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I	

Abstract:  

This thesis deals with the energy saving in smart building with focus on the 

impact of the user behaviour on the energy consumption. The problem of 

human behaviour modelling has been widely studied in the state of the art, but it 

is still an open problem in the field of smart building since the stochastic nature 

of the behaviour is difficult to be accurately represented by numerical tools. An 

interdisciplinary approach is proposed in order to identify the suitable user 

features from the psychological and social point of view and to integrate such a 

representation into a DSS for appliance scheduling and energy cost reduction. 

The proposed method has exploited location-based features of the users in 

order to represent their habits and needs and to compute the schedules that 

maximize the user acceptance toward an “energy-aware” behaviour. The 

obtained results point out a reduction of the peak-to-average ratio higher than 

40% also considering the user constraints imposed by their presence into the 
building.  

 

Keywords:  

Smart building, energy saving, decision support system, behaviour modelling, 
behaviour change program. 
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Thesis Outline  

The thesis is organized as follows: In Chapter 2, the influence of user behavior 

on the energy consumption in smart building is introduced. Then, Chapter 3 

presents the user features selected to represent the user behavior. The results 

of the performance analysis are also discussed in Chapter 3. Finally, some 
conclusions are drawn in Chapter 4. 
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1. INTRODUCTION 

	

Over the last years, the smart building has become one of the most challenging 

issues in today’s framework of smart cities and communities. Many factors 

impact on the development of a smart building and one of the most unexplored 

is the understanding of the users’ behavior that has direct consequences on the 
energy consumptions. 

Understanding the users’ behavior is fundamental for the design of smart 

buildings and in particular for the adaptive control and calibration of the energy-

hungry plants of the building like the heating, ventilation, and air conditioning 

(HVAC) system or the lighting system that are regulated according to the user 

needs and habits. The problem of user behavior understanding and modelling 

has been addressed with different approaches in the state of the art and from 

different disciplines. However, the occupants’ behavior in smart buildings has to 

be more deeply investigated since it influences how and how much the energy 

is consumed to ensure high comfort standards and environmental quality 
[36][37].  

The human behavior has to be considered starting from the very beginning of 

the smart building design. In this framework, ergonomics approaches with focus 

on the user impact on the energy consumption have been considered in the 

state of the art. The first category of approaches has investigated the reaction of 

occupants to the comfort conditions in the building and has proposed solutions 

to encourage the occupants to self-regulate the properties of the indoor 

environment. The user responsibility of the comfort control became an effective 

mean to increase the satisfaction of the users, but on the other hand reduced 

the building efficiency. Consequently, a second category of approaches arose 

to focus the attention on the practical understanding of the occupants’ behavior 

during everyday life and to increase the awareness of occupants about the 

positive and negative impacts of their behavior on the energy efficiency of the 
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building. The basic idea is to make the users responsible of the building 

systems management and provide feedback about the consequences of their 
actions to stimulate virtuous behavior [49].  

Starting from these considerations, further research is required to investigate 

the behavioral models and the behavioral changing programs based on 

psychological and behavioral aspects of the users in order to identify the key-

features of the behavior that mostly impact on the efficient management of the 

building. Even if the user behaviour is one of the most important parameters 

influencing the building’s performance, the extent to which users affect the 

energy consumption is largely unknown. The scientific approaches to this topic 

often remain limited to partial and simple aspects of the user–building 

interaction. Moreover, the proposed solutions rarely consider an integrated 

multi-disciplinary approach, by integrating the physical and social sciences [72], 

which is fundamental for the proper fusion of the engineering aspects of the 

building design with the social and psychological basics of human 
understanding [100]. 

In this context, the main objective of this thesis is twofold: (i) to analyze the 

characteristics of the user behavior that affect the energy efficiency of buildings, 

modelling presence, absence, and activities in the rooms, and (ii) to optimize 

the daily profiles of energy demand suggesting the user actions with focus on 
the usage of the household appliances.  

The modelling of the user behavior through few and representative key-features 

as well as the behavior changing strategies are fundamental for the design of 

decision support systems (DSSs) that implement a user-centric approach for 
energy efficiency through the suggestion of the energetically virtuous actions. 
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2. INFLUENCE OF USER BEHAVIOUR ON ENERGY EFFICIENT BUILDINGS  

	

2.1 SMART BUILDING DESIGN AND HUMAN BEHAVIOR 

A smart building delivers services to the occupants at the lowest cost and 

environmental impact over the building lifecycle. Information technologies are 

used during operation to connect a variety of building subsystems so that they 

can share information to optimize the total energy saving performance. Modern 

buildings contain complex mechanical devices, sophisticated control systems 

and a suite of features to improve the safety, comfort and productivity of 
occupants.  

However, the building efficiency degrades without the intelligent interaction and 

involvement of the users, and such an involvement is often modeled in a 

simplistic way by designers and device manufacturers. The buildings are 

designed to perform on the basis of standard rules and schemes, defined under 

controlled conditions and predefined assumptions about the occupants 

behaviors. In fact, the designers take into account during the construction phase 

of the building a “standard” interaction of the occupants with the building and a 

“standard” behavior of consumers. They slightly consider that the user could 

behave in many different ways far from the standard rules. For these reason, it 
is inevitable that the energy consumptions are different from the expectation.  

In this sense, the state of the art presented in [57][58][59] stated that building 

occupants’ behavior and their activities are among the most important factors 

that determine relevant fluctuations in actual energy consumption respect to the 

planned one. The use of simplified methods to quantify the impacts of 

occupants’ behavior on the building energy performance has significantly 

contributed to the accurate simulation of the building model and the 

improvement of the management as well as the prediction of the power 

consumption. For example, the simplification of the occupant’s behavior has 
been addressed in [60] through a stochastic modelling of the user actions. 
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However, the integration of qualitative approaches and behaviour models driven 

by data is even more important to support the design and operation of low-

energy buildings taking in consideration the real effects of the occupants and 

not only a statistical or simplified version. Therefore, it is important to introduce 

the human factors, that includes some variables that are not observable such as 

the influence of the people in the some contest, norms, attitudes related to 

energy, motivation, trust, concerns regarding the environmental, in a building’s 

design to better understand how the buildings actually works and how the users 
are involved with building and control strategy [49][73]. 

A common limiting factor of the existing approaches for human behavior 

modelling is that the occupants are processed at the same level of the other 

technical factors of the building. In this regard, the ergonomics discipline pays 

attention on the user-driven perspective of the smart building design. Such a 

discipline considers that humans are linked in many different ways to a dynamic 
environment, including physical and psychological relationship with the building. 

It has to be underlined that the human behaviour can be defined as a collection 

of factors, activities, and preferences that in most of the cases do not fit the 

predefined models since the occupants tend to follow the easiest and quickest 

option, not always compliant with the energy saving best practices. As a 

consequence, the building that has been designed assuming standard occupant 

profiles operates with performance far from the expected targets. K. Kant [38] 

has identified some important aspects of smart intelligent infrastructures to keep 
in mind, in order to understand human behavior in relation to the resource use: 

1. demand Shaping; 

2. user Compliance; 

3. social Influence; 

4. behavior Shifting. 



	

5	

The first aspect refers to some non-coercive mechanisms, such as the demand 

sensitive pricing and provide appropriate feedback that influence the use of 

resources. The demand sensitive pricing is actually a mechanism that does not 

have long-term influences if used without further mechanisms, as well as 

provide feedback that sometimes cause the opposite effect. This means again, 

that users are influenced by many factors at the same moment and different 

people can be effected by different things. The second aspect, refers to 

possibility to extent the compliance of customer with monitoring the user 

behavior. The problem in this case is that the people may not feel comfortable, 

knowing that it is being monitored and that does not allow to create customized 

systems to reduce the energy consumption. The third relevant aspect are the 

social influence that guide the human behaviors in form of imitation and 

conformance or on the opposite. It is difficult to create a general model by 

measuring this aspect and furthermore, compliance does not necessarily imply 

a reduction in consumption: if around me the users consume more, social 

influence may lead to increase my own consumption. The last aspect is the 

behavior shifting over the time in the use of the resources. This aspect is really 

difficult to predict and understand, since it depends from many human behavior 
issues not so clear until now. 

The need of a realistic and effective modelling of the users’ behaviour is rather 

acknowledged and this thesis aims to propose an approach that estimates the 

occupants’ behaviour as an adaptive model based on the real presence and 
location of the users throughout the building. 
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2.2 USER BEHAVIOUR MODELS  

From a psychological point of view, many theories have dealt with various 

aspects of the human behavior, some of them can be considered in the analysis 

of intelligent buildings. Therefore, the "intelligent buildings" are places among 

the "objects" that cooperate in order to provide an optimal service to the user 

through a more comfortable and efficient life conditions. From a technological 

point of view, intelligent buildings have solved many problems in the last 30 

years, but the issue of user behavior, the possibility of modifying it to make it 
more efficient needs to be investigated in depth. 

Given the increasingly urgent need to use energy more efficiently, to reduce 

energy waste, and to make optimal use of the building plants, the investigation 

of behavioural models plays a fundamental role since a "smart building" cannot 

exist without "smart users". It is not possible to create optimal conditions for any 

occupant because different users apply different strategies even in identical 

situations. According to the "social practice theory", considered more in detail 

below, the habits of humans derive from a variety of interconnected elements 

(e.g., mental and physical activities, norms, ideas, use of technology, etc.) that 
form the daily actions of people [3][4][5].  

Such actions can be driven by leveraging on exogenous factors like information 

about products energy consumption, product prices, or people attitudes and 

values. Typically, the actions are considered linked to the behaviours through 

cause-effect relationships with the assumption that the users take rational 

decisions, or that the behaviours are a consequence of user attitudes [97][98].  

In order to introduce some behavioral theories, it is important to underline the 

concept of "learning". Learning means a change in human behavior that 

depends on the interaction with the environment and is the result of human 

experiences that create new configurations of response to external stimuli. The 

stimuli are all those interactions that are perceived by the body that lives in 
interaction with the environment.  
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The relationship between the organism and the environment depends on a third 

variable that is the context. The context is the set of events that are the 
background to a specific situation [96]. 

From the beginning of the ‘900, psychologists began to affirm that the explicit 

behavior of the individuals is the only aspect that can be scientifically studied 

and analyzed within psychology, using the stimulus (i.e., the environment) and 

the response (i.e., the behavior) method introduced for the first time by the 

psychologist John Watson [1] as “behaviorism”. The behaviorism has expanded 

the vision of psychology, that is no longer limited to the study of consciousness, 

as occurred until the early 20th century, but is focused on the observable 
behavior with the main goal to predict and control the behavior.  

 

 

Figure 1. Behaviorism approach and the “stimulus and response method”. 

 

Although the behavioral vision can be considered revolutionary and has 

changed the vision of psychology, it has some limitations. For example, as 
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shown in Figure 1, the external stimuli are considered the only driving force of 

behavior and the symbolic world is not considered. According to this viewpoint, 
the human mind is only a system that provides answers to external stimuli. 

Successively, with the birth of Neo-Behaviorism the human mind has taken a 

more active role in exploring the environment and elaborating the acquired 

knowledge. This means that the interaction between the individual and the 

environment also depends on the "intervening variables", such as the 

psychological conditions, the cognitive map, and the expectations, as shown in  
Figure 2. 

 

 

Figure 2. Neo-Behaviorism approach and the “Intervening variables” in the interaction 
stimulus and response. 

 

The birth of the Neo-Behaviorism in social psychology has allowed to expand 

the concept of stimulus and response introduced by behaviorism, creating the 

basis of social learning theory and the development of the term “modelling” 
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more investigated from the Cognitivism, introduced by the psychologist Ulric 

Neisser in the ’70 and reviewed in more recent years by Albert Bandura. The 

modelling identifies a learning process that is activated when the behavior of an 

individual changes according to the behavior of another individual who acts as a 

model. People learn by observing behavioral patterns, but the representation of 

behavioral models is challenging given the complexity linked also to the 

interaction between individuals and the environment. Such interaction is difficult 

to be represented and predicted because on one hand humans influence the 

environment where they live, on the other hand they are influenced by the 
environment itself [2].  

The comparative feedback represents another example of behaviour modelling 

with reference to the energy domain [106]. The comparative feedback exploits 

the energy past usage to model the future behaviour of users and to estimate 

the potential energy saving. Such a model also represents a persuasive tool 

that can be used to stimulate virtuous energy behaviour. An example of 

comparative feedback model is represented by the energy audit. In this case, a 

detailed report about the energy usage is provided also pointing out the 

potential savings that can be achieved changing the consumption patterns, for 

example modifying the appliance schedule respect to the past actions and 
habits of the users. 

As defined by neo-behaviorism, the behavior processes information through the 

mind, which is seen as an intermediate element between behavior and the 

cerebral activity. The information coming from outside is processed returning 

the output in the form of knowledge representation. More in detail, the human 

behavior is the result of the information processing passing through a set of 
mental processes that are not scientifically recognizable, as shown in Figure 3.  
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Figure 3. Cognitivism approach and the “Cognitive Structures” in the interaction 
stimulus and response. 

 

According to Bandura, the behavior of the users is influenced mainly by the 

expectations that one has respect to the abilities [96]. Many psychological 

theories have been addressed during the years in order to better understand 
the human behavior related to the energy consumption.  

