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Introduction

Pseudo-monads and universal algebra

By the mid 1960s the categorical understanding of universal algebra was established:
Lawvere theories axiomatised the notion of a clone of an equational theory, [34].
Monads, which had arisen in algebraic topology, had been seen to generalise the
notion of Lawvere theory.

Monads typically arise from adjoint pairs of functors; and in such a case, the
Eilenberg-Moore [30] and Kleisli [14] categories of algebras for the monad provide
adjoint pairs which one can regard as approximations to the original adjoint pair.

It is now very well known that the theory of monads and their algebras extends
virtually unchanged from the case of ordinary categories to that of categories en-
riched over a (symmetric monoidal, locally-small, complete and cocomplete) closed
category V, see [3]. The cases of interest to us are those where V is the Cartesian
closed category Cat of small categories.

In this context one can formalize and give a precise definition of what structure
and property should mean.

The notion of algebraic extra structure on a category is somewhat wider than that
of algebra for a 2-monad on Cat.

A monoidal category is an example of a category with extra structure of an
algebraic kind, in that it is an algebra for a certain 2-monad T on Cat, and is thus
given by its (underlying) category A together with an action a : TA // A on
A in the usual strict sense. This action encodes the extra (that is, the monoidal)
structure given by the tensor product ⊗, the unit object, and the various structure-
isomorphisms, subject to Mac Lane’s coherence conditions. Of course the category
A may admits many such monoidal structures.

A second example of a category with algebraic extra structure is given by a
category with finite coproducts.

Here the action a : TA // A (for a different 2-monad T) encodes the co-
product structure.
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However, in contrast to the first example, the structure is uniquely determined
(when it exists) up to appropriate isomorphisms, indeed, to within unique such
isomorphisms; so that to give anA with such a structure is just to give anA with a
certain property, in this case, the property of admitting finite coproducts.

In an example so simple as that of finite coproducts, we know precisely in what
sense the structure is unique to within a unique isomorphism; but it is not so obvious
what such uniqueness shouldmean in the case of a general 2-monadT on a 2-category
K, even in the case where K is just Cat.

In [27], Kelly and Lack provide a useful definition in this general setting (com-
paring it with possible alternative or stronger forms) and to deduce mathematical
consequences of a 2-monad’s having this uniqueness of structure property, or variants
thereof.

To capture such cases, they place themselves in the general context of a strict
2-monad (T, µ, η) on a 2-category K.

Using this notion of T-morphism, they express more precisely what it might
mean to say that an action of T on A is unique to within a unique isomorphism:
it means that, given two actions a,a′ : TA // A , there is a unique invertible
2-cell θ : a +3 a′ such that (idA, θ) : (A,a) // (A,a′) is an isomorphism of
T-algebras. For such a T, we may say for short that T-algebra structure is essentially
unique.

We may say that T-morphism structure is unique if, given T-algebras (A,a),
(B, b) and a morphism f : A // B in K, there exists at most one 2-cell

f : bT f +3 f a such that ( f , f ) is a T-morphism.
Accordingly to [27], the 2-monadT is said property-likewhen it has both essential

uniqueness of algebra structure and uniqueness of morphism structure.
The theory of 2-monad, and more generally of pseudo-monads, allows us not

only to give a precise definition of what is property and what is structure, but it
provides also a useful instrument to understand how one can combine different
pseudo-monads and structures: the pseudo-distributive laws.

A pseudo-distributive law consists of a pseudo-natural transformation

δ : ST // TS

and four invertible modifications satisfying certain coherence conditions, for which
we refer to [12, 46, 47, 55, 56].

The existence of a pseudo-distributive law between the pseudo-monads T and S,
implies that TS is a pseudo-monad, an that the 2-category Ps-TS-Alg of pseudo-
algebras is equivalent to the 2-category Ps-T̃-Alg, where T̃ is the lifting of the
pseudo-monad T on the the 2-category Ps-S-Alg. Again we refer to [54, 55, 56] for
a detailed analysis of these topics.

This means that for an objectC ofK,TS(C) has both canonical pseudo-T-algebra
and pseudo-S-algebra structures on it.
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Generalized exact completion

In category theory one can find various notions of completing a category to an exact
category initiated by Freyd’s exact completion of a regular category [16], and they
include also the exact completion of a category with certain weak finite limits, see
[6, 10].

In recent works [41, 42, 43, 44], Maietti and Rosolini generalize these exact
completions by relativizing the basic data to a doctrine equipped with just the
structure sufficient to present the notion of an equivalence relation. In particu-
lar, they determined the exact completion of an elementary existential doctrine
P : Cop // InfSL with (weak) full comprehensions and comprehensive diago-
nals.

They use a weakened notion of Lawvere hyperdoctrine [36, 37, 38], called ele-
mentary doctrine.

The exact completion of an elementary, existential doctrine with full compre-
hensions and comprehensive diagonals, which are called existential m-variational
doctrine, can be obtained in several, but equivalent ways.

Thefirst is noting that anm-variational existential doctrine P : Cop // InfSL ,
rises to a proper, stable factorization system 〈E,M〉 on the base category C, where
morphisms ofM are comprehensions, and morphisms of E are arrows of C such
that Eg(>A) = >B for g : A // B.

Moreover the doctrine P : Cop // InfSL is equivalent to the doctrine
SubM : Cop // InfSL ofM-subobjects.
This construction can be extended to an equivalence between the 2-category

Ex-mVar of m-variational existential doctrines, and the 2-category LFS whose
objects are categories with finite limits together with a proper, stable factorization
system.

This equivalence is a translation in terms of doctrines of the work of Hughes and
Jacobs [19].

To conclude this construction one apply other two free constructions: the first is
the construction of a regular category starting from a category D with finite limits
together with a proper, stable factorization system 〈E ′,M ′〉, introduced by Kelly in
[26], and the second is the exact completion of a regular category, see [6].

We can summarize this exact completion for m-variational existential doctrines
with the following diagram

Ex-mVar
� // LFS

Map Rel(−)// Reg
(−)ex/reg // Xct .

The exact completion of anm-variational existential doctrine P : Cop // InfSL
computed by the previous completion, is denoted by (Ef P)ex/reg.

A second notion of exact completion for doctrines is provided by the quotient
completion of an elementary doctrine introduced by Maietti and Rosolini in [43]



viii

together with the construction of the category of entire functional relation associated
to an m-variational existential doctrine P : Cop // InfSL .

The last instance of exact completion for an m-variational existential doctrine
P : Cop // InfSL is provided by the tripos-to-topos construction TP , see [20,
51].

Finally, in [42, 43, 44] Maietti and Rosolini show that an arbitrary elementary
existential doctrine P : Cop // InfSL can be completed to an m-variational
existential doctrine (P)cd : Xop

Pc

// InfSL , so what we obtain combining these
constructions with the exact completion for m-variational existential doctrines, is
that the 2-functor

Xct // EED

which sends an exact categoryX to the subobjects doctrine SubX : Xop // InfSL
(which is elementary and existential since the base category is exact) has a left bi-
adjoint.

The aim of this thesis

In the first part of this work we give a complete description in all the details of the
previous exact completions for an elementary existential doctrine, and we compare
the different instruments which are involved in these constructions: regular and exact
categories, factorization systems, fibrations and doctrines.

The main purpose of this thesis is to combine the categorical approach to logic
given by the study of doctrines, with the universal algebraic techniques given by the
theory of the pseudo-monads and pseudo-distributive laws.

Every completions of doctrines is then formalized by a pseudo-monad, and then
combinations of these are studied by the analysis of the pseudo-distributive laws.

The starting point are the works of Maietti and Rosolini [42, 43], in which
they describe three completions for elementary doctrines: the first which adds full
comprehensions, the second comprehensive diagonals, and the third quotients.

We give an explicit description of the pseudo-functors and the pseudo-adjunctions
obtained from these completions, and we start our analysis of the pseudo-monads

Tc,Td,Tq : ElD // ElD

where ElD denotes the 2-category of elementary doctrines.
We prove that all these pseudo-monads are property-like (as pseudo-monads),

and the following equivalences of 2-categories hold

CE ≡ Ps-Tc-Alg

CED ≡ Ps-Td-Alg

QED ≡ Ps-Tq-Alg
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where CE is the 2-category of elementary doctrines with full comprehensions,
CED is the 2-category of elementary doctrines with comprehensive diagonals, and
QED is the 2-category of elementary doctrines with stable quotients.

The inclusion of each of these categories into ElD is obviously not full, as
morphisms are those that preserves the relevant structures.

Our analysis of pseudo-distributive laws starts from the pseudo-monad Td . It is
proved [42, 43] this free construction preserves comprehensions and quotients, and
we use this result to define a lifting T̃d of Td on the 2-categories Ps-Tc-Alg and
Ps-Tq-Alg.

The existence of these lifting is equivalent to prove that there exist two pseudo-
distributive laws δ1 : TcTd

// TdTc and δ2 : TqTd
// TdTq , and then

TdTc and TdTq are pseudo-monads.
The third pseudo-distributive law we describe is δ3 : TcTq

// TqTc , which
again exists because the quotients completion preserves full comprehensions, and
then we can define a lifting T̃q of Tq on the 2-category Ps-Tc-Alg.

Finally we prove using the same arguments as before, the existence of two pseudo-
distributive laws δ4 : TcTdTq

// TdTqTc and δ5 : TqTcTd
// TdTqTc ,

and then we conclude that the 2-endofunctor TdTqTc is a pseudo-monad.
In the second work we present a free construction that given a primary doc-

trine P : Cop // InfSL and a class A of morphisms of C closed under
pullbacks, compositions and which contains the identities, provides a doctrine
Pex : Cop // InfSL which has left adjoint along the morphisms of A, and
these satisfy Beck-Chevalley conditions and Frobenius reciprocity.

In particular, if the class A is the class of the projections of C, then the doctrine
Pex : Cop // InfSL is existential in the sense of [42, 43, 44].
This construction extends to a 2-functor

E: PD // ExD

from the 2-category PD of primary doctrines to the 2-category ExD of ex-
istential doctrines, and this 2-functor is 2-left-adjoint to the forgetful functor
U: ExD // PD .
Then we consider the 2-monad Te : PD // PD , and we prove that it is

lax-idempotent, and in particular property-like.
Moreover we have the equivalence of 2-categories

ExD ≡ Te-Alg .

The existential completion preserves the elementary structure in the sense that if
P : Cop // InfSL is an elementary doctrine, then Pex : Cop // InfSL is
an elementary and existential doctrine.

Therefore we can generalize the exact completion for elementary existential doc-
trines to an arbitrary elementary doctrine, as the following composition
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ElD
(−)ex // ExD

(−)cd // Ex-mVar
� // LFS

Map Rel(−)// Reg
(−)ex/reg // Xct .

We give an explicit description of the exact category TPex constructed by an
elementary doctrine P : Cop // InfSL combining the existential completion
with the tripos-to-topos construction.

The last completion we consider is the elementary completion of a primary
doctrine.

In this case we can not apply the general construction defined before because
the class of morphisms on which we need to add left adjoints is not closed under
pullbacks and compositions.

We can use it, for example, if the base category C of a primary doctrine
P : Cop // InfSL has finite limits, applying the existential completion with
the classA generated by morphisms of the form idA×∆B for A and B objects of C.

There is another interesting class of categories that we show can be easily com-
pleted to a category with finite limits, and these are the categories which are the
syntactic category of some first order theory.

Given a first order theory T, the syntactic category CT has the property that if two
morphisms f ,g : A // B have an arrow

H h // A
f //

g
// B

such that f h = gh, then f and g has an equalizer.
This observation follows when we formalize the unification problem, [48, 52] in

the syntactic category.
Recall that the unification problem in the first order logic can be expressed as

follows: given two terms containing the same variables, find, if it exists, the simplest
substitution which makes the two terms equal. The resulting substitution is called
most general unifier, and it is unique up to variable renaming.

The key point is that if two terms admit an unifier, then there exists a most general
one.

We observe that this can be translated in the syntactic category in a direct way,
and the result is that if two arrows admit a morphism which equalizes them, then
there exists an equalizer.

Therefore given a syntactic category CT, we can complete it to a category with
finite limits C0T just adding an initial objects 0.

So a primary doctrine P : CopT
// InfSL can be easily completed to a primary

doctrine P0 : (C0T )
op // InfSL whose base category has finite limits, and then

we can apply the existential completion on the class A of arrows generated by
morphisms of the form idA×∆B.

Finally we give a complete description of the elementary completion of a primary
doctrine P : Cop // InfSL whose base category is discrete with free products
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in all the details. From a logical point of view we are looking for a first order theory
in a language in which no function symbols are considered.

In this case the description of the new elementary doctrine constructed from P
can be simplified, and it is more natural from a logical point of view.

We conclude with the analysis of the 2-monad Tel coming from this construction,
proving that it is fully property-like.

Moreover we have the following equivalence of 2-categories

Tel-Alg ≡ PdD

wherePdD is the 2-category of primary doctrines whose base category is discrete
with free products.

Since the existential completion does not change the base category and preserves
the elementary structure, there exists a pseudo-distributive law δ : TelTex

// TexTel

by the same argument used before.

Contents of chapters

In chapter 1 we introduce the notions of monad and distributive law, and their
generalization as pseudo-monads on a 2-category and pseudo-distributive law.

We introduce also the notion of property-like 2-monads, explaining how these
kind of 2-monads are able to capture the differences between what is structure and
what is property.

This will be also useful to pass from the ordinary case of a monad to the pseudo-
setting.

I chapter 2 we present a classical categorical approach to logic, using regular and
exact categories. We recall some known facts about the categorical semantic which
will be useful in the following chapters to understand the meaning from a logical
point of view of what is a doctrine and what the 1-cells and 2-cells of the 2-category
PD mean.

Moreover the definition of stable, proper factorization system is recalled and we
present two free constructions which are used later: the exact completion of a regular
category, and the regular completion of a category with a stable, proper factorization
system.

Chapter 3 is devoted to the introduction of other two categorical instruments,
which are fibrations and doctrines.

In the first part of this chapter we compare them, showing to what kind of
fibration an existential m-variational doctrine is equivalent. We will see also that
the 2-category Ex-mVar is equivalent to the 2-category of LFS, whose objects are
categories together with a proper, stable factorization system. This result is suggested
by the work [19], in which Hughes and Jacobs prove a similar result for what they
call factorization fibrations.
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In the last part we introduce the quotients completion of an elementary doctrine,
and we present the exact completion for elementary existential doctrine in all the
details, comparing some different ways to define an exact category starting from an
elementary existential doctrine.

The lasts three chapters of this thesis are composed by three works developed
during my doctorate, which are under submission.

In the first we construct and characterize three pseudo-monads obtained by the
completions with quotients, comprehensive diagonals and full comprehensions.

Moreover a complete study of their pseudo-distributive laws is given.
In the second work we develop the existential completion for primary doctrines,

showing that this is a free construction and that it can be applied in a more general
context.

Again we study the 2-monad which comes from this completion, showing that it
is lax-idempotent and proving the equivalence ExD ≡ Te-Alg.

Moreover we show that the existential completion preserves the elementary struc-
ture of a doctrine, and this allows us to generalize the exact completion to an arbitrary
elementary doctrine.

In the last work we give a categorical interpretation of the problem of unification
in the context of a syntactic category.

In particular we show that using a known result which state that if there exists
an unifier, then there exists a most general one, we can easily complete a syntactic
category to a category with finite limits.

Then, for these categories, we can apply the general existential completion to
obtain an elementary doctrine, and we conclude this work with a detailed description
of the elementary completion for a primary doctrine whose base category is discrete
with free products. Again we obtain a 2-monad which is lax-idempotent.

All the references are given at the beginning of every sections.
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Chapter 1
Preliminaries

This chapter contains definitions of category theoretic terms used in this thesis.
In particular we fix the notation and we introduce the notions monads and their

algebras, 2-categories, pseudo-functors, pseudo-monads.
We refer to [5, 40, 45] for a general introduction to the theory of monads, and to

[33, 54] for more details.
We conclude with the definition of pseudo-distributive laws for pseudo-monads

introduced by Beck in [1] and with some useful results which will be fundamental
later. We follow the notation used by Tanaka and Power in [54, 55, 56].

For a more detailed discussion and analysis of the coherence axioms for pseudo-
distributive laws we refer to the works of Marmolejo [46, 47], while for a more
standard introduction to the theory of 2-monads and pseudo-monads there are several
works as [12, 53, 28, 3].

1.1 Monads and their algebras

Recall that a closure operation on a preoredered set A = (|A|,≤) is a mapping
T: |A| // |A| with the following properties

1. if A ≤ B then T(A) ≤ T(B);
2. A ≤ T(A);
3. T2(A) ≤ T(A);

for all the elements A and B of |A|.
This notion has been generalized from preordered sets to arbitrary categories and

is then called a monad.

Definition 1.1.1. A monad on a category A is a triple (T, µ, η) consisting of
a functor T: A // A , and two natural transformations, the multiplication
µ : T2 // T and the unit η : idA // T such that the following diagrams,
one for the associativity of µ and another for the left and right unity of η, commute:

1



2 1 Preliminaries

T3

µT

��

Tµ // T2

µ

��

T

idT

��

ηT // T2

µ

��

T
Tηoo

idT

��
T2

µ
// T T

Definition 1.1.2. Given a monad T on a category A, a T-algebra is a pair (A, α),
where A is an object ofA and α is a morphism α : TA // A called the structure
map, such that the following diagrams commute:

T2A Ta //

µA

��

TA

a

��

A

1A

  

ηA // TA

a

��
TA

a
// A A

AT-morphism f : (A, α) // (B, β) ofT-algebras is amorphism f : A // B
of A such that the following diagram commutes:

T A
T f //

α

��

T B

β

��
A

f
// B

Definition 1.1.3. The category whose objects are T-algebras and whose morphisms
are T-morphisms is denoted by T-Alg or AT, and it is called Eilenberg-Moore
category.

Proposition 1.1.4. Any adjunction

(F,G, η, ε) : A
F //

oo
G

B

induces a monad (GF,GεF, η).

Proof. It is a direct verification. See [5, Proposition 4.2.1]. �

There arises the question to which extent every monad is induced by an adjunc-
tion.

The answer will be positive but in most cases there is not a unique such adjunction
even up to isomorphism.Wewill show that there is a minimal and amaximal solution
to this problem.
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Definition 1.1.5. Let (T, µ, η) be a monad on A. A resolution (B,F,G, ε) of this
monad consists of a category B a pair of adjoint functors F: A // B and
G: B // A such that GF = T, the unit of the adjunction is η and µ = GεF.

The resolutions of a given monad form a category whose morphisms

Φ : (B,F,G, ε) // (B ′,F′,G′, ε)

are functor Φ : B // B ′ such that the diagram

B

Φ

��

G

  
A

F

>>

F′

  

A

B ′

G′

>>

commutes and Φε = ε′Φ.

Proposition 1.1.6. The Eilenberg-Moore category AT of a monad (T, µ, η) on A
gives rise to a resolution (AT,FT,GT, εT) which is a terminal object in the cat-
egory of all resolutions. Thus, given a resolution (B,F,G, ε) there is a unique
functor KT : B // AT , called the comparison functor, such that KTF = FT,
GTKT = G and KTε = εTKT.

Proof.We define the resolution (AT,FT,GT, εT) as follows:

1. we define the functor GT : AT // A by

GT(A, α) = A, GTg = g

for every T-algebra (A, α) and for every T-morphism g : (A, α) // (B, β) ;

2. we define the functor FT : A // AT by

FTA = (TA, µA), FTg = Tg

for every object A of A and every morphism g : A // B . It is easy to check
that GTFT = T;

3. the natural transformation εT : FTGT // idAT is defined by components
as follows: let (A, α) be an object of AT, we define εT

(A,α)
= α. Since (A, α) is a

T-algebra the following diagram commutes:
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T2A Tα //

µA

��

TA

α

��
TA

α
// A.

Therefore εT
(A,α)

is a T-morphism, and it is easy to check that it extends to a
natural transformation. Moreover for every object A of A we have

GTεT
(TA,µA)

= GTµA = µA

thus GTεTF = µ.
4. It is direct to prove the functor FT is left adjoint to GT with unit η and counit εT,

because
εT
(TA,µA)

TηA = µATηA = idTA

and similarly for the other triangle equality.
We have proved that (AT,FT,GT, εT) is a resolution. Now we prove that it is a
terminal object. Consider another resolution (B,F,G, ε) of the monad (T, µ, η). For
every object A of AT and every morphism g : A // B of AT we define

KTA = (GA,GεA), KT(g) = G(g).

Then we have
GTKTA = GA

and
KTFA = (GFA,GεFA) = (TA, µA) = FTA

Moreover for every object A of B we have

εT
KTA

= εT
(GA,GεA)

= GεA

and
KTεA = GεA.

Therefore we can conclude that KTε = εTKT. �

Definition 1.1.7. The Kleisli category AT of a monad (T, µ, η) on a category A is
defined as follows: the object ofAT are the same as those ofA, and for every A and
B in AT we define AT(A,B) = A(A,TB). To define the composition we consider
f ∈ AT(A,B) and g ∈ AT(B,C). Then the composition g ∗ f is defined as

g ∗ f = µCTg f .

In particular we can observe that
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ηB ∗ f = µBTηB f = f

and
f ∗ ηA = µBT f ηA = µBTηB f = f .

Therefore ηA : A // TA is the identity of AT(A, A).

Proposition 1.1.8. The Kleisli category AT of a monad (T, µ, η) on A gives
rise to a resolution (AT,FT,GT, εT) which is an initial object in the category
of all resolutions. Thus, given a resolution (B,F,G, ε) there is a unique functor
KT : AT

// B , such that KTFT = F, GKT = GT and KTεT = εKT.

Proof.We define the resolution (AT,FT,GT, εT) as follows:

1. we define the functor GT : AT
// A by:

GTA = TA, GTg = µBTg

for every object A of AT and every morphism g : A // B of AT;
2. we define the functor FT : A // AT by:

FTA = A, FTg = ηBTg

for every object A of A and every morphism g : A // B of A. It is easy to
check that GTFT = T.

3. We define the natural transformation εT : GTFT
// idAT by putting εTA =

idTA in A. Moreover we have

(GTεTFT)A = GT(εTA) = GT(idTA) = µA

thus GTεTFT = µ.
4. As in the case of Proposition 1.1.6 it is direct to prove the functor FT is left

adjoint to GT with unit η and counit εT
We have proved that (AT,FT,GT, εT) is a resolution. Now we prove that it is an
initial object. Consider another resolution (B,F,G, ε) of the monad (T, µ, η). For
every object A of AT and every morphism g : A // B of AT we define

KTA = FA, KT(g) = εFBFg.

Then we have
GKTA = GFA = TA = GTA

and
GKTg = G(εFBFg) = (GεF)BGFg = µBT(g) = GTg

thus GKT = GT. Moreover for every A of A and g : A // B of A we have

KTFTA = FA
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and
KTFTg = εFBFηBF f = F f

thus FTKT = F. Moreover we have for every A of AT

(KTεT)A = KT idTA = εFA = (εKT)A.

This completes the proof. �

Corollary 1.1.9. The comparison functor KT : AT
// AT is full and faithful.

Proof. It is easy to see that the comparison functor in this case is full. We prove that
it is faithful. Let g : A // TB be a morphism of A. By definition of KT we
have

KTg = GTg = µBTg

hence
g = µBηTBg = µBTgηA = KT(g)ηA.

Therefore it is faithful. �

Remark 1.1.10. The comparison functor KT : AT
// AT sends an object A of

AT in the free algebra (GTA, (GTεT)A) = (TA, µA).

Corollary 1.1.11. The Kleisli category of a monad (T, µ, η) is equivalent to the full
subcategory of the Eilenberg-Moore category consisting of all the free algebras.

Proof. It is a direct consequence of Corollary 1.1.9 and Remark 1.1.10. �

Definition 1.1.12. Let (S, µS, ηS) and (T, µT , ηT ) be two monads on a category A.
A lifting of T on S-Alg we mean a monad T̃ on the category S-Alg such that

TGS = GST̃

Definition 1.1.13. A distributive law from a monad S over a monad T is a natural
transformation

δ : ST // TS

such that the following diagrams commute
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S2T

µST

��

Sδ // STS
δS // TS2

TµS

��

T

ηST

��

TηS

��
ST

δ
// TS ST

δ
// TS

ST2

SµT

��

δT // TST
Tδ // T2S

µTS

��

S

SηT

��

ηTS

��
ST

δ
// TS ST

δ
// TS.

Theorem 1.1.14. To give a distributive law δ : ST // TS is equivalent to give
a lifting T̃ of T on S-Alg.

Proof. Given δ : ST // TS and a S-algebra (A,a), we define

T̃(A,a) = (TA,Ta ◦ δA).

We show that (TA,Ta ◦ δA) is a S-algebra, which means that the diagram

S2TA

µS
TA

��

S(Ta◦δA) // STA

Ta◦δA

��
STA

Ta◦δA

// TA

must commute. By naturality of δ we have

δA ◦ STa = TSa ◦ δSA.

Then

(Ta ◦ δA) ◦ (STa ◦ SδA) = Ta ◦ TSa ◦ δSA ◦ SδA = T(a ◦ Sa) ◦ δSA ◦ SδA.

By hypothesis a ◦ Sa = a ◦ µS , then

(Ta ◦ δA) ◦ (STa ◦ SδA) = Ta ◦ TµS ◦ δSA ◦ SδA

and since δ is a distributive law then
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(Ta ◦ δA) ◦ (STa ◦ SδA) = Ta ◦ δA ◦ µSTA.

Let f : (A,a) // (B, b) be a morphism of S-algebras. We define T̃ f = T f , and
it is direct to show that it is a morphism of S-algebras

T f ◦ (Ta ◦ δA) = Tb ◦ TS f ◦ δA = Tb ◦ δB ◦ ST f .

it is routine to extend the multiplication and unit of T to its lifting T̃.
For the converse construction we apply T̃ to the S-algebra (SA, µS

A
), and this

yields a morphism TµS
A

: STSA // TSA . We define δA as the composition

STA
STηS

A // STSA
TµS

A // TSA.

It is further routine to verify that it satisfies the axioms and that these construction
are mutually inverse. For all the detail we refer to [54, 55]. �

Given a monad S, all the lifting of a monad T on A to S-Alg, form a category
denoted by LiftS-Alg, and all the distributive laws over S form a category denoted
byDistS. In particular Theorem 1.1.16 can be extended to an isomorphism between
the category DistS and LiftS-Alg. We refer to [54] and [55] for all the detail.

Theorem 1.1.15. The category DistS and LiftS-Alg are isomorphic.

Proof. See [54, Theorem 3.19 and Corollary 3.29]. �

This theorem can be extended in the context of pseudo-monad, but there we do
not have an isomorphism of 2-categories, but only and equivalence.

We conclude this section with a central result about the theory of monads. It
is known that in general, given two monad T and S on the same category A, the
composition TS is not a monad.

However if there exists a distributive law δ : ST // TS then one can prove
that the composition TS is again a monad and its category of algebras is isomorphic
to the category T̃-Alg.

Theorem 1.1.16. Let δ : ST // TS be a distributive law. Then

1. the functor TS acquires the structure of monad, with multiplication given by

TSTS
TδS // T2S2 µTS2

// TS2 TµS

// TS

2. TS-Alg is canonically isomorphic to T̃-Alg.

Proof. The proof is a direct verification. We refer to [54, 55] for all the detail. �
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1.2 2-Categories

In this section we recall some definitions about 2-category theory and we fix the
notation for the rest of this work.

There are several other equivalent way to introduce the notion 2-category, and the
more natural and elegant is given using enrichment, and we refer to [25, 28, 32, 39].

Definition 1.2.1. A 2-category A consists of the following data:

• a class A0 of objects, called 0-cells;
• for each pair of 0-cells A and B, a category A(A,B), whose objects are called

1-cells of A and whose morphisms are called 2-cells of A;
• for each triple of 0-cells A, B and C a functor:

cA,B,C : A(B,C) × A(A,B) // A(A,C)

called composition functor;
• for each 0-cell A of A a functor:

uA : I // A(A, A)

called unit functor. The category I denotes the category with one object and one
morphism.

These data are required to satisfy the following axioms:

A(C,D) × A(B,C) × A(A,B)

idA(C ,D) ×cA,B ,C

��

cB ,C ,D×idA(A,B) // A(B,D) × A(A,B)

cA,B ,D

��
A(C,D) × A(A,C) cA,C ,D

// A(A,D)

and

A(A,B) × I //

uA×idA(A,B)

��

A(A,B)

idA(A,B)

��

I × A(A,B)oo

uB×idA(A,B)

��
A(A,B) × A(A, A)cA,A,B

// A(A,B) A(B,B) × A(A,B).cA,B ,B

oo

The fact that 1-cells are defined as objects of a category and 2-cells as arrows implies
the associativity and the unit law for the vertical composition of 2-cells, and the two
previous diagrams imply the associativity and the unit law for both the horizontal
composition of 2-cells and the composition of 1-cells.
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Definition 1.2.2. LetA and B be 2-categories. A 2-functor F fromA to B consists
of:

• for every 0-cell A of A a 0-cell FA of B;
• for each pair A and B of 0-cells ofA a functor FA,B : A(A,B) // B(FA,FB)

subject to the commutativity of the following diagrams:

A(B,C) × A(A,B)

cA,B ,C

��

FB ,C×FA,B // B(FB,FC) × B(FB,FA)

cFA,FB ,FC

��
A(A,C)

FA,C

// B(FA,F,C)

and
A(A, A)

FA,A

��
I

uA

;;

uFA

// B(FA,FA)

Definition 1.2.3. Let F and G be 2-functors between 2-categories A and B. A 2-
natural transformation α fromF toG consists of a collection of 1-cells ofB indexed
by 0-cells of A, such that for every component αA : FA // GA at the 0-cell A
the following diagram commutes:

A(A,B)
FA,B //

GA,B

��

B(FA,FB)

αB◦−

��
B(GA,GB)

−◦αA

// B(FA,GB).

Example 1.2.4. The 2-category Cat: the 0-cells are given by all small categories,
1-cells are given by functors between them, and 2-cells are given by natural trans-
formations.

Definition 1.2.5. Let A and B be 2-categories. A pseudo-functor (F, h, h) from A
to B consists of the data for a 2-functor plus:

• for each triple A, B and C of 0-cells of A, an invertible natural transformation
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A(C,B) × A(A,B)

cA,B ,C

��
�� hA,B ,C

FB ,C×FA,B // B(FC,FB) × B(FA,FB)

cFA,FB ,FC

��
A(A,C)

FA,C

// B(FA,FB)

• for each 0-cell A an invertible 2-cell

I

�	 hA

uA

��

uFA

%%
A(A, A)

FA,A

// B(FA,FA)

subject to the following coherence axioms:

• composition axiom: for every triple of 1-cells

A
f // B

g // C l // D

in A, the following equality of 2-cells holds

hg◦ f ,l ◦ (iFl .h f ,g) = h f ,l◦g ◦ (hg,h .iF f ).

This means that the diagram

Fl ◦ Fg ◦ F f

hg ,l .iF f

��

iFl .h f ,g // Fl ◦ F(g ◦ f )

hg◦ f ,l

��
F(g ◦ l) ◦ F f

h f ,l◦g

// F(l ◦ g ◦ f )

commutes;
• unit axioms: for every 1-cell

f : A // B

in A the following equality of 2-cells holds

h1A, f ◦ (iF f .hA) = iF f , h f ,1B ◦ (hB .iF f ).

This means that the diagrams
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F f ◦ 1FA

iF f

%%

iF f .hA // F f ◦ F1A

h1A , f

��

1FB ◦ F f

iF f

%%

hB .iF f // F1B ◦ F f

h f ,1B

��
F f F f

commute.

Definition 1.2.6. Let (F, h, h) and (G, k, k) be pseudo-functors from A to B. A
pseudo-natural transformation (α, τ) from F to G consists of the following data:

• for each 0-cell A in A a 1-cell αA : FA // GA ;
• for each pair of 0-cells A and B in A, an invertible natural transformation τA,B,

called pseudo-naturality of α:

τA,B : G ◦ αA
// αB ◦ F.

These data are required to satisfy the following coherence axioms

• for each pair of 1-cells

A
f // B

g // C

in A the following equality of 2-cells must holds

τA,C
g◦ f
◦ (k f ,g .iαA) = (iαC .h f ,g) ◦ (τ

B,C
g .iF f ) ◦ (iG f .τ

A,B
f
).

This means that the diagram

Gg ◦G f ◦ αA

k f ,g .iαA

��

iGg .τ
A,B
f // Gg ◦ αB ◦ F f

τB ,Cg .iF f // αC ◦ Fg ◦ F f

iαC .h f ,g

��
G(g ◦ f ) ◦ αA

τA,C
g◦ f

// αC ◦ F(g ◦ f )

commutes;
• for each 0-cell A in A the following equality of 2-cells must holds

(iαA .hA) ◦ iαA = τ
A,A
1A
◦ (kA.iαA) ◦ iαA .

This means that the diagram
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αA

iαA //

iαA

��

1GA ◦ αA

iαA
.kA // G1A ◦ αA

τA,A
1A

��
αA ◦ 1FA

iαA
.hA

// αA ◦ F1A

commutes.

Notation: we usually suppress the superscripts A,B whenever they are clear from
the context.

Definition 1.2.7. Let (α, τ) and (β, γ) be pseudo-natural transformations. A modifi-
cation χ from (α, τ) to (β, γ) consists of a collection of 2-cells { χA : αA

// βA }

indexed by 0-cell ofA, such that for every 1-cell f : A // B inA the following
equality holds

FA

�� γ
A,B
f

βA

��

αA

��

+3χA

F f // FB

βB

��

FA

��τA,B
f

αA

��

F f // FB

βB

��

αB

��

+3χB=

GA
G f

// GB GA
G f

// GB

1.2.1 Property-like 2-monads

A 2-monad (T, µ, η) on a 2-category A is a 2-functor T: A // A together 2-
natural transformations µ : T2 // T and η : 1 // T such that the following
diagrams commute

T3

µT

��

Tµ // T2

µ

��
T2

µ
// T

T

id

  

ηT // T2

µ

��

T
Tηoo

id

~~
T

A T-algebra is a pair (A,a) where, A is an object of A and a : TA // A is a
1-cell such that the diagrams
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T2A Ta //

µA

��

TA

a

��
TA

a
// A

A

1A

  

ηA // TA

a

��
A

commute. A strict T-morphism from a T-algebra (A,a) to a T-algebra (B, b) is a
1-cell f : A // B such that the following diagram commutes:

TA

a

��

T f // TB

b

��
A

f
// B

while a lax T-morphism from a T-algebra (A,a) to a T-algebra (B, b) is a pair ( f , f )
where f is a 1-cell f : A // B and f is a 2-cell

TA

a

��

T f //

�� f

TB

b

��
A

f
// B

which satisfies the following coherence conditions:

T2A

µA

��

T2 f // T B

µB

��

T2A

Ta

��
�� T f

T2 f // T B

Tb

��
TA

a

��

T f //

�� f

TB

b

��

= TA

a

��

T f //

�� f

TB

b

��
A

f
// B A

f
// B

and



1.2 2-Categories 15

A

ηA

��

f // B

ηB

��

A

1A

��

f // B

1B

��

TA

a

��

T f //

�� f

TB

b

��

=

A
f

// B A
f
// B

Observe that regions in which no 2-cell is written commute, so they are deemed to
contain the identity 2-cell.

A lax morphism ( f , f ) in which f is invertible is said T-morphism. So a strict
T-morphism is a T-morphism where f is the identity 2-cell.

The category of T-algebras and lax T-morphisms becomes a 2-category T-Algl
introducing the T-transformations as 2-cells: a T-transformation from the 1-cell
( f , f ) : (A,a) // (B, b) to (g,g) : (A,a) // (B, b) is a 2-cell α : f +3 g in
A which satisfies the following coherence condition

TA

a

��

T f
))

Tg

55�� Tα

�� g

TB

b

��

TA

a

��

T f
++

�� f

TB

b

��

=

A
g

33 B A

f

((

g

66�� α B

expressing compatibility of α with f and g.
It is observed in [27] that, using the notion of T-morphism, one can express in

precise mathematical terms what it means that an action of a 2-monad T on an object
A is unique up to a unique isomorphism.

In [27] an T-algebra structure is essentially unique if, given two actions
a,a′ : TA // A , there is a unique invertible 2-cell α : a +3 a′ such that
(1A, α) : (A,a) // (A,a′) is a morphism of T-algebras. This is fixed by the
following definition of property-like 2-monad.

A 2-monad (T, µ, η) is said property-like, if it satisfies the following conditions:

• for everyT-algebras (A,a) and (B, b), and for every invertible 1-cell f : A // B

there exists a unique invertible 2-cell f
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TA

a

��

T f //

�� f

TB

b

��
A

f
// B

such that ( f , f ) : (A,a) // (B, b) is a morphism of T-algebras;
• for every T-algebras (A,a) and (B, b), and for every 1-cell f : A // B if there

exists a 2-cell f

TA

a

��

T f //

�� f

TB

b

��
A

f
// B

such that ( f , f ) : (A,a) // (B, b) is a lax morphism of T-algebras, then it is
the unique 2-cell with such property.

We say that a 2-monad (T, µ, η) is lax-idempotent when, for every T-algebras
(A,a) and (B, b), and for every 1-cell f : A // B , there exists a unique 2-cell f

TA

a

��

T f //

�� f

TB

b

��
A

f
// B

such that ( f , f ) : (A,a) // (B, b) is a lax morphism of T-algebras, then a useful
result in [27] is Proposition 6.1.

Proposition 1.2.8. Every lax-idempotent 2-monad is property-like.

Proof. See [27, Proposition 6.1]. �

1.3 Pseudo-monads and pseudo-distributive laws

This section is devoted to the formal definition of pseudo-monad and pseudo-
distributive law.
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The technicalities involved with the definitions are quite complex, but the idea is
straightforward.

As in the case for the definition of ordinary monad and distributive law, we follow
the notation of Tanaka and Power [56, 55, 54].

