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ABSTRACT
MiniaturizedAutonomous SensoryAgents (MASAs) can play a pivotal role in smart cities
of tomorrow. From monitoring underground infrastructure such as pollution in water
pipes, to exploration of natural resources such as oil and gas. These smart agents will not
only detect anomalies, they are expected to provide sufficient data to facilitate mapping
the detected anomalies, while–cleverly–adopting their behaviour based on the changes
presented in the environment. However, given these objectives and due to MASA’s
miniaturization, conventional designingmethods are not suitable to designMASA.Onone
hand, it is not possible to use the widely adopted Simultaneous Localization andMapping
(SLAM) schemes, because of the hardware limitations on-board of MASA. Furthermore,
the targeted environments for MASA in a smart city are typically GPS-denied, hardly
accessible, and either completely or partially unknown. Furthermore, designing MASA’s
hardware and their autonomous on-line behaviour presents an additional challenge. In
this chapter, we present a framework dubbed as Evolutionary Localization and Mapping
(EVOLAM), which usesMulti-objective Evolutionary Algorithms (MOEAs) to tackle the
design and algorithmic challenges in using MASAs in monitoring infrastructure. This
framework facilitates offline localization and mapping, while adaptively tuning offline
hardware constraints and online behaviour. In addition, we present different types of
MOEAs that can be used within the framework. Finally, we project EVOLAM on a case-
study, thus highlighting MOEA effectiveness in solving different complex localization
and mapping problems.
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9.1 INTRODUCTION

Smart cities of today are realized, and envisioned to continue to be adaptive to
dynamically changing circumstances (Song et al., 2017). In other words, react-
ing to the system state optimally to provide high quality products and services to
its inhabitants; This should be achieved with the least possible consumption of
resources, while meeting other preset requirements. To realize this, a smart city
includes a huge mesh of sensors distributed over multiple systems. This huge
mesh includes static sensors and a wide range of possible active agents such
as Unmanned Air Vehicles (UAVs), Autonomous Underwater Vehicles (AUVs),
Autonomous Surface Vehicles (ASVs), Unmanned Surface Vessels (USVs) or
Remotely Operated underwater Vehicles (ROVs), in addition to kinetically pas-
sive agents such as Miniaturized Autonomous Sensory Agents (MASAs). This
network of sensors and robots are responsible for taking the adequate actions
to produce the close-to-optimal output given the current state of the system.
For example, MASAs may detect leakage while monitoring a water distribution
network, and this then leads to AUVs moving towards in order to stop it or at
least contain it. Consequently, all these agents must work together like a single
living organism, which is extremely challenging. Multi-objective Evolutionary
Algorithms (MOEAs) are a set of meta-heurstic algorithms that are suited for
such problems.

9.1.1 Monitoring Infrastructure

One application, in the context of smart cities, is monitoring infrastructures. It
is a critical task because it is linked to virtually most resources running in the
city such as sewage, water, gas and petrol. However, monitoring different types
of infrastructure presents hurdles. For example, most of infrastructure networks
to be monitored are typically vast, e.g. a water network. Consequently, relying
on static sensors in such scenarios is not efficient because it is extremely costly
due to installation costs. Furthermore, they are not easily reusable in different
environments and, thus, not adequate. In addition, many cities already installed
their infrastructure without setting up sufficient number of static sensors and
would still want to adopt smart control and monitoring. As a result, we project
an increase in the use of MASAs. These agents are re-usable for different
systems, e.g. water and waste pipes, moreover, they are usable indoors as well
due to their miniaturized size. And as stated earlier, this is typically realized
with the presence of other types of kinetically active agents (UAV, AUV, USV,
ROV etc.).

However, the use of MASAs in monitoring infrastructure present challenges:
Firstly, due to their scaled down size they are limited in resources. Specially,
it is expected that those agents would be operating for relatively long time, as
typical infrastructures are vast. This requires an optimization process on their
offline tunable attributes such as communication range and/or communication
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rate, in addition to their online behaviour, e.g. choosing adequate compression
based on the changes in the environment such as to use lossy compression when
the environment is not changing much, while using a lossless compression when
the environment is highly dynamic; This will lead to saving energy. In addition,
their small size and limited resources implies that localization techniques such as
simultaneous localization andmapping (SLAM) techniques are not a good fit due
to their need for relatively high communication and computational requirements,
which is not possible with small platforms.

Another challenge in monitoring infrastructures is that it requires multiple
agents with different designs, from kinetically active agents with platforms ca-
pable moving within the environment, to passive sensors only reacting to the
environment. And from relatively large ones, capable of conducting complex
tasks such as repair, to cm-sized sensors with high mobility such as MASAs.
Furthermore, in most cases, all these agents (sensors and robots) are manufac-
tured and designed independently without a particular standard. As a result,
this produces a heterogeneous system consisting of wide range of sensors and
robots embedded with completely different hardware architecture, and despite
their diversity, they must cooperate in harmony to achieve the set high level goal
of monitoring infrastructure.

