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Abstrat

The design of re�etarray surfae urrents that satisfy both radiation and user-

de�ned antenna feasibility onstraints is addressed through a novel paradigm

whih takes advantage of the non-uniqueness of inverse soure (IS ) problems. To

this end, the synthesis is formulated in the IS framework and its non-measurable

solutions are employed as a design DoF. Thanks to the adopted framework,

a losed-form expression for the design of re�etarray surfae urrents is de-

rived whih does not require any iterative loal/global optimization proedure

and whih inherently satis�es both the radiation and the feasibility design on-

straints. The features and potentialities of the proposed strategy are assessed

through seleted numerial experiments dealing with di�erent re�etarray aper-

ture types/sizes and forbidden region de�nitions.
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Chapter 1

Introdution

Antennas able to exhibit high gains and arefully shaped patterns are of fun-

damental importane in radar, satellite remote sensing and long-distane/high-

apaity ommuniation systems [1℄-[6℄.

In order to meet suh ambitious performane requirements, the tehnologies

traditionally employed are re�etor antennas [6℄ and phased arrays[7℄,[8℄. In fat

both tehnologies an ahieve a very high gain and are able to generate shaped

patterns. In re�etor antenna the high gain apability is ahieved thanks to the

ability to onentrate the �eld that is oming from the feeder to a single diretion

in spae (due to the paraboli re�etor), while the shaped beam an be obtained

by shaped pro�le re�etors (adding some �bumps� into the paraboloid re�etor

surfae) [9℄.

In [9℄ it is proposed to use an optimization proedure that takes in input the

type of the re�etor surfae (irular, ellipsoid, square, retangular, oni et..),

the feed on�guration (horn antenna, array antennas, et..) and position (at

the enter or shifted), the re�etor on�guration (single re�etor, dual re�etor,

Cassegrain, et..) and the radiation harateristis. The optimizer omputes the

radiated pattern applying the theory of generalized di�ration, i.e. the physial

theory of di�ration is used to analyse the antenna and produe a ost funtion

to quantify the mathing of the radiation harateristis.If the ost funtion is

not minimized, the optimizer reates a new trial solution.

In phased arrays, high gain and a properly shaped beam are given by the

position of the elements (regular lattie, sparse lattie, random lattie, et..),

the element pattern and the weighting funtion applied to eah element (e.g.:

1



(a) (b) ()

Figure 1.1: Geometry omparison of (a) Phased Array Antenna, (b) Re�etor

Antenna, () Re�etarray Antenna.

tapering, thinning, phase synthesis, time modulated array, lustering tehniques,

et..)[7℄[8℄.

Though able to ahieve the desired requirements, both solutions have signi�-

ant drawbaks. Re�etor antennas exhibit high manufaturing omplexity, are

di�ult to be implemented as reon�gurable antennas (unless mehanial steer-

ing is onsidered, whih is typially avoided in spae appliations) and are also

haraterized by non-onformal shapes [6℄. Moreover, spae appliation re�etor

antennas su�er manufature tolerane and deformation problems [10℄ that an

severely a�et the antenna operational. Phased antenna arrays are expensive in

terms of fabriation and power onsumption (and, onsequently, need tempera-

ture ontrol, not suitable for spae appliations). In addition, suh antennas are

also heavy due to support and feeding network, and their design is not trivial

[7℄[8℄.

In order to deal with the aforementioned issues, re�etarray antennas have

emerged as a possible solution to yield high-gain shaped beam antennas with

low realization osts, �at/onformal shapes, and low-onsumption feed networks

[6℄,[11℄. Thanks to their potentials and �exibility [6℄,[12℄-[36℄, the design of

shaped-beam re�etarray antennas has beome a very ative researh �eld and

several methodologies have been proposed to this end [37℄-[52℄.

The key fator that helped the suess of re�etarray antennas is their apa-

2



CHAPTER 1. INTRODUCTION

bility of ombining the positive features of both lassial re�etor antennas (i.e.,

high gain, low ost and easy fabriation) [6℄ and phased arrays (i.e., reon�gura-

bility and low pro�le)[7℄. Typially, they onsist of a planar array of mirostrip

pathes printed on a ground-baked dieletri substrate and illuminated by a

feeder (e.g., a horn antenna, or also a phased array). Size, shape and arrange-

ment of the metalli pathes are properly designed suh that the �eld re�eted by

the passive/ative surfae meets the desired pattern features (e.g., steering angle,

sidelobe level, bandwidth, et..)[6℄. As a main onsequene, re�etarrays do not

require the use of a bulky paraboli dis, while the tuning of the radiated �eld is

obtained without the need for expensive beam-forming networks or mehanial

steering [14℄.

The �rst example of a re�etarray antenna was proposed at the beginning of

60's by Berry [11℄, who proposes to use trunated waveguides as re�eting ele-

ments. These waveguides have di�erent lengths that are able to impose a proper

phase shift to obtain a desired re�eted pattern. The re�etarrays produed

with this tehnology an ahieve good performanes and an handle very high

power (no dieletri substrate) at the ost of using a heavy struture. For this

reason, only with the development of the mirostrip tehnology in the late 80's

the re�etarray arose as a leading tehnology.

Before mirostrip tehnology, another kind of re�eting struture was ana-

lyzed: the Spiralphase re�etarray [53℄. In this work four arms of spirals are

onneted with swithing diodes that ativate a di�erent pair of arms and thus

permit to ontrol the san angle of the irular polarized re�etarray. However,

due to the diodes iruit and the spiral avity (λ/4), the struture beomes too

bulky to permit an e�ient implementation.

The simplest design of a re�etarray is proposed in [54℄ and [55℄ and imple-

mented by [56℄,[57℄ [Fig. 1.2(a)℄, and onsists in mirostrip pathes with �xed

shape and di�erent adapting stubs. Sine these stubs have di�erent lengths, they

an provide a di�erent impedane, and onsequently a di�erent phase shift. The

major problem with the stub tehnology is that this method is inherently nar-

rowband, sine the stub struture must be dimensioned for a spei� wavelength,

and parasiti oupling with adjaent elements ould be a possible issue.

Pozar et al. in [58℄,[59℄ and Chaharmir et al. [60℄ propose to introdue, in

the same planar struture, pathes with di�erent dimension, rotation, or even

di�erent geometry in order to introdue a di�erent phase shift for eah element.

3
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(a) (b)

Figure 1.2: Re�etarray Antenna implemented by (a)[56℄ and by (b)Pozar

(http://www.es.umass.edu/ee/pozar/re�et.jpg).

This kind of design solves the problems of the stubs, improves the bandwidth and

allows the designer to have a better ontrol on polarization. However, a trade-o�

must be taken into aount when designing re�etarray antennas that radiated

shaped beams. If a partiular shaped beam is desired in order to over only some

regions of the Earth (e.g. a beam that an over northern Europe without send-

ing power on sea areas) the phase distribution on the re�etarray aperture has

a non-smooth behavior. This means that adjaent elements ould have a signif-

iantly di�erent phase shift and this implies very di�erent and omplex shapes.

As a onsequene, manufaturing osts are high (also due to manufature toler-

anes), and there may also be problems involving inorret shape de�nition and

oupling. This kind of design is improved by Eninar et al. in [15℄,[16℄,[37℄,[61℄

that propose to design shaped beams by using more layers (2 or 3) of di�erent

shaped pathes and exploiting an optimization tehnique in order to de�ne the

best phase distribution on di�erent layers. This kind of design, based on multiple

layers, an improve the performane and derease the omplexity of eah singular

layer, although the overall struture is still omplex, expensive to manufature,

and it ould be hard to insert a ontrol network for beam-steering appliations.

In general, re�etarray layouts are usually synthesized by a two-step proe-

dure in whih:

(a) the re�etarray surfae urrents that radiate the desired shaped beam are

4



CHAPTER 1. INTRODUCTION

omputed;

(b) the feed and re�eting elements (e.g., mirostrip pathes) able to approxi-

mately generate suh urrents are dedued/designed.

Several methods have been developed in the literature to solve (b) for various

unit ell geometries and arhitetures [2℄,[6℄,[15℄,[59℄,[62℄-[66℄. On the ontrary,

very few approahes have been proposed to address (a) [37℄-[39℄.

One example of solution in literature that deals with step (b) is [59℄, in whih

the authors desribe a method of omputing the phase response harateristis for

a square path mirostrip and then synthesizing the path distribution to obtain

a penil beam in di�erent re�etarray on�gurations: squared re�etarray o�set

beam having the feeder in broadside, irular diameter re�etarray with both

feeder and far-�eld maximum in broadside, square re�etarray with prime fous

retangular horn and square re�etarray in Cassegrian on�guration.

Instead [15℄ [Fig. 1.3(a)℄, in order to enlarge the operational bandwidth of

the system, a multi-layer struture is employed. In partiular the number of

layer is set to 2 and a simple square path is seleted to have the desired phase

shift. More in detail, the size of the side of the square path an vary the phase

response of the spei� ell and by �xing the ratio between the ell in the two

layers (the upper layer pathes are 0.7 times the lower layer ones) the re�etarray

is synthesized using the simple phase delay ompensation (the phase of the path

has to ompensate the same travelling time that should be ourred in ase of a

re�etor) and good performane are obtained within 16.67% of the operational

bandwidth.

When re�etarray pathes are designed, a problem that an our is that

their phase response does not over the full 360◦ phase range. To overome this

problem [64℄ [Fig. 1.3(b)℄propose to use a kind of struture that is yli. This

kind of element omes bak to the original geometry shape when a full phase

range is overed. In fat the proposed element is a �phoenix element� (i.e. alled

phoenix for its rebirthing apabilities) that is omposed by a entered square

path of �xed dimension, an external ring of �xed dimension that delimits the

element with the adjaent ones and a variable ring that an �move� from the

inner to the outer. Furthermore, this element is designed to be metal-only, thus

without the presene of the substrate (in fat the inner path, the varying ring
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and the external one are onneted by a metalli strip). This element an inrease

the e�ieny of the re�etarray sine it an over the full phase range and it does

not require any dieletri substrate. Nonetheless, the onneting strips exhibits

some drawbaks in ontrolling the ross-polarization.

