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In this paper we propose a novel set of first-order hyperbolic equations that can model 
dispersive non-hydrostatic free surface flows. The governing PDE system is obtained via 
a hyperbolic approximation of the family of non-hydrostatic free-surface flow models 
recently derived by Sainte-Marie et al. in [1]. Our new hyperbolic reformulation is based 
on an augmented system in which the divergence constraint of the velocity is coupled 
with the other conservation laws via an evolution equation for the depth-averaged non-
hydrostatic pressure, similar to the hyperbolic divergence cleaning applied in generalized 
Lagrangian multiplier methods (GLM) for magnetohydrodynamics (MHD). We suggest a 
formulation in which the divergence errors of the velocity field are transported with a large 
but finite wave speed that is directly related to the maximal eigenvalue of the governing 
PDE.
We then use arbitrary high order accurate (ADER) discontinuous Galerkin (DG) finite 
element schemes with an a posteriori subcell finite volume limiter in order to solve 
the proposed PDE system numerically. The final scheme is highly accurate in smooth 
regions of the flow and very robust and positive preserving for emerging topographies 
and wet-dry fronts. It is well-balanced making use of a path-conservative formulation 
of HLL-type Riemann solvers based on the straight line segment path. Furthermore, the 
proposed ADER-DG scheme with a posteriori subcell finite volume limiter adapts very well 
to modern GPU architectures, resulting in a very accurate, robust and computationally 
efficient computational method for non-hydrostatic free surface flows. The new model 
proposed in this paper has been applied to idealized academic benchmarks such as the 
propagation of solitary waves, as well as to more challenging physical situations that 
involve wave runup on a shore including wave breaking in both one and two space 
dimensions. In all cases the achieved agreement with analytical solutions or experimental 
data is very good, thus showing the validity of both, the proposed mathematical model and 
the numerical solution algorithm.
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1. Introduction

When modelling and simulating geophysical flows, the non-linear shallow-water equations, hereinafter denoted by SWE, 
are often a good choice as an approximation of the free surface Navier-Stokes equations. Nevertheless, the SWE do not take 
into account effects associated with dispersive waves and non-hydrostatic pressure. In particular, it is well known that the 
simple shallow water equations cannot explain the physics of solitary waves, nor do they reproduce the correct dispersion 
characteristics of non-hydrostatic surface waves. In recent years, a great effort has been devoted to the derivation of rela-
tively simple mathematical models for shallow water flows that include also long non-linear water waves. As computational 
power increases, Boussinesq-type models ([2], [3], [4], [5], [6], [7], [8], [9], [10]) become more accessible. This means that 
one can use more sophisticated models in order to describe reality more accurately, despite the higher computational cost. 
For efficient semi-implicit methods that can be used to simulate fully three-dimensional non-hydrostatic free surface flows, 
we refer to the well–known work of Casulli et al. [11–15], including a recent extension [16] that is even able to deal with 
free surface profiles that are not a single-valued function.

One may use different approaches to improve the non-linear dispersive properties of the simplified depth–averaged 
shallow water models. Possible options to achieve this are: to consider a Taylor expansion of the velocity potential in 
powers of the vertical coordinate and in terms of the depth-averaged velocity [5] or the particle velocity components (u, w)

at a chosen level [6]; to include two scalars representing the vertical profile of the non-hydrostatic pressure [17]; to use 
a better flow resolution in the vertical direction with a multi-layer approach [18–20]; to include non-hydrostatic effects 
in the depth-averaging process ([1,21,22]). The mathematical and numerical study of such dispersive models represents a 
difficult problem and usually the inversion of an elliptic operator is needed at each time step when the model is numerically 
solved [23–25,22,26–29]. As a consequence, the computational effort increases drastically. A natural idea is thus to replace 
the dispersive equations by approximate hyperbolic equations. The idea itself is not new and comes from the pioneering 
work by Cattaneo [30], who replaced, in particular, the heat equation by a hyperbolic system of equations with relaxation. 
A very recent development in this direction concerning dispersive water waves has been made in [31], where a hyperbolic 
reformulation of the Serre-Green-Naghdi equations for flat bottom has been rigorously derived from a variational principle 
and discretized at the aid of a finite volume scheme. Other related work on hyperbolic models for dispersive water waves 
can be found, for example, in [32,33]. For a very recent hyperbolic reformulation of the unsteady compressible Navier-Stokes 
and the resistive MHD equations, the reader is referred to [34–36].

In this paper, we propose a new first-order hyperbolic depth-averaged system that can be seen as a modification of 
the family of systems presented in [1]. The systems proposed in [1] consist in an approximation of the incompressible 
Euler equations with free surface. This non-hydrostatic system is capable of solving many relevant features of coastal wa-
ter waves, such as dispersion, non-linearity, shoaling, refraction, diffraction, run-up and breaking waves (see [23]). Our 
novel hyperbolic system is obtained using a hyperbolic reformulation of the original governing PDE [1] by coupling the 
divergence constraint of the velocity with the remaining conservation laws at the aid of an evolution equation for the 
depth-integrated non-hydrostatic pressure, similar to the method of artificial compressibility for the solution of the in-
compressible Navier-Stokes equations and also similar to the so-called hyperbolic divergence cleaning introduced in the 
generalized Lagrangian multiplier approach (GLM) of Munz et al. [37,38] for the Maxwell and the magnetohydrodynamics 
(MHD) equations. We suggest a formulation in which the divergence errors of the velocity field are transported with a 
finite speed that is related to the maximum eigenvalues of the governing PDE system. The augmented hyperbolic system 
maintains the momentum equations for the horizontal and vertical velocities and still satisfies an energy balance equation, 
as the original system [1].

The final governing PDE system proposed in this paper is a system of hyperbolic balance laws, and is thus amenable for 
discretization via high order numerical schemes. Higher order methods are desirable due to their improved dissipation and 
dispersion properties compared to simple second order TVD finite volume schemes. This is particularly important for the 
accurate propagation of solitary waves over long distances, as it will be also shown later in the numerical results section. 
In this paper, we choose to discretize the PDE system at the aid of an arbitrary high order accurate discontinuous Galerkin 
(DG) scheme. The DG finite element method goes back to work of Reed and Hill [39], but it has become particularly 
popular for the solution of hyperbolic conservation laws thanks to a well-known series of papers by Cockburn and Shu 
and coworkers, see [40–43]. In subsequent work, Cockburn and Shu [44] extended the DG framework also to the solution 
of convection-diffusion equations at the aid of the so-called local discontinuous Galerkin (LDG) method. The key idea was 
to rewrite a PDE with higher order spatial derivatives under the form of an augmented (but not hyperbolic) first order 
system of PDEs and then formally apply the original DG method to this enlarged first order system. Alternative high order 
DG methods for PDE with second order diffusion terms can be found, for example, in [45–48]. Yan et al. [49–51] were 
the first to develop an LDG method for general dispersive Korteweg-de-Vries (KdV) equations including up to third order 
spatial derivatives. To discretize these higher order spatial derivatives with the LDG approach, the authors again rewrite the 
governing PDE as an enlarged (non-hyperbolic) first order system, where special care about the choice of the numerical 
fluxes has been taken in order to get a provably stable scheme. Later, Eskilsson and Sherwin [52,53] and Engsig-Karup et 
al. [54] were the first to propose higher order DG schemes for the solution of Boussinesq-type equations for the numerical 
simulation of nonlinear dispersive water waves. For high order WENO schemes applied in the context of dispersive water 
waves with moving free boundaries, the reader is referred to [55]. Several DG schemes have been proposed by now in order 
to discretize dispersive PDE systems, but most of them are explicit in time and thus have to obey a very severe stability 
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condition of the type �t ∼ �x3, where �t is the size of the time step and �x is the mesh spacing. Therefore, in [56]

a new local space-time DG scheme has been introduced for the solution of Boussinesq-type equations, which is provably 
unconditionally stable for any time step size and which has also been applied to the simulation of nonlinear dispersive water 
waves. The key idea there was the combination of the LDG method with the space-time DG approach originally proposed 
for the simulation of compressible fluid flows by Van der Vegt et al. in [57–59] and further analysed for convection-diffusion 
problems in the work of Feistauer et al. [60,61].

Since the new mathematical model proposed in this paper is a classical first order system of hyperbolic balance laws, 
it is instead suitable for standard explicit DG schemes subject to a usual CFL-type stability condition (�t ∼ �x) and does 
therefore not necessarily require the use of an implicit time stepping algorithm. This also makes an efficient parallel im-

plementation very simple and straightforward and is therefore a key advantage of the model proposed in this paper. In 
particular, in this work we have chosen the family of ADER-DG schemes, which has been introduced in [62–64] and which 
goes back to the family of ADER finite volume schemes of Toro and Titarev [65–68]. The ADER methodology is based on 
the approximate solution of the generalized Riemann problem at element interfaces and naturally leads to fully-discrete 
one-step schemes of arbitrary order of accuracy in both space and time. Due to the well-known Godunov theorem, any 
better than first order accurate linear scheme is oscillatory and therefore not suitable for the discretization of problems 
with discontinuities or strong gradients in the solution. Following the ideas introduced in [69,70] we therefore supplement 
the high order ADER-DG method with a suitable a posteriori subcell finite volume limiter. The main idea here is to use first 
an unlimited high order ADER-DG scheme, which produces a so-called candidate solution at the end of each time step. This 
candidate solution is then checked a posteriori against some physical and numerical detection criteria, such as positivity of 
the solution, absence of floating point errors and satisfaction of a relaxed discrete maximum principle (DMP). If a cell does 
not satisfy all these conditions (a so-called troubled cell), the discrete solution is discarded and locally recomputed, start-

ing again from a valid solution at the old time level, but using now a more robust scheme on a finer subgrid within the 
troubled cells. This approach corresponds to an element-local checkpointing and restarting of the solver, but using a more 
robust and more dissipative scheme after the restart. For the recomputation of the troubled cells, in principle, any robust 
finite volume scheme can be used. Here, we employ the family of path-conservative finite volume schemes, which has al-

ready been successfully used for the solution of shallow-water type systems in a series of papers, see e.g. [23,71–76]. Here, 
we use a robust path-conservative HLL-type Riemann solver [77,78], together with a second order TVD reconstruction. The 
subcell finite-volume limiter used here is the natural extension of the numerical scheme presented in [23], but applied to 
the new augmented hyperbolic system proposed in this work. This new concept of a posteriori limiting has been introduced 
for the first time in the context of finite volume schemes via the MOOD approach, see [79–82].

