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Abstra
t

The design of re�e
tarray surfa
e 
urrents that satisfy both radiation and user-

de�ned antenna feasibility 
onstraints is addressed through a novel paradigm

whi
h takes advantage of the non-uniqueness of inverse sour
e (IS ) problems. To

this end, the synthesis is formulated in the IS framework and its non-measurable

solutions are employed as a design DoF. Thanks to the adopted framework,

a 
losed-form expression for the design of re�e
tarray surfa
e 
urrents is de-

rived whi
h does not require any iterative lo
al/global optimization pro
edure

and whi
h inherently satis�es both the radiation and the feasibility design 
on-

straints. The features and potentialities of the proposed strategy are assessed

through sele
ted numeri
al experiments dealing with di�erent re�e
tarray aper-

ture types/sizes and forbidden region de�nitions.
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Chapter 1

Introdu
tion

Antennas able to exhibit high gains and 
arefully shaped patterns are of fun-

damental importan
e in radar, satellite remote sensing and long-distan
e/high-


apa
ity 
ommuni
ation systems [1℄-[6℄.

In order to meet su
h ambitious performan
e requirements, the te
hnologies

traditionally employed are re�e
tor antennas [6℄ and phased arrays[7℄,[8℄. In fa
t

both te
hnologies 
an a
hieve a very high gain and are able to generate shaped

patterns. In re�e
tor antenna the high gain 
apability is a
hieved thanks to the

ability to 
on
entrate the �eld that is 
oming from the feeder to a single dire
tion

in spa
e (due to the paraboli
 re�e
tor), while the shaped beam 
an be obtained

by shaped pro�le re�e
tors (adding some �bumps� into the paraboloid re�e
tor

surfa
e) [9℄.

In [9℄ it is proposed to use an optimization pro
edure that takes in input the

type of the re�e
tor surfa
e (
ir
ular, ellipsoid, square, re
tangular, 
oni
 et
..),

the feed 
on�guration (horn antenna, array antennas, et
..) and position (at

the 
enter or shifted), the re�e
tor 
on�guration (single re�e
tor, dual re�e
tor,

Cassegrain, et
..) and the radiation 
hara
teristi
s. The optimizer 
omputes the

radiated pattern applying the theory of generalized di�ra
tion, i.e. the physi
al

theory of di�ra
tion is used to analyse the antenna and produ
e a 
ost fun
tion

to quantify the mat
hing of the radiation 
hara
teristi
s.If the 
ost fun
tion is

not minimized, the optimizer 
reates a new trial solution.

In phased arrays, high gain and a properly shaped beam are given by the

position of the elements (regular latti
e, sparse latti
e, random latti
e, et
..),

the element pattern and the weighting fun
tion applied to ea
h element (e.g.:

1



(a) (b) (
)

Figure 1.1: Geometry 
omparison of (a) Phased Array Antenna, (b) Re�e
tor

Antenna, (
) Re�e
tarray Antenna.

tapering, thinning, phase synthesis, time modulated array, 
lustering te
hniques,

et
..)[7℄[8℄.

Though able to a
hieve the desired requirements, both solutions have signi�-


ant drawba
ks. Re�e
tor antennas exhibit high manufa
turing 
omplexity, are

di�
ult to be implemented as re
on�gurable antennas (unless me
hani
al steer-

ing is 
onsidered, whi
h is typi
ally avoided in spa
e appli
ations) and are also


hara
terized by non-
onformal shapes [6℄. Moreover, spa
e appli
ation re�e
tor

antennas su�er manufa
ture toleran
e and deformation problems [10℄ that 
an

severely a�e
t the antenna operational. Phased antenna arrays are expensive in

terms of fabri
ation and power 
onsumption (and, 
onsequently, need tempera-

ture 
ontrol, not suitable for spa
e appli
ations). In addition, su
h antennas are

also heavy due to support and feeding network, and their design is not trivial

[7℄[8℄.

In order to deal with the aforementioned issues, re�e
tarray antennas have

emerged as a possible solution to yield high-gain shaped beam antennas with

low realization 
osts, �at/
onformal shapes, and low-
onsumption feed networks

[6℄,[11℄. Thanks to their potentials and �exibility [6℄,[12℄-[36℄, the design of

shaped-beam re�e
tarray antennas has be
ome a very a
tive resear
h �eld and

several methodologies have been proposed to this end [37℄-[52℄.

The key fa
tor that helped the su

ess of re�e
tarray antennas is their 
apa-

2



CHAPTER 1. INTRODUCTION

bility of 
ombining the positive features of both 
lassi
al re�e
tor antennas (i.e.,

high gain, low 
ost and easy fabri
ation) [6℄ and phased arrays (i.e., re
on�gura-

bility and low pro�le)[7℄. Typi
ally, they 
onsist of a planar array of mi
rostrip

pat
hes printed on a ground-ba
ked diele
tri
 substrate and illuminated by a

feeder (e.g., a horn antenna, or also a phased array). Size, shape and arrange-

ment of the metalli
 pat
hes are properly designed su
h that the �eld re�e
ted by

the passive/a
tive surfa
e meets the desired pattern features (e.g., steering angle,

sidelobe level, bandwidth, et
..)[6℄. As a main 
onsequen
e, re�e
tarrays do not

require the use of a bulky paraboli
 dis
, while the tuning of the radiated �eld is

obtained without the need for expensive beam-forming networks or me
hani
al

steering [14℄.

The �rst example of a re�e
tarray antenna was proposed at the beginning of

60's by Berry [11℄, who proposes to use trun
ated waveguides as re�e
ting ele-

ments. These waveguides have di�erent lengths that are able to impose a proper

phase shift to obtain a desired re�e
ted pattern. The re�e
tarrays produ
ed

with this te
hnology 
an a
hieve good performan
es and 
an handle very high

power (no diele
tri
 substrate) at the 
ost of using a heavy stru
ture. For this

reason, only with the development of the mi
rostrip te
hnology in the late 80's

the re�e
tarray arose as a leading te
hnology.

Before mi
rostrip te
hnology, another kind of re�e
ting stru
ture was ana-

lyzed: the Spiralphase re�e
tarray [53℄. In this work four arms of spirals are


onne
ted with swit
hing diodes that a
tivate a di�erent pair of arms and thus

permit to 
ontrol the s
an angle of the 
ir
ular polarized re�e
tarray. However,

due to the diodes 
ir
uit and the spiral 
avity (λ/4), the stru
ture be
omes too

bulky to permit an e�
ient implementation.

The simplest design of a re�e
tarray is proposed in [54℄ and [55℄ and imple-

mented by [56℄,[57℄ [Fig. 1.2(a)℄, and 
onsists in mi
rostrip pat
hes with �xed

shape and di�erent adapting stubs. Sin
e these stubs have di�erent lengths, they


an provide a di�erent impedan
e, and 
onsequently a di�erent phase shift. The

major problem with the stub te
hnology is that this method is inherently nar-

rowband, sin
e the stub stru
ture must be dimensioned for a spe
i�
 wavelength,

and parasiti
 
oupling with adja
ent elements 
ould be a possible issue.

Pozar et al. in [58℄,[59℄ and Chaharmir et al. [60℄ propose to introdu
e, in

the same planar stru
ture, pat
hes with di�erent dimension, rotation, or even

di�erent geometry in order to introdu
e a di�erent phase shift for ea
h element.

3
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(a) (b)

Figure 1.2: Re�e
tarray Antenna implemented by (a)[56℄ and by (b)Pozar

(http://www.e
s.umass.edu/e
e/pozar/re�e
t.jpg).

This kind of design solves the problems of the stubs, improves the bandwidth and

allows the designer to have a better 
ontrol on polarization. However, a trade-o�

must be taken into a

ount when designing re�e
tarray antennas that radiated

shaped beams. If a parti
ular shaped beam is desired in order to 
over only some

regions of the Earth (e.g. a beam that 
an 
over northern Europe without send-

ing power on sea areas) the phase distribution on the re�e
tarray aperture has

a non-smooth behavior. This means that adja
ent elements 
ould have a signif-

i
antly di�erent phase shift and this implies very di�erent and 
omplex shapes.

As a 
onsequen
e, manufa
turing 
osts are high (also due to manufa
ture toler-

an
es), and there may also be problems involving in
orre
t shape de�nition and


oupling. This kind of design is improved by En
inar et al. in [15℄,[16℄,[37℄,[61℄

that propose to design shaped beams by using more layers (2 or 3) of di�erent

shaped pat
hes and exploiting an optimization te
hnique in order to de�ne the

best phase distribution on di�erent layers. This kind of design, based on multiple

layers, 
an improve the performan
e and de
rease the 
omplexity of ea
h singular

layer, although the overall stru
ture is still 
omplex, expensive to manufa
ture,

and it 
ould be hard to insert a 
ontrol network for beam-steering appli
ations.

In general, re�e
tarray layouts are usually synthesized by a two-step pro
e-

dure in whi
h:

(a) the re�e
tarray surfa
e 
urrents that radiate the desired shaped beam are
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omputed;

(b) the feed and re�e
ting elements (e.g., mi
rostrip pat
hes) able to approxi-

mately generate su
h 
urrents are dedu
ed/designed.

Several methods have been developed in the literature to solve (b) for various

unit 
ell geometries and ar
hite
tures [2℄,[6℄,[15℄,[59℄,[62℄-[66℄. On the 
ontrary,

very few approa
hes have been proposed to address (a) [37℄-[39℄.

One example of solution in literature that deals with step (b) is [59℄, in whi
h

the authors des
ribe a method of 
omputing the phase response 
hara
teristi
s for

a square pat
h mi
rostrip and then synthesizing the pat
h distribution to obtain

a pen
il beam in di�erent re�e
tarray 
on�gurations: squared re�e
tarray o�set

beam having the feeder in broadside, 
ir
ular diameter re�e
tarray with both

feeder and far-�eld maximum in broadside, square re�e
tarray with prime fo
us

re
tangular horn and square re�e
tarray in Cassegrian 
on�guration.

