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Abstract

The design of reflectarray surface currents that satisfy both radiation and user-
defined antenna feasibility constraints is addressed through a novel paradigm
which takes advantage of the non-uniqueness of inverse source (15) problems. To
this end, the synthesis is formulated in the IS framework and its non-measurable
solutions are employed as a design DoF. Thanks to the adopted framework,
a closed-form expression for the design of reflectarray surface currents is de-
rived which does not require any iterative local/global optimization procedure
and which inherently satisfies both the radiation and the feasibility design con-
straints. The features and potentialities of the proposed strategy are assessed
through selected numerical experiments dealing with different reflectarray aper-

ture types/sizes and forbidden region definitions.
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Reflectarray Synthesis, Non-Radiating Currents, Inverse Source Problems, Con-

strained Reflectarray Design.
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Chapter 1

Introduction

Antennas able to exhibit high gains and carefully shaped patterns are of fun-
damental importance in radar, satellite remote sensing and long-distance /high-
capacity communication systems [1]-[6].

In order to meet such ambitious performance requirements, the technologies
traditionally employed are reflector antennas [6] and phased arrays|7],[8]. In fact
both technologies can achieve a very high gain and are able to generate shaped
patterns. In reflector antenna the high gain capability is achieved thanks to the
ability to concentrate the field that is coming from the feeder to a single direction
in space (due to the parabolic reflector), while the shaped beam can be obtained
by shaped profile reflectors (adding some “bumps” into the paraboloid reflector
surface) [9].

In [9] it is proposed to use an optimization procedure that takes in input the
type of the reflector surface (circular, ellipsoid, square, rectangular, conic etc..),
the feed configuration (horn antenna, array antennas, etc..) and position (at
the center or shifted), the reflector configuration (single reflector, dual reflector,
Cassegrain, etc..) and the radiation characteristics. The optimizer computes the
radiated pattern applying the theory of generalized diffraction, i.e. the physical
theory of diffraction is used to analyse the antenna and produce a cost function
to quantify the matching of the radiation characteristics.If the cost function is
not minimized, the optimizer creates a new trial solution.

In phased arrays, high gain and a properly shaped beam are given by the
position of the elements (regular lattice, sparse lattice, random lattice, etc..),

the element pattern and the weighting function applied to each element (e.g.:



Constant Phase

_Feed

aseyd Jueisuo)

Feeding network

(a)

Figure 1.1: Geometry comparison of (@) Phased Array Antenna, (b) Reflector
Antenna, (¢) Reflectarray Antenna.

tapering, thinning, phase synthesis, time modulated array, clustering techniques,
etc..)[7]]8]-

Though able to achieve the desired requirements, both solutions have signifi-
cant drawbacks. Reflector antennas exhibit high manufacturing complexity, are
difficult to be implemented as reconfigurable antennas (unless mechanical steer-
ing is considered, which is typically avoided in space applications) and are also
characterized by non-conformal shapes [6]. Moreover, space application reflector
antennas suffer manufacture tolerance and deformation problems [10]| that can
severely affect the antenna operational. Phased antenna arrays are expensive in
terms of fabrication and power consumption (and, consequently, need tempera-

ture control, not suitable for space applications). In addition, such antennas are
also heavy due to support and feeding network, and their design is not trivial
[7118]-

In order to deal with the aforementioned issues, reflectarray antennas have
emerged as a possible solution to yield high-gain shaped beam antennas with
low realization costs, flat/conformal shapes, and low-consumption feed networks
[6],[11]. Thanks to their potentials and flexibility [6],[12]-[36], the design of

shaped-beam reflectarray antennas has become a very active research field and

several methodologies have been proposed to this end [37]-[52].

The key factor that helped the success of reflectarray antennas is their capa-
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bility of combining the positive features of both classical reflector antennas (i.e.,
high gain, low cost and easy fabrication) [6] and phased arrays (i.e., reconfigura-
bility and low profile)|7]. Typically, they consist of a planar array of microstrip
patches printed on a ground-backed dielectric substrate and illuminated by a
feeder (e.g., a horn antenna, or also a phased array). Size, shape and arrange-
ment of the metallic patches are properly designed such that the field reflected by
the passive/active surface meets the desired pattern features (e.g., steering angle,
sidelobe level, bandwidth, etc..)[6]. As a main consequence, reflectarrays do not
require the use of a bulky parabolic disc, while the tuning of the radiated field is
obtained without the need for expensive beam-forming networks or mechanical
steering [14].

The first example of a reflectarray antenna was proposed at the beginning of
60’s by Berry [11], who proposes to use truncated waveguides as reflecting ele-
ments. These waveguides have different lengths that are able to impose a proper
phase shift to obtain a desired reflected pattern. The reflectarrays produced
with this technology can achieve good performances and can handle very high
power (no dielectric substrate) at the cost of using a heavy structure. For this
reason, only with the development of the microstrip technology in the late 80’s
the reflectarray arose as a leading technology.

Before microstrip technology, another kind of reflecting structure was ana-
lyzed: the Spiralphase reflectarray [53]. In this work four arms of spirals are
connected with switching diodes that activate a different pair of arms and thus
permit to control the scan angle of the circular polarized reflectarray. However,
due to the diodes circuit and the spiral cavity (A\/4), the structure becomes too
bulky to permit an efficient implementation.

The simplest design of a reflectarray is proposed in [54] and [55] and imple-
mented by [56],[57] [Fig. 1.2(a)|, and consists in microstrip patches with fixed
shape and different adapting stubs. Since these stubs have different lengths, they
can provide a different impedance, and consequently a different phase shift. The
major problem with the stub technology is that this method is inherently nar-
rowband, since the stub structure must be dimensioned for a specific wavelength,
and parasitic coupling with adjacent elements could be a possible issue.

Pozar et al. in [58],[59] and Chaharmir et al. [60] propose to introduce, in
the same planar structure, patches with different dimension, rotation, or even

different geometry in order to introduce a different phase shift for each element.
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Figure 1.2: Reflectarray Antenna implemented by (a)[56] and by (b)Pozar
(http://www.ecs.umass.edu/ece/pozar/reflect.jpg).

This kind of design solves the problems of the stubs, improves the bandwidth and
allows the designer to have a better control on polarization. However, a trade-off
must be taken into account when designing reflectarray antennas that radiated
shaped beams. If a particular shaped beam is desired in order to cover only some
regions of the Earth (e.g. a beam that can cover northern Europe without send-
ing power on sea areas) the phase distribution on the reflectarray aperture has
a non-smooth behavior. This means that adjacent elements could have a signif-
icantly different phase shift and this implies very different and complex shapes.
As a consequence, manufacturing costs are high (also due to manufacture toler-
ances), and there may also be problems involving incorrect shape definition and
coupling. This kind of design is improved by Encinar et al. in [15],[16],[37],[61]
that propose to design shaped beams by using more layers (2 or 3) of different
shaped patches and exploiting an optimization technique in order to define the
best phase distribution on different layers. This kind of design, based on multiple
layers, can improve the performance and decrease the complexity of each singular
layer, although the overall structure is still complex, expensive to manufacture,
and it could be hard to insert a control network for beam-steering applications.

In general, reflectarray layouts are usually synthesized by a two-step proce-

dure in which:

(a) the reflectarray surface currents that radiate the desired shaped beam are
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computed;

(b) the feed and reflecting elements (e.g., microstrip patches) able to approxi-

mately generate such currents are deduced/designed.

Several methods have been developed in the literature to solve () for various
unit cell geometries and architectures [2],|6],[15],[59],[62]-[66]. On the contrary,
very few approaches have been proposed to address (a) [37]-[39].

One example of solution in literature that deals with step (b) is [59], in which
the authors describe a method of computing the phase response characteristics for
a square patch microstrip and then synthesizing the patch distribution to obtain
a pencil beam in different reflectarray configurations: squared reflectarray offset
beam having the feeder in broadside, circular diameter reflectarray with both
feeder and far-field maximum in broadside, square reflectarray with prime focus
rectangular horn and square reflectarray in Cassegrian configuration.

Instead [15] [Fig. 1.3(a)], in order to enlarge the operational bandwidth of
the system, a multi-layer structure is employed. In particular the number of
layer is set to 2 and a simple square patch is selected to have the desired phase
shift. More in detail, the size of the side of the square patch can vary the phase
response of the specific cell and by fixing the ratio between the cell in the two
layers (the upper layer patches are 0.7 times the lower layer ones) the reflectarray
is synthesized using the simple phase delay compensation (the phase of the patch
has to compensate the same travelling time that should be occurred in case of a
reflector) and good performance are obtained within 16.67% of the operational
bandwidth.

When reflectarray patches are designed, a problem that can occur is that
their phase response does not cover the full 360° phase range. To overcome this
problem [64] [Fig. 1.3(b)]propose to use a kind of structure that is cyclic. This
kind of element comes back to the original geometry shape when a full phase
range is covered. In fact the proposed element is a “phoenix element” (i.e. called
phoenix for its rebirthing capabilities) that is composed by a centered square
patch of fixed dimension, an external ring of fixed dimension that delimits the
element with the adjacent ones and a variable ring that can “move” from the
inner to the outer. Furthermore, this element is designed to be metal-only, thus

without the presence of the substrate (in fact the inner patch, the varying ring
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and the external one are connected by a metallic strip). This element can increase
the efficiency of the reflectarray since it can cover the full phase range and it does
not require any dielectric substrate. Nonetheless, the connecting strips exhibits

some drawbacks in controlling the cross-polarization.

To better control the cross polarization, but maintaining the full range cover,
it is proposed by [65] [Fig. 1.3(¢)] to use two different cycles to define the
element. Firstly the element is made by dipole crossed with same arms (to
ensure dual-polarization), whose width is half of their length. To implement the
cycle, the length is increased until the element touches the adjacent ones, then
the element geometry changes and becomes a grid. The second step of the cycle
is done keeping fixed the length and vary only the width of the arms unless the
metalization disappear, then the cycle restart as a crossed dipole. The designed
reflectarray using this elements can handle both polarizations and demonstrate

to have an operational bandwidth of 11.1%.

