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Abstract. In recent years, part of the meta-heuristic optimisation research community has called for a simplification of the al-
gorithmic design: indeed, while most of the state-of-the-art algorithms are characterised by a high level of complexity, complex
algorithms are hard to understand and therefore tune for specific real-world applications. Here, we follow this reductionist approach
by combining straightforwardly two methods recently proposed in the literature, namely the Re-sampling Inheritance Search (RIS)
and the (1+1) Covariance Matrix Adaptation Evolution Strategy (CMA-ES). We propose an RI-(1+1)-CMA-ES algorithm that on
the one hand improves upon the original (1+1)-CMA-ES, on the other it keeps the original spirit of simplicity at the basis of RIS.
We show with an extensive experimental campaign that the proposed algorithm efficiently solves a large number of benchmark
functions and is competitive with several modern optimisation algorithms much more complex in terms of algorithmic design.

INTRODUCTION

One of the most successful continuous optimisation algorithms currently available in the literature is the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [1]. CMA-ES is a metaheuristic which builds a covariance matrix
during the evolutionary process, in the attempt of detecting a coordinate transformation in the search space and adapt
the evolutionary operators (mutations) to the new set of coordinates. In a way, this mechanism is similar to a Prin-
cipal Component Analysis (PCA), as it tries to use the transformed coordinates to exploit the “shape” of the fitness
landscape thus guiding the evolution. However, the main drawback of CMA-ES is its algorithmic and computational
complexity, which hampers its applicability, especially to large-scale problems.

Several simplifications of CMA-ES have therefore been presented in recent years, for instance the sep-CMA-
ES [2], that uses a diagonal covariance matrix and samples each coordinate independently, or the (1+1)-CMA-ES [3],
originally devised as building block of the Multi-Objective CMA-ES (MO-CMA-ES) [4], which reduces the com-
plexity from O(n3) to O(n2) by employing the Cholesky decomposition of the covariance matrix. The price of these
simplifications is a reduced optimisation performance, especially on non-separable, “rotated” or ill-conditioned prob-
lems, which are typically presented in modern benchmarks to emulate hard-to-solve real-world problems [5].

To overcome this problem, and obtain an algorithm that may preserve the performance of the original CMA-ES
while maintaining a low level of algorithmic and computational complexity, we introduce here a version of (1+1)-
CMA-ES that includes the so-called Re-sampling Inheritance Search (RIS), which was proven to be a simple yet
efficient framework, in particular on large scale and separable problems [6, 7]. This idea follows the Ockham’s Razor
advocated in [8], which states that simplicity should always be considered a crucial aspect of algorithmic design.

The proposed algorithm, dubbed RI-(1+1)-CMA-ES, shares to some extent the working principle of one of
the most popular CMA-ES variant, namely g-CMA-ES [9], which makes use of a restart mechanism to reset the
covariance matrix and set up a higher population size (i.e. number of individuals sampled from the multivariate
distribution), when CMA-ES fails at improving upon the fitness function. However, it is important to notice that we
do not propose the same restart process, but rather an iterated local search similar to RIS. More specifically, not



only we reset the covariance matrix, but we also sample a random new solution, and subsequently we feed it to an
exponential crossover (see [6] for details), together with the current best solution (“elite”) found by the algorithm.
The resulting solution then shares some variables with the current best solution, and is used after the restart as new
start point for (1+1)-CMA-ES. This process is every time independent to the previous ones and has its own evolution.
However, if the results improve upon the previous best solution, the latter gets replaced.

EXPERIMENTAL SETUP

The proposed RI-(1+1)-CMA-ES algorithm was thoroughly tested over the 30 problems of the CEC2014 benchmark
suite for real-valued global optimisation [10] in 10, 50 and 100 dimension values. Thus, 90 different optimisation
problems are considered in this study.

To prove its versatility, the proposed algorithm was compared against nine competitors from different optimi-
sation paradigms. A first comparison was performed against its “predecessor” (1+1)-CMA-ES and two additional
classic single-solution algorithms, namely SPSA [11] and Rosenbrock [12]. It is worth noting that these three dif-
ferent algorithms still share a common working principle: they attempt to find a promising direction to follow by
implicitly exploiting the gradient information. Indeed, SPSA approximates the gradient in a stochastic way, Rosen-
brock by rotating the coordinate axes, and (1+1)-CMA-ES by evolving a covariance matrix that is reflective of the
inverse of the Hessian under certain conditions [13, 14]. Furthermore, three state-of-the-art single solution metaheuris-
tics were selected and added to the comparison: ISPO, i.e. a single particle Particle Swarm Optimisation variant [15],
cDE-light, i.e. an estimation of distribution algorithm based on Differential Evolution (DE) [16], and PMS, i.e. a
Memetic Computing (MC) approach [17]. The latter, can be seen as an evolution of the RIS algorithm. Finally, three
population-based algorithms were chosen to compare RI-(1+1)-CMA-ES against more robust and complex algorith-
mic structures: MDE-pBX [18], JADE [19], and the µDEA [20]. These algorithms are based on advanced DE schemes
and the latter also embeds a particularly efficient MC operator which is activated during the optimisation process.

