
Università degli Studi di Trento
Department of Information Engineering and
Computer Science
International Doctorate School in Information and
Communication Technologies
Cycle XXX

Dissertation for the degree of Doctor of Philosophy

Putting Data Quality in Context

How to generate more accurate analyses

Candidate:
Daniele Foroni

Advisor:
Prof. Yannis Velegrakis

Academic Year 2018-2019

Daniele Foroni - Putting Data Quality in Context

Dissertation for the degree of Doctor of Philosophy © October 2019.

Advisor:

Prof. Yannis Velegrakis

Examiners:

Alberto Montresor

Paolo Papotti

Radu Tudoran

“Information is not lost in black holes,

but it is not returned in a useful way.

It is like burning an encyclopedia.

Information is not lost, but it is very hard to read.”

————

Stephen Hawking,

Higgs boson particle, The Guardian (2013)

A B S T R A C T

Data quality is a well-known research field that aims at providing

an estimation of the quality of the data itself. The research commu-

nity has, for quite some time, studied the different aspects of data

quality and has developed ways to find and clean dirty and incom-

plete data. In particular, it has so far focused on the computation of

a number of data characteristics as a mean of quantifying different

quality dimensions, like freshness, consistency, accuracy, number of

duplicates, or completeness. However, the proposed approaches lack

of an in-depth view of the quality of the data. Actually, most of the

works have focused on efficient and effective ways to identify and

clean the data inconsistencies, ignoring to a large extent the task that

the data is to be used for, avoiding any investment on data cleaning

tasks that are needed, while prioritizing data repairing on errors that

are not an issue. Nevertheless, for what concerns streaming data, the

concept of quality is slightly turned, since it is more focused on the

data results than to the actual input data.

Hence, in the context of data quality, we focus mainly on three

challenges, highlighting one aspect for each use case. First, we con-

centrate our attention on the task that the user wants to apply over

the data, providing a solution to prioritize cleaning algorithms to im-

prove the task results; second, the focus is on the user that defines a

metric to optimize for a streaming application, and we dynamically

scale the resources used by the application to fit the user goal; third,

the data is at the center and we present a solution for entity matching

that focuses on the measurement of a profile of the data that is used

to retrieve the similarity metric that gives better results for such data.

The first work concentrates on putting the context of the task that

is applied to the data. So, we introduce F4U (that stands for Fitness

for Use), a framework for measuring how fit is a dataset for the in-

tended task, which means how much a dataset leads to good results

for the given task. In this system, we take a dataset and perform

v

vi

a systematic noise generation that creates from it a set of noisy in-

stances. Then, we apply the user given task to the provided dataset

and to these noisy instances, and later we measure the difference that

the noise has implied in the results of the task, by measuring the dis-

tance of the results obtained with the noisy instances compared to

those obtained with the original dataset. The distance allows the user

to make some analysis on which noise is mostly affecting the results

of the task, which enables a prioritization of the cleaning and repair-

ing algorithms to apply over the original data to improve the results.

Other works aims at identifying the most prominent data cleaning

tools for a dataset, but our work is the first that does it by optimizing

the results of the task the user has in mind.

The second work refers to data quality in a streaming context as

a goal-oriented analysis for the given task. It is known that stream-

ing data has different requirements with respect to relational data,

and, in this context, data is considered of high quality if it is pro-

cessed according to the user needs. Hence, we build Moira on top

of Apache Flink, a tool that adapts the resources needed by a query,

optimizing the goal metric defined by the user. The optimization en-

ables improvements in the performance for what concerns the metric

goal defined for the given query. Before a query is executed, we per-

form a static analysis that generates the improved query plan, which

improves the performance of the goal defined by the user by a dif-

ferent scaling of the resources. The plan is then submitted to Flink

and in the meantime a monitoring system collects information about

the cluster and the running application. The system systematically

creates, accordingly to these collected metrics, a new query plan and

systematically checks whether the deployment of the new plan would

improve the performance of the given user goal metric.

In the third work, the focus is on the data itself by proposing a

solution to a well known problem, entity matching. We propose a

framework that gets the insights of the data, by computing the dataset

profile. This would be extremely useful to understand what kind of

data the system is analyzing, in order to apply the similarity metric

that better fits the data. The system has an online and an offline phase.

In the offline phase, the system trains its model to find duplicates

on the incoming datasets for which the matching tuples are known.

Then, the system computes the profile of the dataset by measuring

vii

the accuracy of the results according to multiple similarity metrics.

This knowledge would be used in the online phase, where the system

divides the records in portions, minimizing the distance of the profile

of each portion from the profiles already computed that we know that

would lead to interesting results.

C O N T E N T S

Abstract vii

1 introduction 1

1.1 Making Data Quality task-aware 3

1.2 Enhancing Data Quality to fit the user needs 6

1.3 Focusing on the data itself to improve the results . . . 8

1.4 Outline . 9

2 state of the art 11

2.1 Introduction . 11

2.2 Intrinsic Data Quality . 15

2.2.1 Accuracy . 15

2.2.2 Completeness . 20

2.2.3 Time-related dimensions 22

2.2.4 Consistency . 23

2.2.5 Other dimensions 25

2.3 Contextual Data Quality 25

2.3.1 Defining Context 26

2.3.2 The Context in Contextual DQ 27

2.3.3 Implication of dimensions 28

2.3.4 Quality query answering 30

2.3.5 Metadata . 31

2.4 Methodologies . 32

2.4.1 Phases of the methodologies 33

2.4.2 Comparison of the methodologies 34

2.5 Quantifying Data Quality 37

2.6 Streaming Resource Allocation 38

2.7 Improving Entity Resolution 42

3 fitness for use - contextualizing the task 49

3.1 Contributions and Outline 49

3.2 A Motivating Example 50

3.3 Data Quality Revisited 51

ix

x Contents

3.4 A Data Quality Framework 53

3.5 Noise Generators . 57

3.6 Measuring Task Result Variations 58

3.6.1 Task-specific Metrics 59

3.6.2 Data Characteristic Metrics 59

3.6.3 Universal Distance Metric 60

3.7 Sensitivity Factor Computation 61

3.8 Experiments . 62

3.8.1 Illustrative Use Case 64

3.8.2 Understanding the changes in the results 66

3.8.3 Generic Distance 76

3.8.4 System Scalability 77

3.8.5 A Telecommunication Company Application . . 78

3.9 Summary . 80

4 moira - contextualizing the user goal 81

4.1 Contributions and Outline 81

4.2 Motivating Example . 82

4.3 Problem Statement . 84

4.4 Moira Architecture . 88

4.4.1 Cost-based Optimizer 89

4.4.2 Monitoring System 92

4.4.3 Incremental learning for Dynamic Cost Estimation 92

4.5 Experiments . 97

4.6 Summary . 100

5 dbmatcher - giving value to the data 101

5.1 Contributions and Outline 101

5.2 Motivating Example . 102

5.3 Problem Statement . 103

5.4 dbMatcher Overview . 106

5.5 Internals . 108

5.5.1 Partitioner . 108

5.5.2 Profiler . 112

5.5.3 Similarity Matcher 112

5.6 Blocking Application . 113

5.7 Preliminary Results . 115

5.8 Summary . 117

contents xi

6 conclusions 119

6.1 Key Contributions . 120

6.1.1 Contextualizing the Task 120

6.1.2 Contextualizing the User Needs 120

6.1.3 Contextualizing the Data 121

6.2 Extensions and Open Problems 121

6.2.1 Contextualizing the Task 121

6.2.2 Contextualizing the User Needs 122

6.2.3 Contextualizing the Data 123

a data characteristic metrics 125

b baseline validation 127

c generic distance 131

index 135

bibliography 135

L I S T O F F I G U R E S

Figure 2.1 The Data Quality Parameters Categorization

proposed by [WS96] 14

Figure 3.1 The Contextual Data Quality Problem Explained 53

Figure 3.2 A Data Quality Evaluation Framework 54

Figure 3.3 AIRLINES aggregations on Passengers column

(mean), Distance (max), MilesFlown (min), from

top to bottom. 67

Figure 3.4 Task specific distance for AIRLINES, for cluster-

ing (top - FM score - higher is better), classi-

fication (middle - F1 score - higher is better),

and regression (bottom - MSLE - lower is better). 69

Figure 3.5 Task specific distance for ADULT, for clustering

(top - FM score - higher is better), classifica-

tion (middle - F1 score - higher is better), and

regression (bottom - MSLE - lower is better). . 70

Figure 3.6 Task specific distance for BANK, for clustering

(top - FM score - higher is better), classifica-

tion (middle - F1 score - higher is better), and

regression (bottom - MSLE - lower is better). . 71

Figure 3.7 Generic distance (higher is better) for cluster-

ing (top), classification (middle) and regression

(bottom) with AIRLINES dataset. 72

Figure 3.8 AIRLINES dataset: System scalability. 77

Figure 3.9 AIRLINES dataset: Generic distance scalability. 77

Figure 3.10 TIM dataset: Effect on clustering (top) and clas-

sification (bottom) 79

Figure 4.1 DAG example for a use case application 83

Figure 4.2 Query graph . 85

Figure 4.3 Moira framework 88

Figure 4.4 Linear Least Squares (LLS) model example . . 94

Figure 4.5 Entropy reduction technique for correlation learn-

ing . 97

xiii

xiv List of Figures

Figure 4.6 Latency evaluation for TPC-H query 98

Figure 4.7 Throughput evaluation for TPC-H query . . . 98

Figure 5.1 dbMatcher overview 106

Figure 5.2 Profiler application as a pre-processing for block-

ing, to gather to which block a record should

be added. 113

Figure 5.3 Profiler application as a post-processing for block-

ing, to gather which similarity measure would

be better to use. 114

Figure B.1 ADULT dataset: mean of age column (top), max

of capital-loss (middle), and min of fnlwgt

(bottom). 127

Figure B.2 BANK dataset: mean of pdays (top), max of campaign

(middle), and min of balance (bottom). 128

Figure C.1 Generic distance over the ADULT dataset, for

clustering (top plot), classification (middle) and

regression (bottom). 131

Figure C.2 Generic distance over the BANK dataset, for clus-

tering (top plot), classification (middle) and re-

gression (bottom). 132

L I S T O F TA B L E S

Table 3.1 A fraction of a telecommunication dataset. . . 50

Table 3.2 Datasets Characteristics. 63

Table 3.3 The Sensitivity Factor table reports the tuple

(score, slope) for the Linear and Polynomial

relations, the Spearman correlation (ρ), and the

Class that each noise follows (L=linear, P=polynomial,

C=constant, and I=irregular). 75

Table 5.1 A portion of the dataset about people living in

London. 102

Table 5.2 Datasets Characteristics. 115

Table 5.3 Results for Jaro similarity on PRODUCTS dataset

over title attribute. 116

Table C.1 The Sensitivity Factor table reports the tuple

(score, slope) for the Linear and Polynomial

relations, the Spearman correlation (ρ), and the

Class that each noise follows (L=linear, P=polynomial,

C=constant, and I=irregular). Each value is

measured with the generic distance we imple-

mented. 134

xv

L I S T O F A LG O R I T H M S

Algorithm 1 ApplyF4U . 56

Algorithm 2 MeasureDistance 59

Algorithm 3 MeasureSensitivity 62

Algorithm 4 dbMatcher - Offline Phase 105

Algorithm 5 dbMatcher - Online Phase 108

Algorithm 6 partitionDataset - Greedy Approach 109

Algorithm 7 partitionDataset - Iterative Approach . . . 110

Algorithm 8 partitionDataset - Adaptive Approach . . . 111

xvii

1 I N T R O D U C T I O N

We are led to believe that as long as a query or an algorithm works,

then we will have the correct answer as output [FG12]. Unfortunately,

this may not happen. It is the case of information retrieval, where al-

gorithms can be correct, but the vagueness and the ambiguity of the

available information may lead to wrong results. The same happens

in databases, for the same reason: in a real world scenario, data are

often dirty [IC+15]. It means that we have no warranty to retrieve an

answer that is accurate, up-to-date, complete, or even correct, inde-

pendently from the query or algorithm we used [Bat+15]. Even more

so if the data over which we perform the analysis contains errors.

These issues highlight the need and the importance of having data of

high quality.

In the era of Big Data, data quality has become even more popu-

lar [SS14]. The availability of a cumbersome number of sources that

generate data is, on the one hand, an advantage, but on the other, it

also has some drawbacks. Having access to a larger amount of data

enables for both researchers and industries new analysis and algo-

rithms the end user will benefit from in multiple applications. On

the other hand, the generated real world datasets are prone to con-

tain many data quality issues, which cost time and money for being

cleaned. For example, the U.S. businesses alone spend over $ 3.1

trillion a year in such process [Eck02; IC+15]. Furthermore, the anal-

yses employed may lead to misleading conclusions with erroneous

data [OE16]. As an example, training with wrong information a clas-

sification algorithm would definitely lower the precision of the model,

hence predict an incorrect class for the testing dataset. Thus, all these

elements point out again the importance of having data of high qual-

ity.

Since the value that data quality brings is undeniable, this topic has

been addressed in various fashions, focusing on the different aspects

it involves [WS96]. First, it has been considered the intrinsic value of

the data, hence the quality that a datum has by itself. Second, the

1

2 introduction

contextual value of the data has been investigated, pointing out the

added value of the analyzed data for the actual application. Third,

the research on the quality of the data has also focused on the rep-

resentational sphere of the data, considering both the format and the

meaning of each record. Finally, the fourth category points the atten-

tion on the level of accessibility of the data. The concept of quality

depicted in this schema is broad, and many research areas do fit in it,

such as data profiling [AGN15; Nau13], data analysis and data min-

ing evaluation [Gia+10; LRU14; GKS11], and streaming management

and optimization [Han+14; Rus18; Flo+17] among the others.

The enumeration and definition of the distinct aspects of data qual-

ity, the so-called dimensions [SS14; Bat+15; WS96], have been key

points in the data quality investigation. It goes along with the analy-

sis of the errors and the issues related to the management of a stream-

ing pipeline, as well as the measurement of the effectiveness of the

data analysis and data mining algorithms. However, the investigation

of these data quality dimensions falls short with the measurement of

the quality of a dataset in relation with the task it is intended to be

used. To the best of our knowledge, the existing work do not grasp

the impact on the application results of the errors in the data, but

only the presence of errors or the performance of a cleaning algo-

rithm [MA19]. In addition, the identification of the user needs in

a streaming pipeline has not been linked with the allocation of the

resources, while the value of the data by itself has received few atten-

tion in the entity matching domain [Zhu+18]. Hence, we claim that

an important element that in the literature has received few attention

is the contextualization of the aspects around the data. Data quality

has never really taken into consideration the task with the focus of

improving its performance, while a streaming application has never

been optimized according to a goal metric defined by the user, and

the value that the data has by itself has received few attention in entity

matching. On one side, it is plenty of ad-hoc solutions and method-

ologies to find out the problems and data quality issues related to

a pipeline of operations, starting from the data ingestion phase, to

the application of an analysis model [Bat+09; Lee+02; Bat+08]. On

the other side, these methodologies seem limited for what concerns

the reproducibility, and anyway, they do not cover all the areas data

quality influences. Moreover, the contextual sphere of data quality

1.1 making data quality task-aware 3

concentrates the effort on the possible definitions of task and on the

proposal of methodologies [Bat+09; BST04; Bat+08], which can be

misleading for the user given the lack of numerical results. Further-

more, existing works, mainly related to intrinsic data quality and data

profiling, evaluate the quality of a dataset by measuring its missing

or wrong information with respect to the so-called perfect dataset,

which is erroneously considered as always accessible [AGN15].

In this thesis, we propose a user-centric approach to data quality

that goes beyond to the traditional works, providing solutions that

could be applied not only in a single scenario but to multiple real

world application. In particular, we focus on three main topics, which

are introduced in the following. First, we place the task at the cen-

ter of our work, measuring the quality of the available dataset over

which the task will be applied as the difference in the results due

to a data quality issue (Section 1.1). Then, we focus on the user

through MOIRA, a framework for dynamically allocating resources

in a streaming system, following the priorities given by the user (Sec-

tion 1.2). Finally, the data itself is the center of our approach for

entity matching that measures the profile of the data for finding the

best similarity metrics to apply on the available data, after having

learnt such pattern in an offline phase (Section 1.3).

1.1 making data quality task-aware
Over the years, different data quality dimensions, like accuracy,

completeness, consistency, currency, or duplication avoidance, have

been identified [BS06; WS96]. A number of studies have consid-

ered ways to repair the datasets by eliminating the data quality is-

sues [Chu+15; Ber+15], or techniques that are immune to them [FG10a].

The majority of the data quality works, however, has concentrated on

the quantification of data quality, in order to provide an informative

metric for each dataset [CM08; Con+07]. The fundamental princi-

ple behind these works is that the available dataset (referred to as

the noisy or dirty dataset) differs from the one that accurately mod-

els the reality (referred to as the clean dataset). Quantifying data

quality translates into quantifying the difference between the noisy

4 introduction

and the clean dataset. Unfortunately, the clean dataset is not always

available. A practical solution often adopted is to consider specific

properties that are expected to hold in the clean dataset, measure the

violations of these properties, and consider this as an approximation

of the quality quantification [CM08; Con+07]. For example, the num-

ber of functional dependency violations observed in a dataset can be

considered as an indication of its accuracy, as well as the time taken

by a user to fix the errors present in the data [KPN15] or the number

of inconsistencies to fix for a repaired dataset [Liv+19]. Other char-

acteristics that have been considered in the past include the existence

of nulls, missing tuples, the number of duplicates, and the presence

of unexpected values [BS06; WS96; Abe+16b].

We claim that simply quantifying the difference between the avail-

able and the clean dataset, as typically done in existing data quality

works, falls short in providing a highly informative indication of the

quality of a dataset. One of the reasons is that this approach does

not take into consideration the task for which the dataset is to be

used. Recall that the main reason we are interested in the quality

of a dataset is to know how much trust to put on the results of a

management task performed on it. Thus, it is not only important to

know the difference from the clean dataset, but also how much that

difference affects the results of the management task. It may be the

case that the results of a task are highly affected by a small variation

from the clean dataset, while the results of another task remain un-

changed. Another limitation of the existing data quality approaches

is that they provide information about the available dataset instance,

but say no more about other instances of the dataset. For example, it

would have been useful to know not only how many constraint vio-

lations are observed in a specific dataset instance, but also what will

happen to the results of a management task if this number increases

by a specific factor.

To cope with the above issues, we put data quality in context. We

provide an extension of data quality that takes into consideration the

task at hand and is more informative than existing approaches. In

particular, we advocate that a more informative metric is the one that

encompasses alongside the absolute number indicating the variation

from the clean dataset, a factor that indicates the degree in which the

results of a specific task are affected by that variation. That factor is

1.1 making data quality task-aware 5

bound both to the nature of the dataset and to the specific task. This

novel concept of data quality has multiple advantages. First, it allows

different data quality values to be specified for the same dataset, but

for different tasks. Second, it indicates the degree of error that the

results of the task will have on the current dataset, and also on other

instances of it. Last, but not least, even in the case in which the

clean dataset is known, the factor alone can be used as a data quality

indicator, since it allows to make estimations for unforeseen dataset

variations.

We have developed a system that provides a principled material-

ization of this idea. The system may use the existing data quality

mechanisms to quantify the quality of a dataset as before. But its

main novelty is in computing a factor of the effect of the variation.

Given a task of interest, it modifies in a systematic way the dataset

by introducing in it various forms of noise, and while it does so, it

observes and measures the variation in the results of the specific task

of interest applied on the noisy dataset. The many observations are

then combined to compute the variation effect factor.

To measure the variation in the results of a task, properties spe-

cific to the task are used. For instance, if the task is clustering, the

Fowlkes-Mallows score [FM83] may be used to evaluate the effect on

the clustering result. In general, any metric can be used. For the

cases in which the task is some complex analytic computation, with

no established metric known or given, we have devised a generic

measure between two task results that is based on the Hungarian Al-

gorithm [Kuh55] and can quantify the difference between two task

results.

Empowered by this new type of data quality characterization, ana-

lysts may reason about the reliability and robustness of their insights,

prioritize cleaning tasks, or even decide to avoid some of them al-

together [Abe+16b]. Consider, for instance, an analyst planning to

perform some clustering task on a dataset. The analyst would like to

know if it is worth the effort to employ some data cleaning operations,

and on what part of the data, or instead, accept the results of the clus-

tering even if they were generated on dirty data. By testing different

types of noise, at different parts of the data, the system identifies the

effect that the noise has on the results of the clustering. For those

that have a significant impact, the analyst can employ the respective

6 introduction

cleaning tools to ensure that the obtained results do not differ much

from the reality. Furthermore, as the degree of impact is now known

to the analyst, even if she decides not to perform any cleaning, she

can monitor the data and, if in the future some kind of noise in the

data increases, take action.

The approach taken by our system is in line with other data clean-

ing systems. Bart [Aro+15; San+16], for instance, generates differ-

ent kinds of noise to measure the effectiveness of data cleaning tools.

Similarly, ActiveClean [Kri+16] by focusing on parts of the data al-

lows for iterative cleaning in statistical modeling problems, and Boost-

Clean [Kri+17] exploits statistical boost to perform data repairs. While

those and other works [Abe+16a] have the main focus on cleaning the

data, ours is on giving to the analyst the understanding of the effects

of the data quality issues. The analyst can use this knowledge to

decide what to clean and when.

1.2 enhancing data quality to fit the user
needs

The quality of the results should be aware of the needs of the user

that performs the analysis. Hence, we move to a streaming scenario

that has different needs, before contextualizing data quality on the

user. While a data batch has a fixed size, data streams receive data of

an unbounded length and process it in real-time. Thus, this real-time

need leads to several additional issues.

A data stream is continuous and has no fixed length. Furthermore,

the number of elements received in a time window, i.e., the input rate,

is prone to vary over time. This fluctuation of the input rate may lead

to overallocation or underutilization of the system resources since

the amount of data to process is changing as the input rate fluctuates.

Data Stream Processing (DSP) applications, i.e., queries or analytics

over the data, are commonly represented as a directed acyclic graph

(DAG), where the nodes are the operations to be performed, and the

edges serve as data streams. Hence, the needed optimizations have

to be performed on the topology generated by the user query. In

particular, using the example of Apache Flink, we present a topology

1.2 enhancing data quality to fit the user needs 7

optimization that this streaming framework enables by default. Each

node of the DAG can be replicated several times to parallelize the task

operation through the cluster where the application is deployed for

improving the performance of the user query. Furthermore, one node

can be chained with the succeeding operator, which means that they

will be executed on the same machine and in the same thread, avoid-

ing thread-to-thread handover. The greedy approach would be to par-

allelize each operator as much as possible and to chain them likewise.

However, splitting the work of an operator on multiple machines allo-

cating more resources than those needed has still a cost, and we may

want actually to reduce it, or we may keep a fine-grained control of

the operators while chaining two or more leads to coarse-grained con-

trol of the operators. Hence, the deployment of the topology for the

DSP applications is significant in order to allocate the right amount

of resources and deploy the best topology.

Several works have been proposed to bind the used resources with

the incoming data rate. Dhalion is a system built on top of Heron [Apa19b]

that “heals” the running application, enabling the self-regulation of

the system, detecting symptoms into the system metrics and applying

a number of policies to handle the rescheduling or tuning of the topol-

ogy [Flo+17]. Elastic Allocator gathers information from the cluster

usage and exploits a high resource allocation through a greedy-based

algorithm [Han+14]. Another work models the problem of the topol-

ogy that fits better the incoming data as a Markov decision process,

with a model based on Reinforcement learning [Rus18].

However, none of these works consider the user goal, the metric the

user needs to optimize, for the intended analytics. What we aim at

doing is to focus our work on the user needs in order to let her get the

results that she wants. Hence, we introduce Moira, whose name de-

rived by a character of the Greek mythology with decision power on

the faith of humans, a dynamic cost estimator system, that through

the monitoring of the systems decides the “faith” of the running ap-

plications, deciding if a redeployment or a tuning is needed for each

application to meet its user-defined goal. A user has to specify the

query she wants to perform over the data and a goal, a performance

metric she wants to optimize that considers three parameters, i.e.,

throughput, latency, and cost. Before the deployment to the stream-

ing framework, Moira applies a cost-based estimation of the given

8 introduction

analysis, to optimize its deployment and to get closer to the user goal.

Then, after the submission of the application to the streaming frame-

work, the dynamic cost estimator monitors multiple cluster metrics

and other data taken from the incoming data and, at every defined

interval, it triggers a new cost estimation aware of these parameters.

If the built topology does not fit the user requirements and a new

and better topology can be deployed, then the running application

is replaced with the new topology to avoid wasted computation and

optimize the metric defined by the user.

1.3 focusing on the data itself to improve
the results

The data sources available and, in particular, the data they produce

are increasing at a tremendous rate. Hence, multiple datasets take

into consideration the same entities. For example, a researcher may

scrape the Internet to build a dataset about all the restaurants in Eu-

rope, while a company like TripAdvisor already has his own dataset

regarding food places. Moreover, a dataset about the products stored

in a warehouse may contain a couple of times the same object, due to

extra erroneous entries to the storage. Thus, repetitions in the same

dataset or multiple datasets are a constant issue that data analysts

have to deal with daily.

The problem of entity matching has received a lot of attention with

the aim of providing the analysts a tool to discover and fix the du-

plicated entries within a single table or across multiple datasets. The

literature presents in particular solutions to speed up the process or

increase the quality of the discoveries. Specifically, neural networks

have started to be taken into consideration for this purpose [Mud+18].

Moreover, among the many tools available, lots focus on the solution

of a single case, applying custom matching rules or involving crowd-

sourcing or domain expert intervention.

Although the frameworks shown in the literature help the users

with improved prediction performance or with lower running time,

they are mainly linked with the knowledge of the scenario where

they are applied. For example, despite some solutions provides a

1.4 outline 9

way to avoid (or limit) it [Sin+17], the expertise of domain experts is

usually needed to decide the similarity measures to apply. Moreover,

multiple scenarios compute the results for a bunch of similarities, and

then they merge with a custom function their outputs. This approach

leads to a waste of time since often, some metrics would not give

remarkable results, and hence, their computation should be avoided.

This third topic points out the benefits of the analysis of the data

itself for entity matching. Hence, we present our approach that dy-

namically profiles the portions of the dataset to apply in parallel to

them the correct similarity metric, for enhancing the precision of the

results. The approach is similar to apply an horizontal partitioning

over the dataset, where each partition is compared with a specific sim-

ilarity metric. First, the framework performs an off-line phase where

the model is trained, computing the profile of multiple datasets, and

learning the behavior of the different metrics with datasets having

diverse profiles. Then, in the on-line phase, the framework takes a

dataset and splits it into chunks and applies the metric that the model

has learned to be the best for the profile of the analyzed fragment.

The results of the pieces are then forwarded to the framework that

outputs the dataset with the discovered duplicated tuples. Although

the definition of the best clusters is still an open problem [KBI18],

clustering is a related technique, where clustering takes the role of

blocking, by grouping together similar entities and then comparing

only those in the same group.

1.4 outline

The remainder of this thesis is organized as follows. In Chapter 2

we present an overview of the state of the art and of the related work

in the area of data quality and its related fields.

Chapter 3 introduces the problem of considering the task in a data

quality evaluation framework, starting from the revisited model of

data quality we propose, to an evaluation of the performance of the

system and the impact of many data quality issues in the results of

several tasks.

10 introduction

Chapter 4 formalizes the problem of data quality related to the user

goal, which represent her needs, in the context of allocating the right

amount of resources in a distributed streaming environment.

In Chapter 5 we then illustrate how we solved a problem related to

entity matching, for providing the user the similarity metric that bet-

ter fits the available data. We provided an offline system that learns

such relationships and the applies them to the incoming data.

Finally, in Chapter 6 we discuss the contributions and the limita-

tions of our approaches, highlighting the future research directions

that should be followed, and we conclude with the final remarks.

2 S TAT E O F T H E A R T

In this chapter, we provide an analysis of the literature of the main

topic of this dissertation, data quality, and the work related to our

applications for extending the actual concept of data quality. First,

we survey the current studies on data quality, adding a contextual-

ization view into the data quality framework provided in the liter-

ature [WS96] (Section 2.1). We then present a broad description of

the aspects it involves. The first of them is the intrinsic data quality

(Section 2.2), which considers the characteristics that the data has by

itself. The second focuses on the contextual value of the quality of

the data (Section 2.3), where are presented the works that aim at not

focusing only on the intrinsic value of the data, but also investigate

the context around the data. Then, the third is about the methodolo-

gies that have been proposed in the literature for the assessment and

the measurement of the quality of the data (Section 2.4).

For what concerns the applications and studies we present in this

thesis, in this chapter, we later focus on their related work, starting

from the fitness-for-use idea (Section 2.5), moving to the analysis of

the dynamic allocation of the resources (Section 2.6), and ending with

a discussion of the most relevant entity resolution work for our ap-

proach (Section 2.7).

This overview of the related literature presents the importance that

the quality of the data has and has received, and highlights the gaps

that we aim at filling with the following chapters.

2.1 introduction
Data Quality is the term used to characterize how accurately the

data models the reality. Database design principles, schemas, func-

tional dependencies, type restrictions, checks, triggers, keys, refer-

ential constraints, and not-null specifications, are all techniques that

11

12 state of the art

have been introduced by database vendors to ensure this. Unfortu-

nately, despite the existence of all these principles and constraints,

data quality remains an issue. Since every constraint imposed on the

data comes with a price concerning space or time, data administra-

tors may choose not to put all the necessary constraints in place, or

the constraints supported may not be expressive enough to prevent

any incorrect values from entering the system. The reasons incorrect

values are created in the first place is the reality itself. Real life data

is often inconsistent, incomplete, duplicated, or obsolete. Different

users may have different goals in mind, different styles, or differ-

ent levels of attention they pay when entering data into the system.

Furthermore, faulty equipment may produce missing or erroneous

values, data distribution may generate conflicting information, and

delays in data update may create outdated values. All these cause a

mismatch between the real world and the world as modeled within

the system, which means that queries posed on the data generate

results that are not reflecting the reality.

Bad Quality is one of the main challenges of modern businesses

and is considered the first and main cause of wrong analysis and pre-

dictions [SS14; TB98]. The advent of Big Data has only made the data

quality assurance more challenging. Big Data is data characterized by

large volume, variety, and velocity. Performing any consistency and

correction checks before putting such data in the system is practically

impossible. Furthermore, Big Data analytics and exploitation have

brought a new computational model. Instead of putting the data into

predefined structures and ensuring they adhere to rules set by do-

main experts, the collected raw data is analyzed and form a model of

the actual reality (data driven as opposed to the model driven). The

above means that big datasets are way more prone to corruption and

other quality issues [SS14].

Data quality is measured through a number of different metrics.

The metrics range from statistics on the values a data set contains too

properties related to the management of these values. A recent study

has produced a high-level categorization (illustrated in Figure 2.1) of

the different metrics that have so far considered [TB98; WS96]. It was

based on two questionnaires that were used to capture the opinion

of the data consumers on what is considered data quality [WS96]. It

contains four different types of metrics. The first is the so-called in-

2.1 introduction 13

trinsic and includes metrics that can be computed by considering only

the values in the data set and the actual values that describe the real-

ity. Examples of this kind of metrics include the consistency, i.e., how

many constraint violations can be observed, how accurate are the val-

ues in the dataset, or how recent they are. The second type of data

quality metrics is related to the contextual quality, which concentrates

on the value it add to the context where it is applied. It encompasses

metrics that are based on some additional or superimposed informa-

tion on the data. An example of such a quality metric is the timeless

(freshness) or the objectivity. As one can see, to measure the freshness

or the objectivity, the data value itself is not enough. There is a need

to know when was the last time that this value was updated or who

was the person that updated it. The third category is the representa-

tional that refers to both the format of the data (i.e., if it adheres to a

specific standard, if it is concise, etc., and its meaning, i.e., whether

the data is easily understandable and interpretable. The last category

is the accessibility that contains indicators describing what part of the

data can be accessed by the users and how easily this can be done. Ac-

cess methods, security restrictions, path specifications, e.a., are some

of the examples of the metrics considered in this category.

The four aforementioned categories can be further distinguished

into two groups. We have noticed that the first two are based either

on the data itself or on the value they add to the context where it

is applied. Instead, the last two categories deal more with issues

related to how the data has been stored in the system and the ways

that this data can be accessed. We refer to that group as the system-

dependent group, while to the former as the system-independent group.

To draw a parallel to the database system design, the first two can be

seen as the logical level, while the last two as the system (physical)

level. In this chapter, we are not interested in the system dependent

quality parameters. We focus on the system independent part, and in

particular on the contextual metrics.

There has been a number of surveys on data quality [Bat+09; FG12;

Lee+09; LSB15] that focus on general properties the data should sat-

isfy in order to be considered of high quality. The properties are

often descriptive without any specific way of turning them into con-

crete algorithmic and practical data management tasks that one can

execute in order to produce and offer some quantitative results. It is

14 state of the art

Data Quality

Representational
Data Quality Accessibility

Intrinsic
Data Quality

Contextual
Data Quality

Accuracy
Completeness

Currency
Consistency

Value Added
Appropriate amount

Timeliness
Objectivity

Interpretability
Ease of understanding

Representation
Accessibility

Access security

System Independent System Dependent

Figure 2.1: The Data Quality Parameters Categorization proposed
by [WS96]

often left to the data administrators to translate the generic descrip-

tion into some measurable quantity. On the other hand, there has

been a lot of work on data quality metrics that are computed over

the dataset. Examples include the counting of the missing values or

the constraint violations. They are mainly metrics falling into the in-

trinsic group and are of particular interest to the data management

community due to the many performance challenges. A recent sur-

vey [Fan15] has provided a good overview of these metrics, and a

book [FG12] from the same authors offers a more in-depth analysis.