The rest of the paper is organized as follows. In Section 2 we present the original model equations of Sainte-Marie et 
al. [1] and the proposed novel hyperbolic reformulation. The eigenstructure, energy balance equation and the linear phase 
celerity of the new system are discussed and compared with those of the original model. The proposed system results in 
a new and simple hyperbolic system which phase speed depends on the wave number and depth, and thus it can sim-

ulate dispersive water waves. In Section 3 we briefly present the ingredients of our ADER-DG schemes with a posteriori

subcell finite volume limiter used to discretize the governing PDE system. Since the proposed system is hyperbolic, ex-

plicit numerical schemes can be considered under a suitable CFL stability condition. This is a real highlight when compared 
with most other numerical schemes proposed in the literature to discretize hyperbolic-elliptic problems for the simulation 
of nonlinear dispersive water waves. Due to the combination of an arbitrary high order DG scheme with a robust TVD 
finite volume scheme, the proposed discretization can deal with a great variety of complex situations involving wet-dry 
fronts and emerging topographies. In Section 4 a simple wave breaking mechanism is presented. At this point we stress 
that detailed small-scale wave breaking flow physics is not described by the model, but only the net effect of wave break-

ing on energy dissipation. This means that we include the breaking mechanism in the depth-integrated equations via a 
simple sub-scale viscosity model, with a breaking criterion similar to the one proposed in [83]. In Appendix A some guide-

lines for the implementation of the proposed numerical scheme on GPU architectures are given. The numerical scheme 
is highly parallelizable, and a strategy for an efficient implementation of the a posteriori subcell finite volume limiter is 
given. Finally, in Section 5, a set of numerical tests including comparisons with analytical solutions for the original sys-

tem derived in [1] and laboratory data are shown. It can be seen that the numerical scheme is robust, of arbitrary high 
order and that its implementation on GPU is efficient. The paper is rounded–off by some concluding remarks given in 
Section 6.
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2. Governing equations

We consider the following family of non-hydrostatic pressure systems, depending on a parameter γ ∈R:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x (hu) = 0,

∂t (hu) + ∂x

(
hu2 + 1

2
gh2 + hp

)
= (gh + γ p) ∂x H − τb,

∂t (hw) + ∂x (uhw) = γ p,

∂xu + w + u∂x H

h/2
= 0,

(1)

where h = h(x, t) is the water depth, H = H(x) is the known still water depth and the surface elevation measured from the 
still-water level is denoted by η = h − H . Furthermore, t denotes time, g is the gravitational acceleration and u and w are 
the depth averaged velocities for each layer in the x and z direction respectively. The non-hydrostatic pressure evaluated at 
the centre of the water column z = (η + H)/2 is denoted by p. The bottom friction is included in the model via a usual 
Manning-type friction formula for the bottom shear stress τb that reads

τb = n2
m g hu

|u|
h4/3

,

where nm ∈R+ is an empirical bottom friction coefficient (see [84]).
Within the general formulation (1), γ = 2 recovers the system first derived by Sainte-Marie et al. [1] and later obtained 

in [21] as a particular case of a family of non-hydrostatic multilayer systems. For γ = 3/2, and for the case of a flat bottom, 
we obtain the Green-Naghdi equations [4] written as a non-hydrostatic pressure system. Notwithstanding, the Green-Naghdi 
equations can be approximated in the case of stationary bottom and under the hypothesis of mild bottom variation (∂xx H(x)
and (∂x H)2 are neglected) by the system (1) with γ = 3/2.

The system (1) has been numerically discretized in [1,23] in the case of γ = 2. The governing PDE system is obtained 
by a process of depth-averaging with respect to the vertical of the incompressible Euler equations. The total pressure is 
decomposed into a sum of hydrostatic and non-hydrostatic pressure. In the deduction of the equations carried out in [1] for 
γ = 2, it is assumed that the horizontal velocity has a constant vertical profile, while the vertical velocity and the associated 
non-hydrostatic pressure distribution are linear.

It can be easily shown that the model (1) satisfies an extra energy balance law that reads

∂t Eγ + ∂x

(
u

(
Eγ + g

2
h2 + hp

))
= (γ − 2) up∂x H − uτb, (2)

where

Eγ = h

2

(
u2 + 1

γ
w2 + g (η − H)

)
. (3)

Remark 1. Note that in the case of a flat bottom and in the absence of bottom friction, the system admits an extra conserva-
tion law for all values of γ . In the general case of an arbitrary bottom slope, only the case of γ = 2 ensures the conservation 
of the energy.

In [21], the Green-Naghdi system [4] is written as a non-hydrostatic pressure system with no assumption of mild bottom 
slope. In this case, it is shown that the system can be derived after a standard depth-averaging on the vertical of the Euler 
equations, and assuming a quadratic vertical profile for the non-hydrostatic pressure. This leads to a more complicated 
system than the one considered here (1) and admits an energy conservation law independently of the bottom slope.

In this work we propose the modified system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x (hu) = 0, (a)

∂t (hu) + ∂x

(
hu2 + 1

2
gh2 + hp

)
= (gh + γ p) ∂x H − τb, (b)

∂t (hw) + ∂x (uhw) = γ p, (c)

∂t(hp) + ∂x(uhp) + hc2
(

∂xu + w + u∂x H

h/2

)
= 0, (d)

(4)

where c = α
√

g H0 is a given constant celerity, H0 being a typical average still water depth and α > 1. The approximation 
is based on a modified system in which the divergence constraint on the velocity field is coupled with the other con-
servation laws via an evolution equation for the nonhydrostatic pressure. This approach is based on the underlying ideas 
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of the method of artificial compressibility for the numerical solution of the incompressible Navier-Stokes equations, see 
[85–87] and is also directly related to the so-called hyperbolic divergence cleaning applied in the context of the general-
ized Lagrangian multiplier (GLM) method for the Maxwell and the magnetohydrodynamics (MHD) equations put forward in 
[37,38]. We suggest a formulation in which the divergence errors are transported with a finite speed c. In the subsequent 
section we study the hyperbolicity of the augmented system and give a proof that also the augmented system satisfies an 
additional energy conservation law. For hyperbolic systems with convex extensions, we refer also to the pioneering work 
of Godunov and Romenski, [88–91], who derived a theoretical framework on symmetric hyperbolic and thermodynamically 
compatible (SHTC) systems that are all endowed with such an extra conservation law.

2.1. Energy balance of the modified equations

In this subsection it is shown that the proposed hyperbolic relaxation system (4) is also endowed with an extra energy 
balance law, as the original PDE system (1). For the sake of clarity, it is shown for the case of γ = 2. In such a case the 
system (4) satisfies:

∂t Eγ + ∂x

(
u

(
E + g

2
h2 + hp

))
= −uτb, (5)

where

E = h

2

(
u2 + w2 + p2

c2
+ g (η − H)

)
. (6)

Note that for γ = 2 and in the absence of bottom friction, the equation becomes an extra energy conservation law.

Proof. As it is usually done, by adding (u · (4b) + w · (4c)), and using the mass conservation equation (4a), one has

∂t Ẽ + ∂x

(
u

(
Ẽ + g

2
h2 + hp

))
= hp

(
∂xu + w + u∂x H

h/2

)
− uτb,

where

Ẽ = h

2

(
u2 + w2 + g (η − H)

)
.

For the original system (1), one has 
(

∂xu + w + u∂x H

h/2

)
= 0, and thus the energy equality (2). For the proposed model, it 

can be easily checked by using the mass conservation equation (4a), that the following equality holds:

∂t

(
hp2

)
+ ∂x

(
hup2

)
+ 2c2hp

(
∂xu + w + u∂x H

h/2

)
= 0. (7)

Thus,

hp

(
∂xu + w + u∂x H

h/2

)
= − 1

2c2

(
∂t

(
hp2

)
+ ∂x

(
hup2

))
and the relation (5) completes the proof. �
Remark 2. Note that when c → ∞, we recover the original system (1) along with the energy balance (2).

Remark 3. Note that when c = 0, and we consider an initial condition w0 = p0 = 0, then we recover the classical shallow-
water system (SWE).

2.2. Eigenstructure of the modified equations

The system (4) can be written in compact matrix-vector form as

∂tU + ∂xF(U) + B(U)∂xU = S(U), (8)

with U = (
h,hu,hw,hp

)
, F(U) = (

hu, uhu + hp, uhw,hu(p + c2)
)
, S(U) = (

0,−τb, γ p,−2c2 w
)
, and

B(U)∂xU = (
0, (gh + γ p)∂xη − γ p∂xh,0, c2u∂x (h − 2η)

)
,

where equation (4d) has previously been rewritten as

∂t(hp) + ∂x(uhp) + c2 (∂x(hu) − u∂xh + 2w + 2u∂x H) = 0.
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Therefore, in quasi-linear form the system reads

∂tU + A(U)∂xU = S(U), (9)

with

A(U) = JF(U) + B(U),

where JF = ∂F/∂U is the Jacobian of the flux F with respect to the conserved variables U. The eigenvalues of the matrix 
A(U) are

λ1,2 = u, λ3,4 = u ± Ce

where Ce = √
gh + p + c2. A set of linearly independent eigenvectors is given by

v1 = (
1, u, 0, −gh

)
, v2 = (

0, 0, 1, 0
)
,

v3,4 = (
1, w

(
p + c2

)
λ3,4, p + c2,0

)
. (10)

2.3. Linear dispersion relation

In this subsection, the linear dispersion relation of the proposed system (4) is studied as usual (see [5,18,29,92]). Sys-
tem (4) is now linearised around the steady state solution h = H , u = 0, w = 0, p = 0, and the asymptotic expansion

f = f (0) + ε f (1) +O(ε2),

is considered, where f denotes a generic variable of the system. The resulting linearised model for the perturbations, which 
is obtained after neglecting O(ε2) terms, reads as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tη
(1) + H∂xu(1) = 0,

∂t u(1) + g∂xη
(1) + ∂x p(1) = 0,

H∂t w(1) − γ p(1) = 0,

H∂t p(1) + Hc2∂xu(1) + 2c2 w(1) = 0.