Definition 1.3.1. A pseudo-monad (T, µ, η, τ, ρ, λ) on a 2-category A consists of

• a pseudo-functor T: A // A ;
• a pseudo-natural transformation µ : T2 // T ;
• a pseudo-natural transformation η : idA // T ;
• an invertible modification

T3

µT

��

Tµ //

�� τ

T2

µ

��
T2

µ
// T

• invertible modifications

T

id

  

Tη //

|� λ

T2

µ

��

T

id

  

ηT //

|� ρ

T2

µ

��
T T

subject to two coherence axioms

T4

µT2

��

T2µ //

TµT
  
�� Tτ

T3

Tµ

  

T4

�µT2

��

T2µ // T3

µT

��

Tµ

  
T3

�� τT

µT
  

T3

�� τµT

��

Tµ
// T2

µ

��

= T3

�� τ

Tµ //

µT
  

T2

�� τ

µ

  

T2

µ

��
T2

µ
// T T2

µ
// T
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T3

�� λT

id //
OO

TηT

T3

�� τ

Tµ //

µT

��

T2

µ

��

=

T3

�� Tρ

OO

TηT

id // T3 Tµ // T2

µ

��
T2

id
// T2

µ
// T T2

id
// T2

µ
//

id

>>

T.

Definition 1.3.2. A pseudo-algebra (A,a,aµ,aη) for a pseudo-monad (T, µ, η, τ, ρ, λ)
consists of

• a 0-cell A in A;
• a 1-cell a : TA // A ;
• invertible 2-cells

T2A

µA

��
�� aµ

Ta // TA

a

��

A

|� aη
1A

  

ηA // TA

a

��
TA

a
// A A

subject to two coherence axioms:

T3A

µTA

��

T2a //

TµA

""
�� Taµ

T2A

Ta

!!

T3A

�µTA

��

T2a // T2A

µA

��

Ta

!!
T2A

�� τA

µA

""

T2A

�� aµµA

��

Ta
// TA

a

��

= T2A

�� aµ

Ta //

µA

""

TA
�� aµ

a

!!

TA

a

��
TA

a
// A TA

a
// A

T2A

�� λA

id //
OO

TηA

T2A

�� aµ

Ta //

µA

��

TA

a

��

=

T2A

�� Taη

OO

TηA

id // T2A Ta // TA

a

��
TA

id
// TA

a
// A TA

id
// TA

a
//

id

==

A

A second identity axiom, one for the composite of aµ with ηTA, follows from these
two axioms.

Definition 1.3.3. A pseudo-morphism of pseudo-T-algebras from (A,a,aµ,aη) to
(B, b, bµ, bη) consists of a pair ( f , f ) where f : A // B is a 1-cell and f is an
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invertible 2-cell
TA

a

��

T f //

�� f

TB

b

��
A

f
// B

subject to two coherence axioms:

T2A

µA

��

T2 f //

Ta

""
�� T f

T2B

Tb

!!

T2A

�µA

��

T2 f // T2B

µB

��

Tb

!!
TA

�� aµ

a

""

TA

�� fa

��

T f
// TB

b

��

= TA

�� f

T f //

a

""

TB
�� bµ

b

""

TB

b

��
A

f
// B A

f
// B

A

�1A

��

f //

ηA

  

B

ηB

!!

A

1A

��

f // B

1B

��

ηB

  
A

�� aη

1A

  

TA

�� fa

��

T f
// TB

b

��

= A
f //

1A

��

B
�� bη
1B

  

TB

b

��
A

f
// B A

f
// B.

Definition 1.3.4. A pseudo-T-transformations from ( f , f ) : (A,a) // (B, b) to
(g,g) : (A,a) // (B, b) is an invertible 2-cell α : f +3 g in A satisfies the
following coherence axiom

TA
T f //

�� fa

��

TB

b

��

TA

T f
((

Tg

66�� Tα

a

��

�� g

TB

b

��

=

A

f

''

g

77�� α B A
g

// B.
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The above definitions together form a 2-category.

Definition 1.3.5. Let (T, µ, η, τ, ρ, λ) be a pseudo-monad. We define the 2-category
Ps-T-Alg where 0-cells are pseudo-T-algebras, 1-cells are pseudo-morphisms, and
2-cells are pseudo-T-transformations. The composition functor is defined as

cA,B,C : Ps-T-Alg ((B, b), (C, c)) × Ps-T-Alg ((A,a), (B, b)) // Ps-T-Alg ((A,a), (C, c))

which send a pair 1-cells

( f , f ) : (A,a,aµ,aη) // (B, b, bµ, bη) (g,g) : (B, b, bµ, bη) // (C, c, cµ, cη)

to
(g f ,g f ) : (A,a,aµ,aη) // (C, c, cµ, cη)

where g f is the composite of 1-cells inA and g f = (g.iT f ) ◦ (ig . f ) as shown below

TA

a

��

T f //

�� f

TB

b

��

Tg //

�� g

TC

c

��
A

f
// B

g
// C

It is straightforward to prove that (g f ,g f ) satisfies the axioms ofDefinition 1.3.3. The
composition functor defines the composition of 2-cells as the horizontal composition.

Definition 1.3.6. Let (T, µT , ηT , τT , ρT , λT ) and (S, µS, ηS, τS, ρS, λS) be pseudo-
monads on a 2-category A. A pseudo-distributive law (δ, µS, µT , ηS, ηT ) of S over
T consists of

• a pseudo-natural transformation δ : ST // TS ;
• invertible modifications

S2T

�� µ
SµST

��

Sδ // STS
δS // TS2

TµS

��

ST2

�� µ
TSµT

��

δT // TST
Tδ // T2S

µTS

��
ST

δ
// TS ST

δ
// TS

• invertible modifications
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T

ηST

��

TηS

!!

S

SηT

��

ηTS

!!
ST

δ
// TS

=EηS

ST
δ

// TS

=EηT

subject to the ten coherence axioms we list below.

1. The first axioms involves ηT and ηS and is self-dual

idA

ηT

��

ηS

// S

ηTS

��

v~
ηT

SηT // ST

δ

��

idA

ηT

��

ηS

// S
SηT // ST

δ

��

� = �

T
TηS

// TS T

ηST

DD

�� η
S

TηS

// TS

2. the second is a coherence axiom involving µS , ηS and λS

S2T

µST

��

�� µ
S

Sδ // STS
δS // TS2

TµS

��

S2T
Sδ // STS

δS // TS2

TµS

���� λST

= �

ST

SηST

CC

idST

// ST
δ

// TS ST

�&Sη
S

STηS

BB

SηST

OO

δ
// TS

idTS

//

TSηS

OO

��TλS

TS

3. the third axiom is a coherence axiom involving µS , ηS and ρS

S2T

µST

��

�� µ
S

Sδ // STS
δS // TS2

TµS

��

S2T
Sδ // STS

δS // TS2

TµS

���� ρST

= �

ST

ηSST

CC

idST

// ST
δ

// TS ST

ηSST

OO

δ
// TS

ηSTS

\\

idTS

//

TηSS

OO
8@ηSS

��TρS

TS

4. axiom 4 is, in a sense, dual to axiom 2, and it involves ηT , µT and λT
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ST2

SµT

��

�� µ
T

δT // TST
Tδ // T2S

µTS

��

ST2 δT // TST
Tδ // T2S

µTS

���� SλT

= �

ST

STηT

CC

idST

// ST
δ

// TS ST

STηT

OO

δ
// TS

TSηT

\\

idTS

//

TηTS

OO
8@TηT

��λTS

TS

5. axiom 5 is, in a sense, dual to axiom 3, and it involves ηT , µT and ρT

ST2

SµT

��

�� µ
T

δT // TST
Tδ // T2S

µTS

��

ST2 δT // TST
Tδ // T2S

µTS

���� SρT

= �

ST

SηTT

CC

idST

// ST
δ

// TS ST

�&η
TT

ηTST

BB

SηTT

OO

δ
// TS

idTS

//

ηTTS

OO

��ρTS

TS

6. this axiom involves µS and ηT

S2T

µST

��

Sδ

$$

S2T
Sδ

$$
STS

δS

$$

STS
δS

$$
S2

µS

��

S2ηT

DD

� ST �� µ
S

δ

%%

TS2

TµS

��

= S2
�� η

TS

�� Sη
T

µS

��

S2ηT

DD

ηTS2
//

SηTS

55

TS2

TµS

��

�

S

�� η
T

SηT

CC

ηTS

// TS S
ηTS

// TS

7. this axiom involves µT and ηS
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ST2

SµT

��

δT

$$

ST2

δT

$$
TST

Tδ

$$

TST
Tδ

$$
T2

µT

��

ηST2

DD

� ST �� µ
T

δ

%%

T2S

µTS

��

= T2
�� Tη

S

�� η
ST

µT

��

ηST2

DD

T2ηS

//

TηST

55

T2S

µTS

��

�

T

�� η
S

ηST

CC

TηT S

// TS T
TηS

// TS

8. this axioms involves µS and τS

S3T

µSST

��

SµST

��

S2δ // S2TS
SδS // STS2

STµS

��

δS2
// TS3

TSµS

��

�� Sµ
S �

S2T

µST

��

�� τSTS
2T

µST

��

Sδ // STS
δS // TS2

TµS

��

�� µ
S

ST
δ

// TS

S3T

µSST

��

S2δ // S2TS

µSTS

��

SδS // STS2 δS2
// TS3

TµSS

��

TSµS

��

� �� µ
SS

S2T

µST

��

Sδ
// STS

δS
// TS2

TµS

��

��TτSTS2

TµS

��

�� µ
S

ST
δ

// TS

9. this axioms involves µT and τT
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ST3

SµTT

��

δT2
// TST2 TδT // T2ST

T2δ //

µTST

��

T3S

µTTS

��

TµTS

��

�� µ
TT �

ST2

SµT

��

δT
// TST

Tδ
// T2S

µTS

��

�� τTSTS2

µTS

��

�� µ
T

ST
δ

// TS

ST3

SµTT

��

STµT

��

δT2
// TST2 TδT //

TSµT

��

T2ST
T2δ // T3S

TµTS

��

� �� Tµ
T

ST2

SµT

��

�� SτTST2

SµT

��

δT // TST
Tδ // T2S

µTS

��

�� µ
T

ST
δ

// TS

10. the last axiom is self dual and it involves µT and µS
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S2T2

S2µT

��

SδT // STST
STδ // ST2S

SµTS

��

δTS // TSTS
TδS // T2S2

µTS

��

�� Sµ
T

�� µ
TS

S2T

µST

��

Sδ
// STS

δS
// TS2

TµS

��

�� µ
S

ST
δ

// TS

ST2S

δTS

��

�

S2T2

S2µT

��

µST2

��

SδT // STST
δST //

STδ

??

TS2T

TµST

��

TSδ // TSTS
TδS // T2S2

T2µS

��

µTS2

��

�� µ
ST �� Tµ

S

S2T

µST

��

� ST2

SµT

��

δT
// TST

Tδ
// T2S

µTS

��

� TS2

TµS

��

�� µ
T

ST
δ

// TS

The definition of lifting for pseudo-monads is a natural generalization of Definition
1.1.12.

Definition 1.3.7. Let (S, µS, ηS, τS, λS, ρS) and (T, µT , ηT , τT , λT , ρT ) be two pseudo-
monads on a 2-category A. A lifting of the pseudo-monad T on Ps-S-Alg is a
pseudo-monad T̃ on the category Ps-S-Alg such that

TGS = GST̃

where GS is the forgetful 2-functor for the pseudo-monad S.

As in the ordinary case, given a pseudo-monad S we can define the 2-category
Ps-DistS of pseudo-distributive laws and the 2-category LiftPs-S-Alg of liftings over
Ps-S-Alg.

The following theorems are the extensions in the pseudo setting of Theorems
1.1.14 and 1.1.16.
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Theorem 1.3.8. The 2-category Ps-DistS and LiftPs-S-Alg are equivalent.

Proof. The constructions are essentially the same as those for ordinary distributive
laws and ordinary lifting as in Theorem 1.1.14. However it is tedious and straightfor-
ward to complete the proof becausewe need to take care about to all the pseudo-maps.
Therefore we refer to [54] for the complete proof of these result. �

Theorem 1.3.9. Let δ : ST // TS be a pseudo-distributive law of pseudo-
monads on a 2-category A. Then

1. the pseudo-functor TS acquires the structure of pseudo-monad, with multiplica-
tion given by

TSTS
TδS // T2S2 µTS2

// TS2 TµS

// TS

2. Ps-TS-Alg is canonically isomorphic to Ps-T̃-Alg.

Proof. See [54, Proposition 7.8 and Theorem 7.9]. �



Chapter 2
Regular Categories and Factorization Systems

In this chapter we introduce the notions of regular and exact categories, and we
examine the relationship between these kind of categories and first-order predicate
logic. We refer to [4, 5] for an introduction to the study of this kind of categories,
and to [24, 45, 33] for the applications in logic.

In the first section some general results on the theory of regular category are
recalled, and we present the so called exact completion of a regular category, which
will play a central rule in the rest of this work. See [6, 8, 10].

This completion provides a left biadjoint to the inclusion

Xct // Reg

of the 2-category Xct whose objects are exact categories into the 2-category Reg
whose objects are regular categories.

In the second section we explain the categorical semantic in a regular category,
and this will provide the starting point for the more general approach to logic using
doctrines and fibrations.

In the last section we analyse the works of Kelly [26] on the calculus of relations
in a finitely complete category together with a factorization system.

In particular we emphasise two points which emerge from this work: the first
is that we do not need necessary a regular category in order to have a calculus of
relations with associative composition; it suffices that a finitely-complete category
has a proper, stable, factorization system.

The second point is that the inclusion

Reg // LFS

has a left biadjoint, where LFS is the 2-category whose objects are finitely complete
categories with a proper, stable, factorization system.

Therefore combining the exact completion with this results, we get that the inclu-
sion

Xct // LFS

27
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has a left biadjoint.

2.1 Regular categories and exact completion

The notions of a regular and of an exact category are among the most interesting
notions studied in category theory. In fact, several important mathematical situations
can be axiomatized in categorical terms as regular or exact categories satisfying some
typical axioms. For instance small regular categories are the basis for an invariant
definition of first-order (intuitionistic) theories, see [45, 24, 16].

All monadic categories over a power of Set, and in particular algebraic categories,
are exact. Abelian categories and Grothendieck toposes are other examples of exact
categories.

As it is always the case in mathematics, when a new relevant structure emerges
and begins to be studied as such, an immediate question is the study of the free such
structures. Of course, free refers to a given forgetful functor, and in the case of regular
and exact categories there are several such forgetful functors whose corresponding
free functor (left adjoint to the forgetful) should be investigated.

One of the most relevant free construction is the "exact completion" of a regular
category, which is based on the theory of relations. We refer to [6, 11, 10] for a
detailed description of this topic and for the presentation of the exact completion of
a finitely complete category.

Let C be a category, and let A be an object of C. We write Sub(A) for the
full subcategory of the slice category C/A whose objects are subobjects of A. This
category is of course a preorder andwe follow the usual custom of denoting its unique
protomorphism by ≤. If C/A is finitely complete, so is Sub(A), and following the
notation of [24] , products in Sub(A) are called intersections and are denoted by ∩
rather then ×.

If the category C has finite limits, then every morphism f : A // B induces
two functors: the first is the post-composition functor∑

f : C/A // C/B

and the other is
f ∗ : C/B // C/A

which sends an object g of C/B to the object f ∗g of C/A which is the left-vertical
map in the pullback square

P

f ∗g

��

// C

g

��
A

f
// B.
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This functor can be restricted to a functor

f ∗ : Sub(B) // Sub(A)

because the pullback of a monomorphism is a monomorphism, and we shall again
denote it by f ∗.

We say that C has images if we can assign to every morphism f a subobject im f
of its codomain, which is the least (in the sense of the preorder ≤) subobject of cod f
through which f factors.

Lemma 2.1.1. Let C be a category with pullbacks, then the following are equivalent:
1. C has images;
2. for every object A the inclusion Sub(A) → C/A has a left adjoint;
3. for everymorphism f : A // B the pullback functor f ∗ : Sub(B) // Sub(A)

has a left adjoint Ef : Sub(A) // Sub(B) .

Proof.[Sketch] The equivalence of the first two points follows from directly the
definitions. If C has images, then we define Ef to be composite

Sub(A) // C/A
∑

f // C/B im // Sub(B) (2.1)

where the first functor is the inclusion the functor
∑

f acts as post-composition, and
im sends an arrow h : C // B to the image im(h). One can verify that compo-
sition (2.1) gives a left adjoint to f ∗. See [24, Lemma 1.3.1] for all the details. �

The canonical morphism g : dom f // dom(im f ) which is the unit of the
last adjunction ofLemma2.1.1 is said cover.Weuse the convention g : dom f Idom(im f )
to indicate that g is a cover.
Remark 2.1.2. A morphism f : A // B is a cover if and only if there exists a

monomorphism B // m // C such that for every commutative diagram

A

l

��

f // B

k

��

��

m

��
D //

g
// C

where D //
g // C is a monomorphism, there exists a morphism k : B // D

such that k f = l and kg = m. Moreover this morphism is unique since g is monic.

Remark 2.1.3. Observe that if f : A IB is a cover then it cannot factor through
any proper subobject of its codomain: suppose that f is the unit of an arrow
g : A // C and that f = mp, where m is a monomorphism.
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Then (im gm)p is a factorization of g, hence there exists an arrow r such that
(im gm)r = im g, and since im g is a monomorphism, we have mr = id. Now we
have that m is a monomorphism and mr = id, then we can conclude that m is an
isomorphism.

Remark 2.1.4. A regular epimorphism f : A // B is a cover, because for any
factorization of it through a subobject

C
h //

g
// A

i

��

f // B

E
??

m

??

the morphism m is an isomorphism, since it is a monomorphism and it is the
coequalizer of the pair ih and ig.

Remark 2.1.5. We can also observe that if the category C has equalizers, then every
cover is an epimorphism, since it cannot factor through the equalizer of any distinct
pair of morphisms.

Lemma 2.1.6. Let C be a category with pullbacks, and let f : A // B be a
morphism of C. The the following are equivalent:
1. f is a cover;
2. for every commutative square

A
f //

g

��

B

h

��k
xx

C //
m

// D

there exists a unique k : B // C such that k f = g and mk = h.

Proof. By Remark 2.1.2 the first point is a special case of the second. Conversely,
the existence of a commutative square and the fact that C has pullback say that f
factors through the subobject h∗m of B, and since f is a cover then this must be an
isomorphism. This means that h factors through m. Writing k : B // C for this
factorization, we have mk f = h f = mg, whence k f = g since m is monic. �

Morphisms with the property described in Lemma 2.1.6 are sometimes called strong
epimorphism or extremal epimorphism, see for example [4] and [5].

Now we can give the definition of regular category, following the definition of
[24].

Definition 2.1.7. A category C is said regular if it has finite limits, has images, and
every cover is stable under pullbacks. A functor between regular categories is called
regular if it preserves finite limits and covers.
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Remark 2.1.8. In a regular category C, for every pair of morphisms f and g with
common codomain we

g∗ im f � im(g∗ f )

because monomorphisms and covers are stable under pullback. See the following
diagram

• I

��

•

��

// g
∗ im f // •

g

��
• I• //

im f
// •.

Example 2.1.9. The category Set is regular: covers are surjective functions and
images are the usual set-theoretic ones. Similarly one can show that the categoryGp
of groups is regular and more generally, any category monadic over Set is regular.
Observe that in Set andGp covers coincide with the epimorphisms, but for example,
in the category Mon of monoids, this not holds. An important example of category
which has images but it is not regular is the category Top of topological spaces:
the images are injective continuous functions, and covers are surjection X // Y
such that Y is topologized as a quotient space of X . However these covers are not
stable under pullbacks. See [13].

The above examples and Remark 2.1.5 suggest that covers and epimorphims not
always coincide. The following proposition gives a characterisation of covers in
regular categories.

Proposition 2.1.10. In a regular category, the covers are exactly the regular epi-
morphisms.

Proof.[Sketch] By Remark 2.1.4 we already know that regular epimorphism are
covers. Conversely let f : A // B be a cover in a regular category, and let

R
a //

b
// A

f // B

be its kernel pair. We shall prove that f is the coequalizer of a and b. Let
c : A // C be a morphism such that ca = cb, and let

A d // D //
〈g,h〉 // B × C

the image of the factorization of 〈 f , c〉 : A // B × C . If we prove that g is an
isomorphism then d = g−1 f and then hg−1 f = c. Moreover this is the unique
factorization of c through f because covers are epimorphisms by Remark 2.1.5. To
this end it is sufficient to prove that g is monic, since the cover f factors through it.
See [24, Lemma 1.3.4] for all the details. �
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Corollary 2.1.11. In a regular category strong epimorphisms and regular epimor-
phisms coincide.

Proof. It follows from Proposition 2.1.10 and Lemma 2.1.6. �

Lemma 2.1.12 (Frobenius reciprocity). Let f : A // B be a morphism of a
regular category C. Then for every subobjects A′ // // A and B′ // // B we
have

Ef (A′ ∩ f ∗(B′)) � Ef (A′) ∩ B′

in Sub(B).

Proof. Consider the following diagram

A′ ∩ f ∗(B′)��

��

I%%

%%

Ef (A′) ∩ B′
��

��

$$

$$
f ∗(B′)��

��

// B′��

��

A′ I%%

%%

Ef (A′)$$

$$
A

f
// B

in which the front, left and right faces are pullbacks. The base of the cube commutes
by definition of Ef . Then the back face is also a pullback, and since the category C
is regular then its top edge is a cover. Therefore, since monomorphisms are stable
under pullback, we have that Ef (A′) ∩ B′ is the image of the composite morphisms

A′ ∩ f ∗(B′)

I

// B

Ef (A′) ∩ B
::

::

and then Ef (A′ ∩ f ∗(B′)) � Ef (A′) ∩ B′. �
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A regular category needs not have coequalizer for arbitrary pairs of morphisms;
we can only prove that it has coequalizers for those pairs which occur as kernel-pairs
of a morphism f , since we can factor this morphism and prove that the cover given
from this factorization is the coequalizer of this kernel-pair. See [5, 24].

A pair of morphisms which occurs as kernel-pair has some interesting properties,
in particular it is an equivalence relation in the sense of the following definition.

Definition 2.1.13. Let 〈a, b〉 : R
//
// A be a pair of parallel morphisms in a

finitely complete category.

1. We say that 〈a, b〉 is a relation if 〈a, b〉 : R // A × A is monic;
2. we say 〈a, b〉 is reflexive if there exists r : A // R such that ar = br = idA;
3. we say 〈a, b〉 is symmetric if there exists s : R // R such that as = b and

bs = a;
4. we say 〈a, b〉 is transitive if there exists t : P // R , where P is the pullback

P
q //

p

��

R

a

��
R

b
// A

such that at = ap and bt = bq;
5. we say that 〈a, b〉 is an equivalence relation if it has all four the above properties.

Remark 2.1.14. Note that if 〈a, b〉 is a relation, then the morphism r , s and t which
verify the other three properties are unique if they exist.

Remark 2.1.15. The kernel pair of any morphism f : A // B in a regular cate-
gory is an equivalence relation.

We say that an equivalence relation is effective if it occurs as a kernel-pair. There are
some regular categories in which some equivalence relation are not effective, such
as the category of torsion free abelian groups: it is regular, but not every equivalence
relation is effective. See [24].

Definition 2.1.16. A regular category C is said exact if every equivalence relation
is effective.

Example 2.1.17. The categories Gp and Set are exacts, and more generally, any
category which is monadic over a power of Set is exact.

The notion of regular category is precisely the one that allows to develop the calculus
of relations as an equational calculus over graphs.

We define a relation R from A to B as a suboject R // // A × B , and the
existence of images in a regular category allows us to define the composite of two
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relations as follows: if S // // B × C is another relation from B to C, then the
composite SR // // A × C is

SR := im

[ ∑
prA×C

(
pr∗A×B(R) ∩ pr∗B×C(S)

) ]
where pr’s denote projections from A×B×C. The stability of covers under pullback
means that the above composition is associative, see [29], determining in this way the
categoryRel(C) of relations of C, whose identity morphisms are given by diagonal
subobjects.

Notice that Rel(C) has extra structure:

1. a local order preserved by composition, which has finite intersections;
2. an involution (−)◦ : Rel(C) // Rel(C) which is the identity on objects and

which preserves the local order;
3. an embedding C // Rel(C) given by the construction of the graph; it is the

identity on the objects and it sends a morphism f : X // Y to the relation
〈idA, f 〉 : X // A × B . The graph of an arrow in Rel(C) is called function,
and sometime we use the notation f : A // B to indicate such a relation.

This structure allows to give purely algebraic proofs about facts in C, by using the
following lemma.

Lemma 2.1.18. Let C be a regular category, then

1. the relation R : A // B tabulated by 〈a, b〉 is a function if and only if

RR◦ ≤ idA and idB ≤ R◦R;

2. a morphism f : A // B in C is a monomorphism if and only if f ◦ f = idA

and it is a regular epimorphism if and only if f f ◦ = idB;

Proof.[Sketch] Let f : A // B be a function. The relation f ◦ f is tabulated by
the kernel pair of f , whence

idB ≤ f ◦ f .

In particular the equality holds if and only if f : A // B is a mononomorphism.
Moreover the relation f f ◦ is tabulated by im〈 f , f 〉 = ∆B im f

A
f //

I

B
∆B // B × B

I

im f

OO

im〈 f , f 〉

==

and then
f f ◦ ≤ idA .



2.2 First-order categorical logic 35

In particular the equality holds if and only if im f is an isomorphism, which means
that f is a regular epimorphism. For the other implication we refer to [26, 7, 10]. �

One of the uses of the theory of relations is to describe the left-biadjoint to the
forgetful 2-functor from the 2-category of exact categories to the one of regular
categories. See [11, 10, 6] for all the details.

Definition 2.1.19. Let C be a regular category. The exact completion (C)ex/reg is
defined as follow:

• an object is a pair (A,E) where A is an object of C and E // A × A is an
equivalence relations in C;

• amorphisms R : (A,E) // (B,F) is a relation R : A // B in C such that

RE = FR = R

and
E ≤ R◦R, RR◦ ≤ F .

The composition is the relations composition, and the identity on (A,E) is E itself.

For the proof that the category (C)ex/reg is an exact category we refer to [11, 16].

Theorem 2.1.20 (Exact Completion). Let C be a regular category, and let A be
an exact category. The category (C)ex/reg is exact and the embedding

C // (C)ex/reg

induces an equivalence between the category Reg(C,A) of regular functors from C
to A and the category Xct((C)ex/reg,A) of regular functors from (C)ex/reg to A.

Remark 2.1.21. The embedding of 2-categories Xct // Reg is full, and then
the exact completion is an idempotent process. Moreover a regular category C is
exact if and only if the unit η : C // (C)ex/reg is an equivalence.

Remark 2.1.22. A new description of the exact completion (C)ex/reg of a regular
category C is given in [31] using a certain topos Sh(C) of sheaves on C. In this case
the exact completion is then constructed as the closure of C in Sh(C) under finite
limits and coequalizers of equivalence relations. A disadvantage of this approach is
that this completion can be applied only to small regular categories.

2.2 First-order categorical logic

Regular categories have exactly what we need for the interpretation of a fragment of
a first order language in a category.
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We describe the interpretation of the so called regular formulas, and for a general
description of this topic we refer to [24, 45].

In particular this part will make clear the relationship between category theory
and predicate logic, and it is a direct generalization of the traditional definition due
to A. Tasrki of satisfaction of first-order formulae in ordinary set-valued structures.

Definition 2.2.1. A first-order signature Σ consists of the following data:

1. a set Σ-Sort of sorts;
2. a set Σ-Fun of function symbols, together with a map assigning to each function

symbol its type, that is a finite non-empty list of sorts, where the last one is
separated from the others by an arrow:

f : A1, A2, ..., An
// B

and if n = 0 we will say that f is a constant;
3. a set Σ-Rel of relation symbols, together with a map assigning to each relation

symbol its type, that is a finite list of sorts:

R� A1, ..., An

and if n = 0, we will say that R is an atomic proposition.

For each sort A of a signature Σ we assume given a supply of variables of sort A.

Definition 2.2.2. The collection of terms is defined recursively by the following
rules:

• x : A is a term for every variable x of sort A;
• f (t1, ..., tn) : B for every function symbol f : A1, ..., An

// B and t1 : A1, ..., tn : An;

We have use denoted t : A to say that t is a term of sort A.

Definition 2.2.3. The set of regular formulae is defined recursively by the following
clauses, together with, for every formula φ, the finite set FV(φ) of the free variables
of φ:

1. Relations: R(t1, ..., tn) is a formula, if t1 : A1, ..., tn : An are terms and R �
A1, ..., An is a relation symbol. The free variable of this formula are all the
variables occurring in ti .

2. Equality: s =A t is a formula, if s and t are terms with the same sort A. FV(s =
t) = FV(s) ∪ FV(t);

3. Truth: > is a formula. FV(>) = ∅;
4. Binary Conjunction: φ ∧ ψ is a formula, if φ and ψ are. FV(φ ∧ ψ) = FV(φ) ∪

FV(ψ);
5. ExistentialQuantification: (∃x : A)φ is a formula for every formula φ.FV((∃x : A)φ) =

FV(φ) \ {x}.
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Definition 2.2.4. A context is a finite list of distinct variables ®x := x1, ..., xn. The
type of a context is the list of sorts of the variables appearing in it. We say that a
context ®x is suitable for a formula φ if all the free variables of φ occur in ®x; a regular
formula-in-context is an expression of the form ®x.φ, where φ is a regular formula
and ®x is a suitable contest for φ. Similarly, a term-in-context is an expression of the
form ®x.t where t is a term and ®x is a context containing all the variables appearing
in t.

Now we introduce the formal expressions which will serve as axioms for the logical
theories we wish to consider.

Definition 2.2.5. By a regular sequent over a signature Σ we mean a formal expres-
sion

φ `®x ψ

where φ and ψ are regular formulae over Σ and ®x is a context suitable for both of
them.

Definition 2.2.6. By a regular theory over a signature Σ we mean as set T of regular
sequents over Σ, whose elements are called axioms of T.

Since in the rest of this section we work always with regular sequents and regular
theories, we will called it simply sequents and theories.

We conclude this part with two examples of regular theories.

Example 2.2.7 (Elementary theory of abstract categories). A fundamental example
of regular theory is the elementary theory of abstract categories. It can be express
over a signature of two sort, see [24], but we present it following the notation of
Lawvere, see [35]. The signature is given by the following data:

• one sort M , which represents the morphisms;
• two unary function symbols dom: M // M and cod: M // M ;
• one relation symbol Γ� M,M,M .

The axioms of the theory are:

1. > `x cod(dom(x)) = dom(x) and > `x dom(cod(x)) = cod(x);
2. Γ(x, y,u) `x,y,u dom(x) = dom(u) ∧ cod(y) = cod(u);
3. Γ(x, y,u) ∧ Γ(x, y,u′) `x,y,u,u′ u = u′;
4. dom(y) = cod(x) `x,y (∃u)Γ(x, y,u);
5. (∃u)Γ(x, y,u) `x,y dom(y) = cod(x);
6. identity axiom: > `x Γ(dom(x), x, x) ∧ Γ(x,cod(x), x);
7. associativity axiom: Γ(x, y,u)∧Γ(y, z,w)∧Γ(x,w, f )∧Γ(u, z,g) `x,y,z,u,w f = g.

The meaning of the formula dom(x) = y is "the domain of x is y" (and similarly for
cod), and Γ(x, y,u) means that "u is the composition x followed by y". Besides the
usual means of abbreviating formulas, the following (as well as. others) are special
to the elementary theory of abstract categories

f : x // y means dom( f ) = x ∧ cod( f ) = y
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and
f g = h means Γ(g, f , h).

In this presentation with a signature of only one sort, the objects are identified with
the identity morphisms.

Example 2.2.8 (Theory of divisible abelian groups). Another example of regular
theory is the theory of divisible, abelian groups; the signature is defined by one
sort A, two function symbol + : A, A // A , (−)−1 : A // A and a constant
symbol e. This theory is obtained from the theory of abelian groups, which has the
following axioms

• > `x,y,z (x + y) + z = x + (y + z);
• > `x (x)−1 + x = e;
• > `x x + e = x;
• > `x,y x + y = y + x;

and for every n > 1 we add the axiom

> `x (∃y)(ny = x).

2.2.1 Categorical semantic

Definition 2.2.9. Let C a category with finite products, and let Σ be a signature. A
Σ-structure M in C is given by the following data:

1. for every sort A of Σ-sort, is given a object M A in C, and for every finite string
of sorts A1, ..., An we define

M(A1, ..., An) := M A1 × ... × M An.

If the string is the empty one, we define M([]) as the terminal object of C;
2. for every function symbol f : A1, ..., An

// B , is defined a morphism

M f : M(A1, ...,M An) // MB

in C;
3. for every relation symbol R� A1, ...An, is define a subobject

MR // // M(A1, ...An)

in C.

Definition 2.2.10. The Σ-structures in C form a category Σ-Str(C) whose mor-
phisms are calledΣ-structure homomorphisms: an homomorphisms h : M // N
consists in a collection of morphisms hA : M A // N A in C, indexed by the sorts
of Σ, satisfying the following properties:
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1. for every function symbol f : A1, ..., An
// B the diagram

M(A1, ..., An)

hA1×...×hAn

��

M f // MB

hB

��
N(A1, ..., An)

N f
// NB

commutes:
2. for every relation symbol R� A1, ...An of Σ there is a commutative diagram in
C of the form:

MR // //

��

M(A1, ..., An)

��

hA1×...×hAn

��
NR // // N(A1, ..., An).

Identities and compositions in Σ-Str(C) are defined component-wise from those in
C.

Remark 2.2.11. Observe that every functor T : C // D which preserves finite
products andmonomorphisms induces a functor Σ-Str(T) : Σ-Str(C) // Σ-Str(D)
in the natural way; any natural transformation α : T1 // T2 between such func-
tors induces a natural transformation Σ-Str(α) : Σ-Str(T1) // Σ-Str(T2) . Thus
the construction Σ-Str(−) is 2-functorial.

Definition 2.2.12. Let C be a category with finite products and let M be an object
of Σ-Str(C). Consider a term-in-contest ®x.t, where the type of ®x is A1, ..., An, and
t : B. We define the morphism

[| ®x.t |]M : M(A1, ..., An) // MB

in C recursively by the following clauses:

1. if t is a variable, then it must be of the for xi : Ai for some i ≤ n, and then we
define [| ®x.t |]M = pri , where pri : M(A1, ..., An) // M Ai is the projection;

2. if t is f (t1, ..., tm), where ti : Ci and f : C1, ...Cm
// B , then [| ®x.t |]M is defined

as the composition of

M(A1, ..., An)
〈[| ®x.t1 |]M ,...,[| ®x.tm |]M 〉 // M(C1, ...Cm)

M f // MB.

Lemma 2.2.13 (Substitution Property). Let ®y be a suitable contest for t : C with
yi : Bi . Let ®s be a string of terms of the same length and type as ®y, and let ®x be a
suitable contest for ®s with xi : Ai . Then [| ®x.t[®s/®y]|]M is the composite



40 2 Regular Categories and Factorization Systems

M(A1, ..., An)
〈[| ®x.s1 |]M ,...,[| ®x.sm |]M 〉 // M(B1, ...Bm)

[| ®x.t |]M // MC

Proof. Straightforward induction on the structure of the term t. See [24, Lemma
1.2.4]. �

Remark 2.2.14 (Weakening Property). Observe that if ®y is a suitable contest for a
term t, we can apply the previous lemma to the string ®s = ®y, and take as suitable
contest for ®s a contest ®x containing ®y. Then we obtain

[| ®x.t |]M = [| ®y.t |]M ◦ pr

where pr is an opportune projection.

Lemma 2.2.15. Let h : M // N be an homomorphism of Σ-structures in a cat-
egory C with finite products, and let ®x.t be a term-in-contest, with xi : Ai and t : B.
Then the diagram

M(A1, ..., An)

hA1×...×hAn

��

[| ®x.t |]M // MB

hB

��
N(A1, ..., An)

[| ®x.t |]N

// NB

commutes.

Proof. The proof is again an induction on the structure of the term t. See [24, Lemma
1.2.5]. �

We turn next to the interpretation of regular formulae in a Σ-structure in a regu-
lar category, and it will be clear why one need this structure in order to interpret this
kind of formulae.

Definition 2.2.16. Let M be a Σ-structure in a regular category C. A formula in
contest ®x.φ, where xi : Ai , is interpreted as a subobject

[| ®x.φ|]M � M(A1, ..., An)

according to the following recursive clauses:

1. if φ is of the form R(t1, ..., tm), where R is a relation symbol of type B1, ...,Bm,
then [| ®x.φ|]M is the pullback
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[| ®x.φ|]M //
��

��

MR��

��
M(A1, ..., An)

〈[| ®x.t1 |]M ,...,[| ®x.tn |]M 〉
// M(B1, ...,Bm)

2. if φ is of the form s =B t, then [| ®x.φ|]M is the equalizer

[| ®x.φ|]M // // M(A1, ..., An)
[| ®x.t |]

//
[| ®x.s |] //

MB

3. if φ is > then [| ®x.φ|]M is the top element of Sub(A1, ..., An);
4. if φ is γ ∧ ψ then [| ®x.φ|]M is the pullback

[| ®x.γ ∧ ψ |]M // //
��

��

[| ®x.γ |]M��

��
[| ®x.ψ |]M // // M(A1, ..., An)

5. if φ is (∃y : B)ψ then [| ®x.φ|]M is the image of the following composition

[| ®x, y.ψ |]M // // M(A1, ..., An,B)
π // M(A1, ..., An).