One of the limitations of these techniques is that they do not consider

at all the kind of processing or the intended use of the results of any

possible analysis that is to perform on the data. Any possible con-

text information is not part of the input. The only works that the

intended use of the data is taken into consideration is the one that is

about query answering [Ber11]. There, given an imperfect, i.e., of low

quality, dataset and a query at hand, the goal is to ensure that the

results of the query are not affected by the low quality of the data.

We believe that any data quality metric should not be seen with

respect to the data only but should also consider the context in which

that data is about and the kind of analytic tasks it is to be applied on

the data, i.e., how the data is going to be used. Based on this position

we are aiming in providing a survey on data quality techniques that

considered the context where the data is used, but also indicate how

those techniques that have not, can be extended to provide a generic

2.2 intrinsic data quality 15

framework. Our work also aims at providing a good understanding

of how existing works are limited by not considering the context.

2.2 intrinsic data quality
We first overview the definition of existing methodologies for the

analysis and the improvement of intrinsic data quality features of a

dataset. Intrinsic data quality is the aspect of data quality that focuses

on the characteristic properties that the data has and that can be mea-

sured without considering any external factor. It has been studied

thoroughly in the literature, and many dimensions have been cate-

gorized as intrinsic [SLW97; WW96; Wan98; Lee+02]. Among them,

there is believability, which refers to the credibility of data and how

much it can be considered truthful, and objectivity, which defines if

the data is unbiased and impartial. However, the most well-known

features that are considered as intrinsic to a dataset are accuracy, com-

pleteness, time-related dimensions, and consistency.

We describe some works that assess, with a descriptive analysis,

and improves, with a prescriptive analysis, the analyzed dimensions.

However, according to our knowledge, we have not found any work

that considers the predictive analysis, which would forecast how an

analysis the outcome would be, given such level of one dimension.

This analysis has been more studied on the contextual data quality,

and specifically in the methodologies (Section 2.4). We highlight dif-

ferent works on intrinsic data quality in order to present the main

features, but we refer to other works and surveys in order to have a

deeper overview of the single characteristics of each approach [BS06;

Fan15; FG12].

2.2.1 Accuracy

The accuracy dimension has been considered for a long period as a

key dimension and as a synonymous for data quality [WS96]. Accu-

racy has been generally defined as “the extent to which data are correct,

reliable and certified” [WS96]. More precisely, we agree that data are ac-

curate when the values of the data stored in the database correspond

16 state of the art

to the real-world values of the referred object [BP85]. As a result, a

formal definition that comes from this statement is that accuracy is

the closeness between the correct value v and the represented value

v ′ [Red96].

Two types of accuracy can be identified in the literature: syntactic

and semantic accuracy. Syntactic accuracy refers to the closeness of a

value v to the elements of the corresponding definition domain, while

the semantic captures the cases in which the value v ′ is a syntactically

correct value, but it is different from the right value v. In other words,

a value is syntactic inaccurate if the attribute value does not exist or

is not accepted, as it is a typo error. Instead, a value is semantically

inaccurate if the value is not the right one, as it may happen in a

table with a boolean attribute where a tuple contains false instead

of the correct value true. Syntactic accuracy is usually more studied

than semantic accuracy as it is easier to be checked [BS06]. Indeed,

semantic accuracy requires a knowledge base, a reference dataset, or

a human intervention in order to check first whether the data value

is correct, and second to replace the value with the correct one if

needed.

For this dimension a descriptive analysis would measure the per-

centage of accurate and inaccurate values in a dataset while a pre-

scriptive analysis would determine what actions, i.e., data repairs, to

take in order to improve the accuracy of the dataset. Of those two

types of analysis, we found many works that are leverage of users

or a knowledge base for a prescriptive analysis [Con+07; Chu+15;

Boh+05; CM08; Fan+11], and other works that propose a description

of the accuracy of a dataset [FGJ09; Fan+08; CFY13; Rek+15].

A system that uses a knowledge base in order to inspect the seman-

tic accuracy of a dataset and then correct the errors found in the data

is KATARA [Chu+15]. This system interprets the input dataset se-

mantic, aligns it with a knowledge base and identifies the values that

are correct and those that are incorrect, generating a set of possible

repairs for the detected errors. In addition, KATARA involves people

and experts in order to resolve ambiguities. Hence, the involved peo-

ple are asked to select the best repair from those that are suggested

by the system according to the aligned knowledge base, and then the

most agreed is applied to the data. As a result, this system has better

2.2 intrinsic data quality 17

performance than competitor frameworks, since it takes advantage

from the support of both a knowledge base and crowdsourcing.

Another method that has been largely used for the improvement

of data accuracy exploits the concept of dependencies, such as func-

tional and inclusion dependencies. Functional dependencies are a

constraint that describes the relationship between different attributes

in a relation. The standard notation is A → B, where A and B are (a

set of) attributes and the arrow implies that a value for attribute A is

associated to only one value for attribute B. Functional dependencies

are exploited to discover the primary keys of a dataset. If a primary

key exists within a dataset, there is a functional dependency that de-

termines from key values all the other attributes of the relation. For

example, if a dataset has three attributes, A,B, and C, with A being

a primary key, then there exists a functional dependency A → BC

that holds. On the other hand, inclusion dependencies imply the ex-

istence of attributes within a table, whose values must be a subset of

the values of other attributes. Their notation is R[A] ⊆ S[B], where R

and S are the same table or two different tables, and A and B are two

(set of) attributes with the same cardinality. An inclusion dependency

demands that all the values within the attribute (or set of) A of the

table R must be present in the attribute (or set of) B of the table S.

Inclusion dependencies enable the discovery of foreign keys, since an

attribute is a foreign key only if each one of its values belong to the

parent table. Thus, an inclusion dependency always exists from the

attribute that is a foreign key to the attribute that it references. In the

example, R[A] is a foreign key for S[B].

One example of accuracy assessment with dependencies can be

found in source integration. In this context, a new technique for

database repairing, whose goal is to repair the errors within a dataset

with the lowest cost, was introduced taking advantage of functional

and inclusion dependencies [Boh+05]. Usually, the database repair-

ing was performed via the insertion and the deletion of tuples, but

this technique also considers to repair the dataset with a set of value

modifications. The given constraints are used to discover inconsis-

tencies in the dataset, and with a cost function, the value that will

be changed at the lowest cost is recognized. This approach improves

accuracy since it is able for example to replace the values that are

misspelled with the correct values. For example, given a constraint

18 state of the art

that does not hold because a set of values are misspelled, if the cost

functions estimates as cheaper to repair those values, then the mis-

spellings are replaced with the correct values.

Furthermore, an improvement of standard dependencies that can

affect better the data is the concept of conditional dependency. The

usage of conditions empowers existing dependencies to recognize

more inconsistencies in the data [FGJ09; Fan+08]. A condition is a

pattern that imposes the dependency to hold only on the subset of

data that match the condition and which combination should occur

together [Fan+08]. The standard notation of a condition is A = v,

where A is an attribute, and v is the value for which the condition

holds. It is possible that the value is not specified. In this case, it is

assumed that v = _, which means that it can have any value and if

it is the only variable in the condition, it works as a normal depen-

dency. A conditional dependency may hold with higher probability

than a standard dependency since the condition is imposed on a sub-

set of the data. For example, consider a dataset that stores a set of

products to sell, and a functional dependency [name, tax, country]

→ [price] that does not hold for a pair of tuples. Both the tuples

have France in the country column, while they have different values

for the attribute tax since one tuple has tax = 0, and the other has

tax = 10. Adding a condition to specify that the dependency holds

where country is France and tax is 0, then the dependency considers

only the tuple with country as France and tax as 0. Thus, the condi-

tional dependency now holds, since the condition is imposed only on

a subset of data that does not generate any inconsistency. There ex-

ist many types of conditional dependencies and the most known are

conditional functional dependencies [CM08; Fan+11] and conditional

inclusion dependencies [Bau+12].

Conditional dependencies have been used by many data repairing

techniques in order to inspect the accuracy of a dataset, and when

applied for database repairing they improve the accuracy of the sug-

gested repairs [Con+07]. This work first finds a possible repair over

the constraints that the dataset has, and then uses a statistical method

to ensure that the repairs are accurate, without involving too heavily

domain experts as it is usually done in the literature. Then, since

asking users and domain expert to check each tuple is infeasible, to

reduce the number of manual checks, the work employs a sampling

2.2 intrinsic data quality 19

method that selects only a sample of the data that users have to in-

spect and improve. Thus, this method leverages of an estimation of

the accuracy of a repair, which is responsible for the decision of ask-

ing or not the user intervention. If the estimated accuracy is lower

than a certain threshold, then the repair will be inspected by users,

while if it is higher, it will be not.

Another approach focuses on the improvement of the relative ac-

curacy of the data [CFY13] while existing works leverage a reference

dataset to check the accuracy of the attributes, this work does not

need it. Thus, when many tuples represent the same entity, it finds

the correct value for each attribute of the entities. It uses a set of

pre-defined rules given as denial constraints to set the value of the

attribute. Considering a table with the statistics of a basketball player,

a denial constraint over it may state that if the number of matches

played of tuple_1 is lower than tuple_2, then tuple_1 is more cur-

rent, and thus accurate. Moreover, if the system is not able to com-

pute the repair for the attribute value, then the framework leverages a

preference model, which is a scoring function, that produces the top-k

possibilities for the replacing value of the entity attribute. Then, users

are asked to check among the top possibilities the best one according

to them.

Another problem strongly related to data accuracy is the measure-

ment of the accuracy of web data. Given the whole set of data, the

accuracy of a web source is measured as the probability of a datum to

be in the source and to be correct [Rek+15]. From this definition, they

propose a vision system that automatically assesses the overall accu-

racy of a web source. Such a system chooses which is the best source

for the intended use of a user according to its accuracy measure. In

order to improve the choice of the best source, other metrics can be

added, such as how much the data within the source are up-to-date

and unbiased, which is useful for example in the case of news. These

two measures can be added to accuracy for the final score computa-

tion for the best source.

The measurement of accuracy appears also in the data fusion liter-

ature, which refers to the integration of data and knowledge [Cas13].

The problem is about assessing the accuracy of web sources in order

to solve disagreements among many of them providing conflicting

data that needs to be integrated [Li+12]. This solution measures the

20 state of the art

accuracy of a source, considering the true values that it contains over

the true value that are present in a reference dataset. Then, some

refinements in the measurement are performed considering the stan-

dard deviation of the accuracy of a source, which is computed as the

difference at each time within a time window between the accuracy

of the source at that time and the mean accuracy. In addition, to

improve the measurement of the accuracy of a source, the authors

suggest to integrate the trustworthiness of the source. However, it is

tough to estimate if the information presents in a source is trustwor-

thy and not biased (as it may happen to sources that describe political

facts), since the web is evolving fast and the data produced by users

may not be correct.

2.2.2 Completeness

Completeness is a broad concept for which there is no single def-

inition on which all researchers agree. In the information system

domain exist two main definitions. The first one considers complete-

ness in the intrinsic DQ, and we agree with it since we affirm that

completeness is a state of the data and is not affected by the context

where it is used. This definition considers completeness as the abil-

ity of an information system to represent every meaningful state of

a real-world system [WW96]. On the other hand, the second defi-

nition focuses on the contextual view of completeness, and as such

it will be covered in the next section (Section 2.3). In the domain of

data warehouses, completeness has been addressed as the percentage

of real-world information entered in a data source or a data ware-

house [Jar+13]. Similarly, when we examine entities and attributes in

the dataset, it is defined as the information has all the required parts

of the description of an entity [BSM03]. Moreover, an enhancement

of the last two definitions acknowledges completeness as the product

of coverage and density [Nau02]. In this last, coverage considers the

number of entities that are present in the dataset with respect to the

size of the universal relation, which is the union of all existing data

sources. On the other hand, density measures the ratio between non-

null values and all the values in the dataset. However, as it can be

easily understood, if we are in an open world model, which considers

2.2 intrinsic data quality 21

having no complete knowledge of the world, the universal relation is

an ideal dataset. Hence, an objective measurement is difficult to be

reached through this definition.

There are three types of completeness: schema completeness, col-

umn completeness, and population completeness [PLW02]. Schema

completeness regards the degree to which entities and attributes are

not missing from the schema; column completeness considers the

values that are missing from a column in a table, e.g., null values or

missing values; finally, population completeness is defined by means

of a reference population and the entities that are missing from it.

For this dimension, a descriptive analysis would measure the per-

centage of missing data in a dataset, according to other external

sources, as in the case of reference data. A prescriptive analysis

would determine which would be the repairs for improving the com-

pleteness of the tuples and the dataset. One work that is described

later has been proposed for improving the completeness of the dataset

via a prescriptive analysis [Ber+15] while the others propose both a

method to perform a descriptive analysis, which discovers missing en-

tities and attributes, and then provides a prescriptive analysis [FG10c;

FG10b].

A new model for handling completeness was introduced for over-

coming the problem of dealing with missing values and missing en-

tities [FG10c; FG10b]. Previous works were able to assess the com-

pleteness of a dataset either when only tuples [FG10c] or when only

values are missing [Van92]. Thus, this work improved upon existing

solutions, by making the assumption that a database with complete

information exists, which is the reference dataset. The model consid-

ers a set of slave datasets that satisfy a set of inclusion dependencies

with regard to the reference data. If the answer to a query over one

of the slaves already contains all possible retrieved entities imposed

by the constraints, then the answer to the query is considered com-

plete, otherwise, the query needs to be rewritten, and the data has

to be taken from the reference dataset. Thus, the new result set will

then contain also the entities that are missing from the slave dataset.

This model has lots of applications. However, it needs some prerequi-

sites. Firstly, it needs to have access to a reference dataset containing

complete information; secondly, the inclusion dependencies over the

22 state of the art

slaves have to be given. Thus, usually, it cannot be applied to any

context without the involvement of users or domain experts.

Another work that deals with completeness is a data cleaning frame-

work [Ber+15]. The system receives as input a query and a dataset

and produces a draft result set, with the information it contains. Then,

as a second step, users are asked to check whether tuples are missing

from the draft result set, or whether some tuples need to be removed

from it. Finally, extra tuples are removed from the result set, and

the missing tuples are added, according to the answers of the users.

However, the system does not provide an objective measure of the

completeness of the dataset. The involvement of a set of users or,

in general, experts are techniques used for completeness assessment

and for data quality methodologies, which adopt also surveys to data

customers, as shown in Section 2.4.

2.2.3 Time-related dimensions

In the literature are defined three different measures regarding

time: volatility, currency, and timeliness. These three concepts of time

are used in different ways by different authors, and there is no sub-

stantial agreement on the name to use for a time-related dimension.

One description of timeliness defines it as the delay between a change

of a real world state and the resulting modification of the information

system state [WW96], while another work defines currency as the de-

gree to which a datum is up-to-date [Red01]. Timeliness has been

also considered as the average age of the data in a source [Nau02].

Only one work defines all three aspects that appear in the literature

regarding time: timeliness, currency, and volatility [BSM03]. This

work defines timeliness as the combination of volatility and currency.

Volatility is the measure of the information instability and hence the

frequency of value changes for an entity attribute, whereas currency

measures how old the information is, based on how long ago it was

recorded. Timeliness has also a contextual viewpoint about the qual-

ity, and thus the definition from that perspective is covered in Sec-

tion 2.3.

A descriptive analysis for this dimension measures how current

are the attributes in the dataset [FGW11]. On the other hand, the

2.2 intrinsic data quality 23

prescriptive analysis defines which would be the needed edits for

improving the currency of the data [Fan+14].

Different models have been proposed, as in the case of complete-

ness, in order to handle currency inside a dataset [CT05]. The easiest

solution is to use temporal databases, which store entities alongside

additional metadata, containing the timestamp when each entity was

lastly updated. An enhancement of this solution leverages of meta-

data for each attribute. Thus, each attribute of the entity has a record-

ing containing its last update. Other techniques add metadata for

each attribute, which allows entities to store a timestamp for each

attribute. An excellent improvement proposes a framework able to

handle timely data without timestamps [FGW11]. This framework as-

sumes a set of given constraints, structured as denial constraints, that

define the possible evolution of the attributes and the entities. For

example, an employee must have worked before being retired, and a

woman that is widow must have been married before. Thus, with a

given set of constraints, it is possible to handle a dataset containing

entities that have evolved during time.

2.2.4 Consistency

In the literature, the definitions of consistency are several, but most

refer to the violations that are present within a dataset. One defines it

as the dimension that handles the violation of semantic rules defined

over (a set of) data items. On the other hand, it has been measured

as the number of violation of a given set of integrity constraints over

the dataset. The violations are similar to those that regard accuracy,

but while for accuracy we deal with them to correct the attribute

values, for consistency we need to avoid violations within the dataset,

without considering that the data are accurate or not. Each entity of

the database must satisfy these integrity constraints, that may involve

only one table (e.g., functional dependencies), or multiple tables (e.g.,

inclusion dependencies).

The discovery and detection of dependencies of a dataset that en-

able a descriptive analysis of the dataset have been studied accu-

rately [FG12; Con+07; Bau+07; Bau+12]. The consequent improve-

ment of consistency is usually performed via data repairing tech-

24 state of the art

niques, that change the dependencies over the dataset or edit the data

within the dataset in order to let the dependencies to hold among the

dataset. As in the case of accuracy, conditional dependencies are

extremely useful for the improvement of consistency [FG12]. The dif-

ferent algorithms implemented for discovering and handling inclu-

sion and functional dependencies with and without conditions are

the most efficient way for the creation of constraints, respectively, in-

ter and intra-relations. Moreover, both standard and conditional de-

pendencies are used to deal with the problem of data deduplication,

which regards the identification and resolution of different represen-

tations of the same real-world entity in the dataset [FG12]. A deep

overview of the data deduplication problems and solutions may be

found in recent surveys [EIV07; KTR10].

Consistency has been also addressed as the amount of data con-

flicts that are present in a dataset [RD00; LSB15]. Data conflicts are

defined as the deviations that can be found while representing a real-

world entity inside a dataset [LÖ09]. Data conflicts can be found

either in a single source, when we have only one dataset, and its

multiple sources, e.g., in the case of data integration [RD00]. More-

over, they have different behavior when we consider the schema of

the data (schema-level) or the data itself (instance-level). The data

conflicts that are highlighted by the single-source are mostly derived

by missing or wrong constraints over the possible data entries. When

we consider schema-less sources, the number of restrictions imposed

is usually lower, which leads to a high probability of errors and incon-

sistencies. Whereas in relational databases, the amount of constraints

used, i.e., referential integrity and application-specific integrity con-

straints, is usually higher and thus the error probability is lower.

At the schema-level, data conflicts occur because of the lack of ap-

propriate model-specific and application-specific integrity constraints,

due to data model limitations or poor schema design. Thus, many in-

consistencies can be not gathered within the dataset. A solution may

be to add other integrity constraints according to the specification of

the schema. On the other side, at the instance-level data problems

arise from errors and inconsistencies that cannot be avoided at the

schema-level, such as misspellings, duplicates, and contradictory val-

ues.

2.3 contextual data quality 25

The problems of the single-source level are emphasized when mul-

tiple sources are integrated, i.e., each source may have different repre-

sentations of the same data and moreover can contain dirty data. At

the schema-level problems arise with different names for the same ob-

jects and with structural conflicts, as different structures for the same

attribute. Instead, at the instance-level, it is difficult to recognize the

same entity in two distinct sources and to deal with a different rep-

resentation of the same value. However, this is only a data conflict

classification that can be used for assessing consistency, but it does

not provide any measurement or a solution for inconsistencies.

2.2.5 Other dimensions

Little work has been performed in the literature for other dimen-

sions when compared to the four previously defined, and their as-

sessment is usually proposed only in specific domains. For example,

in the geographical and geospatial domain is proposed as dimension

the positional accuracy (which is the accuracy of the geospatial posi-

tion and can be assimilated to accuracy in general, but some works

consider them separately) [Goo80; GM13; SFG03]. In the archival do-

main, the condition of a document stored is considered as a data qual-

ity dimension [KW03a; KW03b]. In other domains, other dimensions

highly used are believability, which considers how much the data

from a source are trustworthy, hugely used in peer-to-peer systems

or web data; and objectivity, which refers to the source impartiality

in the distribution of information, used mainly in news analysis.

2.3 contextual data quality
Contextual data quality is the aspect of data quality that highlights

the quality requirements needed considering the context of the task-

at-hand. For example, the task of counting the rows of a dataset does

not need that the values within each row are accurate, while finding

the duplicates within the dataset needs accurate values at least for

key attributes. Even in contextual DQ are present many dimensions

as in the case of intrinsic DQ. Among them, there are appropriate

26 state of the art

amount of data, value added, timeliness, and relevancy. It is worthy

to see, as it is shown in Figure 2.1, that the measures belonging to

the intrinsic category have a correspondence in the contextual. Com-

pleteness as the intrinsic DQ has a reference for contextual DQ as the

appropriate amount of data, which regards the extent to which data are

of sufficient breadth, depth, and score for the task at hand [WS96].

Time dimensions for intrinsic DQ have been mainly considered in the

form of currency and volatility. Instead, when contextualized, they

focus on timeliness, which is the extent to which data are sufficiently

recent or up-to-date for the task to perform [WS96; LC02]. In this sec-

tion, we do not perform an overview of the corresponding measures

of the intrinsic quality, but we report the different ways in which

contextual DQ has been assessed. First, we describe the different def-

initions that have been provided for the concept of context in data

applications. Then, we put context in relation to data quality.

2.3.1 Defining Context

Data applications have a strong connection with the context in

which they are employs. We grouped the different definitions of con-

text into a unified view to provide a formal definition of context.

Definition 1. A context C = 〈{A},G〉 is a tuple of a set of attributes

{A} and a goal G.

An attribute can be a location or a timestamp, and a goal is a high

level task, as a company or business goal. The context dynamically

affects the data analyzed and represents the environment surround-

ing the data and the goal of the data customer. Although being often

considered only as a description of the environment, the context has

been also considered as an active process that has often a significant

influence on the way data can be interpreted [Bol+09]. Thus, the

context was first defined as the user location [Abo+99], and then it

evolves to be represented as a set of attributes that creates a dynamic

environment that influences the user behavior [Bol+07a].

The context has been also studied as the environment that is around

the application and adding the previous definition it evolves to an

ambient that influences the data and the analysis over it [BST04]. An-

other work relates the definition of context to the choice of the view

2.3 contextual data quality 27

of the data that fits better the requirements the context imposes, by

tailoring the data schema [Bol+07b]. Thus, a user retrieves different

views from the data according to its role and location.

The definition of context can refer to the presentation, location,

community, or the user [Bol+09]. When it refers to the presentation,

the quality of the data is connected to the ability of the system to

adapt the content of the presentation to different channels or devices.

It is location-oriented if the data handles with high precision the time

and space coordinates. The context refers to the community if there

are many relevant variables shared by a group of persons, while is

user-centered when it focuses on what the user is doing. In this case,

it is referred to the task-at-hand applied over the data.

Context evolution has been also modeled as a Direct Acyclic Graph

(DAG), where the nodes with their attributes are the contexts, and

the edges denote the changes within the contexts [Cou+05]. For ex-

ample, an entity may be John, whose role is the traveler, and another

is Jane, who is the wife of John, and the context is a train station.

The context is represented by a set of entities, in this case, John and

Jane. There is a set of roles, which are functions, e.g., John is a trav-

eler, and Jane is the wife of John. The context is represented also by

a set of relations that link entities, which can be the position or ac-

tion that John and Jane are taken, e.g., a face-to-face position while

discussing. Finally, we have a set of situations, which is defined by

a specific configuration of entities, roles, and relations. Any change

in the elements of the context (entities, roles, relations, situations) is

an edge between two contexts, which are the nodes. Hence, contexts

can be mapped in a DAG and then the goal of the entities, which

could be reaching a city with the train, should be analyzed in order

to enable a context-aware computation. However, it is trivial to un-

derstand that the graph generated by all the possible situations and

contexts is extremely complex, and thus it is hard to be represented

and managed.

2.3.2 The Context in Contextual DQ

The study of contextual data quality has produced a definition for

the data of high quality as data that is “fit for its use” defined by

28 state of the art

data consumers [SLW97]. Furthermore, the data quality characteris-

tics that are required by an application may change over time, since

the requirements change as well. Consequently, having and maintain-

ing data with high quality is hard and implies the continuous track-

ing and measuring of the requirements and the data characteristics

required.

Other works link the context to the organization that has the data

and the life cycle of their processes. Thus, many solutions involve

data and context experts as the data managers that work in the com-

pany. These solutions are called methodologies and are detailed in

Section 2.4.

We consider a task any analytical measurement, which can be any

data mining algorithm, such as clustering or frequent itemset. Differ-

ent ways have been addressed to derive the context where the data

are used, and we analyze three categories that we define as: impli-

cation of dimensions, quality query answering, and metadata usage.

These groups are discussed in the rest of this section. However, none

of the presented works introduce a quantitative measure that can esti-

mate how good are the data for the applied task, which would enable

the prioritization of the cleaning tasks to apply over the dataset to in-

crease the quality of the data for the intended purpose.

2.3.3 Implication of dimensions

The importance of the dimensions may vary changing the context,

which in our case is the task. It is easily understandable from the pre-

vious example, where accuracy is important for detecting duplicates,

while not for counting the rows. This happens for every dimension.

Thus, the importance of every dimension varies by changing the task

performed, which implies a change in the context.

An analytical framework for a data-driven detection of the depen-

dencies between data quality dimensions has been proposed to de-

rive the most important dimensions in each context [DBB06]. The

work starts from standard data quality assessment techniques for

many data quality dimensions. Then, for each data attribute, the

system inspects with one of the most used metrics in information

theory, Shannon’s entropy that is particularly suitable for data depen-

2.3 contextual data quality 29

dencies [Lin91; Sha51; DBB06], whether the attribute produces any

error for each monitored dimension. From the analysis produced

by this so-called data quality meta-model, the analytical framework

then derives the dependencies between different sets of dimensions

classifying them. This work proposes a way to categorize in the

correct group among the many existing types the dependency be-

tween two sets of data characteristics. Please consider two sets of

dimensions D1 = {completeness, accuracy} and D2 = {timeliness,

consistency}. We have a correspondence between two dimensions

when a record contains an error for both the dimensions. A perfect de-

pendency exists when D1 and D2 have a one-to-one correspondence

of presence of errors, thus when any record that contains an error for

a dimension contained in D1 also contains an error for a dimension

contained in D2 and vice-versa. Two dimensions are independent if a

data quality dimension does not give any information about another

dimension. There is a partial dependency when D1 and D2 have a

perfect dependency only between a subset of their dimensions. For

example, D1 and D2 are partially dependent if completeness and

consistency have a perfect dependency, but there is no dependency

among timeliness and accuracy. Another case happens if D1 has a

larger resolution than D2, which means that there is a one-way de-

pendency from D1 to D2, but at least one dimension of D2 does not

imply an error in a dimension of D1. In this case, one error for a

dimension contained in D1 implies only one error for a dimension

contained in D2. The degeneration of a D2 conditioned by one or

more data quality dimensions of D1 means that at least a data qual-

ity dimension of D1 produces an error when an error of D2 appear.

Thus, for example when an error of accuracy is always present when

every error of a dimension inD2 happens. The last group is the lower-

resolution absolute synonymy, which appears when it is possible to

group the dimensions in D1 and the dimensions in D2 in such a way

that the produced groups generate a perfect dependency between

D1 and D2. Thus, given D1a = {completeness} D1b = {accuracy},

D2a = {timeliness} and D2b = {consistency}, the subsets D1a,D2a
and D1b,D2b have respectively a perfect dependency. The reconstruc-

tion of the dependencies, which means categorizing the relationship

between the dimensions, increases the knowledge of dimensions and

their relationships.

30 state of the art

In order to extend the described analytical framework a conceptual

framework has been proposed [BSB10]. The so-called Dependency

Discovery in Data Quality (D3Q) framework can be plugged to any

available assessment solution. It leverages a Bayesian network, which

does not need a domain knowledge for working, since it models the

domain where it is applied, representing the set of dimension an-

alyzed, and their conditioned dependencies without apriori knowl-

edge. The Bayesian network generates a Directed Acyclic Graph

where the nodes are the data quality dimensions analyzed and the

edges provide their dependencies. The probability of each edge is

defined as the prior probability of the dimension of the end node

conditioned by the probability of its parent. The analysis of the DAG

leads to an understanding of the dependencies between dimensions

and provides knowledge about how dimensions impact each other,

which is useful to exploit the concept of conditional independence,

which happened when there are no edges between two dimensions.

2.3.4 Quality query answering

In the problem of answering to a query with data that does not

contain error, context is crucial as it can change the answer provided.

Thus, this problem has been linked to the problem of efficiently an-

swer to a query given a set of precomputed views [Hal01]. The def-

inition of a view for every context is present also in database theory

and not only in the assessment of contextual data quality.

An approach for retrieving an answer without errors to a query has

been proposed in a framework for contextual data quality [BRJ11].

This framework models first a relational schema, which contains the

data, for example information about the temperature of a patient and

when the temperature was taken. Second, it models additional con-

textual relational schemas, which are external sources that contains

extra information, as it can be information about the nurse that took

the temperature measurement. Third, a set of contextual quality pred-

icates defined over the schema, e.g., if it was an oral thermometer, or

if the temperature is valid. These quality predicates are used to ex-

press the quality requirements requested by data consumers or met

by data producers. The quality predicates are defined as views over

2.3 contextual data quality 31

the contextual relational schema since they will filter out the data

that does not satisfy the imposed conditions from the answers to the

queries. It is rewritten adding the contextual quality predicates that

are present for the schema. A contextual quality predicate may re-

quire an external source for additional information. The framework

is also able to manage external sources, and if it is the case, a request

is triggered to the external source to check the evaluation of the pred-

icate. Then, the answer to the query is retrieved with only the data

that satisfy the quality predicates.

Another solution models a set of dimensions that capture differ-

ent characteristics of the analyzed context [Bol+09]. Starting from

the data, the system builds the Context Dimension Tree, which repre-

sents the user information needs. It models the dimensions over the

data, displaying the characteristics and the possible values that it can

assume. For example, given a company, among the set of all possi-

ble dimensions, there can be the role of the user that is querying the

data, the time when it performs the request, and the location. Thus,

it would create many views of the data based on the role of the user,

its location, and the time when the query is asked. The answer is

computed at runtime among the views created.

2.3.5 Metadata

Metadata is strongly used in many applications as it can store ad-

ditional information about the data itself.

One work employs metadata to add information on the best data

source for a specific context [CGY]. This work considers a context

as an answer to the questions what, when, where, and why. Given

a set of sources, the framework clusters items from each different

source into groups that have information about similar context. These

clusters are called context clusters and can specify information that

defines a context on the contained data. One item can be a member of

multiple clusters. Given a query, the best source for the context of the

query is chosen based on the metadata of each cluster, and the result

is returned. Then, the user provides to the system an evaluation of the

obtained results. As a final step, the metadata stored for the source

and the context cluster are updated giving the user feedback.

32 state of the art

The leverage of metadata is also adopted for adding additional in-

formation about the user skills [WSE09]. Modeling a task as context-

dependent and specifically as user-centric, means that different users

have different perceptions of a task, due to their expertize, knowl-

edge, and cultural background. An experiment has been conducted

over more than 50 persons, having the goal of planning an advertising

campaign with a fixed budget. Users have access to a set of metadata,

which contains information about the costs and the impact of many

advertising media in multiple geographical locations. In addition, the

data provided to the participants contains information about the qual-

ity of the data, which can be good, normal, or bad. At the end of the

test, users were asked to fill a survey about their expertize in the field

and how they receipted the task as ambiguous. Their answers are

later used by the researchers that conduct the experiment in order to

weight the results according to the expertize and the ambiguity of the

task. A person that is not keen in planning an advertising campaign

but receives high results probably would not have considered him-

self as an expert, while a user that marked herself as an expert but

receives low results probably is not such an expert. In the end, the

work shows that considering both of the two sources of metadata, the

first about the task and the quality of the data, and the second about

user expertize and ambiguity of the task, provides an improvement

in the results than using only the first source or none of them.

2.4 methodologies

Methodologies for contextual data quality analysis and improve-

ment are an important instrument that allows data customer to under-

stand and improve the available data. More specifically, a data quality

methodology is a set of guidelines and techniques that define a ratio-

nal process to assess and improve the quality of the data [Bat+09],

starting from input information describing a given application con-

text.

2.4 methodologies 33

2.4.1 Phases of the methodologies

A methodology comprises three main phases, an initial step, which

regards the state reconstruction; the assessment phase, where the

data quality dimensions are analyzed; and the improvement phase,

which regards the changes in the dataset performed to avoid future

errors.

The state reconstruction phase focuses on the analysis of the con-

text where the data is applied, gathering information from the or-

ganizational processes and the services offered by the company that

applies the methodology. Moreover, it investigates how data has been

collected, which procedures have been followed, and which data qual-

ity problems raised. This phase is, of course, skipped when already

present and known.

The second phase concerns the assessment and the measurement

of the data quality dimensions that mostly affect the data when per-

forming a specific task. The assessment is focused on gathering in-

formation about the data in order to gain a complete overview of the

context. This phase contains five steps. First, via an analysis of the

data schema and through interviews with customers, the assessment

phase aims at understanding the data, the system architecture, and

the processes where the data is used. Second, it derives through inter-

views to data customer the causes that do not allow the data to reach

the quality goals. The third step is about creating a model for a pro-

cess that repairs the dataset from the causes of errors. The fourth step

is the measurement of the dimensions that were considered problem-

atic in the second step. The measurement would be done using both

objective metrics, which produce a comparable value, and subjective

metrics, defined by data users with their perception of the data.