To better ontrol the ross polarization, but maintaining the full range over,

it is proposed by [65℄ [Fig. 1.3()℄ to use two di�erent yles to de�ne the

element. Firstly the element is made by dipole rossed with same arms (to

ensure dual-polarization), whose width is half of their length. To implement the

yle, the length is inreased until the element touhes the adjaent ones, then

the element geometry hanges and beomes a grid. The seond step of the yle

is done keeping �xed the length and vary only the width of the arms unless the

metalization disappear, then the yle restart as a rossed dipole. The designed

re�etarray using this elements an handle both polarizations and demonstrate

to have an operational bandwidth of 11.1%.

Re�etarray are used also for non-mirowave appliation moving to the tera-

hertz domain [66℄ [Fig. 1.3(d)℄. In this domain stubs or many ells with di�erent

shapes an not be manufatured (or are too expensive). Thus, it is proposed

to use metal bloks with di�erent height in order to ompensate the phase with

respet to a referene plane. In this way it is the same as if the physial behavior

of a re�etor is obtained by sampling and then applying a modulus operation

with respet to the wavelength at the heights of the bloks. It is demonstrated

that with this approah a good gain an be ahieved and the pattern behavior is

quite stable to the frequeny band (30%) obtaining also a very good performane

in antenna e�ieny due to the absene of dieletris.

Considering step (a), the exploitation of loal optimization strategies (suh as

the Intersetion Approah [37℄,[39℄) has been proposed as a �rst step of a shaped

beam re�etarray synthesis [37℄,[39℄. However, suh methodologies an be om-

putationally expensive (espeially if wide apertures are at hand) and their e�e-

tiveness and onvergene rate strongly depend on the hoie of the initialization

point [37℄. Alternatively, ray-traing tehniques have been proposed to dedue

the re�etarray surfae urrents starting from the knowledge of a previously syn-

thesized shaped re�etor a�ording the desired beam pattern [38℄. Unfortunately,

suh a strategy does not allow the designer to speify any feasibility onstraints

on the solution (e.g., presene of �forbidden regions� in the array aperture) and

therefore it does not guarantee that the dedued urrents are implementable.

6



CHAPTER 1. INTRODUCTION

"Square" Patch Dual Layer
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g(2)
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(a) (b)

() (d)

Figure 1.3: Geometry of the re�etarray antenna elements: (a)[15℄, (b)[64℄,

()[65℄, (d)[66℄.

In the Intersetion Approah [67℄ two sets are onsidered: the �rst set is

omposed by all the radiation pattern that respets the required spei�ation and

the seond ontains all the radiation pattern that the re�etarray an radiate.

Roughly, the synthesis proedure makes ontinue projetion of the patterns in the

two sets from the �rst set to the seond, until the mismath between the projeted

patterns is almost null. Thus, as the dimension of the re�etarray inreases the

dimension of the sets inreases as well, and this is one of the drawbaks of

tehniques explained in [37℄,[39℄. While [37℄ has a re�etarray made with three

layer of squared pathes and an ahieve very good performane in overing the

South Ameria region with a bandwidth of 10%, and [39℄ (that has also used the

FFT to inrease e�ieny of the approah) an ahieve good performane with a

re�etarray made of blak boxes (it does not take into aount the real element,

only its re�etion oe�ient) synthesizing an iso�ux pattern and a shaped-beam

for the Europe overing with a Diret Broadast Satellite (DBS ).

From a di�erent perspetive, it is known that the relation between the re�e-

tarray urrents and their radiated patterns an be e�etively modeled exploiting

Green's funtions theory [6℄[68℄. Aordingly, problem (a) an be atually seen
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as an inverse soure (IS ) one [69℄-[72℄ where the data is the desired beam pattern

and the unknowns are the surfae urrents.

In [69℄ and [70℄ the problem addressed is to retrieve the urrent distribution

that radiates a measured �eld. In the �rst one it is minimized the distane of

reonstruted Equivalent Magneti Current (EMC ) by the near-�eld measured

in a ylindrial way using the Marquardt algorithm, and in the seond its almost

the same but taking into aount a near-�eld measured on a spherial surfae

(hene three omponents of the �eld, instead of only two).

In [71℄ the problem is to reonstrut equivalent urrents distribution using

integral equation algorithm. Using the integral equation the authors are able to

reonstrut the urrent over user-de�ned surfaes, not only ylindrial or spheri-

al surfae (that are easier to ompute using the tangential �elds and the Equiv-

alene Priniple) but also, for example, on the surfae of a horn antenna.

In [72℄ metalli bodies are reonstruted as equivalent urrents. In partiular

the Soure Reonstrution method is applied to the retrieval of metal objet in

an investigation domain and use a minimization (using a Conjugate Gradient

method) of a ost funtion that, taking into aount the Tikhonov regularization

and the normalization of the equations terms, of the L2-norm of the measured

and reonstruted �eld (by the radiation of the equivalent urrent).

In the framework of inverse sattering and antenna diagnosis/haraterization

[69℄-[72℄, suh a problem is known to be ill-posed beause of the non-uniqueness of

the radiation operator [73℄, whih is related to the existene of non-measurable/non-

radiating urrents [74℄-[76℄. While this feature an be an issue in traditional

inverse problems requiring suitable ountermeasures [74℄-[76℄, it atually repre-

sents a degree-of-freedom (DoF ) in the framework of onstrained re�etarray

design. In fat, by superimposing a suitably designed non-measurable urrent to

an available (e.g., minimum-norm [74℄-[77℄) solution of the IS problem, a urrent

ould be synthesized whih radiates the desired far-�eld pattern, and omplies

with the user-de�ned onstraints.

Aording to suh onsiderations, an innovative paradigm to synthesize re�e-

tarray surfae urrents [i.e., to address step (a)℄ is proposed whih, by leveraging

on the non-uniqueness of the IS problem as a design DoF, enables to dedue

solutions also satisfying user-de�ned antenna feasibility onstraints (e.g., on the

presene and shape of �forbidden regions� in the aperture). To this end, the de-

sign is formulated a two step proess in whih (i) the minimum-norm solution of
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the IS problem is �rstly derived, and then (ii) a suitable non-measurable soure

is omputed so that the resulting surfae urrent [i.e., the superposition of the so-

lutions (i) and (ii)℄ omplies with the user-de�ned requirements. Thanks to the

features of the proposed formulation, a losed-form expression is �nally derived

for both the minimum-norm and the non-measurable urrents whih does not

require any iterative loal/global optimization proedure and whih inherently

satis�es both the radiation and the feasibility design onstraints.

In partiular, it is proposed to apply the Singular Value Deomposition (SVD)

to a de�ned Green's operator. The outome of this proess are two set of or-

thonormal bases and a matrix of singular values. This output has to be ana-

lyzed in order to �nd a good trade-o� between, on one side, the preision of the

minimum-norm urrent able to radiate the desired �eld; on the other side, the

possibility to have the greatest number of non-measurable bases. This analysis

it is done by de�ning a variable threshold on the value of the singular values

and olleting di�erent ombination of orthonormal bases that are linked to the

singular values above or below the threshold.

The innovative methodologial ontributions of the paper therefore inlude

the introdution, for the �rst time to the best of the author knowledge, of a re�e-

tarray surfae urrent synthesis paradigm whih leverages on the non-uniqueness

of the IS problem and the existene of non-measurable urrents to improve the

features of the obtained solution (e.g., in terms of feasibility), and the intro-

dution of expliit losed-form expressions for the omputation of re�etarray

surfae urrents a�ording a desired far-�eld pattern and omplying with geomet-

rial onstraints regarding the presene of �forbidden regions�.
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Thesis outline

The thesis is organized as follows. After the formulation of the shaped-beam

onstrained re�etarray urrents synthesis problem (Chapter 2), the proposed

design method is illustrated and its �nal losed-form solution is derived (Chapter

3). A set of numerial examples based on realisti re�etarray arhitetures are

then illustrated to assess the e�etiveness and potentialities of the onsidered

design paradigm (Chapter 4). At the end are presented the onlusion and

remarks (Chapter 5).
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Chapter 2

Problem Formulation

In this hapter the problem formulation is explained throgh the understanding

of the radiation problem in a re�etarray antenna and how to formulate it as

an Inverse Soure problem. In partiular, �rstly it is desribed the radiation

problem formulation and its disretization on the re�etarray surfae (that is not

ontinuous) and then the problem to �nd the urrent that generate a spei�ed

radiated �eld is formulated as an Inverse Soure problem.

2.1 Radiation from surfae urrent

We onsider a re�etarray antenna, oriented like in Fig. 2.1, with both ground

plane and pathes made by a Perfet Eletri Condutor separated by a layer

of substrate with standard omplex permittivity value ε = ε0εr (1− j tan δ) and

illuminated by a feeder positioned in rf = (xf , yf , zf) that in far-�eld generates

a plane-wave that has a relative angular position (θinc, φinc) (see Fig. 2.1). The

inident vetor for eah ell of the re�etarray is νinc (r) =− (sin θinc cosφinc,

sin θinc sinφinc, cos θinc).

The inident plane wave on a re�etarray element an be model as:

[
Eθ
inc

Eφ
inc

]
=

[
Eθ

0

Eφ
0

]
e−jk(ν

inc(r)·r)
(2.1)

where E0 is the vetor that desribes amplitude and polarization of the inident

plane-wave, r is the position of the re�etarray element, k = 2πf
√
µε, µ, ε are
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2.1. RADIATION FROM SURFACE CURRENT

x

z

y

y

x

Figure 2.1: Geometry of the re�etarray antenna.

the free-spae wave number, permeability, and permittivity, respetively, and f

is the frequeny.

The presene of the grounded dieletri slab and of the layer printed pathes

generates di�erent kind of �eld that are bak-radiated. The total �eld that is

present in the region of the spae in front of the re�etarray antennas an be

desribed as the sum of these ontributes:

Etot = Einc + ERGDS + ERPP (2.2)

The term ERGDS indiates the re�eted �eld by the in�nite grounded diele-

tri slab without any kind of path printed on, and an be de�nite as:

ERGDS = RE0e
jk(x sin θinc cosφinc+y sin θinc sinφinc−z cos θinc)

(2.3)

where matrix R is the diagonal re�etion matrix, and its non-null entries Rθθ

and Rφφ are de�ned as in [79℄.