Instead [15℄ [Fig. 1.3(a)℄, in order to enlarge the operational bandwidth of

the system, a multi-layer stru
ture is employed. In parti
ular the number of

layer is set to 2 and a simple square pat
h is sele
ted to have the desired phase

shift. More in detail, the size of the side of the square pat
h 
an vary the phase

response of the spe
i�
 
ell and by �xing the ratio between the 
ell in the two

layers (the upper layer pat
hes are 0.7 times the lower layer ones) the re�e
tarray

is synthesized using the simple phase delay 
ompensation (the phase of the pat
h

has to 
ompensate the same travelling time that should be o

urred in 
ase of a

re�e
tor) and good performan
e are obtained within 16.67% of the operational

bandwidth.

When re�e
tarray pat
hes are designed, a problem that 
an o

ur is that

their phase response does not 
over the full 360◦ phase range. To over
ome this

problem [64℄ [Fig. 1.3(b)℄propose to use a kind of stru
ture that is 
y
li
. This

kind of element 
omes ba
k to the original geometry shape when a full phase

range is 
overed. In fa
t the proposed element is a �phoenix element� (i.e. 
alled

phoenix for its rebirthing 
apabilities) that is 
omposed by a 
entered square

pat
h of �xed dimension, an external ring of �xed dimension that delimits the

element with the adja
ent ones and a variable ring that 
an �move� from the

inner to the outer. Furthermore, this element is designed to be metal-only, thus

without the presen
e of the substrate (in fa
t the inner pat
h, the varying ring
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and the external one are 
onne
ted by a metalli
 strip). This element 
an in
rease

the e�
ien
y of the re�e
tarray sin
e it 
an 
over the full phase range and it does

not require any diele
tri
 substrate. Nonetheless, the 
onne
ting strips exhibits

some drawba
ks in 
ontrolling the 
ross-polarization.

To better 
ontrol the 
ross polarization, but maintaining the full range 
over,

it is proposed by [65℄ [Fig. 1.3(
)℄ to use two di�erent 
y
les to de�ne the

element. Firstly the element is made by dipole 
rossed with same arms (to

ensure dual-polarization), whose width is half of their length. To implement the


y
le, the length is in
reased until the element tou
hes the adja
ent ones, then

the element geometry 
hanges and be
omes a grid. The se
ond step of the 
y
le

is done keeping �xed the length and vary only the width of the arms unless the

metalization disappear, then the 
y
le restart as a 
rossed dipole. The designed

re�e
tarray using this elements 
an handle both polarizations and demonstrate

to have an operational bandwidth of 11.1%.

Re�e
tarray are used also for non-mi
rowave appli
ation moving to the tera-

hertz domain [66℄ [Fig. 1.3(d)℄. In this domain stubs or many 
ells with di�erent

shapes 
an not be manufa
tured (or are too expensive). Thus, it is proposed

to use metal blo
ks with di�erent height in order to 
ompensate the phase with

respe
t to a referen
e plane. In this way it is the same as if the physi
al behavior

of a re�e
tor is obtained by sampling and then applying a modulus operation

with respe
t to the wavelength at the heights of the blo
ks. It is demonstrated

that with this approa
h a good gain 
an be a
hieved and the pattern behavior is

quite stable to the frequen
y band (30%) obtaining also a very good performan
e

in antenna e�
ien
y due to the absen
e of diele
tri
s.

Considering step (a), the exploitation of lo
al optimization strategies (su
h as

the Interse
tion Approa
h [37℄,[39℄) has been proposed as a �rst step of a shaped

beam re�e
tarray synthesis [37℄,[39℄. However, su
h methodologies 
an be 
om-

putationally expensive (espe
ially if wide apertures are at hand) and their e�e
-

tiveness and 
onvergen
e rate strongly depend on the 
hoi
e of the initialization

point [37℄. Alternatively, ray-tra
ing te
hniques have been proposed to dedu
e

the re�e
tarray surfa
e 
urrents starting from the knowledge of a previously syn-

thesized shaped re�e
tor a�ording the desired beam pattern [38℄. Unfortunately,

su
h a strategy does not allow the designer to spe
ify any feasibility 
onstraints

on the solution (e.g., presen
e of �forbidden regions� in the array aperture) and

therefore it does not guarantee that the dedu
ed 
urrents are implementable.
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"Square" Patch Dual Layer

g(1)

g(2)

"Square" Patch Dual Layer

g(1)g(2)

(a) (b)

(
) (d)

Figure 1.3: Geometry of the re�e
tarray antenna elements: (a)[15℄, (b)[64℄,

(
)[65℄, (d)[66℄.

In the Interse
tion Approa
h [67℄ two sets are 
onsidered: the �rst set is


omposed by all the radiation pattern that respe
ts the required spe
i�
ation and

the se
ond 
ontains all the radiation pattern that the re�e
tarray 
an radiate.

Roughly, the synthesis pro
edure makes 
ontinue proje
tion of the patterns in the

two sets from the �rst set to the se
ond, until the mismat
h between the proje
ted

patterns is almost null. Thus, as the dimension of the re�e
tarray in
reases the

dimension of the sets in
reases as well, and this is one of the drawba
ks of

te
hniques explained in [37℄,[39℄. While [37℄ has a re�e
tarray made with three

layer of squared pat
hes and 
an a
hieve very good performan
e in 
overing the

South Ameri
a region with a bandwidth of 10%, and [39℄ (that has also used the

FFT to in
rease e�
ien
y of the approa
h) 
an a
hieve good performan
e with a

re�e
tarray made of bla
k boxes (it does not take into a

ount the real element,

only its re�e
tion 
oe�
ient) synthesizing an iso�ux pattern and a shaped-beam

for the Europe 
overing with a Dire
t Broad
ast Satellite (DBS ).

From a di�erent perspe
tive, it is known that the relation between the re�e
-

tarray 
urrents and their radiated patterns 
an be e�e
tively modeled exploiting

Green's fun
tions theory [6℄[68℄. A

ordingly, problem (a) 
an be a
tually seen

7



as an inverse sour
e (IS ) one [69℄-[72℄ where the data is the desired beam pattern

and the unknowns are the surfa
e 
urrents.

In [69℄ and [70℄ the problem addressed is to retrieve the 
urrent distribution

that radiates a measured �eld. In the �rst one it is minimized the distan
e of

re
onstru
ted Equivalent Magneti
 Current (EMC ) by the near-�eld measured

in a 
ylindri
al way using the Marquardt algorithm, and in the se
ond its almost

the same but taking into a

ount a near-�eld measured on a spheri
al surfa
e

(hen
e three 
omponents of the �eld, instead of only two).

In [71℄ the problem is to re
onstru
t equivalent 
urrents distribution using

integral equation algorithm. Using the integral equation the authors are able to

re
onstru
t the 
urrent over user-de�ned surfa
es, not only 
ylindri
al or spheri-


al surfa
e (that are easier to 
ompute using the tangential �elds and the Equiv-

alen
e Prin
iple) but also, for example, on the surfa
e of a horn antenna.

In [72℄ metalli
 bodies are re
onstru
ted as equivalent 
urrents. In parti
ular

the Sour
e Re
onstru
tion method is applied to the retrieval of metal obje
t in

an investigation domain and use a minimization (using a Conjugate Gradient

method) of a 
ost fun
tion that, taking into a

ount the Tikhonov regularization

and the normalization of the equations terms, of the L2-norm of the measured

and re
onstru
ted �eld (by the radiation of the equivalent 
urrent).

In the framework of inverse s
attering and antenna diagnosis/
hara
terization

[69℄-[72℄, su
h a problem is known to be ill-posed be
ause of the non-uniqueness of

the radiation operator [73℄, whi
h is related to the existen
e of non-measurable/non-

radiating 
urrents [74℄-[76℄. While this feature 
an be an issue in traditional

inverse problems requiring suitable 
ountermeasures [74℄-[76℄, it a
tually repre-

sents a degree-of-freedom (DoF ) in the framework of 
onstrained re�e
tarray

design. In fa
t, by superimposing a suitably designed non-measurable 
urrent to

an available (e.g., minimum-norm [74℄-[77℄) solution of the IS problem, a 
urrent


ould be synthesized whi
h radiates the desired far-�eld pattern, and 
omplies

with the user-de�ned 
onstraints.

A

ording to su
h 
onsiderations, an innovative paradigm to synthesize re�e
-

tarray surfa
e 
urrents [i.e., to address step (a)℄ is proposed whi
h, by leveraging

on the non-uniqueness of the IS problem as a design DoF, enables to dedu
e

solutions also satisfying user-de�ned antenna feasibility 
onstraints (e.g., on the

presen
e and shape of �forbidden regions� in the aperture). To this end, the de-

sign is formulated a two step pro
ess in whi
h (i) the minimum-norm solution of

8
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the IS problem is �rstly derived, and then (ii) a suitable non-measurable sour
e

is 
omputed so that the resulting surfa
e 
urrent [i.e., the superposition of the so-

lutions (i) and (ii)℄ 
omplies with the user-de�ned requirements. Thanks to the

features of the proposed formulation, a 
losed-form expression is �nally derived

for both the minimum-norm and the non-measurable 
urrents whi
h does not

require any iterative lo
al/global optimization pro
edure and whi
h inherently

satis�es both the radiation and the feasibility design 
onstraints.