Reflectarray are used also for non-microwave application moving to the tera-
hertz domain [66] [Fig. 1.3(d)|. In this domain stubs or many cells with different
shapes can not be manufactured (or are too expensive). Thus, it is proposed
to use metal blocks with different height in order to compensate the phase with
respect to a reference plane. In this way it is the same as if the physical behavior
of a reflector is obtained by sampling and then applying a modulus operation
with respect to the wavelength at the heights of the blocks. It is demonstrated
that with this approach a good gain can be achieved and the pattern behavior is
quite stable to the frequency band (30%) obtaining also a very good performance

in antenna efficiency due to the absence of dielectrics.

Considering step (a), the exploitation of local optimization strategies (such as
the Intersection Approach [37],[39]) has been proposed as a first step of a shaped
beam reflectarray synthesis [37],[39]. However, such methodologies can be com-
putationally expensive (especially if wide apertures are at hand) and their effec-
tiveness and convergence rate strongly depend on the choice of the initialization
point [37]. Alternatively, ray-tracing techniques have been proposed to deduce
the reflectarray surface currents starting from the knowledge of a previously syn-
thesized shaped reflector affording the desired beam pattern [38|. Unfortunately,
such a strategy does not allow the designer to specify any feasibility constraints
on the solution (e.g., presence of “forbidden regions” in the array aperture) and

therefore it does not guarantee that the deduced currents are implementable.
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1~
= m-
(b)

metal block unit cell

"Square" Patch Dual Layer

metal block height]

Figure 1.3: Geometry of the reflectarray antenna elements: (a)[15], (b)[64],
(¢)[65], (d)]66].

In the Intersection Approach [67] two sets are considered: the first set is
composed by all the radiation pattern that respects the required specification and
the second contains all the radiation pattern that the reflectarray can radiate.
Roughly, the synthesis procedure makes continue projection of the patterns in the
two sets from the first set to the second, until the mismatch between the projected
patterns is almost null. Thus, as the dimension of the reflectarray increases the
dimension of the sets increases as well, and this is one of the drawbacks of
techniques explained in [37],[39]. While [37] has a reflectarray made with three
layer of squared patches and can achieve very good performance in covering the
South America region with a bandwidth of 10%, and [39] (that has also used the
FF'T to increase efficiency of the approach) can achieve good performance with a
reflectarray made of black boxes (it does not take into account the real element,
only its reflection coefficient) synthesizing an isoflux pattern and a shaped-beam
for the Europe covering with a Direct Broadcast Satellite (DBS).

From a different perspective, it is known that the relation between the reflec-
tarray currents and their radiated patterns can be effectively modeled exploiting

Green’s functions theory [6][68]. Accordingly, problem (a) can be actually seen
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as an inverse source (IS) one [69]-|72] where the data is the desired beam pattern

and the unknowns are the surface currents.

In [69] and [70] the problem addressed is to retrieve the current distribution
that radiates a measured field. In the first one it is minimized the distance of
reconstructed Equivalent Magnetic Current (EMC') by the near-field measured
in a cylindrical way using the Marquardt algorithm, and in the second its almost
the same but taking into account a near-field measured on a spherical surface
(hence three components of the field, instead of only two).

In [71] the problem is to reconstruct equivalent currents distribution using
integral equation algorithm. Using the integral equation the authors are able to
reconstruct the current over user-defined surfaces, not only cylindrical or spheri-
cal surface (that are easier to compute using the tangential fields and the Equiv-
alence Principle) but also, for example, on the surface of a horn antenna.

In [72] metallic bodies are reconstructed as equivalent currents. In particular
the Source Reconstruction method is applied to the retrieval of metal object in
an investigation domain and use a minimization (using a Conjugate Gradient
method) of a cost function that, taking into account the Tikhonov regularization
and the normalization of the equations terms, of the Ls-norm of the measured

and reconstructed field (by the radiation of the equivalent current).

In the framework of inverse scattering and antenna diagnosis/characterization
[69]-]72], such a problem is known to be ill-posed because of the non-uniqueness of
the radiation operator [73], which is related to the existence of non-measurable /non-
radiating currents [74]-[76]. While this feature can be an issue in traditional
inverse problems requiring suitable countermeasures [74]-[76], it actually repre-
sents a degree-of-freedom (DoF') in the framework of constrained reflectarray
design. In fact, by superimposing a suitably designed non-measurable current to
an available (e.g., minimum-norm [74]-[77]) solution of the IS problem, a current
could be synthesized which radiates the desired far-field pattern, and complies
with the user-defined constraints.

According to such considerations, an innovative paradigm to synthesize reflec-
tarray surface currents [i.e., to address step (a)| is proposed which, by leveraging
on the non-uniqueness of the IS problem as a design DoF|, enables to deduce
solutions also satisfying user-defined antenna feasibility constraints (e.g., on the
presence and shape of “forbidden regions” in the aperture). To this end, the de-

sign is formulated a two step process in which (i) the minimum-norm solution of
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the IS problem is firstly derived, and then (ii) a suitable non-measurable source
is computed so that the resulting surface current [i.e., the superposition of the so-
lutions (7) and (ii)| complies with the user-defined requirements. Thanks to the
features of the proposed formulation, a closed-form expression is finally derived
for both the minimum-norm and the non-measurable currents which does not
require any iterative local /global optimization procedure and which inherently
satisfies both the radiation and the feasibility design constraints.

In particular, it is proposed to apply the Singular Value Decomposition (SVD)
to a defined Green’s operator. The outcome of this process are two set of or-
thonormal bases and a matrix of singular values. This output has to be ana-
lyzed in order to find a good trade-off between, on one side, the precision of the
minimum-norm current able to radiate the desired field; on the other side, the
possibility to have the greatest number of non-measurable bases. This analysis
it is done by defining a variable threshold on the value of the singular values
and collecting different combination of orthonormal bases that are linked to the
singular values above or below the threshold.

The innovative methodological contributions of the paper therefore include
the introduction, for the first time to the best of the author knowledge, of a reflec-
tarray surface current synthesis paradigm which leverages on the non-uniqueness
of the IS problem and the existence of non-measurable currents to improve the
features of the obtained solution (e.g., in terms of feasibility), and the intro-
duction of explicit closed-form expressions for the computation of reflectarray
surface currents affording a desired far-field pattern and complying with geomet-

rical constraints regarding the presence of “forbidden regions”.



Thesis outline

The thesis is organized as follows. After the formulation of the shaped-beam
constrained reflectarray currents synthesis problem (Chapter 2), the proposed
design method is illustrated and its final closed-form solution is derived (Chapter
3). A set of numerical examples based on realistic reflectarray architectures are
then illustrated to assess the effectiveness and potentialities of the considered
design paradigm (Chapter 4). At the end are presented the conclusion and
remarks (Chapter 5).
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Chapter 2
Problem Formulation

In this chapter the problem formulation is explained throgh the understanding
of the radiation problem in a reflectarray antenna and how to formulate it as
an Inverse Source problem. In particular, firstly it is described the radiation
problem formulation and its discretization on the reflectarray surface (that is not
continuous) and then the problem to find the current that generate a specified

radiated field is formulated as an Inverse Source problem.

2.1 Radiation from surface current

We consider a reflectarray antenna, oriented like in Fig. 2.1, with both ground
plane and patches made by a Perfect Electric Conductor separated by a layer
of substrate with standard complex permittivity value ¢ = gpe, (1 — jtand) and
illuminated by a feeder positioned in v/ = (2, ys, ;) that in far-field generates
a plane-wave that has a relative angular position (6., dine) (see Fig. 2.1). The
incident vector for each cell of the reflectarray is v (r) =— (sin 6, COS Gine,
Sin O SIN Gje, €08 i)
The incident plane wave on a reflectarray element can be model as:

E°

mc

E?

mc

Ej
E§

o—ik(zme () ) (2.1)

where £ is the vector that describes amplitude and polarization of the incident

plane-wave, r is the position of the reflectarray element, k = 27 f,/ue, u, € are
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Figure 2.1: Geometry of the reflectarray antenna.

the free-space wave number, permeability, and permittivity, respectively, and f

is the frequency.

The presence of the grounded dielectric slab and of the layer printed patches
generates different kind of field that are back-radiated. The total field that is
present, in the region of the space in front of the reflectarray antennas can be

described as the sum of these contributes:

L =E;.+ Epcps + Erpp (2.2)

The term Epqpg indicates the reflected field by the infinite grounded dielec-

tric slab without any kind of patch printed on, and can be definite as:

ERGDS _ REO ejk:(:c Sin Oinc €OS Pine+y Sin Oine Sin Pine—2 cos Oine) (2 3)

where matrix R is the diagonal reflection matrix, and its non-null entries Ry
and Ry, are defined as in [79)].

The other term E,pp represents the reflected field when the microstrip

patches are present. On this patches, made of PEC, the E,,. induces a sur-

C
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CHAPTER 2. PROBLEM FORMULATION

face current that radiates a field defined as:

ERPP _ SEO ejk(z Sin B;ne COS Pine+y Sin Oine Sin Pine—2 cos Oinc) (2 4)

where S is the scattering matrix and its coefficients characterize the reflection:

_ Seo See (2.5)
Seo Soe

Each scattering coefficient is defined as the ratio between the scattered and

incident field of the microstrip surface for each polarization:

Eﬁ%PP(Z =0) .. _
Sji = m Jyi=1{0,9} (2.6)

wmec
These coefficients can be computed for each microstrip patch and then used
to obtain the surface current on the reflectarray aperture. Since we want to
defined the current on the microstrip surface J,:

J. =

S

x H (2.7)

=

(where 1 is the normal to the surface) and we have defined all the terms in (2.2)

we can express also the total magnetic field as:

1 1 1
H =" X B+ 1" X Epgps + ~v"" X Eppp (2.8)
77 U Ui
where v"¢/! is the specular reflection direction (Snell’s law on a PEC) of the

incidence direction v, and 7 is the free-space impedance.