(11)

We shall now make a Stokes-type Fourier analysis and look for solutions of the form,

η(1)(x, t) = η0ei(ωt−kx), u(1)(x, t) = u0ei(ωt−kx), w(1)(x, t) = w0ei(ωt−kx), p(1)(x, t) = p0ei(ωt−kx), (12)

where ω is the angular frequency and k is the wave number. By substituting (12) into (11), we get the linear system⎛⎜⎜⎝
−ω Hk 0 0
gk −ω 0 k
0 0 Hω −γ i
0 −c2 Hk 2ic2 Hω

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
η0
u0
w0
p0

⎞⎟⎟⎠ = 0. (13)

Since we assume c2 = α2 g H , looking for non-trivial solutions, the matrix of the linear system (13) must be singular, yielding 
the linear dispersion relation

(kH)2 C2
p

g H

(
C2

p

g H
− 1

)
+ 2γ α2

(
1 − C2

p

g H

(
1 + (kH)2

2γ

))
= 0, (14)

where C p = ω

k
is the phase velocity. Note that for α2 → ∞, we recover the linear dispersion relation of the original 

system (1):

C2
J

g H
= J (kH), J (kH) = 1 + (kH)2

2γ
.

From (14), we find 
C2

p
:

g H
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Fig. 1. Relative error of the phase velocities for γ = 2, with respect to the linear theory of Stokes for the original system (1) (black) and for the new 
hyperbolic approach (4a)-(4d) using α = 3 (blue), α = 5 (red) and α = 10 (magenta). (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

Fig. 2. Relative error of the phase velocities for γ = 3/2, with respect to the linear theory of Stokes for the original system (1) (black) and for the new 
hyperbolic approach (4a)-(4d) using α = 3 (blue), α = 5 (red) and α = 10 (magenta).

(C2
p)±

g H
=

⎛⎝ J (kH) + μ

2
∓

√(
J (kH) + μ

2

)2

− μ

⎞⎠−1

, μ = 1

2γ

(
kH

α

)2

. (15)

The phase velocities C+
p and C−

p are called the rapid and slow phase velocity, respectively. The velocity C+
p is always 

larger than the one of system (1). It does not have any physical meaning and describes the evolution of artificial high-
frequency waves related to the modification of the system.

Figs. 1 and 2 show the error of the phase velocities C−
p for several values of α, and for the original system (1), with 

γ = 2 and γ = 3/2 respectively, compared to the phase velocity given by the linear theory of Stokes

C2
s

g H
= tanh(kH)

kH
,

in a range of kH ∈ [0,3]. This interval is chosen according to the range in which the original weakly non-linear weakly 
dispersive system [1] shows a good match with respect to the linear theory of Stokes. It can be stated that for a value of 
c = 5

√
g H , the linear dispersion relation of the proposed hyperbolic system is very close to the original one.



392 C. Escalante et al. / Journal of Computational Physics 394 (2019) 385–416
As the equations are largely used to simulate shallow water flows, the linear analysis is supplemented with an asymptotic 
analysis in the limit kH → 0. To do that, we compare the resulting Taylor expansion of the slow phase velocity with the 
one coming from the Stokes linear theory at order O(kH)4:

C−,2
p

g H
= 1 − 1

2γ
(kH)2 +O (kH)4 ,

C2
s

g H
= 1 − 1

3
(kH)2 +O (kH)4 ,

which coincides up to order O (kH)4 for γ = 3/2.

Remark 4. Note that the model for γ = 3/2, which stands for a hyperbolic reformulation of the Serre-Green-Naghdi system, 
has a dispersion relation for the phase velocity which is asymptotical of order O(kH)4, and thus is more appropriate for 
long-waves as it can be seen in Fig. 2. However, this error is larger for shorter waves when compared with the choice of 
γ = 2, that keeps a good error on the phase velocity, approximately bounded by 3 percent, in an extended range of kH up 
to 3 (see Fig. 1).

2.4. Governing equations in two space dimensions

The corresponding governing equations of the original system (1) for two-dimensional domains can be found in [93]. 
The equations generalizing the idea applied in (4) for two-dimensional domains read

∂tU + ∇ · F(U) + B(U) · ∇(U) = S(U), (16)

where

U = (h,hu,hv,hw,hp), F(U) = (
f(U),g(U)

)
, S(U) = (

0,−τbx,−τby, γ p,−2c2 w
)
,

with

f(U) = (
hu, uhu + hp, uhv, uhw,hu(p + c2)

)
, g(U) = (

hv, vhu, vhv + hp, vhw,hv(p + c2)
)

and the non-conservative product

B(U) · ∇(U) = Bx(U)∂xU + By(U)∂yU

is given by

Bx(U)∂xU = (
0, (gh + γ p)∂xη − γ p∂xh,0,0, c2u∂x (h − 2η)

)
,

By(U)∂yU = (
0,0, (gh + γ p)∂yη − γ p∂yh,0, c2 v∂y (h − 2η)

)
.

Here, H = H(x, y) is the known still water depth, u and v denote the depth averaged velocities in the x and y directions, re-
spectively, while w is the depth-averaged velocity component in the z direction and p is the depth-averaged non-hydrostatic 
pressure.

3. Numerical scheme

In this section the ADER-DG scheme on rectangular grids with a posteriori subcell finite volume limiter (SCL) and applied 
to the hyperbolic system (16) written in compact form

∂tU + ∇ · F(U) + B(U) · ∇(U) = S(U)

is briefly recalled. For more details, the reader is referred to [69,70].

3.1. Unlimited ADER-DG scheme and approximate Riemann solvers

The computational domain � is covered with a set of non-overlapping Cartesian control volumes in space �i = [xi −
1
2 �xi, xi + 1

2 �xi] ×[yi − 1
2 �yi, yi + 1

2 �yi], where the vector xi = (xi, yi) describes the location of the barycentre of cell �i . 
Furthermore, we denote the vector of the mesh spacings in each direction by �xi = (�xi, �yi). As usual, the computational 
domain is the union of all spatial control volumes, hence � = ⋃

�i .
In the following, the discrete solution of the PDE system (8) at time tn is denoted by uh(x, tn) and is defined in terms 

of tensor products of piecewise polynomials of degree N in each spatial direction. In this paper we adopt a nodal basis 
that is spanned by the Lagrange interpolation polynomials defined on the (N + 1)d Gauss-Legendre quadrature nodes on the 
element �i , where d ∈ {1,2} is the number of spatial dimensions. Within the discontinuous Galerkin (DG) finite element 
framework, the discrete solution uh is allowed to jump across element interfaces, exactly as in finite volume schemes. 



C. Escalante et al. / Journal of Computational Physics 394 (2019) 385–416 393
Within each control volume �i the discrete solution is written in terms of the nodal spatial basis functions �l(x) and some 
unknown degrees of freedom ûn

i,l:

uh(x, tn) =
∑

l

ûi,l�l(x) := ûn
i,l�l(x) , (17)

where l = (l1, l2) is a multi-index. As already mentioned before, the spatial basis functions �l(x) = ϕl1 (ξ)ϕl2 (η) are gen-
erated via tensor products of one-dimensional nodal basis functions ϕk(ξ) on the reference interval [0, 1], for which 
we have used the Lagrange interpolation polynomials passing through the Gauss-Legendre quadrature nodes. The trans-
formation from physical coordinates x ∈ �i to reference coordinates ξ = (ξ,η) ∈ [0, 1]d is given by the linear mapping 
x = xi − 1

2 �xi + (ξ�xi, η�yi)
T . With this choice, the nodal basis functions satisfy the interpolation property ϕk(ξ j) = δkj , 

where δkj is the usual Kronecker symbol, and the resulting basis is by construction orthogonal. Furthermore, due to this 
particular choice of a nodal tensor-product basis, the entire scheme can be written in a dimension-by-dimension fashion, 
where all integral operators can be decomposed into a sequence of one-dimensional operators acting only on the N + 1
degrees of freedom in the respective dimension.

In order to derive the ADER-DG method, we first multiply the governing PDE system (16) with a test function �k ∈ Uh

and integrate over the space-time control volume �i × [tn; tn+1]. This leads to

tn+1∫
tn

∫
�i

�k∂tU dx dt +
tn+1∫
tn

∫
�i

�k (∇ · F(U) + B(U) · ∇U) dx dt =
tn+1∫
tn

∫
�i

�kS(U)dx dt , (18)

with dx = dx dy. As already mentioned before, the discrete solution is allowed to jump across element interfaces, which 
means that the resulting jump terms have to be taken properly into account. In our scheme this is achieved via numerical 
flux functions (approximate Riemann solvers) and via the path-conservative approach that was developed by Parés and 
Castro et al. in the finite volume framework [73,74] and which has later been also extended to the discontinuous Galerkin 
finite element framework in [94–96]. In classical Runge-Kutta DG schemes [43], only a weak form in space of the PDE is 
obtained, while time is still kept continuous, thus reducing the problem to a nonlinear system of ODE, which is subsequently 
integrated with classical Runge-Kutta methods in time. In the ADER-DG framework, a completely different paradigm is used. 
Here, higher order in time is achieved with the use of an element-local space-time predictor, denoted by qh(x, t) in the 
following, and which will be discussed in more detail later. Using (17), integrating the first term by parts in time and 
integrating the flux divergence term by parts in space, taking into account the jumps between elements and making use of 
this local space-time predictor solution qh instead of U, the weak formulation (18) can be rewritten as⎛⎜⎝∫

�i

�k�l dx

⎞⎟⎠(
ûn+1

i,l − ûn
i,l

)
+

tn+1∫
tn

∫
∂�i

�kD− (
q−

h ,q+
h

) · n dS dt −
tn+1∫
tn

∫
�◦

i

(∇�k · F(qh)) dx dt+

+
tn+1∫
tn

∫
�◦

i

�k (B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
�i

�kS(qh)dx dt , (19)

where the first integral leads to the element mass matrix, which is diagonal since our basis is orthogonal. The boundary 
integral contains the approximate Riemann solver and accounts for the jumps across element interfaces, also in the presence 
of non-conservative products. The third and fourth integral account for the smooth part of the flux and the non-conservative 
product, while the right hand side takes into account the presence of the algebraic source term. According to the framework 
of path-conservative schemes [73,74,95,96], the jump terms are defined via a path-integral in phase space between the 
boundary extrapolated states at the left q−

h and at the right q+
h of the interface as follows:

