug Administration (FDA). Ketamine is currently the

only drug with acute efficacy in Major Depression, an effect that may be related to

its activity on NMDA glutamate receptors. On the other side, this very same influ-

ence of ketamine over the glutamatergic system makes it a pharmacological model

of psychosis. Indeed, the symptomatology of sub-anesthetic doses of ketamine is

similar to that experienced by patients under acute psychosis. How a single drug

may have such a wide repertoire of effects remains a fascinating question.

Here, I will evaluate the acute perturbations that ketamine can exert over the

brain’s functional connectivity organization, in healthy participants who received

an intravenous injection of the drug while lying in the MR scanner, to disentangle

143



144 ketamine-induced alterations and reversal by risperidone

the neural pathways that may play a role in diverse effects of the drug. Moreover,

I will describe how pretreatment with certain pharmacological agents modulate

the alterations induced by ketamine on resting-state functional connectivity.

5.1 introduction

Ketamine is an anesthetic and psychotomimetic drug, acting as an antagonist of

N-methyl-D-aspartate receptors (NMDAr), one of the main glutamate neurorecep-

tors. When taken at sub-anesthetic levels, this drug evokes a pattern of psychotic

symptoms very similar to those experienced by patients affected by schizophre-

nia. This observation provided the basis of a novel hypothesis for schizophrenia,

involving dysfunctional glutamatergic neurotransmission underlying the disorder.

Growing evidence support glutamate involvement in psychosis, driven by a re-

duction in functionality of NMDAr [Howers et al., 2015, Pilowsky et al., 2006].

Through pharmacological Magnetic Resonance Imaging (phMRI) techniques, we

may reveal brain circuits alterations evoked by ketamine, and corroborate the NM-

DAr physiopathological role in schizophrenia [Bifone and Gozzi, 2012]. This

ketamine model of psychosis is now well supported by evidence indicating rapid

effects on brain functional activations, which correlates with dissociative and neg-

ative symptoms [Deakin et al., 2008, Stone et al., 2012, De Simoni et al., 2013].

Besides the chance to evaluate acute effects induced by a blockade of the gluta-

matergic system, phMRI techniques are relevant for the evaluation of pharmaco-

logical pretreatments. With the study of modulatory effects of different pharma-

cological agents over ketamine-evoked activations, we may provide clearer under-

standing for novel antipsychotic mechanisms. Specifically, the evaluation of pre-

treatment effects with agents acting on the glutamatergic system or NMDAr can

better elucidate the underlying psychotomimetic pharmacological mechanisms.

Few studies addressed this possibility in healthy humans, reporting controversial

results.

In detail, these investigations demonstrated specific attenuations of ketamine-

induced functional alterations with a pretreatment of lamotrigine and risperidone

[Deakin et al., 2008, Doyle et al., 2013, Joules et al., 2015, Shcherbinin et al., 2015].
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Figure 5.1: Representation of NMDA receptor pharmacology showing target for ketamine,
together with lamotrigine and risperidone pharmacodynamics.

First evidence reported a reversal of ketamine-evoked effects after a pre-treatment

with lamotrigine [Deakin et al., 2008, Doyle et al., 2013]. Conversely, a modula-

tory activity induced by a pre-treatment with risperidone but not with lamotrigine

was revealed by subsequent studies [Shcherbinin et al., 2015, Joules et al., 2015].

Of interest, risperidone is one of the most common atypical antipsychotics used

for the treatment of schizophrenia. This compound acts as an antagonist of the

serotoninergic 5-HT2A receptor, and shows high affinities with the dopamine D2

receptor. Through its action over 5-HT2A receptors, risperidone indirectly reduces

glutamate release, and enhances NMDAr functionality [Meltzer et al., 2011, Kon-

radsson et al., 2006]. Conversely, lamotrigine, an anticonvulsant used for the treat-

ment of epileptic seizures and bipolar disorder, acts on sodium ion channels and

attenuates glutamate release with no action over NMDAr [Large et al., 2005].

Here, we applied advanced graph theoretical methods to evaluate how ketamine

can affect the large scale organization of brain functional connectivity and how

risperidone and lamotrigine can modulate these alterations. Two previous studies

already assessed modulatory effects in this same dataset [Doyle et al., 2013, Joules

et al., 2015]. By means of univariate and multivariate BOLD signal analysis, as

well as more complex pattern recognition algorithms, they reported a modulatory

effect mostly driven by risperidone.

In addition to the already assessed techniques, graph theoretical approaches

allow investigation of complex topological properties of the functional brain net-

work, with no need of a priori hypothesis. We can evaluate brain systems perturba-

tions induced by pharmacological challenges, thus revealing drug mechanisms at a
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functional brain network level. Through this advanced methodological technique,

we can identify changes and alterations in network integration and segregation,

by addressing brain modular organization, a fundamental topological property of

complex networks, which makes the system more robust and resistant to pertur-

bations [Sporns and Betzel, 2016]. Related to psychosis, modular fragmentations

of specific cortical regions, serving primary cognitive functions, seems to underlie

schizophrenia [Bordier et al., 2018]. In this framework, the evaluation of ketamine

effects over functional modular organization, and the possible reversal of these al-

terations by antipsychotic drugs, can be promising.