In parti
ular, it is proposed to apply the Singular Value De
omposition (SVD)

to a de�ned Green's operator. The out
ome of this pro
ess are two set of or-

thonormal bases and a matrix of singular values. This output has to be ana-

lyzed in order to �nd a good trade-o� between, on one side, the pre
ision of the

minimum-norm 
urrent able to radiate the desired �eld; on the other side, the

possibility to have the greatest number of non-measurable bases. This analysis

it is done by de�ning a variable threshold on the value of the singular values

and 
olle
ting di�erent 
ombination of orthonormal bases that are linked to the

singular values above or below the threshold.

The innovative methodologi
al 
ontributions of the paper therefore in
lude

the introdu
tion, for the �rst time to the best of the author knowledge, of a re�e
-

tarray surfa
e 
urrent synthesis paradigm whi
h leverages on the non-uniqueness

of the IS problem and the existen
e of non-measurable 
urrents to improve the

features of the obtained solution (e.g., in terms of feasibility), and the intro-

du
tion of expli
it 
losed-form expressions for the 
omputation of re�e
tarray

surfa
e 
urrents a�ording a desired far-�eld pattern and 
omplying with geomet-

ri
al 
onstraints regarding the presen
e of �forbidden regions�.
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Thesis outline

The thesis is organized as follows. After the formulation of the shaped-beam


onstrained re�e
tarray 
urrents synthesis problem (Chapter 2), the proposed

design method is illustrated and its �nal 
losed-form solution is derived (Chapter

3). A set of numeri
al examples based on realisti
 re�e
tarray ar
hite
tures are

then illustrated to assess the e�e
tiveness and potentialities of the 
onsidered

design paradigm (Chapter 4). At the end are presented the 
on
lusion and

remarks (Chapter 5).
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Chapter 2

Problem Formulation

In this 
hapter the problem formulation is explained throgh the understanding

of the radiation problem in a re�e
tarray antenna and how to formulate it as

an Inverse Sour
e problem. In parti
ular, �rstly it is des
ribed the radiation

problem formulation and its dis
retization on the re�e
tarray surfa
e (that is not


ontinuous) and then the problem to �nd the 
urrent that generate a spe
i�ed

radiated �eld is formulated as an Inverse Sour
e problem.

2.1 Radiation from surfa
e 
urrent

We 
onsider a re�e
tarray antenna, oriented like in Fig. 2.1, with both ground

plane and pat
hes made by a Perfe
t Ele
tri
 Condu
tor separated by a layer

of substrate with standard 
omplex permittivity value ε = ε0εr (1− j tan δ) and

illuminated by a feeder positioned in rf = (xf , yf , zf) that in far-�eld generates

a plane-wave that has a relative angular position (θinc, φinc) (see Fig. 2.1). The

in
ident ve
tor for ea
h 
ell of the re�e
tarray is νinc (r) =− (sin θinc cosφinc,

sin θinc sinφinc, cos θinc).

The in
ident plane wave on a re�e
tarray element 
an be model as:

[
Eθ
inc

Eφ
inc

]
=

[
Eθ

0

Eφ
0

]
e−jk(ν

inc(r)·r)
(2.1)

where E0 is the ve
tor that des
ribes amplitude and polarization of the in
ident

plane-wave, r is the position of the re�e
tarray element, k = 2πf
√
µε, µ, ε are

11



2.1. RADIATION FROM SURFACE CURRENT

x

z

y

y

x

Figure 2.1: Geometry of the re�e
tarray antenna.

the free-spa
e wave number, permeability, and permittivity, respe
tively, and f

is the frequen
y.

The presen
e of the grounded diele
tri
 slab and of the layer printed pat
hes

generates di�erent kind of �eld that are ba
k-radiated. The total �eld that is

present in the region of the spa
e in front of the re�e
tarray antennas 
an be

des
ribed as the sum of these 
ontributes:

Etot = Einc + ERGDS + ERPP (2.2)

The term ERGDS indi
ates the re�e
ted �eld by the in�nite grounded diele
-

tri
 slab without any kind of pat
h printed on, and 
an be de�nite as:

ERGDS = RE0e
jk(x sin θinc cosφinc+y sin θinc sinφinc−z cos θinc)

(2.3)

where matrix R is the diagonal re�e
tion matrix, and its non-null entries Rθθ

and Rφφ are de�ned as in [79℄.

The other term ERPP represents the re�e
ted �eld when the mi
rostrip

pat
hes are present. On this pat
hes, made of PEC, the Einc indu
es a sur-
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fa
e 
urrent that radiates a �eld de�ned as:

ERPP = SE0e
jk(x sin θinc cos φinc+y sin θinc sinφinc−z cos θinc)

(2.4)

where S is the s
attering matrix and its 
oe�
ients 
hara
terize the re�e
tion:

S =

[
Sθθ Sθφ

Sφθ Sθθ

]
(2.5)

Ea
h s
attering 
oe�
ient is de�ned as the ratio between the s
attered and

in
ident �eld of the mi
rostrip surfa
e for ea
h polarization:

Sji =
Ej
RPP (z = 0)

Ei
inc(z = 0)

j, i = {θ, φ} (2.6)

These 
oe�
ients 
an be 
omputed for ea
h mi
rostrip pat
h and then used

to obtain the surfa
e 
urrent on the re�e
tarray aperture. Sin
e we want to

de�ned the 
urrent on the mi
rostrip surfa
e Js:

Js = n̂×H (2.7)

(where n̂ is the normal to the surfa
e) and we have de�ned all the terms in (2.2)

we 
an express also the total magneti
 �eld as:

H =
1

η
νinc × Einc +

1

η
νrefl × ERGDS +

1

η
νrefl × ERPP (2.8)

where νrefl is the spe
ular re�e
tion dire
tion (Snell's law on a PEC ) of the

in
iden
e dire
tion νinc, and η is the free-spa
e impedan
e.

In 
ase of far-�eld, following [80℄, the radiated �eld by an ele
tri
 
urrent J s


an be approximates as:

ERAD (r) ≈ −jη exp (−jkr)
2λr

(Nθ (θ, φ) +Nφ (θ, φ)) (2.9)

where the radiation ve
tor in 
arthesian 
oordinates N 
an be expressed as

N (θ, φ) =
∫ ∫

Ω

[
Jx (r) x̂+ Jy (r) ŷ

]
×

exp
(
j 2π
λ
(x sin θ cosφ+ y sin θ sinφ)

)
dx dy

(2.10)

13



2.1. RADIATION FROM SURFACE CURRENT

and λ is the wavelength.

In order to be easier 
omputed the radiation ve
tors 
an be expressed in

spheri
al 
oordinates form:

{
Nθ (θ, φ) = Nx (θ, φ) cos θ cosφ+Ny (θ, φ) cos θ sin φ

Nφ (θ, φ) = −Nx (θ, φ) sin φ+Ny (θ, φ) cosφ
(2.11)

In this way, bu substituting (2.11) in (2.9) we 
an obtain:

{
ERAD,θ (r) = −jη exp(−jkr)

2λr
(Nx (θ, φ) cos θ cos φ+Ny (θ, φ) cos θ sinφ)

ERAD,φ (r) = −jη exp(−jkr)
2λr

(−Nx (θ, φ) sinφ+Ny (θ, φ) cosφ)

(2.12)

The equations (2.12) and (2.10) 
ompletely des
ribe the far-�eld radiation of

an indu
ed 
urrent from a feeder on the re�e
tarray surfa
e. In order to make

possible the utilization of these equation and the problem de�nition we need to

dis
retize the re�e
tarray surfa
e.

14
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2.2 Dis
retization of the re�e
tarray surfa
e

Lets assume to dis
retize the re�e
tarray surfa
e in a regular latti
e, and

ea
h 
ell of the latti
e in
ludes only one re�e
tarray element. Thus, the re�e
-

tarray 
onsists of a grid of M ×N elements with unit 
ells of size ∆x×∆y and

in order to dis
retize (2.10) we will apply a pixel-basis fun
tion P 
entered at

rmn ,
[(
m− M

2

)
∆x,

(
n− N

2

)
∆y, 0

]
, m = 1, ...,M , n = 1, ..., N to the 
urrent

distribution and we obtain:

Jq (r) ,
M∑

m=1

N∑

n=1

Jmnq Pmn (r) q ∈ {x, y} (2.13)

In parti
ular, the x-
omponent of the 
urrent 
an be expressed as:

Jx|mn = −νincx (rmn) sin(θ)
η

[
(1 + Sθθ (r

mn))Eθ
inc (r

mn) +

+Sθφ (r
mn)Eφ

inc (r
mn)

]
+

−νinc
z (rmn) cos(θ) cos(φ)

η

[
(1− Sθθ (r

mn))Eθ
inc (r

mn) +

−Sθφ (rmn)Eφ
inc (r

mn)
]
+

+νinc
z (rmn) sin(φ)

η

[
(1− Sφθ (r

mn))Eθ
inc (r

mn) +

−Sφφ (rmn)Eφ
inc (r

mn)
]

(2.14)

and the y-
omponent as:

Jy|mn = −νincy (rmn) sin(θ)

η

[
(1 + Sθθ (r

mn))Eθ
inc (r

mn) +

+Sθφ (r
mn)Eφ

inc (r
mn)

]
+

+νinc
z (rmn) cos(θ) sin(φ)

η

[
(1− Sθθ (r

mn))Eθ
inc (r

mn) +

−Sθφ (rmn)Eφ
inc (r

mn)
]
+

+νinc
z (rmn) cos(φ)

η

[
(1− Sφθ (r

mn))Eθ
inc (r

mn) +

−Sφφ (rmn)Eφ
inc (r

mn)
]

(2.15)

where the re�e
tion matrix of the ground plane is substituted by 1 sin
e it is

perfe
tly re�e
ting, while the 
omponent z is obviously null (Jz|mn = 0, m =

1, ..., M and n = 1, ..., N).
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2.2. DISCRETIZATION OF THE REFLECTARRAY SURFACE

Substituting (2.13) in (2.10):

Nq (θ, ϕ) =
∑M

m=1

∑N

n=1 exp [jkr̂r
mn] Jmnq ×∫

Ωmn
Pmn (r) exp

[
jkr̂rΩmn

]
dΩmn q ∈ {x, y}

(2.16)

where Ωmn is the area of the mn-th re
tangular pixel. Due to the presen
e of

the pixel-basis fun
tion the integral in the radiation ve
tor formula be
omes:

∫ xn+
∆x
2

xn−
∆x
2

∫ ym+∆y

2

ym−∆y

2

exp

[
j
2π

λ
x sin θ cosφ

]
exp

[
j
2π

λ
y sin θ sinφ

]
dx dy (2.17)

where (xn, ym) is the 
enter of the mn-th re�e
tarray element/re
tangular pixel.