D− (
q−

h ,q+
h

) · n = 1

2

(
F(q+

h ) + F(q−
h )

) · n + 1

2

⎛⎝ 1∫
0

B(ψ) · n ds − �

⎞⎠(
q+

h − q−
h

)
, (20)

with B · n = Bxnx + Byny . In order to achieve exactly well-balanced schemes for certain classes of hyperbolic equations with 
non-conservative products and source terms, the segment path is not sufficient and a more elaborate choice of the path 
becomes necessary, see e.g. [97–100]. In this work, we have and choose ψ the simple straight-line segment path for the 
variables h, η, u and p. In relation (20) above the symbol � > 0 denotes an appropriate numerical viscosity matrix. Fol-
lowing [95,96,101], the path integral that appears in (20) can be simply evaluated via some sufficiently accurate numerical 
quadrature formulae. We typically use a three-point Gauss-Legendre rule in order to approximate the path-integral. For a 
simple path-conservative Rusanov-type method [76,95], the viscosity matrix reads
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�Rus = smaxI, with smax = max
(∣∣λ(q−

h )
∣∣ , ∣∣λ(q+

h )
∣∣) , (21)

where I denotes the identity matrix and smax is the maximum wave speed (eigenvalue λ of matrix A · n, A = JF + B) at 
the element interface. In order to reduce numerical dissipation, one can use better Riemann solvers, such as the Osher-type 
schemes proposed in [101,102], or the recent extension of the original HLLEM method of Einfeldt and Munz [103] to general 
conservative and non-conservative hyperbolic systems recently forwarded in [78]. The choice of the approximate Riemann 
solver and therefore of the viscosity matrix � completes the numerical scheme (19). In the next subsection, we shortly 
discuss the computation of the element–local space-time predictor qh , which is a key ingredient of our high order accurate 
and communication-avoiding ADER-DG schemes.

3.2. ADER-DG space-time predictor

As already mentioned previously, the element-local space-time predictor is an important key feature of ADER-DG schemes 
and is briefly discussed in this section. The computation of the predictor solution qh(x, t) is based on a weak formulation 
of the governing PDE system in space-time and was first introduced in [63,64]. Starting from the known solution uh(x, tn)

at time tn and following the terminology of Harten et al. [104], we solve a so-called Cauchy problem in the small, i.e. 
without considering the interaction with the neighbour elements. In the ENO scheme of Harten et al. [104] and in the 
original ADER approach of Toro and Titarev [66–68] the strong differential form of the PDE was used, together with a 
combination of Taylor series expansions and the so-called Cauchy-Kovalewskaya procedure. The latter is very cumbersome 
or gets even unfeasible, since it requires a lot of analytic manipulations of the governing PDE system, in order to replace 
time derivatives with known space derivatives at time tn . This is achieved by successively differentiating the governing PDE 
system with respect to space and time and inserting the resulting terms into the Taylor series. Instead, the local space-time 
discontinuous Galerkin predictor introduced in [63,64], requires only point–wise evaluations of the fluxes, source terms and 
non-conservative products. For element �i the predictor solution qh is now expanded in terms of a local space-time basis

qh(x, t) =
∑

l

θl(x, t)q̂i
l := θl(x, t)q̂i

l , (22)

with the multi-index l = (l0, l1, l2) and where the space-time basis functions θl(x, t) = ϕl0(τ )ϕl1 (ξ)ϕl2 (η) are again generated 
from the same one-dimensional nodal basis functions ϕk(ξ) as before, i.e. the Lagrange interpolation polynomials of degree 
N passing through N + 1 Gauss-Legendre quadrature nodes. The spatial mapping x = x(ξ) is also the same as before and 
the physical time is mapped to the reference time τ ∈ [0, 1] via t = tn + τ�t . Multiplication of the PDE system (16) with 
a test function θk and integration over the space-time control volume �i × [tn, tn+1] yields the following weak form of the 
governing PDE, which is different from (18), since now the test and basis functions are both time dependent:

tn+1∫
tn

∫
�i

θk(x, t)∂tqh dx dt +
tn+1∫
tn

∫
�i

θk(x, t) (∇ · F(U) + B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
�i

θk(x, t)S(qh)dx dt . (23)

Since we are only interested in an element local predictor solution, i.e. without considering interactions with the neighbour 
elements we do not yet take into account the jumps in qh across the element interfaces, since this will be done in the final 
corrector step of the ADER-DG scheme (19). Instead, we introduce the known discrete solution uh(x, tn) at time tn . For this 
purpose, the first term is integrated by parts in time. This leads to

∫
�i

θk(x, tn+1)qh(x, tn+1)dx −
tn+1∫
tn

∫
�i

∂tθk(x, t)qh(x, t)dx dt −
∫
�i

θk(x, tn)uh(x, tn)dx =

−
tn+1∫
tn

∫
�◦

i

θk(x, t)∇ · F(qh)dx dt +
tn+1∫
tn

∫
�◦

i

θk(x, t) (S(qh) − B(qh) · ∇qh) dx dt. (24)

Using the local space-time ansatz (22) Eq. (24) becomes an element-local nonlinear system for the unknown degrees of 
freedom q̂i,l of the space-time polynomials qh . The solution of (24) can be easily found via a simple and fast converging 
fixed point iteration detailed e.g. in [63,105]. For linear homogeneous systems, the iteration converges in a finite number of 
at most N + 1 steps.

We emphasize that the choice of an appropriate initial guess q0
h(x, t) for qh(x, t) is of fundamental importance to obtain a 

faster convergence and thus a computationally more efficient scheme. For this purpose, one can either use an extrapolation 
of qh from the previous time interval [tn−1, tn], as suggested e.g. in [106], or one can employ a second-order accurate 
MUSCL-Hancock-type approach, as forwarded in [105], which is based on discrete derivatives computed at time tn . As 
alternative, one can also use a Taylor series expansion of the solution qh(x, t) about time tn and then use a continuous 
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extension Runge-Kutta scheme (CERK) in order to generate the initial guess for the space-time predictor, as recently pointed 
out in [107]. For details, see [107] and [108,109]. If an initial guess with polynomial degree N − 1 in time is chosen, it 
is sufficient to use one single Picard iteration to solve (24) to the desired accuracy, see [64]. For an efficient task-based 
formalism of ADER-DG schemes, see [110]. This completes the description of the unlimited high order accurate and fully 
discrete ADER-DG schemes.

3.3. A posteriori subcell finite volume limiter

In regions where the discrete solution is smooth, there is indeed no need for using nonlinear limiters. However, in the 
presence of shock waves, discontinuities or strong gradients, and taking into account the fact that even a smooth signal may 
become non-smooth on the discrete level if it is underresolved on the grid, we have to supplement our high order unlimited 
ADER-DG scheme described above with a nonlinear limiter.

In order to build a simple, robust and accurate limiter, we follow the ideas outlined in [69,70,111,112], where a novel 
a posteriori limiting strategy for ADER-DG schemes was developed, based on the ideas of the MOOD paradigm introduced 
in [79–82] in the finite volume context. In a first run, the unlimited ADER-DG scheme is used and produces a so-called 
candidate solution, denoted by u∗

h(x, tn+1) in the following. This candidate solution is then checked a posteriori against several 
physical and numerical detection criteria. For example, we require some relevant physical quantities of the solution to be 
positive (e.g. pressure and density), we require the absence of floating point errors (NaN) and we impose a relaxed discrete 
maximum principle (DMP) in the sense of polynomials, see [69]. As soon as one of these detection criteria is not satisfied, 
a cell is marked as troubled zone and is scheduled for limiting.

A cell �i that has been marked for limiting is now split into (2N + 1)d finite volume subcells, which are denoted by �i,s

and that satisfy �i = ⋃
s �i,s . Note that this very fine division of a DG element into finite volume subcells does not reduce 

the time step of the overall ADER-DG scheme, since the CFL number of explicit DG schemes scales with 1/(2N + 1), while 
the CFL number of finite volume schemes (used on the subgrid) is of the order of unity. The discrete solution in the subcells 
�i,s is represented at time tn in terms of piecewise constant subcell averages ūn

i,s , i.e.

ūn
i,s = 1

|�i,s|
∫

�i,s

U(x, tn)dx . (25)

These subcell averages are now evolved in time with a second or third order accurate finite volume scheme, which actually 
looks very similar to the previous ADER-DG scheme (19), with the difference that now the test function is unity and the 
spatial control volumes �i are replaced by the sub-volumes �i,s:

∣∣�i,s
∣∣ (ūn+1

i,s − ūn
i,s

)
+

tn+1∫
tn

∫
∂�i,s

D− (
q−

h ,q+
h

) · n dS dt +
tn+1∫
tn

∫
�◦

i,s

(B(qh) · ∇qh) dx dt =
tn+1∫
tn

∫
�i,s

S(qh)dx dt . (26)

Here qh is now computed with a well-balanced second order finite volume HLL method written as a Polynomial Viscosity 
Matrix and positive-preserving path-conservative method (see [72]).

Second order is achieved by using a TVD polynomial reconstruction procedure using the minmod slope limiter (see [113]) 
which takes into account the positivity of the water height (see [23]). The time evolution can either be achieved via a 
fully-discrete MUSCL-Hancock-type approach, or via a second order TVD Runge-Kutta method (see [114]).

Once all subcell averages ūn+1
i,s inside a cell �i have been computed according to (26), the limited DG polynomial 

u′
h(x, tn+1) at the next time level is obtained again via a classical constrained least squares reconstruction procedure re-

quiring

1

|�i,s|
∫

�i,s

u′
h(x, tn+1)dx = ūn+1

i,s ∀�i,s ∈ �i, and
∫
�i

u′
h(x, tn+1)dx =

∑
�i,s∈�i

|�i,s|ūn+1
i,s . (27)

Here, the second relation is a constraint and means conservation at the level of the control volume �i . In all troubled cells, 
in addition to the reconstructed degrees of freedom ûn+1

i,l of the DG polynomial, we also keep in memory the subcell finite 
volume averages ūn+1

i,s because they serve as initial condition for the limiter in case that a cell is troubled also in the next 
time step, see [69]. This completes the brief description of the subcell finite volume limiter used here. For more details, see 
[69,70,111].