[| ®x.φ|]M
55

55

Lemma 2.2.17 (Substitution Property). Let ®y.φ be a regular formula, with yi : Bi ,
and let M be a Σ-structure on a regular category C. Let ®s be a string a terms of the
same length and type of ®y, and let ®x be a suitable conntest for all the terms of ®s, with
xj : Aj . Then [| ®x.φ[®s/®y]|]M is the pullback of the following diagram:

[| ®x.φ[®s/®y]|]M��

��

// [| ®y.φ|]M��

��
M(A1, ..., An)

〈[| ®x.s1 |]M ,...,[| ®x.sm |]M 〉
// M(B1, ...,Bm)

Proof. One can prove the lemma using induction on the structure of the formula φ.
See [24, Lemma 1.2.7]. �
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Lemma 2.2.18. Let C be a regular category, and let h : M // N be an ho-
momorphism of Σ-structure. Then for every regular formula-in-context the ®x.φ the
diagram

[| ®x.φ|]M

��

// // M(A1, ..., An)

hA1×...×hAn

��
[| ®x.φ|]N // // N(A1, ..., An)

commutes.

Proof. One can prove this lemma using induction on the structure of the formula φ.
See [24, Lemma 1.2.9]. �

2.2.2 Structural rules

The definitions of the last two subsections provide a useful tool for constructing
objects and morphisms with prescribed properties in a given category C, but first-
order logic is more than a convenient shorthand for describing particular objects and
morphisms of a category; it is also a tool for proving things about them via suitable
deduction-system.

We develop such deduction system for the fragment of first order logic we have
considered and we prove that it is sound for the categorical semantic. This means
that anything is formally derivable in the deduction system is valid in any structure
for a given signature in a regular category.

Our deduction-system will be formulated as sequent calculi, following the nota-
tion of [24]. It provide rules for inferring the validity of certain sequents.

Given the axioms and inference rules below, the notion of proof (or derivation)
is the usual one: a chain of inference rules whose premises are the axioms in the
system and whose conclusion is the given sequent.

Allowing the axioms of theory T to be taken as premises yields the notion of
proof relative to a theory T.

Definition 2.2.19. 1. The structural rules consist of:

a. identity axiom

φ `®x φ

b. substitution rule

φ `®x ψ

φ[®s/®x] `®y ψ[®s/®x]
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where ®y is a suitable contest for every term of the string ®s and ®s has the same
length and type of ®x;

c. cut rule
φ `®x ψ ψ `®x χ

φ `®x χ

2. the equality rules are

> `x (x = x)

and

(®x = ®y) ∧ φ `®z φ[®y/®x]

where ®z is a suitable contest for φ, and it contains ®x and ®y;
3. the rules for finite conjunction are

φ `®x >

φ ∧ ψ `®x φ

φ ∧ ψ `®x ψ

and the rule

φ `®x ψ φ `®x χ

φ `®x ψ ∧ χ

4. the rule for existential quantification consists of the double rule

φ `®x,y ψ

(∃y : B)φ `®x ψ

5. the Frobenius axiom consist of the following

φ ∧ (∃y : B)ψ `®x (∃y : B)(φ ∧ ψ)

Remark 2.2.20 (Weakening Rule). Observe that the substitution rule allows us to
derive form a sequent φ `®x ψ, a sequent φ `®y ψ, where the context ®y contains the
context ®x.

Remark 2.2.21. Observe that the Frobenius axiom is provable in a full first order
logic, using the rules for implication.

Definition 2.2.22. We say that a regular sequent σ is provable in a regular theory T,
if there exists a derivation relative to T (using the rules described previously), which
has σ at the bottom line.

Definition 2.2.23. Let M be a Σ-structure over a regular category C.
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1. If σ = (φ `®x ψ) is a sequent with xi : Ai , we say σ is satisfied in M if

[| ®x.φ|] ≤ [| ®x.ψ |]

in Sub(M(A1, ..., An)), and we will write M � σ.
2. If T is a regular theory over Σ, we say M is a model of T if all the axioms of T

are satisfied in M , and we will write M � T.
3. We define T-Mod(C) the full subcategory of Σ-Str(C), whose objects are models

of T.

Example 2.2.24. 1. A topological group can be seen as a model of the theory of
groups in the category of topological spaces.

2. Similarly, an algebraic (resp. Lie) group is a model of the algebraic theory
of groups in the category of algebraic varieties (resp. the category of smooth
manifolds).

Lemma 2.2.25. Let T : C // D be a regular functor between regular cate-
gories, let M be a Σ-structure in C and let σ be a sequent over Σ. If M � σ, then
Σ-Str(T)(M) � σ in D.

Proof. It is again an induction on the structure. See [24, Lemma 1.2.13]. �

Remark 2.2.26. Observe that by Lemma 2.2.25 we can restrict the functor defined in
Remark 2.2.11 to T-Mod(T) : T-Mod(C) // T-Mod(D) .

Theorem 2.2.27 (Soundness). Let T be a regular theory over a signature Σ, and let
M be a model of T in a cartesian category C. If σ is a regular sequent which is
provable in T, then M � σ.

Proof. See [24, Proposition 1.3.2]. �

2.2.3 Internal language

Let C be a regular category, we can define a canonical signature ΣC called internal
language as follow: the sorts of ΣC are the objects of C, and for every non-empty
list of object of C A1, ..., An,B and every morphism f : A1 × ... × An

// B , we
define a function symbol f : A1, ..., An

// B in ΣC .
Observe that every morphism of the form f : A1 × ... × An

// B induces
more function symbols: the first one is the n-ary function symbol f : A1, ..., An

// B ,
then there is the (n− 1)-ary function symbol f : A1, ..., An−2, (An−1 × An) // B
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and so on until the unary one f : A1 × ... × An
// B . In the same way for every

subobjects R� A1, . . . , An we define the relation symbols of the signature.
Moreover there is a canonical structure for ΣC in C, called tautological structure,

which assigns to every sort A the corresponding object A in C and to every function
symbol the corresponding morphism in C. The usefulness of this notion lies in the
fact that properties of C or constructions in it can often be formulated in terms
of satisfaction of certain formulae over ΣC in the canonical structure. The internal
language can thus be used for proving things about C. See [24, 50] for all details.

2.2.4 Syntactic category

In Subsection 2.2.2 we have seen a Soundness Theorem, asserting that "anything is
provable is true". Now we look at the converse result, asserting that "anything is true
is provable"; this result is known to logicians as a Completeness Theorem.

Starting from a regular theoryT over a signature Σwewant to construct a category
CT of the appropriate kind and a particular model MT for this theory.

We call this category the syntactic category CT, and the model MT generic model.
As for the previous section we follow the notation of [24], and we suggest for further
reading [45].

Definition 2.2.28. Let T be a regular theory over a signature Σ. We define the
syntactic category CT as follow:

• objects: the objects of CT are α-equivalence classes { ®x.φ} of regular-formula-in-
contest, where ®x.φ and ®y.ψ are said to be α-equivalent if ®x and ®y have the same
length and type, and if φ[®y/®x] is exactly ψ. Observe that by Lemma 2.2.17, if ®x.φ
and ®y.ψ are α-equivalent, then [| ®x.φ|]M is equal to [| ®y.ψ |]M .

• morphisms: let { ®x.φ} and {®y.ψ} be objects of CT. A T-provably functional
proposition θ from ®x.φ to ®y.ψ is a regular formula whose free variables are in ®x, ®y
and such that the following sequents are provable in T:

1. θ `®x,®y φ ∧ ψ;
2. θ ∧ θ{®z/®y] `®x,®y,®z ®z = ®y;
3. φ `®x (∃®y)θ.

We take the morphisms of CT to be T-provable-equivalence classes of formulae-
in-contest which are T-provably functional, and we denote a class of this type by
[θ].

Now consider the following diagram

{ ®x.φ}
[θ] // {®y.ψ}

[γ] // {®z. χ}.

The composition [γ] ◦ [θ] is defined as [∃®y(θ ∧ ψ)]. It is direct to check that this
formula is T-provably functional, for example the first sequent is provable as follow
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θ ∧ γ `®x,®y,®z θ

θ `®x,®y,®z φ ∧ ψ

θ `®x,®y,®z φ

θ ∧ γ `®x,®y,®z φ

θ ∧ γ `®x,®y,®z γ

γ `®x,®y,®z ψ ∧ χ

γ `®x,®y,®z χ

θ ∧ γ `®x,®y,®z χ

θ ∧ γ `®x,®y,®z φ ∧ χ

∃®y(θ ∧ γ) `®x,®z φ ∧ χ

Similarly we can verify the others sequents, and the associativity of the composition.
Moreover the identity morphism on { ®x.φ} is the equivalence class

{ ®x.φ}
[φ∧(x=z)] // {®z.φ[®z/®x]}.

Theorem 2.2.29. CT is a category, and it is regular.

Proof. See [24, Lemma 1.4.2 and Lemma 1.4.10]. �

Lemma 2.2.30. Any subobject of { ®x.φ} in CT is isomorphic to one of the form

{ ®x ′.ψ[ ®x ′/®x]}
[ψ∧(®x= ®x′)] // { ®x.φ}

where ψ is a formula such that the sequent ψ `®x φ is provable in T. Moreover for
two subobjects ψ and χ we have { ®x.ψ} ≤ { ®x.φ} in SubC({ ®x.φ}) if and only if the
sequent ψ `®x χ is provable in T.

Proof. See [24, Lemma 1.4.4 (iv)]. �

Observe that we have a canonical Σ-structure MT in CT, which assigns to a sort
A the object {x.>}, where x : A, to every function symbol f : A1, ..., An

// B
the morphism

{x1, ..., xn.>}
[ f (x1 ,...,xn)=y] // {y.>}

and to a relation symbol R� A1, ..., An the suboject of {x1, ..., xn.>} whose domain
is {x1, ..., xn.R(x1, ..., xn)}.

Lemma 2.2.31. Let T be a regular theory.

• For any term-in-contest ®x.t over Σ, the interpretation in MT is the morphism

[t(x) = y] : { ®x.>} // {y.>}

• For every formula in contest ®x.φ the interpretation in MT is the subobject

{ ®x.φ}� { ®x.>}
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• A sequent φ `®x ψ is satisfied in MT is and only if it is provable in T.

Proof. See [24, Lemma 1.4.5]. �

Theorem 2.2.32 (Completeness). Let T be a regular theory. If a sequent in T is
satisfied in all the models of T, then it is provable in T.

Proposition 2.2.33. Let T be a regular theory. Then for any regular categoryD the
functor

Reg(CT,D) → T-Mod(D)

which sends a regular functor F : CT // D to F(MT) is an equivalence of
categories.

Remark 2.2.34. Observe that the previous theorem tell us that the functor T-Mod(−)
is in some sense representable. In other words, it states that studying models of a
regular theory is equivalent to study regular functors from the syntactic category to
the category on which we want to give an interpretation of the theory.

Definition 2.2.35. Let T and T′ be regular theories. We said that T and T′ are
Morita-equivalent if CT and CT′ are equivalent.

2.3 Factorization systems

A number of author have observed that the regularity of category C is not necessary
for the existence of a "calculus of relations" in C with an associative composition of
relations.

In this section we will see that it is sufficient that the finitely complete category
C has a proper factorization system 〈E,M〉 whose class E is stable under pullbacks.

We begin with a review of factorization systems. For more details on the former
we refer to [15] and [26].

Definition 2.3.1. Let E and M be subclasses of the category C→ of arrows in an
arbitrary category C. We say that 〈E,M〉 is a factorization system for C if the
following hold:

1. Iso ⊂ E ∩M, where Iso denotes the class of isomorphisms of C;
2. E andM are closed under composition;
3. E and M satisfy the diagonal fill-in property, namely, for every commutative

square
•

��

e // •

��f
xx
•

m
// •
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where e ∈ E and m ∈ M there is a unique f making the previous diagram
commutative;

4. every arrow f in C factors as f = me, where e ∈ E and m ∈ M, and we shall
call m the image of f ;

Remark 2.3.2. Observe that the condition 3 in Definition 2.3.1 is equivalent to the
following: if f me = m′e′ f ′, where e, e′ ∈ E and m,m′ ∈ M, there exists a unique
w such that the diagram

•
e //

f ′

��

•
m //

w

��

•

f

��
•

e′
// •

m′
// •

commutes.

Definition 2.3.3. A factorization system 〈E,M〉 is said to be proper if every mor-
phism in E is an epimorphism, and every morphism inM is a monomorphism.

Remark 2.3.4. Suppose that 〈E,M〉 is a stable factorization system on a finitely
complete category C. WhenM is the class of all monomorphisms, E consists of the
strong epimorphisms, so that C is a regular category.

Definition 2.3.5. Assume that C has finite limits. A proper factorization system
〈E,M〉 for C is said to be stable if the class E is stable under pulling back.

Remark 2.3.6. If C has finite limits and 〈E,M〉 is a factorization system, then by the
diagonal fill-in property, the classM is stable under pullbacks.

Example 2.3.7. The category Top of topological spaces is not regular, as it is ob-
served in Example 2.1.9, but it has a stable factorization system 〈E,M〉 where E is
the class of epimorphisms, andM is the class of strong monomorphisms.

Following the same idea used in Section 2.1, the notion of relation can be gener-
alized in the context of factorization systems.

Definition 2.3.8. Let C be finitely complete category and let 〈E,M〉 be a proper
factorization system. A relation R from A to B is a subobject

〈r1,r2〉 : R // A × B

such that the inclusion 〈r1,r2〉 lies inM.

For the rest of this section we fix a category with finite limits C and a stable
factorization system 〈E,M〉. As for the case of regular categories, we want to define
a category whose morphisms are relations. Therefore we shall define how one can
compose relations, and we prove that the composition is associative.

We can compose two relations R : A // B and Q : B // C by forming
the diagram
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P

p1

��

p2

��
R

r1

��

r2

��

Q

q1

��

q2

��
A B C

Fig. 2.1: Composition of Relations

where the diamond is a pullback and taking for QR the image of

〈r1p1,q2p2〉 : P // A × C .

To prove that the composition of relations is associative we need the following
lemma, and here we can see that it is fundamental that E is stable under pullbacks.

Lemma 2.3.9. A morphism g : A // B of C factorizes through the image of
f : C // B if and only of if we have gh = f t for some h ∈ E and some t.

Proof. Let f = me be the 〈E,M〉-factorization. If h and t as above exist, by the
diagonal fill-in property, see Definition 2.3.1, we have an s such that

•

et

��

h // •

g

��
s

��
•

m
// •

commutes, since h ∈ E and m ∈ M. Conversely if g = ml, then we consider the
pullback

•

t

��

h // •

l

��
•

e
// •

and we have met = mlh. Thus f t = gh with h ∈ E because the factorization system
is stable. �

Given a relation R : A // B , we say that a span 〈a, b〉 : X // A × B belongs
to R, written b (R) a, if it factors through the inclusion 〈r1,r2〉 : R // A × B .
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Note that the graph 〈idA, f 〉 : A // A × B of a morphism f is a relation from
A to B since it is a coretraction and hence certainly lies inM, becauseM contains
isomorphisms. Following the notation of [26], we identify this relation with f , and
we call it a function. Note that b ( f ) a means b = f a. Apply Lemma 2.3.9 we can
prove the following result.

Proposition 2.3.10. Let R : A // B and Q : B // C be two relations, and
let QR : A // C be the composition. For a span 〈a, c〉 : X // A × C we
have c (QR) a if and only if, for some e ∈ E and some b, we have ce (Q) b and
b (R) ae.

Proof.[Sketch] If c (QR) a then 〈a, c〉 factors through QR, hence it factor through the
image of 〈r1p1,q2p2〉, where p1 and p2 are the arrows of the pullback

P

p1

��

p2 // Q

q2

��
R

r2
// B.

By Lemma 2.3.9 there exist e ∈ E and t such that

〈a, c〉e = 〈r1p1,q2p2〉t

and then ae = r1p1t and ce = q2p2t. We define b := r2p1t, and by definition of
p1 and p2 we have b = q1p2t. Therefore 〈ae, b〉 = 〈r1,r2〉p1t, which means that
b (R) ae, and 〈b, ce〉 = 〈q1,q2〉p2t, hence ce (Q) b. The converse is similar, and we
refer to [26] and [9] for the proof. �

Corollary 2.3.11. The composition of relations is associative.

Proof.Consider a span 〈a, d〉 : X // A × D and three relations P : A // B ,
Q : B // C and R : C // D . We want to prove that d ((RQ)P) a if and only
if d ((RQ)P) a.

By Proposition 2.3.10 d ((RQ)P) a holds if and only if there exist e1, e2 ∈ E and
some morphisms b1, b2 such that

1. b1 (P) ae1;
2. b2 (Q) b1e2;
3. de1e2 (R) b2.

Similarly d (R(QP)) a holds if and only if there exist ē1, ē2 ∈ E and somemorphisms
b̄1, b̄2 such that

1. b̄2 (P) aē1ē2;
2. b̄1ē2 (Q) b̄2;
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3. dē1 (R) b̄1.

If we have d ((RQ)P) a then we have b1 (P) ae1. By definition this means that
〈ae1, b1〉 factors through P, and then 〈ae1, b1〉e2 factors through P. Therefore we
have b1e2 (P) ae1e2. Defining ē1 := e1e2, ē2 := id, b̄1 := b2 and b̄2 := b1e2 we
obtain that

b1 (P) ae1, b̄1ē2 (Q) b̄2, de1e2 (R) b2.

Thus we have that d ((RQ)P) a implies d (R(QP)) a. Similarly we can prove the
converse, and we can conclude that the composition of relations is associative. �

Remark 2.3.12. We have proved that if the factorization system is stable then the
composition in associative, but there is a strong result, see [29] and [26], which is
that the composition is associative if and only if the factorization system 〈E,M〉 is
stable.

So the objects of C and the relations with respect a fixed stable, proper factoriza-
tion system 〈E,M〉, form the category Rel(C; E,M), or Rel(C) if the factorization
system is clear from the context. In particular this is a 2-category when we order the
relations from A to B in the usual way as subobjects.

By Remark 2.3.6 every pullback along a morphism of M is in M, hence this
2-category has local finite infima, R ∧ R′ being the usual intersection. Moreover the
top element of Rel(C)(A,B) is the relation idA×B : A × B // A × B .

As in the case of regular categories, the 2-categoryRel(C) has an anti-involution
sending R : A // B to R◦ : B // A given by 〈r2,r1〉 : R // B × A , and
there is an embedding C // Rel(C) sending morphisms of C to functions of
Rel(C).

Observe that when the relation R is a function f : A // B we do not need to
pass to an image when we consider the composition Q f since 〈p1,q2p2〉 is already
in M because it is the pullback of 〈q1,q2〉 along f × idC and M is stable under
pullbacks. Thus for functions f and g the composition g◦ f is the relation R tabulated
by 〈r1,r2〉 in the pullback

R
r1

��

r2

��
A

f ��

C

g
��

B

In particular f ◦ f is tabulated by the kernel pair of f , hence

idA ≤ f ◦ f (2.2)

and the equality holds if and only if f is a monomorphism.
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When, however, R is an arbitrary relation and Q is a function k : B // C
the pullback in the composition 2.1 is trivial, but we are obligated to take the
image of 〈r1, kr2〉. Taking R to be h◦ with h : B // A , the relation kh◦ is given
by the image of 〈h, k〉 : B // A × C . Thus we have that for a given relation
S : A // C we have k (S) h if and only if kh◦ ≤ S. This means that if S is
tabulated by s1 and s2 then

S = s2s◦1 (2.3)

Moreover taking k = h : B // A we have that hh◦ is tabulated by the image
of 〈h, h〉 : B // A × A , which is ∆Ai where i : I // A is the image of h,
because ∆A ∈ M andM is closed under composition. Thus we have

hh◦ ≤ idA (2.4)

with equality if and only if h ∈ E.
Recall that an arrow in a 2-category is often called a map if it has a right adjoint.

The origin of this name being the observation that the maps in Rel(C) for a regular
C are precisely the functions.
Remark 2.3.13. From 2.4 and 2.2 follows that every function f is a map in the 2-
category Rel(C), because it has f ◦ as right adjoint. Observe that if C is a regular
category these are the only maps, as it is observed 2.1.18.
We denote by Σ the class of monomorphisms which are also morphisms of E.
Proposition 2.3.14. A relation R : A // B tabulated by r1 and r2 is a map if
and only if r1 ∈ Σ. In this case we have R a R◦.
Proof. If r1 ∈ Σ we have R a R◦ since (2.3) and (2.4) give

RR◦ = r2r◦1r1r◦2 = r2r◦2 ≤ idA

and (2.3) and (2.2) give

R◦R = r1r◦2r2r◦1 ≥ r1r◦1 = idB .

Suppose conversely that R has a right adjoint Q : B // A . Since idA ≤ QR by
Proposition 2.3.10 there exists some e ∈ E and b such that b (R) e, hence p1t = e
for some t. So r1 lies in E. It remains to show that r1 is a monomorphism. Let
x, y : K // R be two morphisms such that r1x = r2y. If we prove that also

r2x = r2y then we can conclude that x = y because 〈r1,r2〉 is inM. So consider
〈r1x,r1x〉, and since it factorizes through the identity relation idA and idA ≤ QR,
then we have r1x (QR) r1x. Using again Proposition 2.3.10, we get some e ∈ E and
some b with r1xe (Q) b. Since trivially r2xe (R) r1xe we have that

r2xe (RQ) b.

Thus 〈b,r2xe〉 factorizes through idB, since RQ ≤ idB, and then r2xe = b. Moreover
we also obtain that r2ye = b because r1x = r1y. Since e ∈ E is an epimorphism we
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have r2x = r2y, and then we have the equality 〈r1,r2〉x = 〈r1,r2〉y, which implies
x = y. �

Since an invertible arrow in a 2-category is in particular a map, then applying
Proposition 2.3.14 we have the following Corollary.

Corollary 2.3.15. A relation R : A // B tabulated by r1 and r2 is invertible in
Rel(C) if and only if r1,r2 ∈ Σ. In particular a function f : A // B is invertible
in Rel(C) if and only if f ∈ Σ.

Let us now write B for the category Map Rel(C) of maps of Rel(C), with
J : C // B for the inclusion. Recall that the objects of Map Rel(C) are the
objects of C, 1-cells are the maps of Rel(C) and 2-cells are defined as in Rel(C).

A morphism R : A // B in B is tabulated by 〈r1,r2〉 where r1 ∈ Σ by Propo-
sition 2.3.14, and if Q ≤ R with Q : A // B and Q is tabulated by 〈q1,q2〉, then
there exists a morphism h such that r1h = q1 and r2h = q2. Then h lies in Σ because
r1,q1 ∈ Σ, and h lies inM. In particular h is invertible and we can conclude that
Q = R. In other word B is a mere category; the 2-categorical structure it inherits
from Rel(C) is locally discrete.

We see that Corollary 2.3 means that the class Σ consists precisely in the arrows
inverted by the functor J : C // B , and in general this inclusion turn to be the
universal J : C // C[Σ−1] inverting the class Σ. See [26].

Theorem 2.3.16. The inclusion J : C // B is the projection of C to its category
of fractions C[Σ−1]. Moreover the category B is regular and the inclusion preserves
finite limits.

Proof. See [26]. �

We define LFS the 2-category whose objects are finitely complete categories with
stable factorization system, a 1-cell F : C // C′ is a left-exact functor such
that FE ⊂ E ′ and FM ⊂ M ′, and 2-cells are natural transformations. It has a
full sub-2-category Reg given by the regular categories withM consisting of the
monomorphisms. A 1-cell in LFS between regular categories is just a left-exact
functor that preserves strong epimorphisms.

Theorem 2.3.17. The inclusion Reg // LFS has a left biadjoint functor. In
particular J : C // B is the reflection of the 2-category LFS into Reg.

Proof.[Sketch] Let T : C // D be a 1-cell in LFS, and let D be a regular cat-
egory. Since T is left-exact it preserves monomorphisms, and since TE are strong
epimorphisms, then it inverts every element of Σ. By Theorem 2.3.16, T = SJ for
an unique S : B // D , and S is a 1-cell of Reg. Then we have the universal
property of J also for 2-cells is classical, for any category of fractions. See [26] and
[17] for all the details. �
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Afunctor T : C // C′ inLFS induces a 2-functor Rel(T) : Rel(C) // Rel(C′)

which sends an object A toT A, and sends a relation R : A // B to T R : T A // T B
tabulated by 〈Tr1,Tr2〉 : T R // T A × T B . Moreover it preserves inequalities.
We refer to [26] for more details and for the proof of the following theorem.

Theorem 2.3.18. ForB =Map Rel(C), the 2-functor Rel(J) : Rel(C) // Rel(B)

induced by J : C // B is an isomorphism of 2-categories.



Chapter 3
Elementary Doctrines and Exact Completion

In this chapter we introduce the notion of primary, elementary and existential doc-
trine, and we presents some free completions which allow us to generalize both the
regular completion of a category with finite limits and the exact completion of a
regular category introduced in [6, 8, 10] in the context of elementary existential
doctrines. We refer to the works of Maietti and Rosolini [41, 42, 43, 44] for all the
details.

The construction of an exact category starting from an elementary existential
doctrine is not trivial, and we divide this construction in several intermediate steps.

The first result that we want to prove is that the 2-category of existential m-
variational doctrine Ex-mVar is 2-equivalent to the 2-category of stable factoriza-
tions systems LFS.

The second is to prove that every elementary existential doctrine can be completed
to an existential m-variational doctrine.

In order to show the first equivalence we introduce the notion of fibrations, see
[5, 21], and we use the result proved by Hughes and Jacobs in [19], where they
show that factorizations systems are equivalent to bifibrations with full subset types,
strong coproducts and coproducts.

Then we show that m-variational existential doctrines are equivalent to this kind
of fibrations, and we give a complete description of the factorization systems con-
structed from this doctrines.

After that we analyse the regular category Ef P constructed from an existential
m-variational doctrine P : Cop // InfSL which is the result of the composition
of the following functors

Ex-mVar
≡ // LFS

Map Rel(−)// Reg .

It is shown in [42, 43] that an elementary existential doctrine P : Cop // InfSL
can be completed to an existential m-variational one (P)cd , applying two free con-
structions: the first which produces an elementary existential doctrine with full
comprehensions, and the second which enforces the comprehensive diagonals.

55
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Composing the previous free constructions together with the exact completion of
a regular category, we obtain a first instance of exact completion of an elementary
existential doctrine

EED
(−)cd // Ex-mVar

≡ // LFS
Map Rel(−)// Reg

(−)ex/reg // Xct .

Moreover Maietti and Rosolini observed that if the base category of an existential
m-variational doctrine P : Cop // InfSL has quotients, stable and of effective
descents, then the category Ef P is exact.

In particular we have the following equivalence of exact categories

Ef (P)cqd
≡ (Ef (P)cd )ex/reg .

So the quotients completion provides a second way to complete an existential m-
variational doctrine to an exact category.

We conclude this chapter with a comparison between the previous exact comple-
tions and the tripos-to-topos construction. See [20, 51].

We introduce a generalized tripos to topos construction for elementary existential
doctrine, which provides an exact categoryTP starting from an elementary existential
doctrine P : Cop // InfSL . See [41, 44] for all the details.

A direct calculation will show that the category TP is equivalent to the category
Ef (P)cqd

.

3.1 Fibrations and factorization systems

It is a known fact that a factorization system on a category with sufficient pullbacks
give rise to a fibration.

In [19] the fibrations that arise in such a way are characterized, by making
precise the logical structure that is given by the factorization system. The original
motivation for this investigation comes from the Birkhoff’s result about definability
and deductibility for universal algebras [2].

In this section we describe how factorization systems give rise to bifibration
with certain logical properties, and then we describe how one can go in the reverse
direction: from bifibrations with this structure to factorization systems.

We refer to [19] for all the details about these constructions, and to [21] for a
complete description of fibrations and their relation with structural aspects of logic
and type theory.

Definition 3.1.1. Let p : G // C be a functor, and f : X // Y an arrow
in G, with p f = u : A // B . We say that f is Cartesian over u if for every
morphism g : Z // Y in G such that pg factors through u, pg = u ◦ w, there
exists a unique h : Z // X such that g = f ◦ h and ph = u.
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Definition 3.1.2. A fibration is a functor p : G // C such that, for every Y in
G and every u : I // pY , there exists a Cartesian f : X // Y over u.

For a given fibration p : G // C , and any A in C, let GA be the fibre category
over A: the objects ofGA are the objects X ofG such that pX = A, and themorphisms
of GA are the morphisms f : X // Y of G such that p f = idA, and they are
called vertical morphisms.

Let p : G // C be a fibration, and let X be an object of G such that pX = A.
For every morphism u : B // A we fix a Cartesian morphism uY above u and
we denote dom(uY ) = u∗(Y ) the domain of the morphism uY . Then we can define
the substitution functor

u∗ : GA
// GB

sending X to u∗(X), and a morphism f : X // Y of GA to u∗ f , which is defined
as the unique morphism such that the square

u∗(X)

u∗ f

��

uX // X

f

��
u∗(Y )

uY
// Y

commutes.
Observe that this morphism exists because p(uX ◦ f ) = u = p(uY ), and then there

is a unique vertical arrow making the previous diagram commutative.

Example 3.1.3 (Codomain fibration). For every category C with finite limits we de-
fine the codomain fibration cod: C→ // C , sending an object f : A // B
of the arrows category C→ to B. The Cartesian morphisms in C→ coincide with
pullback squares in C.

Example 3.1.4 (Subobjects fibration). We consider the category of subobjects
Sub(C) of C (with finite limits), whose objects are equivalence classes of monomor-
phisms, where the relation we are considering is the usual which identify two
monomorphisms m and n if m ≤ n and n ≤ m. Then the restriction of the codomain
functor to cod: Sub(C) // C is a fibration, and it is called subobjects fibration.
This fibration is used to describe the so called internal logic of C. See [21].

Example 3.1.5 (Equivalence Relations). Recall from Definition 2.1.13 that a rela-
tion on an object A of a category C with finite limits is just a monomorphism
R // // A × A . We can define a subcategory Rel(C) of Sub(C) whose objects
are relations, and then we define the fibration p : Rel(C) // C which sends an
object R // // A × A to A. Moreover we can consider the subcategory ERel(C)
of Rel(C) whose objects are equivalence relations, and we can restrict the previous
functor to the fibration p : ERel(C) // C .
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Example 3.1.6. Let C be a category with finite limits, and let 〈E,M〉 be a factoriza-
tion system for C. SinceM is stable under pullbacks, the functor

cod: M // C

is a sub-fibration of the codomain fibration. Given A ∈ C the fibre categoryMA over
A consists ofM-morphisms with codomain A. Given a morphism f : A // B
in C the substitution functor

f ∗ : MB
//MA

is defined by pullback along f . Moreover the fibration is a fibred pre-order if and
only if 〈E,M〉 is a proper factorization.

Throughout what follows, we assume that C has finite limits.

Definition 3.1.7. Let p : G // C be a fibration. We say that p is a op-fibration
if

pop : Gop // Cop

is a fibration. If p is both a fibration and a op-fibration, we say that p is a bifibration.

Let p : G // C be a bifibration, let X be an object of G such that pX = A.
Consider a morphism u : A // B of C. We denote by uX the op-morphism

above u and by
∐

u X the codomain of this morphism. We recall an equivalent
characterization of bifibrations. See [21] for the details.

Lemma 3.1.8. Let p : G // C be a fibration. It is a bifibration if and only if for
every morphism u : A // B we have

∐
u a u∗.

A bifibration p : G // C is said to satisfy Beck-Chevalley just in case, for every
pullback square in C

A v //

r

��

B

s

��
C

u
// D

the canonical natural transformation
∐

v r∗ // s∗
∐

u is an isomorphism.
In this case we say that the fibration p has coproducts. As it is observed in [21, 19],

not all bifibrations satisfy Beck-Chevalley.

Example 3.1.9. Given a factorization system 〈E,M〉 on C the codomain fibration
cod: M // C defined in Example 3.1.3 is a bifibration. Indeed for every
f : A // B in C let

im( f ◦ −) : MA
//MB
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be the functor taking m : M // A to the image of im( f ◦m). It is easy to check
that im( f ◦ −) a f ∗. Moreover the induced bifibration satisfies Beck-Chevalley just
in the case the factorization system is stable. See [19].

Lemma 3.1.10. The bifibration cod: M // C induced by a factorization sys-
tem 〈E,M〉 has coproducts if and only if the class E is stable under pullbacks.

Proof.[Sketch] Suppose that cod: M // C has coproducts and the arrow
u : I // J is an E-morphism, and consider the following pullback

A v //

r

��

B

s

��
I

u
// J .

We want to prove that im(v) � idB. Thus

im(v) � im(v ◦ −) idA � im(v ◦ −)r∗ idI � s∗ im(u ◦ −) idI

where the last isomorphism holds by Beck-Chevalley. Since u is an E-morphism, we
have im(u) � idJ and then

im(v) � s∗ im(u ◦ −) idI � s∗ idj � idB .

Therefore we can conclude that E is stable under pullbacks. For the other implication
we refer to [19]. �

Definition 3.1.11. Let p : G // C be a fibration. We say that p has subset type,
if p has a right adjoint > : C // G , where p◦> = idC , and> has a further right
adjoint {−} : G // C .

The logical interpretation of the Definition 3.1.11 is the following: given a fibration
p : G // C we view the category G as providing predicates over the types in C,
and the functor p takes a predicate to the type of its free variable. If p has a right
adjoint > : C // G such that p> = idC , then this adjoint picks out the maximal
or "true" predicate for each type.

A right adjoint {−} : G // C to > is interpreted as mapping a predicate to
its extension in C.
Definition 3.1.12. For X in G, define the projection πX : {X} // pX , to be
pεX , where

ε : >{−} +3 idG

is the counit of the adjunction between > and {−}. If the functor X 7→ πX from G
and C→ is full and faithful, we say that p has full subset types.



60 3 Elementary Doctrines and Exact Completion

Example 3.1.13. The subobject fibration defined in Example 3.1.4 has full sub-
set type. The associate functor {−} : Sub(C) // C takes a representation
( X // // A ) of a subobject to its codomain A ∈ C.

Example 3.1.14. Given a factorization system 〈E,M〉, the codomain fibration
cod: M // C defined in Example 3.1.6 has full subset types. The functor
> : C //M is given by >(A) = idA : A // A , and the right adjoint is the
domain functor dom: M // C which sends a morphism to its domain.

The following definition basically says that the subset projections are closed under
composition. We use the same terminology of [21, 19], but the original name "strong
coproducts" comes from dependent type theory, see [49].

Definition 3.1.15. Let p : G // C be a bifibration with full subset type. We say
that p admits strong coproducts along subset projections just in the case, for every
X in G and Y in G{X }, the canonical arrow {πXY } is an isomorphism.

{Y }

π

��

{πXY } // {
∐
πX Y }

π

��
{X}

πX
// pX

Example 3.1.16. For any factorization system 〈E,M〉 the bifibration cod: M // C
admits strong coproducts with respect to projections. Indeed for everyM-morphisms
m : M // B and n : B // C , we have the following diagram

M � //

m=πm

��

im(n ◦ m)

π

��
B

n=πn
// C

where the top arrow is an isomorphism becauseM is closed under compositions.

Thus we have proved the following result.

Theorem 3.1.17. Let C have a factorization system 〈E,M〉. Then the bifibration
cod: M // C has full subset types and admits strong coproducts along subset
projections. Moreover E is stable under pullbacks if and only if cod: M // C
has coproducts.

We have shown that factorization systems induce bifibration with full subset types
and strong coproducts along subset projections. Now we see how to construct a
factorization system from such bifibration.
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Definition 3.1.18. Consider a fibration p : G // C which satisfies the following
conditions:

1. p is a bifibration;
2. p has full subset type;
3. p has strong coproducts along subset projections.

We call such p a factorization fibration.

Lemma 3.1.19. Let p : G // C be a factorization fibration. Any morphism
f : A // B in C can be factored as

A u // {X}
πX // B

where u is of the form u = { f>A} ◦ ηA and η is the unit of the adjunction > a {−}.

Proof.We take the factorization

A
ηA // {>A}

{ f>A}
// {
∐

f >A}
π∐

f >A // B

and we see that this works since

π∐
f >A{ f>A}ηA = p(ε∐

f >A)p>({ f>A}ηA) = p(ε∐
f >A>({ f>A}ηA))

and since ε is a natural transformation, we have ε∐
f >A>{ f>A} = f>Aε>A. Thus

π∐
f >A{ f>A}ηA = p( f>A(ε>A>ηA)) = p( f>A) = f .

�

Observe that Lemma 3.1.19 suggests to define the factorization system 〈E,M〉
associated to a factorization fibration in the following way: the abstract epis E will
consist of composites

A u // {X} � // B (3.1)

where u is of the form defined in Lemma 3.1.19. The abstract monosM will consist
of composites

B � // {X}
πX // pX . (3.2)

Theorem 3.1.20. Let p : G // C be a factorization fibration. The fibration p
induces a factorization system 〈E,M〉 on C where the arrows of E are of the form
(3.1) and the arrows ofM are of the form (3.2).

Proof.We refer to [19, Theorem 3.6] for the complete proof of this result. �
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The next two theorems show that this construction is coherent, in the following
sense: if we consider a factorization system 〈E,M〉, and we construct the system
associated with the codomain fibration cod: M // C , we get 〈E,M〉 again.

On the other hand, if we consider a factorization fibration p : G // C , and
we construct the associated factorization system 〈E,M〉 and the codomain fibration
cod: M // C , we do not get p : G // C again, but an equivalent fibration.
As corollary we see that this construction is idempotent.

For the proof of the following results see [19, Theorem 3.7] and [19, Theorem
3.8].

Theorem 3.1.21. Let 〈E,M〉 be a factorization system on C. Let 〈E ′,M ′〉 be the
factorization system constructed via the codomain fibration cod: M // C , as
in Theorem 3.1.20. Then E ′ = E andM ′ =M.