For example, the behavioral research has identified in the past years some 

reasons of such complexities that make consumers not following the energy 

saving advices. It is indeed true that energy consumption could be reduced by 

following few simple rules (for example, switching off the lights) and modifying 

some daily behavior [41][42]. Therefore, it would be appropriate to create 

behavioral programs to change these attitudes. Toward this end, it is 

fundamental to understand how psychological, contextual, and social factors 

are correlated, directly or indirectly, with the energy-efficient behaviour, and to 

clarify how to change the reasons that prevent consumers from modifying their 
own behavior. 

COGNITIVISM
O
U
T
P
U
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Numerous researches have shown that the user's behavior depends not only on 

economic reasons, but in particular on numerous psychological, social, 

environmental and physical stimuli that push the user to seek a condition of 

comfort within the environments in which they live and work. Figure 4 reported 

in [110] shows schematically the role of user behavior on the use of energy 
resources in smart buildings. 

The main attention has been directed towards technological improvements, 

while ignoring the human dimension. Nowadays, the knowledge of the influence 

of occupant behavior on building system design and energy retrofit is 

insufficient. This limited understanding of occupant behavior lead to inaccurate 

estimation of building energy performance and building energy simulations.   

Figure 4 shows how occupant behavior impacts on building operation with 

effects on the usage and costs of energy. Both short-term and long-term effects 

on occupant behavior are triggered by this process through multiple factors 

including psychological, physiological and economic factors (short-therm) and 

confer and culture factors (long-term). Therefore, occupant behavior and 
building performance are highly coupled, with multiple feedback loops.  
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Figure 4. Modelling of user behaviors in smart buildings context. 

 

In order to integrate the occupant behaviour into the analysis of the building 

performance, the numerical modelling of the aforementioned features of the 

behaviour is required. A model is by definition a description or a simplification of 

the reality. Accordingly, a model of the occupants’ behaviour can be considered 
an approximation of actual, measured, and surveyed behavior.   

Some examples of behavioural models and theories available in the state of the 

art are summarized in the following sub-sections. Moreover, a summary of the 

main advantages and drawbacks of the illustrated models is pictorially reported 
in Table 2. 
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2.2.1 THORGERSEN AND GRONHOJ MODEL 

Thorgersen e Gronhoj [61] investigated that energy consumption in residential 

buildings, and in particular within families, strictly depends on motivational and 

structural elements determined by the family habits. The behaviour among the 

family members impact on the effort spent by the individuals to reduce power 

consumptions because higher the confidence of the individual on that behaviour 

and higher the success rate. Other elements affecting the behaviour are the 

expectations and the value given by the user to that action, also in terms of 

quality of the results obtained by other users who applied that behaviour.   

The authors in [61] underlined most of the key-concepts of the socio-cognitive 

theory formulated by Bandura [65]. This theory has pointed out the main factors 

that influence each other and that determine the uniqueness of the humans. 

The relations among such factors are schematically represented in Figure 5, in 

the so-called “mutual triadic determinism”.  

 
Figure 5. Mutual triadic determinism. 

	

Such a representation points out that the human personality derives from the 

complex interactions among the physical and social environment, the cognitive 

and affective systems, and the individual behaviour. Each factor applies a 
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causal influence on the others leading to mutual correlations that change with 

the variability of the context. Accordingly, the human actions act both as 

stimulus and feedback of the unique personality. 

 

 
Figure 6. Thorgersen and Gronhoj model. 

 

In Figure 6, the individuals learn from the obtained outcomes updating 

continuously the expectations and the perception of the self-efficacy. In this 

sense, Thorgersen e Gronhoj [61] have underlined that the behaviour can be 

modified providing more environmental enablers and modifying the expectations 

toward the desired actions [62][63][64]. 

 

2.2.2. ENERGY CULTURE FRAMEWORK 

The so-called “Energy culture framework” [76][77] has been developed by a 

group of multi-disciplinary researchers to model how and why the same 
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individuals present a specific energy behaviour and also why changing such 

behaviour is a difficult task. The proposed framework has been developed 

including the main disciplines of economy, sociology, physics, law, and 

psychology in order to merge all the key-features of heterogeneous theories in a 

unique model. The basic idea is that the energy behaviour is determined by the 

interactions among norms (i.e., what a user consider correct), material culture 

(i.e., technologies and infrastructures), and energy practices (i.e., how they use 

energy). Moreover, the framework considers that external influences can modify 

the customer behaviour (e.g., the energy cost is an external influence). The final 

aim of the framework is to create energy cultures that are categories of 
behaviours, used as models to construct behaviour changing programs. 

 

Figure 7. Energy culture framework. 
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2.2.3 DRIVERS-NEEDS-ACTIONS-SYSTEM FRAMEWORK 

The Drivers Needs Actions (DNA) System Framework [85] was introduced by 

Turner and Hong [86] with the purpose to create a common language regarding 

the modelling and the simulation of the occupant behavior related with the 

building. The framework states that there are four components of the user 

behavior, that consider the environment of the building but also the cognitive 

processes of the occupants, that has an impact on the building energy use.  

 

Figure 8. The DNAs framework. 

 

As shown in Figure 8 the four components of the DNAs framework are:  

• drivers that are the environmental factors leading the occupants to meet 

their needs;  

• needs, which represent the physical and non-physical needs to be met 

by the internal sphere of the occupant, to ensure satisfaction with the 

environment;  
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• actions that are the interactions undertaken by the occupant with the 

system to achieve environmental comfort; 

• systems which allow the occupant to satisfy theirs needs interacting with 

the mechanisms within the building 

The stochastic nature of humans makes it difficult to describe and predict 

energy behavior and there is a lack of standardized models in literature. The 

purpose of this framework is to incorporate more accurate models of behaviour 

in order to better clarify (i) the behavioral factors that affect the performance of 

the building from the energy point of view, (ii) the energy saving that can be 

potentially achieved with an energy-improved occupant behavior in buildings, 

and (iii) the design of a robust scenario where innovative technologies and 

retrofit methods are adopted. 

 

2.2.4 THEORY OF PLANNED BEHAVIOR AND VALUE BELIEF NORM THEORIES 

The Theory of Planned Behavior (TPB) and the Value Belief Norm (VBN) are 

two important theories used in the last decades to explain users’ behavior 

change in the energy saving application field [45][46]. The TPB suggests that 

behaviors are based on individual’s intentions that are determined by a 

combination of psychological constructs as subjective norms, attitudes towards 

a specific behavior, and the perceived control of this behavior [47]. This theory 

takes into account the attitudes of consumers, the social norms and behavioral 

control in order to reduce energy consumption. Furthermore, the theory states 

that people will avoid environmentally harmful behaviours if they are aware 

about potential penalties, and on the contrary they will follow environmentally 
beneficial behaviour if a reward is expected.  

The VBN theory [48] postulates that the human behavior consists in a chain of 

psychological factors, where the values define beliefs, beliefs define norms, and 

finally norms define behaviours. The theory states that pro-environmental 

actions by users occur in response to personal moral norms and that in the 
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involved individuals believe that environmental conditions can cause threats to 
others and that their actions could avoid such negative consequences [48]. 

 

2.2.5 SOCIAL PRACTICE THEORY  

The social practice theory is one of the most used theories in the field of energy 

and aims to explain why people do not always act in accordance with their 

attitudes, creating a gap between the expected behavior and real behavior. This 

gap has been attributed to individual differences, contextual influences, 

temporal discrepancy, as well as to the methodologies used to measure 

attitudes compared to the behavior [46]. In fact, this theory can be correlated 

with energy use and consumption because energy supply and energy demand 

can be seen as the reproduction of complex social human practices, and daily 

life is a set of activities that determine and create people's behavior [53]. 

Moreover, energy can be defined as an ingredient of the social practices. For 

this reason, it is important to focus on individual or group behavior in order to 

understand and influence the energy demand. The energy is used to realize 

social practices and the understanding of social practice changing enables also 

the understanding of trends and models in energy demand [40]. On this matter, 

Hughes [40] underlined that electricity systems were built to redefine daily 

practices so that electricity becomes mandatory for certain practices. Therefore, 

it is possible to affirm that energy consumption patterns are based on the 

typology of the technological systems available in the building and on the 

specific practices of individuals or groups. 

Social practice theory is based on the idea that the attention should not be paid 

only to individual behavior, but mainly to social practice with focus on the 

relations with other individuals and with the surrounding context. In order to 

change the social practices in favor of energy-efficient behaviors, it should be 

understood what determines social practices and how the technology 
contributes to their evolution.  
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Shove et al. [101] proposed a conceptual framework, starting from the definition 

of Social Practice Theory of Reckwitz [53], in which he postulated the idea that 

social practice are composed, as shown in Figure 9,  from 3 elements: 

meanings, materials and competences. The first component includes symbolic 

meanings, aspirations and ideas, the second include tools, hardware, human 

body and objects, finally the third component include the practical knowledge of 

the practice, and the skills to execute those practice. The principal concept is 

that the individuals are the vehicle of a social practice, that is an entities made 
of material arrangements, know how, rules and affective structures. 

 

Figure 9. Elements of a social practice. 

 

For example, [103] suggested three types of possible interventions for 

sustainable energy.  They suggest that policies informed by practices can either 

aim to re-elaborate the practices by modifying the elements that compose them; 

replace existing practices with new practices, change the way interconnected 
practices are interconnected [102].  
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The social practice theory provides a realistic perspective of behaviour change 

and highlights the problems faced in changing behavior. Behaviour changing 

requires more than the removal of contextual “barriers” since the organization of 

whole everyday life is involved [46]. 

 

2.2.6  “ACTION-BASED” MODELLING 

The behavior can be considered a structured set of actions performed by a 

human in a conscious or unconscious way. The actions are oriented towards 

the achievement of specific objectives and are influenced by the surrounding 

context of the building [2]. The influence generated between the building and 

the users is investigated by many disciplines such as social sciences, 

psychology, architecture, engineering.  Accordingly, a lot of models in the state 

of the art have interpreted the user behaviour like a sequence of actions that 

affect somehow the status of the building. For example, a selected set of 

interactions user-building proposed in the state of the art and also reviewed in 

[3] is reported in Table 1.  As it can be noticed, most of the authors represent 

the user behaviour as the practical interaction with building plants and/or 

structure, like the “use of appliance”, “use of ventilation”, “window opening”, 
“thermostat control”.  

 

Author (s), year Methodology Building 
Type 

Occupant 
Interactions 

Influential 
parameter 

Li et al. (2014) 
[87] 

Field Observation, 
Data Analysis Using 
SPSS Statistical 
Software  

Offices  Window opening    Climatic   

Yu et al. 
(2015)  [67] 

Existing 2-year 
Survey Data, Data 
mining-based 
Methodology  

Residential   Use of appliances  - 
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Simona D'Oca 
and Hong 
(2014) [66] 

Combined Statistical 
Analysis (with two 
data-mining 
techniques: cluster 
analysis and 
association rules 
mining)   

Offices  Window opening  - 

Zhao et al. 
(2014)  [88] 

Experiment, Data 
Mining   Offices   Use of appliances   Climatic   

Langevin et al. 
(2015) [78] 

Longitudinal Case 
Study, Survey, 
Measurements, 
Human Tracking  

Offices   Thermal Control  Personal   

Jang and Kang 
(2016) [89] 

Case Study, Survey, 
Gaussian Process 
Classification  

Residential  

 

Heating and 
Electricity 
consumption  

- 

Khosrowpour et 
al. (2016) [90] 

Sensor-based 
Monitoring, 
Classification and 
Predictions   

Commercial   Use of appliances   Personal   

Fabi et al. 
(2013) [92] 

Case study, 
Medium/Long-term 
Monitoring  

Residential   Window opening   - 

Ryu and Moon 
(2016) [91] 

Experiment, Decision 
Tree and Hidden 
Markov Model  

Building 
Integrated 
Control 
Test-bed  

Electricity 
Consumption   Climatic   

 

Table 1. Examples of “action-based” user behaviour modelling in the state of the art. 

 

More in detail, among the selected examples, D’Oca et al. in [66] models the 

behaviour with the schedule of window opening assuming that general patterns 

of windows closing and opening can be identified with data mining techniques, 

such as clustering and association rules algorithms. The main goal is to 

discover typical users’ profiles in an office to identify specific behavioral patterns 

as (i) motivational, (ii) opening duration, (iii) interactivity, and (iv) window tilting 

angle position. The authors showed a set of relevant clusters that classify the 

windows opening habits, pointing out that the air temperature outside, the time 
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of the day, and the occupancy presence are the principal drivers for windows 

opening. Furthermore, they find out that the drivers of windows closing are the 

air temperature inside and outside, the occupancy presence, and the time of the 

day. In fact, the temperature discomfort, the time of the day and the routine of 
the users impact with the users interaction with the windows.  

Yu et al. in [67] models the behaviour with the schedule of appliance assuming 

that they are related to each other. The authors developed a data mining 

technique selecting a set of association rules existing between household 

appliances. In particular, the rules define that (i) video and light point out the 

possibility to be used at the same time, therefore the suggestion for energy 

saving is to watch video with the light off or with a shady light; (ii) The TV is 

often watched at the same time that the occupants use the computer. The 

recommendation is to optimize the use of one appliance for both the tasks; (iii-

iv) the appliances in kitchen, the air conditioner, a medical machine, the 

dishwasher, the microwave oven, and the rice cooker show high correlated 

usage since the authors supposed that medical machine is used during cooking 

time with the air conditioning active. Moreover, dishwasher, rice cooker, and 

microwave oven were often used at the same time; (v) the last rules appoints 

out a strong association between the refrigerator and living room outlet since 

the refrigerator is connected to the living room outlet.  