Moreover, with some simple step 
an be proven that this integral 
an be solved

as:

exp
[
j 2π
λ
x sin θ cosφ

]
exp

[
j 2π
λ
y sin θ sinφ

]
×

4
∆x∆y

sinc
(
k∆x
2

sin θ cosφ
)
sinc

(
k∆y
2

sin θ sinφ
)

(2.18)

Now substituting the integral solution (2.18) in (2.16) we �nally have:

Nq (θ, ϕ) =
4

∆x∆y
sinc

(
k∆x
2

sin θ cosφ
)
sinc

(
k∆y
2

sin θ sin φ
)
×

∑M

m=1

∑N

n=1 J
mn
q exp [jk (xn sin θ cosφ+ ym sin θ sinφ)]

(2.19)

This �nal equation is important be
ause it des
ribes, in a dis
retized way, the

radiation ve
tors and thus we 
an 
ompute the far-�eld having a non 
ontinuous


urrent de�nition.

The usual way to des
ribe the far-�eld pattern in re�e
tarray antenna system

is using the third Ludwig de�nition [78℄[6℄[81℄ of the 
oordinate system.

The far �eld radiated by a re�e
tarray displa
ed on a surfa
e Ω (Fig. 2.1)


an be modeled as [68℄

E (r) ≈ jµf

2

exp (−jkr)
r

[FCO (θ, ϕ) p̂CO + FCX (θ, ϕ) p̂CX ] (2.20)

where r = |r|, r = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) is the position ve
tor, and

the 
o-polar p̂CO and 
ross-polar p̂CX unit ve
tors agree with the third de�nition

of Ludwig [78℄[6℄[81℄(Fig. 2.2)

{
p̂CO = cos (ϕ) θ̂ − sin (ϕ) ϕ̂

p̂CX = sin (ϕ) θ̂ + cos (ϕ) ϕ̂
(2.21)
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Figure 2.2: Co-polar and 
ross-polar unit ve
tor following the Ludwig third

de�nition.

with some manipulation the 
o-polar and 
ross-polar pattern 
an be retrieved

from (2.20) and (2.12):

FCO (θ, ϕ) = {1 + cos2 (ϕ) [1− cos (θ)]}Nx (θ, ϕ)+

+ [cos (θ)− 1] sin (ϕ) cos (ϕ)Ny (θ, ϕ)+

− sin (θ) cos (ϕ)Nz (θ, ϕ)

(2.22)

FCX (θ, ϕ) = [cos (θ)− 1] sin (ϕ) cos (ϕ)Nx (θ, ϕ) +

+
{
1 + sin2 (ϕ) [1− cos (θ)]

}
Ny (θ, ϕ)+

− sin (θ) sin (ϕ)Nz (θ, ϕ)

(2.23)

At this point we have de�ned how to 
ompute the referen
e pattern in the

standard 
omponents we 
an move to the synthesis problem de�nition. Sin
e

there are many works in the literature that deal with the problem to �nd a proper

te
hnology (e.g. printed pat
hes type, number of layers, all-metal stru
tures,

et
...)[2℄,[6℄,[15℄,[59℄,[62℄-[66℄ to obtain the wanted value of the s
attering matrix

S for a given 
urrent distribution, now we do not take this step into a

ount

(step (b)) and we will 
ontinue handling only the problem related to the surfa
e


urrent de�nition when feasibility 
onstraints are present (e.g. forbidden region).

17
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2.3 Inverse Sour
e problem de�nition

A

ording to the previous formulation, the synthesis of the 
onstrained sur-

fa
e 
urrents of a re�e
tarray with desired far-�eld shaped-beam pattern

Eref (r) ,
jµf

2

exp (−jkr)
r

[
F ref
CO (θ, ϕ) p̂CO + F ref

CX (θ, ϕ) p̂CX

]
(2.24)


an be formulated as an inverse sour
e problem.

The inverse sour
e problem is de�ned as:

Constraint-Geometry Re�e
tarray-Currents Synthesis problem (CG-

RCS ) and its de�nition is:

Find the surfa
e 
urrent J (r) (or its numeri
al 
ounterpart Jq ,{
Jmnq ; m = 1, ...,M , n = 1, ..., N}, q ∈ {x, y}), whose radiate a far-

�eld, E, whose asso
iated 
o-polar and 
ross-polar 
omponent, �t the

following referen
e pattern mat
hing 
ondition:

{
F ref
CO (θ, ϕ) = FCO (θ, ϕ)

F ref
CX (θ, ϕ) = FCX (θ, ϕ)

(2.25)

having that Jq ∈ Sq, q ∈ {x, y}.Where Sq, q ∈ {x, y}, are the fea-

sibility sets, whi
h a

ount for the 
onstraints provided by the end-

user/designer (i.e., the presen
e of forbidden regions in the aperture).

For example, if Φ identi�es the arbitrary-shaped user-de�ned 2-D forbidden re-

gion (within the re�e
tarray Φ ∈ Ω), the feasibility 
ondition state that J (r) = 0

if r ∈ Φ(i.e.: in numeri
al form: Jmnq = 0, q = {x, y}, if rmn ∈ Φ). It is worth

remarking that many te
hniques 
an be adopted for the synthesis of feed and

asso
iated re�e
tarray elements (step (b)) (depending on the sele
ted unit-
ell

geometry [2℄,[6℄,[15℄,[59℄,[62℄-[66℄) on
e Jq, q ∈ {x, y}, has been found by solving

the above problem.

18



Chapter 3

Non-Measurable Currents-based

Solution Method

In this 
hapter the solution method, that solve the Inverse Sour
e problem, is

explained. In parti
ular, after some mathemati
al 
omputation needed to obtain

a matrix formulation of the problem, it is applied a Trun
ated Singular Value

De
omposition (T-SVD) in order to obtain the minimum-norm solution. This

solution 
an radiate the desired �eld but 
an not deal with feasibility 
onstraint

(e.g. forbidden region). In order to over
ome this problem, it is proposed to

superimpose the non-radiating/non-measurable 
urrents, that are derived from

the T-SVD, to the minimum-norm solution. Moreover, given the de�nition of the

handled feasibility 
onstraint (i.e. forbidden region), the 
losed-form formulation

to solve the problem is de�ned.
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3.1. FIELD DISCRETIZATION

3.1 Field dis
retization

In order to address the CG-RCS problem, taking in 
onsideration that the z-


omponent of the 
urrent is not present, its dis
retized version is �rstly 
omputed

by substituting (2.22) and (2.23), in (2.25), sampling it in a set of L angles (θl, ϕl),

l = 1, ..., L as follows





F ref
CO (θl, ϕl) = {1 + cos2 (ϕl) [1− cos (θl)]}Nx (θl, ϕl)+

+ [cos (θl)− 1] sin (ϕl) cos (ϕl)Ny (θl, ϕl)

F ref
CX (θl, ϕl) = [cos (θl)− 1] sin (ϕl) cos (ϕl)Nx (θl, ϕl)+

+
{
1 + sin2 (ϕl) [1− cos (θl)]

}
Ny (θl, ϕl)

l = 1, ..., L

(3.1)

whi
h, by exploiting (2.19), 
an be rewritten as





F ref
CO (θl, ϕl) = Γ (θl, ϕl) ({1 + cos2 (ϕl) [1− cos (θl)]}

×
∑M

m=1

∑N
n=1 J

mn
x emn (θl, ϕl)+

+ [cos (θl)− 1] sin (ϕl) cos (ϕl)

×
∑M

m=1

∑N
n=1 J

mn
y emn (θl, ϕl)

)

F ref
CO (θl, ϕl) = Γ (θl, ϕl) ([cos (θl)− 1] sin (ϕl) cos (ϕl)

×
∑M

m=1

∑N

n=1 J
mn
x emn (θl, ϕl)+

+
{
1 + sin2 (ϕl) [1− cos (θl)]

}

×∑M

m=1

∑N

n=1 J
mn
y emn (θl, ϕl)

)

l = 1, ..., L

(3.2)

where, for easy of 
ompa
tness:

emn (θl, ϕl) , exp [jk0 (m∆x sin θl cosϕl + n∆y sin θl sinϕl)] (3.3)

and

Γ (θl, ϕl) =
4

∆x∆y
sinc

(
k∆x

2
sin θ cosφ

)
sinc

(
k∆y

2
sin θ sin φ

)
(3.4)

In order to further simplify the notation and to better handle the problem

we need to express the equation in matrix form.