In this last challenge, one solution is to use a centralized system, where all
agents are connected to a central control unit orchestrating the whole process.
However, this solution is not efficient: Firstly, it requires high volume com-
munication between the central control unit such as fusion center and all other
agents in the system, which is not possible due to energy constraints on MASAs
among other communication challenges. Secondly, in a centralized system, it is
preferred that the used agents are designed in a homogeneous fashion, which is
not usually the case.

On the other hand, using non-centralized systems that are working indepen-
dently and where the intelligence is distributed over different sub-modules in the
system is sub-optimal because it is not benefiting from the available data in each
sub-system.

9.1.2 State-of-The-Art

The problem of having a heterogeneous system of robots and sensors attempting
to achieve a high level objective while optimizing their available resources is
addressed in many currently running projects. One project that attempts to
tackle this problem is Smart and Networking UnderWAter Robots in Cooperation
Meshes (SWARMs)3.

In this project, researchers’ main objective is to offer solutions for expanding
the use of AUVs, ROVs, USVs . . . etc., in order to achieve the three fundamental
designs tasks in robotics: conception, planning and execution. Their targeted

3. http://www.swarms.eu/
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applications platform included maritime and offshore operations, however, in
achieving this goal they provided many solutions that are extremely helpful to
monitoring infrastructure such as the ROS based UUV simulator presented in
(Manhães et al., 2016).

Another project tackling this problem is dubbed as Phoenix4. In Phoenix,
researchers have found a middle ground between the use of centralized vs dis-
tributed solution to the heterogeneous agents problem by adopting a centralized
approach used only for localization and mapping. The rest of the system is
running in a distributed manner. Furthermore, they proposed conducting local-
ization and mapping offline in order to suite MASAs’ limited available online
resources. In that regard, they have defined what is dubbed as the Centralized
Offline localization and Mapping (COLAM) problem in (Schlupkothen et al.,
2018). Furthermore, they have proposed a framework, to solve this problem,
dubbed as Evolutionary Localization and Mapping (EVOLAM) framework in
(Hallawa et al., 2017, Schlupkothen et al., 2018).

In addition to conducting offline localization and mapping, EVOLAM offers
a methodology to conduct optimization of the tunable off-line and on-line pa-
rameters in MASAs using Evolutionary Algorithms (EAs), while attempting to
achieve a high level task such as detecting anomaly in an unknown environment.
This is a suited methodology for monitoring infrastructure in smart cities due to
the following available attributes:
• EVOLAMadopts EAs for optimization. This is suited for the problembecause

the mathematical formalization between the tunable parameters in MASAs
and the high level objectives is too complex and usually not available, i.e. it
is a blackbox optimization problem.

• EVOLAM conducts localization and mapping offline, which is suited for
MASAs limited available online resources.

• EVOLAM takes into consideration the reality gap associated with using a
simulation.

9.1.3 Chapter Organization

Despite the fact that this chapter focuses on the of EAs for localization and
mapping for infrastructure monitoring, the chapter first presents the EVOLAM
framework, as it is the general layout that facilitates the use of MOEAs for
this presented problem. The chapter, further, highlights the different types
of MOEAs that can be adopted within this framework. Thus, the chapter is
organized as follows: Firstly, a formal definition of the COLAM problem is
presented in the next section. Afterwards, in Section 9.3 we shed light on the
EVOLAM framework. This is followed with a dedicated section (Section 9.4) on
the different types of MOEA possible to be used within EVOLAM. Finally, we
project the framework on an illustrative problem, which is defined in Section 9.5.

4. https://phoenixh2020.wordpress.com/
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Moreover, results are shown in Section 9.5.5 and finally, Section 9.6 concludes
the chapter with closing remarks.

9.2 CENTRALIZED OFFLINE LOCALIZATION AND MAPPING

In the definition of COLAM problem, it is assumed that a group of agents are
inserted to an environment E with the objective of collecting map-based data
to obtain information about it. An environment contains a Region of Interest
(ROI), which defines the domain of the required information. For example, an
environment can be an underground river, and a ROI can be one branch of this
river. Each agent i inserted in the environment collects a set of measurements
at different time instances k, i.e. mi,k , and undergo two-way time of flight
ranging with each surrounding agent j, within range, to facilitate localization,
i.e. collecting distance di, j ,k . It is important to highlight that due to lack
of resources of the used agents, they can not perform online localization and
mapping. Furthermore, the information about the environment they are exploring
is very limited, i.e. the exact boundaries of the ROI is not known.