The third and last phase, which is the improvement phase, con-

cerns the development of the model drafted in the assessment phase.

As a first step, it is needed to evaluate how much errors and bad

data costs to the company, and thus how much wrong are the results

produced by analyzing such data. Then, each employee of the com-

pany is assigned to a task, considering the involvement of the worker

in the process and the management of the data. For example, the

employee can be assigned to the control of a particular dimension of

the data. The step right after the reassignment of the responsibilities

34 state of the art

considers the identification of the causes of the errors and the suc-

ceeding identification of all the techniques that would improve the

quality of the data. According to the cost analysis already performed,

the most effective and efficient technique would be chosen and con-

tinuously monitored. The process is continuously adapted to reach

the new quality goals updated by data customer. A goal is a quality

level that can be lower if there are errors in the data or the process,

while they can be higher if any error is found. Once the process is

running, a new set of constraints is inserted over the data, and the

company organization performs a periodic monitoring.

Not all the methodologies provide an effective solution to the data

quality problem. Moreover, some of them only suggest approaches

that take into consideration the support of users or consumers. Ac-

cording to our knowledge, the idea of formally measuring the quality

of the data within a dataset given a task-at-hand and ranking differ-

ent datasets for a task to perform is not yet studied nor applied.

2.4.2 Comparison of the methodologies

One of the first methodologies that have been published is the To-

tal Data Quality Management (TDQM) [Wan98], which has been con-

siderably used for planning company activities. This methodology

recognizes the sources of the errors present both in the data and in

the process that uses the data. It requires as input some extra infor-

mation about the data, named Information Product (IP). For exam-

ple, an IP can be a certificate of different types, as a hospital bill, a

prescription for a visit, or a certificate of birth [SWZ00]. Then, the

quality dimensions that affect the process are defined by the domain

experts and are measured over the dataset. Those measures that do

not guarantee a high quality standard are selected. The problematic

quality measures are taken one at a time and are analyzed, in order

to identify which are the causes of the errors. After the process of

identifying the causes of low data quality, a set of steps is detected

and applied for an improvement in the quality of the data. Thus, the

TDQM methodology can be considered an end-to-end process, since

it starts from the analysis of the requirements and goes to the imple-

mentation of the improvements. Furthermore, it allows the repetition

2.4 methodologies 35

of the analysis phase to evaluate the improved results [Bat+09]. Thus,

if the results are not compliant to the data customer needs or expec-

tations, the entire process can be performed again.

Another methodology that has been extensively studied is called

AIM Quality (AIMQ) [Lee+02], which is an objective and domain in-

dependent technique that focuses on the measurement of the most

known dimensions of a dataset. It is based on the Product and Ser-

vice Performance model for Information Quality (PSP/IQ), which is

represented as a table of four quadrants [KS98]. Each quadrant char-

acterizes the quality dimensions according to product or service de-

livery and if it conforms to the quality specification or if it meets or

exceeds them. On the y-axis, there are two rows: product and service

quality. Product quality refers to the dimensions that are visible, such

as accuracy and completeness, while service quality considers invisi-

ble dimensions, as security and accessibility. On the x-axis there are

two columns: conform to specification or meet or exceed specifica-

tion. Conform to the specification checks if a dimension has reached

the goal that data customer addressed, while meet or exceed expecta-

tions is about the advantages that the data given to the goal of data

consumers. The first step of the AIMQ method is the measurement

of a set of dimensions that are given as input. The dimensions that

have to be assessed are identified by a first questionnaire submitted

to the customer of the company that applies this methodology. Then,

via a second survey, each dimension is assigned to a quadrant of the

PSP/IQ model, according to the relevancy of the dimension for the

task-at-hand. As a final step, the measures are compared with the

results of other companies, but any comparison specification or ap-

plication example is provided in the work.

A third methodology is DQA (Data Quality Assessment) that uses

a combination of subjective and objective metrics [PLW02]. It distin-

guishes between subjective and objective measures, defining a sub-

jective measure as those that are related to the perception and the

experience. On the other hand, objectives can be divided into two

groups, task-independent, and task-dependent. The dimensions of

the former group do not have a contextual knowledge of the applica-

tion, whereas those of the latter group are developed in specific appli-

cation contexts, and include business rules and constraints provided

by the database administrator. The context defines if a dimension is

36 state of the art

subjective or objective. The objective measures are those that are pro-

duced using three functions: simple ratio, minimum and maximum

operator, which is considered as a single operator, and weighted av-

erage. Both the subjective and the objective metrics produce a score,

and the two scores are analyzed and compared. The discrepancies

between the two measures are identified, and the causes that lead

to the discrepancies are determined. Then, the necessary actions in

order to avoid the discrepancies are applied over the data. DQA em-

phasizes the importance of the identification of the causes of errors,

but it does not discuss the evaluation of the discrepancies and the

changes for the improvement of the quality of the data.

The complete data quality methodology (CDQM) method is an-

other cited methodology [Bat+08; BS06]. It has the goal of being

simultaneously complete, flexible and simple, and to this end, it can

integrate existing techniques and tools, and it applies to all types

of data, structured, semistructured, and unstructured. It comprises

three different phases: reconstruction, assessment, and improvement.

In the first phase, via interviews and surveys to data customers, it fo-

cuses on the reconstruction of the relationships among the organiza-

tional units, the processes involved in the company, and the data, for

having a complete overview of the company where this methodology

is applied. The assessment phase measures a set of data quality di-

mensions defined by data customers and identifies those dimensions

that lead to poor data quality. Then, it sets a new target level for the

quality of each dimension and evaluates the costs and the benefits for

that improvement by performing an approximate estimation of costs.

In the third phase, the best trade-off between the costs and benefits

among the different techniques is chosen and applied for improving

the quality of the data for the set of measured dimensions.

Another methodology focuses on the assessment phase and the

techniques used, rather than providing a complete methodology with

also an improvement phase [WBP13]. They propose an Hybrid Ap-

proach for assessing data quality that combines the different tech-

niques that are already known. This solution is developed for being

used with the different requirements of each organization that would

adopt it. The authors performed a full reading of the assessment tech-

niques from the literature, by a peer understanding of the steps that

have to be followed by each technique. The results of the reviews are

2.5 quantifying data quality 37

resolved in a unique set of steps. Then, with extra contributions, as

the one provided by the reviewers of the work, they refined the gen-

erated list of activities for the assessment techniques. For example,

one step may be the definition of data quality requirements, the selec-

tion of data items, or the identification of data quality measures. This

list is the starting point for the application of this methodology to a

company. Thus, in collaboration with the managers of the company

that would apply this methodology are specified the requirements

for data quality assessment. For example, one requirement can be

establishing the actual cost of low data quality. Then, the activities

that should be applied to overcome the requirements of the company

are chosen from the list of activities. In the example, the activity can

be the identification of data quality costs. Finally, the results of the

activities are reported to the company, which in our example can be

the data quality metrics that cost more.

2.5 quantifying data quality

Many works have stated the importance of data quality in the mod-

ern data ecosystem [SS14; Bat+15; CZ15]. One direction in data qual-

ity is to quantify the quality of the data by measuring different pa-

rameters like freshness [FGW11], completeness [FG10a], and accu-

racy [Con+07]. Many of these techniques have been implemented in

the Metanome framework [Pap+15]. These methods fall short in pro-

viding full information about the quality of the data since they only

indicate the values of the specific quality dimensions. Furthermore,

they do not take into consideration the task applied to the data, and

assume that the clean dataset (or the properties that hold in it) is

always known.

Other works considered as data quality indicators the constraint vi-

olations, where the challenge is their efficient discovery. Those focus

on functional [ASN14] and inclusion [Bau+12] dependencies, with or

without conditions [AGN15]. Unfortunately, not all the errors that

may appear in the datasets violate constraints and constraints do not

always cover all the data.

38 state of the art

A generic approach in dealing with datasets with low quality is

to eliminate the errors. This is known as data cleaning [Abe+16a].

KATARA [Chu+15] is one of the tools that aim at improving the ac-

curacy of a dataset, through the use of a knowledge base. Sample-

Clean [Wan+14] is another tool that given a sample of the dataset,

learns how to clean the data techniques over the chosen sample and

then applies the discovered rules on aggregate query answers. Using

an incremental approach, ActiveClean [Kri+16] repairs the dataset

prioritizing those records that are likely to affect the results. Although

it is close to our goal, this framework does not allow the user to select

which errors have to be repaired and which can be skipped, as it may

happen in a privacy use-case, where some issues in the data are nec-

essary. Crowdsourcing may also be used in data cleaning [Ber+15]

since it efficiently improves the quality of the dataset adding the hu-

man knowledge in the loop.

Even in the presence of data quality issues, it may be possible to

get certain quality answers from the data. This has led to a number

of techniques for guaranteeing consistent answers over inconsistent

datasets [BC04]. These approaches, unfortunately, are limited regard-

ing the kind of queries they can correctly answer, and the kind of

data quality issues with which they can work correctly.

Existing works that considered the intended task when computing

the quality of a dataset [Bat+15; Mer+16] do not tackle the problem of

providing a measurement of the quality of the data, and usually need

the involvement of a domain-expert in the process. Others have eval-

uated the impact that the data quality issues along with the task have

on the involved the results [Cap+18], but their analysis refers only

to a specific task without providing an overall framework. Therefore,

none of the existing work provide a holistic and generic methodol-

ogy to help the analyst understand the relation between the dataset

characteristics, its data quality issues, and the task at hand.

2.6 streaming resource allocation
Streaming analysis has been a trending topic over the last years

and many frameworks for such applications have been proposed.

2.6 streaming resource allocation 39

Among them, the most known are Apache Flink [Apa19a], the stream-

ing library of Apache Spark [Apa19d], Apache Storm [Apa19e], and

Apache Heron [Apa19b]. Given the number of available tools, one of

the main questions on the hype recently is about identifying the best

available streaming system. To answer this question, several works

compare these frameworks to find the most reliable and fastest sys-

tem available on the market [Chi+16; PPH16]. Moreover, a positive

aspect of these systems is that they allow the deployment of the appli-

cations over a cluster of machines, enabling scalable prone analysis.

Hence, in this context, resource allocation and how to deploy an ap-

plication over multiple machines are becoming even more important.

The first investigation track leverages on running multiple appli-

cations in the same cloud system, where the resources are limited

and the applications have to compete with each other to assure them.

From this group, some notable examples are YARN [Vav+13], Mesos [Hin+11],

and Abacus [Zha+13]. The basic idea behind these systems is that

each application knows the needed resources and the framework

takes care of its scheduling and deployment among the nodes of the

cluster. However, these systems do not provide an analysis bounded

to the application resource allocation during its whole cycle.

There are many works on this side, and among them, Dhalion is a

self-regulating system built on top of Apache Heron [Flo+17]. It is a

system implemented through a set of Symptom Detectors that check

the status of both the incoming stream of data and the allocated re-

sources. Then, the symptoms are used by the so-called Diagnosers,

which aim at diagnosing problems from those detected symptoms,

e.g., back pressure and over-provisioning. Finally, the performed di-

agnoses are examined by the Resolvers that take the appropriate de-

cision, e.g., allocate more resources or change the location of a task to

avoid back pressure. This analysis continues through all the applica-

tion running period.

Another approach for enabling elasticity in the deployment of a

data stream processing is Elysium [Lom+17]. It is a novel elastic

scaling approach that provides efficient resource utilization. Elysium

takes advantage of a fine-grained model that estimates the resource

usage and enables the independent scaling of the operators and the

resources. This allows the system to correctly provision a configu-

ration where the least amount of resources are wasted, through the

40 state of the art

application of a prediction module to forecast changes in the amount

of elements provided as input, which checks systematically if the cur-

rent deployment of the resources needs to be scaled, up or down.

Moreover, it checks if any operator has to increase or decrease its par-

allelism, for avoiding operators that act as bottlenecks. Finally, the

system measures if the estimated resources are smallest as possible,

to avoid resources wasting. These steps are allowed by the moni-

toring system, that collects the network information and decides the

scaling actions.

An application on Apache Storm shows a mechanism to dynami-

cally adapt to the incoming flow [SS18]. The work claim that Apache

Storm has not rebalance capabilities at the current state, hence it pro-

poses two main strategies. The first, once a change in the topology is

required, as an initial step drains the dataflow in order to avoid mes-

sage losses. Right after it performs a checkpoint, to ensure that the

latest state is saved, and then after the rebalance we restore the most

recent state, re-enabling the message reliability only for the check-

point messages. However, this first approach needs a lot of time in

the draining phase. Hence, the second strategy overcomes this issue

by capturing the messages that are also in the queue of the tasks,

broadcasting the checkpoint event to all the tasks, and then resum-

ing the execution, carefully coordinating all the steps to guarantee

consistency and reliability to the system.

An older approach for tuning Hadoop Map/Reduce applications

is Starfish [Her+11]. It proposes a self-tuning system that handles

the Hadoop configuration without the need for the users to tune it

by hand. This automatic tuning can be performed at different gran-

ularity levels, from job-level tuning (fine-grained) to workflow-level

(coarse-grained) tuning, to fulfill different needs. In addition, the

framework presents a language to specify a workload (i.e., a sequence

of workflows) along with some metadata, which is added to those

automatically gathered from the system in order to improve the con-

figuration performance. Furthermore, this language system works as

a recommendation engine for configuring Hadoop applications.

One of the first approaches to elasticity in cloud computing has

been employed in IBM for System S [Sch+09]. Such solution permits

to an operator or multiple operators to transparently make use of ad-

ditional resources, CPU cores in this case. The scaling is the response

2.6 streaming resource allocation 41

to a change in the distributed system that can be the presence of an-

other application that requires more resources or an operator that

asks for additional computational power. The proposed solution has

low overhead and quickly adapts to the new condition. In addition,

this approach works even in the presence of multiple elastic operators

that reach the best efficiency level.

Elastic Allocator is another adaptive system that gathers informa-

tion about the cluster both from what concerns the CPU usage and

the bandwidth usage [Han+14]. It is claimed to be the first system

to use the latter metric for this kind of analysis. The framework is

built on top of Apache Storm and it aims at solving the problem of

assigning the task operators to the appropriate node of the cluster

to improve the performance of the application. It takes the decision,

knowing the collected information metrics, through a greedy-based

algorithm.

Another work that performs dynamic resource provisioning is named

Flower (Flow Elasticity Manager) [Kho+17; KKR17]. The framework

collects information from multiple monitoring systems of the cluster

at different layers, e.g., data ingestion, analytics, and storage, that

are later fit into the control system. This module takes as input the

history of the sensor values, which are the measured values and the

desired values of each monitored element at a specific time, and dy-

namically updates the value of the actuator to reach the desired re-

sults.

A different approach models the problem as a Markov Decision

Process (MDP) [Rus18]. However, usual cases do not have a full

knowledge of the system, so the approach exploits a reinforcement

learning algorithm to overcome this problem. At each iteration the

model checks for each task operator of the application if it has to

increase its number of parallel running instances, decrease it, or if

the actual value suits the requirements. In addition, it provides an

analysis on both a centralized approach, where the system runs in

the master node and coordinates all the others, and a decentralized

approach, where each node is aware only of the tasks running on

it and the parallelism can be increased only on the node’s available

resources.

DRS (Dynamic Resource Scheduling) is yet another application for

dynamic rescheduling the resources assigned to an application [Fu+15].

42 state of the art

It comprises two layers, the DRS layer, and the CSP layer. The former

contains the monitoring system, which runs the resource optimizer

algorithm and performs the actual resource allocation, while the lat-

ter is just a framework deployed on top of the streaming processing

system. Hence, the CSP (Cloud-based Streaming Processing) layer

acts as a middleware to allow the communication between the DRS

layer and the streaming system adopted. It proposes a solution for

allocating the right amount of resources and assigning them to the

right cluster nodes under the constraint of a low-latency application.

However, the main point of our solution, the optimization of the met-

ric decided by the user, is not taken into consideration in DRS and in

all the other systems proposed in the literature.

2.7 improving entity resolution
Entity Resolution is a topic that has received and is still receiving

much of attention. It is a fundamental task for the improvement of the

quality of a dataset and for increasing the reliability of a data source

as well as the analytical results obtained from it [Chr+19]. Entity Res-

olution has been referred with multiple names, e.g., entity matching,

duplicate detection, or record linkage among the others [Wha+09].

This problem focuses on finding different records that refer to the

same real-world entity, either from a single source or across multiple

sources [KR10].

Ideally, to find duplicates in a dataset with n elements, the user

needs to check all the candidates, which are all the possible pairs

of records in the dataset, which means n2 comparisons. The first

method for such comparisons is the pairwise-matching that aims at

comparing each pair of records to state whether the two records refer

to the same real-world entity or not. One of the approaches proposed

is based on a set of given rules that can exploit the knowledge of the

domain for local decisions [Fan+09]. In a multi-source context, the

method starts from the idea of functional dependencies among the

columns to suggest the next attribute to consider. Such dependen-

cies, referred to as matching dependencies, have a dynamic semantic

and defined based on the similarity metric applied, reduce the er-

2.7 improving entity resolution 43

rors. Swoosh [Ben+09], instead, takes advantage of the properties of

a match and merge function (i.e., idempotence, commutativity, asso-

ciativity, and representativity) to reduce the number of comparisons

performed over a dataset. However, none of these works reduces the

comparisons based on the properties that exist between the data.

Another method applied in the literature is the application of classi-

fication for understanding whether two records represents the same

real-world entity [FS69]. Hence, the system decides autonomously

whether there it is a match or a non-match, without the need for

domain knowledge to build such a system, which is a strong strate-

gic point. However, the disadvantage of such a method is the cre-

ation of the training set, which needs to be filled with lots of positive

and negative labeled entries. On this side, Snorkel [Rat+17], a sys-

tem for building training sets by labeling functions written by the

users, could be applied. A comparison for classification and regres-

sion trees, against the nearest neighbor approach and an attempt to

find the linear combinations that best separate the matches from the

non-matches has been performed [Coc+01] and declared the classi-

fication base approach as the one that provides the most prominent

results.

Distance metrics are a third approach for pairwise matching [EIV06].

These metrics are based on multiple criteria, starting from the actual

value of a record, its division in subsequences, the sound used to pro-

nounce it, and many others. Later, a mixture of two or more criteria

leads to the development of hybrid approaches. The overall similarity

between two objects is usually the weighted average of the similarity

between all the attributes considered. Upper and lower bound thresh-

olds are used to indicate possible and not possible matches. With this

kind of approaches, the domain knowledge required is limited in the

choice of the distance metrics for each involved attribute. As a weak

point, there is the need for a meticulous process of parameter tuning

for the massive amount of thresholds and weights that have to be

fixed.

One of the problems of the pairwise approaches is that the num-

ber of comparisons to perform is definitely too high. Thus, due to

the high data volume in the Big Data era avoiding useless compar-

isons has become crucial. To overcome such limitation, the blocking

has been introduced. It aims at assigning a record to one or multi-

44 state of the art

ple buckets in such a way that the similar tuples are assigned to the

same bucket, while records that do not represent the same real-world

entity are not. This would avoid useless comparison and would dra-

matically reduce the number of comparisons to perform. However,

the portion of executed comparisons can still be high. This is ad-

dressed with an extra step named block processing, which minimizes

the number of comparisons, without having any impact on the dupli-

cates found. In this context, the approaches have been classified into

three categories: the block building methods, the block processing

approaches, and the hybrid blocking techniques.

The block building methods aims at effectively creating the blocks

in such a way that each duplicate couple shares at least one block.

These methods start from a blocking key (BK), which can be an at-

tribute or a set of them, and, according to this blocking key, they

segment the input dataset into multiple partitions (called block) to

restrict the subsequent comparisons to the entities belonging to the

same block. Standard Blocking [FS69] considers a blocking key and

places the elements according to it. If two records have the equal

value for the blocking key, then they are placed in the same block,

while if the benefits of the two records are different, the two records

do not match, and are not placed in the same block. This solution

builds non-overlapping blocks and is quite sensitive to typos or noise

in general. Therefore, the approach has been further improved to in-

crease the robustness of the framework and enable comparisons even

with similar records.

The sorted neighborhood approach [HS95] is another blocking method.

It creates blocking keys that are suitable for being ordered, to have

similar entities closed to each other. Then, a window of fixed length

slides over the records already ordered, and the records within the

window are compared and, only if they match, they are placed in the

same block. The size window size is the result of a trade-off between

the efficiency, due to the time spent for the comparisons, and the ef-

fectiveness, in terms of robustness to noise in the blocking key value.

Improvements of this solution consider a dynamically adaptive win-

dow [Yan+07] and a customizable overlapping degree [DN11].

The second approach is about the block processing methods, which

focuses on the deletion of the useless comparisons within a single

block. The aim of this approach is the identification of the redun-

2.7 improving entity resolution 45

dant comparisons, those that have been already executed in at least

another block, and those between entities that do not merge. Once

identified, these comparisons are removed for increasing the perfor-

mance and the scalability of the system. A typical example is the

iterative blocking [Wha+09], which is based on the continuous anal-

ysis done over single blocks. If a pair of records is identified as a

match, they are merged and replaced with a new unified entity for

all their appearances, even in the other blocks. This is done to avoid

duplicate comparisons. Then, the system repeats the checks in all the

blocks already processed, trying to exploit the benefits that the merg-

ing of the two entities have produced. This approach could also be

used with overlapping blocks, but in this case, the repetition of the

comparisons within a block after a merge are avoided.

For representing the entities in the real world, which is typically

inaccurate and imprecise, collective entity resolution [BG07] presents

the relationship between the entities as a graph, where the nodes are

the entities, and the weight over an edge is the similarity of the two

entities it connects or the representation of their matching. The intu-

ition is that two nodes are more likely to match if they are connected

to nodes that represent the same real-world entity. The framework

applies hierarchical agglomerative clustering for discovering this be-

havior, merging the two most similar clusters in an iterative process,

until their similarity becomes lower than a given threshold. If the

two groups are merged, the entities they represent are merged too.

A solution that enables such an approach for large dataset has been

proposed [WG13]. The framework applies multiple instances of a

black-box entity resolution algorithm, each over a small subset of the

data, reproducing a similar blocking technique. The computation can

be easily distributed, even if there is the need of waiting for the re-

sponse of an instance to have the results for another. The first blocks

are created using the Canopy Clustering, resulting in having in the

same block only entities that are suspected to be the same. Each

block maintains the list of its duplicate elements that will be useful

for the other blocks. Once the research for duplicates is done, the

system returns the set of entities with the merged copies. Starting

from collective entity matching, different approaches have been pro-

posed. One [RDG11] considers the entity matching algorithm again

as a black-box and defines a small set of entities over which apply it as

46 state of the art

neighborhood or cover. The cover creation applies Canopy clustering,

and the execution of the distribution has been performed in a Hadoop

cluster. With the same paradigm, multi-job optimization has received

attention [WC13]. The first technique that the framework proposes

enables the sharing of the map output for two jobs that share a sub-

set of the output, while the second technique, enables the sharing of

the map input scan and the map output. The main idea of the sec-

ond technique is that the execution sequence allows the framework

to obtain the map output from output already computed.

Finally, the literature reports complete tools that enable multiple

steps in the entity resolution process that do not focus exclusively on

the scalability. Magellan [Kon+16] is a system thought for guiding

the user in all the steps of entity resolution. The experiments show

that it is an advanced configurable system that also offers multiple

similarity join techniques, compared to the other tools available, and

it allows the user to apply a deep learning module, which is a unique

feature. Another tool, the JedAI toolkit [Pap+18], enables the appli-

cation to both structured and semi-structured data, not being tight

to the schema of the dataset. It allows the user to create workflows

over the entity resolution process steps since it contains a module for

both blocking and block processing, as well ass the matching phase.

Both these tools can be parallelized but in two different ways. Magel-

lan can be distributed taking advantage of Apache Spark, while the

other can be parallelized on multiple cores. These systems provide

up-to-date solutions, which however do not consider the structural

similarities between the data, e.g. the type of a column, to improve

the comparisons.

Similar work to what our approach does focuses on the type of

data [Zhu+18]. They claim that existing researchers typically assume

that the analyzed dataset contains string-type data, and they apply

only a single similarity measure. From this assumption, they create

a hybrid approach for a type-based blocking function that takes ad-

vantage of varying window size. Different similarity metrics are then

applied to the blocks, according to their type, but they do not take ad-

vantage of the creation of a profile for the dataset. Instead, for what

concerns the similarity application, there are works on understand-

ing what similar means [Wan+11]. They claim that the definition of

matching rules is not straightforward. Hence, they aim at identifying

2.7 improving entity resolution 47

the concept of similarity, by identifying the best similarity functions

and thresholds for effectively finding entities from a given dataset.

The system proposes techniques for avoiding the computation of re-

dundancies, i.e., combinations of similarities and thresholds that lead

to the same conclusion, even in the presence of user preferences, e.g.,

high precision or high recall, by exploiting a set of matching and non-

matching examples. Starting from a broader purpose, the detection of

errors in a dataset, Raha [Mah+19] presents a configuration-free sys-

tem. They state the configuring an error detection framework with

different parameters for every dataset is a hard task. Hence, with-

out the need of providing any configuration, Raha assigns a feature

vector to each cell of a dataset. The value of each cell would be the

output obtained by a particular error detection algorithm with a spe-

cific configuration, which is automatically generated by the system.

The cells are then clustered together based on their feature vector,

and the user has to label one cluster at a time. We apply a similar

approach, the creation of a profile, to detect similar records instead

of tuples that can contain errors.

3
F I T N E S S F O R U S E -
C O N T E X T U A L I Z I N G T H E
TA S K

In this chapter, we present our work on data quality, in particular

on fitness for use. While existing works on data quality aims at find-

ing and measuring what kind and how many errors are present in

the data, we propose a new approach that assesses the sensitiveness

of the given task for measuring the quality of the data.

Here, we put the focus on the task and we contextualize it propos-

ing a framework for a data quality evaluation that considers also the

task. Given a dataset and a task, we first introduce some variations,

i.e., noise, into the data and then we test whether and how much the

task is sensitive to these changes. We do that even if the dataset is

not clean, to have an ideal estimation of the benefits due to the clean-

ing of the errors. Since the amount of energy, money, and time spent

to clean a dataset from multiple errors that may not be present, this

analysis would be helpful for the analyst to understand for what kind

of errors she should check, enabling a prioritization of the cleaning

tasks to apply over the available data.

3.1 contributions and outline
More specifically, in this work we make the following contribu-

tions: (i) we extend the notion of data quality in a way that takes

into consideration the task for which the data is about to be used

(Section 3.3). We consider the data quality of a dataset not as the de-

gree of the noise in it, but as a task-dependent function of the noise.

Although it has already been recognized that data quality should be

task specific, we are the first to put the task into the data quality

evaluation framework formally. Furthermore, we are not bound to a

specific form of data characteristics for quantifying data quality, nei-

ther to specific forms of analytic tasks or queries. We are also the

49

50 fitness for use - contextualizing the task

LineID Client Location Destination Date

A1 Alan 41.891, 12.511 Rome 23 Jan
G8 William 41.891, 12.511 Rome 27 Feb
O3 Bill 41.891, 12.511 Rome 1 Jan
G3 Bob 45.464, 9.191 Milan 23 Jan
M5 Bob 44.493, 2.182 Bologna 1 Jan
S2 Dave 45.464, 9.191 Milan 27 Feb
W7 Carlo 43.604, 5.243 Tolosa 23 Jan
P6 David 44.837, 2.528 Bordeaux 1 Jan

Table 3.1: A fraction of a telecommunication dataset.

first to provide a data quality metric that is not static to the available

dataset, but is generic and dynamic allowing quality estimations to

be made for future datasets; (ii) We design a procedure for the sys-

tematic computation of the aforementioned task-dependent quality

function (Section 3.4); (iii) We materialize the procedure into a fully

automated framework that implements different kinds of metrics for

different tasks and produces the respective data quality evaluations

(Sections 3.5 and 3.7). (iv) We show how to run our framework for a

set of well-known tasks, and we use it to justify for various task eval-

uation decisions taken elsewhere (Section 3.6); (v) For complex tasks

or when success criteria are not provided, we develop a technique

for efficiently and effectively computing differences between datasets

and use it to quantify the effect on the task results of the noise in

the dataset. Finally, we perform a number of experiments to evaluate

the efficiency of our framework and the effectiveness of our approach

(Section 3.8).

3.2 a motivating example
A telecommunication company would like to perform some ana-

lytics on a dataset, a fraction of which is illustrated in Table 3.1. It

contains information on the location from which the customers of the

company called, the destination towards which the call was made,

and when. The dataset is suspected to have a number of data quality

issues. For instance, there may be, for the same person, different ver-

sions of the name (Bill vs. William) or misspellings due to a manual

3.3 data quality revisited 51

insertion process. Identifiers are randomly assigned, and there may

not be a 1-to-1 correspondence with customers to preserve anonymity.

Also, the location could be inaccurate due to the GPS receiver im-

precisions. The company knows that the misspellings in the name

appear in approximate 5% of the data and that the GPS inaccuracy

gives an error of around 5 meters, although in cases there could be

more substantial discrepancies when the user is in closed spaces. The

company can invest in repairing these errors, by cross-checking with

other datasets or combining with data of other sensors. The question

is whether it is worth the investment.

The company wants to identify the areas with a high number of

calls to install new antennas. Hence, they apply a clustering algo-

rithm on the phone call locations, which means that any misspelling

or alternative name in the name field has actually no effect on the re-

sults of the clustering, and neither does the anonymization of the calls.

This scenario leads the analysts of the company to decide not to invest

any resources on the repair of anonymizations and misspellings.

On the other hand, inaccuracies in the locations may end up in

misplaced phone calls, and detecting and repairing these inaccuracies

is a key task. Nevertheless, the company needs to identify areas at a

high granularity, and even though the GPS inaccuracies introduce a

few meters diversion from the actual location, the clustering results

are not significantly altered. As a consequence, the company analysts

can safely put trust in the generated clusters and avoid performing

any data cleaning investment. For the analyst to take such decision,

the critical information was not simply what inaccuracies exist in the

data, but also the fact that for the specific task that she intended to

perform was not getting affected significantly by them.

3.3 data quality revisited
A dataset is a set of structures modeling some real-world situation.

Let D denote the set of all possible datasets.

A data management task, like a query or some data analytics, is

a procedure that takes as input a dataset and outputs a set of data

structures, i.e., another dataset.

52 fitness for use - contextualizing the task

Definition 2. A task is a function T :D→D. The set of all possible tasks

is denoted as T.

When a dataset is not accurately modeling the reality, it is said to

have data quality issues. To distinguish between a dataset that perfectly

models the reality and one that does not, we refer to the first as the

clean and to the second as the erroneous or dirty.

A distance function is a function d:D×D→[0,∞) used to quantify

the difference between two datasets.

The contextual quality of the dataset D for a task T is a score that

depends on the distance between the results of the task when applied

on the dataset D, and the results of the same task when applied on

the clean dataset, i.e.,

QualityT (D) = score(d(T(D), T(Dc)) (3.1)

where Dc denotes the clean dataset, and T(D) (respectively T(Dc))

the results of the application of the task T on the dataset D (respec-

tively Dc).

A natural assumption often made is that the higher is the distance

of a dataset D from the clean dataset Dc, the higher will be the dis-

tance of the respective results of a task T on these two datasets, which

means that there is a correlation d(T(D), T(Dc)) ∝ d(D,Dc). Exist-

ing works [BC04] have adopted this assumption, which has allowed

them to quantify data quality by using simply the distance between

the clean and the erroneous dataset, i.e., considering the dataset qual-

ity as

QualityT (D) = score(d(D,Dc)) (3.2)

In most of the cases, the clean dataset Dc is not available, so practi-

cal solutions have resorted into a simulation of the distance through

measuring some data characteristics, the value of which is known

for the clean dataset. A data characteristic is a function c:D→R. For

instance, knowing that the clean dataset has no missing (i.e., null)

values, so the number of missing values in the erroneous dataset is

an indication of the distance from the clean one. Denoting the count-

ing function of the missing values as cmiss, the accuracy of a dataset

with respect to a task T would be: QualityT (D) = score(d(D,Dc)) =

score(cmiss(D)−cmiss(Dc)) = score(cmiss(D)−0) = score(cmiss(D)).

3.4 a data quality framework 53

𝑑 𝐷, 𝐷$

𝐷𝑐(𝐷)

𝑐(𝐷$) 𝐷$ 𝑇(𝐷$)	

𝑇(𝐷)𝑇

𝑇

𝑑 𝑇(𝐷),𝑇(𝐷$)𝑑 𝑐 𝐷 ,𝑐 𝐷$ = ⋯ = 𝑐 𝐷

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑇 𝐷 = 𝑠𝑐𝑜𝑟𝑒(𝑐 𝐷 ∗ 𝑓9,$) = 𝑠𝑐𝑜𝑟𝑒(𝑐 𝐷 ∗ 𝑓9,$) ≈ 𝑠𝑐𝑜𝑟𝑒(𝑑 𝑇(𝐷), 𝑇(𝐷$))

Figure 3.1: The Contextual Data Quality Problem Explained

Various data characteristics (or combinations of them) can be used to

assess different data quality dimensions.

The limitation of the traditional approach to data quality, which is

the one just described, is that it ignores the degree of proportionality

between d(T(D), T(Dc)) and d(D,Dc), that differs from task to task.