Theorem 3.1.22. Let p : G // C be a factorization fibration and let 〈E,M〉 be
the corresponding factorization system, constructed via Theorem 3.1.20. Then we
have the following equivalence

G

p
��

∼
++
M

cod~~
C

Corollary 3.1.23. Let p : G //M be a factorization fibration. The the class E
of the induced factorization system 〈E,M〉 is stable under pullbacks if and only if
the factorization system has coproducts. Moreover the factorization system 〈E,M〉
is stable in the sense of Definition 2.3.5 if and only if p is a fibred pre-order and it
has coproducts.

3.2 Doctrines

In Section 2.1 we have seen one of the common development of the categorical
approach to predicate logic, inwhich formulas in context are interpreted as subobjects
in categories. See for example the classic text by Makkai and Reyes [45].

In this sectionwe review the notion of primary, elementary and existential doctrine
from [43, 42, 44], which is appropriate to analyse the notion of quotient of an
equivalence relation and comprehensions. For more details we refer to the previous
articles and [41].

The notion of primary doctrine is an obvious generalization of that of a hyper-
doctrine. Hyperdoctrines were introduced, in a series of seminal papers, by F.W.
Lawvere to synthesize the structural properties of logical systems, see [36, 37, 38].
His intuition was to consider logical languages and theories as indexed categories
and to study their 2-categorical properties.
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Recall from [36] that a hyperdoctrine is a functor F : Cop // Heyt from
a cartesian closed category C to the category of Heyting algebras satisfying
some further conditions: for every morphism f : A // B in C, the morphism
Ff : FB // F A of Heyting algebras, where Ff denotes the action of the functor

F on the morphism f , has a left adjoint Ef and a right adjoint ∀ f satisfying the
Beck–Chevalley condition.

The intuition is that a hyperdoctrine determines an appropriate categorical struc-
ture to abstract both notions of first order theory and of interpretation.

Finally there are also some hyperdoctrines, called triposes, which provide a notion
of model for higher order logic, see [51].

These were introduced under the name formal topos by J. Bénabou already
beginning of the 1970ies and later reinvented by Hyland, Johnstone and Pitts around
1980.

Definition 3.2.1. Let C be a category with finite products. A primary doctrine is a
functor P : Cop // InfSL from the opposite of the category C to the category
of inf-semilattices.

The structure of a primary doctrine is just what is needed to handle a many-sorted
logic with binary conjunctions and a true constant, as seen in the following example.

Example 3.2.2. Let T be a theory in a first order language Sg. We define the
Lindenbaum-Tarski primary doctrine

LT : CopT
// InfSL

where CT is the category of lists of variables and term substitutions:

• objects of CT are finite lists of variables ®x := (x1, . . . , xn), and we include the
empty list ();

• amorphisms from (x1, . . . , xn) into (y1, . . . , ym) is a substitution [t1/y1, . . . , tm/ym]
where the terms ti are built in Sg on the variable x1, . . . , xn;

• the composition of two morphisms [®t/®y] : ®x // ®y and [®s/®z] : ®y // ®z is
given by the substitution

[s1[®t/®y]/zk, . . . , sk[®t/®y]/zk] : ®x // ®z .

The functor LT : CopT
// InfSL sends a list (x1, . . . , xn) in the class LT(x1, . . . , xn)

of all well formed formulas in the context (x1, . . . , xn). We say that ψ ≤ φ where
φ,ψ ∈ LT(x1, . . . , xn) if ψ `T φ, and then we quotient in the usual way to obtain a
partial order on LT(x1, . . . , xn). Given a morphism of CT

[t1/y1, . . . , tm/ym] : (x1, . . . , xn) // (y1, . . . , ym)
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then the functor LT[®t/®y] acts as the substitution LT[®t/®y](ψ(y1, . . . , ym)) = ψ[®t/®y].
For all the detail we refer to [43], and for the case of a many sorted first order theory
we refer to [50].

Example 3.2.3. Let C be a category with finite limits. The functor

SubC : Cop // InfSL

assigns to an object A in C the poset SubC(A) of subobjects of A in C and,
for an arrow f : B // A , the functor SubC( f ) : SubC(A) // SubC(B) is
given by pulling a subobject back along f . We denote the objects of SubC(A) by

[ B //
f // A ].

Example 3.2.4. Consider a category D with finite products and weak pullbacks: the
doctrine is given by the functor of weak subobjects

ΨD : Dop // InfSL

where ΨD(A) is the poset reflection of the slice category D/A, and for an arrow
f : B // A , the functor ΨD( f ) : ΨD(A) // ΨD(B) is given by a weak
pullback of an arrow g : X // A with f .

Example 3.2.5. The following example of primary doctrine S : Setop // InfSL
is the set-theoretic hyperdoctrine and it can be considered in any axiomatic set theory
such as ZF. We briefly recall its definition:

• the category Set is the category of sets and functions;
• S(A) is is the poset category of subsets of the set A whose morphisms are

inclusions;
• a functor Sf : S(B) // S(A) acts as the inverse image f −1(U) for every subset

U of B.

For the rest of the section let C be a category with binary products. An elementary
doctrine on C is a primary doctrine P : Cop // InfSL such that for every A in
C there is an object δA in P(A × A) such that

1. the assignment
E〈idA,idA 〉(α) := Ppr1 (α) ∧ δA

for α in PA determines a left adjoint to P〈idA,idA 〉 : P(A × A) // PA ;

2. for every morphism e of the form 〈pr1,pr2,pr2〉 : X × A // X × A × A in
C, the assignment

Ee(α) := P〈pr1 ,pr2 〉(α) ∧ P〈pr2 ,pr3 〉(δA)

forα in P(X×A) determines a left adjoint to Pe : P(X × A × A) // P(X × A) .
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Remark 3.2.6. Wemake a few comments about this definition, recalling [42, Remark
2.2]:

1. the first condition of the previous definition implies the uniqueness of δA;
2. since 〈pr2,pr1〉 ◦ 〈idA, idA〉 = 〈idA, idA〉, the first condition of the definition of

elementary doctrine implies

E〈idA,idA 〉(α) := Ppr2 (α) ∧ δA

3. if C has a terminal object, the second condition implies the first one.

Example 3.2.7. LetTbe afirst order theory. The primary doctrine LT : CopT
// InfSL ,

as defined in Example 3.2.2, is elementary when T has an equality predicate.

Example 3.2.8. The subobject doctrine and the weak subobject doctrine defined in
Example 3.2.3 and 3.2.4 are elementary, and the structure is given by the post-
composition with an equalizer, see [43].

Definition 3.2.9. A primary doctrine P : Cop // InfSL is existential if, for
every A1 and A2 in C, for any projection pri : A1 × A2

// Ai , i = 1,2, the
functor

Ppri : P(Ai) // P(A1 × A2)

has a left adjoint Epri , and these satisfy:

1. Beck-Chevalley condition: for any pullback diagram

X ′
pr′ //

f ′

��

A′

f

��
X pr

// A

with pr and pr′ projections, for any β in P(X) the canonical arrow

Epr′Pf ′(β) ≤ Pf Epr(β)

is an isomorphism;
2. Frobenius reciprocity: for any projection pr: X // A , α in P(A) and β in

P(X), the canonical arrow

Epr(Ppr(α) ∧ β) ≤ α ∧ Epr(β)

in P(A) is an isomorphism.

Remark 3.2.10. In the definition of elementary doctrine Back-Chevalley condition
and Frobenius reciprocity are not required because they follow from the explicit form
of the left adjoints. See [43].
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Remark 3.2.11. Given an existential elementary doctrine P : Cop // InfSL , for
every map f : A // B in C the functor Pf has a left adjoint Ef that can be
computes as:

Epr2 (Pf×idB (δB) ∧ Ppr1 (α))

for α in P(A), where pr1 and pr2 are the projections from A × B.

Example 3.2.12. The primary doctrine LT : CopT
// InfSL , as defined in Ex-

ample 3.2.2 for a first order theory T, is existential. An existential left ad-
joint to Ppr is computed by quantifying existentially the variables that are not
involved in the substitution given by the projection: if we consider a projec-
tion pr = [x/z] : (x, y) // (z) and a formula φ ∈ LT(x, y), then Epr(φ) =

∃y(φ[z/x]). In this case the meaning of the Beck-Chevalley condition is clear:
consider the following pullback

(w1, . . . ,wn, y)

[t/x,y/y]

��

[w1/w1 ,...,wn/wn] // (w1, . . . ,wn)

[t/z]

��
(x, y)

[x/z]
// (z)

Then Beck–Chevalley condition rewrites the fact that substitution commutes with
quantification as

∃y(φ[t/x]) = (∃y(φ[z/x]))[t/z]

since the declaration (w1, . . . ,wn) ensures that y does not appear in t.

Example 3.2.13. For a cartesian category D with weak pullbacks, the doctrine of
weak subobjects ΨD : Dop // InfSL defined in Example 3.2.4 is existential.
Existential left adjoints are given by post-composition.

Example 3.2.14. The doctrine S : Setop // InfSL defined in Example 3.2.5
is existential: on a subset P of a set A, the left adjoint Epr, for any projection
pr: A // B , must be evaluated as Epr(P) = {b ∈ B |∃a ∈ A[a ∈ pr−1{b}∩P]}.

Example 3.2.15. The doctrine SubC : Cop // InfSL defined in Example 3.2.3
is elementary, but it is not existential in general. We will see in Section 3.3 that this
doctrine is existential if and only if C is regular.

The category of elementary doctrines ElD is a 2-category, where:

• a 1-cell is a pair (F, b)
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Cop

P

((
Fop

��

InfSL

Dop

R

66b

��

such that F : C // D is a functor preserving products, and b : P // R ◦ Fop

is a natural transformation preserving the structures. More explicitly, for every
object A in C, the function bA preserves finite infima and

bA×A(δA) = R〈F pr1 ,F pr2 〉(δFA)

• a 2-cell is a natural transformation θ : F // G such that for every A in C and
every α in PA, we have

bA(α) ≤ RθA(cA(α))

Consider the 2-subcategoryExD ofElDwhose objects are elementary existential
doctrines. The 1-cells of this category are those pair (F, b) in ElD such that b
preserves the left adjoints along projections.

The notion of structure for a given signature seen in Subsection 2.2.1 can be
generalized in the context of doctrines, see for example [50] or [45]. In particu-
lar the requirement that the functor F in a 1-cells (F, b) preserves products, and
the conditions on the natural transformation b, guarantee that 1-cells preserve the
structures.

Let us recall briefly how is defined the semantic for first order logic on a
primary doctrine. Given a first order signature Σ of sorts A, function symbols
f : A1, . . . , An

// B , and relation symbols R� A1, . . . , An, a structure [|− |] for
the signature in a primary doctrine P : Cop // InfSL assigns an object [|A|] of
C to each sort A, a morphism [| f |] : [|A1 |] × · · · × [|An |] // [|B |] to each function
symbol, and an object [|R|] of P([|A1 |] × · · · × [|An |]) to each relation symbol.

Then each term in context t : B [Γ] can be interpreted as a morphism
[|t : B [Γ]|] : [|Γ |] // [|B |] in C. Each formula ψ [Γ] can be interpreted as an
object [|ψ [Γ]|] of P([|Γ |]).

The definitions of [|t : B [Γ]|] and [|ψ [Γ]|] proceed by induction on the structure
of those expressions. As in the case of Section 2.1, we consider only regular formulas.
For example, the formula t1 = t2 [Γ], where t1 and t2 are terms of sort A, is mapped
in P〈[|t1 [Γ] |],[|t2 [Γ] |]〉(δA), and we see that to interpret formulas of this kind we need
the elementary structure. A formula of the form ∃x : A.ψ [Γ] is interpreted as
E[|x:A [Γ] |](ψ [Γ]), and in this case we need the existential structure.
We say that a structure satisfies a sequent ψ ` φ [Γ] if

[|ψ [Γ]|] ≤ [|φ [Γ]|].
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This notion of satisfaction is sound for an opportune fragment of first order intuition-
istic logic, in the sense that all provable sentences are satisfied. It is also complete,
in the sense that a sequent is provable if it is satisfied by all structures in first order
doctrine. This completeness result is not very informative because the collection
of such structures includes one (in a Lindenbaum-Tarski doctrine constructed from
syntax) in which satisfaction coincides with provability. See Example 3.2.2.

A more useful consequence of this connection between first order logic and
doctrines is the ability to use the familiar language of first order logic to give
constructions in a doctrine that would otherwise involve complicated, order-enriched
commutative diagrams. To do this one uses the following language, which is called
the internal language of a doctrine. The idea is to generalize the construction seen
in Subsection 2.2.3.

In particular one can associate to a doctrine P : Cop // InfSL a signature
having a sort for every object ofC, an n-ary function symbol f : A1, . . . , An

// B

for eachfinite list of objects A1, . . . , An,B and everymorphism f : A1 × · · · × An
// B

of C, and an n-ary relation symbol R� A1, . . . , An for every list A1, . . . , An of ob-
jects of C and every object of P(A1×· · ·×An). The terms and first order formulas over
this signature form the internal language of the doctrine P : Cop // InfSL . We
refer to [50], [51] for a detailed description of the internal language of a doctrine and
an hyperdoctrine.

3.2.1 Elementary quotients completion

The structure of elementary doctrine is suitable to describe the notion of an equiva-
lence relation and that of a quotient for such a relation.

Given an elementary doctrine P : Cop // InfSL , an object A in C, and an
object ρ in P(A × A), we say that ρ is a P-equivalence relation on A if it satisfies:

• reflexivity: δA ≤ ρ;
• symmetry: ρ ≤ P〈pr2 ,pr1 〉(ρ), for pr1,pr2 : A × A // A the first and the

second projection, respectively;
• transitivity: P〈pr1 ,pr2 〉(ρ) ∧ P〈pr2 ,pr3 〉(ρ) ≤ P〈pr1 ,pr3 〉(ρ) for

pr1,pr2,pr3 : A × A × A // A

the first, the second, and the third projection, respectively.

Remark 3.2.16. The P-equivalence relations are exactly the equivalence relations in
the internal language of P. So an object ρ ∈ P(A × A) is an P-equivalence relation
if the following sequents are provable in the internal language:

• a1 =A a2 ` ρ(a1,a2) [a1 : A,a2 : A];
• ρ(a1,a2) ` ρ(a2,a1) [a1 : A,a2 : A];
• ρ(a1,a2) ∧ ρ(a2,a3) ` ρ(a1,a3) [a1 : A,a2 : A,a3 : A].
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Remark 3.2.17. For an elementary doctrine P : Cop // InfSL , the object δA is
a P-equivalence relation, and for every morphism f : A // B , the functor

Pf× f : P(B × B) // P(A × A)

takes a P-equivalence relation σ on B to a P-equivalence relation on A.

The P-kernel of a morphism f : A // B , is the object Pf× f (δB), and by Remark
3.2.17, it is a P-equivalence relation on A. An equivalence relation is said effective
if it is the P-kernel of a morphism..
Remark 3.2.18. The P-kernel of f : A // B in the internal language is the for-
mula f (a1) =B f (a2) [a1 : A,a2 : A].

Definition 3.2.19. Let P : Cop // InfSL be an elementary doctrine, and let ρ be

an P-equivalence relation on A. A P-quotient of ρ is a morphism q : A // A�ρ
in C such that Pq×q(δA�ρ

) ≥ ρ and for every morphism f : A // Z such that

Pf× f (δZ ) ≥ ρ, there exists a unique morphism g : A�ρ // Z such that g◦q = f .

Remark 3.2.20. In the internal language a quotient of ρ ∈ P(A × A) is a term
q(a) : A�ρ [a : A] such that

ρ(a1,a2) ` q(a1) =A�ρ q(a2) [a1 : A,a2 : A]

and for every term f (a) : Z [a : A] such that

ρ(a1,a2) ` f (a1) =Z f (a2) [a1 : A,a2 : A]

there exists a unique term g(a′) : Z [a′ : A�ρ] such that f (a) = g(q(a)).

We say that such a P-quotient is stable if in every pullback

A′
q′ //

f ′

��

C ′

f

��
A

q
// A�ρ

in C, the morphism q′ : A′ // C ′ is a P-quotient.
In the following example we see that the notion of P-equivalence relation, quo-

tients and effective morphism coincide with usual notion seen in Section 2.1.

Example 3.2.21. Consider the subobjects doctrine SubC : Cop // InfSL ob-
tained form a category with finite limits as defined in Example 3.2.3. A quotient of

a SubC-equivalence relation [ R //
〈r1 ,r2 〉// A × A ] is the coequalizer
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R
r1 //

r2
// A

q // A�R

since Subq×q(δA/R) = [ P //
〈p1 ,p2 〉// A ] is the kernel pair of q : A // A�R

P

��

// 〈p1 ,p2 〉 // A × A

q×q

��
A�R // ∆A�R

// A�R ×
A�R.

Thus we have that [ P //
〈p1 ,p2 〉// A × A ] is an effective equivalence relation. In partic-

ular, all the SubC-equivalence relations have stable, effective quotients if and only
if the C category is exact. See [43] for more details.

The abstract theory that captures the essential action of a quotient is that of
descent. We recall some basic concepts from that in our particular case of interest of
an elementary doctrine. See [22, 23] for a survey on descent theory.

Definition 3.2.22. Given an elementary doctrine P : Cop // InfSL and a P-
equivalence relation ρ on an object A in C, the partial order of descent data Desρ is
the sub-order of P(A) on those α such that

Ppr1 (α) ∧ ρ ≤ Ppr2 (α)

where pr1,pr2 : A × A // A are the projections.

Remark 3.2.23. Again we translate in the internal language the previous definition:
ψ(a) [a : A] is a descent data for a relation ρ(a1,a2) [a1 : A,a2 : A] if

ψ(a1) ∧ ρ(a1,a2) ` ψ(a2) [a1 : A,a2 : A]

Remark 3.2.24. Given an elementary doctrine P : Cop // InfSL , consider a
morphism f : A // B in C and let ρ be the P-kernel Pf× f (δA). The functor
Pf : P(B) // P(A) takes values in Desρ ⊆ P(A).

Definition 3.2.25. Given an elementary doctrine P : Cop // InfSL , consider
a morphism f : A // B in C, let ρ be its P-kernel. The arrow is of effective
descent if the functor Pf : P(B) // Desρ is an isomorphism.

Example 3.2.26. In the Example 3.2.5 of the doctrine S : Setop // InfSL , every
canonical surjection f : A // A/∼ in the quotient of an equivalence relation ∼
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on A, is of effective descent. The condition in Definition 3.2.25 recognizes the fact
that the subsets of the A/∼ are in bijection with those subsets U of A which are
closed with respect to the equivalence relation, in the sense that for a1,a2 ∈ A such
a1 ∼ a2 and a1 ∈ U one has also that a2 ∈ U.

Consider the 2-full 2-subcategoryQED ofElDwhose object are elementary doctrine
P : Cop // InfSL with stable effective quotients of P-equivalence relations and
of effective descent.

The 1-cells of the category QED are those 1-cells of ElD

Cop

P

((
Fop

��

InfSL

Dop

R

66b

��

such that F preserves quotients.
In [43, 42, 44] Maietti and Rosolini present a construction that produces an

elementary doctrine with quotients. We shall present it in the following, and we see
that this is a generalization of the exact completion seen in Section 2.1 in the contest
of elementary doctrines.

Let P : Cop // InfSL be an elementary doctrine. We define the elementary
quotient completion of P the doctrine Pq : Qop

P
// InfSL where:

• an object of QP is a pair (A, ρ) such that ρ is a P-equivalence relation on A;
• an arrow of QP f : (A, ρ) // (B, σ) is a morphism f : A // B of C

such that ρ ≤ Pf× f (σ).

Compositions and identities are given by C.
The indexed partial inf-semilattice Pq : Qop

P
// InfSL on QP is given by the

categories of descent data:
Pq(A, ρ) := Desρ

and the following lemma is instrumental to give the assignment on morphisms using
the action of P on morphisms. See [42, Lemma 4.1] for the proof.

Lemma 3.2.27. Let (A, ρ) and (B, σ) be objects in QP , and let β be in Desσ . Then
if f : (A, ρ) // (B, σ) is an arrow of QP then Pf (β) is in Desρ.

The previous construction gives a well defined elementary doctrine as it is proved
in [42, Lemma 4.2], and this doctrine has descent quotients of Pq-equivalence
relations. See [42, Lemma 4.4].

Lemma 3.2.28. With the notation used above, the functor Pq : Qop
P

// InfSL

is an elementary doctrine. Moreover it has descent quotients of Pq-equivalence



72 3 Elementary Doctrines and Exact Completion

relations and quotients are stable and effective descent, and Pq-equivalence relations
are effective.

There is an obvious 1-morphism (J, j) : P // Pq in ElD, where the functor

J : C // QP sends an object A in C to (A, δA) and a morphism f : A // B

to f : (A, δA) // (B, δB) since δA ≤ Pf× f (δB), and jA : P(A) // Pq(A, δA)
is the identity because

Pq(A, δA) = DesδA = P(A).

It is immediate to see that J is full and faithful and that (J, j) is just a change of base.
In [42, 43] the authors show that the quotient completion is a free completion in

the sense that there is a left biadjoint to the forgetful 2-functor

U: QED // ElD .

We refer to [42, Theorem 4.5] for the proof of the following theorem.

Theorem 3.2.29. For every elementary doctrine P : Cop // InfSL the pre-
composition with the 1-morphism

Cop

P

((
Jop

��

InfSL

QP
op

Pq

66j

��

in ElD gives an essential equivalence of categories

− ◦ (J, j) : QED(Pq, Z) // ElD(P, Z)

for every Z in QED.

Proposition 3.2.30. Let P : Cop // InfSL be an elementary existential doc-
trine, and let C be a finitely complete category. Then Pq : Qop

P
// InfSL is

elementary and existential and the category QP is regular.

Proof.[Sketch] LetE be class of quotients, and letM be the class ofmonomorphisms.
These two class are a proper, stable factorization system for QP since quotients are
stable. �
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3.2.2 Set-like doctrines

In [43, 42, 44] Maietti and Rosolini intend to develop doctrines that may interpret
constructive theories formathematics. They observe that there are two crucial proper-
ties that an elementary doctrine should verify in order to sustain such interpretations.
One relates to the axiom of comprehension and to equality.

Let P : Cop // InfSL be an elementary doctrine and let α an object of
P(A). A comprehension of α is an arrow {|α |} : X // A such that P{|α |} = >X

and, for every f : Z // A such that Pf (α) = >Z , there exists a unique map
g : Z // X such that f = {|α |} ◦ g.
One says that P has comprehensions if every α has a comprehension, and that P

has full comprehensions if, moreover, α ≤ β in P(A) whenever {|α |} factors through
{|β|}.

Intuitively, the comprehension morphism represents the subsets of elements in
the object A obtained by comprehension with the predicate α.

Remark 3.2.31. In the internal language of an elementary doctrine P : Cop // InfSL ,
a comprehension of a formula φ(a) [a : A] is a term {|a : A | φ(a)|}(x) : A [x : X]
such that

> ` φ({|a : A|φ(a)|}(x)) [x : X]

and any other term which this property can be obtained from {|a : A | φ(a)|}(x) by
an unique substitution.

Example 3.2.32. The doctrine S : Setop // InfSL defined in Example 3.2.5
has comprehensions given by the trivial remark that a subset determines an actual
function by inclusion.

Example 3.2.33. The doctrine SubC : Cop // InfSL defined in Example 3.2.3.

In this case for every object A and every α = [ B // α // A ] in SubC(A), the
comprehension {|α |} is the arrow in C B // α // A . Moreover the comprehensions
are full.

Remark 3.2.34. For every f : A′ // A in C then the mediating arrow between
the comprehensions {|α |} : X // A and {|Pf (α)|} : X ′ // A′ produces a pull-
back

X ′
{|Pf (α) |} //

f ′

��

A′

f

��
X

{|α |}
// A.

Thus comprehensions are stable under pullbacks.
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Remark 3.2.35. If {|α |} : B // A is a comprehension of α, then {|α |} is monic.

Given an elementary doctrine P : Cop // InfSL , and an object α in P(A),
a weak comprehension of α is an arrow {|α |} : X // A in C such that >X ≤

P{|α |}(α) and for every g : Z // A such that >Z ≤ Pg(α), there is an arrow
g : Z // A such that f = {|α |} ◦ g.
We say that an elementary doctrine has weak comprehensions if every α has

a weak comprehension, and that the doctrine has full weak comprehensions if,
moreover, α ≤ β in P(A) if {|α |} factors through {|β |}.

Example 3.2.36. Following the Example 3.2.33 one can see that the doctrine
ΨD : Dop // InfSL of weak subobjects defined in 3.2.4 has full weak compre-
hensions.

Recall from [21] that the fibration of vertical maps on the category of points
freely adds comprehensions to a given fibration producing an indexed poset in case
the given fibration is such. For a doctrine P : Cop // InfSL the indexed poset
consists of the base category GP of points where
• an object is a pair (A, α) where A is in C and α is in P(A);
• an arrow f : (A, α) // (B, β) is an arrow f : A // B of C such that
α ≤ Pf (β).

The indexed functor extends to Pc : Gop
P

// InfSL by setting

• Pc(A, α) := {γ ∈ P(A) | γ ≤ α};
• Pc( f ) : (B, β) // (A, α) sends γ ≤ β to Pf (γ) ∧ α.

Moreover the comprehensions of Pc : Gop
P

// InfSL are full, as is observed
in [43, 44, 42].

As for the case of quotient completion, there is a natural embedding (I, i) : P // Pc

in ElD which maps and object A in C to (A,>A).
Let CE be the 2-category of elementary doctrines with full comprehension.
Then the previous construction give the following result. For the proof we refer

to [44, Theorem 3.1], [43], and [42].

Theorem 3.2.37. The association to an elementary doctrine P : Cop // InfSL

of the doctrine Pc : Gop
P

// InfSL determines a left bi-adjoint to the inclusion
of CE into ElD. If the doctrine P is existential, then Pc is also existential.

Proposition 3.2.38. If P : Cop // InfSL has comprehensions then its quotient
completion Pq : Qop

P
// InfSL also has comprehensions.

A special case of comprehensions are the diagonal morphisms and the following
definition considers just that possibility.

An elementary doctrine P : Cop // InfSL has comprehensive diagonals if
every diagonal arrow 〈idA, idA〉 : A // A × A is the comprehension of δA.
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Example 3.2.39. An elementary doctrine P : Cop // InfSL has comprehensive

diagonals if and only if for every pair of morphisms A
f //

g
// B in C we have

f = g in C if and only if > ` f (a) =B g(a) [a : A]

For elementary doctrine we have the following useful characterization. See [41,
Proposition 2.12].

Proposition 3.2.40. Let P : Cop // InfSL be an elementary doctrine. The fol-
lowing are equivalent:

1. P has comprehensive diagonals;
2. for any two arrows f ,g : A // B in C it is

f = g if and only if >A ≤ P〈 f ,g〉(δB).

Thanks to Proposition 3.2.40, there is a 2- reflection of elementary doctrines from
ElD to its full 2-subcategory CED of elementary doctrines with comprehensive
diagonals once one notices that the condition

>A ≤ P〈 f ,g〉(δB)

ensures thatPf = Pg. So the reflection takes an elementary doctrine P : Cop // InfSL
to the elementary doctrine

Pd : Xop
P

// InfSL

induced by P on the quotient category XP of C with respect to the equivalence
relation where f ∼ g when

>A ≤ P〈 f ,g〉(δB).

Following the notation of [43, 42, 44] we refer to the doctrine Pd as the extensional
reflection of P.

Remark 3.2.41. If an elementary doctrine P : Cop // InfSL has comprehen-
sions then Pd : Xop

P
// InfSL has also comprehensions. Moreover if P has

quotients then Pd : Xop
P

// InfSL has also quotients. See [42, 41] for all the
details.

Let P : Cop // InfSL be an elementary doctrine. We say that P is a vari-
ational doctrine if it has weak full comprehensions and comprehensive diagonals.
We say that P is an m-variational doctrine if it has full comprehensions and com-
prehensive diagonals. The category of m-variational doctrines is denoted by mVar.

As for the case of the quotient completion, the construction of an m-variational
doctrine can be extended to a bi-adjunction as it is proved in [42] and [41].
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Theorem 3.2.42. The association to an elementary doctrine P : Cop // InfSL
of the doctrine (P)cd determines a left bi-adjoint to the inclusion ofmVar into ElD.
If P is existential, then (P)cd is also existential.

Remark 3.2.43. Let P : Cop // InfSL be an existential m-variational doctrine.
For every element α in P(A) we have

α = E{|α |}(>A) (3.3)

because the comprehension {|α |} factorizes on {| E{|α |}(>A)|}, and since the com-
prehensions in P are full, then α ≤ Eα(>A). Moreover we have that E{|α |}(>A) ≤ α
if and only if >A ≤ P{|α |}(α), and then the equality (3.3) holds.

Remark 3.2.44. If an elementary doctrine P : Cop // InfSL is m-variational the

base category C has equalizers. In particular for every pair of arrows A
f //

g
// B

in C, the equalizer is

E
{|P〈 f ,g〉(δB ) |}// A

f //

g
// B

because comprehensions are stable under pullbacks and ∆B : B // B × B is
∆B = {|δB |}. Hence the square

E
{|P〈 f ,g〉(δB ) |} //

a

��

A

〈 f ,g〉

��
B

∆B

// B × B

is a pullback and then {|P〈 f ,g〉(δB)|} : E // A is an equalizer for A
f //

g
// B .

Thus the category C has finite limits, and pullbacks can be computed as follows

X

��

//
{|Pg× f (δB ) |}

""

A

f

��

Y × X
pr2

;;

pr1
||

Y
g

// B.

Proposition 3.2.45. Let P : Cop // InfSL be an existential m-variational doc-
trine. Then the left adjoint functors Ef satisfy the Beck-Chevalley condition with
respect to pullbacks.



3.2 Doctrines 77

Proof. See [41, Proposition 2.19]. �

The assignment of comprehensions extends to a 1-arrow

Cop

P

((
idop
C

��

InfSL

Cop
SubC

66{|−|}

��

from P to the doctrine of the subobjects in ElD. Moreover the functor

{| − |} : P(A) // SubC(A)

is fully faithful.
By Remark 3.2.44 one can think that comprehensions and comprehensive diag-

onals force an elementary doctrine P : Cop // InfSL to "look like" a poset of
subobjects of C.

The previous observation can be extended in the case of an elementary doctrine
with weak comprehensions, and the result is that if an elementary doctrine is vari-
ational then it can be seen as a "subdoctrine" of the weak subjobject doctrine. See
[41].

Remark 3.2.46. Let P : Cop // InfSL be an existential variational doctrine.
Consider α and β in P(A). We can observe that {|α ∧ β |} = {|α |} ∧ {|β |} in ΨC(A)

·

{|α∧β |}

&&��

// X

{|β |}

��
Y

{|α |}
// A

This means that {| − |} : P(A) // ΨC(A) is a natural homomorphism. In par-
ticular, since the doctrine has weak comprehensive diagonals, it preserves fibered
equalities, and then it is a 1-arrow in ExD

Cop

P

((
idC

op

��

InfSL

Cop
ΨC

66{|−|}

��
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Now we define another functor

ΨC(A)
E−>A // P(A).

[B
f // A] � // Ef (>B)

Observe that it extends to a morphism in the category InfSL, and this is a left adjoint
to {| − |} : P(A) // ΨC(A) . Moreover we have that

E−>A([ ∆A : A // A × A ]) = δA.

Hence it provides a 1-arrow in ExD

Cop

ΨC

((
idC

op

��

InfSL

Cop
P

66E−>

��

In [41] Maietti, Rosolini and Pasquali show that for an existential variational
doctrine P : Cop // InfSL , the adjunction of Remark 3.2.46 is an equivalence
if and only if the doctrine satisfies the Rule of Choice, which means that for every
φ ∈ P(A × B) such that

>A ≤ Epr1 (φ)

there is an arrow f : A // B such in C that

>A ≤ P〈idA, f 〉(φ).

A similar characterization can be given for an existential m-variational doctrine
P : Cop // InfSL , in particular C is a regular category and P is the doctrine of
subobjects if and only if P satisfies the Rule of Unique Choice, which means that
for every pair of objects A and B and every entire functional relation φ from A to B
there is an arrow f : A // B in C such that

>A ≤ P〈idA, f 〉(φ).

Finally, given elementary existential doctrine P : Cop // InfSL , the com-
pletion Pcd satisfies the Rule of Choice, if and only if the doctrine P is equipped
with ε-operators by [41, Theorem 51.5].

We refer to [41, 21] for all the details about this final results.
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3.3 Existential m-variation doctrines, factorization systems and
exact completion

In Section 3.1 we have seen the connection between fibrations and factorization sys-
tem, and recall that starting from a factorization fibration, the resulting factorization
system is not necessary proper or stable. Again we refer to [19] for all the details.

In this section we show what kind of fibration we can construct starting from
an existential m-variational doctrine, and we see that the resulting fibration is a
factorization fibration with coproducts and it is a fibred pre-order.

Therefore we can use Theorem 3.1.20 and 3.1.23 to construct a stable, proper fac-
torization system 〈M,E〉 froman existentialm-variational doctrine P : Cop // InfSL .

Moreoverwe see that every existentialm-variational doctrine P : Cop // InfSL
is equivalent to the doctrine ofM-subobject

SubM : Cop // InfSL

where 〈E,M〉 is the stable, proper factorization system induced by the doctrine.
It is a known fact that primary doctrine P : Cop // InfSL determines a

faithful fibration
pP : GP

// C

by Grothendieck construction, see [21, 43]. We recall very briefly that construction
in the present situation.

The data for the total category GP are:

• an object is a pair (A, α), where A is in C and α is in P(A)
• an arrow f : (A, α) // (B, β) is an arrow f : A // B of C such that
α ≤ Pf (β).

The projection on the first component extends to a functor pP : GP
// C which

is faithful, with a right inverse right adjoint.

Remark 3.3.1. Let A be an object of C. Observe that in our case the objects of the
fibre category (GP)A are of the form (A, α), and for every pair (A, α) and (A, β) there
is at most one morphism in (GP)A, that is idA : (A, α) // (A, β) . Therefore the
category (GP)A is an inf-semilattice, since P(A) is.

Let (A, α) be an object of GP . For every morphism u : B // A in C, we
can fix a Cartesian morphism u : (B,Pu(α)) // (A, α) above u. This morphism
induces a functor

u∗ : (GP)A // (GP)B

where u∗(A, α) := (B,Pu(α)). It is direct to check that it preserves the order since
(A, α) ≤ (A, γ) implies (B,Pu(α)) ≤ (B,Pu(γ)).

Using Remark 3.2.11 we can prove that every elementary existential doctrine
induces a bifibration. In particular we can see that we need both the existential and
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the elementary structure, because we need left adjoint to every functor of the form
Pf with f morphism in C.

Proposition 3.3.2. Let P : Cop // InfSL be an existential elementary doctrine,
then it induces a bifibration pP : GP

// C .

Proof. Consider an object (A, α) of GP , and let f : A // B be an arrow in
C. By Remark 3.2.11 the functor Pf has a left adjoint functor Ef , and then
f : (A, α) // (B, Ef (α)) is a morphism in GP because

α ≤ Pf Ef (α).

Let g : (Z, γ) // (B, Ef (α)) be a morphism in GP , and consider the following
diagram

Z

A
g

__

f
// B.

h
ll

Since α ≤ Pg(γ), we have α ≤ Ph f (γ), and then α ≤ Pf (Ph(γ)). Applying the
functor Ef to both the element, we have

Ef (α) ≤ Ph(γ)

because Ef Pf ≤ idP(B). Thus the diagram

(Z, γ)

(A, α)

g

cc

f
// (B, Ef (α))

h
ll

commutes in GP . Therefore we can conclude that p is an op-fibration, and then it is
a bifibration. �

Let pP : GP
// C be a fibration coming from an existential elementary

doctrine. Since it is a bifibration, for every morphism u : A // B in C, the
functor u∗ : GB // GA has a left adjoint

∐
u a u∗ by Lemma 3.1.8. In this case

the left adjoint
∐

u : GA
// GB sends (A, α) in (B, Eu(α)).

Remark 3.3.3. If the doctrine P : Cop // InfSL is existential and m-variational,
then by Proposition 3.2.45, every functor Ef satisfies Back-Chevalley condition.
Therefore the bifibration pP : GP

// C has coproducts, since for every pullback
in C
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K v //

r

��

L

s

��
I

u
// J

we have ∐
u

r∗(I, ι) =
∐
u

(K,Pr (ι)) = (L, EvPr (ι))

and this is equal to

s∗
∐
u

(I, ι) = s∗(J, Eu(ι)) = (L,Ps Eu(ι))

because the doctrine P : Cop // InfSL satisfies Beck-Chevalley for any pul-
laback.

Proposition 3.3.4. Let P : Cop // InfSL be an existential elementary doctrine
with comprehensions, then it induces a fibration pP : GP

// C with subset type.

Proof. We define > : C // GP the functor which sends an object A to (A,>A)

and a morphism f : A // B to the arrow f : (A,>A) // (B,>B) . It is direct
to prove that it is a right adjoint to p, and clearly p ◦ > = idC . Now we construct a
right adjoint to >. For every (A, α) we choose a comprehension of α:

{|α |} : Aα // A.

We define {(A, α)} := Aα, and observe that GP(>(A), (B, β)) � C(A,Bβ) because
every morphism

f : (A,>A) // (B, β)

is such that >A = Pf (β), and then f factors in a unique way through {|β |}.
Therefore GP(>(−), (B, β)) is representable for every (B, β) in GP , and then

we can conclude that there exists a right adjoint > a {−}. Moreover for every
morphism f : (B, β) // (A, α) the arrow { f } : Bβ // Aα is defined as the
unique morphism such that the diagram

Bβ

{ f }   

{|β |} // B
f // A

Aα

{|α |}

??

commutes. �
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In the previous proposition we have proved that > a {−}, and we can observe that
the counit ε : > ◦ {−} +3 idGP of this adjunction is defined as:

ε(B,β) : (Bβ,>Bβ )
// (B, β)

where ε(B,β) := {|β |}. Using the same notation of Definition 3.1.12, we have that for
every (A, α) in GP , the arrow π(A,α) : {(A, α)} // A is a comprehension of α.