Furthermore, they investigated the association between the usage of household 

appliances and the environmental parameters discovering an association 

between outdoor air temperature and the reduction in the usage of appliances 

for cooking (e.g., higher temperature reduces the appetite of the occupants).  

Another example presented by Langevin et at. in [78] has investigated the key-

elements of a behaviour model starting from the occupant comfort measuring 
the local thermal environment in the proximity of each occupant. 

The results have pointed out that certain behaviors are clearly related to 

changes in the thermal environment, but others are better described by non-

thermal elements. The thermal sensation that is acceptable by an occupant has 
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been considered a significant information to predict the thermal comfort and the 

corresponding behavior. This suggests that the individual thermal acceptability 

range is a representative information for the definition of the behavior model 

also pointing out the differences among the individuals. The measurement 

campaign performed by the authors has also suggested that a behavior 

hierarchy exists and that the daily sequence of such hierarchy in the considered 

air-conditioned environment gives the priority to the most immediate behavior, 

with minor attention to the most “virtuous”. It has also been found that the 

behaviors related to cold discomfort are chosen later than those behaviour 

caused by warm discomfort. The authors concluded that a representative 

behaviour model should satisfy the following requirements: (i) the behaviour 

should be represented at individual-level, (ii) a single modelling framework 

should include and accommodate multiple behaviours, (iii) at least 2 realistic 

constraints on the behaviour should be considered (e.g., appropriate clothing, 

limits on the conflicts among the comfort of different occupants), (iv) also non-

thermal behaviour should be included like for example the use of lights for 
lighting comfort. 

Even if many “action-based” models are available in the state of the art, 

occupant behavior is much more complex, stochastic, and diverse that a simple 

sequence of actions and interactions with building. An interdisciplinary viewpoint 

is mandatory to accurately model how humans behave. However, at a certain 

level, the arising complexity would be too high to the extent necessary to energy 

saving. In this regard, the behaviour model proposed in this thesis is based on 

the integration of location-based information as a glue between the actions of 

the users that can be recognized looking at the interactions with the building 

(e.g., usage of appliance, control of the HVAC systems, etc.). This interpretation 

of the human model will improve the understanding of the human impact on the 

building, since even only the estimation of the “passive” presence of the 

occupants (i.e., without specific actions) provides information to understand the  

behavior. 
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Table 2. Advantages and drawbacks of main behaviour models in the state of the 
art. 

 

2.3 BEHAVIOUR CHANGE PROGRAMS  

The behavior change programs have been addressed in the state of the art to 

further reduce the energy consumption stimulating the target audience to 

behave in an “energy-virtuous” way. The performance of such programs are 

difficult to be assessed since the effects depend by many factors that usually 
change very slowly and with low persistence.  

During the '70s, in parallel with the technological innovation, various solutions 

have been investigated to identify and promote virtuous behavior (both 

individual and social) with focus on the energy efficiency. A large number of 

energy efficiency programs have been developed by researchers but also by 

Model 
Features 

Flexibility Usability Multi-disciplinarity 
Thorgersen 
and Gronhoj 
Model  
(Sect.  2.2.1) 

   

Energy 
Culture 
Framework 
(Sect.  2.2.2) 

   

DNAs 
Framework 
(Sect.  2.2.3)    

TPB and VBN 
(Sect.  2.2.4)    

Social 
Practice 
Theory  
(Sect.  2.2.5) 

   

Action-based 
Models  
(Sect.  2.2.6)    
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the utilities. Most of them considered the human behavior secondary to the 

adoption of smart technologies and devices, but nowadays it is well known that 

all the energy efficiency programs have to involve human activities and 

behaviour into the decision-making processes [43][44]. Accordingly, the 

behavior changing programs have increased recently putting the physical 

measures into the background and investigating the consumer behavior from 

the social science point of view, with focus on the relation between stimulus and 

human response that plays an important role on human decision-making during 
the interaction with technology [79]. 

For many years, the most common models for behavior change toward energy 

efficiency have been the attitude-behavior and the rational-economic models. 

The first typology of models assumes that users with already “positive” attitude 

toward energy saving would easily achieve high energy efficiency each time 

they have the opportunity. The second category of models is based on the 

common rule that users act rationally when they can save money with minor 
impact on their well-being [81].  

The main consideration related to such models was that providing information 

and indication on how to achieve energy efficiency and the consequent financial 

benefits will determine a natural engaging of users in energy-efficient behavior. 

Accordingly, the most effective approach to stimulate behavior change was 

considered the mass information campaign. However, a review by the American 

Council for an Energy-Efficient Economy (ACEEE) in 2000, pointed out that this 

default approach often went unevaluated. The main cause of the failure was the 

assumption that “information given is information received” [82], which has 

proved to be simplistic respect to the real feedback of the users. Accordingly, it 

has been demonstrated that neither the attitude-behavior nor the rational-

economic models adequately describe how behavior change happens. Even 

people that consider themselves “green” have rarely changed their behavior 

according to information campaigns focused on the environmental impact of 

energy waste [83]. Despite the big effort of governments, electric utilities, and 
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non-profit organizations in the promotion of information campaigns, the well-

known “efficiency gap” (i.e., the difference between the potential and the actual 

energy efficiency) persists because people do not change behavior as expected 

by the program designers [84].  

People do not clearly understand how much energy they are using and how 

much they can reduce the efficiency gap by changing the daily behaviour or 

improving the awareness of power consumption through detailed 

measurements. Such awareness has been studied in the “feedback” literature 

to point out the relevance of feedback to make the energy consumption more 

visible and understandable. The first studies on feedback control started in the 

1970s pointed out that communication through display monitors has 

measurable effects as a learning tool that allows energy users to teach 

themselves. For example, it has been demonstrated that a clear feedback has 

enabled users to learn how to control the fuel usage more effectively both in 

short-term (e.g., through instantaneous direct feedback like adaptive billing) and 

over a long-term period to ensure a sustained demand reduction thanks to a 

better understanding and control of the energy usage. Such studies on energy 

feedback have been carried out mainly by psychologists who considered the 

feedback as an intervention in the normal user behaviour to reinforce specific 
trends through rewards or punishment [109].  

The learning process of feedback has been defined by researchers pointing out 

that interventions focus on the control of narrow target behaviours [104] or, on 

the opposite, on wide-ranging studies [105] saying that any type of feedback 

produce positive results under any conditions and with reference to any kind of 

population. However, as a common conclusion has been confirmed that the 
context is important for feedback management. 

The general idea is to consider the contribution of feedback to the generation of 

a ”tacit knowledge” about the supply and usage of energy. The users receive 

information about their energy use, they act changing behaviour somehow and 
they gain understanding by interpreting the available feedback. 



	

27	

In [79], ACEEE delivered the first classification of the behavior-based programs, 

where the authors summarized a list of drivers that are psychological and social 

mechanics influencing the decision making. Such drivers (e.g., feedback, 

framing, commitment, social norms) can be used by the behavior change 

programs. The following categorization of behavior programs has been created 
by ACEEE: 

- Cognition: unidirectional programs, which give information to 

consumers through traditional means of communication such as TV, 

emails, social media, or classroom lessons and courses in companies 

(e.g., general communication efforts, targeted communication efforts, 

social media, classroom education, training programs). 

- Calculus: programs based on consumer economic decisions based on 

feedback, competing games, incentives, and home energy audits 

- Social Interaction: programs based on social interactions that can be 

undertaken directly or through online services. This kind of programs 

relies on the deep basis of sociality. For example, social marketing, 

person-to person efforts, eco-teams, peer champions, online forums 
are among the existing categories. 

Few years later in 2016 [80], ACEEE proposed a new categorization on the 

basis of more studies and results obtained in the field of behavior change 
programs. In particular, the main categories are: 

- Information-based programs: these programs are based on the idea 

that changes occur by providing to the users the information regarding 

their energy consumption. Although there is evidence that the lack of 

knowledge influences the behavior, many other factors have to be 

considered. For example, information-based programs are also based 

on the mutual influence caused by the physical interactions between 

two or more users that lead to new “mixed” behaviors due to 

information exchange among users. Some examples of such programs 

are home energy reports, real-time feedback, audit programs.   
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- Programs based on social interaction: the energy behavior is 

affected by the interactions among users and in particular by the 

comparison with the others. The main programs based on social 

interaction are the competitions and games, where the games lead 

consumers to achieve higher goals by confronting each other, and the 

community-based programs that create ad-hoc behavioral change 

programs based on specific communities. 

- Education and training programs: these approaches consider 

teaching as the main vehicle for behavioral change and include a set of 

elements of other programs. For example, the strategic energy 

management (SEM) programs are based on direct interaction with 

users to provide energy information, and training programs that teach 

the strategy to the community about how to reduce energy 
consumption. 

Figure 10 shows the stages of behavioural change, summarized in [108] 

starting from the definition reported in the previous work, “Principles of 

Awareness-Raising” by Richard Sayers [107]. 

 

Figure 10. Stages of behavioral change. 
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The change from one status to the other of the behaviour change scale should 

be achieved through suggestions given in a slightly and creative way in order to 

modify the attitudes with a reduced impact on the user comfort and avoid 

impositions. 

More recent works [55][69][70] have revealed that new typologies of programs 

are particularly influential on user behavior toward energy saving, like the 

programs based on game and on eco-feedback. The gamification has been 

proven to be an efficient way to model the behaviour of users, who are 

considered the players of a game applying strategies and actions that maximize 

a reward (e.g., the energy cost saving, or the reduction of the total consumption 

[56]). The actions are usually suggested by the program, often based on 

recommendation systems that observe the user behaviour (e.g., through energy 

usage monitoring) and learn the best strategy to modify the actual behaviour 

toward the optimized one that maximize the reward of each player [71]. 

Concerning the programs based on eco-feedback, the virtuous energy 

behaviors are promoted through “eco” feedback provided to the users pointing 

out their current consumptions with respect to the past ones and highlighting 
inefficiencies in order to identify how to improve. 

Summarizing, the main recent programs have demonstrated that the occupant 

behavior needs to be directed towards a more efficient use of energy in order to 

effectively optimize the power consumption and the exploitation of the grid. 

However, the mutual influence among users, with the buildings, and with the 

environment cannot be described in a simplistic way due to the stochastic 

nature of the occupant behavior. Appropriate methodologies and techniques are 

required to describe the complex combination of actions, response to stimuli, 

and user strategies that are responsible for real energy performance of the 

building during its life [85]. Most of the behaviour-based efficiency programs 

have focused on the influence of the users on the building in order to integrate 

such influence in the numerical modelling of the building itself and improve the 

accuracy of the simulations. Better simulations enable more accurate design 
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and control of the energy plants of the building. However, such approaches 

usually model an average human behaviour that represent a category of users, 

with less attention of the actions of single users and how these actions impact 

on the consumption. 

This thesis is focused on the study of user actions in smart buildings scenarios 

with focus on the socio-behavioral dynamics that are useful to model the 

behaviour of single users into decision support tools. The system suggests daily 

actions to each user that lead to virtuous behavior from an energetic point of 

view considering how they behave daily and their main habits. Assuming the 

understanding of individual behaviour (e.g., how a user moves in the building 

and how/when the appliances are used) make feasible the creation of individual 

suggestions to improve the energy-habits of single users that are part of a 
community (e.g., at the building/district scale). 

However, there are some obstacles that interfere in the suggestion of optimal 

programs customized on the profiles of single users. For example, top-down 

communications that are commonly used to promote actions are not sufficient. 

Moreover, the so-called “rebound effect” [94][45] often arise: technology allow 

the users to save energy, but given the energy savings, the users are motivated 

to use the devices more. Accordingly, technical improvements in the buildings 

can lead to behavioral changes, but it may happen that the occupants look to 
higher comfort and they finally the energy consumption are increased [54]. 

The goal of the solution proposed in this thesis is to avoid the aforementioned 

limitations of mono-directional communication (i.e., from the system to the user) 

integrating the user habits directly into the configuration of the system and the 

computation of the suggestion. This approach integrates a sort of “automatic 

feedback” that is virtually received by the users even if they do not directly 

cooperate with the decision support system thanks to the estimation of the 

users positions and movements that naturally occur during the user 
actions/interactions with the appliances. 
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2.4 USER BEHAVIOUR IN DECISION SUPPORT SYSTEMS 

The term DSS dates back to before the invention of the computer and referred 

to paper documents and to the collection of practices based on experience. 

Hereafter, the development of the DSS has been extended to various scenarios 

and thanks to the support of advanced information and communication 

technologies (ICT), the development is today more and more innovative and 

allows to improve the activity of decision-makers [74]. Nowadays, the DSSs 

allow to quickly clarify the situation thanks to the numerous and heterogeneous 

data collected by means of ICT-based systems. A selection of important key 
features of a DSS includes [75]: 

•  assistance and improvement of human reasoning without replacing the 
final human control; 

•  adaptability to changes of the context thanks to the availability of new and 
updated information; 

•  combination of analytical models that provide synthetic information 
automatically collected from heterogeneous and distributed sources; 

•  high interactivity thanks to user-friendly interfaces. 