The other term ERPP represents the re�eted �eld when the mirostrip

pathes are present. On this pathes, made of PEC, the Einc indues a sur-
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CHAPTER 2. PROBLEM FORMULATION

fae urrent that radiates a �eld de�ned as:

ERPP = SE0e
jk(x sin θinc cos φinc+y sin θinc sinφinc−z cos θinc)

(2.4)

where S is the sattering matrix and its oe�ients haraterize the re�etion:

S =

[
Sθθ Sθφ

Sφθ Sθθ

]
(2.5)

Eah sattering oe�ient is de�ned as the ratio between the sattered and

inident �eld of the mirostrip surfae for eah polarization:

Sji =
Ej
RPP (z = 0)

Ei
inc(z = 0)

j, i = {θ, φ} (2.6)

These oe�ients an be omputed for eah mirostrip path and then used

to obtain the surfae urrent on the re�etarray aperture. Sine we want to

de�ned the urrent on the mirostrip surfae Js:

Js = n̂×H (2.7)

(where n̂ is the normal to the surfae) and we have de�ned all the terms in (2.2)

we an express also the total magneti �eld as:

H =
1

η
νinc × Einc +

1

η
νrefl × ERGDS +

1

η
νrefl × ERPP (2.8)

where νrefl is the speular re�etion diretion (Snell's law on a PEC ) of the

inidene diretion νinc, and η is the free-spae impedane.

In ase of far-�eld, following [80℄, the radiated �eld by an eletri urrent J s

an be approximates as:

ERAD (r) ≈ −jη exp (−jkr)
2λr

(Nθ (θ, φ) +Nφ (θ, φ)) (2.9)

where the radiation vetor in arthesian oordinates N an be expressed as

N (θ, φ) =
∫ ∫

Ω

[
Jx (r) x̂+ Jy (r) ŷ

]
×

exp
(
j 2π
λ
(x sin θ cosφ+ y sin θ sinφ)

)
dx dy

(2.10)
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2.1. RADIATION FROM SURFACE CURRENT

and λ is the wavelength.

In order to be easier omputed the radiation vetors an be expressed in

spherial oordinates form:

{
Nθ (θ, φ) = Nx (θ, φ) cos θ cosφ+Ny (θ, φ) cos θ sin φ

Nφ (θ, φ) = −Nx (θ, φ) sin φ+Ny (θ, φ) cosφ
(2.11)

In this way, bu substituting (2.11) in (2.9) we an obtain:

{
ERAD,θ (r) = −jη exp(−jkr)

2λr
(Nx (θ, φ) cos θ cos φ+Ny (θ, φ) cos θ sinφ)

ERAD,φ (r) = −jη exp(−jkr)
2λr

(−Nx (θ, φ) sinφ+Ny (θ, φ) cosφ)

(2.12)

The equations (2.12) and (2.10) ompletely desribe the far-�eld radiation of

an indued urrent from a feeder on the re�etarray surfae. In order to make

possible the utilization of these equation and the problem de�nition we need to

disretize the re�etarray surfae.
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2.2 Disretization of the re�etarray surfae

Lets assume to disretize the re�etarray surfae in a regular lattie, and

eah ell of the lattie inludes only one re�etarray element. Thus, the re�e-

tarray onsists of a grid of M ×N elements with unit ells of size ∆x×∆y and

in order to disretize (2.10) we will apply a pixel-basis funtion P entered at

rmn ,
[(
m− M

2

)
∆x,

(
n− N

2

)
∆y, 0

]
, m = 1, ...,M , n = 1, ..., N to the urrent

distribution and we obtain:

Jq (r) ,
M∑

m=1

N∑

n=1

Jmnq Pmn (r) q ∈ {x, y} (2.13)

In partiular, the x-omponent of the urrent an be expressed as:

Jx|mn = −νincx (rmn) sin(θ)
η

[
(1 + Sθθ (r

mn))Eθ
inc (r

mn) +

+Sθφ (r
mn)Eφ

inc (r
mn)

]
+

−νinc
z (rmn) cos(θ) cos(φ)

η

[
(1− Sθθ (r

mn))Eθ
inc (r

mn) +

−Sθφ (rmn)Eφ
inc (r

mn)
]
+

+νinc
z (rmn) sin(φ)

η

[
(1− Sφθ (r

mn))Eθ
inc (r

mn) +

−Sφφ (rmn)Eφ
inc (r

mn)
]

(2.14)

and the y-omponent as:

Jy|mn = −νincy (rmn) sin(θ)

η

[
(1 + Sθθ (r

mn))Eθ
inc (r

mn) +

+Sθφ (r
mn)Eφ

inc (r
mn)

]
+

+νinc
z (rmn) cos(θ) sin(φ)

η

[
(1− Sθθ (r

mn))Eθ
inc (r

mn) +

−Sθφ (rmn)Eφ
inc (r

mn)
]
+

+νinc
z (rmn) cos(φ)

η

[
(1− Sφθ (r

mn))Eθ
inc (r

mn) +

−Sφφ (rmn)Eφ
inc (r

mn)
]

(2.15)

where the re�etion matrix of the ground plane is substituted by 1 sine it is

perfetly re�eting, while the omponent z is obviously null (Jz|mn = 0, m =

1, ..., M and n = 1, ..., N).
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2.2. DISCRETIZATION OF THE REFLECTARRAY SURFACE

Substituting (2.13) in (2.10):

Nq (θ, ϕ) =
∑M

m=1

∑N

n=1 exp [jkr̂r
mn] Jmnq ×∫

Ωmn
Pmn (r) exp

[
jkr̂rΩmn

]
dΩmn q ∈ {x, y}

(2.16)

where Ωmn is the area of the mn-th retangular pixel. Due to the presene of

the pixel-basis funtion the integral in the radiation vetor formula beomes:

∫ xn+
∆x
2

xn−
∆x
2

∫ ym+∆y

2

ym−∆y

2

exp

[
j
2π

λ
x sin θ cosφ

]
exp

[
j
2π

λ
y sin θ sinφ

]
dx dy (2.17)

where (xn, ym) is the enter of the mn-th re�etarray element/retangular pixel.

Moreover, with some simple step an be proven that this integral an be solved

as:

exp
[
j 2π
λ
x sin θ cosφ

]
exp

[
j 2π
λ
y sin θ sinφ

]
×

4
∆x∆y

sinc
(
k∆x
2

sin θ cosφ
)
sinc

(
k∆y
2

sin θ sinφ
)

(2.18)

Now substituting the integral solution (2.18) in (2.16) we �nally have:

Nq (θ, ϕ) =
4

∆x∆y
sinc

(
k∆x
2

sin θ cosφ
)
sinc

(
k∆y
2

sin θ sin φ
)
×

∑M

m=1

∑N

n=1 J
mn
q exp [jk (xn sin θ cosφ+ ym sin θ sinφ)]

(2.19)

This �nal equation is important beause it desribes, in a disretized way, the

radiation vetors and thus we an ompute the far-�eld having a non ontinuous

urrent de�nition.

The usual way to desribe the far-�eld pattern in re�etarray antenna system

is using the third Ludwig de�nition [78℄[6℄[81℄ of the oordinate system.

The far �eld radiated by a re�etarray displaed on a surfae Ω (Fig. 2.1)

an be modeled as [68℄

E (r) ≈ jµf

2

exp (−jkr)
r

[FCO (θ, ϕ) p̂CO + FCX (θ, ϕ) p̂CX ] (2.20)

where r = |r|, r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) is the position vetor, and

the o-polar p̂CO and ross-polar p̂CX unit vetors agree with the third de�nition

of Ludwig [78℄[6℄[81℄(Fig. 2.2)

{
p̂CO = cos (ϕ) θ̂ − sin (ϕ) ϕ̂

p̂CX = sin (ϕ) θ̂ + cos (ϕ) ϕ̂
(2.21)
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CHAPTER 2. PROBLEM FORMULATION

Figure 2.2: Co-polar and ross-polar unit vetor following the Ludwig third

de�nition.

with some manipulation the o-polar and ross-polar pattern an be retrieved

from (2.20) and (2.12):

FCO (θ, ϕ) = {1 + cos2 (ϕ) [1− cos (θ)]}Nx (θ, ϕ)+

+ [cos (θ)− 1] sin (ϕ) cos (ϕ)Ny (θ, ϕ)+

− sin (θ) cos (ϕ)Nz (θ, ϕ)

(2.22)

FCX (θ, ϕ) = [cos (θ)− 1] sin (ϕ) cos (ϕ)Nx (θ, ϕ) +

+
{
1 + sin2 (ϕ) [1− cos (θ)]

}
Ny (θ, ϕ)+

− sin (θ) sin (ϕ)Nz (θ, ϕ)

(2.23)

At this point we have de�ned how to ompute the referene pattern in the

standard omponents we an move to the synthesis problem de�nition. Sine

there are many works in the literature that deal with the problem to �nd a proper

tehnology (e.g. printed pathes type, number of layers, all-metal strutures,

et...)[2℄,[6℄,[15℄,[59℄,[62℄-[66℄ to obtain the wanted value of the sattering matrix

S for a given urrent distribution, now we do not take this step into aount

(step (b)) and we will ontinue handling only the problem related to the surfae

urrent de�nition when feasibility onstraints are present (e.g. forbidden region).
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2.3. INVERSE SOURCE PROBLEM DEFINITION

2.3 Inverse Soure problem de�nition

Aording to the previous formulation, the synthesis of the onstrained sur-

fae urrents of a re�etarray with desired far-�eld shaped-beam pattern

Eref (r) ,
jµf

2

exp (−jkr)
r

[
F ref
CO (θ, ϕ) p̂CO + F ref

CX (θ, ϕ) p̂CX

]
(2.24)

an be formulated as an inverse soure problem.

The inverse soure problem is de�ned as:

Constraint-Geometry Re�etarray-Currents Synthesis problem (CG-

RCS ) and its de�nition is:

Find the surfae urrent J (r) (or its numerial ounterpart Jq ,{
Jmnq ; m = 1, ...,M , n = 1, ..., N}, q ∈ {x, y}), whose radiate a far-

�eld, E, whose assoiated o-polar and ross-polar omponent, �t the

following referene pattern mathing ondition:

{
F ref
CO (θ, ϕ) = FCO (θ, ϕ)

F ref
CX (θ, ϕ) = FCX (θ, ϕ)

(2.25)

having that Jq ∈ Sq, q ∈ {x, y}.Where Sq, q ∈ {x, y}, are the fea-

sibility sets, whih aount for the onstraints provided by the end-

user/designer (i.e., the presene of forbidden regions in the aperture).