To cope with this limitation, the definition of data quality needs to be

extended to include it.

Definition 3. The quality of a dataset D for a task T , is

score(c(D) ∗ fT ,c)

where score:R→R is a scoring function, c is a data characteristic, and

fT ,c∈[0, 1] is a sensitivity factor of the task T to the characteristic c.

This characterization of data quality is more informative since it of-

fers a better understanding of the effect of the differentiations in the

data for the task. Under this definition, an effective assessment of the

quality of a dataset for a specific task requires both the identification

of the data characteristics that are creating large differentiation in the

task results and the corresponding computation of the sensitivity fac-

tor for them. The challenging task in this process is the specification

of that factor. Figure 3.1 illustrates the overall theoretical framework

for the contextual data quality problem.

3.4 a data quality framework
To evaluate the quality of a datasetD for a task T , we need to decide

what characteristics are worth looking at and how much each affects

the results of the task. To do this, we have developed a framework

that tests in a systematic way the effect that a change in the dataset

54 fitness for use - contextualizing the task

Original
Dataset

D

Noise	c1
Generator

Noise	c2
Generator

Noise	ck
Generator

Noisy
Dataset
D+NCk

Task	
Result

T(D+NC2)

Task	
Result

T(D+NCk)

NC1
ΔR1

Task	
Result
T(D)

Task	
Result

T(D+NC1)

…
.

NC2

Noisy
Dataset
D+NC1

Noisy
Dataset
D+NC2

NCk

ΔR2

ΔRk…
.

…
.

D
is

ta
nc

e
C

al
cu

la
to

r
D

is
ta

nc
e

C
al

cu
la

to
r

D
is

ta
nc

e
C

al
cu

la
to

r

Ta
sk
	T

Q
ua

lit
y

Fa
ct

or
 C

al
cu

la
to

r

…
.

NC1

<Ca, fa>
<Cb, fb>

<Cm, fm>

C1

NC2

C2

NCk

Ck

…

Figure 3.2: A Data Quality Evaluation Framework

has on the results of the task. Although changes in the dataset can

be of any type, we focus on those affecting some specific data char-

acteristic c. We refer to the changes as noise and the characteristic

c that they are affecting as the type of the noise. For every test per-

formed, the system builds a scenario: a triple 〈c, Nc, ∆R〉, where c is a

characteristic, Nc is some amount of noise of type c, and ∆R=d(T(D),

T(D+Nc)) is the change in the results of T when applied to D with

and without the noise Nc.

Figure 3.2 depicts the process performed by the framework. Given

a dataset, the system produces a series of scenarios by generating

some noisy instances with different amounts of noise of the chosen

types, and measuring for each noisy instance created the variation in

the results of the task from those produced by the given dataset. The

framework groups together the generated scenarios by characteristic

(i.e., for every noise type) and computes the degree of the impact on

the results of each noise type. The computed degree constitutes the

sensitivity factor of the task for that specific type of noise. Note that

the process does not assume the input dataset to be clean. Our idea

is that the application of this framework still generates an estimation

of the errors that are mostly affecting the results of the task. If the

dataset is completely broken, the results generated by our framework

are not useful. For this reason, we stress the point that this system is

not thought to be a replacement for current data profiling and quality

evaluation systems, but the two applications should work together to

3.4 a data quality framework 55

benefit one from the other. In fact, in the previous example the appli-

cation of data profiling frameworks would have already suggested to

the user the need for repairing the data.

Algorithm 1 illustrates the process in details. The framework takes

as input a dataset D, a task T to apply, a set of noise types N and

the amounts P to introduce in the dataset, a threshold ε, and k that

represents the repetitions of the process. Since the noise generation

can be non-deterministic, running the computation k times enables a

more accurate analysis. For example, the calculation of the maximum

value of a column on the original dataset gives a result. If a noise

generator affects that value, then the result would be different for that

noisy instance. Hence, multiple runs enable a more objective analysis

and allow the user to understand the real effects of the noise.

First, we apply the task T on the original dataset D (line 2), and

the results will be used along all the process. Our experiments iden-

tified 4 types of behaviors (see Section 3.8) that represent how the

results change increasing the noise introduced in the dataset: con-

stant, linear, parabolic, and irregular. A negligible impact on the

distance (measured by ε) characterizes the elements in the first group

where no effect is observed regardless of the percentage of noise in-

troduced. A linear relation is observed when, while increasing the

percentage of noise introduced, the resulting distance increases too

linearly. The parabolic behavior indicates that the distance measured

increases with the percentage of noise introduced up to some value,

and then it starts decreasing. Finally, the irregular behavior is ob-

served with a fluctuating distance. In Section 3.7, we expand on how

to relate the characteristics of these behaviors to the contextual data

quality problem.

Since the framework is aware of the possible behaviors, we can re-

duce the number of noisy instances of the original dataset to generate

for each amount in P when the effect is either constant or parabolic.

In particular, the system takes the minimum and the maximum noise

percentage values of P. The system then generates the 2 noisy in-

stances (line 20) over which the given task is run (line 21). Then, the

framework measures the distance of the results of each of the noisy

instances from those of the original dataset (line 22). If their distance

is lower than the given threshold (line 9), it suggests that the relation-

ship is either constant or parabolic (line 16). To discriminate the two,

56 fitness for use - contextualizing the task

Algorithm 1 ApplyF4U
Require: Dataset D, task T , set of noises N, ordered set of percent-

ages P, threshold ε, number of cycles k
Ensure: sensitivityFactors, one quality factor for each noise in N

1: sensitivityFactors = {}

2: T(D)← runTask(T ,D)
3: for all c ∈ N do
4: factors = {}
5: while k > 0 do
6: S← {} ; k← k− 1
7: S.add(computeScenario(T ,D, c,P[0], T(D)))
8: S.add(computeScenario(T ,D, c,P[P.length− 1], T(D)))
9: if |S[0].∆R− S[1].∆R| < ε then

10: S.add(computeScenario(T ,D, c,P[P.length/2], T(D)))
11: else
12: for all i ∈ 1 . . . (P.length− 2) do
13: S.add(computeScenario(T ,D, c,P[i], T(D)))
14: factors.add(measureSensitivity(S)) . Algorithm 3

15: noiseFactor← avg(factors)
16: behavior← determineBehavior(noiseFactor)
17: sensitivityFactors.add(〈c, noiseFactor, behavior〉)
18: return sensitivityFactors

19: function computeScenario(T ,D,noise,p, T(D))
20: Dn ← generateNoise(noise,D,p) . Section 3.5
21: T(Dn)← runTask(T ,Dn)
22: ∆R← measureDistance(T(D), T(Dn)) . Algorithm 2

23: return 〈noise,p,∆R〉

we build a scenario for the noise percentages in the middle of the

range in P (line 10).

On the other hand, if the distance is higher than ε, we need to

consider all the amounts in P and measure their impacts on the re-

sults. Then, we calculate the sensitivity factor for the current run

with the computed amounts in P (line 14). Once we repeated the pro-

cess k times, we compute the average of the sensitivity factors (line

15), which can be implemented in multiple ways (Section 3.7). The

AVG function enables the classification of the pattern the sensitivity

factor follows for the current noise (line 16). Finally, we return the set

of the sensitivity factors computed, one per noise (line 18).

In what follows, we examine each part of this process, the chal-

lenges, and the implementations.

3.5 noise generators 57

3.5 noise generators
The noise to produce the different scenarios is generated through

the noise generators. Each noise generator implements a function n:D→D

that introduces in the dataset a certain amount of a specific noise

type. The idea of noise generators is the result of an extensive study

of the related literature of benchmark generators, e.g., TPC-H, en-

tity matchers and modifiers, and matching benchmarks [ATV08], as

well as many practical scenarios. Following an approach similar to

BART [Aro+15], a noise generator introduces some noise into the

dataset using a given value distribution, e.g., normal and uniform

distribution, to allow also biased errors. This nature enables a highly

customizable generation of scenarios, handling, for example, the case

of an email field that has typos with equal probability in each value

and the case of elder people that are more likely to have the birth

date missing than young people. Furthermore, we allow the user to

specify portions of the dataset in which noise cannot be introduced

but, with respect to BART, this noise generator does not handle the

conditional application of noise.

The system supports the creation of custom generators, as other

data-generation methods do [Rat+17], but comes also with a list of

pre-developed such components.

[Null] This generator makes parts of the dataset unknown by convert-

ing them to null values.

[Missing Info] This generator removes parts of the dataset to increase

its incompleteness. It does so by deleting a portion of rows of the

dataset specified as an input parameter.

[Edit] The generator performs insertions, deletions, and substitutions

on parts of the values that exist in the dataset.

[Permutation] Given a value, the permutation generator scans the

content and reproduces a number of permutations of consecutive

symbols.

[Abbreviation] This generator takes some data values from the dataset

and turns them into abbreviations by maintaining only the first few

symbols.

[FD Violation] Given a functional dependency, it scans the dataset for

records with the same values in the attributes specified in the head of

58 fitness for use - contextualizing the task

some functional dependency and modifies the values of the attributes

specified in its body, to ensure the violation of the dependency.

[Shuffling] This generator applies only to strings and chooses ran-

domly two consecutive words and swaps them.

[Acronym] It applies to strings and replaces values with multiple

words, with the initials of these words.

[Synonym] It selects a word of an attribute value in the dataset and

replaces it with a synonym.

[Multilingual] Similarly to the synonym generator, the multilingual

substitutes a word with its translation in a given different language.

[Base Change] The goal of the current generator is to change the

base of the numbers, e.g., turning a decimal number to its binary or

hexadecimal representation.

[Scale] The generator intends to scale up/down values by multiply-

ing/dividing them by a given factor.

[Negation] It negates a portion of the values in the dataset by turning

them from positive to negative or vice versa.

[Modification] This generator adds or subtracts some fixed value to

numbers in the dataset.

Composite generator

The previously mentioned generators introduce in the data a spe-

cific kind of noise. However, real-world data has a mix of different

types of noise. The composite generator is a meta-generator that in-

troduces mixed noise by iteratively calling different generators, with

the output of one call that becomes the input of the next generator.

3.6 measuring task result variations
After having introduced some amounts of a specific noise type in

the dataset, the next challenge is to quantify the effect that the noise

has on the results of the task, by measuring the difference ∆R between

the task results obtained with the original dataset and those obtained

with the noisy instance. Different types of metrics can be used for

this purpose.

3.6 measuring task result variations 59

Algorithm 2 MeasureDistance

Require: X, Y: two relational tables
Ensure: distance between the tables X and Y

1: distances← {}
2: for all s ∈ X do
3: for all t ∈ Y do
4: sim← 0

5: for all att ∈ X.attributes do
6: sshingles ← createShingles(s.att)
7: tshingles ← createShingles(t.att)
8: sim← sim + similarity(sshingles, tshingles)

9: distances.add(〈(s, t), 1 - (sim
|s.attributes|〉)

10: assignments←Matching(distances) . Section 3.6.3
11: distance← 0

12: for all assignment ∈ assignments do
13: distance← distance+assignment.distance
14: return distance

3.6.1 Task-specific Metrics

For many data analytic tasks, there are well-established metrics for

quantifying their effectiveness. As an indication, for clustering can be

used the Fowlkes-Mallows score [FM83], the Silhouette coefficient, or

the Rand Index [VEB10], the F1 score, the accuracy, the precision or

recall for classification [Pow11], and the Mean Squared Log Error, or

the R2 score for regression [WM05]. In these cases, the difference of

their scores before and after the introduction of the noise in a dataset

gives an indication of the impact of the noise on the task results. It is

true that the changes in the results depend on the application of the

noise on the key features used by the task but the system generates

the noise and measure the difference multiple times for minimizing

the randomness and normalize the results.

3.6.2 Data Characteristic Metrics

Another approach for quantifying the effect of some noise is to

measure the variation of some data characteristics in the results of the

analytic task. Appendix A explains some techniques we identified,

i.e., nulls, entropy, and value cardinality.

60 fitness for use - contextualizing the task

3.6.3 Universal Distance Metric

In the very general case of some complex analytic task for which

there is no established evaluation metric, in order to measure the dif-

ference between two task results, it is possible to perform a direct

comparison of their contents. This kind of comparison is the most

generic, and can always be computed, even when there are already

established metrics for the task. The challenge of the approach, how-

ever, is the performance.

To compute the distance between the contents of two task results,

we consider each result set as a distinct set of tuples, and we identify

their best possible bipartite matching. A tuple in one result set is

matched to a tuple in the other result set that is highly similar (if not

identical). The best bipartite matching is the one that minimizes the

sum of the distances among the elements of the two result sets. The

algorithm requires that the cardinality of the two datasets is equal, so

we introduce in the result set that has the fewer elements some special

“dummy” tuples, which have the maximum distance from any other

tuple. Algorithm 2 describes the computation. First, we compute

the distance between every pair of tuples, one from each of the two

result sets. We use shingles to improve the robustness to the changes

in the data (line 6-7). The distance between the attribute value of two

tuples is computed with the Jaccard distance of their respective sets

of shingles (line 8). We normalize the sum of the attribute distances

(line 9), and, at the end of this process, we have a bipartite graph, with

the elements of the two datasets as nodes and the distance between

the tuples of the two datasets as the edges. The MinHash and LSH

techniques are exploited to avoid computing the distances across all

the possible pair of tuples.

We provide two alternative methods (a greedy and an optimal) for

implementing the matching strategy that we describe below. Once

the desired matching has been identified, we calculate the sum of the

distances of the selected edges that is the distance between the two re-

sult sets. Note that this distance is a metric, i.e., the distance between

two elements is never negative, the distance between an element and

itself is 0, and the triangular inequality is satisfied.

The Greedy algorithm for the bipartite matching, having marked

all the nodes (i.e., tuples) and the edges as unselected, ranks the edges

3.7 sensitivity factor computation 61

according to the distance of the two tuples it connects. From the unse-

lected edges, it selects the edge with the lowest distance that has both

the tuples it connects unselected and marks the edge and the two con-

nected tuples as selected. The algorithm repeats the process until no

more edges can be marked as selected. The set of the selected edges

is the generated matching. Given n tuples, the complexity of this ap-

proach is O(n2), since it first ranks the edges (O(n logn)), and then it

performs a nested cycle over the elements (O(n2)) to identify the best

matches. Note that this greedy approach provides an approximate

solution.

Instead of the Greedy, any other bipartite matching algorithm can

be used. For instance, we used the Hungarian algorithm for the op-

timal solution but, as expected, it is slower than the Greedy (O(n3)),

and requires more space (O(n2)).

3.7 sensitivity factor computation
We first introduced different types and amounts of noise in the

original dataset, and second, we measured the difference between

the result sets of the task of interest on the original and the artificially

created noisy datasets. The last step is the computation of a score that

indicates the relation between the noise and its impact on the analytic

results. This score is referred to as the sensitivity factor (Definition 3)

and is detailed in Algorithm 3. We assume as input a series of scenar-

ios, i.e., items of the form 〈c, Nc, ∆R〉, related to a single noise type c.

Then, we compute a sensitivity factor for the noise c by considering

the set of 〈Nc, ∆R〉 pairs.

We employ 3 different methods to compute the sensitivity factor

between the amount of noise introduced in the data and the effect on

the task results. The first is the linear regression [Net+96], which iden-

tifies a linear relation between the two variables (line 6). The second

method we employ is the polynomial regression, capturing when the

relation is polynomial (line 7). In both cases, we obtain a pair, con-

taining the score (i.e., the coefficient of determination, R2) and the

regression coefficient (β) of the relation. The score represents the

goodness of the fit of the model and ranges between 0 (bad fit) and

62 fitness for use - contextualizing the task

Algorithm 3 MeasureSensitivity

Require: S: a set of scenarios for a data characteristic c
Ensure: 〈(rscore, rslope), (pscore, pslope), ρ〉, computed between the noise

amounts and the result distances contained in S, where
(rscore, rslope) is the linear regression score and slope,
(pscore, pslope) is the polynomial regression score and slope,
ρ is the Spearman correlation coefficient

1: noises← {}
2: distances← {}
3: for all scenario ∈ S do
4: noises.append(scenario.Nc)
5: distances.append(scenario.∆R)
6: (rscore, rslope)← LinearRegression(noises, distances)
7: (pscore, pslope)← PolynomialRegression(noises, distances)
8: ρ← SpearmanCoefficient(noises, distances)
9: return 〈(rscore, rslope), (pscore, pslope), ρ〉

1 (perfect fit). The third method is the Spearman correlation [Spe04]

(line 8) that assesses monotonic relationships, even if they are not lin-

ear. It indicates how much the two variables are correlated, and how

much they have a common increasing or decreasing monotonic trend.

It ranges between -1, meaning negative correlation of the variables,

and 1, positive correlation, with 0 meaning no correlation. As de-

scribed in Section 3.4, we classify these 3 sensitivity factors in linear,

parabolic, constant, and irregular. A high linear regression score and

a Spearman correlation close to 1 or -1 characterize the linear group.

The parabolic behavior presents a high polynomial regression score

(with a lower linear score, otherwise every linear would be catego-

rized as polynomial). A very low standard deviation in the distances

and a high Spearman value (close to 1 or -1) distinguish the constant.

Finally, the irregular pattern shows a low linear and polynomial score

and a higher standard deviation.

3.8 experiments

In this section, we study the different aspects of our framework,

and we demonstrate how it can help analysts to understand the extent

to which a particular data quality issue affects the results of a given

analytical task. We showcase that the impact of a data quality issue

on the results of a task depends on several factors: the type of the

3.8 experiments 63

Name Rows Numeric Feat. Textual Feat.

ADULT 48842 6 8

BANK 45211 7 9

AIRLINES 4121943 20 6

TIM (10% sample) 416304 108 62

Table 3.2: Datasets Characteristics.
noise, its amount, the dataset at hand, and, most importantly, the

task.

In what follows, we demonstrate: (i) how to use our framework

to put data quality in context; (ii) the ability of the framework to

help the analysts to identify which data quality issues affect more the

results of the analytical task at hand; (iii) the ability of the proposed

generic distance function to provide valuable insights in the absence

of a task-specific evaluation method; and (iv) the scalability of our

system.

System Description: The experiments were performed on a cluster

of 6 machines, each with 16 cores and 96 GB RAM running Ubuntu

14.04 LTS. Each experiment run with a parameter k (described in

Section 3.4) equals to 5, and the plots report the mean across the runs.

The tasks considered are clustering, classification, and regression, and

the solutions implemented are k-Means, Random Forest [Bre01], and

Linear Least Square, respectively. The noise generators, the generic

distance measure, and the tasks are written in Python 3.6 on Apache

Spark 2.2 and with Scikit-learn. We run 10 noise generators with 10

different percentages (5, 10, 20 ... 90%). Source code: https://github.

com/forons/contextual-dataquality.

Datasets: We tested our framework on 4 different datasets, summa-

rized in Table 3.2, this allows us to obtain results from different do-

mains and use cases.

(i) ADULT contains demographic information about US citizens, such

as age, work, annual income, hours worked per week, and marital

status [LN16]. In the literature, all these features have been used to

predict whether a person earns more or less than 50K $ per year, and

we used the same classes to configure the classification and cluster-

ing tasks. In regression, instead, we predicted the number of hours

worked per week, considering only the numerical features.

https://github.com/forons/contextual-dataquality
https://github.com/forons/contextual-dataquality

64 fitness for use - contextualizing the task

(ii) BANK records information about mobile marketing campaigns

of a banking institution. It contains clients age, balance, housing,

job, marital status, default state, and personal loan; as well as info

about the campaign (contact type, contact month and day of the week,

and contact duration) [MLC11]. The attributes were used to predict

whether a client would subscribe or not to a term deposit, and to

similarly detect the two clusters of customers. Finally, in regression,

we used the numerical features to predict the user account balance.

(iii) AIRLINES describes domestic flights collected from the US De-

partment of Transportation and includes the itinerary fare, number

of passengers, starting and arriving airport, round-trip indicator, and

miles flown [Par+18]. Also, we obtained 4 classes of flights by di-

viding the ticket cost into 4 quartiles, i.e., cheap, medium, high, and

expensive. We used these classes in both the classification and clus-

tering task, while in regression, we predicted the ticket cost using all

the numerical features. For the task evaluation, we used a sample of

10000 rows, while for testing the scalability of the system, we used

incremental portions of this dataset.

(iv) Finally, we used a 10% random sample of the dataset provided

by TIM, the largest Italian telco, that contains the (technical only) in-

formation related to trouble tickets opened by landline (fibre) users

and their subsequent management, such as device information, loca-

tion, problem, and intervention data. Details about how we use the

features are presented in Section 3.8.5.

3.8.1 Illustrative Use Case

To better understand how our framework works, we now consider

the AIRLINES dataset and the classification task to predict the price

range of a flight using all the other attributes. The results of a con-

textual data quality assessment should answer the following: (Q1)

which errors compromise more the quality of the results? and (Q2.)

can we ignore some errors without compromising the quality of the

results?

Note that we assume neither that the dataset is clean nor any spe-

cific prior knowledge of its characteristics. We emphasize that even

in case of a dirty dataset, the framework will still gauge the trends.

3.8 experiments 65

Moreover, this framework is thought to be a help to the user, but also

to be used together with standard data profiling tools, to grasp the

datasets that are completely broken.

This system first introduces noise of the different types into all the

attributes to obtain a set of different noisy instances of the dataset.

Then, the Random Forest Classifier is used first over the original

dataset, then over the generated noisy instances. The distance be-

tween the results is obtained comparing the F1 score. Figure 3.4

(middle plot) reports the results of the analysis provided by the frame-

work. The closer is the F1 on a noisy instance to the F1 on the original

dataset, the lower is the effect of that particular noise on the task, and

vice-versa.

The plot shows that every type of noise affects the results (as ex-

pected). Yet, MISSING INFO and NULL errors are those with the largest

impact on the results. The motivation behind this behavior is that

these noises produce uncertainty in the classification model by re-

moving useful information from the training dataset. On the other

hand, SHUFFLING and ACRONYM do not affect the results significantly

since their F1 scores are very similar to the original dataset. As a con-

sequence, the time spent by an analyst to clean or repair these errors

would not bring any significant benefit to the results. Upon closer

inspection, we can justify the behavior of SHUFFLING by the absence

of fields with multiple words, which means that the SHUFFLING error

does not introduce any change. Even more interestingly, EDIT errors

in both textual and numerical features impact the results much more

than the errors introduced in only numerical features, as in the case

of BASE CHANGE and NEGATION.

These observations are confirmed in Table 3.3 (refer to the third

row and second column), where it presents the sensitivity factor com-

puted by the framework for each noise. This value estimates the ef-

fect of the noise on the results of the task exploiting the relationship

between the F1 score and the percentage of noise introduced in the

data. For each group, the first column reports the linear dependency

between these two variables, the second provides their polynomial

relationship, and the third is their Spearman correlation (the symbol

‘*’ identifies statistically significant elements with p-value < 0.05). We

can see that there exists a linear correlation (L in the Class column)

between the degradation of the quality of the task results and both

66 fitness for use - contextualizing the task

the NULL and the MISSING INFO errors with coefficient 0.96 and 0.99

respectively. The latter, however, presents a leaning slope (-0.81 vs.

-0.97) meaning that MISSING INFO has a higher impact than NULL.

The BASE CHANGE and NEGATION noises have a very low linear coeffi-

cient (first column, first value in the table), whereas their polynomial

coefficients are very high, meaning that there is a polynomial rela-

tionship (denoted by P in the Class column). That is, changing the

sign of all the values in the dataset does not affect the results of the

classification task. The values of the Linear column also point out a

linear impact due to the noise introduced by PERMUTATION and EDIT.

Conversely, the Spearman correlation and the plot signal a constant

behavior for SHUFFLING and ACRONYM, i.e., these errors have no effect

on the task for the current dataset.

To sum up, referring to our initial questions, the system suggests

that MISSING INFO and NULL are the most problematic errors for classi-

fication followed by PERMUTATION and EDIT (Q1), while SHUFFLING and

ACRONYM can be safely ignored (Q2). Moreover, the framework shows

that typos in textual features are more troubling than in numerical

features, which is quite surprising given that the dataset contains

more numerical features than textual features.

The above shows the ability of our framework to provide valuable

insights into the relationship between error types and data mining

tasks, without the need to be familiar with the dataset at hand, which

is a common situation in the case of exploratory analytics [IPC15;

Mot+17]. These insights allow the analysts to focus their attention on

fixing only the most problematic errors in the dataset. Moreover, a

common procedure is the auditing of a sample of the dataset to gauge

the presence of data quality issues in the complete dataset [Sch+18;

Bat+15]. Our framework can help the analyst also in these cases. As-

sume that an auditing suggests that the dataset has 30% of MISSING

INFO and 90% of NEGATION issues, due, for example, to the wrong pars-

ing of the hyphen symbol. Then, the results above clearly prompts

the analyst to prioritize the cleaning of the missing tuples, since 30%

of MISSING INFO affect the results more than 90% of NEGATION.

3.8.2 Understanding the changes in the results

3.8 experiments 67

0 20 40 60 80 100
Noise (% of tuples)

10
2

10
1

10
0

10
1

10
2

10
3

D
iff

er
en

ce

AIRLINES - Passengers - Mean

0 20 40 60 80 100
Noise (% of tuples)

10
2

10
5

10
8

10
11

D
iff

er
en

ce

AIRLINES - Distance - Max

0 20 40 60 80 100
Noise (% of tuples)

10
1

10
3

10
5

D
iff

er
en

ce

AIRLINES - MilesFlown - Min

Figure 3.3: AIRLINES aggregations on Passengers column (mean), Distance
(max), MilesFlown (min), from top to bottom.

68 fitness for use - contextualizing the task

In the following, we characterize the variations in the results for

different datasets and tasks.

Profiling Aggregation Validation

We validate the ability of our framework to detect the problematic

data quality issues for 3 simple data profiling aggregations [Nau13],

i.e., finding the mean, maximum, and minimum value in a given

column of the dataset. These values can be computed exactly and

efficiently in the original dataset, hence allowing an easy and accurate

comparison with the results in the noisy instances. Figure 3.3 reports

the distance of the results in the noisy instances from the ground-

truth. The figure at the top compares the mean values.

BASE CHANGE and EDIT affect the output the most (with a variation

up to 106 from the mean obtained with the original dataset), since

they change the values that will be aggregated in the data profiling

task. On the other hand, the behavior of MISSING INFO and NULL is

almost constant, as removing some values does not affect consider-

ably the mean. A similar behavior can be seen in the middle and

bottom plots of Figure 3.3, which report the results of the maximum

and the minimum aggregation respectively. Note that the cause of

the oscillations in the lines is that each noisy instance is generated

independently from each other. Appendix B presents an analysis of

the other datasets.

To conclude, our framework suggests that fixing the missing values

for these analytical tasks is not crucial, while the presence of outliers

has a higher impact on the results. These tasks are relatively simple

and well understood, and our framework produces results that are

compatible with our understanding, hence validating our approach

in this baseline scenarios. Our framework can perform the same kind

of analysis even for more complex tasks where this kind of insights

are not obvious, as presented in the following.

3.8 experiments 69

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.4

0.6

0.8

1.0

FM

Clustering - AIRLINES - FM

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

1.0

F1

Classification - AIRLINES - F1

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

1.0

1.2

1.4

1.6

M
S

LE

Regression - AIRLINES - MSLE

Figure 3.4: Task specific distance for AIRLINES, for clustering (top - FM score
- higher is better), classification (middle - F1 score - higher is
better), and regression (bottom - MSLE - lower is better).

70 fitness for use - contextualizing the task

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.6

0.7

0.8

FM

Clustering - ADULT - FM

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

F1

Classification - ADULT - F1

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.5

0.6

0.7

M
S

LE

Regression - ADULT - MSLE

Figure 3.5: Task specific distance for ADULT, for clustering (top - FM score
- higher is better), classification (middle - F1 score - higher is
better), and regression (bottom - MSLE - lower is better).

3.8 experiments 71

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.85

0.86

0.87

0.88

0.89
FM

Clustering - BANK - FM

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

F1

Classification - BANK - F1

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.10

0.15

0.20

0.25

0.30

0.35

M
S

LE

Regression - BANK - MSLE

Figure 3.6: Task specific distance for BANK, for clustering (top - FM score
- higher is better), classification (middle - F1 score - higher is
better), and regression (bottom - MSLE - lower is better).

72 fitness for use - contextualizing the task

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Clustering - AIRLINES

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Classification - AIRLINES

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Regression - AIRLINES

Figure 3.7: Generic distance (higher is better) for clustering (top), classifica-
tion (middle) and regression (bottom) with AIRLINES dataset.

3.8 experiments 73

Analysis of complex tasks

We tested the framework with more complex tasks, and in partic-

ular, we studied data mining tasks that involve both unsupervised

(i.e., clustering) and supervised learning (i.e., classification and re-

gression). We run clustering, classification, and regression on the

datasets ADULT, BANK, and AIRLINES. Figures 3.4, 3.5, and 3.6 presents

the distances from the results in the original datasets, for all the con-

figurations tested. The distance measure we used are: for clustering

the Fowlkes-Mallows (FM) score [FM83], which is the mean between

precision and recall; for classification the F1 score; and for regression

the Mean Squared Log Error (MSLE). For the first two measures 1

means best quality and 0 worst quality, whereas for the last measure

0 reflects a perfect result, while the higher is the value, the lower is

the precision of the prediction. The ground-truth classes/clusters are

2 for the ADULT and BANK datasets, and 4 for AIRLINES.

The clustering plots show once more that the quality of the results

depends not only on the amount of noise introduced but also on the

dataset itself since the same amount of noise has a different impact

in different datasets. For instance, the BANK dataset is less affected by

the presence of noise than the other datasets. The effect of NEGATION

is much more prominent in the ADULT dataset than in the AIRLINES. In

both datasets, NEGATION follows a parabolic behavior, but around 50%

it is the most impacting noise for ADULT, leading to severe damages in

the results.

Classification (middle row) has in general worse results in ADULT

than in BANK (lowest value around 0.7 vs. 0.8 without considering

MISSING INFO). On the other hand, AIRLINES presents the most inter-

esting results, as NULL, EDIT, and MISSING INFO errors affect the results

surprisingly in a very similar way (at 80% of noise they all present an

F1 score around 0.3, which is very close to the results obtained with

a baseline model). In the regression task, AIRLINES is the most noise-

sensitive dataset, while ADULT is the least affected, except for MISSING

that has a significant effect on the quality of the predictor (MSLE of

0.7 with 70% of noise).

To conclude, the experiments substantiate our claim that knowing

that a dataset is affected by some data quality issues is not enough to

have a context around the dataset. Even in the case of complex tasks,

74 fitness for use - contextualizing the task

our framework can assist the analyst in uncovering how the results

are affected by the data quality issue, hence providing the necessary

context to define a strategy to clean the dataset most effectively and

efficiently.

The effect of noise on different tasks

We now focus on the AIRLINES dataset (Figure 3.4). For this dataset,

our framework was able to detect that the same type of noise affects

the quality of the results of each task in a highly different way. If we

look at the effects of SCALE on the three tasks, we can see that these

errors are the most significant for clustering (a decrease of around

70% with 60% of noise), while for classification and regressions, NULL,

EDIT, and NEGATION impact the most (NULL and EDIT for classification

with 0.36 of F1 with 80% of noise and an MSLE of 1.7 with 50% for

NULL and NEGATION in the latter.

If, furthermore, we compare the effects of MISSING tuples on classi-

fication and regression, we can see that the latter suffers less than the

former (only in classification this type of noise causes the lowest qual-

ity). On the other hand, NEGATION errors affect regression much more

than classification, producing some of the worst MSLE increases – up

to 1.7 –, while causing only a mild decrease of F1 score – down to 0.3

– respectively, both at 50% of noise introduced.

Therefore, from this analysis, we can see that we must consider

not only the data quality issues of the dataset but also the task we

want to perform, because what we inferred from one specific task or

issue does not always generalize to other tasks or noises. Our frame-

work can effectively support the analyst in conducting this kind of

reasoning.