To produce our numerical results, each optimiser was run 30 times with the parameter settings suggested in the
original papers, and a computational budget B = 5000D (D = 10, 50, 100 dimensions). As for RI-(1+1)-CMA-
ES, the same parameters setting proposed in [6] was used for the “restart” procedure, and the one suggested in
[3] for the (1+1)-CMA-ES component. The statistical analysis suggested in [21] was adopted to further validate
our conclusions. This means that the aforementioned algorithms were first compared, on each of the 90 problems
under consideration, by means of the pairwise Wilcoxon Rank-Sum test [22]. To save space, detailed tables reporting
pairwise comparisons are made available online [23] and only commented in the next section. Conversely, the outcome
of the Holm-Bonferroni method for multiple hypothesis testing [24] is included and reported in Table 1. The table
ranks each j-th algorithm ( j = 1, 2, . . . , 9) -excluding the reference RI-(1+1)-CMA-ES- based on its average rank on
all tested functions (in this case, from rank 1 to rank 10, the higher the better); z j, p j and δ/ j are calculated as in [25]
(being δ the confidence interval set to 0.05); if p j < δ/ j, the null-hypothesis (that RI-(1+1)-CMA-ES has the same
performance as the j-th algorithm) is rejected, otherwise is accepted as well as all the subsequent tests.

NUMERICAL RESULTS

Table 1 clearly shows that RI-(1+1)-CMA-ES is a powerful single-solution metaheuristic capable of outperforming
several state-of-the-art algorithms, including population-based ones. According to our results, the proposed approach
appears to be preferable to (1+1)-CMA-ES, i.e. the corresponding null hypothesis is rejected with a confidence level
of 95%. The same conclusion is made for SPSA, JADE, ISPO and Rosenbrock. Moreover, RI-(1+1)-CMA-ES seems
to be extremely competitive with modern DE variants as cDE-light and MDE-pBX, and comparable to complex MC
frameworks, i.e. PMS and µDEA. It must be noted that our algorithm displays the higher rank also for the cases
with “accepted” null hypothesis. Thus, one can conclude that RI-(1+1)-CMA-ES is on average the best optimiser
involved in this study. However, by looking at the pairwise results in [23], it can be observed a moderate deterioration
in the performance, with respect to (1+1)-CMA-ES, on unimodal functions (in particular at high dimension values,
see Fig. 1). This is an expected consequence of adding a restarting mechanism to better handle multimodal problems,
over which (1+1)-CMA-ES performs poorly. In exchange, the proposed approach significantly improves upon its
predecessor on multimodal problems, thus justifying our algorithmic choice. This is evident in Fig. 2 as the fitness
trends, represented in terms of average error fn(i) − f min

n (i = 1, 2, . . . , B, n = 7 in this specific case), show that
all algorithms but RI-(1+1)-CMA-ES get stuck in local minima. In such figure, the fitness trend of our algorithm is
difficult to be distinguished from the x-axis, as it approaches a negligible error value of magnitude 10−13.



TABLE 1. Holm-Bonferroni procedure (reference: RI-(1 + 1)-CMA-ES, Rank = 7.16e + 00)

j Optimizer Rank z j p j δ/ j Hypothesis

1 µDEA 7.00e+00 -3.81e-01 3.52e-01 5.00e-02 Accepted
2 MDE-pBX 6.83e+00 -7.89e-01 2.15e-01 2.50e-02 Accepted
3 PMS 6.68e+00 -1.17e+00 1.21e-01 1.67e-02 Accepted
4 cDE-light 6.63e+00 -1.28e+00 1.00e-01 1.25e-02 Accepted
5 (1 + 1)-CMA-ES 6.12e+00 -2.53e+00 5.68e-03 1.00e-02 Rejected
6 Rosenbrock 5.19e+00 -4.82e+00 7.27e-07 8.33e-03 Rejected
7 ISPO 4.17e+00 -7.32e+00 1.23e-13 7.14e-03 Rejected
8 JADE 3.93e+00 -7.89e+00 1.48e-15 6.25e-03 Rejected
9 SPSA 1.27e+00 -1.44e+01 1.81e-47 5.56e-03 Rejected
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FIGURE 1. Average fitness trends on f1 from CEC2014 in 100D: complete trends (left), zoom at #func. calls > 150k (right)
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FIGURE 2. Average fitness trends on f7 from CEC2014 in 10D: complete trends (left), zoom at #func. calls > 20k (right)

CONCLUSIONS

We proposed a novel algorithm which iteratively executes (1+1)-CMA-ES from multiple starting points in order to
boost its performances over multimodal and ill-conditioned problems. Initial positions are generated by re-sampling
a solution in the search domain, and subsequently “mating” it via exponential crossover with the best ever-found
solution in order to inherit promising components. This approach, borrowed from the RIS algorithm, turned out to
be surprisingly successful when used with (1+1)-CMA-ES. Indeed, the proposed RI-(1+1)-CMA-ES can efficiently
tackle multimodal problems despite the lack of a population of candidate solutions. In this light, the proposed approach
makes a significant contribution as it proves that also a simple strategy, if well designed, can outperform more complex
population-based algorithmic structures.
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