5.2 materials and methods

5.2.1 Participants

Twenty right-handed male volunteers were recruited for this double blind, ran-

domized, placebo-controlled, partial cross-over design study. All participants were

screened and excluded if they had history of neurological and psychiatric disor-

ders. Furthermore, volunteers were excluded from the study if they had history

of illicit drugs abuse, excessive alcohol, cigarettes or caffeine consumption. Four

participants withdrew during the study, hence, only 16 volunteers (mean age 25.8

years, SD=5.7) completed all four sessions. All subjects gave written informed

consent to participate in the study, approved by the Wandsworth Research Ethics

Committee (090/H0803/48). Further details about participants recruitment, as

well as exclusion criteria, can be found in Doyle [Doyle et al., 2013] and Joules

[Joules et al., 2015].

5.2.2 Experimental design

The study was carried out over four different sessions, each separated by at least

10 days. At each session, participants received a single oral dose of either lam-

otrigine (300 mg), risperidone (2 mg) or placebo (ascorbic acid, for two sessions).

Four hours after the oral intake of the compounds, during the broad maximum
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plasma exposure of the two drugs, volunteers received an intravenous infusion of

either saline (one session) or ketamine, to a target plasma level of 75 ngml−1. In to-

tal, four combinations were administered: placebo and saline (PLA-SAL), placebo

and ketamine (PLA-KET), risperidone and ketamine (RIS-KET), lamotrigine and

ketamine (LAM-KET). Two imaging procedures were undertaken at each session,

the first 1h 30m after the oral compounds intake (oral only measurements), the sec-

ond 4h 15m post-oral dose. The intravenous infusion was administered 5 minutes

after the beginning of the second imaging procedure (figure 5.2).

Figure 5.2: Timeline for each experimental session. The study included a total of four ses-
sion per participant. Four compound combinations were administered during
these sessions, separated by at least 10 days.

5.2.3 Ketamine infusion

A sub-anesthetic dose of racemic ketamine was administered intravenously, based

on the Clements 250 model [Absalom et al., 2007]. The drug was infused to

reach a target plasma level of 75 ngml−1, adjusted for each participant’s weight

and height. A dose of 0.12±0.003 mg/kg was delivered during the first minute

followed by a pseudo-continuous infusion of approximately 0.31
mg/kg/h. More

details concerning ketamine infusion can be found in Doyle [Doyle et al., 2013]

and Joules [Joules et al., 2015].

5.2.4 Image acquisition

MR images were acquired using a 3T General Electric Signa HDx scanner. Gradient-

echo echo-planar imaging (EPI) was used to acquire at each session a 15 minutes,

eyes open, resting state BOLD phMRI scan, with a total of 450 volumes of 38

near-axial slices (3 mm thickness, 0.3 mm inter-slice gap, TE=30 ms, TR=2000 ms,
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FA=75°, in-plane resolution=3.3 mm, matrix size=64x64, field of view=21.1 x 21.1

cm). The compound infusion was administered 5 minutes after the start of the

scan session. Additionally, a high-resolution gradient-echo scan was performed

resulting in 43 near-axial slices (3 mm thickness, 0.33 mm inter-slice gap, TE=30

ms, TR=2000 ms, FA=90°, in-plane resolution=3.3 mm, matrix size=128x128, field

of view=24x24 cm).

5.2.5 Image preprocessing

Imaging data were preprocessed using SPM12 (Wellcome Trust Center for Neu-

roimaging, London, UK) and FSL. Volumes were corrected for slice-timing, head-

motion realigned (mcflirt) with FSL tools. Coregistration to the high-resolution

image, and normalized to the standard MNI EPI template space were carried out

with SPM12. The structural images were segmented into grey matter, white matter

(WM) and cerebrospinal fluid (CSF) tissue types. Linear regression was used to

regress out nuisance signal parameters from the time-series, specifically the mean

ventricles and WM signals, and the six motion parameters. Given the known im-

pact of motion on the functional timeseries [Power et al., 2012], and the potential

confounds arising from movements following an intravenous infusion, the effects

of motion was assessed for all the pre- and post- conditions. Analysis of Frame-

wise Displacement and DVARS, computed following Power [Power et al., 2012],

did not show any difference between conditions. A butterworth band-pass filter of

0.01 -0.1 Hz was subsequently applied. Pre- and post-infusion conditions were de-

fined as the first 150 and the last 150 volumes acquired (out of 450 volumes), corre-

sponding to 5 minutes of data, respectively. Pre-infusion conditions only measure

the presence of the oral compounds, whereas the post-infusion corresponds to the

period 5 to 10 minutes after the bolus administration.