For example, if Φ identi�es the arbitrary-shaped user-de�ned 2-D forbidden re-

gion (within the re�etarray Φ ∈ Ω), the feasibility ondition state that J (r) = 0

if r ∈ Φ(i.e.: in numerial form: Jmnq = 0, q = {x, y}, if rmn ∈ Φ). It is worth

remarking that many tehniques an be adopted for the synthesis of feed and

assoiated re�etarray elements (step (b)) (depending on the seleted unit-ell

geometry [2℄,[6℄,[15℄,[59℄,[62℄-[66℄) one Jq, q ∈ {x, y}, has been found by solving

the above problem.
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Chapter 3

Non-Measurable Currents-based

Solution Method

In this hapter the solution method, that solve the Inverse Soure problem, is

explained. In partiular, after some mathematial omputation needed to obtain

a matrix formulation of the problem, it is applied a Trunated Singular Value

Deomposition (T-SVD) in order to obtain the minimum-norm solution. This

solution an radiate the desired �eld but an not deal with feasibility onstraint

(e.g. forbidden region). In order to overome this problem, it is proposed to

superimpose the non-radiating/non-measurable urrents, that are derived from

the T-SVD, to the minimum-norm solution. Moreover, given the de�nition of the

handled feasibility onstraint (i.e. forbidden region), the losed-form formulation

to solve the problem is de�ned.
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3.1. FIELD DISCRETIZATION

3.1 Field disretization

In order to address the CG-RCS problem, taking in onsideration that the z-

omponent of the urrent is not present, its disretized version is �rstly omputed

by substituting (2.22) and (2.23), in (2.25), sampling it in a set of L angles (θl, ϕl),

l = 1, ..., L as follows





F ref
CO (θl, ϕl) = {1 + cos2 (ϕl) [1− cos (θl)]}Nx (θl, ϕl)+

+ [cos (θl)− 1] sin (ϕl) cos (ϕl)Ny (θl, ϕl)

F ref
CX (θl, ϕl) = [cos (θl)− 1] sin (ϕl) cos (ϕl)Nx (θl, ϕl)+

+
{
1 + sin2 (ϕl) [1− cos (θl)]

}
Ny (θl, ϕl)

l = 1, ..., L

(3.1)

whih, by exploiting (2.19), an be rewritten as





F ref
CO (θl, ϕl) = Γ (θl, ϕl) ({1 + cos2 (ϕl) [1− cos (θl)]}

×
∑M

m=1

∑N
n=1 J

mn
x emn (θl, ϕl)+

+ [cos (θl)− 1] sin (ϕl) cos (ϕl)

×
∑M

m=1

∑N
n=1 J

mn
y emn (θl, ϕl)

)

F ref
CO (θl, ϕl) = Γ (θl, ϕl) ([cos (θl)− 1] sin (ϕl) cos (ϕl)

×
∑M

m=1

∑N

n=1 J
mn
x emn (θl, ϕl)+

+
{
1 + sin2 (ϕl) [1− cos (θl)]

}

×∑M

m=1

∑N

n=1 J
mn
y emn (θl, ϕl)

)

l = 1, ..., L

(3.2)

where, for easy of ompatness:

emn (θl, ϕl) , exp [jk0 (m∆x sin θl cosϕl + n∆y sin θl sinϕl)] (3.3)

and

Γ (θl, ϕl) =
4

∆x∆y
sinc

(
k∆x

2
sin θ cosφ

)
sinc

(
k∆y

2
sin θ sin φ

)
(3.4)

In order to further simplify the notation and to better handle the problem

we need to express the equation in matrix form.

In this way equation (3.2) an be re-organized in a more ompat form as the
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following matrix equation

Fref = GJ (3.5)

where Fref ,
[
F
ref
CO, F

ref
CX

]T
, F

ref
t =

{
F ref
t (θl, ϕl) , l = 1, ..., L

}
, t ∈ {CO, CX},

J , [Jx, Jy]
T
, and:

G ,

[
GCO,x GCO,y
GCX,x GCX,y

]
(3.6)

is the (2× L)× (2× P ) overall Green matrix (·T being the transpose operator)

featuring the sub-matries:

GCO,x , {Γ (θl, ϕl) e
mn (θl, ϕl) {1 + cos2 (ϕl) [1− cos (θl)]}

GCO,y = GCX,x , {Γ (θl, ϕl) e
mn (θl, ϕl) [cos (θl)− 1] sin (ϕl) cos (ϕl)

GCX,y , {Γ (θl, ϕl) e
mn (θl, ϕl)

{
1 + sin2 (ϕl) [1− cos (θl)]

}

m = 1, ...,M, n = 1, ..., N, l = 1, ..., L

(3.7)

where Γ was de�ned in (3.4) and emn in (3.3).

Now we have all the formulation ready for start taking the Inverse Soure

problem.

The problem to retrieve a urrent distribution from a �eld is well-known to

be ill-posed. This means that multiple urrent distribution an radiate the same

�eld. In the literature, one of the most used tool to obtain a minimum-norm (or

generalized) solution of the system is the regularization and inversion tehnique

Trunated Singular Value Deomposition. Using this algorithm the obtained

solution is the ones that best represents the radiated �eld with the smallest

norm.
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3.2. TRUNCATED SINGULAR VALUE DECOMPOSITION

3.2 Trunated Singular Value Deomposition

In order to ompute the minimum norm solution is well-known the proedure

based on the trunated version of the Singular Value Deomposition (SVD)[73℄-

[77℄.

We assume that the number of the re�etarray elements (2×P = 2×M×N)

is less than the number of �eld samples (2 × L). Given that ψ2
1 , ψ

2
2, ..., ψ

2
W

(W , min {2× L, 2× P}) are the positive eigenvalues of symmetri matrix G∗G
(where

∗
indiate the onjugate transpose) and c1, c2, ..., c2×P the orresponding

orthonormal eigenvetors:

G∗Gcj = ψ2
j cj c∗jck = δjk

j, k = 1, ..., 2× L
(3.8)

being:

ψjbj = Gcj j = 1, ..., 2× L (3.9)

substituting (3.8) in (3.9) it an be obtained:

G∗bj = ψjcj j = 1, ..., 2× L (3.10)

multiplying left and right side of (3.10) for G and thanks to (3.9) immediately

follow that:

GG∗bj = ψ2
j b∗

jbj = δjk

j, k = 1, ..., 2× L
(3.11)

Equations (3.10) and (3.11) shown the orthonormal properties of the two matries

B and C.

In matrix notation (3.9) an be written as:

G = BΨC∗
(3.12)
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an be notied that Ψ is a diagonal matrix in the form:

Ψ =




ψ1 0
.

.

.

.

.

.

0 ψW



W×W

(3.13)

another note is that the singular values are ordered in desending order (i.e.,

ψw ≥ ψw+1, w = 1, ...,W − 1).

Writing now the minimum-norm urrent as a weighted sum as:

JMN = Cγ with γ =




γ1
.

.

.

.

.

.

γW




(3.14)

from (3.9) we an obtain that:

γjψjbj = γjGcj j = 1, . . . ,W (3.15)

and using the ration expressed in (3.5):

Fref =
W∑

j=1

γjψjbj (3.16)

Sine ψibj = 0 for j > W , it is simply to derive that only the �rst W cw bases

that are used to desribe JMN
are measurable.

For these bases the oe�ients γj are given using:

γj = ψ−1
j

{
b∗
jF

ref
}

j = 1, ..., W (3.17)

and substituting (3.17) in (3.14):

JMN =

W∑

j=1

ψ−1
j

{
b∗
jF

ref
}
cj (3.18)

we obtain the minimum-norm (or generalized) solution.
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3.2. TRUNCATED SINGULAR VALUE DECOMPOSITION

Dually in matrix form (3.18) beame:

JMN = CΨ−1B∗Fref (3.19)

This resulting problem is well-known [74℄-[77℄ to be not well-posed due to the

ill-onditioning of the G matrix.

The solution instability ours due to the fat that some singular values ψ

are muh lower in magnitude with respet to the �rst one (ψ1). This problem

an be measured by using the ondition number that is de�ned as:

d =
ψ1

ψW
(3.20)

This value measures the instability of the problem. In fat as higher is the

value, as higher is the instability, and this means that the a small variation in

the Fref generate a great variation in JMN
.

In literature this problem is well-known [74℄-[77℄ and the solution is to use a

trunated version of the SVD.

It is de�ned H as the trunation order, and is omputed as:

H , arg

{
min
w

∣∣∣∣
ψw
ψ1

− τ

∣∣∣∣
}

s.t.
ψw
ψ1

≥ τ (3.21)

where τ being the assoiated user-de�ned SVD trunation threshold. The thresh-

old τ , the trunation order H and an example of singular value behavior ψ are

shown in Fig. 3.1. By seleting the value of the SVD trunation threshold τ

the user impliitly de�nes the preision on the reprodution the far-�eld and the

instability of the urrent, thus lower value of the threshold means better repro-

dution of the far-�eld but also higher variation in the solution (e.g. urrent

distribution with high spae variations).

Then, are omputed the trunated version of matriesC, B andΨ by seleting

the �rst H bases of the orresponding sets:

Bτ = {bh, h = 1, ..., H}
Cτ = {ch, h = 1, ..., H}

Ψτ = diag (ψh, h = 1, ..., H)

(3.22)

By substituting (3.22) in (3.19), the minimum-norm omponent an be de�ned
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Figure 3.1: Example of singular values distribution ψw, w = 1, ...,W , taking into

aount a trunation order H and a trunation threshold τ .

as:

JMN , CτΨ
−1
τ B∗

τF
ref

(3.23)

This kind of solution (minimum-norm) an be ahieved also in other ways

(not only T-SVD), however the trunation operation on the SVD give us a set

of bases that will radiate a null �eld outside of the support and thus, eah basis

an be interpreted as a di�erent urrent with di�erent shape that do not radiate

any �eld (or at least a �eld that is not measurable).
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3.3. SYNTHESIS APPROACH

3.3 Synthesis approah

Now we have a solution that an radiate the wanted �eld with an error that

an be ontrolled using the threshold τ .