Remark 5. The subcell finite volume limiter considered here is well-balanced for water at rest solutions, linearly L∞-stable 
under the usual CFL condition

�t < CFL
min(�x,�y)

, 0 < CFL ≤ 1
, |λmax| = max

{
|ui| +

√
ghi + pi + c2

}

|λmax| d i
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and positivity preserving for the water height. Note again that at the end of a time step in all troubled cells, both, the 
reconstructed degrees of freedom of the high order DG scheme as well as the subcell finite volume averages are kept in 
memory. In case a troubled cell is troubled also in the next time step, the subcell finite volume limiter will directly start 
from the previous subcell finite volume averages and not from the projected DG polynomial, see [69].

Remark 6. For the test cases, c is chosen proportional to a characteristic celerity as c = α
√

g H0, where H0 is the charac-
teristic depth of the medium. However, larger values of α result in a more restrictive CFL condition. In practice, numerical 
tests show that α = 3 is a good choice to keep a good balance between accurate numerical results and dispersion relations 
(see Figs. 1–2) and good computational performance.

3.4. Boundary conditions

For the numerical tests studied in the next section, boundary conditions (BC) are imposed weakly, by enforcing suitable 
relations at virtual exterior nodes, at each boundary. Periodic boundary conditions (as the computational domains of the 
cases studied here are rectangular) can be easily enforced by logically linking grid cells at periodic boundaries together.

Nevertheless, to mimic free-outflow boundary conditions, reflections at the boundaries might perturb the numerical 
solution at the inner domain. As in many other works (see [26,28,29,115] among others), this condition is sometimes 
supplemented here with an absorbing BC.

Periodic wave generation as well as absorbing BCs are achieved by using a generation/relaxation zone method similar 
to the one proposed in [115]. Generation/absorption of waves is achieved by simply defining a relaxation coefficient 0 ≤
m(x) ≤ 1, and a target solution U∗ .

Given a width LRel of the relaxation zone, the solution within the relaxation zone is then redefined to be

Ũi = miUi + (1 − mi)U∗
i

for every i in the relaxation zone. mi is defined as

mi =
√

1 −
(

di

LRel

)2

,

where di is the distance between the centre of the cells Ii the closest boundary. In our numerical experiments we set

L ≤ LRel ≤ 1.5L,

being L the typical wavelength of the outgoing wave. Absorbing BC is the special case U∗
i = 0, that will damp all the waves 

passing through.

4. Modelling of breaking waves and treatment of wet-dry fronts

As pointed out in [83], in shallow water flow complex events can be observed related to turbulent processes. One of 
these processes corresponds to the breaking of waves near the coast. As it will be seen in the numerical tests shown in the 
next section, the governing PDE system (4a) - (4d) cannot describe this process without an additional term that allows the 
model to dissipate the required amount of energy in such situations. When wave breaking processes occur, mostly close to 
shallow areas, two different approaches are usually employed when dispersive Boussinesq-type models are considered.

Close to the coast, where wave breaking starts, the simple shallow water equations propagate breaking waves under the 
form of a travelling shock wave at the correct speed, since kH is small, and energy dissipation of the breaking wave is also 
well reproduced by the shock. Due to that, the simplest way to deal with breaking waves in dispersive systems consists in 
simply neglecting the dispersive part of the governing equations, which means to force the non-hydrostatic pressure to be 
zero where breaking occurs. Due to that, this technique has the advantage that only a breaking criterion is needed to stop 
and start it. However, the main disadvantage is that the grid-convergence is not ensured when the mesh is refined, and a 
global and eventually costly breaking criterion should be taken into account, see e.g. [26].

The other strategy, that will be adopted in this work, consists in dissipation of breaking bores with a diffusive term. 
Again, a breaking criterion to switch on and off this extra dissipation term is needed. Usually, an eddy viscosity approach 
(see [83]) solves the matter, where an empirical parameter is defined, based on a quasi-heuristic strategy to determine 
when the breaking occurs. Usually, this extra diffusive term needs to be discretized implicitly due to the higher order spatial 
derivatives coming from the diffusion. Otherwise, it may lead to a severe restriction on the time step. As a consequence, 
a linear system has to be solved, losing thus computational efficiency. A new technique to overcome this challenge has 
been proposed in [23] for the non-hydrostatic pressure system derived in [22]. A similar idea is applied in this work for 
the case of two-dimensional domains. To do so, let us consider first the original hyperbolic-elliptic non-hydrostatic pressure 
system (1) and let us consider the vertical component of the stress-tensor:

τzz = 2ν∂z w,
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where ν(x, z, t) is a positive function. We use the same process as in [1], to depth-average the vertical component of the 
stress-tensor. By taking into account the incompressibility condition from (1) and that the vertical velocity has a linear 
profile within the fluid layer, as it was supposed in [1]:

η∫
−H

∂zτzz dz = 2ς
(

w + u∂x H + v∂y H
)
,

where ς = ∫ η
−H ∂zν is the eddy viscosity. In this work, as in [23,83] we choose ς to be

ς = −Bh|∂x(hu) + ∂y(hv)|,
where B is a coefficient related to the breaking criterion described below. Let us denote

Rb (U,∇U,∇H) = (
0,0,0,2ς

(
w + u∂x H + v∂y H

)
,0

)
.

Adding the proposed integrated viscosity terms to the vertical momentum equation of the system (1), and after the relax-
ation technique proposed in this work, the system reads

∂tU + ∇ · F(U) + B(U) · ∇U = S(U) + Rb (U,∇U,∇H) .

Note that the fourth component of Rb contains up to first order derivatives, and therefore the numerical scheme proposed 
in this work adapts straightforwardly to this new term. Moreover, for the case of a mild slope bottom, the fourth component 
of Rb reduces to −2B|∂x(hu) + ∂x(hv)|w .

Finally, a breaking criterion to switch on/off the dissipation is needed. A natural and simple extension of the criterion 
proposed by [83] to two space dimensions reads

B = 1 − ∂x(hu) + ∂y(hv)

U1
for |∂x(hu) + ∂x(hv)| ≥ U2.

Energy dissipation associated with wave breaking starts when |∂x(hu) + ∂y(hv)| ≥ U1 and continues as long as |∂x(hu) +
∂y(hv)| ≥ U2, where

U1 = B1

√
gh, U2 = B2

√
gh,

denote the flow speeds at the onset and termination of the wave-breaking process and B1, B2 are calibration coefficients 
that should be calibrated through laboratory experiments. In this work, as in [23,83], we use B1 = 0.5 and B2 = 0.15 for all 
the test cases studied.

The breaking mechanism employed in this work can be considered either with the breaking criterion given in [83], 
or with the one proposed in [26], which is more sophisticated but also computationally more expensive. Nevertheless, 
although we have chosen a fast and simple breaking criterion, the numerical tests in Section 5 will show that this technique 
performs adequately. Moreover, the simple breaking mechanism considered in this work corrects the classical overshoot that 
dispersive models present for the run-up of waves (see Fig. 9); it can deal well with hydraulic jumps (see Fig. 10); it ensures 
the grid convergence even if the breaking mechanism is dynamically switching on/off during the simulation (see Fig. 12).

Concerning the wet-dry treatment, the unlimited numerical solution obtained with the ADER-DG is checked against the 
condition

h < εDG , εDG = 10−3,

which means that for those cells with a water height less than a certain εDG , the cell is immediately marked as a trou-
bled cell, and a numerical solution is computed with the subcell finite-volume solver strategy described in Section 3.3
above. A wet-dry treatment, as described in [23,116], in regions with emerging bottom is considered in the finite-volume 
solver. No special treatment is required for the non-hydrostatic pressure, since in the presence of wet-dry fonts it vanishes 
automatically.

Note that at wet-dry fronts the bottom friction term τb may become stiff. Therefore, this term is discretized explicitly 
only in the unlimited ADER-DG solver, while τb is discretized in a semi-implicit way inside the subcell finite volume limiter, 
in order to deal with the potential stiffness of the bottom friction source term.

5. Numerical tests

In this section we show some numerical tests for the model (4a) - (4d) presented in Section 2, with the breaking and 
friction terms introduced previously. Since the numerical scheme presented here exhibits a high potential for data paral-
lelization, a parallel implementation of the numerical scheme has been carried out on GPU architectures. Some guidelines 
about the implementation are given in Appendix A.
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The chosen tests have already been widely studied in the literature on dispersive water waves modelling (see [23–25,
117,118,11,18,26,28,119,120]). Thus, this choice constitutes a proper way to validate the presented dispersive model and the 
numerical scheme with analytical solutions and real laboratory tests.

The first test aims at validating the mathematical model and the numerical scheme with a comparison against exact 
analytical solutions for the original dispersive system (1). The other four tests show that the proposed numerical scheme 
applied to PDE system (4) can properly simulate complex laboratory experiments, showing also comparisons of numerical 
results with real experimental data.

The quantities of the parameters concerning the following numerical simulations are expressed in units of measure 
of the International System of Units. The simulations are performed with a third order ADER-DG scheme (P2), except 
for the test where a systematic convergence analysis of the scheme is carried out, as well as for the computation of 
the GPU-performance tables. The limiting strategy presented in Section 3 is employed. The breaking mechanism is used 
with the parameters B1 = 0.15 and B2 = 0.5. The C F L number is set to 0.9 of the linear stability limit of the scheme. 
The gravitational acceleration is set to g = 9.81 in all tests. The artificial non-hydrostatic pressure wave speed c is set to 
c = α

√
g H, α = 3 for all test cases, except for the first test case where an analytical solution of the original system is 

studied, and thus α ∈ {5, 10}. For some experiments, hydrostatic simulations (SWE) will be computed to see the influence 
of dispersive/non-hydrostatic effects. To do that, α is set to zero.

5.1. Solitary waves

The propagation of a solitary wave over a long distance is a standard test of the stability and conservative properties 
of numerical schemes for weakly-nonlinear weakly-dispersive models ([1,22,27,28,83,121]). The analytical solution for the 
original system (1) consists of a solitary wave of amplitude A that travels at a speed of c A = √

g(A + H). In [1] analytical 
expressions for the Serre Green-Naghdi system can be found as well, and similar results can be obtained in this test case 
when γ = 3/2. For a quasi-exact solution of the hyperbolic system (4), see the next subsection 5.1.1.