Remark 3.3.5. We define a functor from GP to C→, sending (A, α) into π(A,α). In
particular if the existential elementary doctrine has full comprehension, this functor
is full and faithful, since for every commutative diagram

Aα
{|α |} //

f

��

A

g

��
Bβ

{|β |}
// B

we have that
P{|α |}(Pg(β)) = Pf (P{|β |}(β)) = >Aα

and then α ≤ Pg(β) because the doctrine has full comprehensions.

The following observation will allows us to conclude that a fibration induced by
an existential elementary doctrine with full comprehensions has strong coproduct.

Proposition 3.3.6. Let P : Cop // InfSL be an existential m-variational doc-
trine. Then every composition of comprehensions is again a comprehension.

Proof.Let {|β|} : C // B and {|α |} : B // A be comprehensions and consider
the comprehension

{| E{|α |}(β)|} : D // A .

It is direct to verify that
P{|β |}P{|α |} E{|α |}(β) = >C .

Therefore there exists a unique g : C // D such that the following commutes

C

g   

{|β |} // B
{|α |} // A

D.
{| E{|α |}(β) |}

>>

Observe that for every γ in P(B) we have that γ ≤ >B = P{|α |}(α) implies

E{|α |}(γ) ≤ E{|α |}P{|α |}(α) ≤ α.
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In particular we have E{|α |}(β) ≤ α, and then

P
{| E{|α |}(β) |}

(α) = >D .

Hence there exists a unique h : D // B such that the following diagram com-
mutes

B
{|α |} // A

D.
h

``

{| E{|α |}(β) |}

>>

Now we can observe that

Ph(P{|α |}( E{|α |}(β)) = >D

implies Ph(β) = >D because we have P{|α |} E{|α |}(β) = β by Proposition 3.2.45.
Therefore there is a unique l : D // C such that the diagram

C
{|β |} // B

{|α |} // A

D

h

OO

l

__

{| E{|α |}(β) |}

??

commutes. Then we can conclude that g ◦ l = idD , and since g is a monomorphism,
it is an isomorphism. �

The previous proposition has the following consequence.

Proposition 3.3.7. Let P : Cop // InfSL be an existential m-variational doc-
trine. Then the fibration pP : GP

// C has strong coproducts.

By Proposition 3.3.2, 3.3.4, 3.3.7 and Remark 3.3.5 we have the following corollary.

Corollary 3.3.8. Every existential m-variational doctrine P : Cop // InfSL in-
duces a factorization fibration with coproducts

pP : GP
// C.

Moreover this fibration is a fibred pre-order.

Combining Corollary 3.1.23 and Corollary 3.3.8 we obtain the following result.

Theorem 3.3.9. Every existential m-variational doctrine induces a stable factoriza-
tion system 〈E,M〉 whereM is the class of comprehensions, and the morphisms of
E are those arrows u : A // B such that Eu(>A) = >B.
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Remark 3.3.10. If P : Cop // InfSL is an existential m-variational doctrine ev-
ery arrow f : A // B admits the following factorization

A

g
��

f // B

I .
{| Ef (>A) |}

??

Moreover we have that g satisfies Eg(>A) = >I since

Eg(>A) = P
{| Ef (>A) |}

E
{| Ef (>A) |}

Eg(>A) = P
{| Ef (>A) |}

( Ef (>A)) = >I .

Observe that P
{| Ef (>A) |}

E
{| Ef (>A) |}

= idP(I ) because comprehensions are monomor-
phisms and in an existential m-variational doctrine the Beck-Chevalley condition
holds for every morphism. In particular it holds for the following pullback

I
idI //

idI

��

I

{| Ef (>A) |}

��
I
{| Ef (>A) |}

// A.

Remark 3.3.11. Consider a stable, proper factorization system 〈E,M〉 for a category
C with finite limits. The codomain fibration induces an existential m-variational
doctrine

SubM : Cop // InfSL

which sends an object A into the category ofM-subobjects of A.

Proposition 3.3.12. Let P : Cop // InfSL be an existential m-variational doc-
trine, and let 〈E,M〉 be the factorization system induced by Corollary 3.3.8. Then
the doctrine P : Cop // InfSL is equivalent to SubM : Cop // InfSL .

Recall that LFS is the 2-category whose objects are (C, 〈E,M〉), where 〈E,M〉
is a stable, proper factorization system for a category C with finite limits, and whose
morphisms are functors preserving the factorizations.

Theorem 3.3.13. The 2-category LFS is 2-equivalent to the 2-category Ex-mVar
of existential m-variational doctrines.

We can combine now the three free completions we have studied in the previous
section, and we obtain the exact completion for existential m-variational doctrines:

Ex-mVar
� // LFS

Map Rel(−)// Reg
(−)ex/reg // Xct .
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One can give a more concrete description of the regular category given by the
composition of the firsts two previous functors.

Let P : Cop // InfSL be anm-variational existential doctrine, and let 〈E,M〉
be the stable, proper factorization system on C defined in Theorem 3.3.9.

We shall understand how we can characterize the relations and the maps in this
particular factorization system.

Recall that a relation R = 〈r1,r2〉 : A // B in Rel(C, 〈E,M〉) from A to B is
a map if and only if r1 ∈ Σ = E ∩mono by Proposition 2.3.14.

In our case we have that R is a relation if and only if R = {|α |} for some α ∈
P(A × B).

In particular R is a map if and only if pr1{|α |} ∈ Σ. Observe that pr1{|α |} ∈ E
implies that Epr1 {|α |}(>A) = >A, and by Remark 3.2.43 we have

Epr1 {|α |}(>A) = >A if and only if Epr1 (α) = >A

An α in P(A × B) such that Epr1 (α) = >A is said entire from A to B.
The condition r1 ∈ mono means that α is functional from A to B, which implies

that
P〈pr1 ,pr2 〉(α) ∧ P〈pr1 ,pr3 〉(α) ≤ P〈pr2 ,pr3 〉(δB)

in P(A × B × B).
Therefore we can give a direct description of the category Map Rel(C) of maps

of Rel(E,M,C), and we denote this category Ef P . Objects of Ef P are the objects
of C, and morphisms are entire functional relations.

As results we have that the categoryEf P is regular, it is called regular completion
of the m-variational existential doctrine P : Cop // InfSL .

Example 3.3.14. The regular completion (D)reg/lex of a categoryD with finite limit
in [6] is equivalent to the regular completion Ef (SubD )cd of the doctrine

SubD : Dop // InfSL

of subobjects of D.

The exact completion of a m-variational doctrine P : Cop // InfSL is given
by (Ef P)ex/reg.

Moreover we can generalize the regular and the exact completion to an arbi-
trary elementary existential doctrine P : Cop // InfSL , obtaining the regular
category Ef (P)cd and the exact category (Ef (P)cd )ex/reg.

We can summarize the exact completion of an elementary existential doctrine as
the composition of the followings

EED
(−)cd // Ex-mVar

� // LFS
Map Rel(−)// Reg

(−)ex/reg // Xct .

Now we look at the quotient completion and we denote by QD the 2-category of
existential m-variational doctrines with stable, effective quotients.
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In this case, a doctrine P : Cop // InfSL of QD provides two stable proper
factorization systems for the base category C: the first one comes from the m-
variational structure as above, and we denote it by 〈E1,M1〉, and the second one
〈E2,M2〉 is given by the quotients.

The class E2 consists of all the morphisms which are quotients, and the classM2

consists of arrows f : A // B of C such that Pf× f (δB) = δA.
In particular M2 is the class of monomorphisms of C, because if a morphism

f of C is mono then Pf× f (δB) = δA by [43, Corollary 4.8], while if a morphism
f : A // B satisfies Pf× f (δB) = δA, then we can construct the kernel pair as
follows

X

��

//
{|Pf × f (δB ) |}

""

A

f

��

A × A
pr2

<<

pr1||
A

f
// B.

By Remark 3.2.44 we can conclude that f is mono because the doctrine P is m-
variational and then {|Pf× f (δB)|} = {|δA |} = ∆A.

Moreover if we consider a commutative square

A
q //

u

��

B

v

��
C

m
// D

where q ∈ E2 and m ∈ M2, then we have

δB ≤ Pv×v(δD)

and then

Pq×q(δB) ≤ Pq×q(Pv×v(δD)) = Pu×u(Pm×m(δD)) = Pu×u(δC).

Thus there exists a unique s : B // C such that u = sq, since q is a quotient of
Pq×q(δB). Hence we have

msq = mu = vq

and then ms = v because q is an epimorphism.
Therefore 〈E2,M2〉 is a factorization system, proper and it is stable because

quotients are stable in every doctrine of QD.
Thus the factorizations system 〈E2,M2〉 has as classM2 all themonomorphisms,

and then the category C is regular. See [9].
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Note that 〈E1,M1〉 and 〈E2,M2〉 are not equal in general: they are the same
factorization system if and only if the doctrine P satisfies the rules of unique choice,
see [41].

As it is observed in [41], the construction of the category Ef P for a doctrine P of
QD forces the rule of unique choice, in the sense that the category Ef P is an exact
category.

3.3.1 Tripos to topos

We conclude this chapter comparing the three different exact completions of an
elementary existential doctrine.

Recall from [51] the construction of a topos from a tripos. In [41] it is shown
that this construction can be stated in the case of an elementary existential doctrine
P : Cop // InfSL . We refer to [41, 44] for a complete analysis of that.
Given an elementary existential doctrine P : Cop // InfSL the category TP

consists of

• objects: pair (A, ρ) such that ρ is in P(A×A)and satisfies symmetry and transitivity
properties as in Subsection 3.2.1;

• arrows: an arrow φ : (A, ρ) // (A, σ) is an object φ in P(A × B) such that

1. φ ≤ P〈pr1 ,pr1 〉(ρ) ∧ P〈pr2 ,pr2 〉(σ);
2. P〈pr1 ,pr2 〉(ρ) ∧ P〈pr2 ,pr3 〉(φ) ≤ P〈pr1 ,pr3 〉(φ) in P(A× A× B) where the pri’s

are the projections from A × A × B;
3. P〈pr1 ,pr2 〉(φ) ∧ P〈pr2 ,pr3 〉(σ) ≤ P〈pr1 ,pr3 〉(φ) in P(A× B× B) where the pri’s

are the projections from A × B × B;
4. P〈pr1 ,pr2 〉(φ) ∧ P〈pr1 ,pr3 〉(φ) ≤ P〈pr2 ,pr3 〉(σ) in P(A× B× B) where the pri’s

are the projections from A × B × B;
5. P∆A(ρ) ≤ Epr1 (φ) in P(A) where the pri’s are the projections from A × B.

The composition of φ : (A, ρ) // (B, σ) and ψ : (B, σ) // (C, τ) is de-
fined as

E〈pr1 ,pr3 〉(P〈pr1 ,pr2 〉(φ) ∧ P〈pr2 ,pr3 〉(ψ))

and the identity on (A, ρ) is the arrow ρ : (A, ρ) // (A, ρ) .
This construction in called in [41, 44] the exact completion of an elementary

existential doctrine P : Cop // InfSL .

Example 3.3.15. The main examples of this construction are localic toposes and
realizability toposes obtained from a tripos, see [20, 51].

In [44, 41] it is proved that the category TP obtained from the tripos to topos
construction for an elementary existential doctrine P : Cop // InfSL is exact
and it is equivalent to the category (Ef (P)cd )ex/reg.
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Moreover this construction can be extended to a 2-functor EED // Xct
which sends and elementary existential doctrine to the categoryTP , and this 2-functor
is biadjoint to the 2-functor Xct // EED which sends an exact category X to
the doctrine SubX : Xop // InfSL . See [41, Theorem 4.9] for all the details.

Theorem 3.3.16. Let P : Cop // InfSL be an elementary existential doctrine.
Then the categoryTP is exact and the 2-functor Xct // EED that takes an exact
category to the elementary existential doctrine of its subobjects has a left biadjoint
which associates the exact category TP to an elementary existential doctrine P.

We conclude this section comparing the tripos-to-topos construction

Theorem 3.3.17. Let P : Cop // InfSL be an elementary existential doctrine.
Then the category TP is equivalent to (Ef (P)cd )ex/reg.

Theorem 3.3.18. Let P : Cop // InfSL be an elementary existential doctrine.
Then the category TP is equivalent to Ef (P)cqd

.



Chapter 4
Completions of Elementary Doctrines and
Pseudo-Distributive Laws

Abstract In this paper we construct three pseudo-monads related to the completion
with quotients, the completionwith comprehension and the completionwith compre-
hensive diagonals, and prove that they all are pseudo-property-like. This produces an
algebraic description of the the 2-categories of elementary doctrines with each of the
previous structures. In particular, we prove that each such 2-category is equivalent
to the 2-category of pseudo-algebras of the pseudo-monad related to the appropriate
completion. Finally we show that there are pseudo-distributive laws between certain
pairs among the three pseudo-monads, hence we obtain that the composition of such
a pair is again a pseudo-monad.

4.1 Introduction

Category theory provides a language to study at the same time the syntax and the
semantics of formal systems and to compare different theories even if they are in
different logical languages.

F.W. Lawvere introduced this approach to logic in [36, 37, 38]. He had the intuition
that it is possible to study the properties of logical theories using indexed categories,
introducing what he called hyperdoctrines.

It is emphasized in several works, see for instance [24, 42, 51, 50], how every first
order theory corresponds (up to isomorphism) to a unique syntactic hyperdoctrine,
which contains all the information about the syntax and the semantics of the theory.
In the same way one can study higher order theories, see [51].

In recent work [43, 42, 44, 41], Maietti and Rosolini studied a more general
notion than hyperdoctrines, namely primary and elementary doctrines, and they
generalized the exact completion of Carboni, see [8, 6], by relativizing the basic
data to a doctrine equipped with just enough structure to talk about the notion of an
equivalence relation.

In category theory, in order to give a precise meaning to the notion of “comple-
tion”, one can take the notion of a left adjoint functor to the forgetful functor between

89
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2-categories. A possible counterpart of this in logic can be seen in the extension of
a first order theory with new constructors and new axioms.

It is known that starting from an adjunction one can construct a monad, and more
generally, starting from a pseudo-adjunction one can construct a pseudo-monad.
This allows to give an algebraic interpretation of the completion one considers, and
to understand if the structure added by completing is just a new property.

In order to understand the previous distinction, as explained in [27], one may
look at the 2-monad coming from the completion, and study the 2-category of its
algebras.

In the present paper we study the following pseudo-monads together with the cat-
egories of pseudo-algebras coming from three completions of elementary doctrines:
the completion with comprehensions, the completion with comprehensive diago-
nals, and the completion with quotients. We prove that all these pseudo-monads are
property-like in the sense of [27]. Moreover we present how these pseudo-monads
can be composed, in other words we find pseudo-distributive laws between certain
pairs of them.

In sections 4.2, 4.3 and 4.4 we construct the pseudo-functors and the pseudo-
monads coming from the three completions mentioned before, and we prove that all
three pseudo-monads are pseudo-property like. The first completion we present is
the completion with comprehensive diagonals, because it is the easiest and the other
two are done following similar arguments.

In section 4.5 we present the pseudo-distributive laws, and explain what one
obtains composing the pseudo-monads.

4.2 Elementary doctrines with comprehensive diagonals

In this section we consider the biadjunction determined by the completion to force
diagonals to be comprehensive for elementary doctrines. We show that in this case,
the biadjunction is a 2-adjunction, and we shall explain how every elementary
doctrine with comprehensive diagonals can be seen as an algebra for the 2-monad.
In order to compute such 2-monad we first compute explicitly the 2-functor left
adjoint to the forgetful 2-functor.

Consider the full 2-subcategory CED of ElD, whose objects are elementary
doctrines with comprehensive diagonals. With the same notation used in [42], we
want to verify the existence of the left adjoint to the forgetful 2-functor:

D: ElD // CED

Let P : Cop // InfSL be an elementary doctrine, we define XP the exten-
sional collapse of P:

• the objects of XP are the objects of C;
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• amorphism [ f ] : A // B is an equivalence class ofmorphisms f : A // B
such that δA ≤A×A Pf× f (δB) with respect to the equivalence f ∼ f ′ when
δA ≤A×A Pf× f ′(δB).

The indexed inf-semilattice Px : X
op
P

// InfSL will be given by P itself: indeed

for every A in C, Px(A) = P(A) and for every [ f ] : A // B , Px([ f ]) = P( f ) as
one shows that P( f ) = P( f ′) when f ∼ f ′. See [42, Lemma 5.5].

The idea is that the assignment D(P) = Px can be extend to a 2-functor. We need
to describe how it acts one the 1-cells and 2-cells. Let P : Cop // InfSL and
R : Dop // InfSL be elementary doctrines, and consider a 1-cell (F, b):

Cop

P

((
Fop

��

InfSL

Dop

R

66b

��

Let (F̃, b) be the pair where

• F̃(A) is F(A) for every A ∈ XP;
• F̃([ f ]) is [F( f )] for every [ f ] : A // B .

Proposition 4.2.1. (F̃, b) is a 1-morphism in CED.

Proof.Firstwe prove that F̃ : XP // XR is awell-defined functor. If f : A // B

and g : A // B are a morphism in C, such that δA ≤ Pg× f (δB), then we have

bA×A(δA) ≤ bA×A(Pg× f (δB))

Since b is a natural transformation, the following diagram commutes

P(B × B)
Pg× f //

bB×B

��

P(A × A)

bA×A

��
RF(B × B)

RF (g× f )

// RF(A × A)

Hence we have
bA×A(δA) ≤ RF(g× f )(bB×B(δB))

By definition, bA×A(δA) = R〈F(pr1),F(pr2)〉(δF(B)); thus

R〈F(pr1),F(pr2)〉(δF(A)) ≤ R〈F(pr′1),F(pr′2)〉◦F(g× f )(δF(B))
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where pri : A × A // A and pr′i : B × B // B are the projections. Finally

F(g × f ) ◦ 〈F(pr1),F(pr2)〉
−1 = 〈F(pr′1),F(pr′2)〉 ◦ F(g) × F( f ),

so
δA ≤ RF(g)×F( f )(δB).

It is now easy to check that F̃ is a functor from XP to XR. Next we have that (F̃, b)
is a 1-cell observing that

bA×A(δA) = (Rx)〈F̃([pr1]),F̃([pr2])〉
(δF̃(B))

because F̃([pri]) = [F(pri)], F̃(B) = F(B) by definition of F̃, and

〈F̃([pr1]), F̃([pr2])〉 = [〈F(pr1),F(pr2)〉]

by [42, Lemma 5.4], and

(Rx)〈F̃([pr1]),F̃([pr2])〉
= (Rx)[〈F(pr1),F(pr2)〉] = R〈F(pr1),F(pr2)〉

�

As for a 2-cell θ : (F, b) +3 (G, c) , where (F, b) and (G, c) are 1-cells in ElD(P,R),

define θ̃ : F̃ // G̃ as the natural transformation with θ̃A = [θA]. Since it is a
2-cell in ElD,

bA(α) ≤F(A) RθA(cA(α)).

By definition of Rx and F̃,

RθA(cA(α)) = (Rx)[θA](cA(α)) = (Rx)θ̃A
(cA(α)),

so
bA(α) ≤F̃(A) (Rx)θ̃A

(cA(α)).

Proposition 4.2.2. Let P : Cop // InfSL and R : Dop // InfSL be ele-
mentary doctrines. The map

DP,R : ElD(P,R) // CED(Px,Rx)

such that DP,R(F, b) = (F̃, b) and DP,R(θ) = θ̃ is a functor and

D: ElD // CED

is a 2-functor with the assignment D(P) = Px .
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We prove that the 2-functor D: ElD // CED is left adjoint to the forgetful
2-functor. Recall from [42] the equivalence

− ◦ (K, k) : CED(Px, Z) ≡ ElD(P, Z)

where K : C // XP is the quotient functor and kA is the identity. For more
details see [42, Theorem 5.5].

For an elementary doctrine P ∈ ElD, let

ηP : P // U ◦D(P)

be the image of the identity on D(P), under the equivalence

− ◦ (KP, kP) : CED(D(P),D(P)) ≡ ElD(P,U ◦D(P))

which means that ηP is the 1-morphism (KP, kP). It is direct to check that the
assignment

η : idElD
// U ◦D

is a 2-natural transformation.

Remark 4.2.3. In the case P is of the form Px we have that

CED(D(Px),Px) � ElD(Px,Px)

because CED is a full 2-subcategory of ElD. Then ηPx is isomorphic to the identity
on Px .

Remark 4.2.4. Let P : Cop // InfSL be an elementary doctrine with compre-
hensive diagonals, and let f : A // B and g : A // B be morphisms such
that δA ≤ Pf×g(δB).We have that>A ≤ Pf×g◦∆A(δB) = P〈 f ,g〉(δB). Thus there exists
a unique morphism h : A // B such that the following diagram commutes:

B
∆B // B × B

A
h

__

〈 f ,g〉

<<

By Remark 4.2.4, if P ∈ CED then f ∼ g if and only if f = g. For this reason we
can define a 1-cell (TP, tP) : Px

// P such that

• TP sends A in A and [ f ] in f ;
• tP is the identity.

Moreover it is easy to see that (TP, tP)◦(KP, kP) = 1P and (KP, kP)◦(TP, tP) = 1Px .
Thus we denote εP := (TP, tP) and the a 2-natural transformation

ε : D ◦U // idCED
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Remark 4.2.5. If P : Cop // InfSL is an elementary doctrine of CED we have

D(TP, tP) = (TPx , tPx )

Proposition 4.2.6. For every elementary doctrine P : Cop // InfSL with com-
prehensive diagonals, the following equalities hold:

εP ◦ ηP = 1P

and
ηP ◦ εP = 1Px .

Proof. The first is a consequence of the definition of ηP end εP , and the second by
Remark 4.2.4. �

Proposition 4.2.7. For every elementary doctrine P : Cop // InfSL we have

εD(P) ◦D(ηP) = 1D(P).

Proof. It follows from 4.2.5. �

We are now in the position to compute the 2-monad:

• let Td : ElD // ElD be the 2-functor T = U ◦D;
• let η : idElD

// T be the unit of the 2-adjunction;

• let µ : T2
d

// Td be the 2-natural transformation µ := UεD;

Remark 4.2.8. Observe µP : T2
d

P // TdP is an isomorphism.

Proposition 4.2.9. The triple (Td, µ, η) is a 2-monad.

Proof. The following diagram commutes by Remark 4.2.5

T3
d

µTd //

Tdµ

��

T2
d

µ

��
T2

d µ
// Td

Moreover, we have ηPx = T(ηP), and then the following diagram commutes
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idElD ◦Td
ηTd //

id

##

T2
d

µ

��

Td ◦ idElD
Tdηoo

id

{{
Td

Therefore Td is a 2-monad. �

Proposition 4.2.10. Let P : Cop // InfSL be an elementary doctrine. If it ad-
mits an action a : TdP // P such that (P,a) is a pseudo-Td-algebra, then
P : Cop // InfSL has comprehensive diagonals, and the action preserves them.

Proof. Let (P,a) be a pseudo-Td-algebra, so in particular the identity axiom holds

P

}� aη
1P

!!

ηP // TdP

a

��
P.

Let f : C // A × A be a morphism of C such that Pf (δA) ≥ >C . Since Px has
comprehensive diagonals, there exists a unique [g] such that the following diagram
commutes

A
[∆A] // A × A

C.

[ f ]

OO

[g]

aa

So
aA

a[∆A] // a(A × A)

aC

a[ f ]

OO

a[g]

cc

also commutes. Now we use the fact that aη : aηP +3 idP is a natural transforma-
tion, where all the components are isomorphisms. So the upper triangle and all the
squares of the following diagram commute
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aA

aη A

��

a[∆A] // a(A × A)

aη (A×A)

��

aC

aηC

��

a[ f ]

;;

a[g]

``

A
∆A

// A × A

C.

f

;;

g

aa

Thus the bottom triangle commutes. Moreover g is certainly unique. �

Remark 4.2.11. Let P : Cop // InfSL be an elementary doctrine with compre-
hensive diagonals. The diagram

T2
d

P

µP

��

Td (TP ,tP ) // TdP

(TP ,tP )

��
TdP

(TP ,tP )
// P

commutes by Remark 4.2.5, since µP = εD(P) = (TPx , tPx ) = D(TP, tP) = T(TP, tP)
in ElD. Thus every elementary doctrine of CED can be regarded with an action
a : TdP // P which makes the previous diagram commutes. This means that
an elementary doctrine with comprehensive diagonals can be seen as a Td-algebra,
endowed with the action a = (TP, tP).

Remark 4.2.12. Let P : Cop // InfSL and R : Dop // InfSL be elemen-
tary doctrines with comprehensive diagonals, and let (F, f ) : P // R be a 1-cell
in CED. By Remark 4.2.4 and definition of Td , we conclude that the following
diagram commutes

TdP

(TP ,tP )

��

Td (F , f ) // TdR

(TR ,tR )

��
TdP

(F , f )
// TdR
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commutes. By the same argument as in Remark 4.2.11 we conclude that every 2-
cell in CED induces a 2-cell in Td-Alg, and we have the following inclusion of
2-categories

CED
� � // Td-Alg

� � // Td-Algl
� � // ElD

Theorem 4.2.13. The 2-monad Td : ElD // ElD is pseudo-idempotent. In par-
ticular it is fully property-like.

Proof. The proof of the previous theorem is a direct consequence of [27, Proposition
9.6]. In fact we can see that the condition (ii) here is satisfied by Propositions 4.2.6.�

Combining Proposition 4.2.10 andTheorem4.2.13we obtain the following corollary.

Corollary 4.2.14. We have the following equivalence of categories

Td-Alg � CED

4.3 Elementary doctrines with comprehensions

In this section we consider the completion with comprehensions of an elementary
doctrines. We prove that in this case, the biadjunction is a pseudo-adjunction, and
explain how every elementary doctrine with comprehensions can be seen as an
algebra for the pseudo-monad constructed from the pseudo-adjunction.

LetCE be the 2-category of elementary doctrineswith full comprehension.We re-
call the construction used in [42]: given an elementary doctrine P : Cop // InfSL
we define a new category GP .

• an object of GP is a pair (A, α), where A is in C and α is in P(A);
• a morphism f : (A, α) // (B, β) is a morphism f : A // B in C such

that α ≤ Pf (β);

The indexed functor extends to Pc : Gop
P

// InfSL by setting

• Pc(A, α) = {γ ∈ P(A) | γ ≤ α};
• Pc( f ) : Pc(B, β) // Pc(A, α) sends γ ≤ β into P( f )(γ) ∧ α.

Remark 4.3.1. We can observe that for every object (A, α) of GP we have

δ(A,α) = δA ∧ α � α

where α � α := Ppr1 (α) ∧ Ppr2 (α).

Following the structure of Section 4.2 we prove that the assignment C(P) = Pc can
be extended to 2-functor



98 4 Completions of Elementary Doctrines and Pseudo-Distributive Laws

C: ElD // CE

and we start defining how it acts on the 1-cells and 2-cells in ElD.
Let P : Cop // InfSL and R : Dop // InfSL be elementary doctrines,

and consider a 1-cell (F, b) in ElD:

Cop

P

((
Fop

��

InfSL

Dop

R

66b

��

We want to prove that the pair (F̂, b̂) where:

• F̂(A, α) is (F A, bA(α)) for every (A, α) ∈ GP;
• F̂( f ) is F( f ) for every f : (A, α) // (B, β) ;
• b̂ is the restriction of b on Pc;

is a 1-cell in CE:
G

op
P

Pc

''
F̂op

��

InfSL

G
op
R

Rc

77b̂

��

Proposition 4.3.2. (F̂, b̂) is a 1-cell in CE.

Proof. First we prove that F̂ : GP
// GR is a functor.

If f : (A, α) // (B, β) is a morphism in GP then

α ≤ Pf (β).

Therefore
bA(α) ≤ bA(Pf (β)) = RF( f )(bB(β)).

Now observe that

(Rc)〈F(pr1),F(pr2)〉(δ(FA,bA(α))) = R〈F(pr1),F(pr2)〉(bA(α)�bA(α)∧δFA)∧bA×A(α�α)

which is equal to

R〈F(pr1),F(pr2)〉(Rpr′1
(bA(α)) ∧ Rpr′2

(bA(α))) ∧ bA×A(δA) ∧ bA×A(α � α)
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where pr′i : F A × F A // F A . Moreover we know that bA is a natural transfor-
mation, hence the diagram

PA
Ppri //

bA

��

P(A × A)

bA×A

��
RF A

RF (pri )

// RF(A × A).

commutes. This implies that

(Rc)〈F(pr1),F(pr2)〉(δ(FA,bA(α))) = bA×A(Ppr1 (α)∧Ppr2 (α))∧bA×A(δA)∧bA×A(α�α)

and
bA×A(Ppr1 (α) ∧ Ppr2 (α)) = bA×A(α � α).

Hence we conclude that (F̂, b̂) is a 1-cell since

b̂(A,α)×(A,α)(δ(A,α)) = bA×A(δA ∧ α � α) = (Rc)〈F(pr1),F(pr2)〉(δF̂(A,α)).

Finally we must prove that (F̂, b̂) preserves comprehensions. We start observing that
every comprehension in GP is of the form

{|γ |} : (A, γ) // (A, α)

where γ ∈ Pc(A, α), and {|γ |} is the identity on A. Then

F({|γ |}) : (F A, bA(γ)) // (F A, bA(α))

and F({|γ |}) is idFA by definition of F̂, so it is a comprehension of bA(γ). �

Proposition 4.3.3. Let (F, b) and (G, c) be two objects in ElD(P,R) and let
θ : (F, b) // (G, c) be a 2-cell in ElD. We define

θ̂ : (F̂, b̂) // (Ĝ, ĉ)

where
θ̂(A,α) : (F A, bA(α)) // (GA, cA(α))

is θA. Then it is a 2-cell in CE.

Proof. Let (A, α) be an object of GP . We have that

bA(α) ≤ RθA(cA(α))



100 4 Completions of Elementary Doctrines and Pseudo-Distributive Laws

because θ is a 2-morphism. Therefore

θA : (F A, bA(α)) // (GA, cA(α))

is a morphism in GR. Let γ be an object in Pc(A, α). Then

(Rc)θA(ĉA(γ)) = RθA(cA(γ)) ∧ bA(α)

by definition of Rc . Finally observe that bA(γ) ≤ bA(α) since γ ∈ Pc(A, α), and
bA(γ) ≤ RθA(cA(γ)), and then we can conclude that

b̂A(γ) = bA(γ) ≤ RθA(cA(γ)) ∧ bA(α) = (Rc)θA(ĉA(γ)).

�

Proposition 4.3.4. The assignment

CP,R : ElD(P,R) // CE(Pc,Rc)

whichmaps (F, b) into (F̂, b̂) anda2-cell θ : (F, b) // (G, c) into θ̂ : (F̂, b̂) // (Ĝ, ĉ)
is a functor and

C: ElD // CE

is a 2-functor with the assignment C(P) = Pc .

We prove that the 2-functor C: ElD // CE is left adjoint to the forgetful
2-functor. Recall from [42] the equivalence

− ◦ (I, i) : CE(Pc, Z) ≡ ElD(P, Z)

where I : C // RP sends an object A into (A,>A), a morphism f : A // B

to f : (A,>A) // (B,>B) and iA is the identity. For more details see [42, Theo-
rem 4.8]. For an elementary doctrine P ∈ ElD, let

ηP : P // U ◦ C(P)

be the image of the identity on C(P), under the equivalence

− ◦ (IP, iP) : CE(C(P),C(P)) ≡ ElD(P,U ◦ C(P))

which means that ηP is the 1-cell (IP, iP). It is direct to check that the assignment

η : idElD
// U ◦ C

is a 2-natural transformation.
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Remark 4.3.5. For every P ∈ CE the equivalence

− ◦ (IP, iP) : CE(C ◦U(P),P) ≡ ElD(U(P),U(P))

is essentially surjective by definition, and then there exists a 1-cell (TP, tP) such that

(TP, tP) ◦ (IP, iP) � 1P .

Let θ : (TP, tP) ◦ (IP, iP) +3 1P be the invertible 2-cell and let εP := (TP, tP) be
the previous 1-cell.

Remark 4.3.6. For every morphism f : A // B in C, the following diagram
commutes

TP(A,>A)
TP ( f ) //

θP
A

��

TP(B,>B)

θP
B

��
A

f
// B

where θP : TP ◦ JP +3 1P is the isomorphism defined in Remark 4.3.5.

Remark 4.3.7. Let P : Cop // InfSL be an elementary doctrine with compre-
hensions, and consider the 1-cells (F, b), (G, c) : Pc

// P

Cop

Iop

��

P

!!
G

op
P

Gop

��

Fop

��

Pc // InfSL

Cop.

P

==

iP

��

b

��

c

��

Consider an invertible 2-cell θ : (F, b) ◦ (IP, iP) +3 (G, c) ◦ (IP, iP) . Then for every
f : A // B the diagram
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F(A,>A)

θA

��

F f // F(B,>B)

θB

��
G(A,>A)

Gf
// G(B,>B)

commutes. We want to prove that this isomorphism can be extended to every object
of GP . Observe that every (A, α) can be seen as a comprehension of α in GP

(A, α)
{|α |} // (A,>A)

and
F(A, α)

F {|α |} // F(A,>A) G(A, α)
G {|α |} // G(A,>A)

are comprehensions of bA(α) and cA(α). Moreover we have bA(α) = PθA(cA(α)) for
every α in PA because θ is invertible. Using [43, Remark 4.2] we have the following
pullback square

F(A, α)

θ(A,α)

��

F {|α |} // F(A,>A)

θA

��
G(A, α)

G {|α |}
// G(A,>A).

In order to prove the naturality we can consider a morphism f : (A, α) // (B, β)
in GP , and we observe that the following diagram

F(A, α)

��

F f

��

F {|α |} // F(A,>A)

��

F f

��
F(B, β)

��

F {|β |}
// F(B,>B)

��

G(A, α)

Gf

��

G {|α |} // G(A,>A)

Gf

��
G(B, β)

G {|β |}
// G(B,>B)
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commutes, where the diagonals arrows are components of θ. Then we have proved
that (F, b) ◦ (IP, iP) � (G, c) ◦ (IP, iP) implies (F, b) � (G, c).

Proposition 4.3.8. The assignment

ε : C ◦U // idCE

where εP is defined as in 4.3.5, is a pseudo-natural transformation.

Proof. Let P : Cop // InfSL and R : Dop // InfSL be two elementary
doctrine with comprehensions, we define

τPR : CE(εP,1R) // CE(1Pc , εR) ◦ C ◦U

where the 2-morphisms

τPR(F ,b) : CE(εP,1,R )(F, b) +3 CE(1Pc , εR) ◦ C(F, b)

are defined as
(τPR(F ,b) )(A,>A) := (θRFA)

−1 ◦ F(θPA).

Wecan define τPR(F ,b) just on the elements of the form (A,>A) because this definition
can be extended to every object (A, γ) by Remark 4.3.7 since both P and Pc have
comprehensions, and the 1-cells in CE preserve them. Now we must prove the
naturality of τPR. Consider a 2-morphism φ : (F, b) +3 (G, c) and observe that

CE(1Pc , εR) ◦ C ◦U(φ)(A,α) = TR(φ̂(A,α))

and
CE(εP,1R)(φ)(A,α) = φTP (A,α).

The diagram

FTP(A,>A)

F(θP
A
)

��

φTP (A,α) // GTP(A,>A)

G(θP
A
)

��
F(A)

φA //

(θR
F A
)−1

��

G(A)

(θR
GA
)−1

��
TR F̂(A,>A)

TR (φ̂(A,>A))

// TRĜ(A,>A)

commutes since the following commutes by Remark 4.3.6
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TR F̂(A,>A)

(θR
F A
)

��

TR (φ̂(A,>A)) // TRĜ(A,>A)

(θR
GA
)

��
F(A)

φA

// G(A).

So

FTP(A,>A)

φTP (A,>A)

��

F(θP
A
)

// F(A)

φA

��
GTP(A,>A)

G(θP
A
)

// G(A)

commutes since φ : (F, b) +3 (G, c) is a natural transformation. It is straightforward
to prove that the coherence axioms of the definition of lax-natural transformation are
satisfied. �

Remark 4.3.9. Let P : Cop // InfSL be an elementary doctrine, and consider
the following 1-cell

Cop

P

((
IP

op

��

InfSL

G
op
P

Pc

77iP

��

Applying the functor C to it we obtain the 1-cell

G
op
P

Pc

''
ÎP

op

��

InfSL

G
op
Pc

(Pc )c

77îP

��

We can observe that (ÎP, îP) = (IPc , iPc ), because

ÎP(A, α) = ((A, α), α) = ((A, α),>(A,α)) = IPc (A, α).

Moreover we have that, for every morphism f : (A, α) // (B, β) in GP ,
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ÎP( f ) = IP( f ) = f = IPc ( f )

Thus iPc = îP since they are both the identity.

Remark 4.3.10. Let P : Cop // InfSL be an elementary doctrine in CE. By
definition of εP , we have

(TP, jP) ◦ (IP, iP) � idP .

Hence we have
C(TP, jP) ◦ C(JP, jP) � idC(P)

and by Remark 4.3.9 we have

C(TP, jP) ◦ (IPc , iPc ) � idC(P) .

So we can assume that εPc = (TPc , tPc ) = C(TP, tP).

Remark 4.3.11. Combining Remark 4.3.6 and Remark 4.3.10, we can assume that
C(θP) = θPc for every elementary doctrine in CE. This choice is going to simplify
many calculations in the following. In particular this implies that Cε = εC as
pseudo-natural transformation.