The collected measurements are then processed in order to produce an esti-
mated environment Ê. This environment includes an estimated ROI on which
an estimated mapping function M̂x̂, p̃ is defined. This function relates estimated
physical properties p̃ such as pressure or temperature with estimated positions x̂.
The main objective is to close the reality gap between the estimated environment
Ê and the true explored environment E. The objective can be formulated as
follows:

min
c

∫
ROI

Φ

(
M̂x̂(c), p̃(c) (x),M(x)

)
dx, (9.1)

where Φ is a function to evaluate a metric that reflects the difference between
the estimated map M̂x̂(c), p̃(c)(x) and the real oneM(x) over the ROI, c is the
tunable configurations of the used agents, e.g. communication range. To achieve
this objective presented in (9.1), many other sub-objectives have to be tackled.
Firstly, the estimation of ROI–since it is unknown–has to be as close as possible
to the real ROI. This can be achieved by having an accurate localization process,
which is function of the agents’ configuration (x̂(c)). Furthermore, the measured
readings mi,k , which produces the estimated physical properties p̃ must be as
close as possible to the real one. This estimation process is function of the agent’s
configuration ( p̃(c)). In addition, the mapping accuracy plays an important role,
because it is not possible to gather all readings in all position in ROI. Mapping
is used to generalize the information of the estimated physical properties on the
whole ROI based on the collected measurements from the environment. Finally,
since the reason we applied localization and mapping offline is mainly driven
by the fact that the used agents have limited resources, then localization and
mapping must be conducted with the least consumption of resources as possible.

EVOLAM framework is designed to help achieve all this objectives using
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MOEAs. In the next section we give an overview on its constituting blocks.

9.3 EVOLUTIONARY LOCALIZATION AND MAPPING (EVOLAM)

In this section we shed light on what is dubbed as EVOLAM. This framework
is designed to conduct optimization on MASA while fulfilling a monitor or in-
vestigation task on an unknown environment. This may include, not exclusively,
detection of different anomalies such as pollution levels. In this section we start
with an overview of the framework going through it block by block. Despite the
fact that EVOLAM is dedicated to solve COLAM, there are further assumptions
set in order to ensure that EVOLAM is sufficiently general and thus can be used
on wide range of scenarios. These assumptions are as follows:

1. The environment under investigation is unknown, i.e. very limited informa-
tion about it is known beforehand (including ROI).

2. The environment under investigation is too complex to explore without opti-
mizing the used agents.

3. The environment under investigation is GPS denied.
4. The used agents are limited in resources.

It is important to highlight that EVOLAM facilitates the use of MOEAs as
it fits the problem definition, however, it does not specify which MOEA to use,
details regarding the MOEA block in EVOLAM is in Section 9.4. Next the an
overview on EVOLAM is presented.

9.3.1 EVOLAM Overview

A block diagram of the framework is shown in Figure 9.1. The framework starts
with a real run where the agents are inserted in the unknown environment. Since
we are dealing with a completely unknown environment, it can not be assumed
that we can establish a simulating environment without conducting first one real
run on the real environment.

Furthermore, the settings of the tunable parameters of the agents used in
this exploratory run are picked with the objective to gather as much as possible
information that would help in establishing a rough estimate of the real envi-
ronment. Thus, the objective of this first real run is not to detect anomalies,
since the agents are not optimized yet to do that, and the general assumption
is it will not be possible to detect fully such anomalies without optimizing the
agents adequately for this task. Thus, the main objective of this real run is to
help establishing a rough estimate of the environment’s general properties to be
able to create a simulation for it. For obvious reasons, this real run is followed
by post processing.

It is important to highlight that we do not assume that this alone will be
able to fulfill the task of producing an estimate for the environment. However,
as stated in the introduction, we assume that this system is used on wide range
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Post Processing
A post processing procedure
conducted on the gathered
date from the extracted
agents from the
environment. 

Knowledge Base
The knowledge base includes
different types of knowledge
accumulated from solving
previous problems and
information gathered from
experts.

Real Run
In the first run, this step is used as an
exploratory run in order to gather data to
produce an estimation of the environment.
For further runs, this process allows newly
optimized agents by MOEA to collect new
data from the environment. The
assumption is these agents are better at
exploring the unknown environment. 

MOEA
Multi-objective Evolutionary Algorithm used to optimize different
tunable parameters of the agents in order to make them better
at exploring the real environment. A stopping criteria must be
set to end further generation being produced.  

Simulation
Running simulations with the
agents optimized by MOEA
on the estimated
environment. 

Fitness
Estimation
Calculating the values of
the set objectives for each
solution in the population
proposed by MOEA. One
possible objective could be
the difference between the
newly estimated
environment in the virtual
loop by the evolved agents
and the environment used
by the simulator. 

Mapping
Mapping gathered data
based on localization and
projecting it on the
environment. This step may
lead to producing a new
estimated environment. 

Localization
The process of estimating
the position of all agents. 

Agents
Realization
Realization of the agents with
the latest optimized
parameters produced by
MOEA. Thus, preparing the
newly optimized agents for
another real run. The objective
is to use the more prepared
agents for gathering new
relevant data from the real
environment.   

Environment Estimation 
In the process an estimation of the environment is established. This is done with the help
of the accumulated knowledge from previous real runs and the knowledge base. This step
is followed by a check on the reality gap, i.e. difference between all gathered data from the
real environment and latest estimated environment. If this reality gap is acceptable by the
user, then EVOLAM is terminated, if not, we proceed further. 

Check Reality
Gap

Start End

Check Stop
Criteria 

Virtual
Loop

FIGURE 9.1 EVOLAM Block Diagram

of applications to decrease costs. Consequently, it is valid to assume we would
have a knowledge base accumulated by running the systemmultiple times, which
as a result can provide with some data that can help establishing a simulating
environment along with the collected data from the environment.