In case of far-field, following [80], the radiated field by an electric current J

can be approximates as:

exp (—jkr)

Brap (1) = —jn =222 (N 0,0) + N, (6,0)) 29)

where the radiation vector in carthesian coordinates N can be expressed as

[ Jo e () @+ Jy, (r) §] X

[2 (2.10)
exp (]7” (zsin 6 cos ¢ + ysin  sin ng)) dx dy
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2.1. RADIATION FROM SURFACE CURRENT

and )\ is the wavelength.
In order to be easier computed the radiation vectors can be expressed in

spherical coordinates form:

(2.11)

{ Ny (0, 9) = N, (6 <;5)cos¢9cos¢+N (0, ¢) cos O sin ¢
Ny (0,¢) = =Nz (0, ¢)sing + Ny (0, ¢) cos ¢

In this way, bu substituting (2.11) in (2.9) we can obtain:

{ Erape(r) = jneng/\iM) (N, (0, ¢) cosb cos ¢ + Ny (6, ¢) cos f sin ¢)

Epap. (1) = =23 (=N, (6, ¢) sin g + N, (6, ¢) cos ¢)
(2.12)

The equations (2.12) and (2.10) completely describe the far-field radiation of
an induced current from a feeder on the reflectarray surface. In order to make
possible the utilization of these equation and the problem definition we need to

discretize the reflectarray surface.
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2.2 Discretization of the reflectarray surface

Lets assume to discretize the reflectarray surface in a regular lattice, and
each cell of the lattice includes only one reflectarray element. Thus, the reflec-
tarray consists of a grid of M x N elements with unit cells of size Ax x Ay and
in order to discretize (2.10) we will apply a pixel-basis function P centered at
S [(m — %) Ar, (n — %) Ay, 0], m=1,...M,n=1,..,N to the current

distribution and we obtain:

M N
) & Z Z JIPT (x q € {z,y} (2.13)

m=1 n=1

In particular, the x-component of the current can be expressed as:

Jo| = _ vt (x™) sin(6) [( + Sgo (™)) B0 (r™) +

mn n

S (£) Ef (677)]

wmc

_V;'nc(rm")COS( ) cos(¢) [(1 _ Sg ( )) E@ ( mn) -+

mc

S (2.14)
—Sps (x™") B (r mn)] *
AT [(1 G, (1) B, (£7) +
—Sgp (1) Efy (r mn)}
and the y-component as:
Vzi/nc r’mn)sin 9) mn
Tylon = —% (14 Sop (7)) Efpe (177) +
+SG¢( mn) E;Z;c mn) +
n yine(pmn )2os(9) sin(¢) [(1 — 599( )) Ezgnc( mn) +
(2.15)
wmec ) +

_S€¢< mn) E¢> (rmn
—"_ ;nc mn COS ¢) [(1

_S¢>¢>( mn) E¢ (rmn

wmc

wmc

Soo (1)) EX,. (1) +
)|

where the reflection matrix of the ground plane is substituted by 1 since it is
perfectly reflecting, while the component z is obviously null (J,| == 0, m =
l,.., Mand n=1, ..., N).
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Substituting (2.13) in (2.10):

Ny (0,0) = S0 S0 exp [jkrr™] Jmm x

2.16
Jo, P (r)exp [jhir®m] dQp, ¢ € {z,y} 10

where 2,,, is the area of the mn-th rectangular pixel. Due to the presence of

the pixel-basis function the integral in the radiation vector formula becomes:
TG pumt 27 2
/ / exp [j—:c sin 6 cos qb} exp [j—y sin 6 sin qb} dxdy  (2.17)
l’n—% ym_% )\ )\
where (x,, y,) is the center of the mn-th reflectarray element /rectangular pixel.

Moreover, with some simple step can be proven that this integral can be solved

as:

exp [jZx sinf cos ¢ exp [j &y sinfsin ¢ x
RN Ay (2.18)
RpagSinc (Tx sin 6 cos ¢) sinc (Ty sin 6 sin ¢)
Now substituting the integral solution (2.18) in (2.16) we finally have:
N, (0,¢) = A;Aysinc (k#gx sin 6 cos ¢) sinc (%y sin fsin ¢) x (2.19)

MoV i exp [jk (2, sin 0 cos ¢ + y,, sin 0sin ¢)]

This final equation is important because it describes, in a discretized way, the
radiation vectors and thus we can compute the far-field having a non continuous

current definition.

The usual way to describe the far-field pattern in reflectarray antenna system
is using the third Ludwig definition [78][6][81] of the coordinate system.

The far field radiated by a reflectarray displaced on a surface 2 (Fig. 2.1)
can be modeled as [68]

B )~ L P EI) 5 6, ) Beo + Fox 0.0)Per] (220)

where r = |r|, r = (rsinf cos p, rsinfsing, rcosd) is the position vector, and
the co-polar pco and cross-polar pcx unit vectors agree with the third definition
of Ludwig [78](6][81|(Fig. 2.2)

{ Pco = cos () 6 — sin ()

P ez s (2.21)
Pox = sin () @ + cos () @
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Figure 2.2: Co-polar and cross-polar unit vector following the Ludwig third
definition.

with some manipulation the co-polar and cross-polar pattern can be retrieved
from (2.20) and (2.12):

Feo (0,0) = {1+ cos? (@) [1 - cos (0)]} Nz (6, ) +
+ [cos (0) — 1] sin (¢) cos (¢) N, (0, ¢) + (2.22)
—sin (0) cos (@) N, (0, ¢)

Fox (0,¢0) = [cos (0) — 1] sin () cos (p) N, (0, @) +
+ {1 +sin® (¢) [1 — cos ()]} Ny (6, ¢) + (2.23)
—sin (0) sin (¢) N, (6, )

At this point we have defined how to compute the reference pattern in the
standard components we can move to the synthesis problem definition. Since
there are many works in the literature that deal with the problem to find a proper
technology (e.g. printed patches type, number of layers, all-metal structures,
etc...)|2],]6],]15],[59],|62]-|66] to obtain the wanted value of the scattering matrix
S for a given current distribution, now we do not take this step into account
(step (b)) and we will continue handling only the problem related to the surface

current definition when feasibility constraints are present (e.g. forbidden region).
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2.3. INVERSE SOURCE PROBLEM DEFINITION

2.3 Inverse Source problem definition

According to the previous formulation, the synthesis of the constrained sur-

face currents of a reflectarray with desired far-field shaped-beam pattern

ufexp (—jkr e N e N
Bt (r) 2 LR CI [pt (5. oy poo + P 0.0 Bex]  (221)

can be formulated as an inverse source problem.

The inverse source problem is defined as:

Constraint-Geometry Reflectarray-Currents Synthesis problem (CG-
RCS) and its definition is:

Find the surface current J(r) (or its numerical counterpart J, =
{J(’;m; m=1,..M, n=1,...N}, ¢ € {z,y}), whose radiate a far-
field, £, whose associated co-polar and cross-polar component, fit the

following reference pattern matching condition:

(2.25)

having that J, € S;, ¢ € {z,y}.Where S, ¢ € {z,y}, are the fea-
sibility sets, which account for the constraints provided by the end-

user /designer (i.e., the presence of forbidden regions in the aperture).

For example, if ¢ identifies the arbitrary-shaped user-defined 2-D forbidden re-
gion (within the reflectarray ® € ), the feasibility condition state that J (r) = 0
if r € ®(i.e.: in numerical form: JJ"™ =0, ¢ = {z,y}, if ™" € ). It is worth
remarking that many techniques can be adopted for the synthesis of feed and
associated reflectarray elements (step (b)) (depending on the selected unit-cell
geometry [2],[6],[15],[59],|62]-[66]) once J,, ¢ € {z,y}, has been found by solving

the above problem.
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Chapter 3

Non-Measurable Currents-based
Solution Method

In this chapter the solution method, that solve the Inverse Source problem, is
explained. In particular, after some mathematical computation needed to obtain
a matrix formulation of the problem, it is applied a Truncated Singular Value
Decomposition (7-SVD) in order to obtain the minimum-norm solution. This
solution can radiate the desired field but can not deal with feasibility constraint
(e.g. forbidden region). In order to overcome this problem, it is proposed to
superimpose the non-radiating/non-measurable currents, that are derived from
the T-SVD, to the minimum-norm solution. Moreover, given the definition of the
handled feasibility constraint (i.e. forbidden region), the closed-form formulation

to solve the problem is defined.
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3.1. FIELD DISCRETIZATION

3.1 Field discretization

In order to address the CG-RCS problem, taking in consideration that the z-
component of the current is not present, its discretized version is firstly computed
by substituting (2.22) and (2.23), in (2.25), sampling it in a set of L angles (6, ¢;),
l=1,..., L as follows

FEg (6, 01) = {1 4 cos” (1) [1 = cos (6)]} Ne (6, 1) +
+ [cos (6:) — 1] sin (1) cos (1) Ny (01, 1)

FEL (01, 01) = [cos (6;) — 1] sin (i01) cos (01) Na (01, 01) + (3.1)
+ {1 + sin? () [1 — cos (91)]} Ny (01, ¢1)
I=1,.. L

which, by exploiting (2.19), can be rewritten as

[ Feg (0,00 = T (61,01) ({1 + cos® (1) [1 — cos (6))]}
sz 1Zn L Jmem (0, 1) +
+ [cos (6;) — 1] sin (¢;) cos (¢;)
XS AL e (61,01))
Fid (0.01) = T (01, 00) ([cos (6;) — 1] sin (1) cos (¢21) (3.2)
X Zm 1 Zn e (0, 1) +
+ {1+ sin® (¢) [1 — cos (6)] }
T e o)
I=1,..L

\

where, for easy of compactness:

™™ (0, 1) £ exp [jko (mAx sin 6; cos ¢; + nly sin 6 sin ¢;)] (3.3)

kA
% sin 6 cos gb) sinc ( 5 Y

In order to further simplify the notation and to better handle the problem

and

INCURZAES isinc (kA sin 6 sin gb) (3.4)

AxAy

we need to express the equation in matrix form.