The solution of the CG-RCS an be arried out by inverting (3.5) subjet to

J ∈ S (S , {Sq, q ∈ {x, y}}). Suh an inverse soure problem is known to be

ill-posed beause of the non-uniqueness of the solution (owing to the existene

of non-radiating/non-measurable urrents) [74℄-[76℄. While suh a feature an

be an issue in mirowave imaging and antenna diagnosis appliations [74℄-[76℄,

it an be atually employed as a DoF in the framework of re�etarray urrent

synthesis. Thanks to suh a DoF, the following innovative two-step proedure is

introdued to solve (3.5):

• the radiating urrents [i.e., JMN
℄ are �rstly omputed (Step A) as the

minimum-norm solution of (3.5);

• the non-radiating/non-measurable urrents JNR
are then designed (Step

B) so that the overall solution of (3.5)

J , JMN + JNR
(3.24)

omplies with J ∈ S.

While we have already explain how to obtain the radiating part of the total

urrent JMN
, the Step B is not mathematially expliated.
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3.4 Non-measurable/Non-radiating de�nition

The outlined SVD proedure in Set. 3.2 on G is also the starting point for

the solution of Step B. In fat, it is known from inverse soure theory [74℄-[76℄

that JNR
an be expressed as a linear ombination of the the last 2 × P − H

right singular vetors of C (i.e., CNR , {ch, h = H + 1, ..., 2× P}) as follows

JNR , CNRα (3.25)

where α , {αh; h = H + 1, ..., 2× P} are the arbitrary 2 × P − H oe�ients

(i.e., the DoF s) assoiated to the non-radiating/non-measurable urrent basis

CNR
.

It is highlighted that the matries C and B obtained in (3.12) are subdivided

as:

C =
[
Cτ |CNR

]
=




c1,1 · · · c1,H
.

.

.

.

.

.

.

.

.

c2×P,1 · · · c2×P,H

∣∣∣∣∣∣∣∣

c1,H+1 · · · c1,2×P
.

.

.

.

.

.

.

.

.

c2×P,H+1 · · · c2×P,2×P




B =
[
Bτ |BNR

]
=




b1,1 · · · b1,H
.

.

.

.

.

.

.

.

.

b2×L,1 · · · b2×L,H

∣∣∣∣∣∣∣∣

b1,H+1 · · · b1,2×L
.

.

.

.

.

.

.

.

.

b2×L,H+1 · · · b2×L,2×L




(3.26)

This means that by seleting the proper value of α the designer an de�ne

a wanted urrent distribution that do not radiate any �eld (or at least is not

measurable) that an be added to the radiating urrent (JMN
) to ful�ll some

onstraints in the design proedure. In this work the feasibility onstraint is

proposed to be the �forbidden region� onstraint, that is highlighted in the next

setion.
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3.5 Forbidden region onstraint de�nition

Using (3.23) and (3.25) in (3.24), Step B an be then addressed by �nding α

suh that (
CτΨ

−1
τ B∗

τF
ref +CNRα

)
∈ S (3.27)

The atual proedure to �nd α in (3.27) depends on the de�nition of S. Sine
in this work the design onstraint is represented by the presene of user-de�ned

forbidden areas in Ω (where no re�etarray elements are allowed), the following

mathematial de�nition is adopted

S ,
{
Jmnq = 0 if rmn ∈ Φ; q ∈ {x, y}

}
(3.28)

where Φ identi�es the arbitrary-shaped 2D forbidden region and it is omposed

by K re�etarray unit ells (i.e., orresponding to 2×K onstraints sine the K

equations are enfored separately on Jx and on Jy), and an be seen in Fig. 3.2.

x

z

y

y

x

Figure 3.2: Geometry of the re�etarray antenna.

By using (3.28), (3.27) an be rewritten as the following set of 2 ×K linear

equations in 2× P −H unknowns

[
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
+
[
DΦ

(
CNR

)]
α = 02K (3.29)
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where 02K is a null-vetor of size 2×K, and DΦ (·) is an operator whih extrats

a sub-matrix omprising the 2 × K rows orresponding to the mn-indexes for

whih rmn ∈ Φ. The matrix problem (3.29) an be re-arranged as:

[
DΦ

(
CNR

)]
α = −

[
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
(3.30)

and (3.30) aording to linear system theory, has at least one solution if the

following solvability ondition is satis�ed

2×K ≤ 2× P −H (3.31)

(i.e., the number of onstraints is equal or lower than the number of DoF s in the

linear problem).

Moreover, sine DΦ

(
CNR

)
is always full-rank (beause the right singular ve-

tors omposing CNR
are orthonormal by de�nition [74℄[75℄), (3.30) has atually

∞Q
di�erent solutions (Q , 2×P−H−2×K) if (3.31) holds true. Consequently,

under the assumption (3.31) and without loss of generality, a unique solution to

(3.30) an be found by setting

α = [α̃; 0Q]
T

(3.32)

where

α̃ = −
[
D̃Φ

(
CNR

)]−1 [
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
(3.33)

is the redued oe�ient vetor whih ontains only the �rst 2×K entries of α,

and D̃Φ

(
CNR

)
is the redued version of DΦ

(
CNR

)
whih ontains only its �rst

2×K olumns.
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3.6. FINAL CLOSED-FORM FORMULATION

3.6 Final losed-form formulation

The solution to the CG-RCS is �nally obtained by ombining (3.33), (3.32),

(3.25), and (3.23) in (3.24) to obtain the losed-form expression

J = CτΨ
−1
τ B∗

τF
ref+

+CNR

[
−
[
D̃Φ

(
CNR

)]−1 [
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
; 0Q

]T
(3.34)

whih an be easily demonstrated to omply with (3.5) by substitution.

As regards the losed-form solution (3.34), it is worthwhile to notie that:

• the dedued methodology enables the omputation of the re�etarray sur-

fae urrents without requiring any iterative loal/global optimization pro-

edure and satisfying both the radiation (3.5) and the geometrial require-

ments (3.28) by de�nition;

• suh an expression is derived as a proof-of-onept to demonstrate the

possibility to employ non-radiating urrents as a DoF in re�etarray de-

sign. However, other solutions [among the ∞Q
available in (3.30)℄ may be

seleted to omply with other geometry/antenna requirements and guide-

lines;

• analogously, other de�nitions of S (out of the sope of the urrent manusript)

ould be seamlessly taken into aount within the same framework to en-

ode di�erent design objetives instead of (3.28);

• the design proess only requires the user to speify the desired far-�eld o-

polar and ross-polar patterns (i.e., F), the re�etarray aperture and unit

ell size (i.e., M ×N and ∆x×∆y), the forbidden region (i.e., Φ), and the

SVD threshold value τ .

With referene to this last parameter, while the hoie of τ in (3.21) an be

hallenging in mirowave imaging [74℄, its de�nition in the re�etarray soure

synthesis problem only requires that the magnitude of the trunated singular
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METHOD

values (i.e., ψh, h = H + 1, ...,W ) is small enough to guarantee that

G
{
CNR

[
−
[
D̃Φ

(
CNR

)]−1 [
DΦ

(
CτΨ

−1
τ B∗

τF
)]

; 0Q

]T}
≪ Fref (3.35)

(i.e., the residual non-measurable �eld aused by JNR
is atually negligible with

respet to the far-�eld pattern Fref). Owing to the losed-form nature of (3.35),

τ an be then easily hosen in the design phase by the analysis of the singular

value distribution Ψ (Set. 4).
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Chapter 4

Method Assessment

In this hapter it is highlighted the numerial assessment of the proposed design

strategy. At the beginning is presented also an error metri that takes into

aount the di�erene between the referene �eld and the �eld radiated by the

synthesized urrent. Then it is shown a step-by-step proedure that illustrate

the synthesis proedure and then some example with di�erent shape/dimension

of the onsidered forbidden region and then the implementation of the synthesis

tehnique on di�erent re�etarray geometries (square/retangular).

4.1 Error metris

This setion is aimed at numerially validating the proposed losed-form expres-

sion (3.34) for the solution of the Constraint-Geometry Re�etarray-Currents

Synthesis problem when assuming di�erent aperture sizes and/or �forbidden re-

gion� shapes, as well as to illustrate of a set of guidelines for its e�etive ex-

ploitation. To quantitatively assess the auray in the mathing of the target

far-�eld shaped beam, the following normalized error is reported

ξ ,
[∑L

l=1

∣∣∣F ref
CO (θl, ϕl)− FCO (θl, ϕl)

∣∣∣ +
∑L

l=1

∣∣∣F ref
CX (θl, ϕl)− FCX (θl, ϕl)

∣∣∣
]

/[∑L
l=1

∣∣∣F ref
CO (θl, ϕl)

∣∣∣+
∑L

l=1

∣∣∣F ref
CX (θl, ϕl)

∣∣∣
]

(4.1)

beyond the graphial representations of the synthesized urrents, of the assoi-

ated patterns, and of the di�erene patterns∆Ft (θ, ϕ) ,
∣∣∣F ref

t (θ, ϕ)− Ft (θ, ϕ)
∣∣∣,

t ∈ {CO,CX}.

33



4.2. SQUARE REFLECTARRAY: 55× 55 ELEMENTS

4.2 Square re�etarray: 55× 55 elements

The �rst re�etarray antenna taken into aount works at f = 14[GHz℄ and has

a square aperture of 440 × 440 [mm2
℄ (∼ 20.53λ × 20.53λ). The re�etarray

surfae is omposed by M ×N = 55× 55 elements of side equal to 8 [mm℄ that

in wavelength is almost 0.37333λ. The re�etarray on�guration an be seen in

Fig. 4.1 and inludes an horn antenna as feeder, that is plaed at almost 27λ

from the re�etarray enter with an inlination of 25.11 [deg℄ with respet to the

output system, and the re�etarray is rotated along the y-axis by 12.63 [deg℄,

thus with a relative inlination between the re�etarray surfae and the horn

antenna of 12.48 [deg℄.