Sensitivity Factor

In the previous sections, we proved that the quality of the results

of a task depends on the type of noise in the dataset, its amount, the

task, and the dataset themselves. To quantify the effect of the noise

more precisely, our framework computes a set of sensitivity factors for

each task, dataset, and noise type, which measure the effect of the

noise on the results of that task and that dataset. Table 3.3 reports all

3.8 experiments 75

Ta
sk

D
is

ta
nc

e
C

lu
st

er
in

g
C

la
ss

ifi
ca

ti
on

R
eg

re
ss

io
n

N
oi

se
Li

ne
ar

Po
ly

no
m

ia
l

ρ
C

la
ss

Li
ne

ar
Po

ly
no

m
ia

l
ρ

C
la

ss
Li

ne
ar

Po
ly

no
m

ia
l

ρ
C

la
ss

A
BB

R
EV

IA
TI

O
N

ADULT

(0
.0

0
,-

0
.0

1
)

(0
.2

1
,-

0
.4

1
)

0
.1
3

I
(0

.7
2
,-

0
.0

2
)

(0
.8

6
,-

0
.0

5
)

−
0

.8
1

*
C

(0
.1

5
,0

.0
0
)

(0
.7

4
,0

.0
1
)

0
.5
6

C
A

C
R

O
N

Y
M

(0
.1

8
,-

0
.0

8
)

(0
.3

7
,-

0
.3

6
)

−
0

.4
8

I
(0

.0
2
,-

0
.0

0
)

(0
.0

3
,-

0
.0

0
)

−
0

.2
8

C
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
BA

SE
C

H
A

N
G

E
(0

.1
6
,-

0
.0

1
)

(0
.3

5
,-

0
.0

7
)

0
.5
4

C
(0

.1
2
,-

0
.0

0
)

(0
.6

1
,-

0
.0

3
)

−
0

.4
1

C
(0

.2
6
,-

0
.0

0
)

(0
.4

9
,0

.0
0
)

−
0

.5
2

C

ED
IT

(0
.3

7
,-

0
.0

3
)

(0
.5

1
,-

0
.0

8
)

−
0

.9
9

*
C

(0
.8
5,

-0
.1
3)

(0
.9

1
,-

0
.2

4
)

−
1

.0
0

*
L

(0
.1

6
,0

.0
0
)

(0
.3

3
,0

.0
0
)

−
0

.0
5

C
M

IS
SI

N
G

IN
FO

–
–

–
–

(0
.9
7,

-0
.8
0)

(1
.0

0
,-

0
.2

7
)

−
1

.0
0

*
L

(0
.3

1
,0

.1
3
)

(0
.4

2
,0

.4
2
)

0
.7
3

*
I

N
EG

A
TI

O
N

(0
.0

2
,-

0
.0

4
)

(1
.0
0,

-1
.0
8)

−
0

.1
6

P
(0

.0
6
,-

0
.0

0
)

(0
.7

6
,-

0
.0

2
)

−
0

.3
1

C
(0

.0
0
,0

.0
0
)

(0
.7

5
,0

.0
1
)

0
.2
1

C
N

U
LL

(0
.1

1
,0

.0
9

)
(0

.6
8
,-

0
.6

7
)

0
.4
1

I
(0

.9
5,

-0
.1
6)

(0
.9

9
,-

0
.0

4
)

−
1

.0
0

*
L

(0
.2

0
,0

.0
0
)

(0
.4

4
,0

.0
0
)

0
.4
0

C
PE

R
M

U
TA

TI
O

N
(0

.7
0
,-

0
.1

7
)

(0
.7

0
,-

0
.2

2
)

−
0

.9
1

*
C

(0
.7

8
,-

0
.0

2
)

(0
.8

1
,-

0
.0

3
)

−
0

.9
8

*
C

(0
.8

6
,0

.0
0
)

(0
.9

7
,0

.0
0
)

0
.9
9

*
C

SC
A

LE
(0

.9
6,

-0
.2
3)

(0
.9

9
,-

0
.3

7
)

−
1

.0
0

*
L

(0
.3

5
,-

0
.0

1
)

(0
.9

2
,-

0
.0

4
)

−
0

.5
4

C
(0

.1
6
,0

.0
0
)

(0
.3

9
,0

.0
0
)

0
.0
0

C
SH

U
FF

LI
N

G
(0

.1
8
,-

0
.0

8
)

(0
.3

7
,-

0
.3

6
)

−
0

.4
8

I
(0

.1
2
,0

.0
0
)

(0
.1

2
,0

.0
0
)

0
.2
8

C
(1

.0
0
,0

.0
0

)
(1

.0
0
,0

.0
0
)

0
.0
0

C

A
BB

R
EV

IA
TI

O
N

BANK

(0
.1

1
,-

0
.0

6
)

(0
.4

2
,0

.2
9
)

0
.5
2

I
(0

.9
3
,-

0
.0

2
)

(1
.0

0
,-

0
.0

5
)

−
0

.9
9

*
C

(0
.3

7
,0

.1
3
)

(0
.6

4
,0

.5
4
)

0
.5
4

I
A

C
R

O
N

Y
M

(1
.0

0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.0
0
,-

0
.0

0
)

(0
.7

7
,-

0
.0

3
)

−
0

.0
7

C
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
BA

SE
C

H
A

N
G

E
(0

.1
8
,0

.0
1

)
(0

.3
6
,0

.0
6
)

−
0

.2
2

C
(0

.0
4
,0

.0
0
)

(0
.8

3
,-

0
.0

3
)

0
.1
8

C
(0

.0
0
,0

.0
1
)

(0
.2

4
,0

.3
3
)

−
0

.5
4

I

ED
IT

(0
.1

9
,0

.0
1

)
(0

.3
6
,0

.0
6
)

0
.4
8

C
(0

.4
4

,-
0
.0

3
)

(0
.6

3
,-

0
.1

0
)

−
0

.8
8

*
C

(0
.1

4
,0

.0
7
)

(0
.3

3
,0

.3
8
)

−
0

.5
4

I
M

IS
SI

N
G

IN
FO

–
–

–
–

(0
.9
6,

-0
.8
4)

(1
.0

0
,-

0
.2

7
)

−
1

.0
0

*
L

(0
.2

8
,0

.3
3
)

(0
.3

1
,0

.7
3
)

0
.9
1

*
C

N
EG

A
TI

O
N

(0
.1

0
,-

0
.0

0
)

(0
.1

2
,0

.0
0

)
−
0

.3
1

C
(0

.0
4
,-

0
.0

0
)

(0
.8

1
,-

0
.0

2
)

−
0

.2
6

C
(0

.0
1
,0

.0
3
)

(0
.9
5,

0.
99

)
0

.1
9

P
N

U
LL

(0
.9

4
,0

.0
4
)

(0
.9

8
,0

.0
1
)

0
.9
9

*
C

(0
.9

9
,-

0
.0

6
)

(1
.0

0
,-

0
.0

7
)

−
1

.0
0

*
C

(0
.8
3,

0.
22

)
(0

.9
8
,0

.5
6
)

1
.0
0

*
L

PE
R

M
U

TA
TI

O
N

(0
.3

7
,0

.0
2
)

(0
.7

8
,0

.1
0
)

0
.2
6

C
(0

.8
4
,-

0
.0

2
)

(0
.9

7
,-

0
.0

4
)

−
0

.9
7

*
C

(0
.8

9
,0

.0
5

)
(1

.0
0
,0

.1
0
)

0
.9
9

*
C

SC
A

LE
(0

.0
5
,-

0
.0

1
)

(0
.1

6
,0

.0
3
)

−
0

.4
9

C
(0

.0
9
,-

0
.0

1
)

(0
.8

1
,-

0
.0

6
)

−
0

.2
1

C
(0

.1
3
,0

.0
5

)
(0

.5
7
,0

.3
4
)

0
.0
5

C
SH

U
FF

LI
N

G
(1

.0
0

,0
.0

0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.1
5
,-

0
.0

0
)

(0
.5

9
,0

.0
1
)

−
0

.1
9

C
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0

)
0

.0
0

C

A
BB

R
EV

IA
TI

O
N

AIRLINES

(0
.7

2
,-

0
.4

9
)

(0
.8
6,

-1
.2
6)

−
0

.8
5

*
P

(0
.4

6
,-

0
.3

1
)

(0
.8
9,

-1
.3
9)

−
0

.7
4

*
P

(0
.8
0,

0.
48

)
(0

.9
6
,1

.2
5
)

0
.9
9

*
L

A
C

R
O

N
Y

M
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.0
1
,-

0
.0

0
)

(0
.2

8
,-

0
.0

4
)

−
0

.1
0

C
(0

.0
0
,-

0
.0

0
)

(0
.0

0
,0

.0
0
)

0
.0
0

C
BA

SE
C

H
A

N
G

E
(0

.2
5
,-

0
.2

2
)

(0
.4

1
,-

0
.8

4
)

−
0

.9
6

*
C

(0
.0

2
,-

0
.0

5
)

(0
.9
9,

-1
.4
0)

−
0

.1
5

P
(0

.5
7
,0

.3
7
)

(0
.7
8,

1.
17

)
0

.9
8

*
P

ED
IT

(0
.2

2
,-

0
.2

0
)

(0
.3

9
,-

0
.8

3
)

−
0

.9
7

*
C

(0
.8
9,

-0
.7
1)

(0
.9

9
,-

1
.5

3
)

−
0

.9
8

*
L

(0
.1

7
,0

.2
5
)

(0
.3

6
,1

.2
0
)

−
0

.2
9

I
M

IS
SI

N
G

IN
FO

–
–

–
–

(0
.9
9,

-0
.9
7)

(1
.0

0
,-

0
.5

7
)

−
1

.0
0

*
L

(0
.9
4,

0.
60

)
(0

.9
5
,0

.7
7
)

0
.9
8

*
L

N
EG

A
TI

O
N

(0
.0

0
,-

0
.0

3
)

(0
.9
1,

-1
.9
2)

−
0

.1
6

P
(0

.0
2
,-

0
.0

5
)

(0
.9
7,

-1
.2
0)

−
0

.1
0

P
(0

.0
0
,0

.0
5
)

(0
.7
7,

2.
48

)
0

.2
3

P
N

U
LL

(0
.5

4
,-

0
.3

9
)

(0
.9
4,

-1
.5
7)

−
0

.7
0

*
P

(0
.9
6,

-0
.8
1)

(0
.9

8
,-

1
.2

9
)

−
1

.0
0

*
L

(0
.2

6
,0

.3
0
)

(0
.4

6
,1

.2
5
)

0
.9
7

*
C

PE
R

M
U

TA
TI

O
N

(0
.6

6
,-

0
.4

7
)

(0
.7
9,

-1
.2
4)

−
1

.0
0

*
P

(0
.9
3,

-0
.5
8)

(0
.9

9
,-

1
.1

4
)

−
1

.0
0

*
L

(0
.2

1
,0

.2
4
)

(0
.4

0
,1

.0
3
)

0
.7
7

*
I

SC
A

LE
(0

.3
3
,-

0
.3

2
)

(0
.7
3,

-1
.5
8)

−
0

.6
1

*
P

(0
.6

0
,-

0
.4

6
)

(0
.9
9,

-1
.7
9)

−
0

.6
7

*
P

(0
.1

3
,0

.1
9
)

(0
.3

7
,1

.1
1
)

−
0

.2
2

I
SH

U
FF

LI
N

G
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0

)
0

.0
0

C
(0

.0
0
,0

.0
0
)

(0
.0

0
,-

0
.0

0
)

−
0

.0
4

C
(0

.0
0
,-

0
.0

0
)

(0
.0

0
,0

.0
0
)

0
.0
0

C

Table 3.3: The Sensitivity Factor table reports the tuple (score, slope) for the
Linear and Polynomial relations, the Spearman correlation (ρ),
and the Class that each noise follows (L=linear, P=polynomial,
C=constant, and I=irregular).

76 fitness for use - contextualizing the task

the factors computed for the datasets in Figure 3.4, Figure 3.5, and

Figure 3.6.

For example, the polynomial slope generated by the NEGATION gen-

erator in clustering for the ADULT dataset is very high (-1.08), which

means that if the dataset contains even a small amount of negations,

cleaning those errors immediately affects the results positively. Sim-

ilarly, for classification in the BANK dataset, MISSING INFO has a lin-

ear coefficient (i.e., 0.96) with an extremely high slope (-0.84), which

means that repairing just a few tuples can lead to an improvement in

the results. On the other hand, for classification in ADULT, NEGATION

is categorized as constant, meaning that cleaning and repairing such

errors would not immediately improve the results of the task. We

demonstrated that by taking advantage of the sensitivity factors in

Table 3.3 and the results shown in Figure 3.4, Figure 3.5, and Fig-

ure 3.6, the data analyst can plan a cleaning process of the dataset at

hand. It allows an improvement in the quality of the results of the

task she wants to perform (effectiveness), and involves only the types

of noises that significantly affect the task (efficiency). This approach,

on the one hand, saves money and time for companies, while on the

other hand, gives valuable insights into the data.

3.8.3 Generic Distance

We validate the ability of our generic function to measure the dis-

tance between the results of a task, by comparing its outcomes with

those of the task-specific measures introduced above. Figure 3.7 shows

that the generic distance handles very well the case of clustering and

classification. Even though the lines do not overlap exactly with those

in Figure 3.4, trends, and scales are definitely similar. In AIRLINES the

two distances lead to the same conclusions in clustering for ABBREVIATION

(polynomial task-specific slope of -1.39 vs. polynomial generic slope

of -1.43) and SCALE (polynomial slope with the ad-hoc distance of -

1.79 vs. -1.72 with our distance). For the regression task, the generic

distance captures only the most prominent behaviors. For example,

it is able to highlight the effect of the NEGATION errors (more visible in

the AIRLINES datasets, where both are categorized as polynomial pat-

terns). A detailed analysis of the other datasets can be found in Ap-

3.8 experiments 77

pendix C. Hence, when ad-hoc measures are not known, our generic

distance measure is still able to provide some essential insights.

3.8.4 System Scalability

100 1K 10K 100K 1M 4.7M
of Tuples

0

20000

40000

60000

80000

Ti
m

e
(s

)

Framework Scalability

Distance
Task Run
Noise Gen

Figure 3.8: AIRLINES dataset: System scalability.

100 1K 10K 50K
Tuples

10
2

10
3

10
4

Ti
m

e
(s

)

Distance Scalability - AIRLINES

GREEDY
HUNGARIAN

Figure 3.9: AIRLINES dataset: Generic distance scalability.

We investigate the scalability of our framework by measuring the

running time of the whole cycle, starting from the generation of the

noise for each generator to the execution of the task (without the

optimizations), and finally to the computation of the distance using

a task-specific measure. Figure 3.8 and Figure 3.9 show the perfor-

mance for the clustering task and the Fowlkes-Mallows score in the

AIRLINES dataset. In Figure 3.8, we can see that the noise-generation

step takes less than 3000 secs to produce 110 different noisy instances

78 fitness for use - contextualizing the task

of the dataset (10 noise generators and 11 percentages) even for sam-

ples of millions of tuples. A similar running time is required also for

the distance measurement (around 3000 secs on the largest dataset

for the whole cycle).

The most time-consuming procedure is the execution of the task for

each generated noisy instance. Note that the running-time of the task

depends on the algorithm chosen, and therefore, the analyst can save

time by selecting another algorithm with desirable performances. In

addition, the optimization introduced in Section 3.4 can save up to

half of the time by creating ∼ 1/2 of the noisy instances and hence

running the task only half times. The analyst can restrict the analysis

by sampling the dataset, reducing the noise percentages analyzed,

or focusing only on a limited set of noise types. The bottom plot

of Figure 3.9 presents the scalability of our custom generic distance

equipped with both the Greedy and the Hungarian algorithm. Even

though the Hungarian algorithm has worse performance than the

Greedy approach, it produces a perfect matching and, consequently,

a more accurate distance value.

3.8.5 A Telecommunication Company Application

To provide a real use-case scenario, the data quality framework

here introduced has been used in TIM, the main Italian telecommu-

nication company. The company needs to collect information about

the trouble tickets opened due to dysfunctions experienced on fiber

landlines. Since the total cost of the management of a new ticket is

pretty high, including remote and in person interventions, the com-

pany needs a way to reduce extra costs introduced by the tickets that

are classified as resolved but then are re-opened right after. Thus,

they simulated an anomaly detection task running a classification

model to predict which tickets are likely to be re-opened after their

closure. In addition, we run K-Means to create the cluster of the

tickets that will be re-opened and the one about those that will not.

Figure 3.10 presents the results of the experiments conducted over

the TIM dataset. For clustering, we see that only NULL and MISSING

INFO lead to a low quality of the results. Since we aim at identifying

the errors in the data that have higher impact on the results to get

3.8 experiments 79

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.6

0.7

0.8

0.9

1.0
FM

Clustering - TIM - FM

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

F1

Classification - TIM - F1

Figure 3.10: TIM dataset: Effect on clustering (top) and classification (bot-
tom)

better results, thus, our analysis suggests to clean and repair these

two noises primarily, and then focus on the others, starting from

ABBREVIATION and SCALE. For classification, instead, the framework

reports worse results, with MISSING following a bad pattern, along

with NULL. In addition, for this task, also EDIT errors affect the quality.

As a consequence, ABBREVIATION, EDIT, and PERMUTATION have to be

considered for cleaning since the impact on the results with respect

to those obtained with the original dataset is considerable.

The results above from our framework assisted TIM in identifying

the errors present in the data with higher impact on the accuracy

score of their anomaly detection algorithm, and to device practices to

minimize them in the future.

80 fitness for use - contextualizing the task

3.9 summary
In this chapter, we presented an extension of the notion of data

quality that considers the context of the task that is applied on the

data. We propose a framework for computing this extended form of

data quality by systematically introducing different types and amounts

of noise in the dataset and measuring the variation observed in the

results of the analytic task. The system then combines the collected

observations for computing a sensitivity factor that characterizes the

impact of specific data quality issues to the final output of the task.

We run extensive experiments over real world and synthetic datasets

to access the performance of our approach both quantitatively and

qualitatively.

4
M O I R A -
C O N T E X T U A L I Z I N G T H E
U S E R G OA L

We move the focus now on the user, which has an important role in

any analytical process. We contextualize the user needs in the stream-

ing environment, which emphasizes the differences between the goal

that she has in mind. Hence, we aim at dynamically rescheduling

the resources of a streaming application enhancing on the user needs,

which is, to the best of our knowledge, the first work to do that.

In this chapter, we focus on the optimal solution for the user goal,

given the characteristics of the incoming data and the analysis that

the user has to perform. Thus, we aim at providing the amount of

resources needed to each operator, for satisfying the goal metric de-

fined by the user. The goal metrics that we considered and that the

user can optimize are the throughput of the deployed job (high num-

ber of items processed by the streaming engine), the latency (low time

required to process an input record), or the computational cost (low

amount of resources deployed).

4.1 contributions and outline
The main contributions in this chapter can be summarized as fol-

lows:

• To our knowledge, this is the first work that takes into consid-

eration the user goal for an application for a dynamic resource

allocation in a streaming environment.

• We provide a formal definition of the optimal solution for the

user goal, knowing information about the incoming data, clus-

ter usage metrics, and being aware of the user query. This is

also presented in a framework built on top of Apache Flink that

enables this kind of analysis.

81

82 moira - contextualizing the user goal

• We conduct a series of experiments to compare our method

with a single static estimation and without any cost estimation,

presenting the advantages and the issues for each case.

The remainder of this chapter is organized as follows. We present

a use case scenario to allow the readers to understand the needs for

such a system in Section 4.2. Then, Section 4.3 exposes the formal

definition of the problem we are dealing with, and in Section 4.4 we

show the insights of our solution. Section 4.5 presents the experi-

ments performed and the comparison with and without our frame-

work, and with only a cost-based estimation at the deployment of the

application.

4.2 motivating example
A startup has just published a new mobile phone game on the

market. They developed a logging system in their mobile applica-

tion to receive feedback from the users while they are playing their

game. The logs have several objectives, such as debugging purpose

or reporting, so each kind of log needs a specific management. More-

over, the incoming data to the logging system will change its input

rate through time, since people play their game but only for a small

amount of time. Even more, if we consider that the game has been

purchased more in Europe than in the rest of the world, for sure we

will have fluctuating data, with some peaks, for example, in the Euro-

pean evening time and some drops during the European nights. So,

in this context, the startup wants to perform some kind of analysis on

the logs, to improve the game experience of their customer. This anal-

ysis is translated into a DAG (Directed Acyclic Graph), where each

node represents an operation of the analysis (e.g., a map/reduce op-

eration), while the edges represent the data flow path. Intuitively,

each node will be deployed on a slot placed in a machine of the clus-

ter. A machine has multiple slots available for the nodes of the DAG.

However, this DAG is not deployed as it is on the cluster, but it can

be optimized in different ways to improve the performance of the an-

alytics. For example, multiple nodes (operations) of the DAG can be

performed in the same slot, avoiding the cost of moving the results

4.2 motivating example 83

of a previous operator to the next operator through the cluster slots

that can even be on different machines, or one node can be deployed

multiple times to parallelize the operation and thus to improve the

performance of that operation.

Focus now on the following analytic described by the startup: get

as input the logs, perform a word count of the error code, filter the el-

ements that appear a fewer number of times than a predefined thresh-

old, try to replicate the error with a custom code taken as a black-box,

and then save the results into a text file. The analytic, known also as

query in the streaming pipelines, will be translated into the DAG

pictured in Figure 4.1.

Figure 4.1: DAG example for a use case application

So, with such an analysis, other available systems would optimize

the resource allocation or the latency. In our system, it is the user that

specifies the optimization goal for the given query. Then, the system

will start from it using the gathered information about the incoming

data and the cluster usage to deploy the topology that fits better the

user’s goal. For example, if the user wants to improve latency, one

choice can be to chain together the whole process, parallelizing the

operators as much as possible. However, if it may be useful while

the data is at its peak, when the income rate is on a drop, it becomes

not worthy to have the whole cluster filled. Hence, it will be worthy

to have a system that takes care of it and decreases the parallelism,

which is our aim, even if the goal is to have low latency, since even

with fewer resources the goal is still fulfilled.

On the other hand, if the custom error handling policy is a slow

operation that needs an amount of resources, for optimizing latency

then it will be better to chain the first four nodes and have a bigger

parallelism for the error handling task.

84 moira - contextualizing the user goal

Hence, as it is shown, each query has to be handled in different

ways given the goal defined by the user. Moreover, since in such a

context the data incoming rate might vary through time, a dynamic

estimation is needed to improve performance and resource allocation,

even better if it follows the user needs and allow the user to fulfill her

goal.

4.3 problem statement
We assume the existence of a countable set of records R and a

countable ordered set of timestamps T. A sequence of records, each

with an assigned timestamp, is referred as a data stream or simply a

stream. Let S represent the set of all possible streams. We denote as

τ(r) the timestamp of a record r in a stream. The rate of a stream

s ∈ S, at a time t, and for a temporal window w, is the number
|{r | r∈R ∧ (t−w)6τ(r)6t}|

w . Note that the rate of a stream may be dif-

ferent over time.

The records of one or more streams can be processed to produce

new objects. There is a number of primitive processing tasks that can

be performed on streams. These tasks are referred to as operators. The

output of an operator is a stream itself.

Definition 4 (Operator). A stream operator is a function o : P(S) → S.

The set of all possible operators is denoted as O.

Since the output of an operator is a stream, it can be used as input

to another operator. In this way, operators can be combined to form

more complex processing tasks. Such tasks are referred to as queries.

Definition 5 (Query). A k-input query is a tuple q= 〈•, N, E, I, ne〉,
where N ⊂ O and is finite, • is a partial order over N, ne∈N, I is

an assignment [1..k]→N and E ⊆ N ×N such that ∀〈n1,n2〉 ∈ E :

•(n1) 6 •(n2).

A query is actually a function that accepts as input k streams, and

produces a single output stream. The output stream is the output of

the operator ne. The assignment I assigns each of the k input streams

to one or more operators in N. Intuitively, a query can be seen as a

directed acyclic graph that has a node for every operator in N, and

4.3 problem statement 85

an edge for every entry in E. The node ne is referred to as the output

node, and every node that has been assigned at least one input in I, as

an input node. Input nodes are annotated also with the number of the

input stream they have been assigned. For instance, if the assignment

I contains the assignment 〈3, n〉, it means that the third input stream

is among the inputs of the operator n. Input nodes are annotated with

the numbers of the inputs that they have been assigned to them. In

what follows, when we refer to a query, we will refer to its equivalent

graph representation.

Example 1.

Figure 4.2: Query graph

Figure 4.2 illustrates the graph representation of a query that takes

as input 3 input streams. The input nodes are those without incom-

ing edges and their annotations on the left of the identifiers indicate

which of the three input streams s1, s2, and s3 they use as input.

Although not shown in the graph, note that an input node can have

more than one input streams. Node 10 is the output node, i.e., the

node of the output stream so, which is considered the output of the

query.

Since a query is a combination of individual operators, it is possible

that different operators are executed on different machines, such that

the data produced by one operator is immediately fed to the next

operator that can start processing it. Of course, if two consecutive

operators are in different machines, then, some cost needs to be paid

to transfer data from one to another. If that cost is high, then it may

be better to restrict these operators, by bounding them together. This

is known as chain.

Definition 6 (Chain). Given a query 〈•, N, E, I, ne〉, a chain in a

sequence of operators n1, n2, . . . , nk, such that for each i = 1 . . . k− 1:

86 moira - contextualizing the user goal

• 〈ni,ni+1〉 ∈ E

• @〈ni, x〉 ∈ E such that x 6= ni+1,

• @〈x,ni+1〉 ∈ E such that x 6= ni, and

• @〈s,ni+1〉 ∈ I

Intuitively, a sequence of two or more operations can form a chain

only if the succeeding operator has only one input and it comes from

the previous the previous one, apart from the first operator of the

chain that can have more than one inputs, and the last element, whose

output is not a member of the chain.

Example 2. In the query presented in Example 1, the nodes 7, 8 and

9 can form a chain, since they are consecutive and the only edge

that has one endpoint among them is one incoming from 7 and one

outgoing to 9. The nodes 3, 6, and 10 cannot form a chain because 6

has an incoming edge that originates from node 5 that is not part of

the group.

The nodes of a chain can be collapsed to one node that has as input

the input of the first node, and as output the output of the last node.

In other words, a chain can be treated as a single operator, and the

resulted graph is again a query graph.

The task of an operator can be replicated across different machines

such that the different replicas are processing different parts of the

records of the input stream. This process is known as parallelization.

The parallel versions of the operator are replacing the original op-

erator they parallelize and are called replicas. All the replicas of an

operator have the same input as the original operator and the same

output.

Definition 7 (Parallelization). A k-parallelization of an operator n ∈
N of a query 〈•,N,E, I,ne〉, is a set of replicas n1,n2, . . . ,nk of the op-

4.3 problem statement 87

erator n, such that a new query can be created of the form 〈•,N ′,E ′, I ′,ne〉
for which:

N ′ = (N− {n})∪ {n1,n2, . . . ,nk},

E ′ = {〈n ′, x〉 | n ′ ∈ {n1, . . . ,nk} ∧ 〈n, x〉 ∈ E}

∪ {〈x,n ′〉 | n ′ ∈ {n1, . . . ,nk} ∧ 〈x,n〉 ∈ E}

∪ {〈x,y〉 | 〈x,y〉 ∈ E∧ y 6= n∧ x 6= n},

I ′ = {〈s, x〉 | 〈s, x〉 ∈ I∧ x 6= n}

∪ {〈s,n ′〉 | 〈s,n〉 ∈ I∧n ′ ∈ {n1, . . . ,nk}

There are different ways to execute a query depending on what

operators are parallelized and what are executed in sequence on the

same machine. Each different way of doing this has a different cost.

Parallel executions can exploit different cores at the same time, but

increase the data communication cost. Execution on the same ma-

chine, on the other hand, is increasing the time since the operators

are executed in sequence, but saves communication cost. To model

the way a query can be executed, we define the notion of an execu-

tion plan. Intuitively, the execution plan is a specification of what

operators should be chained and what should be parallelized.

Given a query 〈•, N, E, I, ne〉, we consider a number of equivalent

classes, as many as the number operators, i.e., |N|. Each equivalent

class is modeled by its representative. By default we assume that

every operator belongs to a different equivalent class, which means

that each operator is also the representative of the class to which it

belongs. Deciding that two or more operators need to be executed on

the same machine, can be modeled by simply putting the two opera-

tors in the same equivalent class. Merging two equivalent classes is as

simple as making the members of the second class have as a represen-

tative the one from the first class. This means that we can model the

chains by a vector that consists of as many elements as the number of

operators in the query, and each element indicates the representative

of the equivalent class in which the respective operator belongs.

In a similar fashion we can model the parallelization by indicating

the degree of replications that we need to achieve for each operator

we need to parallelize. This means that we can also represent the

parallelization as a vector of integers, one for each operator. Note

88 moira - contextualizing the user goal

that parallelization is done only for operators that are not chained,

which means that for such a vector to be valid, an element can have a

value more than 1 only if the respective operator is the only member

of its equivalent class (which intuitively translates to not being part

of a chain).

The combination of the two vectors, one for the chains and one for

the parallelization, is what we refer to as a execution plan.

Definition 8 (Execution Plan). Given a query 〈•, N, E, I, ne〉, an

execution plan is a tuple 〈C,P〉, where C is a vector of |N| elements,

each one with a value from N, and P is a vector of positive integers.

An execution plan 〈C,P〉 is said to be valid if for every i=1..|P|

with P[i]>1, it holds that |C[i]|=1. By abuse of notation, we use C[i]

to denote the equivalent class of the operator i-th operator, and the

|C[i]| to denote the cardinality of that equivalent class.

The performance of the execution of a query at any given time de-

pends in the data that arrives into its input stream and the execution

plan that has been followed. Our goal is to be able to decide at any

given moment, given the input stream data, what the best execution

plan is.

[Problem Statement]: Given a query 〈•, N, E, I, ne〉, and a series

of tuples of the form 〈S, p, c〉, where S is a set of input streams, p is

an execution plan and c is a cost of that plan, we would like to find

the best execution plan when the set of input streams is S ′.

4.4 moira architecture

Figure 4.3: Moira framework

4.4 moira architecture 89

In this section, we present Moira, the framework we propose as a

solution to the problem of dynamically applying the best execution

plan to the user queries. Moira is a system built, for our scope, on top

of Apache Flink, but it can be adapted to any other available stream-

ing framework. As shown in Figure 4.3, it is composed of three main

components and it strictly interacts with Apache Flink. The entry

point of the system is the cost-based optimizer component, which

takes as input the user query over the available data and her goal.

Note that our framework is goal-centered since each query has to be

optimized differently according to the user needs. This component

finds the execution plan that fits mostly the given user goal and sends

the built application to Apache Flink in order to run it. The stream-

ing framework will then deploy the application through the cluster

machine.

Meanwhile, the monitoring system is actually polling the system to

gather information about the cluster usage, the characteristics of the

data, e.g., the income rate, and the status of the running applications.

This information will be then sent to the dynamic cost-estimator that

will build the features to use in the cost estimation that will check

again if the already deployed topology is the best one or if the newly

gathered information will allow a better execution plan to be used.

In the following, we present each component in details.

4.4.1 Cost-based Optimizer

The purpose of the cost-based optimizer component is to derive

the optimal topology for executing a query based on the available re-

sources and on an optimization goal that was defined together with

the query by the Data Stream Processing (DSP) application program-

mer.

The optimization goal describes how resources should be allocated

by the cost-based optimizer. It is defined as a weighted triple of

three conflicting optimization areas: cost, latency, and throughput,

i.e. 〈Wcost,Wlatency,Wthroughput〉. Here the term cost refers to

the economical allocation of resources, allowing to execute the query

using fewer slots and consequently fewer machines in a cluster. This

allows either to limit expenses for compute nodes, e.g. if deployed

90 moira - contextualizing the user goal

in public cloud, or to reserve resources for deploying other topolo-

gies in parallel on a cluster with limited resources. The latency goal

quantifies the importance of generating output with a small delay af-

ter an event is entering the topology through an input stream, while

throughput emphasizes a topology’s ability to absorb high input rates.

The optimization goal gives the DSP application programmer the pos-

sibility to manage resource allocation of a high level of abstraction

and at the same time to establish guarantees for throughput and la-

tency. Note that the goal remains constant for the duration of the

query execution.

In addition, and regardless of the actual balance of the optimiza-

tion goal, the cost-based optimizer always aims to prevent resource

shortage (processing stalls, out-of-memory) and back-pressure in the

processing pipelines, allowing for the unobstructed and continuous

execution of the stream topology.

For accomplishing these tasks, the cost-based optimizer determines

the resource requirements of every stream operator, based on the op-

erator’s algorithm and configuration, and on the data characteristics

of the operator’s input streams. Cost estimation assumes correlation

of data characteristics, i.e. of the characteristics of the flow of stream

events, where a finite set of events from the input streams generates

a finite set of output events. Formally, the data characteristics of a

data stream s are composed of an event rate rs and a temporal win-

dow size ws. So, the cost function of any operator n∈N with i input

streams s1, s2, . . . , si a parallelism of p, is calculated as

Costn({rsi ,wsi},p) = (cpuw, sizew, rout,wout)

where cpuw denotes the computation complexity of n for handling

one temporal window, and sizew corresponds to the storage com-

plexity that n requires internally to manage the state of that window.

Computation complexity, storage complexity, and output rate serve

as indicators for resource requirements, as well as for latency and

throughout estimation. We provided an estimation of each operator,

working together with domain experts that detailed the values.

With this estimation, the optimizer can associate the operators with

resources, by (1) aggregating operators into chains, which are de-

ployed into individual slots for execution, and by (2) setting the chain

4.4 moira architecture 91

parallelism, such that replica of a particular chain are executed in sep-

arate slots.

With this approach, it is possible to propagate the costs bottom-up

through the DAG that represents the query. The data characteristics

of data sources (DAG leaves) are determined before cost estimation

can start. Note that the values of each data characteristics of data

sources may vary over time due to the amount of incoming data. Ide-

ally, the data source characteristics are known upfront, e.g. consulting

statistics from previous accesses. Alternatively, sampling is applied

to gauge the characteristics of the current data flow. Finally, the API

allows the DSP programmer to manually set/override the data char-

acteristics of individual data sources.

The basic strategy of optimization is the following: Start at the

DAG leaves and create chains initially containing only a data source.

Eventually each chain C will be allocated to a slot, an execution con-

tainer, which is a unit for resource management, having a single CPU

core and a fixed amount of memory, hence any chain’s resource re-

quirements may not exceed the resource capacity offered by its al-

located slot. Recursively try to extend the current chain across the

subsequent operator n, by checking the following conditions.

1. n is chainable

2. n supports the parallelism of C

3. Chaining creates no back-pressure

4. Chaining creates no resource shortage (e.g. CPU / memory of

execution container)

5. Chaining complies latency constraint of optimization goal

6. Chaining complies throughput constraint of optimization goal

As a consequence, new chains are started whenever a conflicting con-

dition is detected. If all conditions apply, the chain is extended,

thereby minimizing the total number of chains in a topology, and

ultimately controlling the cost of execution.