Proposition 4.3.12. For every elementary doctrine P : Cop // InfSL we have

εC(P) ◦ C(ηP) � 1C(P)

Proof. By Remark 4.3.9 and Remark 4.3.11 we have

εC(P) ◦ C(ηP) = εC(P) ◦ (IPc , iPc )

and the conclusion follows by definition of εC(P). �

Proposition 4.3.13. For every elementary doctrine P : Cop // InfSL in CE,
the following isomorphism holds:

εP ◦ ηP � 1P

Proof. It follows directly from the definitions of εP and ηP . �

Remark 4.3.14. The isomorphism in Proposition 4.3.13 can be extended to an in-
vertible modification between the pseudo-natural transformation (ε ◦ η, τ′) and 1CE,
where τ′PR is given by iCE(ηP ,1R ).τPR. We define λ : (ε, τ) ◦ (η, id) +3 1CE where
λP := θP . Next we prove that it satisfies the following equation
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P

(F ,b)

��

εPηP

��

P

{� λP

idP

��

εPηP

��
R

{� λR

idR

��

�� τ
′
(F ,b)

εRηR

��

P

(F ,b)

��

= P
idP

//

(F ,b)

��

P

(F ,b)

��
R

idR

// R R
idR

// R

and this means that the following equality must holds

(λR .i(F ,b)) ◦ τ′(F ,b) = i(F ,b).λP .

It is straightforward to verify the following identities

• (λR .i(F ,b))A = θRFA;
• (iCE(ηP ,1R ).τPR)A = (τPR(F ,b))(A,>A) = (θ

R
FA)
−1 ◦ F(θPA);

• (i(F ,b).λP)A = F(λRA) = F(θPA);

Therefore we can conclude that λ : (ε, τ) ◦ (η, id) +3 1CE is an invertible modifi-
cation.

Remark 4.3.15. Using the same argument of 4.3.14 we can prove that the isomor-
phism

εC(P) ◦ C(ηP) � 1C(P)

can be extended to an invertible modification ρ : (ε, τ)C ◦ C(η, id) +3 1CE .

We are now in the position to compute the pseudo-monad:

• let Tc : ElD // ElD be the 2-functor Tc = U ◦ C;
• let η : idElD

// T be the unit of the pseudo-adjunction;

• let µ : T2
c

// Tc be the pseudo-natural transformation µ = UεC.

Proposition 4.3.16. The triple (Tc, µ, η) is a pseudo-monad, the following diagram

T3
c

µTc //

Tcµ

��

T2
c

µ

��
T2

c µ
// Tc

commutes and the modifications
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Tc

id

  

Tcη //

|� ρ

T2
c

µ

��

Tc

id

  

ηTc //

|� λ

T2
c

µ

��
Tc Tc

satisfy the coherence axioms for pseudo-monads.

Proof. By Remark 4.3.10

µTc (P) = εC(Pc ) = C(TPc , tPc ).

So we have
Tc(µ)P = Tc(εC(P)) = C(TPc , tPc )

Moreover the pseudo-natural transformations T µ and µT have the same isomor-
phisms τ by Remark 4.3.11 and by definition of τ in Proposition 4.3.8.

The axiom is satisfied since we have the following equality

ηC(P) = (IPc , iPc ) = (ÎP, ĵP) = Tc(ηP)

by Remark 4.3.9, and then we have that λ and ρ are the same modification.
�

Remark 4.3.17. Consider an elementary doctrine P : Cop // InfSL in CE. By
Remark 4.3.10, the following diagram commutes

T2
c P

µ

��

Tc (TP ,tP ) // TcP

(TP ,tP )

��
TcP

(TP ,tP )
// P.

In other words we can regard every elementary doctrine in CE with an action
such that (P, (TP, tP)) is a pseudo-Tc-algebra. Moreover since ε is a pseudo-natural
transformation, every 1-cell in CE induces a pseudo-morphism in Ps-Tc-Alg, and
the same holds for every 2-cell. So we have the following inclusions of 2-categories

CE
� � // Ps-Tc-Alg

� � // ElD

Using the same argument of Proposition 4.2.10, we can prove the following propo-
sition.
Proposition 4.3.18. Let (P,a) be a pseudo-T-algebra. Then the elementary doctrine
P : Cop // InfSL has comprehensions.
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Theorem 4.3.19. Let (P,a) and (R, b) be twopseudo-Tc-algebras, and let f : P // R
be a 1-cell in CE. Then there exists a unique invertible 2-cell such that

TcP

a

��

Tc f //

��

TcR

b

��
P

f
// R

is a pseudo-morphism of pseudo-Tc-algebras.

Proof. The pseudo-Tc-algebra (P,a) has comprehensions by Proposition 4.3.18, and
we have the following isomorphism

εPηP � 1P � aηP .

So for every object A of C we have a(A,>A) � εP(A,>A), and by Remark 4.3.7 we
can conclude that εP � a. The isomorphism gives a pseudo-morphism of pseudo-
algebras

TcP

a

��

Tc idP //

��

TcP

εP

��
P

idP

// P

By the second coherence condition of pseudo-morphisms such isomorphism is
unique. Since ε is a pseudo-natural transformation, we have the following com-
mutative diagram

TcP

a

��

Tc idP //

��

TcP

εP

��

Tc f //

�� τ f

TcR

εR

��

Tc idR //

��

TcR

b

��
P

idP

// P
f

// R
idR

// R

for the pseudo-Tc-algebras (P,a) and (R, b), and for every 1-cell inCE f : P // R .
Therefore for every 1-cell in CE there exists an invertible 2-cell

TcP

a

��

Tc f //

��

TcR

b

��
P

f
// R
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such that the previous diagram is a 1-cell inPs-Tc-Alg. The uniqueness follows from
the second coherence condition of pseudo-morphism and the fact that the doctrines
P and R have comprehension by Proposition 4.3.18. �

Remark 4.3.20. Observe that if (P,a) and (R, b) are pseudo-Tc-algebras, and the
following square is a pseudo-morphism of pseudo-algebras

TcP

a

��

Tc f //

��

TcR

b

��
P

f
// R

then f : P // R preserves comprehensions.

Corollary 4.3.21. There is an equivalence of 2-categories

CE ≡ Ps-Tc-Alg

Proof. By Remark 4.3.17, Proposition 4.3.18 and Theorem 4.3.19, we need only to
prove that every 2-cell θ : (F, b) +3 (G, c) in CE is a 2-cell in Ps-Tc-Alg, which
means that θ must satisfy the coherence conditions. This follows directly from the
pseudo-naturality of ε. �

4.4 Elementary doctrines with quotients

In this section we consider the completion with quotients of an elementary doctrines.
Consider the 2-full 2-subcategoryQED of ElDwhose objects are the elementary

doctrines P : Cop // InfSL in which every P-equivalence relation has a P-
quotient that is a stable effective descent morphism.

Let P : Cop // InfSL be an elementary doctrine, and consider the category
RP of P-equivalence relation:

• an object of RP is a pair (A, ρ) such that ρ is a P-equivalence relation on A;
• a morphism f : (A, ρ) // (B, σ) is a morphism f : A // B such that

ρ ≤ Pf× f (σ).

The indexed poset Pq : Rop
P

// InfSL will be given by the categories of descent
data:
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Pq(A, ρ) = Desρ

and for every morphism f : (A, ρ) // (B, σ) we define

Pq( f ) = P( f )

This is a well defined elementary doctrine, see [42, Lemma 4.2], and it has descent
quotients of P-equivalence relations, see [42, Lemma 4.4].

Following the structure of sections 4.2 and 4.3 we prove that the assignment
Q(P) = Pq can be extended to 2-functor

Q: ElD // QED

and we start defining how it acts on the 1-cells and 2-cells in ElD.
Let P : Cop // InfSL and R : Dop // InfSL be elementary doctrines,

and consider a 1-cell (F, b):

Cop

P

((
Fop

��

InfSL

Dop

R

66b

��

We want to prove that the pair (F, b) where:

• F(A, ρ) is (F A,R〈F(pr1),F(pr2)〉−1 (bA×A(ρ))) for every A ∈ RP;
• F( f ) is F( f ) for every f : (A, ρ) // (B, σ) ;
• b is b restricted to the categories of descent data;

is a 2-morphism in QED:

R
op
P

Pq

''
F

op

��

InfSL

R
op
R

Rq

77b

��

Lemma 4.4.1. Let (A, ρ) be an object in RP and let pr1,pr2 : A × A // A be
the two projections. Then R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)) is a P-equivalence relation on
F A.
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Proof. Reflexivity: ρ is an equivalence relation on A implies bA×A(δA) ≤ bA×A(ρ)
and by definition of bA×A we have R〈F(pr1),F(pr2)〉(δFA) ≤ bA×A(ρ) . Since F
preserves products 〈F(pr1),F(pr2)〉 is an isomorphism. So

δFA ≤ R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)).

Symmetry and transitivity are proved similarly. �

Lemma 4.4.2. Let f : (A, ρ) // (B, σ) be amorphism inRP , and let pri : A × A // A

and pr′i : B × B // B , i = 1,2 be the projections. Then

F( f ) : (F A,R〈F(pr1),F(pr2)〉−1 (bA×A(ρ))) // (FB,R〈F(pr′1),F(pr′2)〉−1 (bB×B(σ)))

is a morphism in RR.

Proof. Since f : (A, ρ) // (B, σ) is a 1-cell, ρ ≤ Pf× f (σ). Thus

bA×A(ρ) ≤ bA×A(Pf× f (σ)) = RF( f× f )(bB×B(σ)).

Hence

R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)) ≤ R〈F(pr1),F(pr2)〉−1 (RF( f× f )(bB×B(σ))).

Since

F( f × f ) ◦ 〈F(pr1),F(pr2)〉
−1 = 〈F(pr′1),F(pr′2)〉

−1 ◦ F( f ) × F( f )

it is

R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)) ≤ RF( f )×F( f )(R〈F(pr′1),F(pr′2)〉−1 (bB×B(σ))).

�

Remark 4.4.3. Consider (A, ρ) ∈ RP , if α ∈ Desρ then

bA(α) ∈ DesR
〈F (pr1),F (pr2)〉

−1 (bA×A(ρ)).

Corollary 4.4.4. Given (F, b) ∈ ElD(P,R) then (F, b) ∈ QED(Pq,Rq) .

Proof. By Remark 4.4.3 and [42, Lemma 4.2]

bA×A(ρ) = R〈F(pr1),F(pr2)〉(R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)))

So
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b(A,ρ)×(A,ρ)(δ(A,ρ)) = (Rq)〈F(pr1),F(pr2)〉
(δF(A,ρ)).

By Lemma 4.4.2 and Lemma 4.4.1 we can conclude that (F, b) ∈ ElD(Pq,Rq). It
remains to verify that F preserves all the quotients.

Consider a Pq-equivalence relation τ on (A, ρ). A Pq-quotient of τ is

idA : (A, ρ) // (A, τ)

and

idFA : (F A,R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)) // (F A,R〈F(pr1),F(pr2)〉−1 (bA×A(τ))

is a Rq-quotient of R〈F(pr1),F(pr2)〉−1 (bA×A(τ)). So F preserves quotients, and (F, b)
is a 1-cell in QED. �

Proposition 4.4.5. Let θ be a morphism in ElD(P,R)

θ : (F, b) // (G, c) .

Then θ is also a morphism in QED(Pq,Rq)

θ : (F, b) // (G, c) .

Proof.We must prove that for every (A, ρ) ∈ RP

θA : (F A,R〈F(pr1),F(pr2)〉−1 (bA×A(ρ))) // (GA,R〈G(pr1),G(pr2)〉−1 (cA×A(ρ)))

is a morphism in RR. Indeed, by definition of 2-morphism we have bA×A(ρ) ≤
RθA×A(cA×A(ρ)) then

R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)) ≤ R〈F(pr1),F(pr2)〉−1 (RθA×A(cA×A(ρ)))

and, since θ is a natural transformation,

R〈F(pr1),F(pr2)〉−1 (bA×A(ρ)) ≤ RθA×θA(R〈G(pr1),G(pr2)〉−1 ((cA×A(ρ)))).

Finally for every α ∈ DesR
〈F (pr1),F (pr2)〉

−1 (bA×A(ρ)) we have

bA(α) ≤ (Rq)θA(cA(α))

because bA(α) = bA(α), cA(α) = cA(α) and Rq(θA) = R(θA). �

Proposition 4.4.6. The assignment
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QP,R : ElD(P,R) // QED(Pq,Rq)

whichmaps (F, b) into (F, b) anda2-cell θ : (F, b) // (G, c) into θ : (F, b) // (G, c)
is a functor and

Q: ElD // QED

is a 2-functor with the assignment Q(P) = Pq .

We prove that the 2-functor Q: ElD // QED is left adjoint to the forgetful
2-functor. Recall from [42] the crucial equivalence

− ◦ (J, j) : QED(Pq, Z) ≡ ElD(P, Z)

where J : C // RP sends an object A to (A, δA) and amorphism f : A // B

to f : (A, δA) // (B, δB) and jA is the identity. For more details, see [42, Theo-
rem 4.5].

Let P be an elementary doctrine in QED. We define

ηP : P // U ◦Q(P)

the image of the identity on Q(P), under the equivalence

− ◦ (JP, jP) : QED(Q(P),Q(P)) ≡ ElD(P,U ◦Q(P)).

It means that ηP is the 1-morphism (JP, jP). It is direct to check that the assignment

η : idElD
// U ◦Q

is a 2-natural transformation.

Remark 4.4.7. For every P ∈ QED the equivalence

− ◦ (JP, jP) : QED(Q ◦U(P),P) ≡ ElD(U(P),U(P))

is essentially surjective by definition. Then there exists a 1-morphism (TP, tP) such
that

(TP, tP) ◦ (JP, jP) � 1P .

Let θ : (TP, tP) ◦ (IP, iP) +3 1P be the invertible 2-cell and let εP := (TP, tP) be
the previous 1-cell.

Remark 4.4.8. For every morphism f : A // B in C, the following diagram
commutes
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TP(A, δA)
TP ( f ) //

θP
A

��

TP(B, δB)

θP
B

��
A

f
// B

where θP : TP ◦ JP +3 1P is the isomorphism in Remark 4.4.7.

Proposition 4.4.9. The assignment

ε : Q ◦U // idQED

where εP is defined as in 4.4.7, is a pseudo-natural transformation.

Proof. We can use the same argument of Proposition 4.3.8, observing that we can
restrict our attention to the elements of the form (A, δA). �

Remark 4.4.10. Let P : Cop // InfSL be an elementary doctrine, and consider
the following 1-cell

Cop

P

((
JP

op

��

InfSL

R
op
P

Pq

77jP

��

Applying the functor Q we obtain the 1-cell

R
op
P

Pq

''
JP

op

��

InfSL

R
op
Pq

(Pq )q

77jP

��

It is (JP, jP) = (JPq , jPq ) because

JP(A, ρ) = ((A, ρ), (Pq)〈JP (pr1),JP (pr2)〉−1 (( jP)A×A(ρ))) = ((A, ρ), δ(A,ρ)) = JPq (A, ρ)

and, for f : (A, ρ) // (B, σ) in RP ,
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JP( f ) = JP( f ) = f = JPq ( f ).

Also jPq = jP since they are both the identity.

Remark 4.4.11. Let P : Cop // InfSL be an elementary doctrine inQED. Then
by definition of εP , we have

(TP, jP) ◦ (JP, jP) � idP .

Hence
Q(TP, jP) ◦Q(JP, jP) � idQ(P)

and by Remark 4.4.10

Q(TP, jP) ◦ (JPq , jPq ) � idQ(P) .

So we can assume that εPq = (TPq , tPq ) = Q(TP, tP).

Proposition 4.4.12. For every elementary doctrine P : Cop // InfSL we have

εQ(P) ◦Q(ηP) � 1Q(P).

Proof. By Remark 4.4.10 we have

εQ(P) ◦Q(ηP) = εQ(P) ◦ (JPq , jPq )

and the conclusion follows by definition of εQ(P). �

Proposition 4.4.13. For every elementary doctrine P : Cop // InfSL in QED,
it is

εP ◦ ηP � 1P .

Proof. Immediate by definition of εP and ηP . �

Remark 4.4.14. Using the same argument as in 4.3.14 and 4.3.15 we can conclude
that there are two invertiblemodifications ρ : εC ◦ Cη +3 1ElD and λ : ε ◦ η +3 1QED .

We use the same argument of Sections 4.3 and 4.2 to introduce the following
pseudo-monad:

• let Tq : ElD // ElD be the 2-functor Tq = U ◦Q;

• let η : idElD
// Tq be the unit of the pseudo-adjunction;

• let µ : T2
q

// Tq is the pseudo-natural transformation µ := UεQ.
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Proposition 4.4.15. The triple (Tq, µ, η) is a pseudo-monad, the following diagram
commutes

T3
q

µTq //

Tqµ

��

T2
q

µ

��
T2
q µ

// Tq

and the modifications

Tq

id

��

Tqη //

|� ρ

T2
q

µ

��

Tq

id

��

ηTq //

|� λ

T2
q

µ

��
Tq Tq

satisfy the coherence axiom for pseudo-monad.

Proof. By Remark 4.4.11 we have

µTq (P) = εQ(Pq ) = Q(TPq , tPq )

and
Tq(µ)P = Tq(εQ(P)) = Q(TPq , tPq ).

Moreover the pseudo-natural transformations µTq and Tqµ have the same isomor-
phism τ, since the action of the 2-functor Tq on a 2-cell gives essentially the same
2-cell by Proposition 4.4.5.

The axiom is satisfied since we have the following equality

µQ(P) = (JPq , jPq ) = (JP, jP) = Tq(µP)

by Remark 4.4.10, which means that ρ and λ are the same modifications. �

Remark 4.4.16. Consider an elementary doctrine P : Cop // InfSL in QED.
By Remark 4.4.11, the diagram

T2
qP

µ

��

Tq (TP ,tP ) // TqP

(TP ,tP )

��
TqP

(TP ,tP )
// P
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commutes. Then we can regard every elementary doctrine in QED with an action
(TP, tP) such that (P, (TP, tP)) is an object in Ps-Tq-Alg. Since ε is a pseudo-natural
transformation, every 1-cell in QED induces a 1-cell in Ps-Tq-Alg, and the same
for every 2-cells. So we have the following inclusions of 2-categories

QED
� � // Ps-Tq-Alg

� � // ElD

Remark 4.4.17. We can use the same argument of Proposition 4.3.18 to prove that
every pseudo-Tq-algebra (P,a) consists of an elementary doctrine with quotients
and an action which preserves them, and every morphism f : P // R in QED
can be regarded as a pseudo-morphism of pseudo-Tq-algebras.

The same arguments used in the proof of Theorem 4.3.19 can be adapted to the case
of elementary doctrine with quotients. Thus we have the following result.

Theorem 4.4.18. Let (P,a) and (R, b) be twopseudo-Tq-algebras, and let f : P // R
be a 1-cell in QED. Then there exists a unique invertible 2-cell such that

TcP

a

��

Tc f //

��

TcR

b

��
P

f
// R

is a pseudo-morphism of pseudo-Tq-algebras.

Corollary 4.4.19. We have the following equivalence of 2-categories

QED ≡ Ps-Tq-Alg .

4.5 Pseudo-distributive laws

In this section we study the pseudo-distributive laws between the pseudo-monads
Tc , Td and Tq .

First we consider the pseudo-monads Tq and Tc , and in order to prove that there
exists a pseudo-distributive law δ : TcTq

// TqTc , we shall construct a lifting
of Tq in the sense of [55, 56].

Proposition 4.5.1. The assignment

T̃q (P,a)(R,c) : Ps-Tc-Alg((P,a), (R, c)) // Ps-Tc-Alg((Pq, εPq ), (Rq, εRq ))

mapping a 1-cell ( f , f ) to
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(Tq f , τTq f )

and a 2-cell θ : ( f , f ) +3 (g,g) to

Tqθ : (Tq f , τTq f ) +3 (Tqg, τTqg)

is a functor.

Proof. We recall that since (P,a) is a pseudo-Tc-algebra, by Remark 4.3.17 P has
comprehensions, and we know that Pq has comprehensions by [43, Lemma 5.3].
Moreover we can observe that

Tqθ : (Tq f , τTq f ) +3 (Tqg, τTqg)

is a morphism of pseudo-Tc-algebras because ε is a pseudo natural transformation,
and since Tq is a 2-functor we can conclude that the composition and the identity
axioms holds. Therefore we conclude that T̃q (P,a)(R,c) is a functor. �

Proposition 4.5.2. The functor defined in 4.5.1 can be extended to a 2-functor

T̃q : Ps-Tc-Alg // Ps-Tc-Alg

where T̃q(P,a) := (Pq, εPq ).

Proof.We prove the compatibility with composition. Consider the following 1-cells

TcP
Tc f //

a

��
�� f

TcR

b

��

Tcg //

�� g

TcS

c

��
P

f
// R

g
// S

then (g,g) ◦ ( f , f ) = (g ◦ f , (iTc f .g) ◦ (ig . f )). Next consider the following diagram

TcPq

TcTq f //

εPq

��

�� τ f

TcRq

εRq

��

TcTqg //

�� τg

TcSq

εSq

��
Pq

Tq f
// Rq

Tqg
// Sq .

Since ε is a pseudo-natural transformation, we have that (iTqg .τf ) ◦ (τg .iTcTq f ) =

τg◦ f . Moreover we have the compatibility with the composition of 2-cells since Tq
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is a 2-functor. Finally one can check that also the unit axion is satisfied. Then we can
conclude that T̃q is a 2-functor. �

Remark 4.5.3. The multiplication and the identity of the pseudo-monad Tq can be
extended to a multiplication and identity on the functor T̃q . Therefore T̃q is a
pseudo-monad. Moreover we can observe that, if we consider the forgetful 2-functor
UTc : Ps-Tc-Alg // ElD , we have the equality TqUTc = UTc T̃q .

Theorem 4.5.4. There exists a distributive law δ : TcTq
// TqTc .

Proof. Remark 4.5.3 tells us that T̃q is a lifting of Tq . Apply Theorem [55, Theorem
1] to conclude the proof. �

Corollary 4.5.5. The 2-functor TqTc is a pseudo-monad.

Proof. It follows by [54, Proposition 7.8 and Theorem 7.9]. �

We can use the same arguments of Proposition 4.5.2 and 4.5.1 to prove that the
2-monad Td can be lifted to a pseudo-monad on Ps-Tq-Alg, since Td preserves
quotients by [42, Lemma 5.8]. Therefore we have the following results.

Theorem 4.5.6. The 2-functor TdTq is a pseudo-monad, and since Td preserves
comprehensions, also 2-functor TdTqTc is a pseudo-monad.

It is easy to observe that every pseudo-monad that we have described admits a
trivial pseudo-distributive law, which is the identity since they have the property that
Tµ = µT. Then we can conclude with the following propositions.

Proposition 4.5.7. For every natural number n, Tn
c , Tn

d
and Tn

q are pseudo-monads.

Applying [54, Proposition 7.8 and Theorem 7.9] we obtain the following result.

Theorem 4.5.8. We have the following isomorphisms

• Ps-TqTc-Alg � Ps-T̃q-Alg, where T̃q is the lifting of Tq on Ps-Tc-Alg;
• Ps-TdTc-Alg � Ps-T̃d-Alg, where T̃d is the lifting of Td on Ps-Tc-Alg;
• Ps-TdTq-Alg � Ps-T̃d-Alg, where T̃d is the lifting of Td on Ps-Tq-Alg;
• Ps-TdTqTc-Alg � Ps-�TdTq-Alg, where T̃dTq is the lifting of TdTq on

Ps-Tc-Alg;
• Ps-TdTqTc-Alg � Ps-T̃d-Alg, where T̃d is the lifting of Td on tPs-TqTc-Alg;
• Ps-Tn

c -Alg � Ps-�Tn-1
c -Alg, where T̃n−1

c is the lifting of Tn−1
c on Ps-Tc-Alg;

• Ps-Tn
q-Alg � Ps-�Tn-1

q -Alg, where T̃n−1
q is the lifting of Tn−1

q on Ps-Tq-Alg;

• Ps-Tn
d
-Alg � Ps-�Tn-1

d
-Alg, where T̃n−1

d
is the lifting of Tn−1

d
on Ps-Td-Alg.





Chapter 5
The Existential Completion

Abstract We determine the existential completion of a primary doctrine, and we
prove that the 2-monad obtained from it is lax-idempotent, and that the 2-category
of existential doctrines is isomorphic to the 2-category of algebras for this 2-monad.
We also show that the existential completion of an elementary doctrine is again
elementary. Finally we extend the notion of exact completion of an elementary
existential doctrine to an arbitrary elementary doctrine.

5.1 Introduction

In recent years, many relevant logical completions have been extensively studied in
category theory. The main instance is the exact completion, see [6, 8, 10], which
is the universal extension of a category with finite limits to an exact category. In
[42, 43, 44], Maietti and Rosolini introduce a categorical version of quotient for
an equivalence relation, and they study that in a doctrine equipped with a sufficient
logical structure to describe the notion of an equivalence relation. In [44] they show
that both the exact completion of a regular category and the exact completion of
a category with binary products, a weak terminal object and weak pullbacks can
be seen as instances of a more general completion with respect to an elementary
existential doctrine.

In this paper we present the existential completion of a primary doctrine, and we
give an explicit description of the 2-monad Te : PD // PD constructed from
the 2-adjunction, where PD is the 2-category of primary doctrines.

It is well known that pseudo-monads can express uniformly and elegantly many
algebraic structure; we refer the reader to [56, 55, 27] for a detailed description of
these topics. We show that every existential doctrine P : Cop // InfSL admits
an action a : TeP // P such that (P,a) is a Te-algebra, and that if (R, b) is
Te-algebra then the doctrine is existential, and this gives an equivalence between the
2-category Te-Alg and the 2-category ExD whose objects are existential doctrines.

121
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Here the action encodes the existential structure for a doctrine, and we prove that
this structure is uniquely determined up to an appropriate isomorphism and that the
2-monad Te is property-like and lax-idempotent in the sense of Kelly and Lack [27].

We also prove that the existential completion preserves elementary doctrines,
and then we generalize the bi-adjunction EED → Xct presented in [44, 41] to a
bi-adjunction from the 2-category ElD of elementary doctrines to the 2-category of
exact categories Xct.

In the first two sections we recall definitions and results on pseudo-monads, and
on primary and existential doctrines as needed for the rest of the paper.

In section 3 we describe the existential completion. We introduce a functor
E: PD // ExD from the 2-category of primary doctrines to the 2-category
of existential doctrines, and we prove that it is a left 2-adjoint to the forgetful functor
U: ExD // PD .
In sections 4 we prove that the 2-monad Te constructed from the 2-adjunction

is lax-idempotent and, in section 5, that the category Te-Alg is 2-equivalent to the
2-category of existential doctrine.

In section 6 we show that the existential completion of an elementary doctrine
is elementary, and we use this fact to extend the notion of exact completion to
elementary doctrines.

5.2 A brief recap of two-dimensional monad theory

This section is devoted to the formal definition of 2-monad on a 2-category and
a characterization of the definitions. We use 2-categorical pasting notation freely,
following the usual convention of the topic as used extensively in [3], [55] and [56].

You can find all the details of the main results of this section in the works of Kelly
and Lack [27]. For a more general and complete description of these topics, and a
generalization for the case of pseudo-monad, you can see the Ph.D thesis of Tanaka
[54], the articles of Marmolejo [47], [46] and the work of Kelly [28]. Moreover we
refer to [4] and [39] for all the standard results and notions about 2-category theory.

A 2-monad (T, µ, η) on a 2-category A is a 2-functor T: A // A together
2-natural transformations µ : T2 // T and η : 1A // T such that the fol-
lowing diagrams

T3

µT

��

Tµ // T2

µ

��
T2

µ
// T
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T

id

  

ηT // T2

µ

��

T
Tηoo

id

~~
T

commute. Let (T, µ, η) be a 2-monad on a 2-categoryA. A T-algebra is a pair (A,a)
where, A is an object of A and a : TA // A is a 1-cell such that the following
diagrams commute

T2A Ta //

µA

��

TA

a

��
TA

a
// A

A

1A

  

ηA // TA

a

��
A.

A lax T-morphism from a T-algebra (A,a) to a T-algebra (B, b) is a pair ( f , f )
where f is a 1-cell f : A // B and f is a 2-cell

TA

a

��

T f //

�� f

TB

b

��
A

f
// B

which satisfies the following coherence conditions

T2A

µA

��

T2 f // T B

µB

��

T2A

Ta

��
�� T f

T2 f // TB

Tb

��
TA

a

��

T f //

�� f

TB

b

��

= TA

a

��

T f //

�� f

TB

b

��
A

f
// B A

f
// B

and
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A

ηA

��

f // B

ηB

��

A

1A

��

f // B

1B

��

TA

a

��

T f //

�� f

TB

b

��

=

A
f

// B A
f
// B.

The regions in which no 2-cell is written always commute by the naturality of η and
µ, and are deemed to contain the identity 2-cell.

A lax morphism ( f , f ) in which f is invertible is said T-morphism. And it is
strict when f is the identity.

The category of T-algebras and lax T-morphisms becomes a 2-category T-Algl,
when provided with 2-cells the T-transformations. Recall from [27] that a T-
transformation from ( f , f ) : (A,a) // (B, b) to (g,g) : (A,a) // (B, b) is a
2-cell α : f +3 g in A which satisfies the following coherence condition

TA

a

��

T f
))

Tg

55�� Tα

�� g

TB

b

��

TA

a

��

T f
++

�� f

TB

b

��

=

A
g

33 B A

f

((

g

66�� α B

expressing compatibility of α with f and g.
It is observed in [27] that using this notion of T-morphism, one can express

more precisely what it may mean that an action of a monad T on an object A
is unique to within a unique isomorphism. In our case it means that, given two
action a,a′ : TA // A there is a unique invertible 2-cell α : a +3 a′ such that
(1A, α) : (A,a) // (A,a′) is a morphism of T-algebras (in particular it is an
isomorphism of T-algebras). In this case we will say that the T-algebra structure
is essentially unique. More precisely a 2-monad (T, µ, η) is said property-like, if it
satisfies the following conditions:

• for everyT-algebra (A,a) and (B, b), and for every invertible 1-cell f : A // B

there exists a unique invertible 2-cell f
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TA

a

��

T f //

�� f

TB

b

��
A

f
// B

such that ( f , f ) : (A,a) // (B, b) is a morphism of T-algebras;
• for every T-algebra (A,a) and (B, b), and for every 1-cell f : A // B if there

exists a 2-cell f

TA

a

��

T f //

�� f

TB

b

��
A

f
// B

such that ( f , f ) : (A,a) // (B, b) is a lax morphism of T-algebras, then it is
the unique 2-cell with such property.

We conclude this section recalling a stronger property on a 2-monads (T, µ, η) on
A which implies that T is property-like: a 2-monad (T, µ, η) is said lax-idempotent,
if for every T-algebras (A,a) and (B, b), and for every 1-cell f : A // B there
exists a unique 2-cell f

TA

a

��

T f //

�� f

TB

b

��
A

f
// B

such that ( f , f ) : (A,a) // (B, b) is a lax morphism of T-algebras. In particular
every lax-idempotent monad is property like. See [27, Proposition 6.1].

5.3 Primary and existential doctrines

The notion of hyperdoctrine was introduced by F.W. Lawvere in a series of seminal
papers [36, 38]. We recall from loc. cit. some definitions which will be useful in
the following. The reader can find all the details about the theory of elementary and
existential doctrine also in [43, 42, 44].
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Definition 5.3.1. Let C be a category with finite products. A primary doctrine is a
functor P : Cop // InfSL from the opposite of the category C to the category
of inf-semilattices.

Definition 5.3.2. A primary doctrine P : Cop // InfSL is elementary if for
every A in C there exists an object δA in P(A × A) such that

1. the assignment
E〈idA,idA 〉(α) := Ppr1 (α) ∧ δA

for α in PA determines a left adjoint to P〈idA,idA 〉 : P(A × A) // PA ;

2. for every morphism e of the form 〈pr1,pr2,pr2〉 : X × A // X × A × A in
C, the assignment

Ee(α) := P〈pr1 ,pr2 〉(α) ∧ P〈pr2 ,pr3 〉(δA)

forα in P(X×A) determines a left adjoint to Pe : P(X × A × A) // P(X × A) .

Definition 5.3.3. A primary doctrine P : Cop // InfSL is existential if, for
every A1 and A2 in C, for any projection pri : A1 × A2

// Ai , i = 1,2, the
functor

Ppri : P(Ai) // P(A1 × A2)

has a left adjoint Epri , and these satisfy:

1. Beck-Chevalley condition: for any pullback diagram

X ′
pr′ //

f ′

��

A′

f

��
X pr

// A

with pr and pr′ projections, for any β in P(X) the canonical arrow

Epr′Pf ′(β) ≤ Pf Epr(β)

is an isomorphism;
2. Frobenius reciprocity: for any projection pr: X // A , α in P(A) and β in

P(X), the canonical arrow

Epr(Ppr(α) ∧ β) ≤ α ∧ Epr(β)

in P(A) is an isomorphism.

Remark 5.3.4. In an existential elementary doctrine, for every map f : A // B
in C the functor Pf has a left adjoint Ef that can be computed as
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Epr2 (Pf×idB (δB) ∧ Ppr1 (α))

for α in P(A), where pr1 and pr2 are the projections from A × B.

Example 5.3.5. The following examples are discussed in [36].

1. Let C be a category with finite limits. The functor

SubC : Cop // InfSL

assigns to an object A in C the poset SubC(A) of subobjects of A in C and, for an

arrow B
f // A the morphism SubC( f ) : SubC(A) // SubC(B) is given

by pulling a subobject back along f . The fiber equalities are the diagonal arrows.
This is an existential elementary doctrine if and only if the category C has a
stable, proper factorization system 〈E,M〉. See [19].

2. Consider a category D with finite products and weak pullbacks: the doctrine is
given by the functor of weak subobjects

ΨD : Dop // InfSL

where ΨD(A) is the poset reflection of the slice category D/A, and for an arrow

B
f // A , the homomorphism ΨD( f ) : ΨD(A) // ΨD(B) is given by a

weak pullback of an arrow X
g // A with f . This doctrine is elementary and

existential, and the existential left adjoint are given by the post-composition.
3. Let T be a theory in a first order language Sg. We define a primary doctrine

LT : CopT
// InfSL

where CT is the category of lists of variables and term substitutions:

• objects of CT are finite lists of variables ®x := (x1, . . . , xn), and we include the
empty list ();

• amorphisms from (x1, . . . , xn) into (y1, . . . , ym) is a substitution [t1/y1, . . . , tm/ym]
where the terms ti are built in Sg on the variable x1, . . . , xn;

• the composition of two morphisms [®t/®y] : ®x // ®y and [®s/®z] : ®y // ®z
is given by the substitution

[s1[®t/®y]/zk, . . . , sk[®t/®y]/zk] : ®x // ®z .

The functor LT : CopT
// InfSL sends a list (x1, . . . , xn) in the class LT(x1, . . . , xn)

of all well formed formulas in the context (x1, . . . , xn). We say that ψ ≤ φ where
φ,ψ ∈ LT(x1, . . . , xn) if ψ `T φ, and then we quotient in the usual way to obtain
a partial order on LT(x1, . . . , xn). Given a morphism of CT

[t1/y1, . . . , tm/ym] : (x1, . . . , xn) // (y1, . . . , ym)
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the functor LT[®t/®y] acts as the substitution LT[®t/®y](ψ(y1, . . . , ym)) = ψ[®t/®y].
The doctrine LT : CopT

// InfSL is elementary exactly when T has an equal-
ity predicate and it is existential. For all the detail we refer to [43], and for the
case of a many sorted first order theory we refer to [50].

5.4 Existential completion

In this section we construct an existential doctrine Pex : Cop // InfSL , starting
from a primary doctrine P : Cop // InfSL .

Let P : Cop // InfSL be a fixed primary doctrine for the rest of the section,
and let a ⊂ C1 be a subclass of morphisms closed under pullbacks, compositions
and such that it contains the identity morphisms. In our case closed under pullbacks
means that for every f ∈ a and for every morphism g in C the pullback

A
g∗ f //

f ∗g

��

B

f

��
C

g
// D

exists and f ∗g ∈ a.
For every object A of C consider the following preorder:

• the objects are pairs ( B
g∈a // A , α ∈ PB);

• ( B h∈a // A , α ∈ PB) ≤ ( D
f ∈a // A , γ ∈ PD) if there exists w : B // D

such that
B

w

��

h

��
D

f
// A

commutes and α ≤ Pw(γ).

It is easy to see that the previous data give a preorder. Let Pex(A) be the partial order
obtained by identifying two objects when

( B h∈a // A , α ∈ PB) R ( D
f ∈a // A , γ ∈ PD)

in the usual way. With abuse of notation we denote the equivalence class of an
element in the same way.



5.4 Existential completion 129

Given a morphism f : A // B in C, let Pex
f ( C

g∈a // B , β ∈ PC) be the
object

( D
g∗ f // A , Pf ∗g(β) ∈ PD)

where
D

f ∗g

��

g∗ f // A

f

��
C

g
// B

is a pullback because g ∈ a. Note that Pex
f is well defined, because isomorphisms

are stable under pullbacks.

Proposition 5.4.1. Let P : Cop // InfSL be a primary doctrine. Then Pex : Cop // InfSL
is a primary doctrine, in particular:

(i) for every object A in C, Pex(A) is a inf-semilattice;
(ii) for every morphism f : A // B in C, Pex

f is an homomorphism of inf-
semilattices.