5.2.6 Functional Connectivity graphs

We parceled the preprocessed conditions into 638 nodes, extracted by the func-

tional template generated in Crossley [Crossley et al., 2013]. A study exploiting
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this same dataset [Joules et al., 2015] adopted a smaller number of parcels to

build the connectivity graph (116 ROIs). Here, we chose to implement a larger

template, taking advantage of the relatively uniform distribution of parcel size

and accuracy in their delineation. The connectivity matrices were estimated by

computing pairwise inter-regional correlation for each individual and each condi-

tion. We subsequently transformed the correlation coefficients to Fisher’s zscore,

and computed a group level functional connectivity matrix, by averaging each in-

dividual’s adjacency matrix. We sparsified the matrices for each condition prior

to community detection. Several methods are discussed in the literature for the

reduction of matrix density and removal of weakest edges [van den Heuvel et al.,

2017a]; here we opted to use a percolation approach, as we have recently proved

the ability of this thresholding method to maximize the modular information that

can be extracted from the network [Bordier et al., 2017]. This approach initially re-

moves all the weakest edges, stopping when the graph’s largest component starts

breaking apart; we identify such point as the optimal threshold, preserving the

network structure and connectedness. The contrasts used to address ketamine

induced effects and the modulation of the pharmacological compounds were:

• Ketamine effect: PLA-SAL vs PLA-KET

• Risperidone modulations: PLA-KET vs RIS-KET

• Lamotrigine modulations: PLA-KET vs LAM-KET

Figure 5.3: Four combinations of drug compounds administered during the four study
sessions.

5.2.7 Network Based Statistics (NBS)

Here, we tested for global differences in functional connectivity induced by ke-

tamine and their modulations by different pharmacological compounds. To that



150 ketamine-induced alterations and reversal by risperidone

end, we exploited the use of the Network Based Statistics (NBS) toolbox [Zalesky

et al., 2010a]. The NBS is a powerful tool to evaluate edge level statistical differ-

ences between groups, overcoming the multiple comparison correction problem

by performing mass-univariate testing on all graph edges. We applied paired t-

tests, to test differences between conditions. Thresholds were set starting from t

>3.1 with 5000 permutations on every connection. Contrasts were set in order to

detect both increase and decrease of connectivity strength across conditions.

5.2.8 Modular organization

Several methods have been proposed to identify the community structure of com-

plex networks [Newman, 2004, Rosvall and Bergstrom, 2008]. Here, we imple-

mented the InfoMap approach [Rosvall and Bergstrom, 2008], to overcome the

resolution limit from which the most widely used approach, Newman’s Modular-

ity [Newman, 2004] suffer [Good et al., 2010]. The InfoMap method is based on

the minimization of the description length of a random walker defined on the net-

work through a set of heuristics. This approach, however, suffers of degeneracy of

nearly-optimal solutions, namely substantially different partitions might present

very similar values of the fitness function [Good et al., 2010]. To overcome this im-

portant limitation, we applied a consensus approach to generate a stable partition.

This is representative of all nearly-optimal solutions generated by different runs

of the algorithm [Lancichinetti and Fortunato, 2012]. Here we used the InfoMap

implementation available in the igraph-0.7.1 package [Csardi and Nepusz, 2006].

5.2.9 Network metrics

From the single-subject sparsified adjacency matrices, we extracted topological

metrics to evaluate changes in the global and local functional organization. The

overall functional connectivity was measured as the mean of all non-zero elements

of the matrix [van den Heuvel et al., 2017a]. This global metric gives a measure of

the overall network strength. Another global metric evaluated at the subject level

comprises network density. As described in chapter 1, the density of a matrix is
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measured as the proportion of all links present in the network over the number

of all possible edges 1.1. Here, we measured network density for all subjects

after the application of the percolation threshold. We next evaluated the degree

centrality, a local metric, for every node in the network. The degree centrality

(k) refers to the sum of all the edges attached to a given node [Sporns et al.,

2004]. Nodes presenting higher k tend to play a more central role in the network,

acquiring the name of “network hubs”. We addressed statistical significance across

conditions for the degree centrality through 10000 paired-test permutations. All

reported results are corrected for multiple comparison correction (false discovery

rate, [Genovese et al., 2002]). All visual representations of anatomical distribution

of modules and significant sub-networks identified through NBS were produced

using the BrainNet viewer toolbox [Xia et al., 2013].

5.3 results

5.3.1 Effects of ketamine on brain functional connectivity

To address the effects of ketamine per se on brain functional connectivity, we

compared the PLA-KET condition (ketamine with placebo pre-treatment) with the

PLA-SAL (saline infusion following placebo oral intake). The histogram depicted

in figure 5.4 shows the edge-weight distribution for the two conditions, evaluating

global effects of a ketamine infusion. Functional strength was significantly differ-

ent across the two conditions (t-test, p=0.001), with a global decreased connectivity

induced by ketamine. After the percolation thresholding procedure applied to all

participants, no differences were observed in the global density of the two groups

(p=0.2236).

Sub-network differences

A paired t-test, implemented within the NBS toolbox, identified a significantly

weaker sub-component in PLA-KET compared to PLA-SAL (p corrected=0.0026,

figure 5.4). Specifically, this sub-network comprised links within the occipital

lobe (mostly comprising the calcarine and lingual fissures, and occipital middle
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Figure 5.4: A. Histogram representing functional strength distribution for the saline con-
dition (in red) and for the ketamine condition (in blue). B. Sub-network identi-
fied with NBS showing decreased functional connectivity strength induced by
ketamine.

cortex) and interhemispheric temporal connections, for a total of 81 edges involved,

with a T-statistic of t=4. Importantly, when comparing the two placebo conditions

(placebo pre-Ket and placebo pre-Sal) with PLA-SAL, no differences were identi-

fied for any comparison (t=3.1, p corrected=0.260, p corrected=0.735, respectively).

These contrasts were crucial to evaluate both within and between sessions stability.