The amortized complexity of cost-based stream optimization isO(|N|log|N|),

as it corresponds to one traversal of the DAG with eventual backtrack-

ing for adapting chain parallelism.

92 moira - contextualizing the user goal

As mentioned before, the characteristics of data sources are not con-

stant while stream topologies tend to be deployed for a long period of

time. In the following we describe how monitoring continuously re-

validates the topology against the optimization goals and re-deploys

the topology if significant changes are detected.

4.4.2 Monitoring System

Apache Flink exposes by default a number of metrics on the clus-

ter usage, both for the master node (Job Manager) and for the slaves

(Task Manager). It is possible to receive these metrics through JMX,

and we store all the available metrics in Apache Lucene [Apa19c],

which allows the user to perform range queries, which we use for

getting the history of the needed metrics. We take into consideration

the metrics related to the amount of resources used (e.g., RAM, CPU),

and we monitor possible problems (e.g., back-pressure). But among

all, the most important for our algorithm is the knowledge of the in-

put and output rate, in both forms of size and number of events. The

collected metrics are then forwarded to the feature extractor, which

processes them to provide the cost-estimation the right parameter to

actually check the redeployment of the topology.

4.4.3 Incremental learning for Dynamic Cost Estimation

Our solution for dynamic cost estimation unfolds as a learning

problem. We formulate it as such to offer a generic, robust and flexi-

ble approach suitable for such massive distributed systems.

Dynamic cost estimation is an incremental process. Starting from

an initial topology our system employs a machine learning algorithm

that uses recent history to build a model of the data (i.e. query spe-

cific data: input rate, window size; goal: cost, latency, throughput;

topology) and its evolution to estimate predictions. Such a model is

updated for each new query, such that the model evolves with the

data it represents and is able to accurately trigger a topology recon-

figuration. Moreover, this kind of model needs to capture and accom-

modate the changes in the process generating the data (e.g. learning

the correlation among input rate and the topology) to either generate

4.4 moira architecture 93

a prediction conditioned on history or to trigger a full model retrain-

ing. Of course, this implies either the use of incremental algorithms

or the periodic retraining with batch algorithms (expensive in terms

of time and resource consumption - critical in such a dynamic cost

estimation problem). As a first implemented method, we take care of

the history of the input rate for the operator, we perform the average,

and we send it to the cost-estimation function for building the new

topology.

In addition, we propose a new approach using incremental learn-

ing, which is a learning paradigm where computations adjust to any

external change to their data automatically. As is it the case in on-

line machine learning, applications need to respond to incremental

modifications to data (i.e. update the topology based on the desired

cost, throughput and latency). Being incremental, such modifications

often require incremental modifications to the output, making it pos-

sible to respond to them asymptotically faster than recomputing from

scratch.

In such cases, taking advantage of incremental behavior, dramati-

cally improves performance, especially as the system evolves in time

for subsequent queries.

In order to decide on a topology change, the Feature Extractor com-

ponent receives as input the query and the stream parameters (i.e. in-

put rate and window size), the goal (i.e. the desired cost, latency, and

throughput) and the measured metrics (i.e. usage, measured input

rate etc.) and when needed triggers a topology change through to

the cost-estimation function. In order to make the solution flexible

and adaptive, we extend from a static policy switch to an incremental

learning approach. Such an approach assumes learning the depen-

dencies among the input and output variables of the cost-estimation

function, in a pairwise fashion to exploit all the underlying correla-

tions among the measured metrics of the current topology and the

current query parameters, for example.

Learning such pairwise functional dependencies among the vari-

ables is basically a regression problem. Various methods for both

univariate and multivariate regression have been developed, yet it is

not trivial how to extend them to cope with the evolving nature of

the problem. In other words, there is not a straightforward approach

to incremental regression.

94 moira - contextualizing the user goal

In order to explore the underlying relations among the variables

in our problem, we started by exploring a linear regression problem,

employing a simple incremental Linear Least Squares (LLS) model

(described in Figure 4.4). The linear least squares fitting technique is

the simplest and most commonly applied for linear regression and

provides a solution to the problem of finding the best fitting straight

line through a set of points. It tries to minimize the sum squares of

the deviations of a set of n data points:

Figure 4.4: Linear Least Squares (LLS) model example

In our case, for example, for the input rate to throughput depen-

dency we can incrementally calculate:

• mean: rn(s) = rn−1(s) +
1
n((s) − rn−1(s), where n is the win-

dow size, so rn−1(s) is the mean over n− 1 readings (without

the current reading), and rn(s) is the mean of window with the

current read

• variance (2nd moment):

m2,n = m2,n−1 + (rn(s) − rn−1(s))(rn(s) − rn(s))

• covariance:

sr(s)T ,n = n−2
n−1sr(s)T ,n−q +

1
n(rn(s) − rn−1(s))(Tn − Tn−1)

In general, the nonlinear regression problem assumes a loss function

L2 =
∑

[T − f(r(s),β1, . . . ,βn)]2. In particular, for the linear case we

have:

L2 =
∑

[T − f(r(s)β2 +β1)]
2

4.4 moira architecture 95

We learn incrementally the coefficients:

β1 = T −β2r(s) and β2 =
sr(s)T ,n

m22,n

Such a model uses incrementally calculated descriptive statistics

and is able to cope with the dynamic updates of topology in our so-

lution. At the moment, the model is considering linear functional

relations among the variables, for example, window size and topol-

ogy equivalence class. For more complex, nonlinear dependencies

such a model will fail to capture the underlying relations. In or-

der to cope with such a problem, the regression mechanism could

be extended to incrementally approximate also the nonlinearity de-

pendencies among the variables. For example, we are planning to

use an incremental Support Vector Machine (SVM). Support vector

machines (SVMs) are supervised learning methods used for classifi-

cation, regression and outliers detection. Among the advantages of

support vector machines are: the effective in high dimensional spaces,

such as the dynamic cost estimation for topology reconfiguration; the

effectiveness in cases where number of dimensions is greater than the

number of samples; the use of a subset of training points in the deci-

sion function (i.e. support vectors), so it is also memory efficient and

suitable for dynamic cost estimation, and can learn highly nonlinear

dependencies by using nonlinear kernels to encode the input data.

Given training vectors ri(s) ∈ R, i = 1, . . . ,n, and a vector T ∈ R,

SVM solves the following optimal problem:

min
w,b,ζ,ζ∗

1

2
wTw+ c

n∑
i=1

(ζi + ζ
∗
i)

subject to Ti −wTφ(xi) − b 6 ε+ ζi,

wTφ(ri(s)) + b− Ti 6 ε+ ζ∗i ,

ζi, ζ∗i > 0, i = 1, . . . ,n

where ζi, ζ∗i are the slack variables and φ(r(s)) is the kernel. Here

training vectors are implicitly mapped into a higher dimensional space

by the function φ.

Training a support vector machine (SVM) requires solving a quadratic

programming (QP) problem in a number of coefficients equal to the

number of training examples. For very large datasets, standard nu-

96 moira - contextualizing the user goal

meric techniques for QP become infeasible, this is why an incremental

approach is definitely an approach to follow. As an extension to our

linear regressor using LLS, we will propose an on-line, incremental

SVM alternative, that formulates the (exact) solution for n+1 train-

ing data in terms of that for n data and the current data point (i.e.

measurement). The incremental procedure would also be reversible

and allow “unlearning” of each training sample to remove the im-

pact it had on the dynamic estimation of the functional relations in

the topology modifications decision.

The ultimate goal of the incremental learning component of our

system is to learn the relevant pair of variables which have a strong

contribution to the decision to change the topology. This assumes

learning pairwise functions among them while making sure that con-

sensus is reached among any variable. Such an approach assumes

building a network (i.e. a graph representation) in which each vertex

is a variable (i.e. input rate, window size, topology parallelism, topol-

ogy equivalence class entries etc.) and connections among vertices

(i.e. edges) represent the functional relationship connecting those

variables, as learned by LLS and SVM.

Such a method would use an entropy reduction technique [ARC16]

to actually select which variable pairs are the most informative and

have a strong correlation. The system would allow to actually have a

consistent state in the estimation process, i.e. all relations would be

satisfied and the topology adjusted accordingly. A sample depiction

of the system is provided in Figure 4.5.

This system is composed of a pipeline which feeds time-series sen-

sory input; compute statistics for individual and pairs of sensors

(entropy and mutual information); computes statistical distance and

conditional entropies to extract statistical relatedness; creates a con-

nectivity array using entropy reduction (minimization), as shown in

the left panel. In the right panel, the underlying functionality behind

the correlation learning is depicted.

Such an approach will enable the dynamic cost estimator to learn

which of the available variables are correlated, learn the pairwise re-

lations among them and then use these learned relations to take a

decision on the topology update policy based on the consensus of the

learned functions.

4.5 experiments 97

Figure 4.5: Entropy reduction technique for correlation learning

4.5 experiments
We present here a set of experiments to validate our framework

for a dynamic cost estimation of the resources given the user goal.

We show the results with respect to the static cost estimation and to

Apache Flink by itself, describing the advantages and disadvantages

of our system. We analyze both latency and throughput, which are

the most used metrics to check the features of a system.

[System Description] The experiments were run over a cluster of 4

machines running RedHat 6.5. All the machines were featured with

126 GB of main memory and 24 cores. We perform our experiments

with the standard version of Apache Flink 1.4.2, and we apply our

framework on top of it. base is the original 1.4.2 version, while in

static is enabled the static estimation at the deployment of the ap-

plication, and dynamic describes the performance of the enabled dy-

namic goal-oriented cost-based estimation. If static performs a stan-

dard starting estimation, with dynamic is running another application

which actually takes care of the rescheduling of the jobs. We perform

our evaluation with the TPC-H benchmark [TPC19], creating the data

98 moira - contextualizing the user goal

through the data generator and applying one of the queries they pro-

pose. We tested our framework with a constant input rate of 4000

elements/second for 2 hours.

0 20 40 60 80 100 120

time (min)

0

500

1000

1500

2000
la

te
n

cy
(m

s)

base (avg 1196.49)

static (avg 1119.26)

dynamic (avg 965.22)

Figure 4.6: Latency evaluation for TPC-H query

0 20 40 60 80 100 120

time (min)

0

500

1000

1500

2000

2500

th
ro

u
gh

p
u

t
(#

tu
p

le
s)

base (avg 253.04)

static (avg 253.12)

dynamic (avg 261.32)

Figure 4.7: Throughput evaluation for TPC-H query

4.5 experiments 99

Figure 4.6 and Figure 4.7 show the performance of our framework

with the TPC-H query number 3, which is listed below.

1 SELECT

2 l_orderkey,

3 sum(l_extendedprice * (1 - l_discount)) as revenue,

4 o_orderdate,

5 o_shippriority

6 FROM

7 customer,

8 orders,

9 lineitem

10 WHERE

11 c_mktsegment = ’BUILDING’

12 AND c_custkey = o_custkey

13 AND l_orderkey = o_orderkey

14 AND o_orderdate < date ’1995-03-15’

15 AND l_shipdate > date ’1995-03-15’

16 GROUP BY

17 l_orderkey,

18 o_orderdate,

19 o_shippriority

20 ORDER BY

21 revenue desc,

22 o_orderdate

23 LIMIT 20;

The former presents an analysis on the latency, while the latter on

the throughput of the query. For what concerns the dynamic estima-

tion, we optimized the latency for the first plot, while for the through-

put figure, the optimization goal was the throughput. For the latency

chart, first of all, we see that the latency is high, and it is still increas-

ing. That is because the number of elements sent to Flink was high

for such a query, and its execution was computationally intensive.

But this is not a problem caused by our implementation since even

the base version reports the same behavior. We can see that the static

estimation is giving a small advantage w.r.t. the base version, which

proves that the cost function we implemented is a good starting point.

100 moira - contextualizing the user goal

Moreover, the dynamic estimation shows better performance after 45

minutes, when the job was rescheduled. We were using a constant

input rate, so the job was rescheduled only once. Moreover, a fluc-

tuating input rate leads to even bigger, since the job resources follow

the input rate.

For what concerns the throughput, we see that both the static esti-

mation almost follows the base version, which is stable during all the

execution, but with a slightly higher the number of output tuples per

second. The dynamic estimation shows the same behavior of the static

up to the rescheduling (after 10 minutes). Then, it presents a peak,

due to the new configuration that allows it to output the queued ele-

ments. After that, it maintains a constantly higher throughput for the

remaining execution time.

4.6 summary
In this chapter, by focusing on the goal metric the user needs to op-

timize, we propose a solution to give the results that the user wants.

Hence, we provide qualitative data considering the user needs, which

means that we contextualized the quality of the data by prioritizing

the optimization goal defined by the user in a streaming environment.

In particular, we considered the problem of dynamically allocating

the resources for a streaming application in a cluster environment.

The novelty of this approach is that the amount of allocated resources

is bound to a goal defined by the user, which consists of a value for

cost, latency, and throughput. Moira, the framework we propose, is

a system built on top of Apache Flink, which, from an initial static

estimation of the user query that deploys the first execution plan,

dynamically accesses the metrics exposed by Flink and the character-

istics of the incoming data. The system will then use both the metrics

and the incoming data characteristics as features to reach the user

goal. If the new cost-estimation suggests the deployment of a new

plan, Moira actually reschedules the job with the new topology.

5 D B M ATC H E R - G I V I N G
VA L U E TO T H E DATA

If in Chapter 3 the focus was on the task applied over the data,

in Chapter 4 it was on the user needs that specifies a goal for an

application, in this chapter we contextualize the data by itself. We

present an application for entity resolution that profiles the data to

understand the intrinsic value it has. While existing approaches focus

mainly on ad-hoc solutions or needs the domain expertize to obtain

high valuable results, the approach we propose aims at finding the

similarity metric that leads to the best results for the available data.

5.1 contributions and outline

In the following, we highlight the contributions of this chapter and

present how it is organized. We provide a motivation for the need for

such work (Section 5.2). (i) We extend the notion of entity matching

by adding the definition of profile (Section 5.3). (ii) Section 5.4 high-

lights the components of the framework we developed to enhance the

performance of entity-matching systems and allow the users not to be

a domain expert for running such a system. (iii) The internal of the

components of the framework, i .e., the partitioning of the data, the

computation of the profile, and the similarity matcher, are presented

in Section 5.5, together with the three algorithms we propose. (iv)

We detail how the idea of profile could be integrated with running

systems by applying it as a blocking technique, to speed up the per-

formance (Section 5.6). Then, we show in the experimental section the

preliminary results about the usage of this framework (Section 5.7).

101

102 dbmatcher - giving value to the data

ID Name Age Birth Place Job

1 Alan 24 New Yorke —
2 William 36 Londron —
3 Bob 87 New Orleans Retired
4 Bob 18 Mexico City Student
5 Bill 35 London Researcher

Table 5.1: A portion of the dataset about people living in London.

5.2 motivating example
Consider a data analyst that has been asked from the municipality

of London to perform some analytics over the people living in the

city. Figure 5.1 presents a portion of such data. As can be seen, the

tuples available for the researcher may not be clean, e.g., the tuple

with ID=1 has a typo in the Birth Place column. The dirtiness may

be due to misspellings, missing information, or, even worse, wrong

information.

The first task performed by the analyst is to look for duplicates in

the dataset, which is the case of the tuples with ID 2 and 5 (i.e., Bill is

the short version of William, 35 is a typo and, it should have been 36,

and Londron contains a misspelling). Hence, there are two options to

perform duplicate detection. The first is about asking some experts of

the dataset which would be the best metric (or metrics) to identify the

redundant tuples, while the second option does not need the involve-

ment of an expert, but it executes of a bunch of algorithms and then it

merges their results. However, the drawback of the first option is the

need for a domain expert, which is not always available. On the other

hand, the second option of running a bunch of metrics altogether is

computationally expensive, since running multiple measures needs

time.

Hence, there is the urgency for a framework that both learns when

a specific metric gives promising results (what the expert does in

such scenario) and has good performances (i.e., takes less time than

running the bunch of metrics mentioned above). We identified that

this could be possible by dividing the dataset based on the common

characteristics of the records. These common characteristics are deter-

mined by a profile, which would determine the metric that gives the

most impressive results on such a portion of the data. For example,

5.3 problem statement 103

the framework identifies the first partition composed by the tuples

with IDs 1, 3, and 4 because they have multiple words in the value

of the Birth Place attribute. The second partition is given by those

values that have a single word in the same attribute, which are the

tuples with ID 2 and 5. The system has learned that for elements with

multiple words, the best metric is the Jaccard similarity, while for val-

ues with a single word and numbers is the Edit distance. The system

retrieves that the distance between tuple with ID 2 and 5 is not that

hight. Thus, they are two match candidates. On the other hand, on

the other partition, none of the tuples is suitable to be a match.

The need for a framework that learns how to optimize the results

while applying the correct similarity measure to the correct portion of

data is vital. Thus, such a framework would follow the hints provided

by the dataset profiles and will run only the metric suggested, to

minimize the running time of the system and maximize the accuracy

of the results.

5.3 problem statement
Consider a dataset D, which is a set of structures modeling some

real-world scenario, where the set of all possible datasets is denoted

by D. We define a tuple as an element ti ∈ D, with 0 6 i 6 |D|

that represents a single entity belonging to the dataset D. Hence, a

set of tuples composes a dataset. There exists the set of all possible

attributes or properties P and each entity contains information about

a set of attribute P ⊆ P. Then, we assume the existence of a set of

values V, which also represents any possible value of any attribute

p ∈ P.

Thus, we state that a dataset D has a set of attributes P ⊆ P. Hence,

a tuple ti ∈ D representing the i-th tuple of D has a value tpi for each

property p ∈ P.

Example 3. Figure 5.1 presents a sample of a dataset about people

living in London. It reports a set of attributes P composed by ID,

Name, Age, Birth Place, and Job. For instance, tuple t3 is the one

with ID = 3, which has tName3 = Bill and tAge3 = 87.

104 dbmatcher - giving value to the data

In such context, the goal of entity-matching is to find tuples that

actually report information about the same real-world entity. This in-

vestigation is usually performed through similarity measures, which

give a score about the similarity of two tuples.

Definition 9. A similarity measure is a function sim : V× V → [0, 1],

with va, vb ∈ V that takes as input two values and outputs a score

between 0 and 1. In the same way, we define the distance function as

dist(va, vb) = 1− sim(va, vb), with again va, vb ∈ V.

The set of all the similarity measures is denoted by S. When a

similarity measure is applied to two data values and their output is

close to 1 (or a distance close to 0), it means that the two values are

almost identical, while their closeness decreases (distance increases)

when their similarity score is close to 0 (distance score is close to 1).

Different similarity measures resolve in mismatching output values

for the same two values, which intuitively means that two similarity

measures behave differently.

Definition 10. Entity matching is a function EM : S×D× [0, 1] →
D×D that given a similarity measure sim ∈ S, a dataset D ∈ D, and

a threshold t between 0 and 1 returns a set of pairs that match.

The matching elements are those pairs of values in D that, if com-

pared with a similarity sim, output a value that is higher than the

defined threshold t. Starting from the observation raised above, dif-

ferent similarity measures give different results, thus, when applying

various similarity metrics over a complete dataset, they will lead to

various output.

Hence, this brings one question: (Q1) which is the best metric to

apply on the data? Usually, a domain expert should reply to this

question presenting the correct way to handle the data. However, it is

not always available. To provide a solution, we identified the profile

of a dataset as a mean for understanding the goodness of a metric for

the data it contains. A profile is a feature vector that describes the

portion of the data it contains. Each profile produces a score k when

assigned to a similarity that measures how well that profile performs

for that similarity.

An improvement is to apply to multiple portions of the dataset

different metrics, in order to improve the quality of the outcomes,

5.4 dbmatcher overview 105

Algorithm 4 dbMatcher - Offline Phase

Require: A dataset D, a set of similarities S,
a ground-truth of duplicates gr

Ensure: The training of the system model
1: results← loadOrDefaultResults(default=map())
2: profile← computeProfile(D)
3: for all similarity ∈ S do
4: duplicates← applySimilarity(D, similarity)
5: performance← checkResults(D, duplicates, gr)
6: results.put(key=〈profile, similarity〉,

value=performance)

but not to apply several metrics on the same data. Thus, to find a

matching we need a function c from the set of all the functions with

the same signature C, such that:

Definition 11. c(D,n) → (2D × sim)n is a function that given a

dataset D ∈ D and a positive natural number n, creates a set of n

portions of the dataset (i.e., subsets), with a similarity function as-

signed to each portion.

There are multiple functions with this signature, so we define the

set of all this functions as C and we introduce a cost function f : (2D×
sim)n → w. This function f takes as input a set of portions, each

assigned to a similarity measure, that is the output of the function c,

and returns a score w. This score measures the sum of the distance

of the profile of each portion from the most similar that is known to

produce a high score k for the related similarity. This is needed to

partition the dataset in the best possible way, which means in such

a way that the distances of the profiles of the created partitions from

the profiles of the partitions already known is minimized.

We aim at minimizing the value of the function f in order to find

the best dividing function c for applying a specific function to each

subset of the dataset. Thus, we formalize this minimization problem

as such:

Definition 12. arg min
c ∈ C

f(x) := {c | ∀x∈ C :f(c) 6 f(x)}

106 dbmatcher - giving value to the data

DATASET PROFILERPARTITIONER

SIMILARITY
MATCHER

dbMatcher

SIMILARITY
APPLICATIONDUPLICATES

OFFLINE PHASE

Figure 5.1: dbMatcher overview

5.4 dbmatcher overview
In this section, we discuss the modules that compose the frame-

work for running the most promising similarity metric through the

creation of a profile of the dataset. The framework, called dbMatcher,

implements a scenario that satisfies the data model previously de-

fined and answers the open questions raised in the same section (Sec-

tion 5.3). The system is depicted in Figure 5.1, which shows the main

modules the framework comprises: the partitioner, the profiler, the

similarity matcher, and the similarity applier that actually performs

the comparison.

Such framework works in two phases, an online process that effi-

ciently and effectively finds the duplicates in a given dataset, and an

offline phase that is run first and is needed by the online phase to be

able to obtain such results.

Algorithm 4 represents the pseudo-code of the offline phase. We

will briefly describe the functioning of the framework in this section,

while in the following, we will deeply analyze the functions that are

underlined. The system receives a dataset and comes with a prede-

fined set of metrics, which can be expanded, adding extra measures

that are of interest for the user. If the training phase has already been

executed, the previously computed results are loaded. Otherwise,

they are initialized as an empty map (line 1). Then, the system creates

the profile for the given dataset (line 2), and then the collected results

are tested with all the available similarities (line 3-4). The obtained

duplicates are checked against the ground truth duplicates provided

as input (line 5). The information about the performance of the dif-

5.4 dbmatcher overview 107

ferent datasets are collected in the results structure and will serve as

the training set for the similarity matcher (line 6). Ideally, the offline

phase should receive as input and process a set of new datasets at the

beginning, then the online phase works with the learned parameters

by the offline phase.

On the other hand, the representation of the online phase can be

found in Algorithm 5. During the online phase, the system takes

as input a dataset provided by the user and processes it. The first

module invoked is the partitioner, which knows the profiles already

sought by the matching profiler in the offline phase, without being

aware of the metric to which it will be matched. The partitioner splits

the dataset in such a way that each partition determines a profile

that is as close as possible to a profile known (line 2). Such an ap-

proach will maximize the overall performance of the system, both in

terms of running time and accuracy of the results. We will discuss

in details how the partitioner works in Section 5.5.1, presenting three

approaches we implemented, the greedy, the incremental, and the

adaptive approach.

Next, the profiler actually takes the partitions generated by the par-

titioner and creates a profile for each partition (line 3-4). A profile

is basically a description of the dataset, that summarizes the records

it contains. The profile can contain, for example, information on the

type of the data, e.g., strings, numbers, dates, or objects, and the re-

sults of some aggregations performed on the records, e.g., maximum

value, average value, or string length. It is represented as a feature

vector that stores, in each position of the vector, specific information.

Our implementation of the profile is provided in Section 5.5.2.

The similarity matcher is the component of the framework that

determines the application of the similarity measures to the partitions

it takes as input. Given the profile of each partition just computed

by the profiler, the similarity matcher aims at finding the similarity

measure that works better (in terms of accuracy of the results) for

a partition with such a profile (line 5-6). Section 5.5.3 presents the

algorithm used for this matching part.

The last block in dbMatcher is the similarity applier. It receives a

partition, which contains a set of records, and a similarity measure to

apply among them (line 6 and lines 7-9). The output of this module

is the set of the entities of the original dataset that are recognized to

108 dbmatcher - giving value to the data

Algorithm 5 dbMatcher - Online Phase

Require: A dataset D, a number num of partitions,
and a threshold ε

Ensure: A set of tuple duplicates found in D
1: duplicates← set()
2: partitions← partitionDataset(D, num, ε)
3: for all partition ∈ partitions do
4: profile← computeProfile(partition)
5: simFunction← matchSimilarity(profile)
6: duplicates.addAll(

applySimilarity(partition, simFunction))
7: return duplicates

8: function applySimilarity(partition, simFunction)
9: return simFunction(partition)

be duplicated. The whole process enables an easy parallelization of

the similarity metrics since the set of the partitions determined by the

partitioner do not consider overlapping portions.

5.5 internals
In this section, we provide the details of each module of dbMatcher,

the framework generally described in the previous section.

5.5.1 Partitioner

The first module involved in the process is the first we dive into.

The partitioner takes a dataset, and splits it in multiple partitions.

The key idea behind this component is that it needs to maximize the

accuracy of the results that would be obtained based on the knowl-

edge discovered by the similarity matcher. It means that the partitions

generated by this component need to produce profiles as much as

similar to those that has been learned to lead to good results. Hence,

we propose three algorithms to actually split the dataset into multiple

partitions.

Algorithm 6 presents the pseudocode for the first and most inaccu-

rate method we propose, the greedy approach. It takes a dataset as

input and splits it using as a baseline a k-mean clustering algorithm,

5.5 internals 109

Algorithm 6 partitionDataset - Greedy Approach

Require: A dataset D, a number num of partitions,
and a threshold ε

Ensure: A set of num partitions P
1: P ← set()
2: distance←∞
3: distMap← dict() . key: the partition, value: its distance
4: while distance > ε do
5: if Not distMap.isEmpty then
6: partition← distMap.getKeyWithMinValue()
7: if distMap[partition] < ε then
8: P.add(partition)
9: num← num− 1

10: missing← notAlreadyAssigned(D, P)
11: if missing.isEmpty then
12: return P
13: tmp←createRandomPartitioning(missing,num)
14: distMap←measurePartitioningDistance(tmp)
15: distance← sum (distMap.values)
16: raise NoSolutionError

17: function notAlreadyAssigned(D, P)
18: toReturn← {}

19: for record ∈ D do
20: found← False

21: for partition ∈ P do
22: if record ∈ partition then
23: found← True

24: if found = False then
25: toReturn.add(found)
26: return toReturn

with k as the number of partitions we aim at finding. In general, it

has to be noticed that the higher is the number of the partitions and

the lower is the threshold, i.e., the sum of the differences of the pro-

files already computed to the profiles already known from the offline

phase, the higher is the chance to get better performance in terms

of computing time and accuracy of the results. The greedy method

measures the distance from the profile of each partition to the profile

already computed in the offline phase that is the most similar. If the

sum of such distances for the randomly selected partitions is above

the threshold defined by the user, then the greedy method keeps the

best partition (i.e., the one that has the lowest distance), and discards

the others. This happens only if the distance of the profile of the kept

110 dbmatcher - giving value to the data

Algorithm 7 partitionDataset - Iterative Approach

Require: A dataset D, a number num of partitions,
and a threshold ε

Ensure: A set of num partitions P
1: P ← createEmtpy(num)
2: for record ∈ D do
3: score←∞
4: mostConvenient← null

5: for partition ∈ P do
6: p← partition ∪ record
7: distance←measurePartitioningDistance(p)
8: if score > distance then
9: score← distance

10: mostConvenient← partition.id
11: P[mostConvenient]←P[mostConvenient] + record
12: return P

13: function createEmtpy(n)
14: toReturn← {}

15: while n > 0 do
16: toReturn.put(key =n, value = set())
17: n← n - 1

18: return toReturn

partition is below the threshold, otherwise, if the distance is higher

than the threshold, we discard everything, and we start from the be-

ginning. Then, the greedy approach randomly selects the subset of

the original dataset composed by the records in the discarded parti-

tions and randomly splits it in n partitions, where n is the number of

partitions defined by the user minus 1 (the partition we kept). This

greedy algorithm dynamically decreases the distance of the profiles,

in such a way that the accuracy of the results increases.

The second method we propose is an iterative approach, detailed

in Algorithm 7. We start from a set of num empty sets (line 1). Then,

we take a record at time from the given dataset and we check for

each partition what would be the benefits of adding the record to

that partition (line 5-10). The partition that with such new element

would have the profile that has the least distance from a profile al-

ready computed would be the candidate, and we will add the record

to that partition (line 11). Then, we move to the next tuple, we apply

the same process, until no records are left, such that each element has

been assigned to a partition. This would enable the maximization of

the similarity to the already computed profiles in the offline phase.

5.5 internals 111

Algorithm 8 partitionDataset - Adaptive Approach

Require: A dataset D, a number num of partitions,
and a threshold ε

Ensure: A set of num partitions P
1: P ← createRandomPartitioning(missing,num)
2: for partition in P do
3: outliers← getOutlier(partition)
4: partition.removeAll(outliers)
5: for record ∈ outliers do
6: score←∞
7: mostConvenient← null

8: for partition ∈ P do
9: p← partition ∪ record

10: distance←measurePartitioningDistance(p)
11: if score > distance then
12: score← distance

13: mostConvenient← partition.id
14: P[mostConvenient]←P[mostConvenient] + record
15: return P

The third and last approach we discuss is the adaptive one, de-

scribed in Algorithm 8. It can be considered as the aggregation of the

greedy and the iterative approaches, taking the advantages of both.

We do not start from scratch as it happens in the iterative approach,

but we get a default random partitioning that we will refine as the it-

erative approach does. Hence, from the default random partitioning

(line 1), we iterate over these partitions and we find the outliers in

each of them (line 2-3). We define an outlier as a record that worsens

sensibly the similarity of a profile from an already computed profile.

Then, we remove the found outliers from the corresponding partition

(line 4) and we start the iterative process. For each of these outliers

that have been removed from the initial partition, we iterate over the

other partitions and we find the one that would have the higher ben-

efits by adding the analyzed record (line 5-13). Once we found it, we

assign the record to such partition (line 14), and we move to the next

record defined as outlier for the current partition. Then, we move to

the next partition, until all the partitions are processed and we found

the best partitioning.

112 dbmatcher - giving value to the data

5.5.2 Profiler

The module that actually contains the core logic of the process is

the profiler. As it was introduced in the previous section, the pro-

file is composed by a set of features, which describe the dataset an-

alyzed (full dataset or portion it does not matter). Since a profile

should summarize the data, we dived in the literature to understand

how to describe a dataset. There are two main categories of ap-

proaches, a statistical-oriented method and an information-oriented.

The statistical-oriented approach aims at filling the feature vector

of analysis and statistics performed over the data. Hence, the fea-

ture vector would contain the aggregation results of some specific

query [Abe+18]. The information-oriented approach applies instead

a summarization of the dataset, e.g., for a dataset containing cities,

a summary may state that “75% of the reported cities are in the U.S.

and are populated by more than 1 million people” [JGP15].

In our implementation, we followed the statistical approach, be-

cause less affected by the errors that are present in the dataset, such

as typos or missing information. In the feature vector we applied,

first we collect information about the type of the data (i.e., integer,

float, double, string, date, time), then, in case of strings, we perform

a topic detection analysis to elements that report information of the

same area (discovered through Latent Dirichlet Allocation - LDA).

Moreover, we add to the profile of a dataset in case of numbers the

average, the maximum, and the minimum value, as well as the stan-

dard deviation, while for string we consider the same aggregations

referred to the length of the item. It is taken into account also the

difference between the maximum and minimum value, for the actual

number or of the length of the string, along with the number of miss-

ing information or nulls. We focused on these since we stated that

such information would be a starting point for gathering the intrinsic

value of the data.

5.5.3 Similarity Matcher

The last component we analyze in this section is the similarity

matcher. It receives a profile and a threshold, and it checks whether

5.6 blocking application 113

PROFILER

RECORD 1 RECORD 4RECORD 2 RECORD 3

BUCKET
A

BUCKET
B

BUCKET
C

Figure 5.2: Profiler application as a pre-processing for blocking, to gather
to which block a record should be added.

such profile matches an already analyzed profile diverging by at most

the value of the threshold. Here, for such difference we just apply the

euclidean distance on the two feature vectors of the two profiles. Such

metric allows us not to focus on the measurement of the distance of

two vectors, which is out of the scope of this work, but concentrate

on the calculation of the distance, emphasizing on the application of

the similarities. We enabled the usage of several similarities, taken

from the Python library py_entitymatching, developed within the

context of the Magellan project [Kon+16]. The similarity we used

are: affine measure, Hamming distance and similarity, Levenshtein

distance and similarity, Jaro and Jaro Winkler measures, Needleman-

Wunsch measure, Smith-Waterman measure, Jaccard measure, cosine

similarity, overlap coefficient, Dice score, Monge-Elkan measure, and

exact match check.

5.6 blocking application
In this section, we will describe our intuition about the relationship

between the idea of profile over the tuples and the blocking technique.