Proof. (i) For every A we have the top element ( A
idA // A , >A). Consider

( A1
h1 // A , α1 ∈ PA1) and ( A2

h2 // A , α2 ∈ PA2). In order to define
the greatest lower bound of the two objects consider a pullback

A1 ∧ A2

h∗2h1

��

h∗1h2 // A2

h2

��
A1

h1

// A

which exists because h1 ∈ a (and h2 ∈ a). We claim that

( A1 ∧ A2

h1(h
∗
2h1)// A ,Ph∗2h1

(α1) ∧ Ph∗1h2
(α2))

is such an infimum. It is easy to check that

( A1 ∧ A2

h1(h
∗
2h1)// A ,Ph∗2h1

(α1) ∧ Ph∗1h2
(α2)) ≤ ( Ai

hi // A , αi ∈ PAi)

for i = 1,2. Next consider ( B
g // A , β ∈ PB) ≤ ( Ai

hi // A , αi ∈ PAi) for
i = 1,2 and g = hiwi . Then there is a morphism w : C // A1 ∧ A2 such that
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B

w

""

w1

$$

w2

  
A1 ∧ A2

h∗2h1

��

h∗1h2 // A2

h2

��
A1

h1

// A

commutes and Pw(Ph∗2h1
(α1) ∧ Ph∗1h2

(α2)) = Pw1 (α1) ∧ Pw2 (α2) ≥ β.
(ii) We first prove that for every morphism f : A // B the Pex

f preserves

the order. Consider ( C1
g1∈a // B , α1 ∈ PC1) ≤ ( C2

g2∈a // B , α2 ∈ PC2) with
g2w = g1 and Pw(α2) ≥ α1. We want to prove that

( D1

g∗1 f // A , Pf ∗g1 (α1) ∈ PD1) ≤ ( D2

g∗2 f // A , Pf ∗g2 (α2) ∈ PD1)

We can observe that g2w( f ∗g1) = g1( f ∗g1) = f (g∗1 f ). Then there exists a unique
w : D1

// D2 such that the following diagram commutes

D1

w

  

wf ∗g1

##

g∗1 f

��
D2

f ∗g2

��

g∗2 f // A

f

��
C2 g2

// B.

Moreover Pw(Pf ∗g2 (α2)) = Pf ∗g1 (Pw(α2)) ≥ Pf ∗g1 (α1), and it is easy to see that
Pex
f preserves top elements. Finally it is straightforward to prove that Pex

f (α ∧ β) =

Pex
f (α) ∧ Pex

f (β). It is straightforward to prove that Pex
f (α ∧ β) = Pex

f (α) ∧ Pex
f (β).
�

Proposition 5.4.2. Given a morphism f : A // B of a, let

E
ex
f ( C h // A , α ∈ PC) := ( C

f h // B , α ∈ PC)

when ( C h // A , α ∈ PC) is in Pex(A). Then E
ex
f is left adjoint to Pex

f .
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Proof. Let α := ( C1
g1 // B , α1 ∈ PC1) and β := ( D2

f2 // A , β2 ∈ PD2).
Now we assume that β ≤ Pex

f (α). This means that

D2

f2

��

w

~~
D1

f ∗g1

��

g∗1 f // A

f

��
C1 g1

// B

and Pw(Pf ∗g1 (α1)) ≥ β2. Then we have

D2

∆A f2

��

f ∗g1w

~~
C1 g

// B

and Pwf ∗g1 (α1) ≥ β. Then E
ex
f (β) ≤ α.

Now assume E
ex
f (β) ≤ α

D2

f f2

��

w

~~
C1 g1

// B

with Pw(α1) ≥ β2. Then there exists w : D2
// D1 such that the following

diagram commutes
D2

w

  

w

##

f2

��
D1

f ∗g1

��

g∗1 f // A

f

��
C1 g1

// B
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and Pw(Pf ∗g1 (α1) = Pw(α1) ≥ β1. Then we can conclude that β ≤ Pex
f (α). �

Theorem 5.4.3. For every primary doctrine P : Cop // InfSL , Pex : Cop // InfSL
satisfies:

(i) Beck-Chevalley Condition: for any pullback

X ′

f ′

��

g′ // A′

f

��
X

g
// A

with g ∈ a (hence also g′ ∈ a), for any β ∈ Pex(X) the following equality holds

E
ex
g′ Pex

f ′ (β) = Pex
f E

ex
g (β).

(ii)Frobenius Reciprocity: for every morphism f : X // A of a, for every
α ∈ Pex(A) and β ∈ Pex(X), the following equality holds

E
ex
f (P

ex
f (α) ∧ β) = α ∧ E

ex
f (β).

Proof. (i) Consider the following pullback square

X ′

f ′

��

g′ // A′

f

��
X

g
// A

where g,g′ ∈ a, and let β := ( C1
h1 // X , β1 ∈ PC1) ∈ Pex(X). Consider the

following diagram

D1

h∗1 f
′

//

f ′∗h1

��

X ′

f ′

��

g′ // A′

f

��
C1

h1

// X
g

// A.

Since the two square are pullbacks, then the big square is a pullback, and then

( D1

g′(h∗1 f
′)
// A ,Pf ′∗h1 (β1)) = ( D1

(gh1)
∗ f // A ,Pf ∗(gh1)(β1))
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and these are by definition

E
ex
g′ Pex

f ′ (β) = Pex
f E

ex
g (β).

Therefore the Beck-Chevalley Condition is satisfied.

(ii)Consider amorphism f : X // A of a, an elementα := ( C1
h1 // A , α1 ∈

PC1) in Pex(A), and an element β = ( D2
h2 // X , β2 ∈ PD2) in Pex(X). Observe

that the following diagram is a pullback

D2 ∧ D1

(h∗1 f )
∗h2

��

h∗2(h
∗
1 f ) // D1

h∗1 f

��

f ∗h1 // C1

h1

��
D2

h2

// X
f

// A

and this means that
E
ex
f (P

ex
f (α) ∧ β) = α ∧ E

ex
f (β).

Therefore the Frobenius Reciprocity is satisfied. �

Remark 5.4.4. In the case that a is the class of the product projections, then from
primary doctrine P : Cop // InfSL it can be constructed an existential doctrine
Pex : Cop // InfSL in the sense of Definition 5.3.3. Therefore the notion of
existential doctrine can be generalized in the sense that an existential doctrine can
be defined as a pair

( P : Cop // InfSL ,a)

where P : Cop // InfSL is a primary doctrine and a is a class of morphisms of
C closed by pullbacks, composition and identities, such that Pf has a left adjoint for
every f in a, and these satisfy Beck-Chevalley condition and Frobenius Reciprocity
as in Theorem 5.4.3.

Remark 5.4.5. Let P : C // Pos> be a functor where Pos> is the category of
posets with top element. We can apply the existential completion since we have not
used the hypothesis that PA has infimum during the proofs; we have proved that
if it has a infimum it is preserved by the completion. Moreover we can express the
Frobenius condition without using infima, and also this condition is preserved by
completion.

Since a poset of the category Pos> has a top element, one has an injection from
the doctrine P : C // Pos> into Pex : C // Pos> . From a logical point of
view, one can think of extending a theory without existential quantification to one
with that quantifier, requiring that the theorems of the previous theory are preserved.
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In the rest of the section we assume that the morphisms of a are all the pro-
jections. We define a 2-functor E: PD // ExD sending a primary doctrine
P : Cop // InfSL into the existential doctrine Pex : Cop // InfSL . For all
the standard notions about 2-category theory we refer to [4, 39].

Proposition 5.4.6. Consider the category PD(P,R). We define

EP,R : PD(P,R) // ExD(Pex,Rex)

as follow:

• for every 1-cell (F, b), EP,R(F, b) := (F, bex), where bexA : PexA // RexF A

sends an object ( C
g // A , α) in the object ( FC

Fg // F A , bC(α));
• for every 2-cell θ : (F, b) +3 (G, c) , EP,Rθ is essentially the same.

With the previous assignment E is a 2-functor.

Proof. We prove that (F, bex) : Pex // Rex is a 1-cell of ExD(Pex,Rex). We
first prove that for every A ∈ C, bexA preserves the order.

If ( C1
g1 // A , α1) ≤ ( C2

g2 // A , α2), we have amorphism w : C1
// C2

such that the following diagram commutes

C1

w

~~

g1

��
C2 g2

// A

and α1 ≤ Pw(α2). Since b is a natural transformation, we have that bC1Pw =

RFwbC2 . Thenwe can conclude that ( FC1
Fg1 // F A , bC1 (α1)) ≤ ( FC2

Fg2 // F A , bC2 (α2))
because Fg2Fw = Fg1 and RFw(bC2α2) = bC1Pw(α2) ≥ bC1 (α1). Moreover, since
F preserves products, we can conclude that bexA preserves inf.

One can prove that bex : Pex // RexFop is a natural transformation using
the facts that F preserves products. Moreover we can easily see that bex preserves
the left adjoints along projections. Then (F, bex) is a 1-cell of ExD.

Now consider a 2-cell θ : (F, b) +3 (G, c) , and let α := ( C1
g1 // A , α1) be

an object of Pex(A). Then

bexA (α) = ( FC1
Fg1 // F A , bC1 (α1))

and

Rex
θA

cexA (α) = ( D1

Gg∗1θA // F A , Rθ∗
A
Gg1cC1 (α1))

where
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D1

θ∗
A
Gg1

��

Gg∗1θA // F A

θA

��
GC1

Gg1

// GA.

Now observe that since θ : F // G is a natural transformation, there exists a
unique w : FC1

// D1 such that the diagram

FC1

w

""

θC1

$$

Fg1

��
D1

θ∗
A
Gg1

��

Gg∗1θA // F A

θA

��
GC1

Gg1

// GA

commutes and then RwRθ∗
A
Gg1cC1 (α1) = RθC1

cC1 (α1) ≥ bC1 (α1). Therefore we
can conclude that bexA (α) ≤ Rex

θA
cexA (α), and then θ : F // G can is a 2-cell

θ : (F, bex) +3 (G, cex) , and EP,R(θγ) = EP,R(θ)EP,R(γ).
Finally one can prove that the following diagram commutes observing that for

every (F, b) ∈ PD(P,R) and (G, c) ∈ PD(R,D), (GF, cexbex) = (GF, (cb)ex).

PD(P,R) × PD(R,D)

EPR×ERD

��

cPRD // PD(P,D)

EPD

��
ExD(Pex,Rex) × ExD(Rex,Dex)

cPexRexDex
// ExD(Pex,Dex)

and the same for the unit diagram. Therefore we can conclude that E is a 2-functor.�

Now we prove the 2-functor E: PD // ExD is left adjoint to the forgetful
functor U: ExD // PD .

Proposition 5.4.7. Let P : Cop // InfSL be an elementary doctrine. Then

(idC, ιP) : P // Pex

where ιPA : PA // PexA sends α into ( A
idA // A , α) is a 1-cell. Moreover

the assignment
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η : idExD
// UE

where ηP := (idC, ιP), is a 2-natural transformation.

Proof. It is easy to prove that ιPA : PA // PexA preserves all the structures.
For every morphism f : A // B of C, it one can see that the following diagram
commutes

PB

ιPB

��

Pf // PA

ιP A

��
PexB

Pex
f

// PexA.

Then we can conclude that (idC, ιP) : P // Pex is a 1-cell of ExD and it is a
direct verification the proof the η is a 2-natural transformation. �

Proposition 5.4.8. Let P : Cop // InfSL be an existential doctrine. Then

(idC, ζP) : Pex // P

where ζPA : PexA // PA sends ( C
f // A , α) in Ef (α) is a 1-cell.Moreover

the assignment
ε : EU // idExD

where εP = (idC, ζP), is a 2-natural transformation.

Proof. Suppose ( C1
g1 // A , α1) ≤ ( C2

g2 // A , α2), with w : C1
// C2 ,

g2w = g1 and Pw(α2) ≥ α1. Then by Beck-Chevalley we have the equality

Eg∗2g1
Pg∗1g2

(α2) = Pg1 Eg2 (α2)

and
Pg1 Eg2 (α2) = PwPg2 Eg2 (α2) ≥ Pw(α2) ≥ α1.

Then

Eg1 (α1) ≤ Eg1 Eg∗2g1
Pg∗1g2

(α2) = Eg2 Eg∗1g2
Pg∗1g2

(α2) ≤ Eg2 (α2)

and δA = ζA( A
idA // A , >A). Nowweprove the naturality of ζP . Let f : A // B

be a morphism of C. Then the following diagram commutes
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PexB

ζB

��

Pex
f // PexA

ζA

��
PB

Pf

// PA

because for every ( C
g // B , β ∈ PC) we have Eg∗ f Pf ∗g(β) = Pf Eg(β) by

Beck-Chevalley. Moreover it is easy to see that ζP preserves left-adjoints. Then we
an conclude that for every existential doctrine P : Cop // InfSL , ζP is a 1-cell
of ExD.

The proof of the naturality of ε is a routine verification. One must use the fact
that we are working in ExD, and then for every 1-cell (F, b), b preserves left-adjoints
along the projections. �

Proposition 5.4.9. For every primary doctrine P : Cop // InfSL we have

εPex ◦ ηP
ex = idP .

Proof. Consider the following diagram

Cop

Pex

''

id
op
C

��
Cop

id
op
C

��

(Pex)ex
// InfSL

C

Pex

77

ιex

��

ζPex

��

and let ( C
g // A , α ∈ PA) be an element of PexA. Then

ιP
ex
A ( C

g // A , α ∈ PC) = ( A
idA // A , ( C

g // A , α ∈ PC) ∈ PexA)

and

ζPex A( A
idA // A , ( C

g // A , α ∈ PC) ∈ PexA) = E
ex
idA
( C

g // A , α ∈ PC).

By definition of E
ex we have

E
ex
idA
( C

g // A , α ∈ PC) = ( C
g // A , α ∈ PC).
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Then we can conclude that for every P : Cop // InfSL , we have εPex ◦ ηP
ex =

idPex . �

Corollary 5.4.10. εE ◦ Eη = idE.

Proposition 5.4.11. For every existential doctrine P : Cop // InfSL we have

εP ◦ ηP = idP .

Proof. It is a direct verification. �

Corollary 5.4.12. Uε ◦ ηU = idU.

By Corollary 5.4.10 and Corollary 5.4.12, we can conclude this section with the
following theorem.

Theorem 5.4.13. The 2-functor E is 2-adjoint to the 2-functor U.

5.5 The 2-monad Te

In this section we construct a 2-monad Te : PD // PD , and we prove that
every existential doctrine can be seen as an algebra for this 2-monad. Finally we
show that the 2-monad Te is lax-idempotent.

We define:

• Te : ExD // ExD the 2-functor T = U ◦ E;
• η : idExD

// Te is the 2-natural transformation defined in Proposition 5.4.7;

• µ : T2
e

// Te is the 2-natural transformation µ = UεE.

Proposition 5.5.1. Te is a 2-monad.

Proof. One can easily check that the following diagrams commute

T3
e

µTe //

Teµ

��

T2
e

µ

��
T2
e µ

// Te
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idExD ◦Te
ηTe //

id $$

T2
e

µ

��

Te ◦ idExD
Teηoo

idzz
Te .

�

Remark 5.5.2. Observe that µP : T2
e � Te is an isomorphism.

Proposition 5.5.3. Let P : Cop // InfSL be an existential doctrine. Then (P, εP)
is a Te-algebra.

Proof. It is a direct verification. �

Proposition 5.5.4. Let P : Cop // InfSL be an primary doctrine, and let
(P, (F,a)) be a Te-algebra. Then P : Cop // InfSL is existential, F = idC
and a = εP .

Proof. By the unit axiom for Te-algebras, we know that F must be the identity
functor, and aAιA = idPA.

P

idP

  

ηP // Pex

(F ,a)

��
P.

For every morphism f : A // B of C, where f is a projection, we claim that

Ef (α) := aB E
ex
f ιA(α)

is left adjoint to Pf . Let α ∈ PA and β ∈ PB, and suppose that α ≤ Pf (β). Then we
have that

( A
f // B , α) ≤ ( B

idB // B , β)

in PexB and ( A
f // B , α) = E

ex
f ( A

idA // A , α). Therefore, by definition of ι,
we have

E
ex
f ιA(α) ≤ ιB(β).

Hence
aB E

ex
f ιA(α) ≤ aB ιB(β) = β.

Now suppose that Ef (α) ≤ β. Then
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aB( A
f // B , α) ≤ β

so
Pf aB( A

f // B , α) ≤ Pf (β).

By the naturality of a, we have

Pf aB( A
f // B , α) = aAPex

f ( A
f // B , α).

Now observe that Pex
f ( A

f // B , α) ≥ ( A
idA // A , α) = ιA(α). Therefore we

can conclude that

α = aAιA(α) ≤ Pf aB( A
f // B , α) ≤ Pf (β).

Now we prove that Bech-Chevalley holds. Consider the following pullback

X ′

f ′

��

g′ // A′

f

��
X

g
// A

and α ∈ PX . Then we have

Eg′Pf ′(α) = aA′ E
ex
g′ ιX′(Pf ′α) = aA′( X ′

g′ // A′ ,Pf ′(α)).

Observe that
( X ′

g′ // A′ ,Pf ′(α)) = Pex
f ( X

g // A , α)

and since a is a natural transformation, we have

aA′Pex
f ( X

g // A , α) = Pf aA( X
g // A , α).

Finally we can conclude that Bech-Chevalley holds because

Pf Eg(α) = Pf aA E
ex
g ιX (α) = Pf aA( X

g // A , α).

Hence
Eg′Pf ′(α) = Pf Eg(α).

Now consider a projection f : A // B , and two elements β ∈ PB and α ∈ PA.
We want to prove that the Frobenius reciprocity holds.



5.5 The 2-monad Te 141

Ef (Pf (β) ∧ α) = aB E
ex
f ιA(Pf (β) ∧ α) = aB( A

f // B , Pf (β) ∧ α)

and
β ∧ Ef (α) = aB ιB(β) ∧ aB( A

f // B , α)

and

aB ιB(β) ∧ aB( A
f // B , α) = aB(( B

idB // B , β) ∧ ( A
f // B , α)).

We can observe that

aB(( B
idB // B , β) ∧ ( A

f // B , α)) = aB( A
f // B , Pf (β) ∧ α)

and conclude that
Ef (Pf (β) ∧ α) = β ∧ Ef (α).

Therefore the primary doctrine P : Cop // InfSL is existential. Finally we can
observe that

aA( C
g // A , α) = aA E

ex
g ( C

idC // C , α) = aA E
ex
g ιC(α) = Eg(α).

�

Proposition 5.5.5. Let (P, εP) and (R, εR) be twoTe-algebras. If (F, b) : (P, εP) // (R, εR)
is a morphism of Te-algebras, then (F, b) is a 1-cell of ExD. Moreover every 1-cell
of ExD induces a morphism of Te algebras.

Proof. By definition of morphism of Te-algebras, the following diagram commutes

Pex (F ,bex) //

εP

��

Rex

εR

��
P

(F ,b)
// R

then for every object ( C
g // A , α ∈ PC) of PexA we have

E
R
FgbC(α) = bA E

P
g (α)

and this means that for every projection g : C // A the following diagram
commutes
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PC
E
P
g //

bC

��

PA

bA

��
RFC

E
R
Fg

// RF A.

We can prove the converse using the same arguments. �

Corollary 5.5.6. We have the following isomorphism of 2-categories

Te-Alg � ExD .

Proof. It follows from Proposition 5.5.5 and Proposition 5.5.4. �

Proposition 5.5.7. Let P : Cop // InfSL be a primary doctrine, and let (P, (F,a))
be a pseudo-Te-algebra. Then P : Cop // InfSL is existential.

Proof. Let (P, (F,a)) be a pseudo-algebra, then there exists an invertible 2-cell

P

}� aη
idP

  

ηA // Pex

(F ,a)

��
P

and by definition, it is a natural transformation aη : F // idC , and for every
A ∈ C and α ∈ PA we have aAιA(α) = Paη A

(α).
Now consider a morphism f : A // B in C and α ∈ PA. We define

Ef (α) := Paη A
−1aB E

ex
f ιA(α).

Using the same argument of Proposition 5.5.4 we can conclude that the elementary
doctrine P : Cop // InfSL is existential. �

Proposition 5.5.8. The family λP : idPexex +3 ηPex µP defined as λP := idC is a
2-cell in ExD.

Proof. It is clearly a natural transformation. We must check that for every α ∈
(Pex)exA

α ≤ ιPex AζPex A(α).
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Let α := ( C
g // A , ( D

f // C , β ∈ PD)). Then we have

ιPex AζPex A(α) = ιPex A( D
gf // A , β ∈ PD) = ( A

idA // A , ( D
gf // A , β ∈ PD)).

Now we want to prove that

Pex
g ( D

gf // A , β ∈ PD) ≥ ( D
f // C , β ∈ PD).

To see this inequality we can observe that the following diagram commutes

D2

w

  

idD

##

f

##
L

m1

��

m2 // H

h1

��

h2 // C

g

��
D

f
// C

g
// A

since every square is a pullback, hence Pw(Pm1 (β)) = β. �

Corollary 5.5.9. The 2-cell λ : idT2
e

// ηTeµ is a modification.

Theorem 5.5.10. The 2-cell µ is left adjoint to ηTe, where the unit of the adjunction
is λ and the counit is the identity.

Proof. It follows from the fact that for every P : Cop // InfSL , the first com-
ponent of the 1-cells µP , ηTe are the identity functor, and since λP is the identity
natural transformation, when we look at the conditions of adjoint 1-cell in the 2-
category Cat, we can observe that all the components are identities. �

Corollary 5.5.11. The 2-monad Te : PD // PD is lax-idempotent.

Proof. It is a direct consequence of [27, Theorem 6.2] and Theorem 5.5.10 �

Observe that we can prove that the 2-monad Te is lax-idempotent directly.

Proposition 5.5.12. Let (P, εP) and (R, εR) beTe algebras, and let (F, b) : P // R

be a 1-cell ofPD. Then ((F, b), idF ) is lax-morphismof algebras, and idF : εR(F, bex) +3 (F, b)εP
is the unique 2-cell making (idF , (F, b)) a lax-morphism.
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Proof. Consider the following diagram

Pex (F ,bex) //

εP

��
�� idF

Rex

εR

��
P

(F ,b)
// R.

We must prove that for every object A of C and every ( C
f // A , α) in PexA

E
R
F f bC(α) ≤ bA E

P
f (α)

but the previous property holds if and only if

bC(α) ≤ RF f bA E
P
f (α) = bCPf E

P
f (α)

and this holds since α ≤ Pf E
P
f (α).

Finally it is easy to see that idF : εR(F, bex) +3 (F, b)εP satisfies the coherence
conditions for lax-Te-morphisms.

Now suppose there exists another 2-cell θ : εR(F, bex) +3 (F, b)εP such that
((F, b), θ) is a lax-morphism

Pex (F ,bex) //

εP

��
�� θ

Rex

εR

��
P

(F ,b)
// R.

Then it must satisfy the following condition

P

ηA

��

(F ,b) // R

ηB

��

P

1P

��

(F ,b) // R

1B

��

Pex

εP

��

(F ,bex) //

�� θ

Rex

εR

��

=

P
(F ,b)

// R P
(F ,b)

// R
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and this means that θ = idF . �

5.6 Exact completion for elementary doctrine

It is proved in [44] that there is a biadjunction between the categories EED→ Xct
given by the composition of the following 2-functors: the first is the left biadjoint
to the inclusion of Ex-mVar into EED, see [44, Theorem 3.1]. The second is the
biequivalence between Ex-mVar and the 2-category LFS of categories with finite
limits and a proper stable factorization system, see [19]. The third is provided in [26],
where it is proved that the inclusion of the 2-categoryReg of regular categories (with
exact functors) into LFS has a left biadjoint. The last functor is the biadjoint to the
forgetful functor from the 2-category Xct into Reg, see [10].

In this section we combine these results with the existential completion for el-
ementary doctrine, proving that the completion presented in Section 5.4 preserves
the elementary structure, in the sense that if P : Cop // InfSL is an elementary
doctrine, then Pex : Cop // InfSL is an elementary existential doctrine.

Let P : Cop // InfSL be an elementary doctrine, and consider its existential
completion Pex : Cop // InfSL . Given two objects A and C of C we define

E
ex
∆A×idC

: Pex(A × C) // Pex(A × A × C)

on α := ( A × C × D
pr // A × C , α ∈ P(A × C × D)) as

E
ex
∆A×idC

(α) := ( A × A × C × D
pr // A × A × C , E∆A×idC×D (α) ∈ P(A×A×C×D)).

Remark 5.6.1. We can prove that E
ex
∆A×idC

is a well defined functor for every A and
C: consider two elements of Pex(A × C)

α := ( A × C × D
pr // A × C , α ∈ P(A × C × D))

and
β = ( A × C × B

pr′ // A × C , β ∈ P(A × C × B))

and suppose thatα ≤ β. By definition there exists amorphism f : A × C × D // B
such that the following diagram commutes
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A × C × D

prA×C

��

〈prA×C , f 〉

xx
A × C × B

pr′
A×C

// A × C

and P〈prA×C , f 〉(β) ≥ α. Since the doctrine P : Cop // InfSL is elementary we
have

β ≤ P∆A×idC×B E∆A×idC×B (β)

and then
α ≤ P〈prA×C , f 〉(P∆A×idC×B E∆A×idC×B (β)).

Now observe that (∆A × idC×B)(〈prA×C, f 〉) = (〈prA×A×C, f prA×C×D〉)(∆A ×

idC×D), and this implies

α ≤ P∆A×idC×D (P〈prA×A×C , f prA×C×D 〉 E∆A×idC×B (β)).

Therefore we conclude

E∆A×idC×D (α) ≤ P〈prA×A×C , f prA×C×D 〉 E∆A×idC×B (β).

It is easy to observe that the last inequality implies

E
ex
∆A×idC

(α) ≤ E
ex
∆A×idC

(β).

Proposition 5.6.2. With the notation used before the functor

E
ex
∆A×idC

: Pex(A × C) // Pex(A × A × C)

is left adjoint to the functor

Pex
∆A×idC

: Pex(A × A × C) // Pex(A × C).

Proof. Consider an element α ∈ Pex(A × C),

α := ( A × C × B
pr // A × C , α ∈ P(A × C × B))

and an element β ∈ Pex(A × A × C),

β := ( A × A × C × D
pr′ // A × A × C , β ∈ P(A × A × C × D))

and suppose that
E
ex
∆A×idC

(α) ≤ β

which means that there exists f : A × A × C × B // D
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A × A × C × B

prA×A×C

��

〈prA×A×C , f 〉

ww
A × A × C × D prA×A×C

// A × A × C

such that E∆A×idC×B (α) ≤ P〈prA×A×C , f 〉(β). Therefore we have

α ≤ P∆A×idC×B P〈prA×A×C , f 〉(β)

and since

(〈prA×A×C, f 〉)(∆A× idC×B) = (∆A× idC×D)prA×C×D(〈prA×A×C, f 〉)(∆A× idC×B)

we can conclude that

α ≤ PprA×C×D (〈prA×A×C , f 〉)(∆A×idC×B )(P∆A×idC×D (β)).

Then
α ≤ Pex

∆A×idC
(β)

because

Pex
∆A×idC

(β) = ( A × C × D
prA×C // A × C , P∆A×idC×D (β))

In the same way we can prove that α ≤ Pex
∆A×idC

(β) implies E
ex
∆A×idC

(α) ≤ β. �

Proposition 5.6.3. For every A and C in C, E
ex
∆A×idC

satisfies the Frobenius condi-
tion.

Proof. Consider α ∈ Pex(A × A × C),

α := ( A × A × C × D
prA×A×C // A × A × C , α ∈ P(A × A × C × D))

and β ∈ Pex(A × C),

β := ( A × C × B
prA×C // A × C , β ∈ P(A × C × B)).

We can observe that

Pex
∆A×idC

(α) = ( A × C × D
prA×C // A × C , P∆A×idC×D (α))

and

Pex
∆A×idC

(α)∧β = ( A × C × D × B
prA×C // A × C , P〈prA,prC ,prD 〉P∆A×idC×D (α)∧P〈prA,prC ,prB 〉(β)).
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Moreover we can observe that (∆A × idC×D)〈prA,prC,prD〉 = prA×A×C×D(∆A ×

idC×D×B). Therefore we have

E
ex
∆A×idC

(Pex
∆A×idC

(α) ∧ β)

is equal to

( A × A × C × D × B
pr // A × A × C , E∆A×idC×D×B (P(∆A×idC×D )〈prA,prC ,prD 〉(α)∧P〈prA,prC ,prB 〉(β))).

Now we can observe that

E∆A×idC×D×B (P(∆A×idC×D )〈prA,prC ,prD 〉(α) ∧ P〈prA,prC ,prB 〉(β))

is by definition

E∆A×idC×D×B (P∆A×idC×D×B PprA×A×C×D (α) ∧ P〈prA,prC ,prB 〉(β)).

which, in turn, is equal to

PprA×A×C×D (α) ∧ E∆A×idC×D×B P〈prA,prC ,prB 〉(β)

since the FrobeniusReciprocity holds for Ein the elementary doctrine P : Cop // InfSL
is elementary. Thus

E
ex
∆A×idC

(Pex
∆A×idC

(α) ∧ β)

is equal to

( A × A × C × D × B
prA×A×C // A × A × C , PprA×A×C×D (α)∧ E∆A×idC×D×B P〈prA,prC ,prB 〉(β)).

Now we look for α ∧ E
ex
∆A×idC

(β). It is straightforward to prove that the previous is
equal to

( A × A × C × D × B
prA×A×C // A × A × C , PprA×A×C×D (α)∧P〈prA,prA,prC ,prB 〉 E∆A×idC×B (β)).

Since P : Cop // InfSL is elementary we know that

E∆A×idC×B (β) = P〈pr′
A
,prC ,prB 〉(β) ∧ P〈prA,pr′A 〉(δA)

where pr′A : A × A × C × B // A is the projection on the second component.
By a direct computation we have

P〈prA,prA,prC ,prB 〉(P〈pr′A,prC ,prB 〉(β)∧P〈prA,pr′A 〉(δA)) = P〈pr′
A
,prC ,prB 〉(β)∧P〈prA,pr′A 〉(δA)

and

E∆A×idC×D×B (P〈prA,prC ,prB 〉(β)) = P〈pr′
A
,prC×D×B 〉(P〈prA,prC ,prB 〉(β))∧P〈prA,pr′A 〉(δA)).
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It is easy to see that

P〈pr′
A
,prC×D×B 〉(P〈prA,prC ,prB 〉(β))∧P〈prA,pr′A 〉(δA)) = P〈pr′

A
,prC ,prB 〉(β)∧P〈prA,pr′A 〉(δA).

Therefore the Frobenius condition is satisfied. �

Corollary 5.6.4. For every elementary doctrine P : Cop // InfSL , the doctrine
Pex : Cop // InfSL is elementary and existential.

Wecombine the existential completion for elementary doctrineswith the completions
stated at the begin of this section, obtaining a general version of the exact completion
described in [41, 44]. We can summarise this operation with the following diagram

ElD // EED // Ex-mVar // LFS // Reg // Xct .

It is proved in [41, 42, 43] that given an elementary existential doctrine P : Cop // InfSL
the completion EED → Xct produces an exact category denoted by TP and this
category is defined following the same idea used to define a topos from a tripos. See
[20, 51].

We conclude giving a complete description of the exact category TPex obtained
from an elementary doctrine P : Cop // InfSL .

Given an elementary doctrine P : Cop // InfSL , consider the categoryTPex ,
called exact completion of the elementary doctrine P, whose

objects are pair (A, ρ) such that ρ is in P(A × A × C) for some C and satisfies:

1. there exists a morphism f : A × A × C // C such that

ρ ≤ P〈pr2 ,pr1 , f 〉(ρ)

in P(A × A × C) where pr1,pr2 : A × A × C // A ;
2. there exists a morphism g : A × A × A × C // C such that

P〈pr1 ,pr2 ,pr4 〉(ρ) ∧ P〈pr2 ,pr3 ,pr4 〉(ρ) ≤ P〈pr1 ,pr3 ,g〉(ρ)

where pr1,pr2,pr3 : A × A × A × C // A ;

amorphism φ : (A, ρ) // (B, σ) , where ρ ∈ P(A×A×C) andσ ∈ P(B×B×D),
is an object φ of P(A × B × E) for some E such that

1. there exists a morphism 〈 f1, f2〉 : A × B × E // C × D such that

φ ≤ P〈pr1 ,pr1 , f1 〉(ρ) ∧ P〈pr2 ,pr2 , f2 〉(σ)

where the pri’s are the projections from A × B × E;
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2. there exists a morphism h : A × A × B × C × E // E such that

P〈pr1 ,pr2 ,pr4 〉(ρ) ∧ P〈pr2 ,pr3 ,pr5 〉(φ) ≤ P〈pr1 ,pr3 ,h〉(φ)

where the pri’s are the projections from A × A × B × C × E;
3. there exists a morphism k : A × B × B × D × E // E such that

P〈pr2 ,pr3 ,pr4 〉(σ) ∧ P〈pr1 ,pr2 ,pr5 〉(φ) ≤ P〈pr1 ,pr3 ,k 〉(φ)

where the pri’s are the projections from A × B × B × D × E;
4. there exists a morphism l : A × B × B × E // D such that

P〈pr1 ,pr2 ,pr4 〉(φ) ∧ P〈pr1 ,pr3 ,pr4 〉(φ) ≤ P〈pr2 ,pr3 ,l〉(σ)

where the pri’s are the projections from A × B × B × E;
5. there exists a morphism 〈g1,g2〉 : A × C // B × E such that

P〈pr1 ,pr1 ,pr2 〉(ρ) ≤ P〈pr1 ,g1 ,g2 〉(φ)

where the pri’s are the projections from A × C.

The composition of two morphisms is defined following the same structure of the
tripos to topos.

Therefore we conclude with the following theorem which generalized the exact
completion for an elementary existential doctrine to an arbitrary elementary doctrine.

Theorem 5.6.5. The 2-functor Xct → ExD that takes an exact category to the
elementary doctrine of its subobjects has a left biadjoint which associates the exact
category TPex to an elementary doctrine P : Cop // InfSL .



Chapter 6
Unification in the Syntactic Category and
Elementary Completion

Abstract We present the elementary completion for a primary doctrine whose base
category has finite limits. In particular we prove that, using a general results about
unification for first order languages, we can easily add finite limits to a syntactic
category, and then apply the elementary completion for syntactic doctrines. We
conclude with a complete description of elementary completion for primary doctrine
whose base category is the free product completion of a discrete category, and we
show that the 2-monad constructed from the 2-adjunction is lax-idempotent.

6.1 Introduction

The topic of completing a given structure with quotient to get a richer one and in
particular the exact completion has been widely employed in category theory and
logic, see [21, 6, 8].

In particular one of the main relevant free construction discussed by Carboni
in [6] is the exact completion of a left exact category, and in the recent works
[44, 42], Maietti and Rosolini generalized this notion by relativizing the basic data
to a doctrine equipped with just the structure sufficient to present the notion of
equivalence relation. The exact completion of a regular category R is the exact
completion of the doctrine of subobjects on R. The exact completion of a category
with finite limits C is the exact completion of the doctrine of week subobjects on C.

The exact completion of an elementary existential doctrine can be seen a gen-
eralization to the tripos-to-topos construction of Hyland, Johnstone and Pitts, see
[20, 51]. In [57] we present the existential completion of a primary doctrine, and
we show that this construction preserves the elementary structure of a doctrine. This
allows to generalize the exact completion for an arbitrary elementary doctrine, and
a general version of tripos-to-topos is presented.

In this work we analyse the elementary completion, and we show that the con-
struction presented in [57] can be generalized and applying to obtain the elementary
completion for every primary doctrine P : Cop // InfSL whose base catand
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applaying toegory C has finite limits. The key point of the existential completion is
that we add left adjoint to the class of the projections, but what is really necessary
is the fact that this class is closed for pullbacks, compositions, and it contains units.
Therefore given a doctrine P : Cop // InfSL and a class a of morphisms with
these properties, we can generalized the existential completion adding left adjoint
obtaining a doctrine Pa : Cop // InfSL such that all the functor of the form Pa

f
for f ∈ a.

An interesting example of primary doctrine on which this construction can be
applied is the syntactic primary doctrine, in the sense that we are considering the doc-
trine L : CopT

// InfSL associated to a first order theory T. Syntactic doctrine
and syntactic categories appears in many works in categorical logic, see [42, 43]
for the case of syntactic doctrine, [21, 24] for a general description of syntactic
categories, and for the case of syntactic hyperdoctrine see [36, 37, 38, 50].

A syntactic category CT has an interesting property coming from the underlying
logic which allows the elementary completion. It is known that in a first order
language if two formulas admit a unifier then there exists a most general one, and
it is essentially unique, see [48, 52]. This fact implies that in the syntactic category
associated to a first order language, if two morphisms have a morphism which
equalizes them, then there exists an equalizer for such pair of arrows. Therefore we
show that syntactic category CT can be easily completed to a category C0T with finite
limits, simply adding an initial object.

Using this property we can complete a primary doctrine L : CopT
// InfSL

to a primary doctrine L0 : (C0T )
op // InfSL where the base category C0T is ob-

taining from CT adding an initial object, andL0 is the natural extension of the functor
L on C0T . Then in the new doctrine L0 : (C0T )

op // InfSL we can consider the
closure for pullbacks, compositions, and identities of the class of morphisms of the
form idA×∆X , and we denote it by ael. Now we are in the condition to apply the
general existential completion on the class ael, obtaining an elementary doctrine.

We combine this results with the exact completion for primary doctrine proved
in [57], and we show that every primary doctrine L : CopT

// InfSL can be
completed to an exact category. See also [45] for the construction of an exact
category starting from a first order theory.

We conclude this work with a complete description of the elementary completion
for a primary doctrine whose base category is discrete with free product, and we
analyse the 2-monad obtained from the completion, proving that it is property-like in
the sense of [27]. We conclude with some considerations on the pseudo-distributive
law which can be constructed between the pseudo-monads obtained from various
completions.

In the first section we recall the unification problem, and we explain how it can
be translated in categorical terms, in particular we shows that most general unifier
means equalizer in the syntactic category of a first order language. We conclude the
section proving that adding an initial object to a syntactic category CT we obtain a
category with finite limits.
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In the second section we introduce the notion of primary, elementary and existential
doctrine following the notation of Maietti and Rosolini in [42, 43, 44].

In section 3 we present the general version of the existential completion defined
in [57], and we prove that every syntactic primary doctrine can be completed to an
exact category.

The last section is dedicated to an explicit description of the elementary comple-
tion for a primary doctrine whose base category is discrete with free products and
to the study of the 2-monads constructed from the completion.