Figure 4.1: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Re�etarray geometry.
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4.2.1 Step-by-step proedure with lower dimensionality ase

The �rst numerial experiment is devoted to a step-by-step illustration of the

proposed design proedure.
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-10 -5  0  5  10

y 
[λ

]

x [λ]

M=N=55, ’E’-shaped Φ, K=11

Forbidden
   region

Ω

Figure 4.2: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
K = 11) - Example of forbidden region Φ, �E�-Shape forbidden region with

K = 11 number of elements.

4.2.1.1 Test ase de�nition

To this end, the synthesis of the re�etarray surfae urrents over a M × N =

55×55 square aperture with a square lattie (∆x = ∆y = 3.73×10−1λ) assuming

an �E-shaped� forbidden region [Fig. 4.2 - K = 11℄ and radiating the far �eld

omponent (plotted in the uv-domain, where u = sin θ cosϕ, v = sin θ sinϕ)

reported in Fig. 4.3() and Fig. 4.3(d) has been addressed (for the sake of

ompatness and without loss of generality, only the t = CO omponent has

been onsidered hereinafter).
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Figure 4.3: Square Aperture (M ×N = 55×55, ∆x = ∆y = 3.73×10−1λ) - Plot
of the referene urrent (a) magnitude

∣∣Jrefx (x, y)
∣∣
and (b) phase ∠Jrefx (x, y)and

radiated �eld () magnitude

∣∣∣F ref
CO (u, v)

∣∣∣ and (d) phase ∠F ref
CO (u, v).
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4.2.1.2 Appliation of the T-SVD

Suh a referene pattern, numerially generated by TICRA GRASP simulations

1

starting from the atual urrents of a referene re�etarray [Figs. 4.3(a)-4.3(b)℄,

has been �rstly sampled in L = 201 × 201 regularly spaed angles in the uv-

domain to dedue Fref in (3.5). The distribution of the singular values ψw, w =

1, ...,W , of the resulting G [obtained by the SVD deomposition (3.12)℄ shows

that the knee of the Green matrix spetrum is observed when

ψw

ψ1
≈ 8.8 × 10−1

(i.e., w ≈ 370 - Fig. 4.4).
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M=N=55

τ
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Figure 4.4: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Distribution of the singular values ψw, w = 1, ...,W , of G.

It is worthwhile to remark that the seond knee in the spetrum (i.e.,

ψw

ψ1
≈

10−6
- Fig. 4.3) is atually aused by the unavoidable �nite preision of the

numerial SVD omputation (whih prevents an aurate evaluation of very small

ψw) [74℄.

Following the standard guidelines developed in inverse sattering theory and

what said in Set. 3.2 its is omputed the normalized error ξ (4.1) with di�erent

1

All the target �eld patterns in the numerial validation have been provided by Thales

Alenia Spae Frane.
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Figure 4.5: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Normalized error ξ varying the SVD threshold τ .

value of the threshold τ and is reported in Fig.4.5. Taking into aount both

Fig. 4.4 and 4.5, it an be then dedued that a SVD threshold value su�iently

below suh a knee, suh as

τ ≈ 10−3
(4.2)

(whih orresponds to H ≈ 700 - Fig. 4.4), is enough to guarantee that the �eld

radiated by JMN
reliably mathes Fref [74℄-[77℄ and to have an relative high

number of DoFs (number of singular value below the threshold W −H).
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4.2.1.3 Minimum-norm urrent de�nition

To assess suh a property, the minimum-norm urrents are then omputed by

substituting the trunated SVD matries and Fref in (3.23).

The plots of the obtained JMN
shows that suh minimum-norm solution

turns out lose to the referene re�etarray distribution both in terms of magni-

tudes [Fig. 4.6(a) vs. Fig. 4.6()℄ and phases [Fig. 4.6(b) vs. Fig. 4.6(d)℄. This

outome suggests that (3.23) impliitly yields the same surfae urrents that

would be obtained by bak-propagation of the TICRA GRASP solution [e.g.,

Fig. 4.6(a) vs. Fig. 4.6()℄.

Moreover, the far-�eld beams radiated by the two set of urrents perfetly

math in terms of magnitude [Fig. 4.6(e) vs. Fig. 4.6(g)℄ and phase [Fig. 4.6(f )

vs. Fig. 4.6(h)℄, as expeted from inverse soure theory [74℄-[77℄, thus supporting

the hoie of τ . Moreover, the error metri is omputed also for the obtained

JMN
and the error is very low: ξMN = 5.54× 10−6

.

4.2.1.4 Non-measurable urrent omputation

One JMN
has been dedued [Figs. 4.6()-4.6(d)℄, the omputation of the non-

measurable urrents [Figs. 4.7(a)-4.7(b)℄ (and of the assoiated far-�eld pattern

[Figs. 4.7()-4.7(d)℄) an be arried out by substituting (3.33) and (3.32) in

(3.25). As theoretially expeted, the �eld owing to JNR
turns out negligible

with respet to Fref [Fig. 4.7() vs. Fig. 4.6(e)℄, therefore further on�rming

the e�etiveness of (4.2).

This proedure is not ompletely safe. In fat the non-measurable bases cj

(with j > H) have high spae variations and thus an have a null in one or more

positions of Φ. During the inversion when we ompute the related oe�ients α̃

a quasi null will go to the denominator and this generate a very high oe�ient

(quasi-in�nite). Sine the non-measurable bases are related to a singular value

that is not zero, due to the trunation operation and also to omputational

problem, if we multiply a non-measurable soure with a oe�ient that is quasi-

in�nite we make it measurable.

Thus, the bases are always seleted starting from the lower index but remov-

ing the basis that have nulls or very-low values in the forbidden region Φ.
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Figure 4.6: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
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x (r), (e)(f ) F ref
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K = 11) - Plots of (a)() the magnitude and (b)(d) the phase of (a)(b) JNR

x (r)
and synthesized ()(d) FNR

CO .

41



4.2. SQUARE REFLECTARRAY: 55× 55 ELEMENTS

4.2.1.5 Super�ial urrent de�nition

The �nal step of the design proedure is then represented by the omputation of

J aording by superimposing JMN
and JNR

(3.24).

By omparing the plots of the obtained re�etarray surfae urrent magnitude

[Fig. 4.8(a)℄ with the geometry of the required Φ [Fig. 4.2℄ it turns out that

the proposed method guarantees a perfet mathing of the onstraints on the

forbidden region [Fig. 4.8(a) vs. Fig. Fig. 4.2℄. Suh a result is atually

expeted from the theoretial viewpoint sine the solvability ondition (3.31) is

satis�ed.

Moreover, despite J is ompletely di�erent with respet to JMN
[Fig. 4.6()

vs. Fig. 4.8(a); Fig. 4.6(d) vs. Fig. 4.8(b)℄, also its radiated far-�eld mathes

Fref [Fig. 4.8() vs. Fig. 4.6(e); Fig. 4.8(d) vs. Fig. 4.6(f )℄ likewise the one

radiated by JMN
[i.e., Figs. 4.6(g)-4.6(h)℄.

This outome, whih is also supported by the orresponding normalized error

(i.e., ξ = 5.84× 10−6
- Tab. 4.1), is a proof-of-onept that suitable omponents

JNR
[Figs.4.7(a)-4.7(b)℄ an be superimposed to JMN

[Figs.4.6()-4.6(d)℄ to sat-

isfy user-de�ned urrent onstraints while yielding a non-measurable variation in

the radiated �eld [i.e., negligible with respet to Fref - Fig. 4.8() vs. Fig.

4.6(e)℄.
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Figure 4.8: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
K = 11) - Plots of (a)() the magnitude and (b)(d) the phase of the synthesized

(a)(b) Jx (r) and ()(d) FCO (r).
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4.2.2 Analysis vs. various forbidden region shapes keeping

same order dimension

Given the step-by-step proedure now we want to analyse the �exibility of the

proposed methodology by onsidering the same re�etarray setup (i.e., yield-

ing the same SVD and JMN
) but di�erent Φ de�nitions with almost the same

geometrial dimension (K ≈ 33): �Cross�-shaped (K = 28) - Fig. 4.9(a), �Ring�-

shaped (K = 32) - Fig. 4.9(b), �Cirular Ring�-shaped (K = 36) - Fig. 4.9(b)

and �Cirle�-shaped (K = 37) - Fig. 4.9(d).
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Figure 4.9: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ.
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The plots of |J| (Fig. 4.10) obtained by means of the losed-form expression

(3.34) and assoiated ∆FCO (θ, ϕ) (Fig. 4.11) show that:

(i) the proposed strategy enables to dedue surfae urrents that omply with

arbitrary Φ loations/shapes [Fig. 4.9(b) vs. Fig. 4.10(a); Fig. 4.9() vs.

Fig. 4.10(b); Fig. 4.9(d) vs. Fig. 4.10()℄,

(ii) the resulting di�erene pattern is always negligible with respet to Fref

[∆FCO (θ, ϕ) ≤ −110 dB - Fig. 4.11(a); ∆FCO (θ, ϕ) ≤ −90 dB - Fig.

4.11(b); ∆FCO (θ, ϕ) ≤ −80 dB - Fig. 4.11()℄, although the mismath

slightly inreases with K as on�rmed by the assoiated normalized errors

(i.e., ξcross = 1.18××10−5
, ξring = 3.34× 10−5

, ξcircular−ring = 1.57× 10−5

and ξcircle = 1.35× 10−3
- Tab. 4.1).

This result is motivated by the fat that wider Φ regions require more entries

to be inluded in α̃ in (3.33) (thus potentially inreasing the energy in the �non-

measurable� urrent omponents). However, it is worthwhile to remark that

|∆FCO (θ, ϕ)| ≪
∣∣FREF

CO (θ, ϕ)
∣∣
in all ases [e.g., Fig. 4.11(e) vs. Fig. 4.3(a)℄,

and that even better ξ results ould be easily obtained by further dereasing τ

with respet to (4.2), as it is known from inverse soure theory [74℄-[76℄.