The next block is a check reality gap block. This block is designed to check
how good is our estimated environment relative to the real one. In other words,
is the gap between the real collected data and the estimated environment is close
enough to stop and exit the system or not? Obviously, in the first run, this will
return false because we do not have any thing to compare it with. This "false"
state will trigger the initialization of the virtual loop.

The virtual loop objective is to find the best agent configurations to de-
tect the unknown environment anomalies while performing well relative to pre-
determined objectives and/or constraints such as energy consumption ormapping
accuracy. The virtual loop consists of five steps: Multi Objective Evolution-
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ary Algorithm (MOEA), simulation, off-line localization, mapping, and finally
fitness estimation. Next we shed light on each module in the virtual loop.

9.3.2 MOEA

Due to the importance of this block, the next section is dedicated to cover different
MOEAs. Generally, MOEAs belongs to the family of Evolutionary Algorithms
(EAs). EAs are a general purpose meta-heuristic set of algorithms. These
algorithms are well suited for non-convex optimization problems. Furthermore,
EA has proven to perform well on black-box optimization problems, where
the mathematical formalization between the tunable parameters and the defined
objectives is not available. Needless to mention that our targeted set of problems,
i.e. exploring unknown environments with recourse limited agents, fall under
the black-box optimization category.

9.3.3 Simulation

The objective of this block is to run simulations with the agents optimized by
MOEA on the estimated environment. The simulation process will then used
for further analysis on the performance of the proposed solutions by MOEA.
However, simulation is one of the challenging parts EVOLAM because fluid
dynamics are extremely complex to model and most simulators fall between too
complex but slow, and too simplified but fast. One possible tool for Computation
Fluid Dynamics (CFD) is OpenFOAM5. OpenFOAM is open source and free.
However, having OpenFOAM in the loop is computational exhaustive. Another
possibility is to use Robot operating System (ROS)6.

9.3.4 Localization

The localization is essential in the sense that without accurate positioning in-
formation, the measurements recorded by the agents are of very limited use.
To ensure localizability in the case of pipeline or groundwater applications,
the agents are equipped e.g. with ultra-sonic transceivers with facilitate ToF
measurements among agents. However, a global localization based on agent-
to-agent measurements is not possible unless sufficient beacons are present in
the system. These beacons are usually static and with known absolute position,
such that the relative distance-based information gathered via ToFmeasurements
among beacons, is enriched by agent-to-beacon measurements. These beacons
provide, due to their known absolute position, references for the localization
process. Consequently, a successfully and accurate localization in an unknown
environment requires an optimization of:

5. https://www.openfoam.com/
6. http://www.ros.org/
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• The number of beacons and their positions, as graph-theoretical constraints
must be met to ensure global localizability.

• The number of agents, as too few beacons in some areas of the environments
can be compensated to some extend by more agent-to-agent measurements.

• The agents’ transmit power, as connectivity plays a pivotal role to ensure
localizability.
The localization itself is obtained in the fusion center after all environment

and time-of-flight measurements have been gathered. Thus, requiring efficient
algorithms that are able to handle large scale optimization problems.

9.3.4.1 Measurement Model
The inaccuracy as introduced by the nature of time-of-flight measurements, is
subsequently be modeled as:

d̃i, j = di, j + η, η ∼ N
(
0, σ2

η

)
, (9.2)

where the actual distance di, j is computed from the the ToF measurements

di, j =
vs

2
(
τi→j + τj→i

)
, (9.3)

where vs is the speed of the signal in the considered medium and τi→j is the ToF
of the signal from i to j.

9.3.4.2 Motion Model
In the localization, the motion of the agents is assumed to follow a stochastic
motion model which is derived from limited-order kinematics. More precisely,
the following state vector is consider for each agent at time instance k:

xk =
[
xk yk vk φk ωk

]ᵀ
, (9.4)

where speed v and heading angle φ are defined in continuous time by

v(t) =
√
Ûx2(t) + Ûy2(t), φ(t) = arctan

(
Ûy(t)
Ûx(t)

)
. (9.5)

Under the assumption that the acceleration and angular acceleration is zero-
mean Gaussian, the following non-linear state evolution model can be derived
(Li and Jilkov, 2003):

xk = f (xk−1) + νk (9.6)

=



xk +
2vk
ωk

sin[ωkT
2 ] cos[φk + ωkT

2 ]

yk +
2vk
ωk

sin[ωkT
2 ] sin[φk + ωkT

2 ]

vk
φk + ωkT

ωk


+ νk, (9.7)
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where process nooise νk is zero-mean Gaussian with covariance matrix

Σν = blkdiag

[
diag

[
σ2
x, σ

2
y

]
, T2σ2

Ûv , σ
2
Ûω

[
T 3

3
T 2

2
T 2

2 T2

] ]
. (9.8)