A DSS provides suggestions regarding the actions to be carried out during 

certain circumstances, but does not act automatically. In fact, the human 

intervention is always expected by the system during the decision-making 

process. Therefore, with regard to the management of buildings, the DSS 

allows the reliable evaluation of comfort, costs, and performance based on the 

collected data in order to support the end-user in the energy management and 

to suggest energetically virtuous behaviors based on current and expected 
consumption. 0.  

Among the solutions that consider the behavior of people in order to support 

their decisions, techniques based on game theory (GT) have been analyzed. 

Game theory studies the behavior of individuals in situations of strategic 
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interaction compared to other rival subjects, aimed at maximizing the income of 

each participant [9]. The decisions of every individual who takes part in the 

strategic "game" can influence the results achieved by the other and/or vice-

versa. Game theory is based on models that represent the real problem and 

defines the strategies that the players can apply according to the information on 
the energy consumptions that are available [11]-[13].  

For example, DSSs have been proposed to support the demand response (DR), 

which is one of the most reliable solutions to manage the energy demand profile 

in a multiuser smart grid scenario. The integration of the consumer preferences 

in the load scheduling is a fundamental aspect to make DR programs 

acceptable by the users. State of the art methods [93][94] have solved the 

energy cost optimization problem considering the reduction of the user comfort 

due to the load scheduling suggested by the DSS. However, the standard 

approaches often under-estimate the users’ needs. This thesis contributes 

improve the acceptability of the appliance scheduling taking in full consideration 

the users behaviour, which is modeled in terms of availability to change the 

consumption patterns. The GT-based approach has been integrated with the 

customers’ constraints applied to the load shifting that can be optimized only 

within time windows defined according to daily habits of the users. The 

unknowns controlled by the DSS are the time instants when the monitored 

appliances are turned on. The main contribution of the proposed method is to 

incorporate the customers’ constraints in the DSS flow toward a behavioral 
perspective of the user-centric grid. 
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3. USER FEATURES FOR BEHAVIOUR REPRESENTATION 

	

A set of features representing the role of users in smart buildings has been 

selected for integration in DSS. The set of features includes the "location-

based" characteristics, in particular those related to the presence, position, and 

movement of the users occupying the buildings, and the "energy-habits" 

characteristics relating to the daily energy habits of the users and their profiles 

of consumption. 

This thesis focused on the analysis of the application scenarios in which the 

behavioral profiles of the users affect the energy consumption related to the 

building installations, considering the end user as a pro-active subject in the 

"energy chain" process. Among the scenarios and the behavioral models 

investigated, particular consideration has been given to the residential one 

where energy resources are shared by a large number of users. In this 

scenario, the users are supported in the management of their appliance in 

smart buildings, with the dual purpose of reducing the cost of energy 

consumption and at the same time limiting the impact of the suggestions on the 
user habits. 

A frequent problem encountered with the generation of databases about the use 

of energy is the lack of connections between human behaviors and the energy 

consumption. The data are usually related to the energy consumed by 

household appliances, but they are not related to human activities and any 

detail about the related activities are known. The more accurate analysis of the 

human activities is important in order to correlate the actions with the 
consumption [34][35]. 

Toward this end, the aforementioned features (i.e., “location-based” and 

“energy-habits”) have been analyzed in the following sections in order to 

describe the technologies and the methods that enable the acquisition of the 

selected user information and the achievable performance. In particular, the 
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estimation of the users position and movements by means of a wireless 

localization strategy is presented in Sect. 3.1. The mobile devices of the users 

(e.g., smartphone, wireless tags) are localized using the wireless networks that 

are deployed in the smart buildings, such as the residential WiFi that is widely 

diffused in most of private and public areas. In Sect. 3.2, the methodology 

based on game theory for the computation of the optimal consumption profiles 

suggested starting from the user needs and habits is presented. 
 

3.1 LOCATION-BASED FEATURES 

More and more location-based services are rapidly spreading thanks to the 

increased availability of localization technologies. Private and public end-users 

benefit from the rapid advances of both technological and methodological 

solutions that are making the position information ubiquitous. In such a 

framework, wireless communications play a key-role in the propagation and 

diffusion of the available information among the mobile entities of the network. 

Well-known localization technologies such as the global positioning system 

(GPS) have been integrated in commercial devices like smartphones and 

tablets. On the other hand, innovative technologies such as wireless sensor 

networks (WSNs) [7] allow one to collect a huge amount of heterogeneous data 

that can be exploited for localization purposes [27] and, more in general, to 

‘model’ the complexity and the variability of the environment and its time-varying 

behavior. The possibility and ability to correlate such heterogeneous data with 

the position information of targets moving within the environment at hand 

enables innovative services for the ‘management’ of people and things. For 

example, position information can be exploited to control the light intensity of 

multiple lamps taking in consideration both the quality of the user experience 

and the energy saving as presented in [28]. In this work, the wireless sensor 

and actuator technology has been exploited to sense the environmental 

condition and the energy consumption as well as to control the lamp actuators 
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for the autonomous light dimming also considering the presence of users 
throughout the controlled rooms. 

More in general, the underlying idea of the wireless localization exploited for 

human behaviour understanding is that “the best position estimation is not the 

most accurate one, but one that provides the highest informative contribution 

respect to the context”. Knowing the real occupation of the spaces is obviously 

fundamental for regulating and managing the systems of a building and 

optimizing energy consumption accordingly. As discussed in Sect. 2, there are 

numerous state-of-the-art studies that estimate the patterns of presence and 

behavior typical for specific user typologies. These patterns are often static and 

representative of reference behaviours, but not of the real day-by-day use of the 
building.  

In order to increase the accuracy in estimating and modelling user behaviour, 

technological solutions that can extract information on the presence of people 

have been considered starting from the real-time measurement of some 

parameters that characterize the environment under monitoring. Among these 

parameters, there are the information provided by wireless networks deployed 

in the buildings that can be exploited to localize wireless devices and 

understand where the users are located. In this case, it is assumed that the 

user is associated with a mobile device such as a smartphone or a tablet, as 

long as it is equipped with wireless technology such as WiFi connected to an 
existing wireless network [16]-[18].  

Among the techniques that do not require dedicated hardware, there are those 

based on the Received Signal Strength (RSS) which indicates the power level 

of the wireless signal received by the device. There are several ways to 

implement location systems based on the Received Signal Strength Indicator 

(RSSI). The first family of techniques is based on fingerprinting and plans to 

map the spatial distribution of RSSI through a large number of detections. The 

value of RSSI acquired by the device in an unknown position is compared with 
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the previously estimated spatial distribution to find the closest result and thus 
deduce the position of the target. 

A second category of techniques is defined as “propagation-based” and is 

based on the estimation of wireless propagation in the monitored environment 

[16]. The information deduced from the signals like the attenuation is used to 

estimate the positions of the users. These techniques present a high complexity 

in the accurate modelling of wireless propagation, but they do not require time 

consuming data acquisition operations. For this reason, they are easily scalable 

and better adaptable in indoor environments that can change their 

characteristics over time, such as private apartments in residential scenario. 

Among the techniques investigated for the estimation of the position of the 

users, a solution that exploits the characteristics of the WiFi wireless signal 

[16][26][27] has been selected. The required inputs are the positions of the 

wireless devices deployed in the environment (i.e., the WiFi access points) and 

the size of the monitored area (e.g., the apartment blueprint). The results 

provided by the localization technique are the positions of the WiFi devices 

moving throughout the rooms of the monitored building.  
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Figure 11. Wireless network deployed in the test site for the acquisition of the “location-
based” features of the users. 

 

The estimated positions can be used to infer the occupation of the rooms and 

consequently calibrate the management of the building's installations, such as 

the lighting system [28] or the air management system [29]. The selected 

localization technique presented in [16] has been validated within the 

laboratories of the University of Trento in order to assess the performance and 

verify the satisfaction of the application requirements. For example, the 

capability to recognize the room where the user is located is important from the 
point of view of the user-building interaction. 
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Figure 12. Graphical user interface of the wireless localization system providing the 
“location-based” features of the monitored users. 

 

The methodology can be calibrated to operate by exploiting different wireless 

standards and platforms since the main requirement is to have access to the 

RSSI parameter, which is commonly provided by most of the commodity 

devices. Starting from this assumption, a preliminary validation can be carried 

out using the common WiFi network already deployed for connectivity purposes, 
and able to provide such information. 

Figure 11 shows the blueprint of the area used for validation. The considered 

test site is representative of an indoor environment occupied by different types 

of objects and obstacles that make wireless propagation very complex for the 
purpose of localization. 

Inside the test site of size X=80 [m] and Y=46 [m] are installed K=6 wireless 

access points (the blue icons shown in Figure 11) operating at the frequency 

f=2.4 [GHz] of the wireless standard IEEE 802.11ac, in known positions respect 

to the reference system and used as anchor nodes. The location of a stationary 

or moving device within the test site takes place using the RSSI values received 
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from WiFi access points and processed in real time by the optimization 
methodology [6].  

 

 

Figure 13. Test positions of the target within the monitored domain. 

 

The wireless localization system provides the results through a graphical 

interface that is shown in Figure 12 for illustrative purposes. The position of the 

user is reported and updated in real-time on the blueprint of the test field. 

Concerning the computational load of the localization algorithm, the optimization 

procedure has been calibrated in order to ensure that the computational time is 

lower than the RSSI scan rate of the WiFi network. It has to be noticed that the 

scan of the RSSI takes about 1 [s] (i.e., the time required by the application 

installed on the mobile terminal to complete the scan of all the wireless APs) 

while the estimation of the target position takes less than 0.5 [s] using a 

standard computer (i.e., CPU Intel i5 with 8 GB RAM) as control unit. Toward 

this end, the termination strategy of the optimization algorithm has maximum 

number of iteration set to I=100. Accordingly, the computational load of the 



	

40	

optimization algorithm satisfies the time constraints of the dynamic localization 

scenario. It has to be noticed that the number of localized targets impacts on 

the computational time since the position estimation of each target requires a 

standalone optimization. The localization of multiple targets has not been 

investigated in this thesis since it increases only the computational complexity 

without a direct impact on the localization accuracy. However, the investigation 

of the localization performance in presence of multiple targets will be 
considered among the future activities. 

The performance of the localization method have been validated starting from a 

set of test positions, distributed within the area considered and shown in purple 

in Figure 13. In each of these positions, P = 50 measures of RSSI were 

acquired from anchor nodes that are in the wireless coverage range of the 
receiving device. 
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Figure 14. Comparison between the actual target position (red dot) and the positions 
estimated by the localization method (blue dots). 

 

To evaluate the quality of the position estimates, the average Euclidean 

distance between the actual and the estimated positions has been considered 
as error metric: 

;                         (1) 

where   and  are the coordinates estimated by the algorithm at the t-th 

target position.  
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An example of a comparison between the real position of the target and the 
positions estimated by the localization method is shown in Figure 14. 

The obtained localization errors are shown in Figure 15. In order to provide an 

indication of the average performance of the localization method, the total 
average error has been calculated as 

                                                       (2) 

that is equal to  [m]. 

The obtained results point out the ability to estimate the position of a wireless 

device in real time, using only the information on the quality of the wireless 
links. 

 

Figure 15. Localization error of the “location-based” features computation. 
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The high scalability and flexibility of this approach facilitate the application in 

different indoor scenarios characterized by geometric and electrical 

characteristics that are highly variable.  The “location-based” features can be 

used to estimate the daily occupation of the monitored rooms by the users and 

to update accordingly the occupation patterns that are normally assumed 

“static” and predefined by the DSS in the state of the art. The ability to locate 

users in real time allows to improve energy savings and to promote good 
energy-habits [30]. 

Understanding the human presence and movements within the building helps to 

identify the user routines that are crucial in the coordination of domestic 

activities, and are also considered a valuable cognitive resource to ensure that 
human activities are carried out efficiently and comprehensively [32][33].  
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3.2 DAILY HABITS AND ENERGY PROFILES 

The management of the energy demand by users of a smart building is a 

fundamental aspect for energy saving, obtained by balancing the loads with 

respect to the availability and the cost of the energy resources themselves. 

Different state-of-the-art strategies have been proposed to motivate users to be 
part of the energy management process [19]-[22]. 

In general, the main mechanisms of interaction with the user are aimed at 

reducing consumption or shifting it over time. The reduction can be obtained by 

stimulating virtuous behaviour in users for the reduction of waste. The shift is 

induced by suggesting the most appropriate time slots when using the loads 

(e.g., household appliances in a residential context) with the aim of reducing the 

absorption peaks, typically concentrated in the most likely times of use. The 

peak of absorption on the network translates into an increase in the cost of 

energy (in the case of energy cost models dependent on absorption). The 

'reward' gained by the user for his involvement in the process translates into a 

reduction in the cost of energy. All players then share a common goal and 

"play" with the same rules. The rationale behind this interpretation is that the 

user must be aware that their actions affect the reward of the other players, and 

vice-versa. A change in the actions of user  A  may cause an increase in the 

cost of energy, which therefore falls on the benefit of the user B. Game theory 

defines a condition of equilibrium [19] as the condition in which no player has 

direct benefit in modifying his behaviour because any action would result in a 

worsening of the current situation. In the absence of external changes, this 
balance is a condition of stability.  