Nodal centrality and modular organization

Ketamine induced a pattern of both increased and decreased nodal degree central-

ity. After fdr correction, 54 nodes presented decreased degree centrality in PLA-

KET compared to PLA-SAL as seen in figure 5.5. In line with the decreased func-

tional connectivity strength identified by the NBS, these nodes comprised mostly

occipital medial regions, calcarine and lingual fissures, parahippocampal gyrus,

temporal inferior and medial cortices, together with left inferior frontal nodes.

Fourteen nodes showed an increased nodal centrality induced by ketamine. These

nodes comprised left and right thalamus, some nodes from the supramarginal

gyrus and the inferior parietal cortex.

Next, we implemented the consensus InfoMap community detection to identify

optimal modular partitions for all experimental conditions. Overall, we observed

a general fragmentation of the modular organization in PLA-KET. We identified

18 communities for the PLA-SAL condition, with communities size ranging from
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Figure 5.5: Nodes with altered degree centrality in ketamine. Brain areas represented
in blue show reduction of centrality induced by ketamine; red areas reflect
increase of centrality after ketamine injection.

108 to two nodes, and 30 communities for PLA-KET, with sizes ranging from 87 to

2 nodes. Cortical regions showing greater fragmentations comprised the medial

temporal cortex (1 module in PLA-SAL, 4 modules in PLA-KET), auditory and

language cortical regions (2 modules in PLA-SAL, 6 modules in PLA-KET), and

prefrontal cortices (1 module in PLA-SAL, 3 modules in PLA-KET; figure 5.6 ).

Figure 5.6: Representation on the brain cortical surface of modular organization in supe-
rior frontal regions (upper row), auditory and language cortices (middle row),
and in temporal poles (bottom row) for all conditions.
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5.3.2 Modulatory effects of risperidone

To evaluate whether risperidone could modulate ketamine effects, we compared

PLA-KET to RIS-KET. Overall functional connectivity was not affected by a risperi-

done pre-treatment (p=0.5266), with RIS-KET showing a very similar distribution

of edge weights as PLA-KET (figure 5.7). No differences in the density of matrices

at percolation was present (p=0.2205).

Sub-network differences

Two sub-networks with weaker connectivity strength in PLA-KET compared to

RIS-KET were identified by a paired t-test conducted with the NBS (p=0.0298,

p=0.0042), with a t=4, as seen in figure 5.7. The first sub-network comprised

13 edges, involving the middle occipital connections, with lingual and calcarine

fissures links. The second sub-network included 33 edges, comprising interhemi-

spheric temporal connections. Interestingly, these sub-networks highly overlap

the decreased connectivity connections induced by ketamine when compared to

PLA-SAL.

Figure 5.7: Panel A shows the edge-weight distribution of PLA-KET and RIS-KET condi-
tions; Panel B represents two sub-networks with reduction of functional con-
nectivity strength in PLA-KET, compared to RIS-KET, namely sub-networks
where ketamine-induced alterations were reversed by risperidone.

Nodal centrality and modular organization

A pattern similar to the PLA-SAL and PLA-KET contrast was identified also con-

cerning degree centrality. RIS-KET revealed higher k compared to PLA-KET in

50 nodes, comprising temporal medial, inferior, and superior regions, calcarine
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fissure, parahippocampal gyrus and inferior frontal nodes. Greater centrality in

PLA-KET was instead present only in 6 nodes, involving the parietal cortex. In

addition, modular organization was substantially modulated by risperidone pre-

treatment. The consensus InfoMap approach identified 19 communities for RIS-

KET, with sizes ranging from 87 to 3 nodes. Interestingly, the fragmentation of

the medial temporal cortex observed in PLA-KET was reversed by risperidone.

Similar to PLA-SAL, in RIS-KET the middle temporal cortex was reunited within

one community. Moreover, a re-organization of language and auditory cortices

was observed in RIS-KET, with the unification of angular and inferior parietal re-

gions to inferior frontal regions. On the contrary, no effect was present in the

fragmentation of superior frontal regions as seen in figure 5.6.

5.3.3 Modulatory effects of lamotrigine

The comparison of PLA-KET with the LAM-KET condition, to evaluate possible re-

versed effects of lamotrigine, did not yield any significant difference in the overall

functional connectivity, nor density (respectively, p=8929, p=0.2631).

Figure 5.8: Comparison of edge-weight distribution for conditions PLA-KET and LAM-
KET.

Sub-network differences

By testing different thresholds (t=2.5, t=3.1, t=3.5, t=4), we did not identify any sig-

nificant result through the implementation of a paired t-test with the NBS, neither

for a decrease nor an increase in connectivity strength.



156 ketamine-induced alterations and reversal by risperidone

Nodal centrality and modular organization

Despite the lack of differences at a functional connectivity strength level, 21 nodes

presented higher k centrality in LAM-KET compared to PLA-KET. These nodes

comprised temporal medial and superior cortices, and precentral gyrus. In con-

trast, no region showed lower k in LAM-KET compared to the ketamine condition.

The application of Consensus InfoMap revealed a partial reorganization of the

modular structures in ketamine with a lamotrigine pre-treatment. LAM-KET pre-

sented 18 communities with size ranging from 96 to 4 nodes. Fragmentation of

specific regions was, however, still present with lamotrigine pre-treatment. The

temporal cortical community showed a low degree of re-organization, being still

organized into 4 different communities in LAM-KET. The language/auditory cor-

tex still presents fragmentation, specifically in the supramarginal and angular

gyrus. Fragmentations and asymmetries were still present also concerning frontal

regions (Figure 5.6).