In this way equation (3.2) 
an be re-organized in a more 
ompa
t form as the
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following matrix equation

Fref = GJ (3.5)

where Fref ,
[
F
ref
CO, F

ref
CX

]T
, F

ref
t =

{
F ref
t (θl, ϕl) , l = 1, ..., L

}
, t ∈ {CO, CX},

J , [Jx, Jy]
T
, and:

G ,

[
GCO,x GCO,y
GCX,x GCX,y

]
(3.6)

is the (2× L)× (2× P ) overall Green matrix (·T being the transpose operator)

featuring the sub-matri
es:

GCO,x , {Γ (θl, ϕl) e
mn (θl, ϕl) {1 + cos2 (ϕl) [1− cos (θl)]}

GCO,y = GCX,x , {Γ (θl, ϕl) e
mn (θl, ϕl) [cos (θl)− 1] sin (ϕl) cos (ϕl)

GCX,y , {Γ (θl, ϕl) e
mn (θl, ϕl)

{
1 + sin2 (ϕl) [1− cos (θl)]

}

m = 1, ...,M, n = 1, ..., N, l = 1, ..., L

(3.7)

where Γ was de�ned in (3.4) and emn in (3.3).

Now we have all the formulation ready for start ta
king the Inverse Sour
e

problem.

The problem to retrieve a 
urrent distribution from a �eld is well-known to

be ill-posed. This means that multiple 
urrent distribution 
an radiate the same

�eld. In the literature, one of the most used tool to obtain a minimum-norm (or

generalized) solution of the system is the regularization and inversion te
hnique

Trun
ated Singular Value De
omposition. Using this algorithm the obtained

solution is the ones that best represents the radiated �eld with the smallest

norm.
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3.2 Trun
ated Singular Value De
omposition

In order to 
ompute the minimum norm solution is well-known the pro
edure

based on the trun
ated version of the Singular Value De
omposition (SVD)[73℄-

[77℄.

We assume that the number of the re�e
tarray elements (2×P = 2×M×N)

is less than the number of �eld samples (2 × L). Given that ψ2
1 , ψ

2
2, ..., ψ

2
W

(W , min {2× L, 2× P}) are the positive eigenvalues of symmetri
 matrix G∗G
(where

∗
indi
ate the 
onjugate transpose) and c1, c2, ..., c2×P the 
orresponding

orthonormal eigenve
tors:

G∗Gcj = ψ2
j cj c∗jck = δjk

j, k = 1, ..., 2× L
(3.8)

being:

ψjbj = Gcj j = 1, ..., 2× L (3.9)

substituting (3.8) in (3.9) it 
an be obtained:

G∗bj = ψjcj j = 1, ..., 2× L (3.10)

multiplying left and right side of (3.10) for G and thanks to (3.9) immediately

follow that:

GG∗bj = ψ2
j b∗

jbj = δjk

j, k = 1, ..., 2× L
(3.11)

Equations (3.10) and (3.11) shown the orthonormal properties of the two matri
es

B and C.

In matrix notation (3.9) 
an be written as:

G = BΨC∗
(3.12)
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an be noti
ed that Ψ is a diagonal matrix in the form:

Ψ =




ψ1 0
.

.

.

.

.

.

0 ψW



W×W

(3.13)

another note is that the singular values are ordered in des
ending order (i.e.,

ψw ≥ ψw+1, w = 1, ...,W − 1).

Writing now the minimum-norm 
urrent as a weighted sum as:

JMN = Cγ with γ =




γ1
.

.

.

.

.

.

γW




(3.14)

from (3.9) we 
an obtain that:

γjψjbj = γjGcj j = 1, . . . ,W (3.15)

and using the ration expressed in (3.5):

Fref =
W∑

j=1

γjψjbj (3.16)

Sin
e ψibj = 0 for j > W , it is simply to derive that only the �rst W cw bases

that are used to des
ribe JMN
are measurable.

For these bases the 
oe�
ients γj are given using:

γj = ψ−1
j

{
b∗
jF

ref
}

j = 1, ..., W (3.17)

and substituting (3.17) in (3.14):

JMN =

W∑

j=1

ψ−1
j

{
b∗
jF

ref
}
cj (3.18)

we obtain the minimum-norm (or generalized) solution.
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Dually in matrix form (3.18) be
ame:

JMN = CΨ−1B∗Fref (3.19)

This resulting problem is well-known [74℄-[77℄ to be not well-posed due to the

ill-
onditioning of the G matrix.

The solution instability o

urs due to the fa
t that some singular values ψ

are mu
h lower in magnitude with respe
t to the �rst one (ψ1). This problem


an be measured by using the 
ondition number that is de�ned as:

d =
ψ1

ψW
(3.20)

This value measures the instability of the problem. In fa
t as higher is the

value, as higher is the instability, and this means that the a small variation in

the Fref generate a great variation in JMN
.

In literature this problem is well-known [74℄-[77℄ and the solution is to use a

trun
ated version of the SVD.

It is de�ned H as the trun
ation order, and is 
omputed as:

H , arg

{
min
w

∣∣∣∣
ψw
ψ1

− τ

∣∣∣∣
}

s.t.
ψw
ψ1

≥ τ (3.21)

where τ being the asso
iated user-de�ned SVD trun
ation threshold. The thresh-

old τ , the trun
ation order H and an example of singular value behavior ψ are

shown in Fig. 3.1. By sele
ting the value of the SVD trun
ation threshold τ

the user impli
itly de�nes the pre
ision on the reprodu
tion the far-�eld and the

instability of the 
urrent, thus lower value of the threshold means better repro-

du
tion of the far-�eld but also higher variation in the solution (e.g. 
urrent

distribution with high spa
e variations).

Then, are 
omputed the trun
ated version of matri
esC, B andΨ by sele
ting

the �rst H bases of the 
orresponding sets:

Bτ = {bh, h = 1, ..., H}
Cτ = {ch, h = 1, ..., H}

Ψτ = diag (ψh, h = 1, ..., H)

(3.22)

By substituting (3.22) in (3.19), the minimum-norm 
omponent 
an be de�ned
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Figure 3.1: Example of singular values distribution ψw, w = 1, ...,W , taking into

a

ount a trun
ation order H and a trun
ation threshold τ .

as:

JMN , CτΨ
−1
τ B∗

τF
ref

(3.23)

This kind of solution (minimum-norm) 
an be a
hieved also in other ways

(not only T-SVD), however the trun
ation operation on the SVD give us a set

of bases that will radiate a null �eld outside of the support and thus, ea
h basis


an be interpreted as a di�erent 
urrent with di�erent shape that do not radiate

any �eld (or at least a �eld that is not measurable).

25



3.3. SYNTHESIS APPROACH

3.3 Synthesis approa
h

Now we have a solution that 
an radiate the wanted �eld with an error that


an be 
ontrolled using the threshold τ .

The solution of the CG-RCS 
an be 
arried out by inverting (3.5) subje
t to

J ∈ S (S , {Sq, q ∈ {x, y}}). Su
h an inverse sour
e problem is known to be

ill-posed be
ause of the non-uniqueness of the solution (owing to the existen
e

of non-radiating/non-measurable 
urrents) [74℄-[76℄. While su
h a feature 
an

be an issue in mi
rowave imaging and antenna diagnosis appli
ations [74℄-[76℄,

it 
an be a
tually employed as a DoF in the framework of re�e
tarray 
urrent

synthesis. Thanks to su
h a DoF, the following innovative two-step pro
edure is

introdu
ed to solve (3.5):

• the radiating 
urrents [i.e., JMN
℄ are �rstly 
omputed (Step A) as the

minimum-norm solution of (3.5);

• the non-radiating/non-measurable 
urrents JNR
are then designed (Step

B) so that the overall solution of (3.5)

J , JMN + JNR
(3.24)


omplies with J ∈ S.

While we have already explain how to obtain the radiating part of the total


urrent JMN
, the Step B is not mathemati
ally expli
ated.
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3.4 Non-measurable/Non-radiating de�nition

The outlined SVD pro
edure in Se
t. 3.2 on G is also the starting point for

the solution of Step B. In fa
t, it is known from inverse sour
e theory [74℄-[76℄

that JNR

an be expressed as a linear 
ombination of the the last 2 × P − H

right singular ve
tors of C (i.e., CNR , {ch, h = H + 1, ..., 2× P}) as follows

JNR , CNRα (3.25)

where α , {αh; h = H + 1, ..., 2× P} are the arbitrary 2 × P − H 
oe�
ients

(i.e., the DoF s) asso
iated to the non-radiating/non-measurable 
urrent basis

CNR
.

It is highlighted that the matri
es C and B obtained in (3.12) are subdivided

as:

C =
[
Cτ |CNR

]
=




c1,1 · · · c1,H
.

.

.

.

.

.

.

.

.

c2×P,1 · · · c2×P,H

∣∣∣∣∣∣∣∣

c1,H+1 · · · c1,2×P
.

.

.

.

.

.

.

.

.

c2×P,H+1 · · · c2×P,2×P




B =
[
Bτ |BNR

]
=




b1,1 · · · b1,H
.

.

.

.

.

.

.

.

.

b2×L,1 · · · b2×L,H

∣∣∣∣∣∣∣∣

b1,H+1 · · · b1,2×L
.

.

.

.

.

.

.

.

.

b2×L,H+1 · · · b2×L,2×L




(3.26)

This means that by sele
ting the proper value of α the designer 
an de�ne

a wanted 
urrent distribution that do not radiate any �eld (or at least is not

measurable) that 
an be added to the radiating 
urrent (JMN
) to ful�ll some


onstraints in the design pro
edure. In this work the feasibility 
onstraint is

proposed to be the �forbidden region� 
onstraint, that is highlighted in the next

se
tion.
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3.5 Forbidden region 
onstraint de�nition

Using (3.23) and (3.25) in (3.24), Step B 
an be then addressed by �nding α

su
h that (
CτΨ

−1
τ B∗

τF
ref +CNRα

)
∈ S (3.27)

The a
tual pro
edure to �nd α in (3.27) depends on the de�nition of S. Sin
e
in this work the design 
onstraint is represented by the presen
e of user-de�ned

forbidden areas in Ω (where no re�e
tarray elements are allowed), the following

mathemati
al de�nition is adopted

S ,
{
Jmnq = 0 if rmn ∈ Φ; q ∈ {x, y}

}
(3.28)

where Φ identi�es the arbitrary-shaped 2D forbidden region and it is 
omposed

by K re�e
tarray unit 
ells (i.e., 
orresponding to 2×K 
onstraints sin
e the K

equations are enfor
ed separately on Jx and on Jy), and 
an be seen in Fig. 3.2.

x

z

y

y

x

Figure 3.2: Geometry of the re�e
tarray antenna.