Φ- Shape K ξ ∆t (s)

- - 5.55× 10−6
-

E 11 5.84× 10−5 1.03× 10−1

Cross 28 1.18× 10−5 1.21× 10−1

Ring 32 3.34× 10−5 1.28× 10−1

Cirular Ring 36 1.57× 10−5 1.34× 10−1

Cirle 37 1.35× 10−3 1.36× 10−1

Table 4.1: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Performane Assessment - Varying the geometry.
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Figure 4.10: Square Aperture (M×N = 55×55, ∆x = ∆y = 3.73×10−1λ) - Plots
of |Jx (r)| assuming (a) �Cross�-shaped (K = 28), (b) �Ring�-shaped (K = 32),
() �Cirular Ring�-shaped (K = 36) and (d) �Cirle�-shaped (K = 37) forbidden
regions.
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Figure 4.11: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of ∆FCO (u, v) when assuming (a) �Cross�-shaped (K = 28), (b) �Ring�-
shaped (K = 32), () �Cirular Ring�-shaped (K = 36) and (d) �Cirle�-shaped

(K = 37) forbidden regions.
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4.2.3 Changing the dimension of the same type of forbid-

den region

To further investigate the features of the proposed urrent synthesis proedure

for di�erent K values, a set of o�-entered �Square�-shaped Φ regions with K ∈
[4, 100] have been onsidered. The Φ for K = 4, K = 25, K = 49, K = 100 are

shown in Fig. 4.12.
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Figure 4.12: Square Aperture (M×N = 55×55, ∆x = ∆y = 3.73×10−1λ) - Def-
inition of forbidden regions Φ keeping the same shape but varying the dimension:

(a)K = 4, (b)K = 25, ()K = 49 and (d)K = 100.

The behaviour of the normalized error vs. the forbidden region size shows

that, analogously to the previous examples, ξ is proportional to K. In fat when

K = 4 the normalized error is very small and omparable with the normalized

error of the minimum-norm term ξ⌋K=4 ≈ 5.71× 10−6
, while when K = 100 the
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Figure 4.13: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of |Jx (r)| assuming di�erent dimension of a �Square�-shape (a)K = 4, (b)
K = 25, () K = 49 and (d) K = 100 forbidden regions.

normalized error grown up until ξ⌋K=100 ≈ 2.07× 10−3
(shown in Fig. 4.15 and

in Tab. 4.2). Nevertheless, |∆FCO (θ, ϕ)| still turns out negligible with respet

to

∣∣FREF
CO (θ, ϕ)

∣∣
even for wide Φ regions [e.g., K = 100 - Fig. 4.14(d) vs. Fig.

4.3(a)℄.

Furthermore, a perfet mathing of the urrent onstraints in the forbidden

region is obtained also in this ase for eah of the seleted dimensions [K = 4 -

Fig. 4.13(a), K = 25 - Fig. 4.13(b), K = 49 - Fig. 4.13() and K = 100 - Fig.

4.13(d)℄, as expeted thanks to the ompliany with the solvability ondition

(3.31).

49



4.2. SQUARE REFLECTARRAY: 55× 55 ELEMENTS

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Square’-shaped Φ, K=4

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Square’-shaped Φ, K=25

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

(a) (b)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Square’-shaped Φ, K=49

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Square’-shaped Φ, K=100

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

() (d)

Figure 4.14: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ)
- Plots of ∆FCO (u, v) when assuming di�erent dimension of a �Square�-shape

(a)K = 4, (b) K = 25, () K = 49 and (d) K = 100 forbidden regions.
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Figure 4.15: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
�Square�-shaped forbidden region) - Behaviour of ξ and ∆t versus K.

Φ- Shape K ξ ∆t (s)

- - 5.55× 10−6
-

Square 4 5.71× 10−6 1.03× 10−1

Square 9 7.32× 10−6 1.06× 10−1

Square 16 1.20× 10−5 1.04× 10−1

Square 25 4.32× 10−5 1.04× 10−1

Square 36 1.11× 10−4 1.36× 10−1

Square 49 3.59× 10−4 1.32× 10−1

Square 64 1.09× 10−3 1.68× 10−1

Square 81 1.27× 10−3 2.12× 10−1

Square 100 2.07× 10−3 2.32× 10−1

Table 4.2: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Performane Assessment - Fixed geometry varying the dimension.
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4.2.4 Large dimension and omplex topology forbidden re-

gion

The next example is aimed at assessing the performane of (3.34) when more

omplex forbidden regions are at hand.

To this end, a synthesis of J has been arried out when assuming a Φ area

omposed of:

(i) a �Triangle�-shaped, K = 55 in slightly di�erent position [Fig. 4.16(a)(b)℄,

(ii) 6 disonneted sub-parts [�ELEDIA�-shaped, K = 54 - Fig. 4.16()℄,

(iii) a large region entered in the re�etarray aperture [�Diamond�-shaped,

K = 115 - Fig. 4.16(d)℄.
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Figure 4.16: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ with omplex shape and large dimension: (a)

�Triangle�-shaped K = 55 nearer to the orner, (b) �Triangle�-shaped K = 55 ,

() �ELEDIA�-shaped K = 54 and (d) �Diamond�-shaped K = 115.
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By analyzing the graphial representation of the surfae urrent magnitudes

[�Triangle�-shaped - Fig. 4.17(a)(b), �ELEDIA�-shaped - Fig. 4.17(), �Diamond�-

shaped - Fig. 4.17(d)℄ and orresponding ∆FCO (θ, ϕ) [�Triangle�-shaped - Fig.

4.18(a)(b), �ELEDIA�-shaped - Fig. 4.18(b), �Diamond�-shaped - Fig. 4.18(d)℄,

it an be notied one again that the dedued solution fully omplies with the

enfored geometrial restritions [Fig. 4.17(a) vs. Fig. 4.16(a), Fig. 4.17(b) vs.

Fig. 4.16(b), Fig. 4.18() vs. Fig. 4.16() and Fig. 4.17(d) vs. Fig. 4.16(d)℄.
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Figure 4.17: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of |Jx (r)| assuming di�erent dimension of a �Square�-shape (a)K = 4, (b)
K = 25, () K = 49 and (d) K = 100 forbidden regions.
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Moreover, also the radiation features ahieve good performane [|∆FCO (θ, ϕ)| ≪∣∣FREF
CO (θ, ϕ)

∣∣
- Fig. 4.18 vs. Fig. 4.3(a)℄, as it is also on�rmed by the asso-

iated error �gures (ξtriangle−a = 9.94 × 10−4
, ξtriangle−b = 1.07 × 10−4

,ξeledia =

1.41× 10−5
, ξdiamond = 4.34× 10−3

- Tab. 4.3).

This result points out the apability of the proposed methodology to exploit

non-measurable urrents to omply with arbitrary-shaped forbidden areas om-

prising disonneted regions [Fig. 4.17(a)℄ regardless of their position in the

aperture [Fig. 4.17()℄ if Φ omplies with (3.31).

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Diamond’-shaped Φ, K=55

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Diamond’-shaped Φ, K=55

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

(a) (b)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’ELEDIA’-shaped Φ, K=54

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’Diamond’-shaped Φ, K=115

-120

-90

-60

-30

 0

∆F
C

O
(u

,v
) 

[d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

() (d)

Figure 4.18: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ)
- Plots of ∆FCO (u, v) when assuming di�erent dimension of a �Square�-shape

(a)K = 4, (b) K = 25, () K = 49 and (d) K = 100 forbidden regions.
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Φ- Shape K ξ ∆t (s)

- - 5.55× 10−6
-

Triangle (a) 55 9.94× 10−4 1.41× 10−1

Triangle (b) 55 1.07× 10−4 1.40× 10−1

ELEDIA 54 1.41× 10−5 1.39× 10−1

Diamond 115 4.34× 10−3 2.62× 10−1

Table 4.3: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Performane Assessment - Complex and large geometries.
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4.3 Retangular re�etarray: 81× 69 elements

Sine the previous examples have all dealt with a square re�etarray geometry

with a M = N = 55 aperture, the �nal set of numerial studies is devoted to the

validation of the proposed methodology when wider and retangular layouts are

at hand.

The seond re�etarray antenna taken into aount works at f = 3.6[GHz℄

and has a retangular aperture of 1766.4 × 2073.6 [mm2
℄ (∼ 21.19λ × 24.88λ).

The re�etarray surfae is omposed byM×N = 81×69 elements of side equal to

25.6 [mm℄ that in wavelength is almost 0.3072λ. This re�etarray on�guration

(shown in Fig. 4.19) has as a feeder an horn antenna that is plaed with an

inlination of 35.06 [deg℄ with respet to the output system at almost 30λ from

the re�etarray enter, the plane of the re�etarray surfae is rotated along the

y-axis by 17.53 [deg℄, thus with a relative inlination between the re�etarray

surfae and the horn antenna of 17.53 [deg℄.

Figure 4.19: Retangular Aperture (M ×N = 81×69, ∆x = ∆y = 3.07×10−1λ)
- Re�etarray geometry.

This re�etarray antenna is used to synthesize a surfae urrent assuming

the referene far-�eld pattern in Fig. 4.20()(d) still sampled in L = 201 × 201
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regularly spaed angles in the uv-domain to dedue Fref in (3.5). Moreover the

referene urrent distribution magnitude and phase are shown in Fig. 4.20(a)

and Fig. 4.20(b) respetively. Also in this ase the SVD threshold τ is set to

10−3
and the normalized error of the radiated �eld of theminimum-norm solution

[magnitude and phase of JMN
in Fig. 4.20(e) and Fig. 4.20(f ) respetively℄ with

respet to the referene �eld [Fig. 4.20(g) vs. 4.20()℄ is very low also in this

ase ξ = 4.47× 10−6
(see Tab. 4.4).
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Figure 4.20: Retangular Aperture (M × N = 81 × 69, ∆x = ∆y = 3.07 ×
10−1λ) - Plot of the referene urrent (a) magnitude

∣∣Jrefx (x, y)
∣∣
and (b)

phase ∠Jrefx (x, y) and radiated �eld () magnitude

∣∣∣F ref
CO (u, v)

∣∣∣ and (d) phase

∠F ref
CO (u, v) and the minimum-norm solution (e) magnitude

∣∣JMN
x (x, y)

∣∣
and (f )

phase ∠JMN
x (x, y)and radiated �eld (g) magnitude

∣∣FMN
CO (u, v)

∣∣
and (h) phase

∠FMN
CO (u, v).