5.4 discussion

Here, we addressed ketamine-evoked alterations over brain functional connec-

tivity as well as their modulations induced by different pharmacological agents.

Through the implementation of network theory, we could study whole brain con-

nectivity with no necessity of a priori hypotheses. Moreover, the evaluation of

the overall organization and functional interaction among different brain regions

can better elucidate the architecture and global changes induced by pharmacolog-

ical agents. The modular brain organization, for example, has a strong biological

meaning in making the overall system more robust and adaptable to perturba-

tions [Sporns, 2018]. Its evaluation during a ketamine challenge might reveal the

reaction of the system to such a strong perturbation. As expected, we revealed sub-

stantial changes over brain functional fluctuations induced by a ketamine infusion,

by means of a graph theoretical approach. Of interest, these functional alterations

were differently modulated by pre-treatments with two different pharmacological

agents.
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Considering the ketamine effects alone, we first observed a significant reduction

in overall functional connectivity strength induced by ketamine (PLA-KET) when

compared to a placebo condition (PLA-SAL). This reflects previous evidence show-

ing a marked effect of the drug over BOLD signal in healthy human volunteers

[Deakin et al., 2008, Driesen et al., 2013, De Simoni et al., 2013], which allows

for its use as a model to investigate psychotomimetic mechanisms. Moreover, the

global fragmentation that we observed in the modular organization reflects the

strong effect that ketamine exerts. The PLA-KET condition, indeed, revealed an

overall disruption of functional modules, with a total number of 30 communities,

against the 18 communities identified in PLA-SAL. Of important notice, head mo-

tion, a major confound known to affect functional connectivity strength, [Power

et al., 2012, Van Dijk et al., 2012], was not statistically different among conditions.

This could rule out the possibility that increased in-scanner movements possibly

induced by ketamine could drive alterations in functional couplings.

By means of a network approach, we revealed specific alterations localized in oc-

cipital regions and in interhemispheric temporal connections. Temporal cortices,

besides being central regions to memory formation and consolidation, seem to

underpin various aspects of psychosis, such as the occurrence of auditory verbal

hallucinations [Alderson-Day et al., 2015]. In detail, alterations in auditory inter-

hemispheric connectivity seem to play a specific role in hallucinations emergence

[Ćurčić-Blake et al., 2017]. This is consistent with the behavioral effects induced

by a ketamine exposure, which include reduction of contextual processing, mem-

ory consolidation deficits, as well as auditory hallucinations. Of interest, auditory

hallucinations during ketamine exposure seem to be amplified by the reduced per-

ceptual environment of the MR scanner [Powers III et al., 2015]. This is also in line

with findings already reported by different studies involving a ketamine challenge

in healthy volunteers, where a correlation with dissociative scales was related to

reductions in temporal auditory network strength [Deakin et al., 2008, Niesters

et al., 2012, Joules et al., 2015]. Furthermore, the high NMDAr expression within

the temporal cortex may explain such alterations in functional connectivity [Ni-

esters et al., 2012]. Similarly, the observed effects in connectivity strength within

the visual occipital network possibly represent perceptual distortions common in

both ketamine-induced behaviors and psychosis. Indeed, specific functional orga-
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nization alterations within these primary sensory areas are also present in patients

with schizophrenia [Bordier et al., 2018]. Similar disruptions in occipital regions

are widely reported in ketamine studies [Joules et al., 2015, Mueller et al., 2018],

possibly underlying a similar disruption of sensory information processing shared

by schizophrenia and ketamine challenges.

In light of the similarities observed between psychosis and ketamine-evoked

symptomatology as well as functional alterations, the modulation of ketamine-

induced changes by pharmacological agents might help understand the mecha-

nism of action of antipsychotic drugs. Risperidone is a common antipsychotic

used to treat schizophrenia. Here, during one session, participants received an

oral dose of risperidone a few hours before the ketamine injection, with the aim

to test whether an antipsychotic could prevent ketamine effects. When compared

to PLA-KET, brain network analysis revealed that the condition of ketamine pre-

treated with the antipsychotic (RIS-KET) presented higher functional strength in

two sub-networks, namely the occipital and temporal interhemispheric networks.

Importantly, these connections matched almost entirely the same links that ke-

tamine affected when compared to the placebo-control condition. Moreover, when

we addressed the modular architecture in RIS-KET, we observed normalizations

in sensory cortices, mostly in temporal and supramarginal communities, which

appeared fragmented in the ketamine condition. In contrast, higher-order frontal

regions did not show changes when ketamine was pre-treated with risperidone,

likewise showing a disrupted organization very similar to the one induced by ke-

tamine. It is interesting to notice that risperidone seemed to prevent some, but

not all, critical alterations induced by the NMDAr antagonist, mostly involving

sensory cortices.