5.1.1. Computation of quasi-exact solitary waves for the hyperbolic model
Since the analytical solitary wave solution of the original elliptic problem (1) is not the exact solution of the hyperbolic 

system (4), in this section we construct some quasi-exact solitary wave solutions for the proposed hyperbolic system. Let us 
consider a solitary wave moving along the x-axis at a constant velocity c A as in [1]. Therefore, a solitary wave solution of 
the system (8) depends only on the similarity variable

ξ = x − c At

l
, c A = √

g(A + H), l = H

√
A + H

H
,

i.e. we obtain U = U(ξ). Hence, the time and space derivative are given by

∂tU = − c

l
U′, ∂xU = 1

l
U′,

where the prime symbol denotes differentiation with respect to ξ . In the case of solitary waves, the proposed PDE system 
written in quasi-linear form (9) reduces to the nonlinear ODE system

(A(U(ξ)) − c A I)U′ = l · S(U(ξ)). (28)

After integrating the mass conservation equation, and imposing the asymptotic conditions

h(ξ) → H, u(ξ) → 0 when ξ → ±∞,

one can obtain the exact relation

hu = c A(h − H), (29)

and similarly, integrating the horizontal momentum equation and imposing the asymptotic condition p(ξ) → 0 when ξ →
±∞, the following relation holds:

hp = c2
a(h − H)

H

h
+ 1

2
g
(

H2 − h2
)

. (30)

Note that the horizontal velocity and the non-hydrostatic pressure have been solely expressed in terms of the water depth. 
Concerning the remaining equations in the system, they read

w ′ = −2l

c A H
p, (31)

h′ = −2lc2h
(

c2 + c2
A

H − 2c A
H2

2
+ 1

g
H2

+ 1
gh

)−1

w. (32)

c A H h h 2 h 2
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Fig. 3. Solitary wave of amplitude A = 0.2 and γ = 2 at t = 0, 50, 100, 150. P2 scheme.

Fig. 4. Comparison of the free surface at time t = 120 shifted by (x − c Ai t) m (blue) and initial condition (red) for the solitary wave of amplitude A = 0.2
and γ = 2. P2 scheme.

To obtain a quasi-exact solution, the nonlinear ODE system (31)–(32) can be solved in a numerical way up to any desired 
accuracy using a high order ODE solver with a rather small time step size. For this purpose could either use a classical high 
order Runge-Kutta scheme, or a high order time discontinuous Galerkin scheme as the one employed in [122,105]. Note 
that once the ODE system has been solved for h and w , the rest of the variables can be obtained from the exact relations 
previously obtained (29)–(30). In this work a classical fourth-order Runge-Kutta ODE solver has been employed with a small 
time step �ξ = 10−6 for the generation of the quasi-exact solution of the solitary waves of the hyperbolic system (8). In 
the following, we will consider this highly accurate numerical solution of the ODE system as exact solution of the problem.

5.1.2. Long-time evolution of a large amplitude solitary wave
In our first test we use the quasi-exact solution of the hyperbolic system (4) described in the previous subsection for 

γ = 2.
A solitary wave of amplitude A = 0.2 propagates over a constant still-water depth H = 1 in a channel of length 600 m 

along the x direction. The domain is divided into 600 cells along the x axis. Periodic boundary conditions are used. The final 
simulation time is t = 150 s. The artificial non-hydrostatic pressure wave speed c is set to c = α

√
g H, α = 5. Although the 

a posteriori limiter strategy is implemented, it does not detect any troubled elements, hence during the entire simulation of 
the solitary wave the pure unlimited ADER-DG scheme is used.

Fig. 3 shows the evolution of the solitary wave of amplitude A = 0.2 at different times using the ADER-DG P2 scheme. 
Figs. 4, 5, 6 and 7 show a perfect match between the numerical and the quasi-exact solution after a large integration time 
for the free surface, the horizontal and vertical velocities as well as for the non-hydrostatic pressure.

It is worth mentioning that excellent results are obtained with a spatial discretization of only �x = 1 m. In other works 
(see [23,31]) usually it was necessary to refine the grid substantially in order to maintain the correct amplitude of the 
solitary wave for large integration times. This especially occurs when flux limiters such as minmod ([23]) are present in 
the numerical scheme, resulting in an undesired clipping of local extrema. This makes the high order accurate DG schemes 
an appropriate framework for the propagation of dispersive water waves, and in particular, for solitary waves, see also the 
numerical results obtained in [54,56].
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Fig. 5. Comparison of the horizontal velocity u at time t = 120 shifted by (x − c Ai t) m (blue) and initial condition (red) for the solitary wave of amplitude 
A = 0.2 and γ = 2. P2 scheme.

Fig. 6. Comparison of vertical velocity w at time t = 120 shifted by (x − c Ai t) m (blue) and initial condition (red) for the solitary wave of amplitude A = 0.2
and γ = 2. P2 scheme.

5.1.3. Numerical convergence studies
To check the accuracy of the numerical scheme we propose a numerical test consisting in the propagation of a solitary 

wave of amplitude A = 0.01 m over a constant still-water depth H = 1 m in a channel of length 200.997 m along the x
direction. Periodic boundary conditions are used. The final simulation time is set to t = 63.855 s, which is the propagation 
time needed to make a complete cycle through the domain. The artificial non-hydrostatic pressure wave speed c is set to 
c = α

√
g H with α = 5. Although the a posteriori limiter strategy is active, it doe not detect any troubled elements, hence 

during the entire simulation of the solitary wave the pure unlimited ADER-DG scheme is used. Table 1 shows the computed 
L2 errors for the hydrodynamic variables h and hu, for different meshes and different polynomial approximation degrees of 
the DG scheme. The numerical test evinces that the theoretical convergence order is properly achieved by our scheme.

5.2. Solitary wave run-up on a plane beach

Synolakis [123] carried out laboratory experiments for incident solitary waves, to study propagation, breaking and run-up 
over a planar beach with a slope 1 : 19.85. Many researchers have used this data to validate numerical models. With this 
test case we assess the ability of the model to describe shoreline motions and wave breaking, when it occurs. Experimental 
data for the surface elevation are available in [123] at different times. The bathymetry of the problem is described in Fig. 8.
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Fig. 7. Comparison of non-hydrostatic pressure p at time t = 120 shifted by (x − c Ai t) m (blue) and initial condition (red) for the solitary wave of amplitude 
A = 0.2 and γ = 2. P2 scheme.

Table 1
L2 errors and convergence rates for the Solitary wave problem for the ADER-DG-PN

scheme. The errors have been computed for the variables h and hu and α = 5.

Solitary wave problem — γ = 2 — ADER-DG-PN

Nx L2 error h L2 error hu L2 order h L2 order hu Theor.

D
G

-P
2

30 1.12E-3 5.20E-5 — —

3
40 4.99E-4 2.38E-5 2.80 2.72
50 2.38E-4 1.09E-5 3.31 3.49
60 1.27E-4 5.44E-6 3.48 3.82

D
G

-P
3

30 1.23E-4 4.94E-6 — —

4
40 2.84E-5 9.77E-7 5.09 5.63
50 9.63E-6 3.12E-7 4.85 5.12
60 4.20E-6 1.35E-7 4.55 4.59

D
G

-P
4

15 5.00E-4 2.26E-5 — —

5
20 1.02E-4 3.99E-6 5.53 6.02
25 2.49E-5 8.25E-7 6.32 7.06
30 7.59E-6 2.19E-7 6.50 7.27

D
G

-P
5

10 8.70E-4 3.52E-5 — —

6
15 8.61E-5 3.18E-6 5.71 5.93
20 7.97E-6 2.60E-7 8.27 8.71
25 1.83E-6 5.42E-8 6.60 7.02

D
G

-P
6

10 2.54E-4 9.85E-6 — —

7
15 1.35E-5 3.94E-7 7.24 7.94
25 3.91E-7 1.09E-8 6.93 7.02
30 1.07E-7 3.06E-9 7.12 6.96

Fig. 8. Sketch of the bathymetry used for the solitary wave run-up onto a beach test problem.
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Fig. 9. Comparison of experimental data (red) and numerical simulation with the proposed hyperbolic system (4) including friction and wave breaking 
mechanism for γ = 2 (blue), γ = 3/2 (green) and the standard shallow water equations (black) at different times during the run-up. Between the vertical 
bars, the region where the breaking mechanism is active is shown.

Two solitary waves of amplitude A = 0.3, given by the exact solution of the original system (1) for γ ∈ {2, 3/2}, are 
placed at the location x = 20. This serves as initial condition for the free-surface elevation and all other flow quantities. 
A Manning coefficient of nm = 0.01 is used in order to define the glass surface roughness used in the experiments. The 
computational domain � = [−10, 40] is divided into 500 equidistant cells. Free-outflow boundary conditions are considered.

Fig. 9 and Fig. 10 show snapshots, at different times, t
√

g/H = t0 where H = 1, comparing experimental and simulated 
data for two different simulations with γ = 2, γ = 3/2, and for α = 0 which stands for hydrostatic simulations (SWE). 
Fig. 9 also shows where the breaking mechanism is active (region between the bars), and demonstrates the efficacy of the 
criterion used in this paper. Numerical results evince only very small discrepancies for both choices of γ = 2 and γ = 3/2. 
As expected, observing the dispersive relation (see Fig. 2) for the celerity, the system with γ = 3/2 tends to decelerate 
waves, and thus the slightly later arrival time of the wave. Simulations highlight the importance of dispersive effects when 
compared with hydrostatic simulations (SWE).

The breaking mechanism also works properly in terms of grid convergence, see Fig. 12, where the snapshots at times 
t
√

g/H = 15 (run-up) and t
√

g/H = 55 (run-down) are shown for different mesh sizes.
Finally, Fig. 11 represents the obtained numerical results when the breaking mechanism is not considered. In this case, 

a spurious overshoot of the wave amplitude appears, which underlines the importance to consider wave breaking in the 
context of dispersive non-linear shallow water models.

In addition, good results are obtained for the maximum wave run-up, where the friction terms play an important role. 
Note that no additional wet-dry treatment for the non-hydrostatic pressure is needed. This test shows that the proposed a 
posteriori limiting strategy, the chosen breaking mechanism, as well as the standard SWE friction term perform adequately 
for the proposed hyperbolic system. Moreover, the corresponding discretization is robust and can deal with the presence of 
wet-dry fronts correctly.