9.3.4.3 Maximum a Posteriori Optimal Localization
Under the assumption of the above mentioned models, which are henceforth
rewritten in terms of density functions

p
(
d̃i, j

�� xi,xj

)
= N

(
di, j, σ2

η

)
(9.9)

p
(
xi,k

�� xi,k−1
)
= N ( f (xk−1) ,Σν) , (9.10)

the followingMaximumaPosteriori optimal localization problemcan be derived:

X̂MAP = arg max
X0:K

p
(
X0:K

��� D̃1:K

)
(9.11)

= arg max
X0:K

p
(
D̃1:K

��� X0:K

)
p (X0:K ) (9.12)

= arg max
X0:K

[
K∏
k=1

p
(
D̃k

��� Xk

)] [
K∏
k=1

p (Xk |Xk−1)

]
p (X0) (9.13)

= arg max
X0:K

K∑
k=1

∑
(i, j)∈E

log p
(
d̃i, j

�� xi,xj

)
+

K∑
k=1

∑
i∈A

log p
(
xi,k

�� xi,k−1
)
+

∑
i∈A

log p
(
xi,0

)
,

(9.14)

where Xk:l is the collection of all agents’ state vectors for the time period k to
l. Moreover, D̃k:l is the collection of all measurements in the same time period
and A is the set of all agents Equation (9.14).

9.3.5 Environment Mapping

Topology mapping based on localization is presented in literature in many works
such as (Kim et al., 2010, Kortenkamp and Weymouth, 1994) and (Thrun and
Bücken, 1996). However, in all these works there is the assumption that the used
agents for mapping are not restricted in terms of on-line resources. For resource
constrained cases, one widely used scheme in mapping is Vietoris–Rips (VR)
complex. This is adopted in (Ahmed et al., 2015) and (Dirafzoon et al., 2014).
In our work, (Hallawa et al., 2017), we conducted modifications on VR-complex
(dubbed as Trajectory Incorporated VR complex (TIVR) and used it for mapping
in the context of MASA and COLAM. In our adaptation of VR-complex, we
took into consideration the trajectory of the agents as part of the simplex itself.
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Generally, we start the mapping process given a set of position estimates
p̂i,t ∈ R

d from all agents i and at all time instances t from the localization
process. Then, we introduce the following:

V = { p̂i,t | ∀i,∀t}, Ti = {( p̂i,t, p̂i,t+1) | ∀t} (9.15)

whereV is the input vertex set and Ti set with the edges defining the estimated
trajectory of agent i. As a result, the neighboring vertices set can be defined as:

S
d,ε
i =

{
arg max
∆⊆V

|∆|

��� ∀u, v ∈ ∆,u,v, ‖u−v‖2 ≤ ε} (9.16)

which is the set that includes all vertices where the pairwise distance among them
is at most ε , i.e. all distances between agents that are less that ε . Consequently,
the set of all these neighbor set is denoted as VH =

⋃
i S

d,ε
i . The map is then

defined via the four-tupleM = (VH,T ,H,w), where T =
⋃

i Ti is the union
of trajectory edges, motivated by TIVR, H =

⋃
iHi and w : Sd,ε

i → R is the
weight function for each neighbor set Sd,ε

i . Moreover, Hi ⊆ R
d is the convex

hull of the points in Sd,ε
i : Hi = Conv(Sd,ε

i ).
Moreover, it is important to include certainty in mapping, because ending

the virtual loop may rely on it. One obvious assumption is to set more agent
dense spaces in the reconstructed map with higher certainty relative to less
dense spaces. Consequently, we have introduced introduce a weight (certainty)
function w as follows:

w(S) =
1
2

∑
(u,v)∈S2 ,u,v

‖u − v‖−1
2 (9.17)

Therefore, the final output map will be in the form of weighted hull represent-
ing spaces where the agents have explored including their trajectory, in addition
to weights reflecting certainty for each of these hulls.

9.4 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS (MOEAS)

In this section we give a quick overview on general typers ofMOEAs. Generally,
given k objective functions and j variables, the multi-objective problem can be
formalized as follows:

max/min {F1, . . . ,Fk} (9.18a)
s. t. d ∈ D (9.18b)

where {F1, . . . ,Fk} is the set of objective functions, d is a decision vector, and
D is the variable space, where D ⊂ Rj . Note that:

(F1(d), . . . ,Fn(d)) ∈ O (9.19a)
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where O is the objective space, where O ⊂ Rk and k > 2. To project this in
monitoring infrastructure usingMASA, the set of objectives could beminimizing
the consumed energy, and minimizing the localization error, while the decision
vector could include the range of each used agent and the ranging frequency for
example. Abstractly, the main objective of any MOEA is to produce a Pareto
front while:

1. Minimizing the distance to the true Pareto front (PF convergence)
2. Covering diverse parts of the Pareto front (PF diversity)

To achieve these objective there are many approaches, next we highlight some
of the widely used approaches.

9.4.1 Dominance-Based MOEA

This category of MOEA uses dominance to decide which solutions are more fit
than the other, which generally in EA context affects the production of the next
generation of solutions. Generally, using dominance can be categorized into tree
groups: Dominance rank, dominance count, and dominance depth.