Given the nature of ketamine as a selective antagonist of NMDAr, thus exerting

a strong action over glutamatergic transmission, we could also expect a specific

modulation of its activity through the pre-treatment of lamotrigine, a common an-

ticonvulsant known to strongly suppress glutamate release [Goa et al., 1993]. It

is important to notice, however, that lamotrigine does not have effects over NM-

DAr. In the present study, we revealed that lamotrigine pre-treatment (LAM-KET)

does not reverse any of the alterations observed in PLA-KET, despite its strong

glutamatergic actions. Lack of efficiency of lamotrigine modulatory effects were
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already reported through machine learning algorithms assessing nodes centrality

[Joules et al., 2015]. Here, we importantly replicated such effect also in modular

brain organization, a topological feature crucial for network robustness to pertur-

bations. The presence of modulatory activities by an established antipsychotic may

suggest the use of ketamine for the evaluation of the effectiveness of new antipsy-

chotic agents. Future studies can test the efficacy of typical antipsychotics, such

as haloperidol, in normalizing ketamine brain changes. Identification of specific

pre-treatment patterns may help understand their pharmacological mechanisms

of action. Unfortunately, the limited number of participants in the present study

made it difficult to assess possible correlations between functional connectivity

and behavioral effects of ketamine.





6 C O N C L U S I O N S A N D F U T U R E

D I R E C T I O N S

The rise of network neuroscience, applied to resting-state functional MRI in recent

years, has led to novel understanding of the topological organization of the brain,

in both healthy and pathological conditions. The application of advanced and com-

plex analysis techniques based on graph theoretical approaches has proven pre-

cious for the identification of aberrancies in the topological organization of brain

connectivity in several neurological and neuropsychiatric disorders. By means of

network science tools we can importantly evaluate the interactions of elements in

the brain, at all scales, from a local to a global perspective. A particularly rel-

evant opportunity that this approach hands to neuroscience is the possibility to

detect the modular architecture of the functional brain, a critical feature of com-

plex networks which confers robustness and stability to the system. The study

of the modular organization in pathological conditions may be critical for the un-

derstanding of the altered segregation and integration of neural areas in the func-

tional network. In this work I focused on the evaluation of the altered functional

organization of cortical and subcortical brain regions in one of the most prevalent

neuropsychiatric disorders worldwide: alcohol addiction.

Before applying graph theoretical methods to the clinical studies evaluated in

this thesis, I tackled some critical open questions present in the novel and com-

plex field of network neuroscience. The application of this approach to functional

brain studies is still in its infancy, and several crucial aspects need to be more thor-

oughly assessed. As a first and important contribution of this work, I could prove

the importance and necessity of one of the most debated steps in the processing

of functional brain networks, namely the application of a threshold for the spar-

sification of connectivity graphs. For this purpose, I leveraged some advanced,

newly introduced tools based on the maximum entropy random graph formalism,

which allows a more robust application of graph-theoretical analysis to the study

of complex resting-state brain systems. By means of these powerful information
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theory tools, I clarified the role of thresholding, a problem that has baffled the

neuroscientific community for a long time. Particularly, the contribution of this

project revealed two specific critical findings related to this methodological and

conceptual aspect. First of all, from my observations it is clear that the application

of a threshold is fundamental for the revelation of large-scale structures within the

system. Only by applying more stringent thresholding it is possible to appreciate

a significant difference of an empirical network from its randomized counterpart.

Second, I demonstrated from first principles the existence of an optimal threshold-

ing point, where the real network is maximally distant from random. Specifically,

this point is found at percolation. Hence, the application of a percolation thresh-

old allows an optimal balance between the removal of spurious connections and

the maximization of the information that can be extracted from the system. A

further critical outcome of this methodological study, discussed in chapter 2 of

this thesis, comes from the finding of the importance of thresholding to mitigate

the impact of motion and motion-correction effects on the functional connectivity

organization. Importantly, I proved that, irrespectively of the presence of motion

artifacts and irrespectively of the specific denoising strategy applied, the percola-

tion threshold always maximizes the distance of the empirical network from its

randomized counterpart.

In the second part of this thesis, I leveraged these novel developments to eval-

uate the functional connectivity alterations underlying clinical populations of al-

cohol dependent patients. Here, of important notice, I managed to replicate very

similar findings in two independent samples of Alcohol Use Disorder (AUD) pa-

tients. Specifically, I revealed how the functional embedding of distinct neural

regions involved in reward and addictive processes is critically altered in these

populations of patients. Through the detection of the modular architecture of

the resting alcoholic brain I demonstrated the aberrant segregation of sub-cortical

basal structures and of the insular cortex. In greater detail, key regions that are

part of the sub-cortical brain reward system, such as the amygdala, thalamus, and

striatum, showed substantial fragmentation in their modular organization in two

independent samples of AUD, opposite to what is observed in healthy subjects.

Another striking findings reported from this clinical study lays in the identifica-

tion of the altered role played by the insular cortex within the overall brain net-
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work. Interestingly, the insula has recently caught the attention of scientists and

clinicians for its centrality in addictive disorder, given its role in the translation

of interoceptive feelings, such as drug urges, into decision-making and addictive

behaviors. Notably, from the clinical studies addressed in this thesis, I demon-

strated altered integration and segregation of the anterior portion of the insula.

Indeed, these bilateral nodes present an exaggerated integrative role within the

system. It is therefore suggested that this increased integration sub-served by the

insula may underlie some addictive behaviors. This observation becomes critical

in light of a lack of an effective treatment for AUD. Indeed, the identification of

the central role of the insula is hypothesized to be a possible promising target for

treatment options. In line with these findings I evaluated the effects of a putative

novel treatment for AUD based on the application of a deep Transcranial Magnetic

Stimulation (TMS), targeting this central region.