6.2 Unification in the syntactic category

The unification problem was introduced by J. A. Robinson, see [52], and in the first
order logic can be expressed as follows: given two terms find, if it exists, the simplest
substitution which makes the two terms equal. Such a substitution is called most
general unifier, and it is unique up to variable renaming.

In this section we introduce the problem of unification following Martelli and
Montanari, see [48], and we explain how it can be stated in categorical terms using
syntactic categories. In particular we see that the notion of most general unifier
corresponds to a particular equalizer. For all the details about syntactic category we
refer to [20, 43, 50, 51].

The problem of unification can be considered in the general context of equational
theories, and in this case it is not required that the two terms coincide syntactically,
but they are provably equal in the given equational theory. In this context the problem
is called E-unification, and the unifiers are called E-unifiers.

An important difference between unification and E-unification is that in the first
case is proved that if an unifier exists then there exists a most general unifier, see
[48], while in the second case this would not hold.

There are some known example of equational theory which admits E-unifiers,
but not a most general one. For a complete description of E-unification problem we
refer to [18].

Let Sg be a one-sorted signature, consisting of a countably finite set of Var of
variables and a ranked alphabet

A =
⋃
i=0...

Ai

where Ai contains the i-adic function symbols and the elements of A0 are called
constant symbols. The terms are defined recursively as usual:

• constant symbols and variables are terms;
• if t1, . . . , tn are terms, n ≥ 1, and f ∈ An then f (t1, . . . , tn) is a term.

We denote the set of terms as Terms.
A substitution is a function σ : Var // Terms between the set of the vari-

ables into the set of terms, with at most a finite number of variables which are not
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fixed by σ. We represent a substitution as a list

σ := [t1/x1, . . . , tn/xn]

where the variables xi are distinct for i = 1, . . . ,n and the variables which do not
appear in the previous list are assumed to be fixed by the substitution. Sometimes
we use the notation σ = [®t/®x] when the length of the list is clear from the context.

The standard unification problem can be written as an equation

t ′ = t ′′

and a solution of this equation, if it exists, is a substitution σ making the the two
terms identical. Such a substitution is called unifier of t ′ and t ′′. Moreover we can
generalize the previous problem and consider a finite set of equations

t ′j = t ′′j , for j = 1, . . . ,m.

In this case a unifier is a substitutionσmaking all the terms identical simultaneously.
Recall from [48] two transformations which given a set S of equations, produce

an equivalent set of equation S′, where equivalent means that they have the same
unifiers:

• Term Reduction. Let
f (t1, . . . , tm) = f (t ′1, . . . , t

′
n)

be an equation where both therms are not variables and where the two function
symbols are identical. Then the new set of equations is obtained by replacing that
equation with the following:

t1 = t ′1, . . . , tn = t ′n

So in case n = 0 the equation is erased.
• Variable Elimination. Let x = t be an equation and x is a variable and t is any

term. The new set of equations is obtained by applying the substitution [t/x] to
both terms of all other equations in the set (without erasing x = t).

Theorem 6.2.1. Let S be a set of equations, and let f (t1, . . . , tn) = f ′(t ′1, . . . , t
′
n) be

an equation of S. If f , f ′ then S has no unifier, otherwise the system of equations
S′ obtained applying Term Reduction is equivalent to S.

Proof. See [48, Theorem 2.1]. �

Theorem 6.2.2. Let S be a set of equations, and let x = t be an equation of S. If
the variable x occurs in t and t is not x then S has not unifier. Otherwise applying
Variable Elimination we obtain a set of equations S′ which is equivalent to the set S.
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Proof. See [48, Theorem 2.2]. �

A set of equations S is in solved form if it satisfies the following conditions:

• the equations are of the form xi = ti for i = 1, . . . ,n;
• a variable which is the left member of some equation occurs only there.

Lemma 6.2.3. Let S be a set of equations in solved form. Then it has a canonical
solution:

σ = [t1/x1, . . . , tn/xn].

Every other unifier can be obtained as

[t1[®t ′/ ®x ′]/x1, . . . , tn[®t ′/ ®x ′]/xn, ®t ′/ ®x ′]

where the variables x ′j are all different from the variables of the form xi .

Proof. See [18, Lemma 3.4]. �

The substitution σ in Lemma 6.2.3 is called most general unifier.
Example 6.2.4. If we consider a set S = {x1 = f1(x3, x4), x2 = f2(x4, x5)} then

σ = [ f1/x1, f2/x2]

and

σ′ = [ f1(x3, f3(x4))/x1, f2( f3(x4), f4(x6))/x2, f3(x4)/x4, f4(x6)/x5]

are solutions for S. We denote α = [ f3(x4)/x4, f4(x6)/x5] and we observe that

σ′ = [ f1α/x1, f2α/x2, α]

since σ is the most general unifier.

Now recall from [48] a non-deterministic algorithm which shows that every set of
equations S can be transformed into an equivalent system of equations in solved
form.

Given a set of equations S repeatedly perform the following transformation. If no
transformation applies you can stop with success:

• select any equation of the form
t = x

where t is not a variable and rewrite it as

x = t

• select any equation of the form
x = x

and erase it;
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• select any equation of the form
t = t ′

where t and t ′ are not variables. If the root function symbols of the two terms are
different then stop with failure, otherwise apply Term Reduction;

• select any equation of the form
x = t

and if x is a variable occurring in t then stop with failure, otherwise apply Variable
Elimination.

Theorem 6.2.5. Given a set S of equations the previous algorithm always terminates.
If the algorithm terminates with failure, then S has no unifier. Otherwise the set S is
transformed into an equivalent set in solved form.

Proof. See [48, Theorem 2.3]. �

Consider now the syntactic category CSg associated to a first order signature Sg:

• objects: the objects are finite lists of distinct variables ®x := (x1, . . . , xn), and we
include the empty list ();

• morphisms: a morphism from (x1, . . . , xn) into (y1, . . . , ym) is a substitution

[t1/y1, . . . , tm/ym]

where the terms ti are built in Sg on the variable x1, . . . , xn;
• composition: consider twomorphisms [®t/®y] : ®x // ®y and [®s/®z] : ®y // ®z ,

then their composition is given by

[s1[®t/®y]/zk, . . . , sk[®t/®y]/zk] : ®x // ®z .

The category CSg has finite products, where the product of ®x × ®y is the list

(x1, . . . , xn, y1, . . . , ym)

as long as the variables are all distinct, see [43, 50] for more details.

Therefore given a set of equation S = {t1 = s1, . . . , tn = sn}, it has a most general
unifier if and only if the morphisms [t1/y1, . . . , tn/yn] and [s1/y1, . . . , sn/yn] have
equalizer in the syntactic category corresponding to the signature.

This means that if the syntactic category of a signature is finitely complete then
every finite set of equations has a most general unifier.

Proposition 6.2.6. Let Sg be a first order signature. In the syntactic category CSg
given two morphisms f ,g : B // C if there is a morphism h

A h // B
f //

g
// C
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such that f h = gh, then f and g have an equalizer.
Proof. It is a direct consequence from the fact that if a finite set of terms equations
have a unifier, then there exists a most general unifier. See Lemma 6.2.3. �

Theorem 6.2.7. LetSg be a first order signature, and letCSg be its syntactic category.
If C0Sg is CSg with the addition of an initial object, then it is finitely complete.

Proof. Consider the diagram B
f //

g
// C . If B is the initial object 0 then f = g

and idB : B // B is the obvious equalizer. If B is not the initial object, there are
two cases: if there exists a morphism h : A // B of CSg such that f h = gh, then
by Proposition 6.2.6 there exists an equalizer in CSg, which is an equalizer in C0Sg.
Otherwise there is no morphism of CSg which equalizes the diagram, hence

0
! // B

f //

g
// C

is an equalizer. �

Recall the general definition of E-unification, see [18] for further detail. Let

E ⊆ Terms×Terms

be a set of pairs of terms, and let =E the smallest reflexive, symmetric and transitive
binary relation containing E . A substitution σ is an E-unifier of the pair (s, t) ∈ E
if (σ(t), σ(s)) ∈=E . We will denote (σ(t), σ(s)) ∈=E as σ(t) =E σ(s).

Observe that the problem of unification is a particular case of E-unification where
E = ∅. If wewant to translate the problem of E-unification in a syntactic category, we
must require that =E is closed for substitutions and it is monotonic, which means that
if t =E s then σ(t) =E σ(s) and f (. . . , t, . . . ) =E f (. . . , s, . . . ) for every function
symbols.

We can construct a syntactic category denoted by CE as done before, but in this
case we identify two morphisms if all their components are E-provably equal: we
say that two morphisms

σ = [t1/y1, . . . , tm/ym] : (x1, . . . , xn) // (y1, . . . , ym)

and
σ′ = [s1/y1, . . . , sm/ym] : (x1, . . . , xn) // (y1, . . . , ym)

are E-provably equal, and denoted by σ =E σ′, if ti =E si for i = 1, . . . ,m.
Morphisms in CE are equivalence classes of morphisms of CSg, and the reason

why we require that =E is monotonic and closed for substitutions, is that we want
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composition to be well defined. Indeed monotonicity and closure for substitution
imply that

σ =E σ′ : ®x // ®y γ =E γ′ : ®y // ®z

γ ◦ σ =E γ′ ◦ σ′ : ®x // ®z

Moreover, starting from a category C with finite products, one can construct a
signature SgC taking the internal language of C, and a class EC consisting of the
equation which are satisfied by the canonical structure in C. The reader can find all
the details in [50, Section 4.3]. The main result is that every category with finite
products is equivalent of a syntactic category of this kind. See [50, Section 4.3]. In
particular if C is finitely complete, then corresponding signature SgC and class EC
have the property that every finite set S of terms equations admits a most general
E-unifier.

By Theorem 6.2.7, given a syntactic category CSg corresponding to a first order
signature, we can make it finitely complete simply adding an initial object. This
means that, given such a signature, we can construct a signature Sg′ and a set E of
equations such that every finite set of terms equations in the new signature admits a
most general E-unifier.

6.3 Doctrines

The notion of hyperdoctrine was introduced by F.W. Lawvere in a series of sem-
inal papers, see [36, 37, 38], together with the more general notion of existential
elementary doctrine.

This section is devoted to introduce the definitions of primary, elementary and
existential doctrines following the recent works on the topics of M. E. Maietti and
G. Rosolini [41, 42, 43, 44].

Definition 6.3.1. Let C be a category with finite products. A primary doctrine is a
functor P : Cop // InfSL from the opposite of the category C to the category
of inf-semilattices.

Definition 6.3.2. A primary doctrine P : Cop // InfSL is elementary if for
every A in C there exists an object δA in P(A × A) such that

1. the assignment
E〈idA,idA 〉(α) := Ppr1 (α) ∧ δA

for α in PA determines a left adjoint to P〈idA,idA 〉 : P(A × A) // PA ;

2. for every morphism e of the form 〈pr1,pr2,pr2〉 : X × A // X × A × A in
C, the assignment

Ee(α) := P〈pr1 ,pr2 〉(α) ∧ P〈pr2 ,pr3 〉(δA)
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forα in P(X×A) determines a left adjoint to Pe : P(X × A × A) // P(X × A) .

Definition 6.3.3. A primary doctrine P : Cop // InfSL is existential if, for
every A1 and A2 in C, for any projection pri : A1 × A2

// Ai , i = 1,2, the
functor

Ppri : P(Ai) // P(A1 × A2)

has a left adjoint Epri , and these satisfy:

1. Beck-Chevalley condition: for any pullback diagram

X ′
pr′ //

f ′

��

A′

f

��
X pr

// A

with pr and pr′ projections, for any β in P(X) the canonical arrow

Epr′Pf ′(β) ≤ Pf Epr(β)

is an isomorphism;
2. Frobenius reciprocity: for any projection pr: X // A , α in P(A) and β in

P(X), the canonical arrow

Epr(Ppr(α) ∧ β) ≤ α ∧ Epr(β)

in P(A) is an isomorphism.

As observed in [43, Remark 2.4] there is a well known connection between doctrine
and fibrations, and all the previous definition can be given in that contest. We refer
to [19, 21] for all the details.

We refer to [21, 38, 41] for a complete characterization of existential elementary
doctrines, and we recall the following result which will be useful later.

Proposition 6.3.4. Let P : Cop // InfSL be an existential elementary doctrine,
then for every map f : A // B in C the functor Pf has a left adjoint Ef that can
be computes as:

Epr2 (Pf×idB (δB) ∧ Ppr1 (α))

for α in P(A), where pr1 and pr2 are the projection from A × B.

Observe that primary doctrines, elementary doctrines, and existential doctrines have
a 2-categorical structure given in following way.

Definition 6.3.5. The class of primary doctrines PD is a 2-category, where:

• 0-cells are primary doctrines;
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• 1-cells are pairs of the form (F, b)

Cop

P

((
Fop

��

InfSL

Dop

R

66b

��

such that F : C // D is a functor preserving products, and b : P // R ◦ Fop

is a natural transformation preserving the structures;
• 2-cells are natural transformations θ : F // G such that for every A in C and

every α in PA, we have
bA(α) ≤ RθA(cA(α))

and [41].

Similarly we can define two subcategories of PD: the 2-category of elementary
doctrine ElD, and the 2-category of existential doctrine ExD.

In this case one should require that the 1-cells preserve the appropriate structure.
We refer to [41, 42, 43] for all the details.

Example 6.3.6. The following examples are discussed in [36, 41, 42, 43, 44].
Let T be a first order theory over a signature Sg. We define a primary doctrine

L : CopT
// InfSL

where the base category is the syntactic category of signatureSg andL(x1, . . . , xn)
is the class of all well formed formulas in the context (x1, . . . , xn). We say that
ψ ≤ φ where φ,ψ ∈ L(x1, . . . , xn) if ψ `T φ, and then we quotient in the usual
way to obtain a partial order on L(x1, . . . , xn). Now consider a morphism of CT

[t1/y1, . . . , tm/ym] : (x1, . . . , xn) // (y1, . . . , ym)

then L[®t/®y](ψ(y1, . . . , ym)) = ψ[®t/®y].
1.2. Let C be a category with finite limits. The functor

SubC : Cop // InfSL

assigns to an object A in C the poset SubC(A) of subobjects of A in C. Given

an arrow B
f // A of C, the functor SubC( f ) : SubC(A) // SubC(B) is

given by pulling a subobject back along f . The fibre equalities are the diagonal
arrows. This is an elementary doctrine, and it is existential if the category C is
regular, see [19].
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3. Consider a category D with finite products and weak pullbacks: the doctrine is
given by the functor of weak subobjects

ΨD : Dop // InfSL

where ΨD(A) is the poset reflection of the slice category D/A, and for an

arrow B
f // A , the functor ΨD( f ) : ΨD(A) // ΨD(B) is given by a

weak pullback of an arrow X
g // A with f . This doctrine is elementary and

existential, and the existential left adjoints are given by the post-composition.

6.4 Existential and elementary completions

In [57]we have seen that starting, from a primary doctrine P : Cop // InfSL and
the class of projections a ⊂ C1, we can construct a doctrine Pex : Cop // InfSL
in which every arrow of the form Pex

f for f ∈ a has a left adjoint.
This construction can be generalized to an arbitrary class of morphisms closed

under pullbacks, compositions, and which contains units morphisms. In particular
we want to use it to construct the elementary completion of a primary doctrine
P : Cop // InfSL . In general the class of arrows of the form idA×∆X is not
closed under pullbacks and compositions, therefore we consider the case in which C
is finitely complete, and then we can close the class of morphisms of that form for
compositions and pullbacks in order to apply the completion.

In this section we present the existential completion from [57] for an arbitrary
class of morphisms a closed for pullbacks, compositions, and with units, which adds
the left adjoints to all the images of morphisms of a and we explain how it can be
applied to get the elementary and existential completions.

Consider a primary doctrine P : Cop // InfSL and for every object A of C
consider the following preorder:

• the objects are pairs ( B
g∈a // A , α ∈ PB);

• ( B h∈a // A , α ∈ PB) ≤ ( D
f ∈a // A , γ ∈ PD) if there exists w : B // D

such that
B

w

��

h

��
D

f
// A

commutes and α ≤ Pw(γ).

It is easy to see that the previous data give a preorder.
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Let Pa(A) be the partial order obtained by identifying two objects as usual when

( B h∈a // A , α ∈ PB) R ( D
f ∈a // A , γ ∈ PD). With abuse of notation we will

denote the equivalence class of an element in the same way.

Given a morphism f : A // B in C, let Pa f ( C
g∈a // B , β ∈ PC) be the

object

( D
g∗ f // A , Pf ∗g(β) ∈ PD)

where
D

f ∗g

��

g∗ f // A

f

��
C

g
// B

is a pullback because g ∈ a. Note that Pa
f
is well defined, because isomorphisms are

stable under pullback.

Proposition 6.4.1. Let P : Cop // InfSL be a primary doctrine, and let a be
a class of morphisms of C closed for pullback, compositions, and which contains
the identity morphisms. Then Pa : Cop // InfSL is a primary doctrine, which
means that:

1. for every object A of C, Pa(A) is a inf-semilattice;
2. for every f : A // B , Pa

f
is an homomorphism of inf-semilattices.

Proof. It is easy to see that the proof in [57] can be generalized for an arbitrary class
of morphisms of C with the previous properties. �

Proposition 6.4.2. Given a morphism f : A // B of a, we define

E
a
f ( C h // A , α ∈ PC) := ( C

f h // B , α ∈ PC)

where ( C h // A , α ∈ PC) is in Pa(A). Then E
a
f is left adjoint to Pa

f
.

Proof. Let α := ( C1
g1 // B , α1 ∈ PC1) and β := ( D2

f2 // A , β2 ∈ PD2).
Now we assume that β ≤ Pa f (α). This means that
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D2

f2

��

w

~~
D1

f ∗g1

��

g∗1 f // A

f

��
C1 g1

// B

and Pw(Pf ∗g1 (α1)) ≥ β2. Then we have

D2

∆A f2

��

f ∗g1w

~~
C1 g

// B

and Pwf ∗g1 (α1) ≥ β. Then E
a
f (β) ≤ α. Now assume E

a
f (β) ≤ α

D2

f f2

��

w

~~
C1 g1

// B

with Pw(α1) ≥ β2 Then there exists w : D2
// D1 such that the following

diagram commutes
D2

w

  

w

##

f2

��
D1

f ∗g1

��

g∗1 f // A

f

��
C1 g1

// B

and Pw(Pf ∗g1 (α1) = Pw(α1) ≥ β1. Then we can conclude that β ≤ Pa
f
(α). �

Theorem 6.4.3. For every primary doctrine P : Cop // InfSL , Pa : Cop // InfSL
satisfies:
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(i) Beck-Chevalley Condition: for every pullback

X ′

f ′

��

g′ // A′

f

��
X

g
// A

with g ∈ a (hence also g′ ∈ a), for any β ∈ Pa(X) the following equality holds

E
a
g′P

a
f ′(β) = Paf E

a
g(β)

(ii)Frobenius Reciprocity: for every morphism f : X // A of a, for every
α ∈ Pa(A) and β ∈ Pa(X), the following equality holds:

E
a
f (P

a
f (α) ∧ β) = α ∧ E

a
f (β)

Proof. (i) Consider the following pullback square

X ′

f ′

��

g′ // A′

f

��
X

g
// A

where g,g′ ∈ a, and let β := ( C1
h1 // X , β1 ∈ PC1) ∈ Pa(X). Now consider the

following diagram

D1

h∗1 f
′

//

f ′∗h1

��

X ′

f ′

��

g′ // A′

f

��
C1

h1

// X
g

// A

Since the two square are pullbacks, then the big square is a pullback, and then

( D1

g′h∗1 f
′

// A ,Pf ′∗h1 (β1)) = ( D1

gh∗1 f // A ,Pf ∗gh1 (β1))

and these are exactly
E
a
g′P

a
f ′(β) = Paf E

a
g(β).
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(ii)Consider amorphism f : X // A ofa, an elementα := ( C1
h1 // A , α1 ∈

PC1) in Pa(A), and an element β = ( D2
h2 // X , β2 ∈ PD2) in Pa(X). Observe

that the following diagram is a pullback

D2 ∧ D1

(h∗1 f )
∗h2

��

h∗2(h
∗
1 f ) // D1

h∗1 f

��

f ∗h1 // C1

h1

��
D2

h2

// X
f

// A

and this means that
E
a
f (P

a
f (α) ∧ β) = α ∧ E

a
f (β).

�

The first example is the special case of existential completion, presented in [57]. In
this case a is the class of product projections and we can apply directly the previ-
ous construction, and one has that given a primary doctrine P : Cop // InfSL ,
the doctrine Pex : Cop // InfSL is existential and this construction extends
to a 2-functor E: PD // ExD from the 2-category of primary doctrines into
the category of existential doctrines, and it is left 2-adjoint to the forgetful func-
tor. See [57]. Moreover, if P : Cop // InfSL is elementary, then the doctrine
Pex : Cop // InfSL is elementary and existential, see [57] for all the details.
When the base category of a primary doctrine P : Dop // InfSL has finite

limits, we can apply the previous completion to obtain an elementary doctrine. In
this case we speak of an elementary completion.

Theorem 6.4.4. Let D be a category finitely complete, and let ael be the closure
for pullback and compositions of the class of morphisms of the form idA×∆X .
Then a primary doctrine P : Dop // InfSL can be completed to an elementary
doctrine Pel : Dop // InfSL . Moreover this construction extends to a 2-functor
from the 2-category of primary doctrines with base category finitely complete into
the category of elementary doctrines, and it is left 2-adjoint to the forgetful functor.

Proof. The proof that P : Dop // InfSL is elementary is a direct consequence
of the Proposition 6.4.2. Moreover this construction can be extended to a 2-functor
since the morphisms between primary doctrines are pairs (F, b) where F is a functor
preserving products. Therefore all the results about the 2-adjunction and about the
characterization of the 2-monads proved in [57] can be extended for the elementary
completion. �
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Corollary 6.4.5. LetD be a category finitely complete, and let P : Dop // InfSL

be a primary doctrine. Then (Pel)ex : Dop // InfSL is a primary existential
doctrine.

Proof. It follows from Theorem 6.4.4 and from the fact that the existential comple-
tions preserves the elementary structure, see [57]. �

Next consider a first order theory T and the primary doctrine L : CopT
// InfSL

defined in Example 6.3.6.

Theorem 6.4.6. The primary doctrine L : CopT
// InfSL can be completed to

a primary doctrine L0 : (C0T )
op // InfSL where C0T has finite limits. Moreover

the doctrine
(L0)el : (C0T )

op // InfSL

is elementary, and the doctrine

((L0)el)ex : (C0T )
op // InfSL

is elementary existential.

Proof. It is a direct consequence of Theorem 6.2.7 and Theorem 6.4.4 and Corollary
6.4.5. �

We conclude this section with a comparison between the exact completion pre-
sented by Carboni in [6, 10] and a review on the general version presented in [57].

In [41, 44] it is proved that various notions of completing a category to an exact
category can be seen as an instance of the exact completion for elementary existential
doctrine. In [57] we generalize this result proving that every elementary doctrine can
be complete to an exact category.

By Theorem 6.4.4 and Corollary 6.4.5 we can extend the exact completion pre-
sented in [57] for a primary doctrine P : Cop // InfSL such that there exists a
class of morphisms a containing all the morphisms of the form idA×∆X and closed
for pullbacks, compositions, and containing units arrows. A primary doctrine of this
kind can be completed to an exact category T(Pel)ex .

In particular by Theorem 6.4.6, given first order theory T in which formulas are
only atomic formulas or finite conjunction of atomic formulas, and the symbols >,
the primary doctrine L : CopT

// InfSL can be completed to a exact category
T((L0)el)ex .
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6.5 Applications

In this section we present a detailed description of the elementary completion for
a primary doctrine P : Cop // InfSL whose base category C is the free finite
product completion of a discrete category A.

From a logical point of view we are looking at a first order theory in a language
in which no function symbols are considered.

We give a compact description of the doctrine Pel : Cop // InfSL with
respect to the one used in Section 6.4. Recall that in this case the class ael is
the closure for pullbacks and compositions of the class of morphisms of the form
idA×∆X .

Let A be an object of C, then we have that by definition the elements of the poset
Pel(A) are of the form

( C h // A , α ∈ PC)

where h ∈ ael.
If the object A is not of the form B × X × X , where X is a non-terminal object

of C, then the only morphisms of ael with codomain A are the identities, so we can
define for this kind of objects

Pel(A) = P(A).

Otherwise, for the case of objects of the form A× X × X , we can give an equivalent
and more synthetic description of the poset Pel(A × X × X): it is a class where the
objects are pairs of the form (α,⊥) or (α,>) where α ∈ P(A × X × X).

Now we define the partial order on Pel(A× X × X). We say that (α, k1) ≤ (β, k2)
if one of the following possibilities holds

• k1 = ⊥ and PidA ×∆X (α) ≤ PidA ×∆X (β);
• k1 = k2 = > and α ≤ β.

It is direct to check that this is a preorder, and we identify as usual two objects if
(α, k1) ≤ (β, k2) and (α, k1) ≥ (β, k2) to obtain a partial order.

Observe that the meet of two elements in Pel(A × X × X) is

(α, k1) ∧ (β, k2) = (α ∧ β, k1 ∧ k2)

and the top element of Pel(A× X × X) is (>A×X×X,>). Therefore the poset Pel(A×
X × X) is an inf-semilattice.

Consider a projection pri : A × X × X // A . We define

Pel
pr1

: Pel(A) // Pel(A × X × X)

as
Pel
pr1
(α) := (Ppr1 (α),>)

and the same for the other projections.
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Now consider ∆A : A // A × A . We define

Pel
∆A

: Pel(A × A) // Pel(A)

as
Pel
∆A
(α, k) = P∆A(α)

for k = >,⊥.
Theorem 6.5.1. Let P : Cop // InfSL be an elementary doctrine. Then, with
the previous assignments, Pel : Cop // InfSL is an elementary doctrine.

Proof. It is easy to check that Pel : Cop // InfSL is a primary doctrine. Let

E
el
idA ×∆X

: Pel(A × X) // Pel(A × X × X)

be defined as
E
el
idA ×∆X

(α) := (P〈pr′1 ,pr′2 〉(α),⊥)

where 〈pr′1,pr′2〉 : A × X × X // A × X . To check that

E
el
idA ×∆X

a Pel
idA ×∆X

let α ∈ Pel(A × X). So

Pel
idA ×∆X

E
el
idA ×∆X

(α) = Pel
idA ×∆X

(P〈pr′1 ,pr′2 〉(α),⊥) = PidA ×∆X P〈pr′1 ,pr′2 〉(α) = α.

Thus
idA×C ≤ Pel

idA ×∆X
E
el
idA ×∆X

.

Now consider (α, k) ∈ Pel(A × X × X). By definition we have

E
el
idA ×∆X

Pel
idA ×∆X

(α, k) = E
el
idA ×∆X

(PidA ×∆X (α)) = (P〈pr′1 ,pr′2 〉PidA ×∆X (α),⊥)

and
(P〈pr′1 ,pr′2 〉PidA ×∆X (α),⊥) = (P〈pr′1 ,pr′2 ,pr′2 〉(α),⊥).

By definition again we have that

(P〈pr′1 ,pr′2 ,pr′2 〉(α),⊥) ≤ (α, k)

if and only if
PidA ×∆X (P〈pr′1 ,pr′2 ,pr′2 〉(α)) ≤ PidA ×∆X (α)

but these are equal. This prove that the doctrine is elementary. �

Remark 6.5.2. Following the notation of [42, 43], we can define δX = (>X×X,⊥).
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The previous construction induces a 2-functor which is left-adjoint to the forgetful
functor.

Consider the 2-categoryPdD of primary doctrineswhose base category is the free
products completion of a discrete category, and its 2-subcategoryEdD of elementary
doctrines. We define

El: PdD // EdD

on the objects as
El(P) := Pel

for a given primary doctrine P : Cop // InfSL .
Consider twoprimary doctrines P : Cop // InfSL and R : Dop // InfSL

of PdD. We define

ElP,R : PdD(P,R) // EdD(Pel,Rel)

as
El(F, b) = (F, bel)

where bel : Pel +3 RelFop is the natural transformation defined as follow:

• for every A ∈ A, the 1-cell belA : PelA // RelF A is exactly bA : PA // RF A ;
• for every A,X ∈ C, the 1-cell

belA×X×X : Pel(A × X × X) // Rel(F A × FX × FX)

sends an element (α, k) into (bA×X×X (α), k).

It is direct to verify that this is a 1-cell of elementary doctrines. Moreover observe
that the functor El does not change the first component of a 1-cell. Then for every
2-cell θ : (F, b) +3 (G, c) we can define El(θ) := θ. Therefore we can summarize
the previous results into the following proposition.

Proposition 6.5.3. El: PdD // EdD is a 2-functor.

Let P : Cop // InfSL be a doctrine of PdD we define the 1-cell

(idC, η) : P // Pel

where ηA : PA // PelA is the identity for every A ∈ A, and

ηA×X×X : P(A × X × X) // Pel(A × X × X)

is defined as ηA×X×X (α) = (α,>). It is direct to check that η : P // Pel is a
natural transformation.

Let P : Cop // InfSL be a doctrine of EdD we define the 1-cell
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(idC, ε) : Pel // P

where εA : PelA // PA is the identity for every A and

εA×X×X : Pel(A × X × X) // P(A × X × X)

is defined as εA×X×X (α,>) = α and εA×X×X (α,⊥) = α ∧ P〈pr2 ,pr3 〉(δX ). Again one
can check directly that ε : Pel // P is a natural transformation and that (idC, ε)
is a 1-cell of EdD.

Proposition 6.5.4. The previous families of 1-cells define two 2-natural transforma-
tions

η : idPdD
// UEl

and
ε : ElU // idEdD

Moreover El a U and the unit and counit of this 2-adjunction are η and ε.

Proof. It is a straightforward verification. �

We construct a 2-monad Tel : PdD // PdD from the 2-adjunction of Propo-
sition 6.5.4 , and we prove that every elementary doctrine can be seen as an algebra
for this 2-monad.

Finally we will show that the 2-monad Tel is lax-idempotent. For all the details
about the theory of 2-monads we refer to [27, 28, 54, 55, 56].

Definition 6.5.5. We define:

• Tel : PdD // PdD the 2-functor Tel = U ◦ El;
• η : idPdD

// Tel is the 2-natural transformation defined in Proposition 6.5.4;

• µ : T2
el

// Tel is the 2-natural transformation µ = UεEl.

Proposition 6.5.6. Tel is a 2-monad.

Proof. One can easily check that the following diagrams commute

T3
el

µTel //

Telµ

��

T2
el

µ

��
T2
el µ

// Tel
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idPdD ◦Tel
ηTel //

id $$

T2
el

µ

��

Tel ◦ idPdD
Telηoo

idzz
Tel

�

Proposition 6.5.7. Let P : Cop // InfSL be a doctrine ofEdD. Then (P, (idC, εP))
is an object of the category Tel-Alg of Tel-algebras.

Proof.We prove that the following diagram commutes

T2
el

P

εP
el

��

ε
Pel // TelP

εP

��
TelP εP

// P

By definition of εP , we need only to check the element of the form (α, k2) ∈
(Pel)

el
(A× X × X), since on the other elements, εP acts as the identity. Consider an

element α = (α1, k1), then
εPεPel (α, k2)

is:

• α1 if k2 = > and k1 = >;
• α1 ∧ P〈pr2 ,pr1 〉(δX ) otherwise.

On the other side we have
εPεP

el(α, k2)

and this is:

• α1 if k2 = > and k1 = >;
• α1 ∧ P〈pr2 ,pr1 〉(δX ) otherwise.

Therefore the diagram commutes. Now we consider the condition on the unit. It is
easy to observe that

εPηP = idP

since
εPηP(α) = εP(α,>) = α

for every α ∈ P(A× X × X), and both εP and ηP are the identity on the other objects.
Therefore we have that (P, εP) is a mTel-algebra. �
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Proposition 6.5.8. Let P : Cop // InfSL be a doctrine of PdD, and consider
a 1-cell (F,a) : Pel // P such that (P, (F,a)) is aTel-algebra. Then the doctrine

P : Cop // InfSL is elementary.MoreoverF = idC and (idC,a) : Pel // P
is exactly εP .

Proof. By definition of algebra for a monad we have that the following diagram
commutes:

P

idP

  

ηP // Pel

(F ,a)

��
P.

Thus F : C // C must be the identity functor. Now consider two objects A,X
of C and the arrow idA×∆X : A × X // A × X × X . We define

EidA ×∆X (α) := aA×X×X E
el
idA ×∆X

ηA×X (α).

Suppose α ∈ P(A × X), β ∈ P(A × X × X) and α ≤ PidA ×∆X (β). Then since ηA×X
preserves the order we have

ηA×X (α) ≤ ηA×XPidA ×∆X (β)

and by the naturality of ηA×X we have

ηA×X (α) ≤ Pel
idA ×∆X

ηA×X×X (β).

Now we use the fact that Pel is primary, and then

E
el
idA ×X×X

ηA×X (α) ≤ ηA×X×X (β)

and then
aA×X×X E

el
idA ×X×X

ηA×X (α) ≤ aA×X×XηA×X×X (β).

Then we can conclude that
E
el
idA ×∆X

(α) ≤ β

because aA×X×XηA×X×X is the identity by hypothesis.
Now we prove the convers. Suppose that α ≤ PidA ×∆X (β). Then by definition of
EidA ×∆X we have

aA×X×X E
el
idA ×X×X

ηA×X (α) ≤ β

then we have

PidA ×∆X aA×X×X E
el
idA ×X×X

ηA×X (α) ≤ PidA ×∆X (β).

Using the naturality of a we have
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aA×XPel
idA ×∆X

E
el
idA ×X×X

ηA×X (α) ≤ PidA ×∆X (β)

and since id ≤ Pel
idA ×∆X

E
el
idA ×X×X

, we have

α = aA×XηA×X (α) ≤ PidA ×∆X (β)

and we can conclude that EidA ×∆X a PidA ×∆X . Finally observe that if we consider
(>A×A,⊥) ∈ Pel(A × A) we have

aA×A(>A×A,⊥) = aA×A E
el
∆A
ηA(>A) = E∆A(>A) = δA.

Now we can observe that for every (α,⊥) ∈ Pel(A × X × X) we have

(α,⊥) = (α,>) ∧ (>A×X×X,⊥) = (α,>) ∧ E
el
idA ×∆X

(>A×X ).

Therefore

a(α,⊥) = (α,>)∧(>A×X×X,⊥) = a(α,>)∧a E
el
idA ×∆X

(>A×X ) = α∧ EidA ×∆X (>A×X )

and, since P is elementary, we have EidA ×∆X (>A×X ) = P〈pr2 ,pr3 〉(δX ). Hence we
have

a(α,⊥) = α ∧ P〈pr2 ,pr3 〉(δX )

and we can conclude that a = εP . �

Proposition 6.5.9. The 2-category Tel-Alg is isomorphic as 2-category to the cat-
egory EdD.

Proof. It follows from Proposition 6.5.8 and Proposition 6.5.7 and from the fact that
if we consider a 1-cell (F,a) : (P, εP) // (R, εR) of Tel-algebras then it is a
1-cell of EdD. �

Following the notation of [27] we prove that the 2-monad Tel : PdD // PdD
pseudo-idempotent.

Theorem 6.5.10. Let (P, εP) and (R, εR) beTel algebras, and let (F, b) : P // R
be a 1-cell of PD. Then ((F, b), idF ) is lax-morphism of algebras, and the 2-
cell idF : εR(F, bel) +3 (F, b)εP is the unique 2-cell making (idF , (F, b)) a lax-
morphism. Moreover, we have that idF is invertible as 2-cell, and then the 2-monad
Tel is pseudo-idempotent.

Proof. Consider the following diagram
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Pel (F ,bel) //

εP

��
�� idF

Rel

εR

��
P

(F ,b)
// R.

Let (α, k) ∈ Pel(A × X × X). We have that (εR(F, bel))A×X×X (α, k) is equal to

• bA×X×X (α) if k = >;
• bA×X×X (α) ∧ R〈pr2 ,pr3 〉(δFX ) if k = ⊥, with the usual notation for the functor

R〈pr2 ,pr3 〉 : R(F A × FX) // R(F A × FX × FX) ;

One can check that we obtain the same results if we consider ((F, b)εP)A×X×X (α, k).
Finally it is easy to see that idF : εR(F, bel) +3 (F, b)εP trivially satisfies the
coherence conditions for lax-Tel-morphisms, because they are equal.

Now suppose there exists another 2-cell θ : εR(F, bel) +3 (F, b)εP such that
((F, b), θ) is a lax-morphism

Pel (F ,bel) //

εP

��
�� θ

Rel

εR

��
P

(F ,b)
// R.

Then it must satisfy the following condition

P

ηP

��

(F ,b) // R

ηR

��
Pel

εP

��

(F ,bel) //

�� θ

Rel

εR

��

= P

1P

��

(F ,b) // R

1R

��
P

(F ,b)
// R P

(F ,b)
// R

and this means that θ = idF . �

Corollary 6.5.11. The 2-monad Tel : PdD // PdD is lax-idempotent and co-
lax idempotent.



6.5 Applications 175

Proof. It follows from [27, Proposition 6.9]. �

Corollary 6.5.12. The 2-monad Tel : PdD // PdD is fully property-like.

Proof. It follows from Corollary 6.5.11 and [27, Proposition 6.7]. �

Remark 6.5.13. The considerations on the 2-monad Tel on PdD can be extended
for the general case of elementary completion, and the fact that the existential
completion preserves the elementary structure suggests that there exists a distributive
law δ : TelTex

// TexTel . Moreover we can compose these 2-monads with the
pseudo-monads adding comprehensive diagonals, comprehensions and quotients.
The key point is that every completions preserves the previous structure, and therefore
we can define at every step a pseudo-distributive laws between the compositions of
the pseudo-monads.
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