By using (3.28), (3.27) 
an be rewritten as the following set of 2 ×K linear

equations in 2× P −H unknowns

[
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
+
[
DΦ

(
CNR

)]
α = 02K (3.29)
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where 02K is a null-ve
tor of size 2×K, and DΦ (·) is an operator whi
h extra
ts

a sub-matrix 
omprising the 2 × K rows 
orresponding to the mn-indexes for

whi
h rmn ∈ Φ. The matrix problem (3.29) 
an be re-arranged as:

[
DΦ

(
CNR

)]
α = −

[
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
(3.30)

and (3.30) a

ording to linear system theory, has at least one solution if the

following solvability 
ondition is satis�ed

2×K ≤ 2× P −H (3.31)

(i.e., the number of 
onstraints is equal or lower than the number of DoF s in the

linear problem).

Moreover, sin
e DΦ

(
CNR

)
is always full-rank (be
ause the right singular ve
-

tors 
omposing CNR
are orthonormal by de�nition [74℄[75℄), (3.30) has a
tually

∞Q
di�erent solutions (Q , 2×P−H−2×K) if (3.31) holds true. Consequently,

under the assumption (3.31) and without loss of generality, a unique solution to

(3.30) 
an be found by setting

α = [α̃; 0Q]
T

(3.32)

where

α̃ = −
[
D̃Φ

(
CNR

)]−1 [
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
(3.33)

is the redu
ed 
oe�
ient ve
tor whi
h 
ontains only the �rst 2×K entries of α,

and D̃Φ

(
CNR

)
is the redu
ed version of DΦ

(
CNR

)
whi
h 
ontains only its �rst

2×K 
olumns.
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3.6 Final 
losed-form formulation

The solution to the CG-RCS is �nally obtained by 
ombining (3.33), (3.32),

(3.25), and (3.23) in (3.24) to obtain the 
losed-form expression

J = CτΨ
−1
τ B∗

τF
ref+

+CNR

[
−
[
D̃Φ

(
CNR

)]−1 [
DΦ

(
CτΨ

−1
τ B∗

τF
ref

)]
; 0Q

]T
(3.34)

whi
h 
an be easily demonstrated to 
omply with (3.5) by substitution.

As regards the 
losed-form solution (3.34), it is worthwhile to noti
e that:

• the dedu
ed methodology enables the 
omputation of the re�e
tarray sur-

fa
e 
urrents without requiring any iterative lo
al/global optimization pro-


edure and satisfying both the radiation (3.5) and the geometri
al require-

ments (3.28) by de�nition;

• su
h an expression is derived as a proof-of-
on
ept to demonstrate the

possibility to employ non-radiating 
urrents as a DoF in re�e
tarray de-

sign. However, other solutions [among the ∞Q
available in (3.30)℄ may be

sele
ted to 
omply with other geometry/antenna requirements and guide-

lines;

• analogously, other de�nitions of S (out of the s
ope of the 
urrent manus
ript)


ould be seamlessly taken into a

ount within the same framework to en-


ode di�erent design obje
tives instead of (3.28);

• the design pro
ess only requires the user to spe
ify the desired far-�eld 
o-

polar and 
ross-polar patterns (i.e., F), the re�e
tarray aperture and unit


ell size (i.e., M ×N and ∆x×∆y), the forbidden region (i.e., Φ), and the

SVD threshold value τ .

With referen
e to this last parameter, while the 
hoi
e of τ in (3.21) 
an be


hallenging in mi
rowave imaging [74℄, its de�nition in the re�e
tarray sour
e

synthesis problem only requires that the magnitude of the trun
ated singular
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values (i.e., ψh, h = H + 1, ...,W ) is small enough to guarantee that

G
{
CNR

[
−
[
D̃Φ

(
CNR

)]−1 [
DΦ

(
CτΨ

−1
τ B∗

τF
)]

; 0Q

]T}
≪ Fref (3.35)

(i.e., the residual non-measurable �eld 
aused by JNR
is a
tually negligible with

respe
t to the far-�eld pattern Fref). Owing to the 
losed-form nature of (3.35),

τ 
an be then easily 
hosen in the design phase by the analysis of the singular

value distribution Ψ (Se
t. 4).
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Chapter 4

Method Assessment

In this 
hapter it is highlighted the numeri
al assessment of the proposed design

strategy. At the beginning is presented also an error metri
 that takes into

a

ount the di�eren
e between the referen
e �eld and the �eld radiated by the

synthesized 
urrent. Then it is shown a step-by-step pro
edure that illustrate

the synthesis pro
edure and then some example with di�erent shape/dimension

of the 
onsidered forbidden region and then the implementation of the synthesis

te
hnique on di�erent re�e
tarray geometries (square/re
tangular).

4.1 Error metri
s

This se
tion is aimed at numeri
ally validating the proposed 
losed-form expres-

sion (3.34) for the solution of the Constraint-Geometry Re�e
tarray-Currents

Synthesis problem when assuming di�erent aperture sizes and/or �forbidden re-

gion� shapes, as well as to illustrate of a set of guidelines for its e�e
tive ex-

ploitation. To quantitatively assess the a

ura
y in the mat
hing of the target

far-�eld shaped beam, the following normalized error is reported

ξ ,
[∑L

l=1

∣∣∣F ref
CO (θl, ϕl)− FCO (θl, ϕl)

∣∣∣ +
∑L

l=1

∣∣∣F ref
CX (θl, ϕl)− FCX (θl, ϕl)

∣∣∣
]

/[∑L
l=1

∣∣∣F ref
CO (θl, ϕl)

∣∣∣+
∑L

l=1

∣∣∣F ref
CX (θl, ϕl)

∣∣∣
]

(4.1)

beyond the graphi
al representations of the synthesized 
urrents, of the asso
i-

ated patterns, and of the di�eren
e patterns∆Ft (θ, ϕ) ,
∣∣∣F ref

t (θ, ϕ)− Ft (θ, ϕ)
∣∣∣,

t ∈ {CO,CX}.
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4.2 Square re�e
tarray: 55× 55 elements

The �rst re�e
tarray antenna taken into a

ount works at f = 14[GHz℄ and has

a square aperture of 440 × 440 [mm2
℄ (∼ 20.53λ × 20.53λ). The re�e
tarray

surfa
e is 
omposed by M ×N = 55× 55 elements of side equal to 8 [mm℄ that

in wavelength is almost 0.37333λ. The re�e
tarray 
on�guration 
an be seen in

Fig. 4.1 and in
ludes an horn antenna as feeder, that is pla
ed at almost 27λ

from the re�e
tarray 
enter with an in
lination of 25.11 [deg℄ with respe
t to the

output system, and the re�e
tarray is rotated along the y-axis by 12.63 [deg℄,

thus with a relative in
lination between the re�e
tarray surfa
e and the horn

antenna of 12.48 [deg℄.

Figure 4.1: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Re�e
tarray geometry.
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4.2.1 Step-by-step pro
edure with lower dimensionality 
ase

The �rst numeri
al experiment is devoted to a step-by-step illustration of the

proposed design pro
edure.

-10

-5

 0

 5

 10

-10 -5  0  5  10

y 
[λ

]

x [λ]

M=N=55, ’E’-shaped Φ, K=11

Forbidden
   region

Ω

Figure 4.2: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
K = 11) - Example of forbidden region Φ, �E�-Shape forbidden region with

K = 11 number of elements.

4.2.1.1 Test 
ase de�nition

To this end, the synthesis of the re�e
tarray surfa
e 
urrents over a M × N =

55×55 square aperture with a square latti
e (∆x = ∆y = 3.73×10−1λ) assuming

an �E-shaped� forbidden region [Fig. 4.2 - K = 11℄ and radiating the far �eld


omponent (plotted in the uv-domain, where u = sin θ cosϕ, v = sin θ sinϕ)

reported in Fig. 4.3(
) and Fig. 4.3(d) has been addressed (for the sake of


ompa
tness and without loss of generality, only the t = CO 
omponent has

been 
onsidered hereinafter).
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Figure 4.3: Square Aperture (M ×N = 55×55, ∆x = ∆y = 3.73×10−1λ) - Plot
of the referen
e 
urrent (a) magnitude

∣∣Jrefx (x, y)
∣∣
and (b) phase ∠Jrefx (x, y)and

radiated �eld (
) magnitude

∣∣∣F ref
CO (u, v)

∣∣∣ and (d) phase ∠F ref
CO (u, v).
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4.2.1.2 Appli
ation of the T-SVD

Su
h a referen
e pattern, numeri
ally generated by TICRA GRASP simulations

1

starting from the a
tual 
urrents of a referen
e re�e
tarray [Figs. 4.3(a)-4.3(b)℄,

has been �rstly sampled in L = 201 × 201 regularly spa
ed angles in the uv-

domain to dedu
e Fref in (3.5). The distribution of the singular values ψw, w =

1, ...,W , of the resulting G [obtained by the SVD de
omposition (3.12)℄ shows

that the knee of the Green matrix spe
trum is observed when

ψw

ψ1
≈ 8.8 × 10−1

(i.e., w ≈ 370 - Fig. 4.4).
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10-2

10-1

100

 0  500  1000  1500  2000  2500  3000

ψ
w

/ψ
1 

(n
or

m
al

iz
ed

 v
al

ue
)

Singular value index w

M=N=55

τ

H

Figure 4.4: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Distribution of the singular values ψw, w = 1, ...,W , of G.