In this way equation (3.2) can be re-organized in a more compact form as the
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METHOD

following matrix equation

Fe/ =GJ (3.5)

T
where Fref 2 [ch FC){] T — {F[@f Onp), =1, L} te {CO, OXY,
J2(J,,7,)", and:
G2 [ Gecox Yooy ] (3.6)

gC’X,a} gC’X7y

is the (2 x L) x (2 x P) overall Green matrix (-7 being the transpose operator)

featuring the sub-matrices:

Goow = AT (01, 1) €™ (01, 00) {1 + cos® (1) [1 — cos (61)]}

Geoy = Goxe = AT (01, 00) €™ (01, 1) [cos (6;) — 1] sin (1) cos (1)
Goxy = AT (61, 00) €™ (6, 00) {1+ sin® (1) [1 — cos (6))] }
m=1,...M, n=1,..,.N, [=1,....L

(3.7)

where I" was defined in (3.4) and ¢ in (3.3).

Now we have all the formulation ready for start tacking the Inverse Source
problem.

The problem to retrieve a current distribution from a field is well-known to
be ill-posed. This means that multiple current distribution can radiate the same
field. In the literature, one of the most used tool to obtain a minimum-norm (or
generalized) solution of the system is the regularization and inversion technique
Truncated Singular Value Decomposition. Using this algorithm the obtained
solution is the ones that best represents the radiated field with the smallest

norm.
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3.2. TRUNCATED SINGULAR VALUE DECOMPOSITION

3.2 Truncated Singular Value Decomposition

In order to compute the minimum norm solution is well-known the procedure
based on the truncated version of the Singular Value Decomposition (SVD)[73]-
[77].

We assume that the number of the reflectarray elements (2x P = 2x M x N)
is less than the number of field samples (2 x L). Given that ¢}, 43, ..., 3
(W £ min {2 x L, 2 x P}) are the positive eigenvalues of symmetric matrix G*G
(where * indicate the conjugate transpose) and cy, €, ..., Cox p the corresponding

orthonormal eigenvectors:

k=1 ..,2x1L
being:
wjbj = ng j =1,..,2X L (39)
substituting (3.8) in (3.9) it can be obtained:

multiplying left and right side of (3.10) for G and thanks to (3.9) immediately
follow that:

GG*b; = 7 bib; = d;x

3.11
k=1, ..,2xL (3.11)

Equations (3.10) and (3.11) shown the orthonormal properties of the two matrices
B and C.

In matrix notation (3.9) can be written as:
G = BUC* (3.12)
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METHOD
can be noticed that VU is a diagonal matrix in the form:
[ 0|
U= } (3.13)
L 0 Yw dwxw

another note is that the singular values are ordered in descending order (i.e.,
ww Z ’l/}erl; w = 17 sy W — 1)
Writing now the minimum-norm current as a weighted sum as:

g
JMN = Oy with 4= | (3.14)
from (3.9) we can obtain that:
b =9¢ j=1...,W (3.15)
and using the ration expressed in (3.5):
w
F' = " yji5b; (3.16)
=1

Since 9;b; = 0 for j > W, it is simply to derive that only the first W' c,, bases

JMN

that are used to describe are measurable.

For these bases the coefficients 7, are given using:
vi=¢; {bF} =1 W (3.17)

and substituting (3.17) in (3.14):
W
IMN =N "y B F (3.18)
=1

we obtain the minimum-norm (or generalized) solution.
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3.2. TRUNCATED SINGULAR VALUE DECOMPOSITION

Dually in matrix form (3.18) became:
JMW = cu B F (3.19)

This resulting problem is well-known [74]-[77] to be not well-posed due to the
ill-conditioning of the G matrix.

The solution instability occurs due to the fact that some singular values
are much lower in magnitude with respect to the first one (¢)1). This problem

can be measured by using the condition number that is defined as:

_ "

d —
(e

(3.20)
This value measures the instability of the problem. In fact as higher is the
value, as higher is the instability, and this means that the a small variation in
the F¢/ generate a great variation in JMV.
In literature this problem is well-known [74]-[77] and the solution is to use a

truncated version of the SVD.

It is defined H as the truncation order, and is computed as:

w

Yu
o T } s.t. o > T (3.21)

where 7 being the associated user-defined SVD truncation threshold. The thresh-

H = arg {min

w

old 7, the truncation order H and an example of singular value behavior v are
shown in Fig. 3.1. By selecting the value of the SVD truncation threshold 7
the user implicitly defines the precision on the reproduction the far-field and the
instability of the current, thus lower value of the threshold means better repro-
duction of the far-field but also higher variation in the solution (e.g. current
distribution with high space variations).

Then, are computed the truncated version of matrices C, B and ¥ by selecting

the first H bases of the corresponding sets:

B, = {by, h=1,.., H}
C,={cp, h=1,.. H} (3.22)
U, =diag (Yp, h=1,...,H)

By substituting (3.22) in (3.19), the minimum-norm component can be defined
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Singular Values normalized ({,,, /W) [dB]

v

-inf H
Singular value index, w

Figure 3.1: Example of singular values distribution ,,, w = 1, ..., W, taking into
account a truncation order H and a truncation threshold .

as:
JMN & C Ul iBIFTeS (3.23)

This kind of solution (minimum-norm) can be achieved also in other ways
(not only T-SVD), however the truncation operation on the SVD give us a set
of bases that will radiate a null field outside of the support and thus, each basis
can be interpreted as a different current with different shape that do not radiate

any field (or at least a field that is not measurable).
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3.3 Synthesis approach

Now we have a solution that can radiate the wanted field with an error that
can be controlled using the threshold 7.

The solution of the CG-RCS can be carried out by inverting (3.5) subject to
JeS (8§28, g€ {r,y}}). Such an inverse source problem is known to be
ill-posed because of the non-uniqueness of the solution (owing to the existence
of non-radiating/non-measurable currents) [74]-[76]. While such a feature can
be an issue in microwave imaging and antenna diagnosis applications [74]-[76],
it can be actually employed as a DoF' in the framework of reflectarray current
synthesis. Thanks to such a DoF, the following innovative two-step procedure is
introduced to solve (3.5):

e the radiating currents [i.e., JMV] are firstly computed (Step A) as the

minimum-norm solution of (3.5);

e the non-radiating/non-measurable currents JVR

B) so that the overall solution of (3.5)

are then designed (Step

J & JMN 4 gVR (3.24)

complies with J € S.

While we have already explain how to obtain the radiating part of the total
current JMV the Step B is not mathematically explicated.
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3.4 Non-measurable/Non-radiating definition

The outlined SVD procedure in Sect. 3.2 on G is also the starting point for
the solution of Step B. In fact, it is known from inverse source theory [74]-|76]
that JY® can be expressed as a linear combination of the the last 2 x P — H
right singular vectors of C (i.e., CNR £ {c;,, h = H + 1,...,2 x P}) as follows

JVR £ CNRq, (3.25)

where a £ {ay; h = H +1,...,2 x P} are the arbitrary 2 x P — H coefficients

(i.e., the DoFs) associated to the non-radiating/non-measurable current basis
CNR

It is highlighted that the matrices C and B obtained in (3.12) are subdivided

as:

C1,1 vt CLH C1,H+1 ot Ciagxp
C = [C,|CNR] =
i Coxp1 *°° CoxPH CoxPH+1 " CoxP2xP i
(3.26)
b1,1 T bl,H bl,H+1 T b1,2><L
B = [B,|B"Y%] =
i b2><L,1 T b2><L,H b2><L,H+1 T b2><L,2><L |

This means that by selecting the proper value of a the designer can define
a wanted current distribution that do not radiate any field (or at least is not
measurable) that can be added to the radiating current (JMV) to fulfill some
constraints in the design procedure. In this work the feasibility constraint is
proposed to be the “forbidden region” constraint, that is highlighted in the next

section.
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3.5. FORBIDDEN REGION CONSTRAINT DEFINITION

3.5 Forbidden region constraint definition

Using (3.23) and (3.25) in (3.24), Step B can be then addressed by finding
such that
(C, U 'B:F* + C""a) € S (3.27)

The actual procedure to find « in (3.27) depends on the definition of S. Since
in this work the design constraint is represented by the presence of user-defined
forbidden areas in Q (where no reflectarray elements are allowed), the following

mathematical definition is adopted
SE{JMm =0 ifr"™ e ®; qe{zy}} (3.28)

where @ identifies the arbitrary-shaped 2D forbidden region and it is composed
by K reflectarray unit cells (i.e., corresponding to 2 x K constraints since the K

equations are enforced separately on J, and on J,), and can be seen in Fig. 3.2.

Feed
‘\ Reflectarray
z Surface
. Q
Forbidden R o
Region r\\ 0
D [T 7. 7 v 7
S S
ey V. V4 i /.
[/ L / _ : A4
AL TTZS ) S 5L S S
_____ STLT LTI 77 A4
MJg [ S S /
Z V4 =/
X)_/) rr/nn / X rz\{m

Figure 3.2: Geometry of the reflectarray antenna.