5.3. Periodic waves over a submerged bar

The experiment of plunging breaking periodic waves over a submerged bar by Beji and Battjes [124] is considered here. 
The numerical test is performed in a one-dimensional channel with a trapezoidal obstacle submerged. Waves in the free 
surface are measured in seven point stations S0, S1, . . . , S6 (see Fig. 13).

The one-dimensional domain [0, 25] is discretized with �x = 0.05 m, and the bathymetry is defined in the Fig. 13.
The velocity u and surface elevation η are set initially to 0. The boundary conditions are: free outflow at x = 25 m

and free surface is imposed at x = 0 m using the data provided by the experiment at S0. The data provided at S0 by the 
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Fig. 10. Comparison of experimental data (red) and numerical simulation with the proposed hyperbolic system (4) for γ = 2 (blue), γ = 3/2 (green) and 
the standard shallow water equations (black) at different times during the wave run-down.

Fig. 11. Comparison of experimental data (red) and numerical simulation with the proposed hyperbolic system (4) for γ = 2 (blue) and γ = 3/2 (green) at 
different times during the run-up, but without using a wave breaking mechanism.
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Fig. 12. Comparison of the free-surface location at times t
√

g/H = 15 and t
√

g/H = 55 for different mesh sizes using γ = 2.

Fig. 13. Periodic waves over a submerged bar. Sketch of the topography and layout of the wave gauges.

experiment is the free-surface ηS0(t) and the velocity uS0(t). Thus, we use as a target solution for the generating boundary 
condition (see Section 3.4)

h∗(t) = 0.4 + ηS0(t), u∗(t) = (t)uS0(t), w∗(t) = 0, p∗(t) = 0.

The first wave gauge S1 shows that the imposed generating boundary conditions are well implemented, since the match is 
excellent.

Fig. 14 shows the time evolution of the free surface at points S1, . . . , S6. The comparison with experimental data em-
phasizes the need to consider a dispersive model to faithfully capture the shape of the waves near the continental slope, 
according to the comparison between the hydrostatic (SWE) and non-hydrostatic results. Both amplitude and frequency of 
the waves are captured on all wave gauges successfully. Numerical results with the parameter γ = 3/2, that stands for 
the hyperbolic Serre-Green-Naghdi simulation, show a better fit with data at some wave gauges, where higher harmonics 
appear (e.g. in wave gauge S5).

5.4. Favre waves

Here we consider an experiment where a fluid layer with a free surface is impacting against a vertical wall (see e.g. [31,
125,126]). Due to dispersion, the reflected wave is a wave train of waves of different lengths and amplitudes (see Fig. 15), 
rather than a simple shock wave as predicted by the shallow water equations (SWE).

The one-dimensional computational domain is � = [0, 180] and we set H = 1. The impact velocity u0 is related to the 
relative Froude number F by the formula ([127])
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Fig. 14. Comparison of the time series of the experimental data (red) with the numerical solution of the new hyperbolic model (4) with γ = 2 (blue), 
γ = 3/2 (green) and the standard shallow water equations (black) at different wave gauges Si .

Fig. 15. Sketch of Favre waves.

u0 =
(

F − 1 + √
1 + 8F 2

4F

)√
g H . (33)

Hence, the initial condition for u is given by (33) and w = p = 0 as well as h = H . The final simulation time was t = 54 s.
Fig. 16 shows a comparison at time t = 54 for the Froude number F r = 1.35 for different mesh sizes and γ = 2. One can 

observe that the results for 250 and 500 elements are quite similar, hence good numerical results can be obtained also on 
reasonably coarse meshes.

It is well-known that above the critical value F r = 1.35, breaking waves arise (see [31,127]) and the model is not valid 
without a breaking mechanism. Fig. 17 shows the comparison between the experimental and the numerical results with a 
breaking mechanism included and without it. With wave breaking the obtained numerical results are in excellent agreement 
with the measured experimental data for both values of the parameter γ ∈ {2, 3/2}. Fig. 17 also clearly shows that the 
breaking mechanism only acts when and where it is really needed, since similar results with respect to the simulations 
without the breaking mechanism are observed for F < 1.35, where no wave breaking occurs in the experiments.

5.5. Plane solitary wave impinging on a conical island

The goal of this 2D numerical test is to compare the results of our new mathematical model for γ = 2, γ = 3/2 and 
α = 0 (SWE) with laboratory measurements for a two-dimensional problem. The experiment was carried out at the Coastal 
and Hydraulic Laboratory, Engineer Research and Development Center of the U.S. Army Corps of Engineers ([128]). The 
laboratory experiment consists in an idealized representation of Babi Island in the Flores Sea in Indonesia. The produced 
data sets have been frequently used to validate run-up models ([22,129]).

A directional wave-maker is used to produce planar solitary waves of specified crest lengths and heights. The set–up con-
sists in a 25 × 30 m2 basin with a conical island situated near the centre. The still water level is H = 0.32 m. The island has 
a base diameter of 7.2 m, a top diameter of 2.2 m and it is 0.625 m high. Four wave gauges, {W G1, W G2, W G3, W G4}, 
are distributed around the island in order to measure the free surface elevation (see Fig. 18).
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Fig. 16. Comparison of the numerical results with γ = 2 obtained at time t = 54 for the Froude number F r = 1.35. The numerical simulations are shown 
for different mesh sizes: 125 (blue), 250 (red) and 500 (orange) elements.

Fig. 17. Comparison between the experimental data (red asterisks) and the numerical results with a breaking mechanism (triangles) and without (squares). 
Blue colours stand for γ = 2 and green for γ = 3/2. The upper markers indicate the amplitude of the first wave; the lower show the amplitude of the 
trough after the first wave.

For the numerical simulation the computational domain is chosen as � = [−5, 23] ×[0, 28] with �x = 0.1 and �y = 0.1. 
Free outflow boundary conditions are imposed. As initial condition for η, u, w and p, a solitary wave of amplitude A = 0.06
centred at x = 0 is given. The wave propagates until t = 30 seconds and a Manning coefficient of nm = 0.015 is used.

The numerical simulation shows two wave fronts splitting in front of the island and collide behind it (see Figs. 23
and 24). Comparison between measured and computed water levels at gauges W G1, W G2, W G3, W G4 show good 
results (Fig. 20), as well as a comparison between the computed run-up and the laboratory measurement, see Fig. 19. Com-
parison between hydrostatic and non-hydrostatic simulations evince the importance of dispersive non-hydrostatic effects on 
this type of events.

Table 2 shows the execution times on an NVIDIA Tesla P100 GPU for α = 0 (SWE) and α = 3. For the non-hydrostatic 
simulations (α = 3), the computational results remain approximately equal for γ = 2 and γ = 3/2. In view of the obtained 
results, we can conclude that the non-hydrostatic code can achieve a good computational performance with an additional 
computational cost that is only at most 2.95 times the cost of a simple SWE simulation. This additional computational 
cost is similar to the one presented in [23], where the non-hydrostatic pressure system proposed in [22] was discretized 
with a second order hybrid finite volume–finite difference scheme, by solving a mixed hyperbolic-elliptic problem. The real 
highlight in this work is that the same low additional computational cost is maintained for any order of accuracy in space 
and time of the numerical scheme. Moreover, Fig. 21 shows that the computational time required to evolve a degree of 
freedom remains approximately constant when the order of the DG scheme is increased.
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Fig. 18. Sketch of the topography for the conical island test case.

As can be expected, almost all the execution time is spent in the space-time predictor kernel, which is communication-
avoiding and thus by construction ideal for parallel execution. Fig. 22 shows graphically the GFLOPS/s obtained in the CUDA 
implementation for the space-time predictor kernel. The code achieves 700 GFLOPS/s for big enough meshes. Theoretical 
maximum peak performance for the Tesla P100 is 4.761 TFLOPS in double precision, and therefore the code can achieve 
around 14% of this theoretical maximum peak performance value. Moreover, the GFLOP/s values obtained are rather inde-
pendent of the order of the scheme.

It can thus be stated that the numerical scheme used here is computationally efficient and can correctly simulate dis-
persive water waves with only a moderate computational overhead compared to the classical SWE model.

6. Conclusion

A new first order hyperbolic model for shallow non-hydrostatic free surface flows has been proposed in order to in-
corporate dispersive effects in the propagation of waves in a homogeneous, inviscid and incompressible fluid. For γ = 2
the presented model corresponds to a hyperbolic approximation of the dispersive system derived by Sainte-Marie et al.
in [1,21], while for γ = 3/2 a hyperbolic reformulation of the mild-slope approximation of the Serre-Green-Naghdi model is 
retrieved. The dispersion properties of our new hyperbolic system are close to those of the aforementioned original models. 
However, the big advantage of our new hyperbolic formulation is that it can be easily discretized with explicit and high 
order accurate numerical schemes for hyperbolic conservation laws, without requiring the solution of an elliptic problem in 
each time step, in contrast to the original PDE system proposed in [1,21] (see [23,93]).

The numerical scheme employed for the solution of the new model combines an explicit arbitrary high order accurate 
fully discrete one-step ADER-DG scheme with an a posteriori finite volume subcell limiter that is based on a robust path-
conservative HLL Riemann solver. The method is high order accurate in smooth regions and is well-balanced for the water 
at rest solution; it is by construction positivity preserving and stable under a usual CFL-type stability condition.

The new model is able to simulate properly the run-up and run-down process in wet-dry areas on the shore. Moreover, 
no numerical truncation for the non-hydrostatic pressure is needed in wet-dry areas, where the non-hydrostatic pressure 
vanishes.
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Fig. 19. Maximum run-up measured (red) and simulated with γ = 2 (blue) and γ = 3/2 (green) on a 200 × 200 cell mesh with the ADER-DG P2 scheme 
applied to the new hyperbolic model (4) proposed in this paper. For comparison, also the wave runup as computed by the standard shallow water equations 
(black) is shown.

Table 2
Execution times in seconds of the GPU implementation of the scheme for the new non-
hydrostatic model (4) with α = 3 and the standard shallow water equations (SWE).