Demand management methods can be classified as centralized or 

decentralized. In the first case, a central unit (often managed by the energy 

provider) calculates the optimal ways of using the appliances of users according 
to the information available on the network load profiles and the cost of energy. 
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In the second case, decentralized methods are applied locally by individual 

users and the results are shared to advertise their behaviour at the cluster level 

of users involved in the same process (e.g., on the building scale). The sharing 

of information can be detrimental in terms of privacy, but different practical 

solutions have been proposed to avoid this type of problem, for example by 

aggregating the profiles of multiple users. In both the categories of methods, the 

problem of managing loads in multi-user systems can be dealt with the 

principles of game theory. The players are the users of the building, the reward 

of the game is the economic savings related to the reduction of consumption, 

the actions that each player can play is to act on the profiles of appliance 
usage. 

The proposed approach has been applied in multi-user scenarios for energy 

saving and in particular for the reduction of consumption peaks through an 

optimized schedule of the loads of each user. In general terms, most of the 

methods implement the calculation of the optimal consumption profile of each 
user following an iterative logic, as occurs in many multi-player games. 

Each player in turn performs his action by evaluating the conditions of the other 

players and trying to follow his own strategy that leads him to maximize the 

reward provided by the game. The application of the strategy results in the 

execution of a method of optimizing the variables controllable by the player that 

can maximize the reward. For example, if the variables are the switching on and 

off times of the appliances, and the reward is the maximization of energy 

savings, the player will evaluate the optimal combination of their variables that 
guarantee the best result. 

However, the goodness of the result does not depend solely on its own actions 

since the cost of energy depends on the aggregation of the absorptions of all 

the users involved in the game. This relationship then forces each player to 

consider the choices made by the other players and adjust their own 

accordingly. Assuming a rational behaviour of the players and the absence of 
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changes from the outside (e.g., change of the energy cost function), the 
evolution of the game tends to a condition of equilibrium. 

The results obtained showed that each user performed in turn the optimization 

of the consumption peak through the minimization of the peak-to-average ratio 

(PAR) calculated as the ratio between the maximum measured absorption and 

the total consumption within a predefined time window. The minimization takes 

place by acting on the variables controllable by the individual user that affect the 

time slots for the use of household appliances. The experimental tests were 

obtained using the energy consumption information made available by wireless 

devices able to measure in real time the interconnected loads (in this case 
incandescent lamps, to easily simulate different levels of absorption) [23]-[25]. 

The application of the load management method acting on the user behaviour 

for the reduction of the consumption peak led to a reduction of PAR greater 

than 25%.The presented results are obtained starting from a set of synthetic 

data that represent the energy consumption of household appliances used by 

several users in the residential area. The methodology suggests optimal time 

slots for each user to guarantee the minimization of consumption peaks and 

therefore of the cost of energy. Time slots are suggested starting from a set of 

preferences set by the users themselves in order to consider the user habits 
representative of the daily behaviour. 

The energy resource is shared by several users, who decide the switching on 

and off schedule of the electrical devices. The consumptions of the devices are 

monitored by distributed power metering systems and the algorithms estimate 

the optimal energy consumption profile for each user. The overall objective is 

then to minimize the cost of energy used. Through a system of incentives based 

on the reduction of the cost of energy if the behavior is "virtuous". Every user is 

encouraged to cooperate according to the rules that are suggested. It can be 

shown how the solution to the general problem of energy cost reduction can be 

solved through a set of local problems of each individual user. This is equivalent 
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to choose the optimal program for each user that finally will be the optimal 
trade-off for the global system. 

The methodology uses the input dataset that is summarized in Table  3. The 

dataset considers 10 users and each user manages a variable number of 
household appliances up to a maximum of 20. 

 

APPLIANCE 
USER 

1 2 3 4 5 6 7 8 9 10 

PHEV S S S S  S S S S S 

Slicer S  S S  S   S  

Dryer S  S S S S S S S S 

Vacuum 

Cleaner 
S S S  S S S S S  

Dehumidifier S   S S S S  S S 

Iron S S S S S S S  S S 

Oven S S S S S S S S S S 

Dishwasher S S S S S S S S S S 

Washing 

Machine 
S S S S S S S S S S 

Bread Machine S S S S S S S  S S 

Microwave S S S S S S S S S S 

Hairdryer S S S  S S  S S S 

Sauna S   S S S S  S S 

Alarm Clock N N N N N N N N N N 

Stereo N  N N N N N N N N 

Air Conditioning N N N  N N N  N  

Lighting  N N N N N N N N N N 

Freezer N N N N N N N N N N 

Refrigerator N N N N N N N N N N 
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PC N  N N N N N N N N 

TV N N N N N N N N N N 

 

Table  3. List of shiftable (S) and non-shiftable (N) appliance of each user. 

 

For each user, the Shiftable (S) and Non-shiftable (N) appliances are specified. 

Each Non-shiftable appliance is described by 24 values of hourly consumption 
in [KW], one for each hour of the day. 

On the other hand, the Shiftable devices are described by the following 
parameters: 

a) Start time of the band of possible use of the device. 

b) End time of the band of possible use of the device. 

c) Power consumed by the device [KW]. 

d) Hours of switching of the device. 

e) Time to turn on the device set by the user. 

The algorithm provides the following outputs: 

● the initial consumption (original before the optimization) and final 

consumption (obtained with the execution of the methodology) of all 

users during a day. An example of the initial and final consumption is 
shown in Figure 16. 

● the PAR calculated during the iterative optimization process, as shown in 
Figure 17. 

The results have been computed with two optimization methods for the sake of 

comparison. In particular, the particle swarm optimization (PSO) [99] and a 

convex programming technique (CP) have been adopted. The CP-based 
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solution has been taken from the state of the art presented in [20]. The 

validation aims also to point out the advantages and the drawbacks of the two 
different methods in the addressed test cases. 

 

Figure 16. Comparison between original and optimized consumption profiles. 
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Figure 17. Evolution of PAR during the optimization process. 

	

Minimizing the cost of the energy leads to a consequent reduction of the PAR 

as shown in Figure 17. The PAR reduction computed as the percentage 

reduction from the initial PAR to the final PAR using the dataset of Table  3 is 
reported in Table  4. 

 

Initial PAR 1.72 

Final PAR 1.23 

PAR Reduction 28.53 [%] 

 

Table  4. PAR Reduction achieved by the proposed method. 

 

 



	

51	

3.3 PERFORMANCE ANALYSIS VERSUS THE NUMBER OF USERS 

The algorithm has been tested according to the variation in the number of 

users. In this case the number of 15 appliances has been set for each user and 

only the total number of users has been changed. The results of the 

optimization performed in presence of 2 users, 4 users, 6 users, 8 users, and 10 
users are presented in the following sections.  

3.3.1 TWO USERS 

For the first case of analysis with N = 2 users, the users n = 1 and n = 2 listed in 

Table  3 have been considered. The number of household appliances have 

been selected randomly to totalize the default number (15 household 
appliances). The list of the selected household appliances is: 

● user n=1: PHEV, vacuum cleaner, iron, oven, dishwasher, washing 

machine, hairdryer, radio alarm clock, stereo, air-conditioning, light, 
freezer, refrigerator, pc, tv; 

● user n=2: PHEV, vacuum cleaner, iron, oven, dishwasher, washing 

machine, bread machine, microwave, hairdryer, clock radio, air 

conditioning, light, freezer, refrigerator, TV. 

The results of the optimization are shown in Figure 18 and in Figure 19. It can 

be seen that optimal performance has been obtained by the method in this 
simplified configuration with a very small number of users. 
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Figure 18. Comparison between the original and optimized consumption profiles with 2 
users. 

	

 

Figure 19. Evolution of PAR during the optimization process with 2 users. 
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3.3.2 FOUR USERS  

For the second case of analysis with N = 4 users, the users n = 1, n = 2, n = 3, 

n = 4 of Tab. 2 have been considered. Users n = 1 and n = 2 are associated 

with the household appliances of the previous case (N=2), while the users n = 3 
and n = 4 to the following devices: 

● user n=3: PHEV, slicer, dryer, vacuum cleaner, iron, oven, dishwasher, 

washing machine, bread machine, microwave, hair dryer, radio alarm 
clock, light, refrigerator, TV; 

● user n=4: PHEV, slicer, dryer, vacuum cleaner, iron, oven, dishwasher, 
washing machine, radio alarm, stereo, light, freezer, refrigerator, pc, tv. 

The results are shown in Figure 20 and Figure 21. The total consumption 

increases due to the higher number of users, but the PAR is lower than the 

case with N=2 because the algorithm has more degrees of freedom to find the 

optimal solution. 

 

Figure 20. Comparison between the original and optimized consumption profiles with 4 
users. 
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Figure 21. Evolution of PAR during the optimization process with 4 users. 

 

3.3.3 SIX USERS 

In the test case with N = 6, the users n = 1, n = 2, n = 3, n = 4, n = 5, n = 6 have 

been selected. The users n = 1, n = 2, n = 3, n = 4 are associated with the 

appliances of the previous case (N=4), while the users n = 5 and n = 6 to the 
following devices: 

● user n=5: dryer, vacuum cleaner, dehumidifier, iron, oven, dishwasher, 

washing machine, bread machine, microwave, hair dryer, infrared sauna, 
light, freezer, refrigerator, TV; 

● user n=6: vacuum cleaner, dehumidifier, iron, oven, dishwasher, washing 

machine, bread machine, clock radio, stereo, air conditioning, light, 
freezer, refrigerator, pc, tv. 

The results shown in Figure 22 and Figure 23 point out the higher performance 
of the CP-based optimization compared to the PSO-based. 
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Figure 22. Comparison between the original and optimized consumption profiles with 6 
users. 

 

Figure 23. Evolution of PAR during the optimization process with 6 users. 
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3.3.4 EIGHT USERS 

In the analysis with N = 8 users, the users n = 1, n = 2, n = 3, n = 4, n = 5, n = 6, 

n = 7, n = 8 of Tab. 2 have been selected. The first 6 users are associated with 

home appliances as in the previous case (N=6), while users n = 7 and n = 8 to 
the following devices: 

● user n=7: PHEV, dehumidifier, iron, oven, dishwasher, washing machine, 

bread machine, microwave, infrared sauna, air conditioning, light, 
freezer, refrigerator, pc, tv; 

● user n=8: PHEV, dryer, vacuum cleaner, oven, dishwasher, washing 

machine, microwave, hair dryer, radio alarm clock, stereo, light, freezer, 
fridge, pc, tv. 

 

 

Figure 24. Comparison between the original and optimized consumption profiles with 8 
users. 
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Figure 25. Evolution of PAR during the optimization process with 8 users. 

 

The obtained performance shown in Figure 24 and Figure 25 point out lower 

PAR with the CP-based technique even if the PSO-based also achieves PAR 
values lower than 1.5. 

 

3.3.5 TEN USERS 

The last test case with N=10 users considers all the users listed in Tab. 2. In 

particular, users n=1, n=2, n=3, n=4, n=5, n=6, n=7, n=8 are the same as in the 

previous case (N=8), while users n=9 and n=10 use the following appliances: 

● user n=9: PHEV, dehumidifier, iron, oven, dishwasher, washing machine, 

hairdryer, clock radio, stereo, air conditioning, light, freezer, refrigerator, 
pc, tv; 
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● user n=10: PHEV, dryer, dehumidifier, iron, oven, dishwasher, washing 

machine, bread machine, microwave, hair dryer, infrared sauna, light, 
refrigerator, pc, tv.  

Also in this last test case, the CP-based algorithm slightly outperforms the PSO-
based optimization. 

 

 

Figure 26. Comparison between the original and optimized consumption profiles with 
10 users. 
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Figure 27. Evolution of PAR during the optimization process with 10 users. 

	

The results shown in Figure 26 and Figure 27 point out good performance with 
PAR values lower than 1.5 regardless the optimization method. 

 

3.3.6 PAR VS NUMBER OF USERS 

Figure 28 compares the performance of the algorithm in terms of PAR reduction 
obtained with different number of users. 
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Figure 28. Optimized PAR obtained versus the number of users. 

 

The results show that the PAR is minimized almost with the same performance 

changing the number of users. This behavior of the method is mainly due to the 

absence of constraints on the time slots in which the algorithm can distribute the 

shiftable appliances. This means that similar performance are achievable if the 

user behavior is not considered in the decision support. Accordingly, the 

following section aims at validating the DSS performance when constraints are 
imposed starting from the user needs and habits in the usage of appliances. 
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3.4 PERFORMANCE ANALYSIS VERSUS THE USER SCENARIOS 

In this section, the analysis of the performance in the reduction of the energy 

cost through the PAR minimization is conducted by changing the user 

preferences on the admitted time slots where they want to use the appliance. In 

particular, the maximum number of users has been set to N=10 and the number 

of appliances has been set to 15. The considered test cases differ only in the 

boundaries of the possible time slots of appliance usage by each user. Three 

different configurations of user preferences in the form of time slots constraints 

have been considered, namely Ideal, Real, and Complex. The three 

configurations have a decreasing number of total hours useful for the usage of 

household appliances. These restrictions correspond to user preferences that 

are more and more stringent, and make more complex the solution to the 
optimization problem. 

 

3.4.1 IDEAL SCENARIO 

The first configuration is representative of a condition of ideality in which all 

loads can be allocated in each time slot of all the 24 hours of the day. This 

means that the users do not have preferences and any constraint is imposed. 

The used dataset is reported in Table  5 where the time slot for each household 
appliance is indicated.  