In dominance ranking, the fitness is calculated based on how many solu-
tions are dominating the solution under investigation. This has been adopted in
MOGA as shown in (Murata and Ishibuchi, 1995) for example. On the other
hand, in dominance count the fitness is based on counting the number of solu-
tions which the solution under investigation is dominating. This is adopted for
example in Strength Pareto Evolutionary Algorithm (SPEA) and its modified
version in (Zitzler et al., 2001, Kim et al., 2004). In dominance depth, the fitness
of a solution is based on which front the solution is located on. One popular
algorithm based on dominance depth is Non-dominated Sorting Genetic Algo-
rithm 2 (NSGA-2) shown in (Deb et al., 2002). Generally, dominance depth
has proven superiority in performance over dominance rank and count, this is
reflected on literature state-of-the-art. In our case-study in Section 9.5, we use
NSGA-2 in the MOEA block in EVOLAM.

9.4.2 Indicator-Based MOEA

Modern MOEA literature proposed the use of indicators rather than dominance
for comparing solutions. The idea behind using indicator is MOEA is to trans-
form the Mutli-objective problem to a single objective problem by using this
indicator as its fitness. Two widely adopted indicators are Hypervolume (HV)
and R2 indicators.

To understand the HV indicator, an example is presented. In Figure 9.2, four
solutions (S1 . . . S4) are given. Each color represent the HV space each solution
is contributing relative to a reference point. In this example we are dealing with
2d, thus the HV space is simply a rectangle. The HV indicator represents the
added HV space by a certain solution. For example, if we remove S2 the overall
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FIGURE 9.2 Hypervolume example

HV of the set of solutions will not be affected compared to S4 for example. Note
that the dotes square is not the HV itself but the added HV by that solution to the
overall Pareto front. As shown, this indicator captures both diversity and fitness.
In fact, only HV is known to be strictly monotonic, in other words, if given two
sets of solutions m and n, where m is strictly dominating n, then HV indicator of
m, IHV (m), will always be greater than IHV (n) as shown in (Beume et al., 2009,
Zitzler et al., 2007, Emmerich et al., 2005).

HV indicator suffer from two main problems: It is computationally demand-
ing with high number of objectives, and it has a bias w.r.t. regions with knee
shaped form relative to other regions as presented in (Brockhoff et al., 2012).

On the other hand, the R2 indicator is from the R indicator family presented
in (Hansen and Jaszkiewicz, 1994). The R2 indicator uses utility functions that
are faster to calculate, and less biased. Literature is rich with R2 indicator based
algorithms and their analysis such as in (Zitzler and Künzli, 2004, Brockhoff
et al., 2012)

Furthermore, there are other indicator based algorithms such as IBEA pre-
sented (Zitzler and Künzli, 2004), but they are less popular because they are out
performed by HV and R2 indicator based algorithms.

9.4.3 Other Approaches

There are a lot of other approaches such as decomposition. This approach is
based on the idea of transforming the multi-objecitve problem to to multiple
single objective problems. One widely used example is (MOEA/D), which
is introduced in (Zhang and Li, 2007). Furthermore, Non-dominated Sorting
Genetic Algorithm III (NSGA-3), which adopts the idea of decomposition along
with non-dominated sorting as shown in (Mkaouer et al., 2015).
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9.5 CASE-STUDY

Agents Exploring the Environment (12m×12m)

1

1 6 11 21

2 7 22

3 8 13 2318

4 9 14 2419

5 10 15 2520

12 17

16

Possible Beacon Position (5 × 5)

FIGURE 9.3 Case-Study Environment

In this section we introduce the case-study. It is an illustrative problem we
are using to project EVOLAM on and highlight its properties. Generally, the
problem is exploration of an underground environment to detect changes exerted
on an island in themiddle of the a flow as shown in Figure 9.3a. The environment
area is 12m × 12m. This environment is chosen for tests purposes for several
reasons: Agents’ trajectories have dynamic behaviour w.r.t. longitudinal and
angular velocities, and acceleration. In addition, agents physically split in the
environment into two different groups which makes the localization a more
challenging task. Finally, the island has an irregular shape, which makes the
mapping procedure more challenging. Next we formally define the problem
statement.

9.5.1 Problem Statement

In this case-study, the objective is to reconstruct the original map (Figure 9.3)
using a swarm of agents and a set of placed beacons. These beacon positions
can take one or more of the possible available locations as shown in Figure 9.3b.
Thus, the procedure goes as follows:
• Agent swarms are injected into the unknown environment (see Figure 9.3)
• There are two possible off-line tunable parameters on each agent and beacon:

Ranging rate fr and communication range R and both can not exceed fr ,max
and Rmax, respectively.

• A set of beacons can be placed on the environment in one or more preset
positions (bp,max positions spread equally on the environment).

• The number of used agents on the environment na is tunable and has to be
between na,min and na,max .
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• The number of used beacons nb is tunable and has to be between nb,min and
nb,max .

• The positions of the beacons bp is tunable, but chosen from one or more of
the possible bp,max positions on the environment.