It is worthwhile to remark that the se
ond knee in the spe
trum (i.e.,

ψw

ψ1
≈

10−6
- Fig. 4.3) is a
tually 
aused by the unavoidable �nite pre
ision of the

numeri
al SVD 
omputation (whi
h prevents an a

urate evaluation of very small

ψw) [74℄.

Following the standard guidelines developed in inverse s
attering theory and

what said in Se
t. 3.2 its is 
omputed the normalized error ξ (4.1) with di�erent

1

All the target �eld patterns in the numeri
al validation have been provided by Thales

Alenia Spa
e Fran
e.
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Figure 4.5: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Normalized error ξ varying the SVD threshold τ .

value of the threshold τ and is reported in Fig.4.5. Taking into a

ount both

Fig. 4.4 and 4.5, it 
an be then dedu
ed that a SVD threshold value su�
iently

below su
h a knee, su
h as

τ ≈ 10−3
(4.2)

(whi
h 
orresponds to H ≈ 700 - Fig. 4.4), is enough to guarantee that the �eld

radiated by JMN
reliably mat
hes Fref [74℄-[77℄ and to have an relative high

number of DoFs (number of singular value below the threshold W −H).
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4.2.1.3 Minimum-norm 
urrent de�nition

To assess su
h a property, the minimum-norm 
urrents are then 
omputed by

substituting the trun
ated SVD matri
es and Fref in (3.23).

The plots of the obtained JMN
shows that su
h minimum-norm solution

turns out 
lose to the referen
e re�e
tarray distribution both in terms of magni-

tudes [Fig. 4.6(a) vs. Fig. 4.6(
)℄ and phases [Fig. 4.6(b) vs. Fig. 4.6(d)℄. This

out
ome suggests that (3.23) impli
itly yields the same surfa
e 
urrents that

would be obtained by ba
k-propagation of the TICRA GRASP solution [e.g.,

Fig. 4.6(a) vs. Fig. 4.6(
)℄.

Moreover, the far-�eld beams radiated by the two set of 
urrents perfe
tly

mat
h in terms of magnitude [Fig. 4.6(e) vs. Fig. 4.6(g)℄ and phase [Fig. 4.6(f )

vs. Fig. 4.6(h)℄, as expe
ted from inverse sour
e theory [74℄-[77℄, thus supporting

the 
hoi
e of τ . Moreover, the error metri
 is 
omputed also for the obtained

JMN
and the error is very low: ξMN = 5.54× 10−6

.

4.2.1.4 Non-measurable 
urrent 
omputation

On
e JMN
has been dedu
ed [Figs. 4.6(
)-4.6(d)℄, the 
omputation of the non-

measurable 
urrents [Figs. 4.7(a)-4.7(b)℄ (and of the asso
iated far-�eld pattern

[Figs. 4.7(
)-4.7(d)℄) 
an be 
arried out by substituting (3.33) and (3.32) in

(3.25). As theoreti
ally expe
ted, the �eld owing to JNR
turns out negligible

with respe
t to Fref [Fig. 4.7(
) vs. Fig. 4.6(e)℄, therefore further 
on�rming

the e�e
tiveness of (4.2).

This pro
edure is not 
ompletely safe. In fa
t the non-measurable bases cj

(with j > H) have high spa
e variations and thus 
an have a null in one or more

positions of Φ. During the inversion when we 
ompute the related 
oe�
ients α̃

a quasi null will go to the denominator and this generate a very high 
oe�
ient

(quasi-in�nite). Sin
e the non-measurable bases are related to a singular value

that is not zero, due to the trun
ation operation and also to 
omputational

problem, if we multiply a non-measurable sour
e with a 
oe�
ient that is quasi-

in�nite we make it measurable.

Thus, the bases are always sele
ted starting from the lower index but remov-

ing the basis that have nulls or very-low values in the forbidden region Φ.
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Figure 4.6: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
K = 11) - Plots of (a)(
)(e)(g) the magnitude and (b)(d)(f )(h) the phase of

(a)(b) Jrefx (r) and synthesized (
)(d) JMN
x (r), (e)(f ) F ref

CO , and (g)(h)FMN
CO .
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Figure 4.7: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
K = 11) - Plots of (a)(
) the magnitude and (b)(d) the phase of (a)(b) JNR

x (r)
and synthesized (
)(d) FNR

CO .

41



4.2. SQUARE REFLECTARRAY: 55× 55 ELEMENTS

4.2.1.5 Super�
ial 
urrent de�nition

The �nal step of the design pro
edure is then represented by the 
omputation of

J a

ording by superimposing JMN
and JNR

(3.24).

By 
omparing the plots of the obtained re�e
tarray surfa
e 
urrent magnitude

[Fig. 4.8(a)℄ with the geometry of the required Φ [Fig. 4.2℄ it turns out that

the proposed method guarantees a perfe
t mat
hing of the 
onstraints on the

forbidden region [Fig. 4.8(a) vs. Fig. Fig. 4.2℄. Su
h a result is a
tually

expe
ted from the theoreti
al viewpoint sin
e the solvability 
ondition (3.31) is

satis�ed.

Moreover, despite J is 
ompletely di�erent with respe
t to JMN
[Fig. 4.6(
)

vs. Fig. 4.8(a); Fig. 4.6(d) vs. Fig. 4.8(b)℄, also its radiated far-�eld mat
hes

Fref [Fig. 4.8(
) vs. Fig. 4.6(e); Fig. 4.8(d) vs. Fig. 4.6(f )℄ likewise the one

radiated by JMN
[i.e., Figs. 4.6(g)-4.6(h)℄.

This out
ome, whi
h is also supported by the 
orresponding normalized error

(i.e., ξ = 5.84× 10−6
- Tab. 4.1), is a proof-of-
on
ept that suitable 
omponents

JNR
[Figs.4.7(a)-4.7(b)℄ 
an be superimposed to JMN

[Figs.4.6(
)-4.6(d)℄ to sat-

isfy user-de�ned 
urrent 
onstraints while yielding a non-measurable variation in

the radiated �eld [i.e., negligible with respe
t to Fref - Fig. 4.8(
) vs. Fig.

4.6(e)℄.

42



CHAPTER 4. METHOD ASSESSMENT

-10

-5

 0

 5

 10

-10 -5  0  5  10

y 
[λ

]

x [λ]

M=N=55, ’E’-shaped Φ, K=11

-60

-50

-40

-30

-20

-10

 0

|J
x(

x,
y)

| [
dB

] (
no

rm
al

iz
ed

 v
al

ue
)

-10

-5

 0

 5

 10

-10 -5  0  5  10

y 
[λ

]

x [λ]

M=N=55, ’E’-shaped Φ, K=11

-π

-π/2

0

π/2

π

∠
[J

x(
x,

y)
] [

ra
d]

(a) (b)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’E’-shaped Φ, K=11

-120

-90

-60

-30

 0

|F
C

O
(u

,v
)|

 [d
B

] (
no

rm
al

iz
ed

 v
al

ue
)

-0.5

-0.25

 0

 0.25

 0.5

-0.5 -0.25  0  0.25  0.5

v

u

M=N=55, ’E’-shaped Φ, K=11

-π

-π/2

0

π/2

π

∠
[F

C
O

(u
,v

)]
 [r

ad
]

(
) (d)

Figure 4.8: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
K = 11) - Plots of (a)(
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4.2.2 Analysis vs. various forbidden region shapes keeping

same order dimension

Given the step-by-step pro
edure now we want to analyse the �exibility of the

proposed methodology by 
onsidering the same re�e
tarray setup (i.e., yield-

ing the same SVD and JMN
) but di�erent Φ de�nitions with almost the same

geometri
al dimension (K ≈ 33): �Cross�-shaped (K = 28) - Fig. 4.9(a), �Ring�-

shaped (K = 32) - Fig. 4.9(b), �Cir
ular Ring�-shaped (K = 36) - Fig. 4.9(b)

and �Cir
le�-shaped (K = 37) - Fig. 4.9(d).
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Figure 4.9: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ.
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The plots of |J| (Fig. 4.10) obtained by means of the 
losed-form expression

(3.34) and asso
iated ∆FCO (θ, ϕ) (Fig. 4.11) show that:

(i) the proposed strategy enables to dedu
e surfa
e 
urrents that 
omply with

arbitrary Φ lo
ations/shapes [Fig. 4.9(b) vs. Fig. 4.10(a); Fig. 4.9(
) vs.

Fig. 4.10(b); Fig. 4.9(d) vs. Fig. 4.10(
)℄,

(ii) the resulting di�eren
e pattern is always negligible with respe
t to Fref

[∆FCO (θ, ϕ) ≤ −110 dB - Fig. 4.11(a); ∆FCO (θ, ϕ) ≤ −90 dB - Fig.

4.11(b); ∆FCO (θ, ϕ) ≤ −80 dB - Fig. 4.11(
)℄, although the mismat
h

slightly in
reases with K as 
on�rmed by the asso
iated normalized errors

(i.e., ξcross = 1.18××10−5
, ξring = 3.34× 10−5

, ξcircular−ring = 1.57× 10−5

and ξcircle = 1.35× 10−3
- Tab. 4.1).