APPLIANCE 
USER 

1 2 3 4 5 6 7 8 9 10 

PHEV 
0-

23 

0-

23 

0-

23 

0-

23 
  

0-

23 

0-

23 

0-

23 

0-

23 

Slicer   
0-

23 

0-

23 
      

Dryer   
0-

23 

0-

23 

0-

23 
  

0-

23 
 

0-

23 

Vacuum 

Cleaner 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 
 

0-

23 
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Dehumidifier     
0-

23 

0-

23 

0-

23 
 

0-

23 

0-

23 

Iron  
0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 
 

0-

23 

0-

23 

Oven 
0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

Dishwasher 
0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

Washing 

Machine 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

Bread Machine  
0-

23 

0-

23 
 

0-

23 

0-

23 

0-

23 
  

0-

23 

Microwave  
0-

23 

0-

23 
 

0-

23 
 

0-

23 

0-

23 
 

0-

23 

Hairdryer 
0-

23 

0-

23 

0-

23 
 

0-

23 
  

0-

23 

0-

23 

0-

23 

Sauna 
0-

23 
   

0-

23 
 

0-

23 
  

0-

23 

Alarm Clock 
0-

23 

0-

23 

0-

23 

0-

23 
 

0-

23 
 

0-

23 

0-

23 
 

Stereo 
0-

23 
  

0-

23 
 

0-

23 
 

0-

23 

0-

23 
 

Air Conditioning 
0-

23 

0-

23 
   

0-

23 

0-

23 
 

0-

23 
 

Lighting  
0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

Freezer 
0-

23 

0-

23 
 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 
 

Refrigerator 
0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

PC 
0-

23 
  

0-

23 
 

0-

23 

0-

23 

0-

23 
 

0-

23 

TV 
0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 

0-

23 
 

0-

23 

 

Table  5. Constraints on the time slots of appliance usage in the Ideal case. 
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3.4.2 REAL SCENARIO 

The condition defined as Real imposes constraints on the time slots when using 

Shiftable loads. In order to implement the Real test case, time slots with an 

average maximum duration of 8-10 hours are fixed for each load. Also in this 

case, the synthetic dataset with 10 users and with 15 devices has been used. 

The dataset of the considered appliances with the relative time slots fixed by the 
users is reported in Table 6. 

 

APPLIANCE 
USER 

1 2 3 4 5 6 7 8 9 10 

PHEV 0-8 0-9 2-10 0-8   0-9 0-10 1-10 0-8 

Slicer   
11-

20 

12-

20 
      

Dryer   0-8 
14-

22 

15-

23 
  

14-

23 
 0-9 

Vacuum 

Cleaner 

10-

19 

10-

19 
6-15 

10-

20 
9-18 

10-

18 
 7-16   

Dehumidifier     9-18 
15-

23 

15-

23 
 

10-

20 

14-

22 

Iron  
14-

22 

13-

22 
6-15 9-18 

14-

23 

13-

23 
 

10-

19 
9-18 

Oven 
11-

20 

12-

20 

11-

19 

12-

21 

11-

19 

11-

19 

12-

20 

11-

21 

11-

19 

12-

20 

Dishwasher 
13-

22 

12-

21 

14-

23 

14-

22 

13-

21 

15-

23 

13-

22 

13-

21 

12-

22 

13-

23 

Washing 

Machine 
0-10 

15-

23 
0-9 

15-

23 
0-9 0-8 0-9 

10-

20 

11-

19 

15-

23 

Bread 

Machine 
 

15-

23 
6-14  7-16 

11-

19 

14-

22 
  7-16 

Microwave  
12-

20 

11-

19 
 

11-

20 
 

12-

20 

11-

20 
 

12-

20 

Hairdryer 
15-

23 

15-

23 
6-14  8-16   

15-

23 
6-14 

15-

23 
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Sauna 
15-

23 
   

14-

22 
 

14-

23 
  

14-

23 

Alarm Clock 0-23 0-23 0-23 0-23  0-23  0-23 0-23  

Stereo 0-23   0-23  0-23  0-23 0-23  

Air 

Conditioning 
0-23 0-23    0-23 0-23  0-23  

Lighting  0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 

Freezer 0-23 0-23  0-23 0-23 0-23 0-23 0-23 0-23  

Refrigerator 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 

PC 0-23   0-23  0-23 0-23 0-23  0-23 

TV 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23  0-23 

 

Table 6. Constraints on the time slots for the Real test case. 

 

It has to be noticed that household appliances that use a 24-hour time slot are 
considered Non-shiftable devices. 

 

3.4.3 COMPLEX SCENARIO 

The Complex condition is defined with shorter and temporally more overlapped 

time slots. In particular, time slots with an average duration of 5-7 hours are 

considered. The synthetic Complex dataset and the usage time slots are 
indicated in Table  7. 

 

APPLIANCE 
USER 

1 2 3 4 5 6 7 8 9 10 

PHEV 0-6 6-12 1-7 2-8   0-6 5-12 1-7 1-8 

Slicer   
11-

16 

12-

17 
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Dryer   0-7 
17-

23 
0-6   

17-

22 
 0-6 

Vacuum 

Cleaner 
6-11 6-12 7-13 7-13 6-11 

10-

16 
 7-14   

Dehumidifier     
10-

17 

11-

18 
9-16  

15-

22 

11-

18 

Iron  
15-

20 

14-

20 

14-

19 

15-

20 

14-

20 

14-

20 
 

16-

21 
9-15 

Oven 
17-

23 

11-

17 

18-

23 

11-

17 

11-

17 

17-

23 

12-

19 

18-

23 

17-

22 

11-

18 

Dishwasher 
18-

23 

12-

18 

18-

23 

13-

20 

12-

19 

18-

23 

13-

20 

18-

23 

13-

20 

12-

17 

Washing 

Machine 
0-7 

17-

22 
0-6 0-6 0-6 

17-

22 
0-7 0-6 2-8 

17-

23 

Bread 

Machine 
 

17-

22 
7-13  

17-

22 

17-

22 
7-13   7-13 

Microwave  
10-

17 

18-

23 
 

12-

18 
 

10-

17 

17-

22 
 

11-

16 

Hairdryer 7-12 6-11 6-11  8-13   6-12 7-12 6-11 

Sauna 
18-

23 
   

17-

23 
 

16-

23 
  

17-

22 

Alarm Clock 0-23 0-23 0-23 0-23  0-23  0-23 0-23  

Stereo 0-23   0-23  0-23  0-23 0-23  

Air 

Conditioning 
0-23 0-23    0-23 0-23  0-23  

Lighting  0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 

Freezer 0-23 0-23  0-23 0-23 0-23 0-23 0-23 0-23  

Refrigerator 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23 

PC 0-23   0-23  0-23 0-23 0-23  0-23 

TV 0-23 0-23 0-23 0-23 0-23 0-23 0-23 0-23  0-23 

 

Table  7. Constraints on the time slots for the Complex test case. 
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3.4.4 PAR REDUCTION VS USER SCENARIO 

The performance of the algorithm obtained in the different configurations of user 

preferences Ideal, Real, and Complex cases have been analyzed both in terms 

of total daily consumption (shown in Figure 29 and Figure 30) and in terms of 

PAR reduction (Figure 31 and Figure 32) comparing the two CP-based and 
PSO-based optimization techniques. 

 

Figure 29. Optimized consumption profiles obtained in the user scenario Ideal, Real, 
Complex with the CP-based method. 
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Figure 30. Optimized consumption profiles obtained in the user scenario Ideal, Real, 
Complex with the PSO-based method. 

 

Figure 31. Evolution of PAR during the optimization in the three user scenarios Ideal, 
Real, Complex using the CP-based method. 
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As it can be noticed, the results point out better performance using the PSO-

based technique when stronger constraints are imposed by the users. For 

example, the PAR value obtained in the Complex case with the CP-based 

technique is higher than 1.75, while the PSO-based method achieves PAR 
values lower than 1.25. 

 

Figure 32. Evolution of PAR during the optimization in the three user scenarios Ideal, 
Real, Complex using the PSO-based method. 

 

The performance validation has shown that: 

● by changing the number of users, the PAR has been better minimized by 

the CP-based method than the PSO-based one, Table  8 , but in general 

both the approaches have reduced the PAR regardless of the number of 
users considered 
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Users 
PAR Reduction [%] 

PSO-based CP 

N=2 38.4 47.1 

N=4 42.4 45.1 

N=6 24.6 33.8 

N=8 33.3 41.1 

N=10 29.5 35.5 

 

Table  8. Percentage of PAR reduction vs the number of users. 

 

● As shown in Table  9, by changing the user preferences and the 

consequent problem complexity, the power consumption has been better 

optimized by the PSO-based method when the behaviour of the user 
imposes stronger constraints 

 

Scenario 
PAR Reduction [%] 

PSO-based CP 

Ideal 33.1 35.5 

Real 41.5 21.2 

Complex 40.1 11.5 

 

Table  9. Percentage of PAR reduction vs the user scenario Ideal, Real, Complex. 

 

• In the more complex cases, where a more efficient exploration of the 

solution space is required, the PSO-based algorithm has shown better 

PAR reduction performance pointing out that it is more suitable to 

manage problems with real-world user behaviour and preferences. 
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• The computational load of the optimization algorithms is negligible 

compared to the duration of the suggested time slots. More in detail, the 

time slots have hourly duration while the convergence time of the 

optimization procedures takes less than 1 minute. The computational 

load of the optimization procedure is always compliant to the application 

requirements, whatever the complexity of the considered test case. With 

the assumption that shorter time slots are adopted (e.g., few minutes 

instead of one hour), the computational load of the algorithm can be 

controlled through dedicated parameter configuration, like for example 

more restrictive termination criteria (i.e., lower values of maximum 

number of iterations). The performance analysis with shorter time slots 

that reproduce the high variability of user behaviour will be considered in 
the future works. 
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4. CONCLUSIONS 

	

The analysis of the occupants’ behaviour and the corresponding impact on the 

energy efficiency of the smart buildings have been addressed in this thesis. In 

particular, the state of the art on the influence of the user behaviour on the 

power consumption has been revised in order to identify the main behavioural 

features that affect the energy modelling of the buildings. The analysis has 

pointed out that among the state of the art models, the ones based on user-

building interactions have been particularly investigated since the user actions 

can be easily measured by distributed technologies and sensors. For example, 

the control of the thermostat, the window opening, the appliance usage are 

simple indicators of the environmental conditions and power consumptions 

determined by the occupants’ behaviour. Many theories and models have been 

defined also starting from social practice theories in order to translate the 

stochastic nature of humans into numerical representations for direct integration 

into building simulations. However, it has been underlined that an 

interdisciplinary approach is fundamental to accurately model and apply how 

humans behave since a proper trade-off between complex theories (e.g., taken 

from psychology and behavioural analysis) and practical application into real-

world scenario (e.g., using an engineering approach for building and human 

monitoring) is required. Toward this end, this thesis has presented a multi-

feature approach for the representation of the user behaviour that is both (i) 

representative of the user needs and habits, and (ii) simple to be integrated into 
DSS to support the behavioural changing programs toward energy efficiency. 

The proposed model has been defined using location-based and energy-habits 

features merged into a mixed representation of the building occupants. More in 

detail, the location-based feature has been extracted from the user presence, 

position, and movement within the monitored building in order to understand 

when and how the building is used. Such information has been obtained using a 
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wireless localization method that is able to estimate the position of the wireless 

devices (e.g., the smartphone) of the users using the existing wireless 

technologies (e.g., the residential WiFi network already deployed for 

communication purpose). The adopted methodology has been validated in a 

real indoor scenario and the obtained performance have confirmed the ability to 

recognize the room occupied by the user. The achieved room-level accuracy is 

suitable for the considered problem of behaviour understanding because the 
main goal is to model in real-time how each user occupies the building.  

The location-based information have been used as input to calibrate the user 

habits in terms of building occupation, which is strictly correlated to the usage of 

the appliance and the corresponding power consumption. In order to integrate 

such user habits, a DSS based on game theory has been customized in order 

to suggest the optimal appliance schedule that minimizes the PAR (and 

consequently the energy cost) and also reduces the impact on the user needs. 

Toward this end, the time slots of user presence into the building have been 

introduced as additional constraints to consider the user habits during the 

computation of the optimal schedule. The obtained results have pointed out that 

the DSS is able to compute the optimal schedule of the appliance for each user 

that reduces the PAR more than 40% even when complex combination of user 

constraints are considered. This achievement has verified the feasibility to 

optimize the energy consumption also considering the actual user behaviour 

within the building and not only a statistical representation of a user category as 
often proposed in the state of the art. 

 

 

  



	

73	

5. REFERENCES 

	

[1] J. B. Watson, Behavorism, University of Chicago Press, 1930. 

[2] D. Simeone, Simulare il comportamento umano negli edifici. Un modello 

Previsionale, 2015. 

[3] E. Delzendeh, S. Wu, A. Lee, and Y. Zhou, “The impact of occupants’ 

behaviours on buiding energy analysis: A reserach review”, Renewable 

and Sustainable Energy Reviews, vol.80, pp. 1061-1071, December 

2017. 

[4] A.H. Buckman, M. Mayfield Stephen, and B.M. Beck, “What is a smart 

building?”, Smart and Sustainable Built Environment, vol.3, no. 2, pp. 

92-109, Sep. 2014. 