By using (3.28), (3.27) can be rewritten as the following set of 2 x K linear

equations in 2 X P — H unknowns
[Ds (C,U'BIF™)] + [Dg (CMF)] o = 05 (3.29)
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where 0y is a null-vector of size 2 x K, and Dg (+) is an operator which extracts
a sub-matrix comprising the 2 x K rows corresponding to the mn-indexes for

which r™ € ®. The matrix problem (3.29) can be re-arranged as:
[Dg (CVF)] @ = — [Dg (C, T 'BIF™/)] (3.30)

and (3.30) according to linear system theory, has at least one solution if the

following solvability condition is satisfied
2x K<2xP-H (3.31)

(i.e., the number of constraints is equal or lower than the number of DoF's in the
linear problem).

Moreover, since Dg (CN R) is always full-rank (because the right singular vec-
tors composing CN7 are orthonormal by definition [74][75]), (3.30) has actually
@ different solutions (Q £ 2x P—H—2x K) if (3.31) holds true. Consequently,
under the assumption (3.31) and without loss of generality, a unique solution to
(3.30) can be found by setting

a = [a; 0g]" (3.32)

where

&=~ | Dy (CVF)] "Dy (C, U BF)] (3.33)

is the reduced coefficient vector which contains only the first 2 x K entries of «,
and 5«1) (CN R) is the reduced version of Dg (CN R) which contains only its first

2 x K columns.
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3.6 Final closed-form formulation

The solution to the CG-RCS is finally obtained by combining (3.33), (3.32),
(3.25), and (3.23) in (3.24) to obtain the closed-form expression

J= C,U'B:F+

+CNR {_ [5@ (CNR)}l [Dcp (CT\II;IB:FTef)] . 04 T (3.34)

which can be easily demonstrated to comply with (3.5) by substitution.

As regards the closed-form solution (3.34), it is worthwhile to notice that:

e the deduced methodology enables the computation of the reflectarray sur-
face currents without requiring any iterative local/global optimization pro-
cedure and satisfying both the radiation (3.5) and the geometrical require-
ments (3.28) by definition;

e such an expression is derived as a proof-of-concept to demonstrate the
possibility to employ non-radiating currents as a DoF' in reflectarray de-
sign. However, other solutions [among the co® available in (3.30)] may be
selected to comply with other geometry/antenna requirements and guide-

lines;

e analogously, other definitions of S (out of the scope of the current manuscript)
could be seamlessly taken into account within the same framework to en-

code different design objectives instead of (3.28);

e the design process only requires the user to specify the desired far-field co-
polar and cross-polar patterns (i.e., F), the reflectarray aperture and unit
cell size (i.e., M x N and Ax x Ay), the forbidden region (i.e., ®), and the
SVD threshold value 7.

With reference to this last parameter, while the choice of 7 in (3.21) can be
challenging in microwave imaging [74], its definition in the reflectarray source

synthesis problem only requires that the magnitude of the truncated singular
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values (i.e., ¥y, h = H + 1,..., W) is small enough to guarantee that
~ ~1 T
G CNR {— [Dq) (CNR)] [Ds (C,V,'BIF)]; OQ] < F  (3.35)

(i.e., the residual non-measurable field caused by JVR is actually negligible with
respect to the far-field pattern F"¢/). Owing to the closed-form nature of (3.35),
7 can be then easily chosen in the design phase by the analysis of the singular
value distribution ¥ (Sect. 4).
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Chapter 4

Method Assessment

In this chapter it is highlighted the numerical assessment of the proposed design
strategy. At the beginning is presented also an error metric that takes into
account the difference between the reference field and the field radiated by the
synthesized current. Then it is shown a step-by-step procedure that illustrate
the synthesis procedure and then some example with different shape/dimension
of the considered forbidden region and then the implementation of the synthesis

technique on different reflectarray geometries (square/rectangular).

4.1 Error metrics

This section is aimed at numerically validating the proposed closed-form expres-
sion (3.34) for the solution of the Constraint-Geometry Reflectarray-Currents
Synthesis problem when assuming different aperture sizes and/or “forbidden re-
gion” shapes, as well as to illustrate of a set of guidelines for its effective ex-
ploitation. To quantitatively assess the accuracy in the matching of the target

far-field shaped beam, the following normalized error is reported

= [ZlL:1 )Fgeof (01, 01) — Feo (O, 00) | + X1y [FE (01, 01) — Fox (91,801)”
SIS |Fod G| + S | el 60|
(4.1)

beyond the graphical representations of the synthesized currents, of the associ-
ated patterns, and of the difference patterns AF, (0, o) 2 |F' (0, 0) — F, (6, ¢)
te{CO,CX}.

b
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4.2 Square reflectarray: 55 x 55 elements

The first reflectarray antenna taken into account works at f = 14|GHz| and has
a square aperture of 440 x 440 [mm?| (~ 20.53\ x 20.53\). The reflectarray
surface is composed by M x N = 55 x 55 elements of side equal to 8 [mm]| that
in wavelength is almost 0.37333\. The reflectarray configuration can be seen in
Fig. 4.1 and includes an horn antenna as feeder, that is placed at almost 27\
from the reflectarray center with an inclination of 25.11 [deg| with respect to the
output system, and the reflectarray is rotated along the y-axis by 12.63 [deg],
thus with a relative inclination between the reflectarray surface and the horn
antenna of 12.48 [deg].

XrYrZr = Reflector System
Xr¥rZr = Integration System
XintYintZint = Intermediate System

XoutYoutZout = Output System e ‘

XfY{Zf = Feed System \ L :

XoutYoutZout = Edge System \ ' B e o o
55x55 cells \ ¢
Systems origin=breadboard centre \

\
Cell side = 8 mm \ |

Zout

Xt e }
s 1

Fi

25.11 deg
i 512.3 mm T Zm

Figure 4.1: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 1071)) -
Reflectarray geometry.
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4.2.1 Step-by-step procedure with lower dimensionality case

The first numerical experiment is devoted to a step-by-step illustration of the

proposed design procedure.

M=N=55, 'E’-shaped ®, K=11

10
Forbidden
5 region
=<
= 0 E
-5
Q
-10
-10 -5 0 5 10

x [A]

Figure 4.2: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071\,
K = 11) - Example of forbidden region ®, “E’-Shape forbidden region with
K = 11 number of elements.

4.2.1.1 Test case definition

To this end, the synthesis of the reflectarray surface currents over a M x N =
55 x 55 square aperture with a square lattice (Az = Ay = 3.73x 1071 )\) assuming
an “E-shaped” forbidden region [Fig. 4.2 - K = 11| and radiating the far field
component (plotted in the uv-domain, where u = sinfcosy, v = sinfsin p)
reported in Fig. 4.3(¢) and Fig. 4.3(d) has been addressed (for the sake of
compactness and without loss of generality, only the ¢ = C'O component has

been considered hereinafter).
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M=N=55
M
=
S
>
e}
(0]
N =)
=z g
— £ =
= <] =
> £ X
) T x
S, =2
= O
>
%
®
2
0.5 0 n
=
S
>
=]
0.25 -30 _g §
® =
g =
>
> 0 60 £ 5
) 88
5, v,
0.25 90 = O
e}
83
LL
05 -120 —

Figure 4.3: Square Aperture (M x N =55 x 55, Ax = Ay = 3.73x 107! \) - Plot
of the reference current (a) magnitude |.J2¢/ (z,y)| and (b) phase ZJ.*/ (z,y)and

radiated field (¢) magnitude)Fg%f (u,v)‘ and (d) phase ZF5 (u,v).
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4.2.1.2 Application of the T-SVD

Such a reference pattern, numerically generated by TICRA GRASP simulations !
starting from the actual currents of a reference reflectarray |Figs. 4.3(a)-4.3(b)],
has been firstly sampled in L = 201 x 201 regularly spaced angles in the uv-
domain to deduce F¢/ in (3.5). The distribution of the singular values 1, w =
1,..., W, of the resulting G [obtained by the SVD decomposition (3.12)] shows

that the knee of the Green matrix spectrum is observed when “2 ~ 8.8 x 10*

1
(i.e., w =~ 370 - Fig. 4.4).
M=N=55

© ]

= :
©
>

-O =
[¢D)
N

C_G -
£

O =
=

— i

é- :
=

= i

10-7 -I 1 1 1 1 1 ﬁl.

0 500 1000 1500 2000 2500 3000

Singular value index w

Figure 4.4: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071)) -
Distribution of the singular values ¢,,, w =1, ..., W, of G.

It is worthwhile to remark that the second knee in the spectrum (i.e., ﬁ_? ~
1075 - Fig. 4.3) is actually caused by the unavoidable finite precision of the
numerical SVD computation (which prevents an accurate evaluation of very small
) [74].

Following the standard guidelines developed in inverse scattering theory and

what said in Sect. 3.2 its is computed the normalized error £ (4.1) with different

LAll the target field patterns in the numerical validation have been provided by Thales
Alenia Space France.
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M=N=55, 'E’-shaped ®, K=11

10_4 :I T T T T T T T T T |:
T
>
=
>
2
'% 10 i ! 1
L | j
£ |
8 |
— . 1=107 -
| ]
L/
|
-6
10 1 M M M M M M 1 M M M 1
10™ 102 102 101

SVD threshold T (arbitrary unit)

Figure 4.5: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 107'}) -
Normalized error £ varying the SVD threshold 7.

value of the threshold 7 and is reported in Fig.4.5. Taking into account both
Fig. 4.4 and 4.5, it can be then deduced that a SVD threshold value sufficiently
below such a knee, such as

T 1073 (4.2)

(which corresponds to H ~ 700 - Fig. 4.4), is enough to guarantee that the field
radiated by JMV reliably matches F¢/ [74]-[77] and to have an relative high
number of DoFs (number of singular value below the threshold W — H).
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4.2.1.3 Minimum-norm current definition

To assess such a property, the minimum-norm currents are then computed by
substituting the truncated SVD matrices and F"/ in (3.23).