• The problem has two objectives: Decreasing agent’s energy (E(R, fr ,na, bp)),
while increasing environment mapping quality (Fmap(Ê)).

It is important to highlight that agent’s energy E(R, fr ,na, bp) is directly associ-
ated with the tunable parameters R, fr , na, bp , while mapping quality (Fmap(Ê))
is indirectly associated with them via localization. In addition, beacon positions
bp plays a pivotal role on the quality of localization and consequently mapping.
Therefore, the objective of EVOLAM is to tune R, fr , na, nb and bp in order to
produce the Pareto front w.r.t two objective: Agent energy E(R, fr ,na, bp) and
mapping quality (Fmap(Ê)). Formally, the problem is defined as follows:

max
fr ,R,na ,nb ,bp

Fmap(Ê) and min
fr ,R,na ,nb ,bp

E(R, fr ,na, bp) (9.20a)

s. t. na,min ≤ na ≤ na,max (9.20b)
nb,min ≤ nb ≤ nb,max (9.20c)
bp ∈ {1, . . . , bp,max}

nb (9.20d)
fr ≤ fr ,max, R ≤ Rmax (9.20e)
Ei(R, fr ,na,nb) ≤ Emax, ∀i = 1, . . . ,na (9.20f)

Next we formally define the objective functions: Agent energy and mapping
quality.

9.5.2 Objective Functions

The objectives considered in this work account for the mapping quality Fmap and
the total energy consumption. Firstly, we define the swarm energy consumption
by:

E(R, fr ,na, bp)=
na∑
i=1

∑
t

ni,t (na, bp, fr ) · Tr · pt (R)︸                                ︷︷                                ︸
Ei (R, fr ,na ,bp )

, (9.21)

where R is the communication range in meters, na is the number of agents and
bp the position vector of beacons. Note that nb is implicit in bp . Moreover, Tr
is the period of a single ranging pulse, fr is the rate describing how frequently
rangings are performed, ni,t is the number of ranging partners of agent i and time
t and pt (R) is the transmit power required to achieve communication range R.
In order to calculate the transmit power, the following equation has been used:

pt (R) = pr ,min · 10
1

10αR (9.22)
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where α is the attenuation coefficient and pr ,min is minimum receive power
needed by the receiver for ranging. On the other hand, for mapping quality
Fmap(Ê), we adopted F1-score proposed by (Powers, 2011). One reason behind
this choice is that F1-score is capable of capturing both precision and recall of
the mapping process. In our adaptation of the F1-score we assume the part of
the environment with the fluid to be the area of interest, thus Fmap(Ê) is set as
follows:

Fmap(Ê) =
2|E f ∩ Ê f |

2|E f ∩ Ê f | + |E f̄ ∩ Ê f | + |E f ∩ Ê f̄ |
(9.23)

where E is the actual environment including both area of interest and non-
interest, e.g. a fluid are E f and non-fluid area E f̄ . On the other hand, Ê is the
estimated environment which includes both the area classified as fluid Ê f and
the one classified as non-fluid Ê f̄ . In the next section, we discuss the adopted
MOEA.

9.5.3 Adopted MOEA

In this work we adopted multi-objective Non-Sorting Genetic AlgorithmNSGA-
2. The reason behind the use of NSGA-2 in theMOEAmodule is that the number
of objectives is exactly two, swarm power and mapping quality. NSGA-2 does
not perform well with objectives higher than two.

For the settings of NSGA-2 we adopted a population 20 individual per gener-
ation and ran all simulations with fixed computational budget of 15 generations,
i.e. total number of evaluations per Pareto front is 225 (20 × 15) evaluations.
For cross over and mutation, we used the Simulated Binary Crossover (SBX)
operator explained in (Agrawal et al., 1995) and polynomial mutation operator.

Each solution offered byNSGA-2 adaptation answers the following questions:
1. How many agents (na) to be used for exploring the environment?
2. How many beacons (nb) to be placed in the environment?
3. What are the positions of each beacon?
4. What is the agents’ and beacons’ ranging range (R), given that it is the same

for all agents and beacons?
5. What is the agents’ and beacons’ ranging rate ( fr ), given that it is the same

for all agents and beacons?

9.5.4 Simulation

All simulations are conducted on MATLAB and Table 9.1 summarizes the sim-
ulation settings and NSGA2 initialization parameters. Furthermore, for commu-
nication between agents, no considerations regarding interference or multi-path
is assumed. In addition, regarding mapping, the mapping technique presented
in Section 9.3.5 is adopted, and for simplicity all non-zero weight regions are
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TABLE 9.1 Simulation Parameters

Parameter Value Note

ε 2m Mapping threshold, (9.16)
α 0.22dB/m Attenuation coefficient (9.21) (Pinkerton, 1949)
σx 3.2 × 10−1cm Std. dev. in covariance matrix Σν (9.8)
σy 7.1 × 10−1cm Std. dev. in covariance matrix Σν (9.8)
Swv 3.2 × 10−3cm/s2 PSD of Ûa(t) (9.8)
Swω 3.2 × 10−2rad/s2 PSD of Ûω(t) (9.8)
σ2
η 0.01m Std. dev. of measurement noise (9.2)

na ,min, na ,max 4, 10 Min./max. number of agents
nb ,min, nb ,max 2, 24 Min./max. number of beacons

bp ,max 25 Max available beacon positions
Rmax 200cm Maximum communication range

classified as fluid region.