[5] J. Morris, M. Marzano, N. Dandy, and L. O’Brien “Forestry, sustainable 

behaviours and behaviour change,” Forest Research – Behaviour 

Change, 2012. 

[6] F. Robol, F. Viani, A. Polo, E. Giarola, P. Garofalo, C. Zambiasi, and A. 

Massa, "Opportunistic crowd sensing in WiFi-enabled indoor areas," 

2015 IEEE AP-S International Symposium and USNC-URSI Radio 

Science Meeting, Vancouver, BC, Canada, pp. 274-275, July 19-25, 

2015. 

[7] F. Viani, A. Polo, E. Giarola, F. Robol, P. Rocca, P. Garofalo, S. De 

Vigili, G. Benedetti, L. Zappini, A. Zorer, S. Marchesi, and A. Massa, 

“Semantic wireless localization for innovative indoor/outdoor services,” 

2014 IEEE AP-S International Symposium and USNC-URSI Radio 

Science Meeting, Memphis, Tennessee, USA, pp. 402-403, July 6-12, 

2014. 

[8] F. Viani, E. Giarola, F. Robol, G. Oliveri, and A. Massa, “Distributed 

monitoring for energy consumption optimization in smart buildings,” 

2014 IEEE Antenna Conference on Antenna Measurements and 



	

74	

Applications (IEEE CAMA 2014), Antibes Juan-les-Pins, France, pp. 1-

3, November 16-19, 2014. 

[9] F. Robol, F. Viani, E. Giarola, and A. Massa, “Wireless sensors for 

distributed monitoring of energy-efficient smart buildings,” 2015 IEEE 

Mediterranean Microwave Symposium (MMS’2015), Lecce, Italy, pp. 1-

4, November 30 – December 2, 2015. 

[10] N. Yaagoubi and H. T. Mouftah, “User-aware game theoretic approach 

for demand management,” IEEE Transactions on Smart Grid, vol. 6, no. 

2, pp. 716-725, March 2015. 

[11] F. Viani, E. Giarola, F. Robol, G. Oliveri, and A. Massa, “Distributed 

monitoring for energy consumption optimization in smart buildings,” 

2014 IEEE Antenna Conference on Antenna Measurements and 

Applications (IEEE CAMA 2014), Antibes Juan-les-Pins, France, pp. 1-

3, November 16-19, 2014. 

[12] F. Robol, F. Viani, E. Giarola, and A. Massa, “Wireless sensors for 

distributed monitoring of energy-efficient smart buildings,” 2015 IEEE 

Mediterranean Microwave Symposium (MMS’2015), Lecce, Italy, pp. 1-

4, November 30 – December 2, 2015. 

[13] H. Ahmadi, M. S. Dao, E. Giarola, A. Polo, F. Robol, F. Viani, and A. 

Massa, “Distributed wireless sensing, monitoring, and decision support: 

current activities @ ELEDIA Research Center,” Atti XXI Riunione 

Nazionale di Elettromagnetismo (XXI RiNEm), Parma, 12-14 Settembre 

2016. 

[14] F. G. Filip, “Decision Support Systems,” Ed. Tehnica, Bucharest, 2004.  

[15] M. Demarest, “Technology and Policy in Decision Support Systems”, 

August 2005.  

[16] H. Ahmadi, A. Polo, T. Moriyama, M. Salucci, and F. Viani, “Semantic 

wireless localization of WiFi terminals in smart buildings,” Radio 

Science – Special Issue on ‘Innovative Microwave Devices, Methods 

and Applications,’ Invited Paper, vol. 51, no. 6, pp. 876-892, June 2016. 



	

75	

[17] F. Robol, F. Viani, A. Polo, E. Giarola, P. Garofalo, C. Zambiasi, and A. 

Massa, "Opportunistic crowd sensing in WiFi-enabled indoor areas," 

2015 IEEE AP-S International Symposium and USNC-URSI Radio 

Science Meeting, Vancouver, BC, Canada, pp. 274-275, July 19-25, 

2015. 

[18] F. Viani, N. Anselmi, M. Donelli, P. Garofalo, G. Gottardi, G. Oliveri, L. 

Poli, A. Polo, P. Rocca, M. Salucci, L. Tenuti, and A. Massa, “On the 

role of information in inversion and synthesis – challenges, tools, and 

trends," Proc. 2015 IEEE Mediterranean Microwave Symposium 

(MMS’2015), Lecce, Italy, pp. 1-4, November 30 – December 2, 2015.  

[19] D. Fudenberg and J. Tirole, Game Theory, Cambridge, MA, MIT Press, 

1991. 

[20] A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. 

Leon-Garcia, “Autonomous demand-side management based on game-

theoretic consumption scheduling for the future smart grid,” IEEE 

Transactions on Smart Grid, vol. 1, no. 3, pp. 320-331, December 2010. 

[21] F. Viani, E. Giarola, F. Robol, G. Oliveri, and A. Massa, “Distributed 

monitoring for energy consumption optimization in smart buildings,” 

Proc. 2014 IEEE Antenna Conference on Antenna Measurements and 

Applications (IEEE CAMA 2014), Antibes Juan-les-Pins, France, pp. 1-

3, November 16-19, 2014. 

[22] N. Yaagoubi and H. T. Mouftah, “User-aware game theoretic approach 

for demand management,” IEEE Transactions on Smart Grid, vol. 6, no. 

2, pp. 716-725, March 2015. 

[23] F. Viani, E. Giarola, F. Robol, G. Oliveri, and A. Massa, “Distributed 

monitoring for energy consumption optimization in smart buildings,” 

2014 IEEE Antenna Conference on Antenna Measurements and 

Applications (IEEE CAMA 2014), Antibes Juan-les-Pins, France, pp. 1-

3, November 16-19, 2014. 

[24] F. Robol, F. Viani, E. Giarola, and A. Massa, “Wireless sensors for 

distributed monitoring of energy-efficient smart buildings,” 2015 IEEE 



	

76	

Mediterranean Microwave Symposium (MMS’2015), Lecce, Italy, pp. 1-

4, November 30 – December 2, 2015. 

[25] H. Ahmadi, M. S. Dao, E. Giarola, A. Polo, F. Robol, F. Viani, and A. 

Massa, “Distributed wireless sensing, monitoring, and decision support: 

current activities @ ELEDIA Research Center,” Atti XXI Riunione 

Nazionale di Elettromagnetismo (XXI RiNEm), Parma, 12-14 Settembre 

2016. 

[26] H. Ahmadi, F. Viani, and R. Bouallegue, "An accurate prediction method 

for moving target localization and tracking in wireless sensor networks," 

Ad Hoc Networks, vol. 70, no. 1, pp. 14-22, March 2018. 

[27] F. Robol, F. Viani, A. Polo, E. Giarola, P. Garofalo, C. Zambiasi, and A. 

Massa, "Opportunistic crowd sensing in WiFi-enabled indoor areas," 

2015 IEEE AP-S International Symposium and USNC-URSI Radio 

Science Meeting, Vancouver, BC, Canada, pp. 274-275, July 19-25, 

2015. 

[28] F. Viani, A. Polo, P. Garofalo, N. Anselmi, M. Salucci, and E. Giarola, 

“Evolutionary optimization applied to wireless smart lighting in energy-

efficient museums,” IEEE Sensors Journal, vol. 17, no. 5, pp. 1213-

1214, March 2017. 

[29] F. Viani and A. Polo, “A forecasting strategy based on wireless sensing 

for thermal comfort optimization in smart buildings," Microwave and 

Optical Technology Letters, vol. 59, no.11, pp. 2913-2917, November 

2017. 

[30] Ó. García, R.S. Alonso, J. Prieto, and J.M. Corchado, “Energy 

Efficiency in Public Buildings through Context-Aware Social 

Computing”, Sensors, vol. 17, no.4, pp. 1-22, April 2017. 

[31] A. Honeycutt, and M.E. Milliken, Understanding human behavior: a 

guide for health care providers, Delmar Pub., 8th edition, 2012.  

[32] A. Crabtree, and T. Rodden, Domestic Routines and Design for the 

Home, Computer Supported Cooperative Work, vol. 13, no. 2, pp. 191 ‐ 

220, April 2004.  



	

77	

[33] P. Tolmie, J. Pycock, T. Diggins, A. MacLean, and A. Karsenty, 

“Unremarkable computing”, In Proceedings CHI Conference on Human 

Factors in Computing Systems, Minneapolis, Minnesota, USA, 20‐25 

April, 2002. 

[34] J. Dugdale. Human behaviour modelling in complex socio-technical 

systems: an agent based approach. Multiagent Systems. Université 

Joseph-Fourier - Grenoble I, 2013. 

[35] A. Kashif, J. Dugdale, and S. Ploix, “An agent based approach to find 

high energy consuming activities”, In Proceedings of International 

Conference on Artificial Intelligence (ICAI), Las Vegas, USA, pp. 365-

371, July 2012. 

[36] V. Fabi, V. A. Rune, and S. P. Corgnati, “Window Opening Behaviour: 

Simulations of Occupant Behaviour in Residential Buildings using 

Models based on a Field Survey.” Proceedings of 7th windsor 

conference: The changing context of comfort in an unpredictable world, 

Cumberland Lodge, Windsor, UK. London: Network for Comfort and 

Energy Use in Buildings, April 12–15, 2012.  

[37] R. J. Cole, and Z. Brown, “Reconciling Human and Automated 

Intelligence in the Provision of Occupant Comfort.” Intelligent Buildings 

International, vol.1, no. 1, pp. 39–55, 2009. 

[38] K. Kant, “Human Behavior Considerations in Metrics for Smart 

Infrastructures”, The First International Conference on Smart Systems, 

Devices and Technologies, SMART 2012, Stuttgart, Germany, May 27-

June 1, 2012.  

[39] E. Shove, and G. Walker, “What Is Energy For? Social Practice and 

Energy Demand”, Theory, Culture & Society, vol. 31, no. 5, pp. 41–58, 

2014. 

[40] T. Hughes, Networks of Power: Electrification in Western Society, 

1880– 1930, MD: Johns Hopkins University Press, Baltimore, 1983. 

[41] T. Dietz, G.T. Gardner, J. Gilligan, P.C., Stern, and M.P. Vandenbergh, 

“Household actions can provide a behavioral wedge to rapidly reduce 



	

78	

US carbon emissions”, Proceedings of the National Academy of 

Sciences (PNAS), vol. 106, no. 44, pp. 18452-18456, November 2009. 

[42] K. Gram-Hanssen, C. Kofod, and K.N. Petersen, “Different everyday 

lives— different patterns of electricity use”. In: Paper presented at the 

Proceedings of the 2004 American Council for Energy Efficient 

Economy Summer study in Buildings, Washington, DC, 2004. 

[43] D. Schwartz, B. Fischhoff, T. Krishnamurti, and F. Sowell, “The 

Hawthorne Effect and Energy Awareness”, Proceedings National 

Academies of Science 17; vol. 110, no 38, pp. 15242-15246, 

September 2013.  

[44] I. Bensch, “Identifying the Impacts of Cool Choices’ Game at Miron 

Construction: Energy Savings from Player Actions”, Energy Center of 

Wisconsin, February 2013.  

[45] P.C. Endrejat, F.E. Klonek, and S. Kauffeld “A psychology perspective 

of energy consumption in organisations: The value of participatory 

interventions”, Indoor and Build Environment, vol. 24, no. 7, pp. 937-

949, 2015.  

[46] S.C. Staddon, C. Cycil, M. Goulden, C. Leygue, and A. Spence, 

“Intervening to change behaviour and save energy in the workplace: A 

systematic review of available evidence”, Energy Research and Social 

Science, vol. 17, pp. 30-51, April 2016.  

[47] I. Ajzen, “The theory of planned behavior. Organizational Behavior 

Human Decision", vol. 50, no. 2, pp. 179-211, December 1991.   

[48] P.C. Stern, T. Dietz, T. Abel, G.A. Guagnano, and L. Kalof, “A value- 

belief-norm theory of support for social movements: the case of 

environmentalism”, Human Ecology Review, vol. 6, no. 2, pp. 81–97, 

1999.  

[49] G. Duca, “From energy-efficient buildings to energy-efficient users and 

back: Ergonomic issues in intelligent buildings design”, Intelligent 

Buildings International, vol. 6, no. 4, pp. 215-223, 2014. 



	

79	

[50] J.A. Clarke, I. Macdonald, and J. F. Nicol, “Predicting Adaptive 

Responses - Simulating Occupied Environments” Proceedings of 

international comfort and energy use in buildings conference, London: 

Network for Comfort and Energy Use in Buildings (NCEUB), 2006. 

[51] D. Bourgeois, C. Reinhart, and I. Macdonald, “Adding Advanced 

Behavioural Models in Whole Building Energy Simulation: A Study on 

the Total Energy Impact of Manual and Automated Lighting Control” 

Energy and Buildings, vol. 38, no. 7, pp. 814–823, 2006. 

[52] M. Halfawy, and T. Froese, “Building Integrated 

Architecture/Engineering/Construction Systems using Smart Objects: 

Methodology and Implementation”, Journal of Computing in Civil 

Engineering, vol. 19, no 2, pp. 172–181, 2005. 

[53] A. Reckwitz, “Toward a Theory of Social Practices. A Development in 

Culturalist Theorizing”, European Journal of Social Theory, vol. 5, no. 2, 

pp. 243-263, 2002. 