The plots of the obtained JMV shows that such minimum-norm solution
turns out close to the reference reflectarray distribution both in terms of magni-
tudes [Fig. 4.6(a) vs. Fig. 4.6(c)| and phases [Fig. 4.6(b) vs. Fig. 4.6(d)|. This
outcome suggests that (3.23) implicitly yields the same surface currents that
would be obtained by back-propagation of the TICRA GRASP solution [e.g.,
Fig. 4.6(a) vs. Fig. 4.6(c)].

Moreover, the far-field beams radiated by the two set of currents perfectly
match in terms of magnitude [Fig. 4.6(e) vs. Fig. 4.6(g)| and phase [Fig. 4.6(f)
vs. Fig. 4.6(h)], as expected from inverse source theory [74]-[77], thus supporting
the choice of 7. Moreover, the error metric is computed also for the obtained
JMN and the error is very low: éMV =554 x 1079,

4.2.1.4 Non-measurable current computation

Once JMV has been deduced [Figs. 4.6(c)-4.6(d)|, the computation of the non-
measurable currents |[Figs. 4.7(a)-4.7(b)| (and of the associated far-field pattern
[Figs. 4.7(¢)-4.7(d)]) can be carried out by substituting (3.33) and (3.32) in
(3.25). As theoretically expected, the field owing to JN® turns out negligible
with respect to F¢/ |Fig. 4.7(c) vs. Fig. 4.6(e)]|, therefore further confirming
the effectiveness of (4.2).

This procedure is not completely safe. In fact the non-measurable bases c;
(with j > H) have high space variations and thus can have a null in one or more
positions of ®. During the inversion when we compute the related coefficients a
a quasi null will go to the denominator and this generate a very high coefficient
(quasi-infinite). Since the non-measurable bases are related to a singular value
that is not zero, due to the truncation operation and also to computational
problem, if we multiply a non-measurable source with a coefficient that is quasi-
infinite we make it measurable.

Thus, the bases are always selected starting from the lower index but remov-

ing the basis that have nulls or very-low values in the forbidden region .
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Figure 4.6: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071},
K = 11) - Plots of (a)(¢)(e)(g) the magnitude and (b)(d)(f)(h) the phase of
(a)(8) J2°F (x) and synthesized (c)(d) JMY (x), (e)(f) Fred, and (g)(h) FALY
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M=N=55, 'E’-shaped ®, K=11
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Figure 4.7: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071\,
K = 11) - Plots of (a)(c) the magnitude and (b)(d) the phase of (a)(b) JV7 (r)
and synthesized (c)(d) FAR
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4.2.1.5 Superficial current definition

The final step of the design procedure is then represented by the computation of
J according by superimposing JMV and JVR(3.24).

By comparing the plots of the obtained reflectarray surface current magnitude
[Fig. 4.8(a)| with the geometry of the required ¢ [Fig. 4.2| it turns out that
the proposed method guarantees a perfect matching of the constraints on the
forbidden region [Fig. 4.8(a) vs. Fig. Fig. 4.2]. Such a result is actually
expected from the theoretical viewpoint since the solvability condition (3.31) is
satisfied.

Moreover, despite J is completely different with respect to JMV [Fig. 4.6(c)
vs. Fig. 4.8(a); Fig. 4.6(d) vs. Fig. 4.8(b)], also its radiated far-field matches
F</ |Fig. 4.8(c) vs. Fig. 4.6(e); Fig. 4.8(d) vs. Fig. 4.6(f)| likewise the one
radiated by JMV [i.e., Figs. 4.6(g)-4.6(h)].

This outcome, which is also supported by the corresponding normalized error
(i.e., £ = 5.84 x 1075~ Tab. 4.1), is a proof-of-concept that suitable components
JVR |Figs.4.7(a)-4.7(b)] can be superimposed to JMV [Figs.4.6(c)-4.6(d)] to sat-
isfy user-defined current constraints while yielding a non-measurable variation in
the radiated field [i.e., negligible with respect to F*/ - Fig. 4.8(c) vs. Fig.

1.6(e)).
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M=N=55, 'E"-shaped ®, K=11 M=N=55, 'E"-shaped ®, K=11

0 —~ I
[0}
E
10 S
2 w2
20 N =y
< 8
E - =
- < ey
e < o %
o ¢
w2 2 &
50 2
=
-60 -Tt
X [A] X [A]
(a) (b)
M=N=55, 'E’-shaped ®, K=11 M=N=55, 'E’-shaped ®, K=11
0

o
>
©
>
K
N )
T g
g =
60 £ 3
oy 8
S, =
90 T ]
3
O
Iy
-120 —
u u
(c) (d)

Figure 4.8: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071\,
K = 11) - Plots of (a)(c) the magnitude and (b)(d) the phase of the synthesized

(a)(b) J. (r) and (¢)(d) Feo (r).
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4.2.2 Analysis vs. various forbidden region shapes keeping

same order dimension

Given the step-by-step procedure now we want to analyse the flexibility of the
proposed methodology by considering the same reflectarray setup (i.e., yield-
ing the same SVD and JMV) but different ® definitions with almost the same
geometrical dimension (K = 33): “Cross’-shaped (K = 28) - Fig. 4.9(a), “Ring’-
shaped (K = 32) - Fig. 4.9(b), “Circular Ring’-shaped (K = 36) - Fig. 4.9(b)
and “Circle”-shaped (K = 37) - Fig. 4.9(d).

M=N=55, 'Cross’-shaped ®, K=28 M=N=55, 'Ring’-shaped ®, K=32
10 10
Forbidden Forbidden
S region > region

y[A]
o
y[A]
o

5 + 5

Q Q
-10 -10
-10 -5 0 5 10 -10 -5 0 5 10
X [A] X [A]
(a) (b)
M=N=55, 'Circle’-shaped ®, K=37
M=N=55, 'Circular Ring’-shaped ®, K=36 10
10
(] 5 Forbidden
5 region
_ A/Forbidden = 0 ‘
=< region =
= o o >
5 -5
Q
-10 . -10
10 5 0 5 10 -10 5 0 5 10
X [A] X [A]
(¢) (d)

Figure 4.9: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 1071)) -
Definition of forbidden regions ®.
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The plots of |J| (Fig. 4.10) obtained by means of the closed-form expression
(3.34) and associated AFo (0, ¢) (Fig. 4.11) show that:

() the proposed strategy enables to deduce surface currents that comply with
arbitrary ® locations/shapes |[Fig. 4.9(b) vs. Fig. 4.10(a); Fig. 4.9(¢) vs
Fig. 4.10(b); Fig. 4.9(d) vs. Fig. 4.10(¢)],

(i7) the resulting difference pattern is always negligible with respect to F"¢/
[AFco (0, ¢) < —110 dB - Fig. 4.11(a); AFqo (6,¢) < —90 dB - Fig.
4.11(b); AFco (0,9) < —80 dB - Fig. 4.11(c)], although the mismatch
slightly increases with K as confirmed by the associated normalized errors
(ie., €705 = 1.18 x x 1075, £""9 = 3.34 x 1077, geireular—ring — 1 57 x 107°
and £°rele = 1.35 x 1072 - Tab. 4.1).

This result is motivated by the fact that wider ® regions require more entries
to be included in & in (3.33) (thus potentially increasing the energy in the “non-
measurable” current components). However, it is worthwhile to remark that
|AFco (6, 0)] < |FEEY (6, ¢)| in all cases [e.g., Fig. 4.11(e) vs. Fig. 4.3(a)],
and that even better ¢ results could be easily obtained by further decreasing 7

with respect to (4.2), as it is known from inverse source theory [74]-[76].

| ®-Shape | K | £ At (s)
- - | 555 x 1076 -
E 11 [ 5.84 x107° | 1.03 x 107!
Cross 28 | 1.18 x 107° | 1.21 x 107!
Ring 321334x107°|1.28 x 107!
Circular Ring | 36 | 1.57 x 107° | 1.34 x 107!
Circle 37 [ 1.35 x 1073 | 1.36 x 107!

Table 4.1: Square Aperture (M x N = 55 x 55,

Performance Assessment - Varying the geometry.
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4.2. SQUARE REFLECTARRAY: 55 x 55 ELEMENTS

M=N=55, 'Cross’-shaped ®, K=28 M=N=55, 'Ring’-shaped @, K=32
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Figure 4.10: Square Aperture (M x N = 55x55, Az = Ay = 3.73x107!\) - Plots
of |J, (r)| assuming (a) “Cross’-shaped (K = 28), (b) “Ring”-shaped (K = 32),
(¢) “Circular Ring”-shaped (K = 36) and (d) “Circle”-shaped (K = 37) forbidden

regions.
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M=N=55, 'Cross’-shaped ®, K=28
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Figure 4.11: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071)) -
Plots of AF¢o (u,v) when assuming (a) “Cross™shaped (K = 28), (b) “Ring”-
shaped (K = 32), (¢) “Circular Ring”-shaped (K = 36) and (d) “Circle”-shaped

(K = 37) forbidden regions.
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4.2.3 Changing the dimension of the same type of forbid-

den region

To further investigate the features of the proposed current synthesis procedure
for different K values, a set of off-centered “Square”-shaped ® regions with K €
[4,100] have been considered. The ® for K =4, K = 25, K = 49, K = 100 are
shown in Fig. 4.12.

M=N=55, 'Square’-shaped ®, K=4 M=N=55, 'Square’-shaped @, K=25
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5 5
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—_ region —_ region
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Figure 4.12: Square Aperture (M x N = 55x 55, Ax = Ay = 3.73x 1071 \) - Def-
inition of forbidden regions ® keeping the same shape but varying the dimension:
(a)K =4, (b)K =25, (¢)K =49 and (d)K = 100.