As mentioned in the literature, blocking is a technique for reducing

the number of comparisons between records in the dataset that do

not match. Similarly, we can consider our approach as a blocking

technique, where each partition is a block, and we perform compar-

isons only among tuples within the same block (partition). However,

114 dbmatcher - giving value to the data

PROFILER

SIMILARITY 1

SIMILARITY 2

SIMILARITY 3

BUCKET
A

BUCKET
A

BUCKET
A

Figure 5.3: Profiler application as a post-processing for blocking, to gather
which similarity measure would be better to use.

such analysis would be a limitation, since we also propose a robust

framework to enhance the quality of the results while proposing the

user the similarity metric (or the combination of metrics) to use in

each block.

The application of the idea of the profile as a blocking technique

can be performed in two different ways. The first is basically a pre-

processing step for blocking, or better, the profile is the function for

performing blocking. As depicted in Figure 5.2, this approach implies

the computation of the profile for each record and hence assigning

the tuple to the block corresponding to the most similar profile. In

this way, we generate blocks with elements that share the same vector

of features (i.e., the same profile). This approach can be considered

similar to the application of a clustering algorithm over the dataset,

where each point is characterized by the profile it has. However, such

an approach may be highly costly since the profile can take a lot of

time and resources to be computed multiple times.

The other option we specify is the chance to apply this idea, and

hence compute the profile right after the blocking phase. Figure 5.3

graphically presents this post-processing, which enables the applica-

tion of the correct similarity metric to the available data. With this ap-

proach, instead of having a single similarity for all the blocks, we as-

sign a similarity to be used only and specifically on the set of records

present in a specific block.

5.7 preliminary results 115

Name Rows Attribute

PRODUCT 4587 5

BEER 7343 4

RESTAURANT 862 6

MUSIC 62831 8

Table 5.2: Datasets Characteristics.
The application of both elements combined, the pre-processing and

post-processing, leads to the privileges enabled by dbMatcher, the

framework we presented in the previous section. Hence, this ap-

proach would allow the data practitioners to reduce the number of

comparisons to perform by selecting the elements that together build

a subset that matches a similarity known to perform well with such

data. Then, it enables the application of such similarity to improve

the quality of the results.

5.7 preliminary results
In this section, we present the preliminary results we obtained dur-

ing the development of the dbMatcher framework. Since it is the

starting point of the system, the main focus of this section is the of-

fline phase, which aims at finding the similarity metric that gives the

best results for a dataset. Hence, for learning this information we

employed 4 datasets. Table 5.2 reports their information.

The PRODUCT dataset contains product obtained from Amazon and

Google, the BEER contains data scraped from the websites BeerAd-

vocate and RateBeer, while the RESTAURANT reports data taken from

Fodors and from Zagats, and the MUSIC records musical data from

iTunes and Amazon. These datasets where used in the experimental

evaluation of DeepMatcher [Mud+18]. This enables later a compari-

son of the results obtained with dbMatcher with those produced by

DeepMatcher for evaluating the accuracy of the matches.

For the first step towards the evaluation of our framework, we took

a set of similarity measures used in the literature [Kon+16], already

listed in Section 5.5.3, and we applied them to the different datasets

presented in Table 5.2. For each attribute of each of the datasets,

we compared the pairs of elements with these similarities and we

116 dbmatcher - giving value to the data

Threshold Precision Recall F1

0.1 0.101 1.000 0.184

0.2 0.101 1.000 0.184

0.3 0.101 1.000 0.184

0.4 0.101 0.999 0.184

0.5 0.100 0.978 0.182

0.6 0.100 0.920 0.181

0.7 0.144 0.616 0.234

0.8 0.331 0.281 0.304

0.9 0.514 0.125 0.201

Table 5.3: Results for Jaro similarity on PRODUCTS dataset over title at-
tribute.

counted those retrieved as matching by the similarity, for several

thresholds. We computed the confusion matrix of the obtained re-

sults comparing them against the available groundtruth.

As an example, we report in Table 5.3 the results of the Jaro simi-

larity applied over the title attribute of the PRODUCT dataset, tested

with multiple thresholds. Even if the length of the values in title

is diverse since there are short and long names, the results show

that the similarity metric produces the same results for the lowest

three thresholds (i.e., 0.1, 0.2, 0.3), while the values start changing

slowly from 0.4. The recall is obviously higher with lower thresholds

since it produces less false negative defining as a match every pair

that exceeds the threshold. On the other hand, the precision follows

an inverse behavior with the false positives that decrease limiting

the matching tuples. The table reports a low value for the F1 score,

for all the threshold. It means that the Jaro similarity metric for the

title column erroneously recognizes several matching pairs as non

matching and viceversa. This tuning part would be essential for then

proposing the correct similarity metric.

For these analyses, we focused on a single column, while the next

step would be to understand how to integrate multiple columns, and

subsequently how to manage their thresholds, eventually using dif-

ferent metrics for each column. A similar work has been performed

for defining the right configuration for Raha, an error detection sys-

tem [Mah+19].

Once we would be able to learn from the dataset the similarity met-

ric that gives the best results, we would run it extensively with extra

datasets, to then define the relation between the profile of the dataset

5.8 summary 117

and the similarity metric. These steps would create a solid base for

the offline phase. Afterward, for what concerns the online phase, we

need to test the partitioning algorithms, described in Section 5.5.1,

and perform a result comparison with other entity resolution frame-

works.

5.8 summary
In this chapter, we focused on the data itself, measuring the intrin-

sic value it has. In particular, we presented a new technique to avoid

the application of multiple similarity metrics altogether and the need

of involving in the process a domain expert to have a consult about

the similarity measure to apply. DbMatcher, the name of the frame-

work we propose, implies an offline phase that allows the model to

be trained. The system receives a known dataset, it computes the

profile for such records, and then all the considered similarity mea-

sures would be applied on it and then their performance would be

tested. Once the user has a new dataset, the system splits the dataset

and computes the profile for each portion, in such a way that the sim-

ilarity metric to apply to any portion would be done starting from

trained model, for improving the results of the performance. We pro-

posed three different metrics to partition the dataset and we present

our approach to compute the profile. Moreover, this framework is

an open system, where the user can plug her own partitioning or

profiling technique. Then, we showed a possible application of the

profile idea as a pre or post-processing technique for blocking, along

with the benefits that such framework brings to the results with an

experimental evaluation.

6 C O N C L U S I O N S

The quality of the data can be lead to serious consequences on the

results of data analyses, such as misleading interpretations or errors.

Moreover, we are in the Big Data era, and recent studies have shown

that mainly poor quality data can be found in data lakes and large

databases. Hence, given this need of qualitative data, the data qual-

ity topic has been studied deeply in the literature, in many different

subfields. Generally, existing approaches mainly focuses on the eval-

uation of a specific characteristic of a dataset or they aim at cleaning

it. Another field of the research presents methodologies that can be

applied primarily in ad-hoc solutions or with the help of domain

experts. However, existing approaches have not considered the ac-

tual usage of the data for computing the quality of the dataset itself.

Moreover, providing an evaluation or an estimation of the quality of

a dataset without knowing the need of the user that is using such

data is a complex task and may not be worthy enough for the final

user.

For these reasons, in this dissertation we studied new advance-

ments on the topic of data quality, exploiting the concept of contextu-

alizing the quality of a dataset. For this contextualization, we focused

on three main aspects: (i) we inserted the task into the loop of the

qualitative evaluation of the data, (ii) we highlighted the user need

for the task execution, and (iii) we used the data itself and leveraged

its intrinsic value to improve the performance of an entity resolution

task.

In the following, we present the key contributions presented in this

dissertation (Section 6.1) and the open challenges to which this work

can lead (Section 6.2).

119

120 conclusions

6.1 key contributions
In this dissertation, we studied the quality of the data by providing

a new point-of-view: its contextualization. For us, it means to take

into consideration other aspects other than the data. We focused on

the task, on the user need, and on the intrinsic value the data have,

and how each aspect can improve the performance of an application

and the quality of its results. Hence, in the following, we describe the

key contributions that each chapter of this dissertation brought.

6.1.1 Contextualizing the Task

We started our investigation from the contextualization of the task.

We extended the notion of data quality by adding the task for which

the data is about to be used. We consider the quality of a dataset

not as the degree of the noise in it, but as a task-dependent function

of the noise, presenting a framework that enables such computation,

which is, to the best of our knowledge, the first of this kind. The

framework we proposed is not bound to any specific data character-

istic to evaluate, nor to any task or query. Usually, the proposed data

quality metrics are static for a dataset, while we propose a dynamic

metric that can also provide an estimation for similar datasets. We

enabled this evaluation through the systematic introduction of differ-

ent kinds of noise, taken from real world errors that can be found in

the data. Then, we implemented different metrics, or we apply those

that are already known for the given task, to measure the distance in

the results that an error produces, and we finally provide a degree of

the impact of the given error. We evaluated the approach over real

and synthetic datasets, proving the advantages of the framework.

6.1.2 Contextualizing the User Needs

We continued the contextualization of the data quality by focusing

on the user needs, in a streaming scenario. In a distributed system

such as Apache Flink that can take a user job and deploy on a clus-

ter, we presented a framework that, given a goal defined by the user,

dynamically scales and allocates the resources to fulfill the goal. The

6.2 extensions and open problems 121

goal defined by the user can lead to a high throughput or a low la-

tency of the results, or the minimization of the cost of the allocated

resouces. To the best of our knowledge, this is the first work that

does that. In that chapter, we provided a formal definition of the

optimal solution for the user goal, being aware of usage metrics of

the cluster, the incoming data, and the given user job. We show that

the results of the framework outperforms the standard Apache Flink

implementation both with a static and a dynamic plan.

6.1.3 Contextualizing the Data

Finally, our last contribution contextualizes the quality of the data

by giving value to the data itself. We tackled the problem of entity

resolution with a new approach that takes into account the profile the

data has. We defined a profile as a description of the data, and we

used that definition to improve the quality of the matches find by the

framework we implemented. While other work consider a single sim-

ilarity metric and usually that is suggested by a domain expert, our

approach find the best one by computing the profile. We proposed

three algorithms to partition the data and find the best similarity for

each partition in order to maximize the output quality.

6.2 extensions and open problems
The studies conducted for this work along with the results obtained

prompted us with some additional avenues for future studies. Hence,

we describe the possible improvements and the challenges related to

each study.

6.2.1 Contextualizing the Task

Quantifying Data Quality. We demonstrate that our work on the task

contextualization, the fitness for use (Chapter 3), is able to measure

how the changes in the data affect the task results. Suppose that a

user is using our framework to select among two completely different

datasets the one that fits better her needs. This would not be the

122 conclusions

best choice, since we can have an indication, but we still have doubts

about the decision to take, and that would be also time consuming

since there is the need of running multiple times the framework on

two different dataset. For these reasons, we would like to push a bit

further and come up with a score that allows the user to compare two

datasets, to identify the dataset that would fit better the task the user

has in mind.

Data Cleaning. We mentioned that our framework gives a rank of

errors that need to be cleaned, based on the impact they have on the

performance of the task. However, the cleaning algorithm proposed

are many. Hence, to help the user in this decision process, we would

like to integrate already existent data cleaning algorithms to extend

our application for enabling an automatic cleaning of the data. More-

over, we are considering to focus mainly on the identification of the

portions of the dataset, i.e., subsets, that highly affect the results of

the intended task. We can do it by integrating a sampling method for

understanding the portion of the data that causes the higher degrada-

tion of the results. In this way, it would be easier and less expensive

to improve the quality of the desired outcomes.

6.2.2 Contextualizing the User Needs

Smart Cities. In Chapter 4, we discussed the fulfillment of the user

needs, by dynamically allocating the resources for a streaming job.

We can think of it as a recommender system somehow. Changing

scenario and moving to smart cities, the user may need, for example,

to have custom suggestions about the route to take to arrive home,

and what to visit in a new city. Hence, the management of traffic-

lights enables such analysis since it has already to shorten the time

spent in the traffic for a car, and it can suggest routes to match the

user goal, which can be, for example, to visit new streets or to take

the shortest path to save money. In addition, in the smart city it

can be integrated a system for helping the users in their walking

trips around the city, which can be for business, for visiting, or for

shopping, among the others.

Anomaly Detection. The user may have the need to analyze the data

it is processing. In particular, if we consider a streaming scenario,

6.2 extensions and open problems 123

one of the differences from a batch dataset is the ability to change

the state and value of an element. The detection of such changes and

their prediction is interesting from the research point of view, even

if there are already works on it. In particular, having dynamic data

may also change the definition of quality and change the user needs.

For example, some works are discarding elements into a clustering

algorithm based on their value. Then, the relevant values, those that

have to be kept, has to be dynamically considered according to these

changes.

6.2.3 Contextualizing the Data

Experimental Evaluating the Framework. Even if the framework is

consistent and the algorithms have been developed, it is missing an

experimental evaluation that proves the actual benefits of the system.

Hence, the first step is to test with the datasets already mentioned in

the preliminary results how the framework compares with the related

work.

Profiling Data Quality. So far, we have computed the profile of a

dataset only to gain information about the similarity metric to apply.

If we apply our idea to another task, we would provide a profile that

is not customized to the user needs since the user may be interested

in some data quality characteristics and provide some functions of

interest. Hence, there is the need for computing them efficiently and

effectively, which our approach is not yet able to perform. Another

challenge is the application of this process in a streaming scenario,

with data that changes in real time. Monitoring the elements of in-

terest for the user should not have any impact on the performance of

the actual streaming framework. Moreover, the analysis should take

into consideration the evolution of the data.

Data Lake Applications. Data Lakes are recently gaining a lot of

attention. A new application could be to find related datasets among

those available in the data lake. We may use our system to do it, but

it would be easier to move the concept of profile to a new system. In

general, similar datasets can be useful in multiple ways. For example,

we may need more data to train our machine learning algorithm or as

a source of extra information. This process would be a starting point

124 conclusions

for then enabling the application of succeeding operations, such as

entity linking, entity matching, or data integration among the others.

Moreover, if we consider entity matching, identifying similar dataset

(or portions of the dataset) allows a framework to understand which

type of algorithm to apply to data of the same type. This would

enable a parallelization and improvement of both the efficiency and

the effectiveness of entity matching systems.

A DATA C H A R A C T E R I S T I C
M E T R I C S

[Nulls] A common technique is to measure the change in the number

of nulls that are present in the results of the analytic task. To do

so, we count the number of nulls for each attribute in the results of

the original and the noisy datasets. Then, any distance metric can be

used, e.g., the Jaccard similarity, to quantify the variation.

[Entropy] An alternative to the measurement of the nulls is the en-

tropy [SW98] of each attribute, which is an indication of the infor-

mation that is present in the results for a specific attribute. Given an

attribute A and the set of the distinct values it contains A, the entropy

for A is:
H(A) = −

∑
ai∈A

p(ai)·log(p(ai))

where p(ai) is the probability of a value ai, which is the frequency

of the value ai over the cardinality of A. With the entropy for every

attribute for both the datasets, the distance is computed similarly to

nulls.

[Value Cardinality] A third approach considers the cardinality of

each attribute, i.e., the number of distinct values an attribute contains.

125

B B A S E L I N E VA L I DAT I O N

0 20 40 60 80 100
Noise (% of tuples)

10
1

10
1

10
3

10
5

D
iff

er
en

ce

ADULT - age - Mean

0 20 40 60 80 100
Noise (% of tuples)

10
1

10
3

10
5

10
7

10
9

10
11

D
iff

er
en

ce

ADULT - capital-loss - Max

0 20 40 60 80 100
Noise (% of tuples)

10
1

10
3

10
5

D
iff

er
en

ce

ADULT - fnlwgt - Min

Figure B.1: ADULT dataset: mean of age column (top), max of capital-loss
(middle), and min of fnlwgt (bottom).

127

128 baseline validation

0 20 40 60 80 100
Noise (% of tuples)

10
0

10
2

10
4

10
6

D
iff

er
en

ce

BANK - pdays - Mean

0 20 40 60 80 100
Noise (% of tuples)

10
0

10
1

10
2

10
3

10
4

10
5

D
iff

er
en

ce

BANK - campaign - Max

0 20 40 60 80 100
Noise (% of tuples)

10
2

10
5

10
8

10
11

D
iff

er
en

ce

BANK - balance - Min

Figure B.2: BANK dataset: mean of pdays (top), max of campaign (middle),
and min of balance (bottom).

baseline validation 129

Figure B.1 and Figure B.2 show that the analysis of the aggregations

conducted reports similar results for ADULT and BANK. The 3 aggrega-

tions result in an increment in the distance while adding more noise

into the data. MISSING and NULL do not alter much the results of the

computation of the mean (first plot of each figure) since removing

some values do not affect considerably the aggregation. For what

concern the maximum (middle plot) and minimum (bottom plot), we

have that there are some changes in the results. This is due to the ran-

domness of the generation of the noise. It may happen that the actual

maximum (minimum) value is affected by the noise, and hence it be-

comes a non-maximal (minimal) value, or that value is not changed.

The other errors are more effective: BASE CHANGE and EDIT change the

results of a factor up to 106 from the mean obtained with the original

dataset.

C G E N E R I C D I S TA N C E

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.5

0.6

0.7

0.8

0.9

1.0

G
en

er
ic

 D
is

ta
nc

e

Clustering - ADULT

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Classification - ADULT

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.0

0.2

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Regression - ADULT

Figure C.1: Generic distance over the ADULT dataset, for clustering (top plot),
classification (middle) and regression (bottom).

131

132 generic distance

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.95

0.96

0.97

0.98

0.99

1.00

G
en

er
ic

 D
is

ta
nc

e

Clustering - BANK

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Classification - BANK

0 10 20 30 40 50 60 70 80 90
Noise (% of tuples)

0.2

0.4

0.6

0.8

1.0

G
en

er
ic

 D
is

ta
nc

e

Regression - BANK

Figure C.2: Generic distance over the BANK dataset, for clustering (top plot),
classification (middle) and regression (bottom).

generic distance 133

Figure C.1 and Figure C.2 present the results for the ADULT and

the BANK dataset, while Table C.1 reports the sensitivity factor eval-

uated over our custom generic distance. In the ADULT dataset, we

see that NEGATION follows precisely the same parabolic behavior and

ABBREVIATION has the final peak (not shown in the figure) found with

the Fowlkes-Mallows score. Due to that pick, the ABBREVIATION lines

are both categorized as irregular, while the NEGATION lines are both

polynomial, with a slope of -1.08 in FM and -1.54 in the generic dis-

tance.

A similar behavior can be observed also for clustering on BANK,

where ABBREVIATION presents the same peak with a high noise per-

centage (both distances categorize the noise as irregular). All the

other noises are categorized by both distances as constants, meaning

that the effect on the results do not change when increasing the per-

centage of errors. We note a similar situation in the AIRLINES dataset

with NEGATION (polynomial slope of -1.92 for the task-specific distance

vs. -1.89 of the generic) and NULL (polynomial slope of -1.57 vs. -0.93

of the generic distance), whereas EDIT and BASE CHANGE follow an ir-

regular behavior as it was shown by the task-specific metric. Similar

conclusion can be observed for classification, where the impact of the

noises is higher in ADULT than in BANK. NULL, for example, has a linear

relationship with a slope of -0.17 for the task-specific distance in the

ADULT dataset, compared to -0.16 obtained with our generic distance,

while in the BANK dataset is categorized as constants by both. To con-

clude, the custom distance in more than 63% of the times leads to the

same results of the task specific one. Moreover, for classification this

percentage reaches his peak with ∼ 97% of correct results.

134 generic distance

G
en

er
ic

D
is

ta
nc

e
C

lu
st

er
in

g
C

la
ss

ifi
ca

ti
on

R
eg

re
ss

io
n

N
oi

se
Li

ne
ar

Po
ly

no
m

ia
l

ρ
C

la
ss

Li
ne

ar
Po

ly
no

m
ia

l
ρ

C
la

ss
Li

ne
ar

Po
ly

no
m

ia
l

ρ
C

la
ss

A
BB

R
EV

IA
TI

O
N

ADULT

(0
.5

2
,-

0
.3

0
)

(0
.7

0
,-

0
.9

3
)

−
0

.4
8

I
(0

.5
9
,-

0
.0

6
)

(0
.8

0
,-

0
.2

0
)

−
0

.9
0

*
C

(0
.1

9
,-

0
.2

1
)

(0
.3

8
,-

0
.9

6
)

−
0

.5
5

I
A

C
R

O
N

Y
M

(1
.0

0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.0
6
,-

0
.0

1
)

(0
.5

5
,-

0
.1

3
)

−
0

.2
1

C
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
BA

SE
C

H
A

N
G

E
(0

.1
9
,-

0
.1

0
)

(0
.3

7
,-

0
.4

4
)

−
1

.0
0

*
C

(0
.1

6
,-

0
.0

3
)

(0
.6

3
,-

0
.1

9
)

−
0

.3
1

C
(0

.2
0
,-

0
.2

2
)

(0
.4

0
,-

0
.9

8
)

−
0

.4
7

I

ED
IT

(0
.1

8
,-

0
.0

9
)

(0
.3

7
,-

0
.4

4
)

0
.2
4

I
(0

.7
2
,-

0
.1

6
)

(0
.7
8,

-0
.3
3)

−
0

.9
9

*
P

(0
.1

9
,-

0
.2

0
)

(0
.4

1
,-

0
.9

8
)

−
0

.2
2

I
M

IS
SI

N
G

IN
FO

–
–

–
–

(1
.0
0,

-0
.9
9)

(1
.0

0
,-

1
.0

8
)

−
1

.0
0

*
L

(0
.6

8
,-

0
.6

3
)

(0
.7
5,

-1
.3
7)

−
1

.0
0

*
P

N
EG

A
T

IO
N

(0
.0

0
,0

.0
0

)
(0

.8
3,

-1
.5
4)

−
0

.0
3

P
(0

.0
4
,-

0
.0

1
)

(0
.8

4
,-

0
.2

2
)

−
0

.1
7

C
(0

.0
0
,0

.0
3
)

(0
.5

4
,-

1
.6

7
)

−
0

.0
4

I
N

U
LL

(0
.2

9
,-

0
.1

9
)

(0
.8
4,

-1
.1
4)

−
0

.2
7

P
(0

.9
2,

-0
.1
8)

(0
.9

6
,-

0
.3

0
)

−
0

.9
7

*
L

(0
.2

1
,-

0
.2

2
)

(0
.3

9
,-

0
.9

7
)

−
0

.6
9

*
I

PE
R

M
U

TA
TI

O
N

(0
.7
6,

-0
.3
0)

(0
.9

1
,-

0
.7

7
)

−
1

.0
0

*
L

(0
.4

7
,-

0
.0

5
)

(0
.5

9
,-

0
.1

5
)

−
0

.9
7

*
C

(0
.2

0
,-

0
.2

1
)

(0
.3

8
,-

0
.9

4
)

−
0

.9
4

*
C

SC
A

LE
(0

.4
7
,-

0
.1

9
)

(0
.5

9
,-

0
.5

3
)

−
1

.0
0

*
C

(0
.5

0
,-

0
.0

6
)

(0
.8

5
,-

0
.2

2
)

−
0

.7
2

*
C

(0
.2

0
,-

0
.2

2
)

(0
.3

9
,-

0
.9

7
)

−
0

.5
5

I
SH

U
FF

LI
N

G
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.2
2
,-

0
.0

1
)

(0
.3

8
,-

0
.0

4
)

−
0

.6
2

*
C

(1
.0

0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C

A
BB

R
EV

IA
T

IO
N

BANK

(0
.4

0
,-

0
.1

6
)

(0
.6

2
,0

.2
5
)

−
0

.9
9

*
C

(0
.7

9
,-

0
.0

5
)

(0
.8

9
,-

0
.1

0
)

−
1

.0
0

*
C

(0
.0

3
,-

0
.0

5
)

(0
.3

1
,-

0
.5

7
)

0
.1
1

I
A

C
R

O
N

Y
M

(1
.0

0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.1
0
,-

0
.0

1
)

(0
.7

5
,-

0
.1

0
)

−
0

.2
4

C
(0

.0
5
,-

0
.0

8
)

(0
.4

6
,-

0
.8

6
)

−
0

.2
5

I
BA

SE
C

H
A

N
G

E
(0

.1
8
,-

0
.0

2
)

(0
.3

6
,-

0
.0

8
)

0
.3
2

C
(0

.0
2
,-

0
.0

0
)

(0
.7

6
,-

0
.1

2
)

−
0

.0
3

C
(0

.4
6
,-

0
.2

1
)

(0
.5

1
,-

0
.4

6
)

−
0

.6
3

*
I

ED
IT

(0
.1

7
,-

0
.0

2
)

(0
.3

7
,-

0
.0

8
)

0
.2
7

C
(0

.1
9
,-

0
.0

3
)

(0
.3

6
,-

0
.1

3
)

−
0

.5
0

C
(0

.4
0
,-

0
.2

3
)

(0
.5

0
,-

0
.6

5
)

−
0

.7
4

*
I

M
IS

SI
N

G
IN

FO
–

–
–

–
(1

.0
0,

-0
.9
9)

(1
.0

0
,-

1
.0

3
)

−
1

.0
0

*
L

(0
.9
0,

-0
.8
0)

(0
.9

3
,-

1
.3

5
)

−
1

.0
0

*
L

N
EG

A
T

IO
N

(0
.0

4
,-

0
.0

1
)

(0
.9

1
,-

0
.1

6
)

−
0

.2
3

C
(0

.0
7
,-

0
.0

1
)

(0
.7

3
,-

0
.1

0
)

−
0

.1
6

C
(0

.3
6
,-

0
.1

8
)

(0
.4

8
,-

0
.5

3
)

−
0

.5
3

I
N

U
LL

(0
.9

6
,-

0
.0

5
)

(0
.9

8
,-

0
.0

8
)

−
0

.9
9

*
C

(0
.8

2
,-

0
.0

7
)

(0
.9

2
,-

0
.1

6
)

−
0

.9
6

*
C

(0
.0

3
,-

0
.0

5
)

(0
.4

2
,-

0
.6

8
)

−
0

.0
8

I
PE

R
M

U
TA

TI
O

N
(0

.3
3
,-

0
.0

2
)

(0
.7

4
,-

0
.1

1
)

−
0

.2
6

C
(0

.5
3
,-

0
.0

3
)

(0
.7

6
,-

0
.1

0
)

−
0

.9
9

*
C

(0
.1

5
,-

0
.1

0
)

(0
.3

8
,-

0
.5

5
)

−
0

.0
6

I
SC

A
LE

(0
.0

0
,-

0
.0

0
)

(0
.2

8
,-

0
.0

7
)

0
.4
7

C
(0

.2
4
,-

0
.0

2
)

(0
.6

7
,-

0
.1

3
)

−
0

.2
7

C
(0

.2
4
,-

0
.1

3
)

(0
.4

7
,-

0
.6

0
)

−
0

.1
0

I
SH

U
FF

LI
N

G
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.1
7
,-

0
.0

1
)

(0
.3

4
,-

0
.0

3
)

0
.0
5

C
(0

.1
8
,-

0
.1

5
)

(0
.2

6
,-

0
.5

0
)

−
0

.5
1

I

A
BB

R
EV

IA
T

IO
N

AIRLINES

(0
.8
7,

-0
.5
4)

(0
.9

1
,-

0
.9

9
)

−
1

.0
0

*
L

(0
.4

7
,-

0
.3

2
)

(0
.8
9,

-1
.4
3)

−
0

.7
0

*
P

(0
.1

6
,-

0
.1

8
)

(0
.3

5
,-

0
.8

8
)

0
.5
0

I
A

C
R

O
N

Y
M

(1
.0

0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.0
4
,-

0
.0

0
)

(0
.4

5
,-

0
.0

6
)

−
0

.1
7

C
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
BA

SE
C

H
A

N
G

E
(0

.1
7
,-

0
.2

3
)

(0
.3

6
,-

1
.0

8
)

0
.4
4

I
(0

.0
1
,-

0
.0

4
)

(0
.9
9,

-1
.4
5)

−
0

.1
4

P
(0

.1
8
,-

0
.1

9
)

(0
.3

6
,-

0
.8

8
)

0
.1
6

I

ED
IT

(0
.1

7
,0

.1
2
)

(0
.3

6
,0

.5
7
)

0
.0
4

I
(0

.8
9,

-0
.7
0)

(0
.9

9
,-

1
.5

6
)

−
0

.9
9

*
L

(0
.2

4
,-

0
.2

2
)

(0
.4

5
,-

0
.9

3
)

−
0

.8
9

*
I

M
IS

SI
N

G
IN

FO
–

–
–

–
(1

.0
0,

-1
.0
2)

(1
.0

0
,-

1
.2

3
)

−
1

.0
0

*
L

(0
.7

2
,-

0
.6

5
)

(0
.7
8,

-1
.3
4)

−
1

.0
0

*
P

N
EG

A
T

IO
N

(0
.0

0
,-

0
.0

3
)

(0
.8
9,

-1
.8
9)

−
0

.1
4

P
(0

.0
2
,-

0
.0

4
)

(0
.9
9,

-1
.2
3)

−
0

.1
9

P
(0

.0
0
,0

.0
3
)

(0
.5

2
,-

1
.5

3
)

−
0

.1
4

I
N

U
LL

(0
.8
8,

-0
.5
7)

(0
.9

1
,-

0
.9

3
)

−
0

.9
9

*
L

(0
.9
4,

-0
.7
4)

(1
.0

0
,-

1
.3

9
)

−
1

.0
0

*
L

(0
.1

2
,-

0
.1

5
)

(0
.3

8
,-

0
.9

7
)

0
.4
8

I
PE

R
M

U
TA

TI
O

N
(0

.0
0
,0

.0
1
)

(0
.0

3
,0

.2
6
)

−
0

.3
4

I
(0

.9
3,

-0
.5
7)

(1
.0

0
,-

1
.1

4
)

−
1

.0
0

*
L

(0
.1

8
,-

0
.1

9
)

(0
.3

7
,-

0
.8

8
)

0
.0
0

I
SC

A
LE

(0
.0

8
,-

0
.1

6
)

(0
.5

4
,-

1
.5

0
)

−
0

.0
4

I
(0

.6
2
,-

0
.4

5
)

(1
.0
0,

-1
.7
2)

−
0

.7
0

*
P

(0
.1

9
,-

0
.2

0
)

(0
.3

8
,-

0
.8

9
)

−
0

.7
1

*
I

SH
U

FF
LI

N
G

(1
.0

0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C
(0

.1
4
,-

0
.0

0
)

(0
.3

2
,-

0
.0

2
)

−
0

.1
9

C
(1

.0
0
,0

.0
0
)

(1
.0

0
,0

.0
0
)

0
.0
0

C

Table C.1: The Sensitivity Factor table reports the tuple (score, slope) for the
Linear and Polynomial relations, the Spearman correlation (ρ),
and the Class that each noise follows (L=linear, P=polynomial,
C=constant, and I=irregular). Each value is measured with the
generic distance we implemented.

B I B L I O G R A P H Y

[Abe+16a] Z. Abedjan et al. “Detecting Data Errors: Where are we

and what needs to be done?” In: PVLDB 9.12 (2016) (cit.

on pp. 6, 38).

[Abe+16b] Ziawasch Abedjan et al. “Detecting Data Errors: Where

are we and what needs to be done?” In: PVLDB (2016),

p. 993 (cit. on pp. 4, 5).

[Abe+18] Z. Abedjan et al. Data Profiling. Synthesis Lectures on

Data Management. Morgan & Claypool Publishers, 2018.

isbn: 9781681734477. url: https://books.google.it/

books?id=LEF7DwAAQBAJ (cit. on p. 112).

[Abo+99] Gregory D Abowd et al. “Towards a better understand-

ing of context and context-awareness”. In: Handheld and

ubiquitous computing. Springer. 1999, pp. 304–307 (cit. on

p. 26).

[AGN15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann.

“Profiling relational data: a survey”. In: VLDB J. 24.4

(2015), pp. 557–581 (cit. on pp. 2, 3, 37).

[Apa19a] Apache Flink Team. Apache Flink. 2019. url: http : / /

flink.apache.org (cit. on p. 39).

[Apa19b] Apache Heron Team. Apache Heron. 2019. url: http://

heronstreaming.io (cit. on pp. 7, 39).

[Apa19c] Apache Lucene Team. Apache Lucene. 2019. url: http:

//lucene.apache.org (cit. on p. 92).

[Apa19d] Apache Spark Team. Apache Spark. 2019. url: http://

spark.apache.org/streaming/ (cit. on p. 39).

[Apa19e] Apache Storm Team. Apache Storm. 2019. url: http://

storm.apache.org (cit. on p. 39).

135

https://books.google.it/books?id=LEF7DwAAQBAJ
https://books.google.it/books?id=LEF7DwAAQBAJ
http://flink.apache.org
http://flink.apache.org
http://heronstreaming.io
http://heronstreaming.io
http://lucene.apache.org
http://lucene.apache.org
http://spark.apache.org/streaming/
http://spark.apache.org/streaming/
http://storm.apache.org
http://storm.apache.org

136 bibliography

[ARC16] Cristian Axenie, Christoph Richter, and Jörg Conradt. “A

Self-Synthesis Approach to Perceptual Learning for Mul-

tisensory Fusion in Robotics”. In: Sensors 16.10 (2016),

p. 1751 (cit. on p. 96).

[Aro+15] Patricia C Arocena et al. “Messing up with BART: error

generation for evaluating data-cleaning algorithms”. In:

VLDB 9.2 (2015) (cit. on pp. 6, 57).

[ASN14] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann.

“DFD: Efficient Functional Dependency Discovery”. In:

CIKM. 2014, pp. 949–958 (cit. on p. 37).

[ATV08] Bogdan Alexe, Wang Chiew Tan, and Yannis Velegrakis.