Repetitive TMS has recently gained popularity given its efficacy for the treat-

ment of some psychiatric disorders, such as major depression or obsessive-compulsive

disorders. Here, I specifically studied the efficacy and the stimulation-induced

changes on functional connectivity in two separate studies involving the deep stim-

ulation of the bilateral insula and the anterior cingulate cortex (ACC), a cortical

region involved in addiction and presenting reciprocal connections with the insu-

lar cortex. Surprisingly, only one of the two studies reported a significant positive

clinical readout. Indeed, the deep stimulation of the ACC importantly reduced

craving during three weeks of deep TMS stimulations. This reduction appeared

evident also during follow-up months, where patients treated with an active TMS

condition maintained lower craving scores as compared to patients assigned to a

sham stimulation. Unfortunately, this was not evident after a treatment targeting

the bilateral insular cortex. In this case, all participants, independently from the

delivery of an active or sham stimulation, reduced their alcohol intakes during

three weeks of treatment, but increased amounts of drinking immediately after,

as revealed by the follow-up reports. However, the stimulation of the insular cor-

tex further revealed a re-arrangement of sub-cortical basal structures, which were

previously found to be fragmented in all the AUD samples of patients studied in

this thesis. It is therefore possible that in this specific case the stimulation was
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effective in recovering some of the brain functional alterations, but not sufficient

to translate into a positive clinical outcome.

Altogether, the preliminary results reported in my thesis appear promising. The

next steps will include the evaluation of these effects on bigger samples of patients,

together with a better understanding of the duration of these clinical readouts.

In conclusion, the work carried out in this PhD thesis gives significant contribu-

tions both from a methodological aspect and from a clinical perspective. We im-

portantly bring to the network neuroscience community novel findings to improve

analysis of functional graphs, involving the application of an optimal threshold-

ing approach. On the other side, by leveraging these innovative conceptual under-

standing we revealed brain functional alterations in AUD patients, thus providing

novel insights of potential value for treatment of this complex neuropsychiatric

disorder.



A P P E N D I X A

In the following section, I summarize fundamental notations for a better under-

standing of the classical exponential random graph model formalism, followed

by a more detailed explanation of the two null models introduced in chapter 2

(CWTERG and CWTECM).

classical maximum entropy random graph models

We let G denote a network in a random graph ensemble G, and G? an observed

empirical network. The ensemble G consists of all networks with the same number

of nodes N and of the same type (undirected, weighted etc.) as G?, including G?

itself. Our goal is to find an analytical description of the random graphs G that

share the same network descriptors of G?, and to eventually be able to sample

networks from the ensemble. In other words, we look for the functional form

of the probability distribution P(G) over the ensemble G, for which the values of

descriptors are on average as close as possible to those of the empirical network.

We denote the chosen descriptors by C? = C(G?). These are network-related

quantities, like the number of links, the total weight, or the node and strength

sequences, and are instrumental in shaping the analytic form of the ensemble. By

standard probability arguments, the expected value of the descriptors C(G) over

the ensemble G are found as

〈C(G)〉 =
∫

G∈G

C(G)P(G). (6.1)

The functional form of P(G) can be obtained by Shannon entropy maximization

subjected to the constraints represented by C. This procedure is rooted in Jaynes’s

Maximum Entropy formalism [Jaynes, 1957], a statistical mechanics principle that

leads to exact expressions for the probability of occurrence of any graph model.
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A standard derivation [Squartini and Garlaschelli, 2017, Park and Newman, 2004]

shows that the solution of constrained entropy maximization problem is found by

introducing a vector of Lagrange multipliers θ, one for each of the constraints in

C. The resulting conditional probability reads:

P(G|θ) =
e−H(G,θ)

Z(θ)
(6.2)

where H(G,θ) is the graph Hamiltonian, defined as a linear combination of con-

straints:

H(G,θ) =
∑
a

θaCa(G) = θ ·C(G) (6.3)

and the denominator Z(θ) is a normalizing quantity called partition function, de-

fined by marginalization over all networks G in the ensemble G:

Z(θ) =

∫
G∈G

e−H(G,θ). (6.4)

The above results show that the graph probability P(G|θ) depends on the Lagrange

multipliers θ, and that it is a function of the constraints considered.

For model fitting purpose, it can be shown [Squartini and Garlaschelli, 2017]

that the log-likelihood

L(θ) = logP(G?|θ) = −H(G?|θ) − logZ(θ) (6.5)

is maximized by the particular value θ? such that the ensemble average 〈C〉θ? of

each constraint equals the empirical value C(G?) measured on the real network:

〈C〉? =

∫
G∈G

C(G)P(G|θ?) = C(G?). (6.6)

For maximum-entropy ensembles, the maximum likelihood principle indicates the

choice of parameters that meet the constraints, and defines a procedure for model

fitting: either by maximizing the log-likelihood from Eq. 6.5 by means of gradient

based numerical optimization methods [Nocedal and Wright, 2006], or alterna-

tively by solving the system of nonlinear equations defined by Eq. 6.6.
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In the following, we show a practical application of this approach to a class of

null models suitable for the description of resting-state brain connectivity.

random networks with fixed link number and weight

We introduce the random graph model that fixes the average total number of

links L? and the average total weight W?, together with an external threshold

parameter t with the name of Continuous Weighted Thresholded Enhanced Random

Graph Model. This model is obtained by a Hamiltonian that explicitly enforces

these two constraints:

HCWTERG(G|α,β) =
∑
i<j

αΘ(wij − t) +βwijΘ(wij − t), (6.7)

where the Lagrangian multipliers θ of the problem are the two scalars, α and β.