Runtime(s) GPU — ADER-DG-PN

Nx × N y NH-model (4), α = 3 Shallow water Ratio

D
G

-P
1 100 × 100 7.29 4.85 1.50

200 × 200 47.09 29.02 1.62
300 × 300 147.88 70.04 2.11

D
G

-P
2 100 × 100 89.98 40.23 2.24

200 × 200 705.90 296.10 2.38
300 × 300 2323.79 932.51 2.49

D
G

-P
3 100 × 100 548.56 230.83 2.38

200 × 200 4446.10 1803.18 2.47
300 × 300 14496.71 5625.33 2.58

D
G

-P
4 100 × 100 4823.15 2285.85 2.11

200 × 200 19292.60 7874.53 2.45
300 × 300 43311.88 15692.71 2.76

D
G

-P
5 100 × 100 12078.85 4755.45 2.54

200 × 200 48315.39 16776.18 2.88
300 × 300 93600.83 36850.72 2.54

D
G

-P
6 100 × 100 29410.50 9836.29 2.99

200 × 200 117642.01 48814.11 2.41
300 × 300 364882.63 123689.03 2.95

D
G

-P
7 100 × 100 49100.24 18118.17 2.71

200 × 200 196400.97 88468.91 2.22
300 × 300 441902.18 206496.34 2.14

As it is well known, non-hydrostatic models need some additional dissipative mechanism for describing the effect of 
breaking waves, in order to accurately model their behaviours in coastal areas (see [23]). We have implemented a very 
simple and efficient breaking mechanism that performs properly in all numerical tests that have been carried out.

In order to allow simulations in real time or faster, an efficient GPU implementation of the numerical method has 
been carried out in the two-dimensional case. From a computational point of view, the non-hydrostatic code presents 
good computational times with respect to the standard shallow water equations discretized with the same scheme on the 
same GPU system. On fine meshes and with a third order accurate scheme, the wall-clock times needed for non-hydrostatic 
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Fig. 20. Comparison of experimental data time series (red) and numerical results for γ = 2 (blue), γ = 3/2 (green) and standard SWE (black) at wave 
gauges W G1, W G2, W G3, W G4 on a mesh composed of 200 × 200 elements using the ADER-DG P2 scheme applied to the new hyperbolic model (4)
proposed in this paper.

Fig. 21. Computational time (×10−6) to evolve a degree of freedom for a DG-PN scheme.

simulations with the new model proposed in this paper are at most a factor of 2.95 higher than the wall clock times needed 
for a simple shallow water model, but which is not able to capture the correct dispersion characteristics of non-hydrostatic 
water waves. A similar factor of the computational overhead for nonhydrostatic simulations w.r.t. SWE is obtained in [23]
for a second order accurate finite volume scheme. The great asset of the high order numerical scheme proposed in this 
paper is that this good computational factor compared to SWE is maintained for any order of the numerical scheme. In the 
same manner, the number of measured floating point operations (FLOPS) show a similar feature for any order of accuracy 
of the numerical scheme.
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Fig. 22. GFLOPS/s obtained for the space-time predictor kernel for several meshes and DG −PN schemes.

Fig. 23. Snapshot of the free surface profile at time t = 8.

Fig. 24. Snapshot of the free surface profile at time t = 10.

Our numerical experiments show that the new approach presented here correctly describes the propagation of solitary 
waves and is able to accurately preserve their shape even for very long integration times. In particular for solitons, high 
order DG type schemes are ideal due to their low numerical dissipation and dispersion errors and because the undesired 
clipping of local extrema, which is typical for second order TVD finite volume schemes, can be completely avoided.
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We have also provided numerical results and a detailed comparison with experimental data for more complex test 
problems in one and two space dimension. The comparison with experimental data requires to incorporate dispersive effects 
to capture faithfully wave propagation in the vicinity of the continental shelf, in particular involving complex processes such 
as wave run-up, shoaling, the appearance of higher harmonics and wet-dry areas. Numerical evidence has clearly shown 
that a simple shallow water model is not able to capture all these physical effects simultaneously, hence more sophisticated 
non-hydrostatic models are needed.

The proposed model and the numerical scheme presented in this work provide thus an efficient and accurate approach 
to model dispersive effects in the propagation of waves near coastal areas and intermediate waters.

Further research will concern a direct comparison of the new mathematical model proposed in this paper with the 
alternative hyperbolic reformulation of the Serre-Green-Naghdi (SGN) equations recently forwarded by Favrie and Gavrilyuk 
in [31].
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Appendix A. GPU implementation

We are also interested in the application of our algorithm to real-life problems, such as the simulation of channels, dam–
break problems, ocean currents, tsunami wave propagation, etc. Simulating those phenomena requires long time simulations 
in big computational domains. Thus, extremely efficient implementations are needed to be able to analyse those problems 
in low computational time.

The numerical scheme presented here exhibits a high potential for data parallelization. This fact suggests the design of 
an efficient parallel implementation of the numerical scheme. NVIDIA has developed the CUDA programming toolkit [130]
for modern Graphics Processor Units (GPUs). CUDA includes an extension of the C language and facilitates the programming 
on GPUs for general purpose applications by preventing the programmer to deal with low level language programming on 
GPU.

In this appendix, guidelines for the implementation of the numerical scheme presented in the previous sections are 
given. The general steps of the parallel implementation are shown in Fig. 25. Each step executed on the GPU is assigned to 
a CUDA kernel, which is a function executed on the GPU. Let us describe the main loop of the program.

At the beginning of the algorithm we build the main grid, that corresponds to the Cartesian finite element mesh {�i} as 
well as the finite-volume subcells {�i,S }, that we will call the subcell grid. For each element �i on the main grid we store 
the degrees of freedom of the variables h, hu, hv , hw and hp, in one array u of type double5.1 The bathymetry H is 
stored in another array of type double.

Once the data structure is created, the grids are initialized. To do so, we first compute the mean values from a given 
initial condition on the subcell grid and they are stored in a vector v0 of type double5. In a second place, the main grid is 
initialized via L2 projection of the initial condition onto the discrete approximation space of the DG scheme. Now the initial 
time step size �t is computed and the main loop in time of the algorithm starts, where the numerical scheme is iterated 
until the final simulation time is reached. A series of CUDA kernels will do the following tasks:

1. Space-time predictor and sum regular contributions: Each thread computes for each element on the main grid the 
degrees of freedom of the predictor solution qh . This kernel also computes the local regular contribution to each element 
following (19), avoiding the computation of the path-integral. This regular contribution (volume integral) is stored in u. 
Note that the kernel acts over each element �i of the main grid and is the most compute intensive but also the most 
parallelizable part of the proposed communication-avoiding numerical scheme.

2. Solve the Riemann-problems and sum jump contributions: In this step, the boundary extrapolated states at the left 
q−

h and at the right q+
h of the interface are computed from the degrees of freedom qh , obtained within the previous 

1 The double5 data type represents structures with five double precision real components.
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Fig. 25. Parallel CUDA implementation.

predictor kernel for each interface of a given element �i . After that, the path-integral is computed. Then, the value of 
the variable u is updated to include also the jump contribution:

u ← u +
tn+1∫
tn

∫
∂�i

�kD− (
q−

h ,q+
h

) · n dS dt.

3. A posteriori subcell finite volume limiter:
Let us give some brief ideas employed in the implementation of the subcell finite volume solver. It is clear that a 
kernel to project the DG polynomial onto the subcell grid must be implemented. The same applies for the reconstruction 
procedure. Also a third kernel to check the validity of the candidate solution computed with the unlimited ADER-DG is 
also needed. Note that, the third kernel can be launched whenever the projected values onto the subcell grid are already 
computed. Additionally, this third kernel can not be combined with the first one, since to check the validity of the 
numerical solution, the corresponding Voronoi neighbours are needed. Therefore, it is justified to split this procedure 
into at least three parts.
Another kernel to evolve the numerical solution with the finite volume solver is needed. In this case, the kernel will 
compute a numerical solution for a given marked �i,S of the subcell grid at the previous step, stored in v0 . We would 
like to remark that this procedure applied to two different elements �i,S , �′

i,S are completely independent. Thus each 
thread acts over different marked subcells independently.
Note that the finite-volume kernel only acts on a subset contained in the subcell grid, in particular the kernel acts over 
those subcells that are marked with the MOOD detector. The number of elements of the subgrid is changing along the 
simulation, since the number of troubled cells changes. Due to that, a kernel has been implemented that takes advantage 
of such a situation. Let us now describe the following kernels that define the steps during the a posteriori subcell finite 
volume limiter procedure:
• Projection: In this kernel, u that contains uh(x, tn+1) is projected onto the subcells and stored in an array of type
double5 v1 .

• A posteriori MOOD detection procedure: Each thread checks the relaxed discrete maximum principle, the positivity 
of the water height and the presence of floating point errors (NaN) within each cell �i . This kernel also uses v0.
To do so, an array of type int2 is defined on the main grid as ( f li, posi), being

f li =
{

1, if �i is detected as a troubled cell
0, Otherwise

, posi =
{

i, if f li = 1
−1, if f li = 0

• Counting troubled cells: In this step, a kernel is used to count the number of troubled cells, and it is stored in a
integer variable Mtroubled . To do so, we remark that:

Mtroubled =
∑

i

f li,

that is computed by applying a reduction algorithm in GPU, similarly to what is done in [131] and [132].
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Fig. 26. Troubled cells marking process. In a), an example of tagging. In b) and c) the array of integers posi before and after the Sorting troubled cells kernel.

• Sorting troubled cells: A sorting algorithm is applied to the vector posi . The algorithm separates positive from nega-
tive values. In that way, we can separate the marked index cells from the rest (see Fig. 26 to better clarify). To do so, 
we use the Thrust c++ library for CUDA.

• Finite volume solver: This kernel contains a finite volume solver that computes a numerical solution on the time-
dependent cluster formed by the marked subcells, whose indexes are ordered and stored in posi . Thanks to that, the 
kernel it is configured on the small grid that contains the troubled cells and acts in parallel over a smaller set of data. 
Note that with this procedure, no communication is needed for the computation of two different marked subcells. 
The results are stored in v1.

• Reconstruction: In this kernel, the degree of freedom of the DG polynomial, are reconstructed from the new computed
mean values v1 that contains the solution given by the finite-volume method at the previous step. This kernel, as the 
previous one, only acts on those subcells that are marked as troubled.

4. Element update and computing the local �tn+1
i : In this kernel the mean values are updated, v1 ← v0 , and a local �tn+1

i
is computed for each element of the main grid.

5. Computing the minimum of all local �n+1
i : Similarly to what is done in [131] and [132], the minimum of all the local 

�tn+1
i values is obtained by applying a reduction algorithm in GPU. This value shall be used as precomputed �tn+1 for 

the next step of the loop.
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