“STBenchmark: towards a benchmark for mapping sys-

tems”. In: PVLDB 1.1 (2008), p. 230 (cit. on p. 57).

[Bat+08] Carlo Batini et al. “A Comprehensive Data Quality Method-

ology for Web and Structured Data”. In: IJICA. Vol. 1. 3.

2008, pp. 205–218 (cit. on pp. 2, 3, 36).

[Bat+09] Carlo Batini et al. “Methodologies for data quality assess-

ment and improvement”. In: CSUR 41.3 (2009), p. 16 (cit.

on pp. 2, 3, 13, 32, 35).

[Bat+15] Carlo Batini et al. “From data quality to big data quality”.

In: JDM 26.1 (2015), pp. 60–82 (cit. on pp. 1, 2, 37, 38, 66).

[Bau+07] Jana Bauckmann et al. “Efficiently Detecting Inclusion

Dependencies”. In: ICDE. 2007, pp. 1448–1450 (cit. on

p. 23).

[Bau+12] Jana Bauckmann et al. “Discovering conditional inclu-

sion dependencies”. In: CIKM. 2012, pp. 2094–2098 (cit.

on pp. 18, 23, 37).

[BC04] Leopoldo Bertossi and Jan Chomicki. “Query answering

in inconsistent databases”. In: Logics for emerging applica-

tions of databases. Springer, 2004, pp. 43–83 (cit. on pp. 38,

52).

[Ben+09] Omar Benjelloun et al. “Swoosh: a generic approach to

entity resolution”. In: VLDBJ 18.1 (2009), pp. 255–276 (cit.

on p. 43).

bibliography 137

[Ber+15] Moria Bergman et al. “Query-Oriented Data Cleaning

with Oracles”. In: SIGMOD. 2015, pp. 1199–1214 (cit. on

pp. 3, 21, 22, 38).

[Ber11] Leopoldo E. Bertossi. Database Repairing and Consistent

Query Answering. Morgan & Claypool Publishers, 2011

(cit. on p. 14).

[BG07] Indrajit Bhattacharya and Lise Getoor. “Collective entity

resolution in relational data”. In: ACM Transactions on

Knowledge Discovery from Data (TKDD) 1.1 (2007), p. 5 (cit.

on p. 45).

[Boh+05] Philip Bohannon et al. “A cost-based model and effective

heuristic for repairing constraints by value modification”.

In: Proceedings of the 2005 ACM SIGMOD international con-

ference on Management of data. ACM. 2005, pp. 143–154

(cit. on pp. 16, 17).

[Bol+07a] Cristiana Bolchini et al. “A data-oriented survey of con-

text models”. In: ACM Sigmod Record 36.4 (2007), pp. 19–

26 (cit. on p. 26).

[Bol+07b] Cristiana Bolchini et al. “Using context for the extrac-

tion of relational views”. In: Modeling and Using Context.

Springer, 2007, pp. 108–121 (cit. on p. 27).

[Bol+09] Cristiana Bolchini et al. “And what can context do for

data?” In: Communications of the ACM 52.11 (2009), pp. 136–

140 (cit. on pp. 26, 27, 31).

[BP85] Donald P Ballou and Harold L Pazer. “Modeling data

and process quality in multi-input, multi-output infor-

mation systems”. In: Management science 31.2 (1985), pp. 150–

162 (cit. on p. 16).

[Bre01] Leo Breiman. “Random forests”. In: Machine learning 45.1

(2001), pp. 5–32 (cit. on p. 63).

[BRJ11] Leopoldo Bertossi, Flavio Rizzolo, and Lei Jiang. “Data

quality is context dependent”. In: Enabling Real-Time Busi-

ness Intelligence. Springer, 2011, pp. 52–67 (cit. on p. 30).

[BS06] Carlo Batini and Monica Scannapieco. Data Quality: Con-

cepts, Methodologies and Techniques. Springer, 2006 (cit. on

pp. 3, 4, 15, 16, 36).

138 bibliography

[BSB10] Daniele Barone, Fabio Stella, and Carlo Batini. “Depen-

dency discovery in data quality”. In: Advanced Informa-

tion Systems Engineering. Springer. 2010, pp. 53–67 (cit.

on p. 30).

[BSM03] Matthew Bovee, Rajendra P Srivastava, and Brenda Mak.

“A conceptual framework and belief-function approach

to assessing overall information quality”. In: International

journal of intelligent systems 18.1 (2003), pp. 51–74 (cit. on

pp. 20, 22).

[BST04] Cristiana Bolchini, Fabio A Schreiber, and Letizia Tanca.

“A context-aware methodology for very small data base

design”. In: ACM SIGMOD Record 33.1 (2004), pp. 71–76

(cit. on pp. 3, 26).

[Cap+18] Cinzia Cappiello et al. “Validating Data Quality Actions

in Scoring Processes”. In: JDIQ 9.2 (2018), p. 11 (cit. on

p. 38).

[Cas13] Federico Castanedo. “A review of data fusion techniques”.

In: The Scientific World Journal 2013 (2013) (cit. on p. 19).

[CFY13] Yang Cao, Wenfei Fan, and Wenyuan Yu. “Determining

the relative accuracy of attributes”. In: Proceedings of the

2013 ACM SIGMOD International Conference on Manage-

ment of Data. ACM. 2013, pp. 565–576 (cit. on pp. 16, 19).

[CGY] Barbara Catania, Giovanna Guerrini, and Beyza Yaman.

“Context-Dependent Quality-Aware Source Selection for

Live Queries on Linked Data”. In: Update 2 (), p. 5 (cit. on

p. 31).

[Chi+16] Sanket Chintapalli et al. “Benchmarking Streaming Com-

putation Engines: Storm, Flink and Spark Streaming”. In:

IPDPS. 2016, pp. 1789–1792 (cit. on p. 39).

[Chr+19] Vassilis Christophides et al. “End-to-End Entity Resolu-

tion for Big Data: A Survey”. In: arXiv preprint arXiv:1905.06397

(2019) (cit. on p. 42).

[Chu+15] Xu Chu et al. “KATARA: A Data Cleaning System Pow-

ered by Knowledge Bases and Crowdsourcing”. In: SIG-

MOD. 2015, pp. 1247–1261 (cit. on pp. 3, 16, 38).

bibliography 139

[CM08] Fei Chiang and Renée J. Miller. “Discovering data quality

rules”. In: PVLDB 1.1 (2008), pp. 1166–1177 (cit. on pp. 3,

4, 16, 18).

[Coc+01] Munir Cochinwala et al. “Efficient data reconciliation”.

In: Information Sciences 137.1-4 (2001), pp. 1–15 (cit. on

p. 43).

[Con+07] Gao Cong et al. “Improving Data Quality: Consistency

and Accuracy”. In: PVLDB. 2007, pp. 315–326 (cit. on

pp. 3, 4, 16, 18, 23, 37).

[Cou+05] Joëlle Coutaz et al. “Context is key”. In: Communications

of the ACM 48.3 (2005), pp. 49–53 (cit. on p. 27).

[CT05] Jan Chomicki and David Toman. “Temporal databases”.

In: Foundations of Artificial Intelligence 1 (2005), pp. 429–

467 (cit. on p. 23).

[CZ15] Li Cai and Yangyong Zhu. “The challenges of data qual-

ity and data quality assessment in the big data era”. In:

DSJ 14 (2015) (cit. on p. 37).

[DBB06] Fabrizio De Amicis, Daniele Barone, and Carlo Batini.

“An Analytical Framework to Analyze Dependencies Among

Data Quality Dimensions.” In: ICIQ. 2006, pp. 369–383

(cit. on pp. 28, 29).

[DN11] Uwe Draisbach and Felix Naumann. “A generalization

of blocking and windowing algorithms for duplicate de-

tection”. In: 2011 International Conference on Data and Knowl-

edge Engineering (ICDKE). IEEE. 2011, pp. 18–24 (cit. on

p. 44).

[Eck02] Wayne W Eckerson. “Data quality and the bottom line:

Achieving business success through a commitment to

high quality data”. In: The Data Warehousing Institute (2002),

pp. 1–36 (cit. on p. 1).

[EIV06] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vas-

silios S Verykios. “Duplicate record detection: A survey”.

In: IEEE Transactions on knowledge and data engineering

19.1 (2006), pp. 1–16 (cit. on p. 43).

140 bibliography

[EIV07] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vas-

silios S Verykios. “Duplicate record detection: A survey”.

In: Knowledge and Data Engineering, IEEE Transactions on

19.1 (2007), pp. 1–16 (cit. on p. 24).

[Fan+08] Wenfei Fan et al. “Conditional functional dependencies

for capturing data inconsistencies”. In: ACM Transactions

on Database Systems (TODS) 33.2 (2008), p. 6 (cit. on pp. 16,

18).

[Fan+09] Wenfei Fan et al. “Reasoning about record matching rules”.

In: PVLDB 2.1 (2009), pp. 407–418 (cit. on p. 42).

[Fan+11] Wenfei Fan et al. “Discovering conditional functional de-

pendencies”. In: Knowledge and Data Engineering, IEEE

Transactions on 23.5 (2011), pp. 683–698 (cit. on pp. 16,

18).

[Fan+14] Wenfei Fan et al. “Conflict resolution with data currency

and consistency”. In: Journal of Data and Information Qual-

ity (JDIQ) 5.1-2 (2014), p. 6 (cit. on p. 23).

[Fan15] Wenfei Fan. “Data Quality: From Theory to Practice”. In:

SIGMOD Rec. 44.3 (Dec. 2015), pp. 7–18 (cit. on pp. 14,

15).

[FG10a] Wenfei Fan and Floris Geerts. “Capturing missing tuples

and missing values”. In: PODS. 2010, pp. 169–178 (cit. on

pp. 3, 37).

[FG10b] Wenfei Fan and Floris Geerts. “Capturing missing tuples

and missing values”. In: Proceedings of the twenty-ninth

ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems. ACM. 2010, pp. 169–178 (cit. on p. 21).

[FG10c] Wenfei Fan and Floris Geerts. “Relative information com-

pleteness”. In: ACM Transactions on Database Systems (TODS)

35.4 (2010), p. 27 (cit. on p. 21).

[FG12] Wenfei Fan and Floris Geerts. Foundations of Data Qual-

ity Management. Morgan & Claypool Publishers, 2012 (cit.

on pp. 1, 13–15, 23, 24).

bibliography 141

[FGJ09] Wenfei Fan, Floris Geerts, and Xibei Jia. “Conditional

dependencies: A principled approach to improving data

quality”. In: Dataspace: The Final Frontier. Springer, 2009,

pp. 8–20 (cit. on pp. 16, 18).

[FGW11] Wenfei Fan, Floris Geerts, and Jef Wijsen. “Determining

the currency of data”. In: PODS. 2011, pp. 71–82 (cit. on

pp. 22, 23, 37).

[Flo+17] Avrilia Floratou et al. “Dhalion: Self-Regulating Stream

Processing in Heron”. In: PVLDB 10.12 (2017), pp. 1825–

1836 (cit. on pp. 2, 7, 39).

[FM83] Edward B Fowlkes and Colin L Mallows. “A method for

comparing two hierarchical clusterings”. In: JASA 78.383

(1983), pp. 553, 569 (cit. on pp. 5, 59, 73).

[FS69] Ivan P Fellegi and Alan B Sunter. “A theory for record

linkage”. In: Journal of the American Statistical Association

64.328 (1969), pp. 1183–1210 (cit. on pp. 43, 44).

[Fu+15] Tom Z. J. Fu et al. “DRS: Dynamic Resource Scheduling

for Real-Time Analytics over Fast Streams”. In: ICDCS.

2015, pp. 411–420 (cit. on p. 41).

[Gia+10] Fosca Giannotti et al. “Mobility data mining: discover-

ing movement patterns from trajectory data”. In: Pro-

ceedings of the Second International Workshop on Computa-

tional Transportation Science, San Jose, CA, USA, November

2, 2010. Proceedings. 2010, pp. 7–10 (cit. on p. 2).

[GKS11] Lukasz Golab, Flip Korn, and Divesh Srivastava. “Effi-

cient and Effective Analysis of Data Quality using Pat-

tern Tableaux.” In: IEEE Data Eng. Bull. 34.3 (2011), pp. 26–

33 (cit. on p. 2).

[GM13] Stephen C Guptill and Joel L Morrison. Elements of spatial

data quality. Elsevier, 2013 (cit. on p. 25).

[Goo80] Michael F Goodchild. “Fractals and the accuracy of geo-

graphical measures”. In: Journal of the International Asso-

ciation for Mathematical Geology 12.2 (1980), pp. 85–98 (cit.

on p. 25).

142 bibliography

[Hal01] Alon Y Halevy. “Answering queries using views: A sur-

vey”. In: The VLDB Journal 10.4 (2001), pp. 270–294 (cit.

on p. 30).

[Han+14] Zheng Han et al. “Elastic Allocator: An Adaptive Task

Scheduler for Streaming Query in the Cloud”. In: SOSE.

2014, pp. 284–289 (cit. on pp. 2, 7, 41).

[Her+11] Herodotos Herodotou et al. “Starfish: A Self-tuning Sys-

tem for Big Data Analytics”. In: CIDR. 2011, pp. 261–272

(cit. on p. 40).

[Hin+11] Benjamin Hindman et al. “Mesos: A Platform for Fine-

Grained Resource Sharing in the Data Center”. In: USENIX

NSDI. 2011 (cit. on p. 39).

[HS95] Mauricio A Hernández and Salvatore J Stolfo. “The merge/purge

problem for large databases”. In: ACM Sigmod Record.

Vol. 24. 2. ACM. 1995, pp. 127–138 (cit. on p. 44).

[IC+15] Ihab F Ilyas, Xu Chu, et al. “Trends in cleaning rela-

tional data: Consistency and deduplication”. In: Founda-

tions and Trends® in Databases 5.4 (2015), pp. 281–393 (cit.

on p. 1).

[IPC15] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaud-

huri. “Overview of data exploration techniques”. In: SIG-

MOD. ACM. 2015, pp. 277–281 (cit. on p. 66).

[Jar+13] Matthias Jarke et al. Fundamentals of data warehouses. Springer

Science & Business Media, 2013 (cit. on p. 20).

[JGP15] Manas Joglekar, Hector Garcia-Molina, and Aditya G.

Parameswaran. “Smart Drill-Down: A New Data Explo-

ration Operator”. In: PVLDB 8.12 (2015), pp. 1928–1931.

doi: 10.14778/2824032.2824103. url: http://www.vldb.

org/pvldb/vol8/p1928-joglekar.pdf (cit. on p. 112).

[KBI18] Shrinu Kushagra, Shai Ben-David, and Ihab Ilyas. “Semi-

supervised clustering for de-duplication”. In: arXiv preprint

arXiv:1810.04361 (2018) (cit. on p. 9).

[Kho+17] Alireza Khoshkbarforoushha et al. “Flower: A Data Ana-

lytics Flow Elasticity Manager”. In: PVLDB 10.12 (2017),

pp. 1893–1896 (cit. on p. 41).

https://doi.org/10.14778/2824032.2824103
http://www.vldb.org/pvldb/vol8/p1928-joglekar.pdf
http://www.vldb.org/pvldb/vol8/p1928-joglekar.pdf

bibliography 143

[KKR17] Alireza Khoshkbarforoushha, Alireza Khosravian, and

Rajiv Ranjan. “Elasticity management of Streaming Data

Analytics Flows on clouds”. In: JCSS 89 (2017), pp. 24–40

(cit. on p. 41).

[Kon+16] Pradap Konda et al. “Magellan: Toward Building Entity

Matching Management Systems over Data Science Stacks”.

In: PVLDB 9.13 (2016), pp. 1581–1584 (cit. on pp. 46, 113,

115).

[KPN15] Sebastian Kruse, Paolo Papotti, and Felix Naumann. “Es-

timating Data Integration and Cleaning Effort.” In: EDBT.

2015, pp. 61–72 (cit. on p. 4).

[KR10] Hanna Köpcke and Erhard Rahm. “Frameworks for en-

tity matching: A comparison”. In: Data & Knowledge En-

gineering 69.2 (2010), pp. 197–210 (cit. on p. 42).

[Kri+16] Sanjay Krishnan et al. “ActiveClean: interactive data clean-

ing for statistical modeling”. In: PVLDB 9.12 (2016), pp. 948–

959 (cit. on pp. 6, 38).

[Kri+17] S. Krishnan et al. “BoostClean: Automated Error Detec-

tion and Repair for Machine Learning”. In: CoRR (2017)

(cit. on p. 6).

[KS98] Beverly K Kahn and Diane M Strong. “Product and Ser-

vice Performance Model for Information Quality: An Up-

date.” In: IQ. 1998, pp. 102–115 (cit. on p. 35).

[KTR10] Hanna Köpcke, Andreas Thor, and Erhard Rahm. “Eval-

uation of entity resolution approaches on real-world match

problems”. In: Proceedings of the VLDB Endowment 3.1-2

(2010), pp. 484–493 (cit. on p. 24).

[Kuh55] Harold W Kuhn. “The Hungarian method for the assign-

ment problem”. In: NRL 2.1-2 (1955), pp. 83–97 (cit. on

p. 5).

[KW03a] Henryk Krawczyk and Bogdan Wiszniewski. “Digital doc-

ument life cycle development”. In: Proceedings of the 1st

international symposium on Information and communication

technologies. Trinity College Dublin. 2003, pp. 255–260 (cit.

on p. 25).

144 bibliography

[KW03b] Henryk Krawczyk and Bogdan Wiszniewski. “Visual GQM

approach to quality-driven development of electronic doc-

uments”. In: Proceedings of the Second International Work-

shop on Web Document Analysis. 2003, pp. 43–46 (cit. on

p. 25).

[LC02] Liping Liu and Lauren Chi. “Evolutional Data Quality: A

Theory-Specific View.” In: IQ. 2002, pp. 292–304 (cit. on

p. 26).

[Lee+02] Yang W. Lee et al. “AIMQ: a methodology for informa-

tion quality assessment”. In: Information & Management

40.2 (2002), pp. 133–146 (cit. on pp. 2, 15, 35).

[Lee+09] Yang W Lee et al. Journey to data quality. The MIT Press,

2009 (cit. on p. 13).

[Li+12] Xian Li et al. “Truth finding on the deep web: is the prob-

lem solved?” In: Proceedings of the VLDB Endowment 6.2

(2012), pp. 97–108 (cit. on p. 19).

[Lin91] Jianhua Lin. “Divergence measures based on the Shan-

non entropy”. In: Information Theory, IEEE Transactions on

37.1 (1991), pp. 145–151 (cit. on p. 29).

[Liv+19] Ester Livshits et al. “Principles of Progress Indicators for

Database Repairing”. In: arXiv preprint arXiv:1904.06492

(2019) (cit. on p. 4).

[LN16] Philipp Langer and Felix Naumann. “Efficient order de-

pendency detection”. In: VLDB J. 25.2 (2016), pp. 223–241

(cit. on p. 63).

[LÖ09] Ling Liu and M. Tamer Özsu, eds. Encyclopedia of Database

Systems. Springer, 2009 (cit. on p. 24).

[Lom+17] Federico Lombardi et al. “Elastic symbiotic scaling of op-

erators and resources in stream processing systems”. In:

IEEE Transactions on Parallel and Distributed Systems 29.3

(2017), pp. 572–585 (cit. on p. 39).

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman.

Mining of Massive Datasets, 2nd Ed. Cambridge University

Press, 2014 (cit. on p. 2).

bibliography 145

[LSB15] Nuno Laranjeiro, Seyma Nur Soydemir, and Jorge Bernardino.

“A Survey on Data Quality: Classifying Poor Data”. In:

Dependable Computing (PRDC), 2015 IEEE 21st Pacific Rim

International Symposium on. IEEE. 2015, pp. 179–188 (cit.

on pp. 13, 24).

[MA19] Mohammad Mahdavi and Ziawasch Abedjan. “REDS: Es-

timating the Performance of Error Detection Strategies

Based on Dirtiness Profiles”. In: SSDBM. 2019, pp. 193–

196 (cit. on p. 2).

[Mah+19] Mohammad Mahdavi et al. “Raha: A configuration-free

error detection system”. In: Proceedings of the 2019 Inter-

national Conference on Management of Data. ACM. 2019,

pp. 865–882 (cit. on pp. 47, 116).

[Mer+16] Jorge Merino et al. “A data quality in use model for big

data”. In: FGCS 63 (2016), pp. 123–130 (cit. on p. 38).

[MLC11] Sergio Moro, Raul Laureano, and Paulo Cortez. “Using

data mining for bank direct marketing: An application of

the crisp-dm methodology”. In: ESM. 2011, pp. 117–121

(cit. on p. 64).

[Mot+17] Davide Mottin et al. “New trends on exploratory meth-

ods for data analytics”. In: Proceedings of the VLDB En-

dowment 10.12 (2017), pp. 1977–1980 (cit. on p. 66).

[Mud+18] Sidharth Mudgal et al. “Deep learning for entity match-

ing: A design space exploration”. In: Proceedings of the

2018 International Conference on Management of Data. ACM.

2018, pp. 19–34 (cit. on pp. 8, 115).

[Nau02] Felix Naumann. Quality-driven query answering for inte-

grated information systems. Vol. 2261. Springer Science &

Business Media, 2002 (cit. on pp. 20, 22).

[Nau13] Felix Naumann. “Data profiling revisited”. In: SIGMOD

Rec. 42.4 (2013), pp. 40–49 (cit. on pp. 2, 68).

[Net+96] John Neter et al. Applied linear statistical models. Vol. 4.

Irwin Chicago, 1996 (cit. on p. 61).

146 bibliography

[OE16] Ziad Obermeyer and Ezekiel J Emanuel. “Predicting the

future—big data, machine learning, and clinical medicine”.

In: The New England journal of medicine 375.13 (2016), p. 1216

(cit. on p. 1).

[Pap+15] Thorsten Papenbrock et al. “Data Profiling with Metanome”.

In: PVLDB 8.12 (2015), pp. 1860–1863 (cit. on p. 37).

[Pap+18] George Papadakis et al. “The return of jedAI: end-to-

end entity resolution for structured and semi-structured

data”. In: Proceedings of the VLDB Endowment 11.12 (2018),

pp. 1950–1953 (cit. on p. 46).

[Par+18] Noseong Park et al. “Data synthesis based on generative

adversarial networks”. In: PVLDB 11.10 (2018), pp. 1071–

1083 (cit. on p. 64).

[PLW02] Leo Pipino, Yang W. Lee, and Richard Y. Wang. “Data

quality assessment”. In: Commun. ACM 45.4 (2002), pp. 211–

218 (cit. on pp. 21, 35).

[Pow11] David Martin Powers. “Evaluation: from precision, recall

and F-measure to ROC, informedness, markedness and

correlation”. In: (2011) (cit. on p. 59).

[PPH16] Shelan Perera, Ashansa Perera, and Kamal Hakimzadeh.

“Reproducible Experiments for Comparing Apache Flink

and Apache Spark on Public Clouds”. In: CoRR abs/1610.04493

(2016) (cit. on p. 39).

[Rat+17] Alexander Ratner et al. “Snorkel: Rapid training data

creation with weak supervision”. In: VLDB 11.3 (2017),

pp. 269–282 (cit. on pp. 43, 57).

[RD00] Erhard Rahm and Hong Hai Do. “Data cleaning: Prob-

lems and current approaches”. In: IEEE Data Eng. Bull.

23.4 (2000), pp. 3–13 (cit. on p. 24).

[RDG11] Vibhor Rastogi, Nilesh N. Dalvi, and Minos N. Garo-

falakis. “Large-Scale Collective Entity Matching”. In: PVLDB

4.4 (2011), pp. 208–218 (cit. on p. 45).

[Red01] Thomas C Redman. Data quality: the field guide. Digital

press, 2001 (cit. on p. 22).

bibliography 147

[Red96] Thomas C. Redman. Data quality for the information age.

Artech House, 1996 (cit. on p. 16).

[Rek+15] Theodoros Rekatsinas et al. “Finding quality in quantity:

The challenge of discovering valuable sources for integra-

tion”. In: Proceedings of the Conference on Innovative Data

Systems Research (CIDR). 2015 (cit. on pp. 16, 19).

[Rus18] Gabriele Russo Russo. “Towards Decentralized Auto-Scaling

Policies for Data Stream Processing Applications”. In:

ZEUS. 2018, pp. 47–54 (cit. on pp. 2, 7, 41).

[San+16] Donatello Santoro et al. “BART in action: Error genera-

tion and empirical evaluations of data-cleaning systems”.

In: Proceedings of the 2016 International Conference on Man-

agement of Data. ACM. 2016, pp. 2161–2164 (cit. on p. 6).

[Sch+09] Scott Schneider et al. “Elastic scaling of data parallel op-

erators in stream processing”. In: 2009 IEEE International

Symposium on Parallel & Distributed Processing. IEEE. 2009,

pp. 1–12 (cit. on p. 40).

[Sch+18] Sebastian Schelter et al. “Automating large-scale data

quality verification”. In: VLDB 11.12 (2018), pp. 1781–

1794 (cit. on p. 66).

[SFG03] Wenzhong Shi, Peter Fisher, and Michael F Goodchild.

Spatial data quality. CRC Press, 2003 (cit. on p. 25).

[Sha51] Claude E Shannon. “Prediction and entropy of printed

English”. In: Bell system technical journal 30.1 (1951), pp. 50–

64 (cit. on p. 29).

[Sin+17] Rohit Singh et al. “Synthesizing entity matching rules by

examples”. In: Proceedings of the VLDB Endowment 11.2

(2017), pp. 189–202 (cit. on p. 9).

[SLW97] Diane M. Strong, Yang W. Lee, and Richard Y. Wang.

“Data Quality in Context”. In: Commun. ACM 40.5 (1997),

pp. 103–110 (cit. on pp. 15, 28).

[Spe04] Charles Spearman. “The proof and measurement of asso-

ciation between two things”. In: AJP 15.1 (1904), pp. 72–

101 (cit. on p. 62).

148 bibliography

[SS14] Barna Saha and Divesh Srivastava. “Data quality: The

other face of big data”. In: ICDE. 2014, pp. 1294–1297

(cit. on pp. 1, 2, 12, 37).

[SS18] Anshu Shukla and Yogesh Simmhan. “Toward reliable

and rapid elasticity for streaming dataflows on clouds”.

In: 2018 IEEE 38th International Conference on Distributed

Computing Systems (ICDCS). IEEE. 2018, pp. 1096–1106

(cit. on p. 40).

[SW98] Claude E Shannon and Warren Weaver. The mathematical

theory of communication. University of Illinois press, 1998

(cit. on p. 125).

[SWZ00] Ganesan Shankaranarayanan, Richard Y Wang, and Mostapha

Ziad. “IP-MAP: Representing the Manufacture of an In-

formation Product.” In: IQ. 2000, pp. 1–16 (cit. on p. 34).

[TB98] Giri Kumar Tayi and Donald P. Ballou. “Examining Data

Quality - Introduction”. In: Commun. ACM 41.2 (1998),

pp. 54–57 (cit. on p. 12).

[TPC19] TPC-H Team. TPC-H. 2019. url: http://www.tpc.org/

tpch/ (cit. on p. 97).

[Van92] Ron Van Der Meyden. “The complexity of querying in-

definite data about linearly ordered domains”. In: Pro-

ceedings of the eleventh ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems. ACM. 1992,

pp. 331–345 (cit. on p. 21).

[Vav+13] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN:

yet another resource negotiator”. In: SOCC. 2013, 5:1–

5:16 (cit. on p. 39).

[VEB10] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “In-

formation theoretic measures for clusterings comparison:

Variants, properties, normalization and correction for chance”.

In: JMLR 11.Oct (2010), pp. 2837–2854 (cit. on p. 59).

[Wan+11] Jiannan Wang et al. “Entity Matching: How Similar is

Similar”. In: Proceedings of the VLDB Endowment 4.10 (2011),

pp. 622–633 (cit. on p. 46).

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

bibliography 149

[Wan+14] Jiannan Wang et al. “A sample-and-clean framework for

fast and accurate query processing on dirty data”. In:

SIGMOD. 2014, pp. 469–480 (cit. on p. 38).

[Wan98] Richard Y. Wang. “A Product Perspective on Total Data

Quality Management”. In: Commun. ACM 41.2 (1998),

pp. 58–65 (cit. on pp. 15, 34).

[WBP13] Philip Woodall, Alexander Borek, and Ajith Kumar Par-

likad. “Data quality assessment: the hybrid approach”.

In: Information & management 50.7 (2013), pp. 369–382 (cit.

on p. 36).

[WC13] Guoping Wang and Chee-Yong Chan. “Multi-query opti-

mization in mapreduce framework”. In: Proceedings of the

VLDB Endowment 7.3 (2013), pp. 145–156 (cit. on p. 46).

[WG13] Steven Euijong Whang and Hector Garcia-Molina. “Joint

entity resolution on multiple datasets”. In: VLDB J. 22.6

(2013), pp. 773–795 (cit. on p. 45).

[Wha+09] Steven Euijong Whang et al. “Entity resolution with iter-

ative blocking”. In: SIGMOD (2009), pp. 219–232 (cit. on

pp. 42, 45).

[WM05] Cort J Willmott and Kenji Matsuura. “Advantages of the

mean absolute error (MAE) over the root mean square

error (RMSE) in assessing average model performance”.

In: Climate research 30.1 (2005), pp. 79, 82 (cit. on p. 59).

[WS96] Richard Y. Wang and Diane M. Strong. “Beyond Accu-

racy: What Data Quality Means to Data Consumers”. In:

JMIS 12.4 (1996), pp. 5–33 (cit. on pp. 1–4, 11, 12, 14, 15,

26).

[WSE09] Stephanie Watts, Ganesan Shankaranarayanan, and Adir

Even. “Data quality assessment in context: A cognitive

perspective”. In: Decision Support Systems 48.1 (2009), pp. 202–

211 (cit. on p. 32).

[WW96] Yair Wand and Richard Y Wang. “Anchoring data quality

dimensions in ontological foundations”. In: Communica-

tions of the ACM 39.11 (1996), pp. 86–95 (cit. on pp. 15, 20,

22).

150 bibliography

[Yan+07] Su Yan et al. “Adaptive sorted neighborhood methods

for efficient record linkage”. In: Proceedings of the 7th ACM/IEEE-

CS joint conference on Digital libraries. ACM. 2007, pp. 185–

194 (cit. on p. 44).

[Zha+13] Zhenjie Zhang et al. “ABACUS: An Auction-Based Ap-

proach to Cloud Service Differentiation”. In: IC2E. 2013,

pp. 292–301 (cit. on p. 39).

[Zhu+18] Hui-Juan Zhu et al. “A Type-Based Blocking Technique

for Efficient Entity Resolution over Large-Scale Data”. In:

J. Sensors 2018 (2018), 2094696:1–2094696:12 (cit. on pp. 2,

46).

	Dedication
	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Making Data Quality task-aware
	1.2 Enhancing Data Quality to fit the user needs
	1.3 Focusing on the data itself to improve the results
	1.4 Outline

	2 State of the art
	2.1 Introduction
	2.2 Intrinsic Data Quality
	2.2.1 Accuracy
	2.2.2 Completeness
	2.2.3 Time-related dimensions
	2.2.4 Consistency
	2.2.5 Other dimensions

	2.3 Contextual Data Quality
	2.3.1 Defining Context
	2.3.2 The Context in Contextual DQ
	2.3.3 Implication of dimensions
	2.3.4 Quality query answering
	2.3.5 Metadata

	2.4 Methodologies
	2.4.1 Phases of the methodologies
	2.4.2 Comparison of the methodologies

	2.5 Quantifying Data Quality
	2.6 Streaming Resource Allocation
	2.7 Improving Entity Resolution

	3 Fitness For Use - Contextualizing the Task
	3.1 Contributions and Outline
	3.2 A Motivating Example
	3.3 Data Quality Revisited
	3.4 A Data Quality Framework
	3.5 Noise Generators
	3.6 Measuring Task Result Variations
	3.6.1 Task-specific Metrics
	3.6.2 Data Characteristic Metrics
	3.6.3 Universal Distance Metric

	3.7 Sensitivity Factor Computation
	3.8 Experiments
	3.8.1 Illustrative Use Case
	3.8.2 Understanding the changes in the results
	3.8.3 Generic Distance
	3.8.4 System Scalability
	3.8.5 A Telecommunication Company Application

	3.9 Summary

	4 Moira - Contextualizing the User Goal
	4.1 Contributions and Outline
	4.2 Motivating Example
	4.3 Problem Statement
	4.4 Moira Architecture
	4.4.1 Cost-based Optimizer
	4.4.2 Monitoring System
	4.4.3 Incremental learning for Dynamic Cost Estimation

	4.5 Experiments
	4.6 Summary

	5 dbMatcher - Giving Value to the Data
	5.1 Contributions and Outline
	5.2 Motivating Example
	5.3 Problem Statement
	5.4 dbMatcher Overview
	5.5 Internals
	5.5.1 Partitioner
	5.5.2 Profiler
	5.5.3 Similarity Matcher

	5.6 Blocking Application
	5.7 Preliminary Results
	5.8 Summary

	6 Conclusions
	6.1 Key Contributions
	6.1.1 Contextualizing the Task
	6.1.2 Contextualizing the User Needs
	6.1.3 Contextualizing the Data

	6.2 Extensions and Open Problems
	6.2.1 Contextualizing the Task
	6.2.2 Contextualizing the User Needs
	6.2.3 Contextualizing the Data

	A Data Characteristic Metrics
	B Baseline Validation
	C Generic Distance
	Index
	Bibliography