This Hamiltonian is designed to weight the contribution of binary links with the

term α and the contribution of weighted links with the term β. The role of the

threshold parameter t becomes clear if a dense network is fed in the model, and

its null network is sought for as a function of the threshold. Degrees of a network

are sum of binary variables, and the Heaviside function Θ is exactly centered

at t, taking values one or zero if the edge weight exceeds the cut-off threshold.

Similarly, the threshold t shapes the sequence of nodes strength, by contributing

with a factor
∑
jwij for weights greater than the cut-off t. For notation clarity, a

change of variables can be performed and the original Lagrangian multipliers are

replaced by their exponentiated counterparts, namely the variables x = e−α and

y = e−β.

The partition function ZCWTERG is obtained from the marginalization over all

networks in the ensemble as in Eq. 6.4. A simple calculation for this case (see

ref. [Squartini and Garlaschelli, 2017]) yields:

ZCWTERG =

∫∞
0

e−HCWTERG(G)dw ′ (6.8)

= t+
e−α−βt

β
=

−xyt + t logy
logy

(6.9)
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The expected number of binary links is found by taking the derivatives of the free

energy [Park and Newman, 2004], F = − logZ with respect to α, the Lagrangian

multiplier pertaining the binary links. Similarly, the expected total weight is the

derivative with respect to β of the free energy. As a result for the CWTERG we

get the expressions for the link probability and expected weight, relatively:

∂F

∂α
= 〈L〉 = 1

βteα+βt + 1
=

xyt

xyt − t logy
(6.10)

∂F

∂β
= 〈W〉 = βt+ 1

β(βteα+βt + 1)
=

xyt (−t logy+ 1)
(−xyt + t logy) log (y)

(6.11)

Fitting the CWTERG model to empirical networks requires one to simultaneously

solve a system of two nonlinear equations, and finding the values of the La-

grangian multipliers x,y such that:


L? = xyt

xyt−t logy

W? =
xyt(−t logy+1)

(−xyt+t logy) log (y)

(6.12)

Alternatively, and in a completely complementary fashion, one can maximize the

log-likelihood of the model LCWTERG, calculated as the logarithm of the conditional

probability P(G|x,y):

LCWTERG(G|x,y) =L(G) log x+W(G) logy

−

(
N

2

)
log
(
t−

xyt

logy

)
. (6.13)

random networks with fixed degrees and strengths

The CWTERG model describes the ensemble of networks whose total weight and

number of links are constrained to some empirical values. Hence it can be con-

sidered an extension of the Erdős-Renyi random graph model to thresholded

weighted networks. However, this model only describes networks with uniform

connectivity patterns, as it is not considering the heterogeneity of the degrees and

strengths.
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The Continuous Weighted Thresholded Enhanced Configuration Model (CTWECM)

overcomes this problem by defining a Hamiltonian

HCWTECM(G|α,β) =
∑
i<j

(αi +αj)Θ(wij − t)+

(βi +βj)wijΘ(wij − t). (6.14)

where αi,βi are the Lagrangian multipliers. The structural form of the Hamil-

tonian of the CWTECM is the same as the one of the CWTERG, but now the

probability P(G|α,β) can be factorized over all pairs of nodes as follows:

P(G|α,β) =
∏
i<j

e−[αi+αj+wij(βi+βj)]θ(wij−t)

ZCWTECM
(6.15)

where here ZCWTECM = t+ e
−αi−αj−t(βi+βj)

βi+βj
.

With the change of variables xi = e−αi , yi = e−βi the expected link probability

and expected link weight have the same form found in Eq. 6.10, and are obtained

by the first derivatives of the free energy with respect to the Lagrange multipliers

αi and βj as follows:

∂F

∂αi
= 〈aij〉 =

xixj
(
yiyj

)t
xixj

(
yiyj

)t
− log

(
yiyj

)t (6.16)

∂F

∂βi
= 〈wij〉 =

xixj
(
yiyj

)t [log
(
yiyj

)t
− 1
]

[
xixj

(
yiyj

)t
− log

((
yiyj

)t)] log
(
yiyj

) . (6.17)

The expected degree and strengths are found by summing the link probability

and the expected link weights over all remaining nodes:

〈ki〉 =
∑
i 6=j
〈aij〉 (6.18)

〈si〉 =
∑
i 6=j
〈wij〉 (6.19)



170 conclusions and future directions

and at the optimal parameters α?
i ,β

?
i they equal their empirical counterparts 〈ki〉α?,β? =

k?i and 〈si〉α?,β? = s?i . Similarly to the CWTECM, the optimal parameters can be

found by maximization of a log-likelihood function that reads:

LCWTECM(G|x,y) =
∑
i

si(G) logyi + ki(G) log xi+

∑
i<j

log

(
log(yiyj)

t
(
log(yiyj)

)
− xixj

(
yiyj

)t
)

. (6.20)
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