58



CHAPTER 4. METHOD ASSESSMENT

4.3.1 Large dimension and omplex topology of the forbid-

den region

In order to asses the method hanging the re�etarray antenna we propose an

analysis on the same forbidden region investigated for the previous ase (Set.

4.2.4). Towards this end, we enfore the �ELEDIA�-shaped and �Diamond�-

shaped forbidden regions shown in Fig. 4.21(a) and Fig. 4.21(b), respetively.
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Figure 4.21: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ with omplex shape and large dimension: (a)

�ELEDIA�-shaped K = 54 and (b) �Diamond�-shaped K = 115.
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4.3. RECTANGULAR REFLECTARRAY: 81× 69 ELEMENTS

The plots the magnitude [Fig. 4.20(e)℄ and phase [Fig. 4.20(f )℄ of JMN
[ob-

tained assuming (4.2)℄ indiate that the minimum-norm solution of the problem

obviously does not omply with any Φ requirements [i.e., the urrent is not zero

in Φ - Fig. 4.22(a)℄, as expeted.
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Figure 4.22: Retangular Aperture (M×N = 81×69, ∆x = ∆y = 3.07×10−1λ) -
Plots of (a)() the magnitude and and (b)(d) the phase of Jx (r) when assuming

(a)(b) �ELEDIA�-shaped (K = 54) and ()(d) �Diamond�-shaped (K = 115)
forbidden regions.

On the ontrary, the overall surfae urrents obtained by superimposing suit-

ably designed non-measurable urrents to JMN
through the losed-form expres-

sion (3.34) fully satisfy the �forbidden region� onstraints [Fig. 4.22(a) vs. Fig.

4.16(a); Fig. 4.22() vs. Fig. 4.16(b)℄, and they also guarantee an exellent

pattern mathing [i.e., |∆FCO (θ, ϕ)| ≪
∣∣FREF

CO (θ, ϕ)
∣∣
- Fig. 4.23(a) and Fig.

4.23(b) vs. Fig. 4.20(a)℄, as it is also on�rmed by the orresponding error

�gures (ξ ∈ [1.31× 10−5, 7.68× 10−4] - Tab. 4.4).
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Figure 4.23: Retangular Aperture (M ×N = 81×69, ∆x = ∆y = 3.07×10−1λ)
- Plots of ∆FCO (u, v) when assuming (a) �ELEDIA�-shaped (K = 54) and (b)

�Diamond�-shaped (K = 115) forbidden regions.

61



4.3. RECTANGULAR REFLECTARRAY: 81× 69 ELEMENTS

4.3.2 Varying shape of forbidden region

Also for this re�etarray it is proposed the analysis varying the shapes of the

forbidden region Φ. The same shapes de�ned for the test ase M ×N = 55× 55

are here proposed. In partiular: �E�-shaped K = 11 in Fig. 4.24(a), in Fig.

4.24(b) �Cross�-shaped K = 28, in Fig. 4.24() �Ring�-shaped K = 32,in Fig.

4.24 (d) �Cirular Ring�-shaped K = 36 and in Fig. 4.24(e) �Cirle�-shaped

K = 37.
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Figure 4.24: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ with di�erent shapes: (a) �E�-shaped K = 11,
(b) �Cross�-shaped K = 28, () �Ring�-shaped K = 32, (d) �Cirular Ring�-

shaped K = 36 and (e) �Cirle�-shaped K = 37.
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The urrent obtained using the �nal losed form (3.34) and the superposition

(3.24) perfetly ful�ll the requirements S of the forbidden regions taken into

aount [�E�-shaped K = 11 in Fig. 4.10(a) vs. Fig. 4.24(a) - �Cross�-shaped

K = 28 in Fig. 4.10(b) vs. Fig. 4.24(b) - �Ring�-shaped K = 32 in Fig. 4.10()

vs. Fig. 4.24() - �Cirular Ring�-shapedK = 36 in Fig. 4.10(d) vs. Fig. 4.24(d)

- �Cirle�-shaped K = 37 in Fig. 4.10(e) vs. Fig. 4.24(e)℄, as expeted sine the

solvability ondition is observed (3.31).
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Figure 4.25: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of |Jx (r)| assuming an (a) �E�-shaped K = 11, (b) �Cross�-shaped K = 28,
() �Ring�-shaped K = 32, (d) �Cirular Ring�-shaped K = 36 and (e) �Cirle�-

shaped K = 37 forbidden.
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4.3. RECTANGULAR REFLECTARRAY: 81× 69 ELEMENTS

Moreover, the di�erene of the pattern shown in Fig. 4.26 demonstrate the

goodness of the pattern mathing (|∆FCO (θ, ϕ)| ≪
∣∣FREF

CO (θ, ϕ)
∣∣
), that is on-

�rmed also by the normalized errors: ξE = 5.51 × 10−6
, ξCross = 5.81 × 10−6

,

ξRing = 1.03× 10−5
, ξCircular−Ring = 9.72 × 10−6

, ξCircle = 1.26 × 10−5
(listed in

Tab. 4.4).
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Figure 4.26: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ)
- Plots of ∆FCO (u, v) when assuming an (a) �E�-shaped K = 11, (b) �Cross�-
shaped K = 28, () �Ring�-shaped K = 32, (d) �Cirular Ring�-shaped K = 36
and (e) �Cirle�-shaped K = 37 forbidden region.
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4.3.3 Resume normalized errors and omputational time

in 81x69 test ase

For the sake of ompleteness, the resume of the pattern mismath ξ and the syn-

thesis time ∆t2 for di�erent Φ de�nitions (always assuming Fref in Fig. 4.20()

and Fig. 4.20(d) and M = 81, N = 69) is provided in Fig. 4.27. The illustrated

results remark that:

(i) thanks to its losed-form nature (3.34), the synthesis proess is extremely

e�ient whatever Φ shape and size (i.e., ∆t ∈ [1.40× 10−1, 2.60× 10−1]

[s℄ - Fig. 4.27 - Tab. 4.4), as it happened also in the previous examples (i.e.,

∆t ∈ [1.04× 10−1, 2.32× 10−1] [s℄ - Fig. 4.15; ∆t ∈ [1.03× 10−1, 2.60× 10−1]

[s℄ - Tabs. 4.1-4.2-4.3);

(ii) despite the signi�antly inreased problem size with respet to the �square

aperture� test ases (i.e.,

MN⌋square
MN⌋rect.

≈ 0.54), the pattern is reliably repro-

dued in all examples (ξ < 8.0× 10−4
- Fig. 4.27).

These outomes further validate the apability of the proposed method to ef-

�iently exploit non-measurable urrents JNR
as a DoF to satisfy user-de�ned

onstraints on the re�etarray layout while yielding a non-measurable variation

in the radiated �eld (Fig. 4.27).

2

All ∆t values refer to a non-optimized MATLAB implementation exeuted on a single-ore

laptop featuring a 2.20 GHz CPU lok.
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Figure 4.27: Retangular Aperture (M ×N = 81×69, ∆x = ∆y = 3.07×10−1λ)
- Behaviour of ξ and ∆t for di�erent forbidden region shapes Φ.

Φ- Shape K ξ ∆t (s)

- - 4.47× 10−6
-

E 11 5.51× 10−6 1.04× 10−1

Cross 28 5.81× 10−6 1.06× 10−1

Ring 32 1.05× 10−5 1.07× 10−1

Cirular Ring 36 9.72× 10−6 1.15× 10−1

Cirle 37 1.26× 10−5 1.29× 10−1

ELEDIA 54 1.31× 10−5 1.40× 10−1

Diamond 115 7.68× 10−4 2.60× 10−1

Table 4.4: Retangular Aperture (M ×N = 81 × 69, ∆x = ∆y = 3.07× 10−1λ)
- Performane Assessment - Resume on various test ases.
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Chapter 5

Conlusions and Remarks

An innovative paradigm has been proposed for the design of re�etarray

surfae urrents that satisfy both radiation and user-de�ned antenna feasibil-

ity onstraints. To this end, the urrent synthesis problem has been formulated

as an inverse soure one, and its well-known non-uniqueness has been leveraged

as a design DoF. By suitably exploiting the arising non-measurable soures, a

losed-form solution for the design of re�etarray surfae urrents has been de-

rived whih does not require any iterative loal/global optimization proedure

and whih inherently satis�es both the radiation and the feasibility design on-

straints. A seleted set of numerial experiments has been illustrated to assess

the e�etiveness and potentialities of the design proedure when handling di�er-

ent aperture types/sizes and forbidden region de�nitions.

The numerial assessment has shown that

• the expression (3.34) enables to ompute ombinations of suitable urrent

omponents JNR
and JMN

that satisfy user-de�ned urrent onstraints

while yielding a non-measurable variation in the radiated �eld with respet

to Fref (Set. 4);

• the design method only features 1 ontrol parameter (τ) whose hoie an

be reliably arried out by simple analysis of the Green matrix spetrum

knee [(4.2) - Fig. 4.4℄;

• although the pattern mathing error ξ slightly inreases with the forbidden

region size K, the proposed strategy turns out e�etive regardless of the

omplexity of Φ (e.g., ξ ≤ 4.34×10−3
- Tab. 4.3) if the solvability ondition
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(3.31) is satis�ed;

• owing to its losed-form nature (3.34), the synthesis proess turns out nu-

merially e�ient (i.e., ∆t ≤ 2.60× 10−1
[s℄ - Tab. 4.4) whatever Φ shape

and size (e.g., Fig. 4.9).

Moreover, the methodologial advanements of the paper with respet to the

state-of-the-art inlud:

(i) the formulation and development of a re�etarray urrent design paradigm

whih takes advantage of the existene of non-measurable surfae soures

to enhane the solution features aording to user-de�ned objetives,

(ii) the derivation of losed-form formulas for the synthesis of re�etarray ur-

rents that inherently satisfy radiation and geometrial onstraints.

Future works, beyond the sope of this work, will be aimed at the generalization

of the introdued paradigm to take into aount additional user onstraints (e.g.,

regarding the feasible urrent solutions) as well as more omplex/onformal ge-

ometries. Moreover, the integration of the proposed strategy with an automati

re�etarray unit-ell synthesis tehnique is urrently under investigation.
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