The behaviour of the normalized error vs. the forbidden region size shows
that, analogously to the previous examples, £ is proportional to K. In fact when
K = 4 the normalized error is very small and comparable with the normalized

error of the minimum-norm term &|,_, & 5.71 x 1075, while when K = 100 the
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M=N=55, 'Square’-shaped @, K=4 M=N=55, 'Square’-shaped ®, K=25
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Figure 4.13: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071)) -
Plots of |J, (r)| assuming different dimension of a “Square™shape (a)K = 4, (b)
K =25, (¢) K =49 and (d) K = 100 forbidden regions.

normalized error grown up until &|,_,,, =~ 2.07 x 107% (shown in Fig. 4.15 and
in Tab. 4.2). Nevertheless, |[AFco (0, ¢)| still turns out negligible with respect
to |FEEF (0,¢)] even for wide ® regions [e.g., K = 100 - Fig. 4.14(d) vs. Fig.
4.3(a).

Furthermore, a perfect matching of the current constraints in the forbidden
region is obtained also in this case for each of the selected dimensions [K = 4 -
Fig. 4.13(a), K = 25 - Fig. 4.13(b), K =49 - Fig. 4.13(¢) and K = 100 - Fig.
4.13(d)|, as expected thanks to the compliancy with the solvability condition
(3.31).
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M=N=55, 'Square’-shaped ®, K=4 M=N=55, 'Square’-shaped ®, K=25
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Figure 4.14: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071))
- Plots of AFgo (u,v) when assuming different dimension of a “Square”-shape
(a)K =4, (b) K =25, (¢) K =49 and (d) K = 100 forbidden regions.
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M=N=55, 'Square’-shaped ®

107 25
@
o
5 1073 g
[ C
> g
9 )
& 10% E
© (=
= 5
g . 1 15 'g
£
(@]
(@)
10 & ‘ ‘ ‘ ‘ g
0 20 40 60 80 100

Figure 4.15: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 1071\,
“Square”’-shaped forbidden region) - Behaviour of £ and At versus K.

‘ ®- Shape ‘ K ‘ 1S ‘ At (s) ‘
- - | 555 x107°° -
Square 4 [571x107%|1.03 x 1071
Square 9 |7.32x107°%|1.06 x 107!
Square | 16 | 1.20 x 107° | 1.04 x 107!
Square 25 14.32x107° | 1.04 x 1071
Square | 36 | 1.11 x 107 | 1.36 x 107!
Square | 49 | 3.59 x 107 | 1.32 x 107!
Square | 64 | 1.09 x 1073 | 1.68 x 107!
Square | 81 | 1.27x 1073 | 2.12 x 107!
Square | 100 | 2.07 x 1073 | 2.32 x 107!

Table 4.2: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 107!)\) -
Performance Assessment - Fixed geometry varying the dimension.
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4.2. SQUARE REFLECTARRAY: 55 x 55 ELEMENTS

4.2.4 Large dimension and complex topology forbidden re-
gion

The next example is aimed at assessing the performance of (3.34) when more
complex forbidden regions are at hand.
To this end, a synthesis of J has been carried out when assuming a ® area

composed of:
(¢) a “Triangle”™shaped, K = 55 in slightly different position [Fig. 4.16(a)(b)],
(¢2) 6 disconnected sub-parts [‘ELEDIA”-shaped, K = 54 - Fig. 4.16(¢)],

(22) a large region centered in the reflectarray aperture [‘Diamond”-shaped,
K =115 - Fig. 4.16(d)].

M=N=55, 'Triangle’-shaped ®, K=55 M=N=55, 'Triangle’-shaped ®, K=55
10 10
Forbidden Forbidden
5 region 5 region
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-10 -5 0 5 10 -10 -5 0 5 10

x [\ X [N

(a) ()

M=N=55, 'ELEDIA’-shaped ®, K=54 M=N=55, 'Diamond'-shaped ®, K=115
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>
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X [A] X [A]

Figure 4.16: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 1071)) -
Definition of forbidden regions ® with complex shape and large dimension: (a)

“Triangle”™shaped K = 55 nearer to the corner, (b) “Triangle”-shaped K = 55 |
(¢) “ELEDIA”-shaped K = 54 and (d) “Diamond”-shaped K = 115.
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By analyzing the graphical representation of the surface current magnitudes
[“Triangle™shaped - Fig. 4.17(a)(b), “ELEDIA”-shaped - Fig. 4.17(¢), “Diamond”-
shaped - Fig. 4.17(d)] and corresponding AFco (6, ¢) [“Triangle”™-shaped - Fig.
4.18(a)(b), “ELEDIA”-shaped - Fig. 4.18(b), “Diamond”-shaped - Fig. 4.18(d)],
it can be noticed once again that the deduced solution fully complies with the
enforced geometrical restrictions [Fig. 4.17(a) vs. Fig. 4.16(a), Fig. 4.17(b) vs.
Fig. 4.16(b), Fig. 4.18(¢) vs. Fig. 4.16(c) and Fig. 4.17(d) vs. Fig. 4.16(d)].

M=N=55, 'Square’-shaped ®, K=55 M=N=55, 'Square’-shaped ®, K=55
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Figure 4.17: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 107')) -
Plots of |J, (r)| assuming different dimension of a “Square”-shape (a)K = 4, (b)
K =25, (¢) K =49 and (d) K = 100 forbidden regions.
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Moreover, also the radiation features achieve good performance [|AFco (0, )| <
|FEEY(0,¢)| - Fig. 4.18 vs. Fig. 4.3(a)], as it is also confirmed by the asso-
ciated error figures (¢friangle=a — 9,94 x 1074, ¢iriangle=b — 1 07 x 1074 ¢eledia —
1.41 x 1073, gdiamond — 4 34 % 1073 - Tab. 4.3).

This result points out the capability of the proposed methodology to exploit
non-measurable currents to comply with arbitrary-shaped forbidden areas com-
prising disconnected regions [Fig. 4.17(a)| regardless of their position in the
aperture [Fig. 4.17(¢)] if & complies with (3.31).
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Figure 4.18: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071))
- Plots of AFgo (u,v) when assuming different dimension of a “Square”-shape
(a)K =4, (b) K =25, (¢) K =49 and (d) K = 100 forbidden regions.
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| @- Shape | K | £ | At (s) |
- - [ 555x 100 -
Triangle (a) | 55 [ 9.94 x 107* | 1.41 x 107!
Triangle (b) | 55 | 1.07 x 107* | 1.40 x 10!
ELEDIA 54 [ 1.41x 107 | 1.39 x 107!
Diamond | 115 | 4.34 x 1073 | 2.62 x 10~}

Table 4.3: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 107!)\) -
Performance Assessment - Complex and large geometries.
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4.3. RECTANGULAR REFLECTARRAY: 81 x 69 ELEMENTS

4.3 Rectangular reflectarray: 81 x 69 elements

Since the previous examples have all dealt with a square reflectarray geometry
with a M = N = 55 aperture, the final set of numerical studies is devoted to the
validation of the proposed methodology when wider and rectangular layouts are
at hand.

The second reflectarray antenna taken into account works at f = 3.6|GHz|
and has a rectangular aperture of 1766.4 x 2073.6 [mm?| (~ 21.19X\ x 24.88)\).
The reflectarray surface is composed by M x N = 81 x 69 elements of side equal to
25.6 [mm] that in wavelength is almost 0.3072\. This reflectarray configuration
(shown in Fig. 4.19) has as a feeder an horn antenna that is placed with an
inclination of 35.06 [deg| with respect to the output system at almost 30\ from
the reflectarray center, the plane of the reflectarray surface is rotated along the
y-axis by 17.53 [deg|, thus with a relative inclination between the reflectarray

surface and the horn antenna of 17.53 [deg].

XrefYrefZref = Reflector Main System
XedgeYedgeZedge = Edge System
XoutYoutZout = Output System e S mm sy ce e
XintYintZint = Integration System V 1766.4 mm
XfYfZf = Feed System i
81(x) x 69(y) cells :
Cell side = 25.6 mm 17.53 deg |
Int System origin = breadboard centre | \
I

Zref
Zedge

ol Zint

2073.6 mm

Xf

zf 1642.5 mm

35.06 deg

Yi 2310 mm

Figure 4.19: Rectangular Aperture (M x N = 81 x 69, Az = Ay = 3.07 x 1071))
- Reflectarray geometry.

This reflectarray antenna is used to synthesize a surface current assuming
the reference far-field pattern in Fig. 4.20(c)(d) still sampled in L = 201 x 201
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regularly spaced angles in the uv-domain to deduce F"¢/ in (3.5). Moreover the
reference current distribution magnitude and phase are shown in Fig. 4.20(a)
and Fig. 4.20(b) respectively. Also in this case the SVD threshold 7 is set to
1073 and the normalized error of the radiated field of the minimum-norm solution
[magnitude and phase of J*V in Fig. 4.20(e) and Fig. 4.20(f) respectively| with
respect to the reference field [Fig. 4.20(g) vs. 4.20(c)] is very low also in this
case £ = 4.47 x 1075 (see Tab. 4.4).
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Figure 4.20: Rectangular Aperture (M x N = 81 x 69, Az = Ay = 3.07 x
107')) - Plot of the reference current (a) magnitude |Ji*/ (z,y)| and (b)

phase ZJ'/ (x,y) and radiated field (¢) magnitude‘Fgg (u,v)’ and (d) phase

ZF (u,v) and the minimum-norm solution (e) magnitude | JMN (2, y)| and (f)
phase ZJMV (z,y)and radiated field (g) magnitude{Fé‘gN (u,v)| and (h) phase
LFYY (u,v). "
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4.3.1 Large dimension and complex topology of the forbid-

den region
In order to asses the method changing the reflectarray antenna we propose an
analysis on the same forbidden region investigated for the previous case (Sect.

4.2.4). Towards this end, we enforce the “ELEDIA”-shaped and “Diamond’-
shaped forbidden regions shown in Fig. 4.21(a) and Fig. 4.21(b), respectively.