A. Capozzoli, F. Corno, V. Corrado, and A. Gorrino, “The Overall 

Architecture of a Decision Support System for Public Buildings”, In: 

ENERGY PROCEDIA, vol. 78, pp. 2196-2201, 2015. 

[54] K. Gram-Hanssen, “Households' energy use – which is the more 

important: efficient technologies or user practices?”, World Renewable 

Energy Congress, Sweden, 8-13 May, 2011. 

[55] A. Paone, J.P. Bacher “The Impact of Building Occupant Behavior on 

Energy Efficiency and Methods to Influence It: A Review of the State of 

the Art”, University of Applied Sciences and Arts Western Switzerland—

Fribourg, HEIA-FR—Institute for Applied Research in Energy Systems, 

Bd. de Pérolles 80, CP32, CH-1705 Fribourg, Switzerland,17 April, 

2018. 

[56] B. Reeves, J.J. Cummings, J.K. Scarborough, and L. Yeykelis, 

“Increasing Energy Efficiency with Entertainment Media: An 

Experimental and Field Test of the Influence of a Social Game on 



	

80	

Performance of Energy Behaviors”, Environment and Behavior, vol. 47, 

no.1, pp. 102-115, 2015.   

[57] W. Chung, “Review of building energy-use performance benchmarking 

methodologies”, Applied Energy, vol. 88, no. 5, pp. 1470-1479, May 

2011.  

[58] A. Roetzel, A. Tsangrassoulis, U. Dietrich, S. Busching, “A review of 

occupant control on natural ventilation”, Renewable and Sustainable 

Energy Reviews, vol. 14, no. 3, pp. 1001-1013, 2010. 

[59] G. Yun, and K. Steemers, “Time-dependent occupant behaviour models 

of window control in summer”, Building and Environment, vol. 43, no. 9, 

pp. 1471-1482, September 2008.  

[60] B. Bordass, R. Cohen, and J. Field, “Energy performance of non-

domestic buildings: closing the credibility gap”, Building Performance 

Congress, 2004.  

[61] J. Thøgersen, and A. Grønhøj, “Electricity saving in households-A 

social cognitive approach”, Energy Policy, vol. 38, no. 12, pp. 7732-

7743, December 2010. 

[62] J. Thøgersen, “Waste removal systems and recycling participation in 

residential environments”. In: Aragone ́s, J.I., Francescato, G., Garling, 

T. (Eds.), Residential Environments: Choice, Satisfaction, and Behavior. 

Bergin & Garvey, Westport, CT, pp. 241–256, 2002. 

[63] J. Thøgersen, “How may consumer policy empower consumers for 

sustainable lifestyles?”, Journal of Consumer Policy, nol. 28, no. 2, pp. 

143-178, June 2005.  

[64] I. Ajzen, and M. Fishbein, Understanding Attitudes and Predicting 

Social  Behavior, Prentice-Hall, Englewood Cliffs, 1980.   

[65] A. Bandura, Social cognitive theory. In R. Vasta (Ed.), Annals of child 

development. Six theories of child development. Greenwich, CT: JAI 

Press, vol. 6, pp 1-60, 1989. 



	

81	

[66] S. D’Oca, and T. Hong, “A data-mining approach to discover patterns of 

window opening and closing behavior in offices”, Building and 

Environment, vol. 82, pp. 726-739, December 2014.  

[67] Z. Yu, J. Li, H.Q. Li, J. Han, and G.Q. Zhang, “A novel methodology for 

identifying associations and correlations between household appliance 

behaviour in residential buildings”, Energy Procedia, vol. 78, pp. 591-

596, November 2015.   

[68] M. Ouf, M. Issa, and P. Merkel, “Analysis of Real-Time Electricity 

Consumption in Canadian School Buildings”, Energy Buildings, vol. 

128, pp. 530-539, September 2016.  

[69] R.K. Jain, J.E. Taylor, and P.J. Culligan, “Investigating the impact eco-

feedback information representation has on building occupant energy 

consumption behavior and savings”, Energy Buildings, vol. 64, pp. 408-

414, September 2013.  

[70] L. Gynther, I. Mikkonen, and A. Smits, “Evaluation of European energy 

behavioural change programmes”, Energy Efficiency, vol 2, no. 1, pp. 

67-82, February 2012. 

[71] B. Reeves, J.J. Cummings, J.K. Scarborough, and L. Yeykelis, 

“Increasing Energy Efficiency With Entertainment Media: An 

Experimental and Field Test of the Influence of a Social Game on 

Performance of Energy Behaviors”, Environment and Behavior, vol. 47, 

no. 1, pp. 102–115, 2015. 

[72] B.K. Sovacool, S.E. Ryan, P.C. Stern, K. Janda, G. Rochlin, D. 

Spreng,  M.J. Pasqualetti, H. Wilhite, and L. Lutzenhiser, “Integrating 

social science in energy research”, Energy Research and Social 

Science, vol. 6, pp. 95-99, March 2015. 

[73] T. Hong, D. Yan, S. D’Oca, and C.F. Chen, “Ten questions concerning 

occupant behavior in buildings: The big picture”, Building and 

Environment, vol. 114, pp. 518-530, December 2016. 

[74] F. G. Filip, “Decision Support Systems,” Ed. Tehnica, Bucharest, 2004. 



	

82	

[75] M. Demarest, “Technology and Policy in Decision Support Systems”, 

Aug 2005. Available Online: 

http://dssresources.com/papers/features/demarest05/demarest0708200

5.html 

[76] J. Stephenson, B. Barton, G. Carrington, D. Gnoth, R. Lawson, and P. 

Thorsnes, “Energy cultures: a framework for understanding energy 

behaviours”, Energy Policy, vol. 38, no. 10, pp. 6120-6129, October 

2010. 

[77] J. Stephenson, B. Bartonb, G. Carringtona, A. Doeringa, R. Forda, 

Debbie Hopkinsa, R. Lawsona, A. McCarthya, D. Reesc, M. Scotta, P. 

Thorsnesa, S. Waltona, J. Williamsa, and B. Wooliscrofta, “The energy 

cultures framework: Exploring the role of norms, practices and material 

culture in shaping energy behaviour in New Zealand”, Energy Research 

& Social Science, vol. 7, pp. 117–123, May 2015.  

[78] J. Langevin, PL. Gurian, and J. Wen, “Tracking the human-building 

interaction: a longitudinal field study of occupant behavior in air-

conditioned offices”, Journal Environment  Psychology, vol. 42, pp. 94-

115, June 2015. 

[79] S. Mazur-Stommen, and K. Farley, “Field Guide to Utility-Run Behavior 

Programs”, American Council for an Energy-Efficient Economy,   

December 2013. 

[80] R. Sussman, and M. Chikumbo, “Behavior Change Programs: Status 

and Impact”, American Council for an Energy-Efficient Economy, 

October 2015.  

[81] M. Costanzo, D. Archer, E. Aronson, and T. Pettigrew. 1986. “Energy 

Conservation Behavior: The Difficult Path from Information to Action.” 

American Psychologist, vol. 41, no. 5, pp. 521-528, May 1986.  

[82] C. Egan, The Application of Social Science to Energy Conservation. 

Washington, DC: American Council for an Energy-Efficient Economy, 

March 2000. http://www.aceee.org/research-report/e002. 



	

83	

[83] D. McKenzie-Mohr “Promoting Sustainable Behavior: An Introduction to 

Community-Based Social Marketing”, Journal of Social Issues, vol. 56, 

no. 3, pp. 543–554, 2000. 

[84] H. Granade, J. Creyts, A. Derkach, P. Farese, S. Nyquist, and K. 

Ostrowsji, “Unlocking Energy Efficiency in the U.S. Economy”. New 

York: McKinsey and Company, July 2009. 

[85] T. Hong, S. D’Oca, W. J.N. Turner, and S.C. Taylor-Lange, “An 

ontology to represent energy-related occupant behavior in buildings. 

Part I: Introduction to the DNAs framework”, Building and Environment, 

vol. 92, pp. 764-777, October 2015. 

[86] W. Turner, and T. Hong, “A technical framework to describe energy-

related occupant behavior in buildings”, In: Proceedings of BEEC 

conference, Sacramento, CA; 2013. 

[87] N. Li, J. Li, R. Fan, and H. Jia, “Probability of occupant operation of 

windows during transition seasons in office buildings”, Renewable 

Energy, vol. 73, pp.84-91, January 2015. 

[88] J. Zhao, B. Lasternas, K.P. Lam, R. Yun, and V. Loftness, “Occupant 

behavior and schedule modeling for building energy simulation through 

office appliance power consumption data mining”, Energy and Building, 

vol. 82, pp. 341–355, October 2014. 

[89] H. Jang, and J. Kang, “A stochastic model of integrating occupant 

behavior into energy simulation with respect to actual energy 

consumption in high-rise apartment buildings”, Energy and Buildings, 

vol. 121, pp. 205-216, June 2016.  

[90] A. Khosrowpour, R. Gulbinas, and J.E. Taylor, “Occupant workstation 

level energy-use prediction in commercial buildings: developing and 

assessing a new method to enable targeted energy efficiency 

programs”, Energy and Buildings, vol. 127, pp. 1133–1145, 

Semptember 2016. 

[91] S.H. Ryu, and H.J. Moon, “Development of an occupancy prediction 

model using indoor environmental data based on machine learning 



	

84	

techniques”, Building and Environment, vol. 107, pp- 1-9, October 

2016.   

[92] V. Fabi, R.V. Andersen, S.P. Corgnati, B.W. Olesen, “A methodology 

for modelling energy-related human behaviour: application to window 

opening behaviour in residential buildings”, Buildings Simulation, vol. 6, 

no. 4, pp. 415-427, December 2013. 

[93] A.-H. Mohesenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and 

A. Leon-Garcia, “Autonomous demand-side management based on 

game- theoretic energy consumption scheduling for the future smart 

grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320–331, December 

2010.  

[94] A.-H. Mohesenian-Rad and A. Leon-Garcia, “Optimal residential load 

control with price prediction in real-time electricity pricing 

environments,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 120–133, 

September 2010.  

[95] T.S. Larsen, H.N. Knudsen, A.M. Kanstrup, E.T Christiansen, K. Gram-

Hanssen, M. Mosgaard, H. Brohus, P. Heiselberg, and J. Rose, 

“Occupants Influence on the Energy Consumption of Danish Domestic 

Buildings: state of the art”, Department of Civil Engineering, Aalborg 

University. (DCE Technical Reports; No. 110), 2010. 

[96] P. Moderato, and F. Rovetto, Psicologo: verso la professione. 

Dall’esame di Stato al mondo del lavoro, November 2006. 

[97] A.R. Andreasen, “Marketing social change: changing behaviour to 

promote health, social development and the environment”, Jossey-Bass 

Inc Publisher, San Francisco, 1995. 

[98] D. McKenzie-Mohr, “Promoting sustainable behavior: an introduction to 

community based social marketing”, Journal of Social Issues, vol. 56, 

no. 3, pp. 543-554, 2000. 

[99] F. Viani and M. Salucci, “A user perspective optimization scheme for 

demand-side energy management,” IEEE Systems Journal, in press., 

July 2017. 



	

85	

[100] T. Hong, D. Yan, S. D’Oca, and C.-F. Chen, “Ten questions concerning 

occupant behavior in buildings: The big picture”, Building and 

Environment, vol. 114, pp. 518-530, 2017.  

[101] E. Shove, M. Pantzar, and M. Watson, The Dynamics of Social 

Practice, Everyday Life and How it Changes”, SAGE Publications, 

London, May 2012. 

[102] N. Labanca, and P. Bertoldi, “Beyond energy efficiency and individual 
behaviours: policy insights from social practice theories”, Energy Policy, 
vol. 115, pp. 494-502, April 2018.  

[103] N. Spurling, A. McMeekin, E. Shove, D. Shourtherton, and D. Welch, 

“Interventions in practice: re-fraiming policy approaches to consumer 

behaviour”, Report produced by the Sustainable Practices Research 

Group, September 2013.  

[104] R.A. Winkler, and R. Winett, “Behavioural interventions in resource 

management: a systems approach based on behavioural economics”, 

American Psychologist, vol. 37, pp. 421-435, 1982. 

[105] R.B. Hutton RB, G.A. Mauser, P. Filiatrault, and O.T. Ahtola, “Effects of 

cost-related feedback on consumer knowledge and consumption 

behaviour: a field experimental approach”, Journal of Consumer 

Research, vol. 13, pp. 327-336, 1986. 

[106] C. Wilson, and M. Marselle, “Insights from psychology about the design 

and implementation of energy interventions using the Behaviour 

Change Wheel”, Energy Research & Social Science, vol.19, pp. 177-

191, September 2016. 

[107] R. Sayers, Principles of awareness-raising: Information literacy, a case 

study. Bangkok: UNESCO Bangkok, 2006. 

[108] Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo 

economico sostenibile, “Cambiamento comportamentale ed efficienza 

energetica”, Report Stati Generali Efficienza Energetica, 2017. 

[109] S. Darby, “The effectiveness of feedback on energy consumption. A 

review for DEFRA of the literature on metering, billing and direct 



	

86	

displays”, Environmental Change Institute, University of Oxford, April 

2006. 

[110] D. Yan, "Definition and simulation of occupant behavior in buildings," 

International Energy Agency - Energy in Buildings and Communities 

Programme (EBC), Annex 66 Text, November 2014. 

 