9.5.5 Results

In this section we highlight the results. As explained, we have tested EVOLAM
on a mapping task for environment shown in Figure 9.3 with different alowed
upper limit for the used beacons nb,max : From 2 beacons to 24 beacons
as shown in Table 9.1. It is important to mention that we used steps of
2 when setting the values of maximum number of beacons, i.e. nb,max =

{2,4,6,8,10,12,14,16,18,20,22,24}. Consequently, the final output of the sim-
ulations is a Pareto front with 15 solutions for each possible nb,max , thus 12
Pareto fronts in total. Each of these Pareto fronts has evolved over 20 genera-
tions, i.e. 20 runs on the virtual loop. Each solution on this Pareto front includes
a value for each of following parameters: Agents’ ranging range R, agents’ rang-
ing rate fr , number of agents to be used na, number of beacons to be used nb and
the position for each beacon of the nb beacons. Please note that all position are
chosen from the 25 available positions distributed equally on the environment.

Figure 9.4 presents the Pareto optimal front for environment Figure 9.3 across
different nb,max and interpolated over the rest of the nb,max axis to generate
a surface for visualization purposes (green surface). Furthermore, the figure
includes a projection of Pareto front surface on the three planes to help with the
analysis.

Furthermore, Table 9.2 summarizes solutions from five Pareto fronts (at
nb,max = 2,8,14,20,24) out of the produced 12. From each Pareto front we
present six solutions from the 15 solutions proposed by MOEA after 20 gen-
erations. It is important to highlight that n̄s is the average of time instances,
where rangings with surrounding agents has been established within the com-
munication range R. Form Figure 9.4 and Table 9.2 the following points are
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FIGURE 9.4 Energy-Mapping Quality Pareto Front with different nb ,max

concluded:
• The Pareto front is well distributed w.r.t the objectives (Energy and mapping

quality), which is a positive indication regarding the performance of MOEA
as it shows it was able to capturing diversity adequately.

• The mapping quality reaches values up to 66.8% (solution 24a in Table 9.2)
and swarm power can go as low as 1.7 mW (solution 2f in Table 9.2).

• The areas with high swarm power consumption is associated with the areas
with high nb,max and high mapping performance, which is consistent with
theoretical grounds of the problem.

• Diversity range between mapping quality and swarm power consumption for
each nb,max shifts in a non linear fashion, e.g. at nb,max = 14.

• MOEA did not always converge to solutions where all the available nb,max

are used. It proposed less nb for solutions associated with low swarm power
e.g. solutions 24e, 24f. Furthermore, in some cases it proposed solutions
with less nb but with better positions, which lead to higher quality mapping,
e.g. solutions 8a, 14a, 20a and 24a.

• MOEA proposes different beacon positions, and thus exploits the symmetric
nature of the environment, e.g. solution 2c vs 2f in Table 9.2.

As explained in Section 9.4, MOEA has a stochastic nature thus a performance
analysis, therefore it is important to highlight that this whole process of gener-
ating the 12 fronts (one front per nb,max) was performed 15 times in order to
analyze statistically. In that regard, the performance metric hypervolume indi-
cator highlighted in (Zitzler et al., 2007) is adopted. The indicator reflects the
consistency of the convergence properties of the Pareto optimal front, and the
diversity of the front. Table 9.3 has the summary of the indicator mean and
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TABLE 9.3 Hypervolume indicator mean and variance for 15 runs

Environment Hypervolume Indicator
Mean [%]

Hypervolume Indicator
Variance [%]

2 Beacons 65.23 3.2
8 Beacons 71.23 2.2
14 Beacons 78.45 3.4
20 Beacons 81.3 4
24 Beacons 81.4 4.3

variance performance. The relative point chosen is (0.9,2).

9.6 CONCLUSION

In this chapter we shed light on the use of evolutionary algorithms for localiza-
tion andmapping for monitoring infrastructure in smart cities using miniaturized
autonomous sensory agents. Firstly, we started with an overview on what we
envision as the role different agents and robots can play in smart cities. Specif-
ically, their role in infrastructure inspections for detecting anomalies such as
pollution. Afterwards, we presented a framework dubbed as Evolutionary Lo-
calization and Mapping (EVOLAM), highlighting how it works and how each
block contributes to the overall objective(s). The framework facilitates the use of
Multi-objective Evolutionary Algorithm (MOEA) in localization and mapping.
In that regard, a special focus was given on the use of MOEA. In a dedicated
section, we highlighted the taxonomy of different MOEA paradigms highlight-
ing different algorithms and their variations. Finally, we projected EVOLAM on
case-study. Results show how effective the framework and the use of MOEA in
solving such a complex mulit-objecitve problem.
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