M=81, N=69, 'ELEDIA’-shaped @, K=54
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Forbidden
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-10 L : : : : : : : :
212 9 6 -3 0 3 6 9 12
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Figure 4.21: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071)) -
Definition of forbidden regions ® with complex shape and large dimension: (a)
“ELEDIA”-shaped K = 54 and (b) “Diamond”-shaped K = 115.
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The plots the magnitude [Fig. 4.20(e)] and phase [Fig. 4.20(f)] of JMV [ob-
tained assuming (4.2)] indicate that the minimum-norm solution of the problem
obviously does not comply with any ® requirements [i.e., the current is not zero
in ¢ - Fig. 4.22(a)], as expected.

M=81, N=69, 'ELEDIA-shaped ®, K=54 M=81, N=69, 'ELEDIAshaped ®, K=54
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Figure 4.22: Rectangular Aperture (M x N = 81x69, Az = Ay = 3.07x107!\) -
Plots of (a)(c) the magnitude and and (b)(d) the phase of .J, (r) when assuming
(a)(b) “ELEDIA”-shaped (K = 54) and (c¢)(d) “Diamond”-shaped (K = 115)
forbidden regions.

On the contrary, the overall surface currents obtained by superimposing suit-
ably designed non-measurable currents to JV through the closed-form expres-
sion (3.34) fully satisfy the “forbidden region” constraints [Fig. 4.22(a) vs. Fig.
4.16(a); Fig. 4.22(¢) vs. Fig. 4.16(b)|, and they also guarantee an excellent
pattern matching [i.e., [AFco (6, ¢)| < |FE5T (0,¢)| - Fig. 4.23(a) and Fig.
4.23(b) vs. Fig. 4.20(a)], as it is also confirmed by the corresponding error
figures (£ € [1.31 x 107°, 7.68 x 107*] - Tab. 4.4).
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M=81, N=69, 'ELEDIA’-shaped ®, K=54
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Figure 4.23: Rectangular Aperture (M x N = 81 x 69, Az = Ay = 3.07 x 1071))
- Plots of AFeo (u,v) when assuming (a) “ELEDIA”-shaped (K = 54) and (b)
“Diamond”™shaped (K = 115) forbidden regions.
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4.3.2 Varying shape of forbidden region

Also for this reflectarray it is proposed the analysis varying the shapes of the
forbidden region ®. The same shapes defined for the test case M x N = 55 x 55
are here proposed. In particular: “E”-shaped K = 11 in Fig. 4.24(a), in Fig.
4.24(b) “Cross’-shaped K = 28, in Fig. 4.24(c¢) “Ring”-shaped K = 32,in Fig.
4.24 (d) “Circular Ring’-shaped K = 36 and in Fig. 4.24(e) “Circle”-shaped
K = 3T7.
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Figure 4.24: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 1071)) -
Definition of forbidden regions ® with different shapes: (a) “E’-shaped K = 11,
(b) “Cross™shaped K = 28, (¢) “Ring”™-shaped K = 32, (d) “Circular Ring”-
shaped K = 36 and (e) “Circle”-shaped K = 37.
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The current obtained using the final closed form (3.34) and the superposition
(3.24) perfectly fulfill the requirements S of the forbidden regions taken into
account [“E”-shaped K = 11 in Fig. 4.10(a) vs. Fig. 4.24(a) - “Cross™-shaped
K =28 in Fig. 4.10(b) vs. Fig. 4.24(b) - “Ring™-shaped K = 32 in Fig. 4.10(c¢)
vs. Fig. 4.24(¢) - “Circular Ring”-shaped K = 36 in Fig. 4.10(d) vs. Fig. 4.24(d)
- “Circle”-shaped K = 37 in Fig. 4.10(e) vs. Fig. 4.24(e)], as expected since the
solvability condition is observed (3.31).
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Figure 4.25: Square Aperture (M x N = 55 x 55, Ax = Ay = 3.73 x 1071)) -
Plots of |J, (r)| assuming an (a) “E”-shaped K = 11, (b) “Cross”-shaped K = 28,
(¢) “Ring”-shaped K = 32, (d) “Circular Ring”™-shaped K = 36 and (e) “Circle”-
shaped K = 37 forbidden.

63



4.3. RECTANGULAR REFLECTARRAY: 81 x 69 ELEMENTS

Moreover, the difference of the pattern shown in Fig. 4.26 demonstrate the
goodness of the pattern matching (|AFco (6, ¢)| < |FE5T (6, ¢)|), that is con-
firmed also by the normalized errors: &% = 5.51 x 1076, ¢¢mss = 5.81 x 1075,
gRing = 1.03 x 1079, ¢Creular—Ring — 9 79 % 1076, ¢Cirele = 1.26 x 107> (listed in
Tab. 4.4).
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Figure 4.26: Square Aperture (M x N = 55 x 55, Az = Ay = 3.73 x 1071))
- Plots of AFco (u,v) when assuming an (a) “E”-shaped K = 11, (b) “Cross’-
shaped K = 28, (¢) “Ring”-shaped K = 32, (d) “Circular Ring”-shaped K = 36
and (e) “Circle”-shaped K = 37 forbidden region.
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CHAPTER 4. METHOD ASSESSMENT

4.3.3 Resume normalized errors and computational time

in 81x69 test case

For the sake of completeness, the resume of the pattern mismatch £ and the syn-
thesis time At? for different ® definitions (always assuming F™¢/ in Fig. 4.20(c)
and Fig. 4.20(d) and M = 81, N = 69) is provided in Fig. 4.27. The illustrated

results remark that:

(¢) thanks to its closed-form nature (3.34), the synthesis process is extremely
efficient whatever ® shape and size (i.e., At € [1.40 x 1071, 2.60 x 10~}
[s] - Fig. 4.27 - Tab. 4.4), as it happened also in the previous examples (i.e.,
At € [1.04 x 1071, 2.32 x 107!] [s] - Fig. 4.15; At € [1.03 x 1071, 2.60 x 1071]
5] - Tabs. 4.1-4.2-4.3);

(¢¢) despite the significantly increased problem size with respect to the “square

%ﬁ;‘f ~ 0.54), the pattern is reliably repro-

duced in all examples (£ < 8.0 x 1074 - Fig. 4.27).

aperture” test cases (i.e.,

These outcomes further validate the capability of the proposed method to ef-
ficiently exploit non-measurable currents J¥® as a DoF to satisfy user-defined
constraints on the reflectarray layout while yielding a non-measurable variation
in the radiated field (Fig. 4.27).

2All At values refer to a non-optimized MATLAB implementation executed on a single-core
laptop featuring a 2.20 GHz CPU clock.
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M=81, N=69
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Figure 4.27: Rectangular Aperture (M x N = 81 x 69, Az = Ay = 3.07 x 1071))

- Behaviour of £ and At for different forbidden region shapes ®.

| @-Shape | K | £ | At (s) |

- - 4.47 x 1076 -

E 11 [ 551 x107%] 1.04 x 1071

Cross 28 [ 5.81 x107% | 1.06 x 10~ *

Ring 32 [1.05x10° | 1.07 x 101

Circular Ring | 36 | 9.72x 107% | 1.15 x 107!

Circle 37 1126 x 107 | 1.29 x 10!

ELEDIA 54 | 1.31 x 107° | 1.40 x 107!

Diamond 115 | 7.68 x 107* | 2.60 x 107!

Table 4.4: Rectangular Aperture (M x N = 81 x 69, Ax = Ay = 3.07 x 1071))
- Performance Assessment - Resume on various test cases.
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Chapter 5
Conclusions and Remarks

An innovative paradigm has been proposed for the design of reflectarray
surface currents that satisfy both radiation and user-defined antenna feasibil-
ity constraints. To this end, the current synthesis problem has been formulated
as an inverse source one, and its well-known non-uniqueness has been leveraged
as a design DoF. By suitably exploiting the arising non-measurable sources, a
closed-form solution for the design of reflectarray surface currents has been de-
rived which does not require any iterative local /global optimization procedure
and which inherently satisfies both the radiation and the feasibility design con-
straints. A selected set of numerical experiments has been illustrated to assess
the effectiveness and potentialities of the design procedure when handling differ-
ent aperture types/sizes and forbidden region definitions.

The numerical assessment has shown that

e the expression (3.34) enables to compute combinations of suitable current
components JVR and JMV that satisfy user-defined current constraints
while yielding a non-measurable variation in the radiated field with respect
to Fr¢/ (Sect. 4);

e the design method only features 1 control parameter (7) whose choice can
be reliably carried out by simple analysis of the Green matrix spectrum
knee [(4.2) - Fig. 4.4];

e although the pattern matching error £ slightly increases with the forbidden
region size K, the proposed strategy turns out effective regardless of the
complexity of @ (e.g., £ < 4.34x 1073 - Tab. 4.3) if the solvability condition

67



(3.31) is satisfied,;

e owing to its closed-form nature (3.34), the synthesis process turns out nu-
merically efficient (i.e., At < 2.60 x 107! [s] - Tab. 4.4) whatever ® shape
and size (e.g., Fig. 4.9).

Moreover, the methodological advancements of the paper with respect to the

state-of-the-art includ:

(2) the formulation and development of a reflectarray current design paradigm
which takes advantage of the existence of non-measurable surface sources

to enhance the solution features according to user-defined objectives,

(¢2) the derivation of closed-form formulas for the synthesis of reflectarray cur-

rents that inherently satisfy radiation and geometrical constraints.

Future works, beyond the scope of this work, will be aimed at the generalization
of the introduced paradigm to take into account additional user constraints (e.g.,
regarding the feasible current solutions) as well as more complex/conformal ge-
ometries. Moreover, the integration of the proposed strategy with an automatic

reflectarray unit-cell synthesis technique is currently under investigation.
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