This result is motivated by the fa
t that wider Φ regions require more entries

to be in
luded in α̃ in (3.33) (thus potentially in
reasing the energy in the �non-

measurable� 
urrent 
omponents). However, it is worthwhile to remark that

|∆FCO (θ, ϕ)| ≪
∣∣FREF

CO (θ, ϕ)
∣∣
in all 
ases [e.g., Fig. 4.11(e) vs. Fig. 4.3(a)℄,

and that even better ξ results 
ould be easily obtained by further de
reasing τ

with respe
t to (4.2), as it is known from inverse sour
e theory [74℄-[76℄.

Φ- Shape K ξ ∆t (s)

- - 5.55× 10−6
-

E 11 5.84× 10−5 1.03× 10−1

Cross 28 1.18× 10−5 1.21× 10−1

Ring 32 3.34× 10−5 1.28× 10−1

Cir
ular Ring 36 1.57× 10−5 1.34× 10−1

Cir
le 37 1.35× 10−3 1.36× 10−1

Table 4.1: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Performan
e Assessment - Varying the geometry.
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Figure 4.10: Square Aperture (M×N = 55×55, ∆x = ∆y = 3.73×10−1λ) - Plots
of |Jx (r)| assuming (a) �Cross�-shaped (K = 28), (b) �Ring�-shaped (K = 32),
(
) �Cir
ular Ring�-shaped (K = 36) and (d) �Cir
le�-shaped (K = 37) forbidden
regions.
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Figure 4.11: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of ∆FCO (u, v) when assuming (a) �Cross�-shaped (K = 28), (b) �Ring�-
shaped (K = 32), (
) �Cir
ular Ring�-shaped (K = 36) and (d) �Cir
le�-shaped

(K = 37) forbidden regions.
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4.2.3 Changing the dimension of the same type of forbid-

den region

To further investigate the features of the proposed 
urrent synthesis pro
edure

for di�erent K values, a set of o�-
entered �Square�-shaped Φ regions with K ∈
[4, 100] have been 
onsidered. The Φ for K = 4, K = 25, K = 49, K = 100 are

shown in Fig. 4.12.
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Figure 4.12: Square Aperture (M×N = 55×55, ∆x = ∆y = 3.73×10−1λ) - Def-
inition of forbidden regions Φ keeping the same shape but varying the dimension:

(a)K = 4, (b)K = 25, (
)K = 49 and (d)K = 100.

The behaviour of the normalized error vs. the forbidden region size shows

that, analogously to the previous examples, ξ is proportional to K. In fa
t when

K = 4 the normalized error is very small and 
omparable with the normalized

error of the minimum-norm term ξ⌋K=4 ≈ 5.71× 10−6
, while when K = 100 the
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Figure 4.13: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of |Jx (r)| assuming di�erent dimension of a �Square�-shape (a)K = 4, (b)
K = 25, (
) K = 49 and (d) K = 100 forbidden regions.

normalized error grown up until ξ⌋K=100 ≈ 2.07× 10−3
(shown in Fig. 4.15 and

in Tab. 4.2). Nevertheless, |∆FCO (θ, ϕ)| still turns out negligible with respe
t

to

∣∣FREF
CO (θ, ϕ)

∣∣
even for wide Φ regions [e.g., K = 100 - Fig. 4.14(d) vs. Fig.

4.3(a)℄.

Furthermore, a perfe
t mat
hing of the 
urrent 
onstraints in the forbidden

region is obtained also in this 
ase for ea
h of the sele
ted dimensions [K = 4 -

Fig. 4.13(a), K = 25 - Fig. 4.13(b), K = 49 - Fig. 4.13(
) and K = 100 - Fig.

4.13(d)℄, as expe
ted thanks to the 
omplian
y with the solvability 
ondition

(3.31).
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Figure 4.14: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ)
- Plots of ∆FCO (u, v) when assuming di�erent dimension of a �Square�-shape

(a)K = 4, (b) K = 25, (
) K = 49 and (d) K = 100 forbidden regions.
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Figure 4.15: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ,
�Square�-shaped forbidden region) - Behaviour of ξ and ∆t versus K.

Φ- Shape K ξ ∆t (s)

- - 5.55× 10−6
-

Square 4 5.71× 10−6 1.03× 10−1

Square 9 7.32× 10−6 1.06× 10−1

Square 16 1.20× 10−5 1.04× 10−1

Square 25 4.32× 10−5 1.04× 10−1

Square 36 1.11× 10−4 1.36× 10−1

Square 49 3.59× 10−4 1.32× 10−1

Square 64 1.09× 10−3 1.68× 10−1

Square 81 1.27× 10−3 2.12× 10−1

Square 100 2.07× 10−3 2.32× 10−1

Table 4.2: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Performan
e Assessment - Fixed geometry varying the dimension.
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4.2.4 Large dimension and 
omplex topology forbidden re-

gion

The next example is aimed at assessing the performan
e of (3.34) when more


omplex forbidden regions are at hand.

To this end, a synthesis of J has been 
arried out when assuming a Φ area


omposed of:

(i) a �Triangle�-shaped, K = 55 in slightly di�erent position [Fig. 4.16(a)(b)℄,

(ii) 6 dis
onne
ted sub-parts [�ELEDIA�-shaped, K = 54 - Fig. 4.16(
)℄,

(iii) a large region 
entered in the re�e
tarray aperture [�Diamond�-shaped,

K = 115 - Fig. 4.16(d)℄.
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Figure 4.16: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ with 
omplex shape and large dimension: (a)

�Triangle�-shaped K = 55 nearer to the 
orner, (b) �Triangle�-shaped K = 55 ,

(
) �ELEDIA�-shaped K = 54 and (d) �Diamond�-shaped K = 115.
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By analyzing the graphi
al representation of the surfa
e 
urrent magnitudes

[�Triangle�-shaped - Fig. 4.17(a)(b), �ELEDIA�-shaped - Fig. 4.17(
), �Diamond�-

shaped - Fig. 4.17(d)℄ and 
orresponding ∆FCO (θ, ϕ) [�Triangle�-shaped - Fig.

4.18(a)(b), �ELEDIA�-shaped - Fig. 4.18(b), �Diamond�-shaped - Fig. 4.18(d)℄,

it 
an be noti
ed on
e again that the dedu
ed solution fully 
omplies with the

enfor
ed geometri
al restri
tions [Fig. 4.17(a) vs. Fig. 4.16(a), Fig. 4.17(b) vs.

Fig. 4.16(b), Fig. 4.18(
) vs. Fig. 4.16(
) and Fig. 4.17(d) vs. Fig. 4.16(d)℄.
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Figure 4.17: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of |Jx (r)| assuming di�erent dimension of a �Square�-shape (a)K = 4, (b)
K = 25, (
) K = 49 and (d) K = 100 forbidden regions.
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Moreover, also the radiation features a
hieve good performan
e [|∆FCO (θ, ϕ)| ≪∣∣FREF
CO (θ, ϕ)

∣∣
- Fig. 4.18 vs. Fig. 4.3(a)℄, as it is also 
on�rmed by the asso-


iated error �gures (ξtriangle−a = 9.94 × 10−4
, ξtriangle−b = 1.07 × 10−4

,ξeledia =

1.41× 10−5
, ξdiamond = 4.34× 10−3

- Tab. 4.3).

This result points out the 
apability of the proposed methodology to exploit

non-measurable 
urrents to 
omply with arbitrary-shaped forbidden areas 
om-

prising dis
onne
ted regions [Fig. 4.17(a)℄ regardless of their position in the

aperture [Fig. 4.17(
)℄ if Φ 
omplies with (3.31).
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Figure 4.18: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ)
- Plots of ∆FCO (u, v) when assuming di�erent dimension of a �Square�-shape

(a)K = 4, (b) K = 25, (
) K = 49 and (d) K = 100 forbidden regions.
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Φ- Shape K ξ ∆t (s)

- - 5.55× 10−6
-

Triangle (a) 55 9.94× 10−4 1.41× 10−1

Triangle (b) 55 1.07× 10−4 1.40× 10−1

ELEDIA 54 1.41× 10−5 1.39× 10−1

Diamond 115 4.34× 10−3 2.62× 10−1

Table 4.3: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Performan
e Assessment - Complex and large geometries.
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4.3 Re
tangular re�e
tarray: 81× 69 elements

Sin
e the previous examples have all dealt with a square re�e
tarray geometry

with a M = N = 55 aperture, the �nal set of numeri
al studies is devoted to the

validation of the proposed methodology when wider and re
tangular layouts are

at hand.

The se
ond re�e
tarray antenna taken into a

ount works at f = 3.6[GHz℄

and has a re
tangular aperture of 1766.4 × 2073.6 [mm2
℄ (∼ 21.19λ × 24.88λ).

The re�e
tarray surfa
e is 
omposed byM×N = 81×69 elements of side equal to

25.6 [mm℄ that in wavelength is almost 0.3072λ. This re�e
tarray 
on�guration

(shown in Fig. 4.19) has as a feeder an horn antenna that is pla
ed with an

in
lination of 35.06 [deg℄ with respe
t to the output system at almost 30λ from

the re�e
tarray 
enter, the plane of the re�e
tarray surfa
e is rotated along the

y-axis by 17.53 [deg℄, thus with a relative in
lination between the re�e
tarray

surfa
e and the horn antenna of 17.53 [deg℄.

Figure 4.19: Re
tangular Aperture (M ×N = 81×69, ∆x = ∆y = 3.07×10−1λ)
- Re�e
tarray geometry.

This re�e
tarray antenna is used to synthesize a surfa
e 
urrent assuming

the referen
e far-�eld pattern in Fig. 4.20(
)(d) still sampled in L = 201 × 201
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regularly spa
ed angles in the uv-domain to dedu
e Fref in (3.5). Moreover the

referen
e 
urrent distribution magnitude and phase are shown in Fig. 4.20(a)

and Fig. 4.20(b) respe
tively. Also in this 
ase the SVD threshold τ is set to

10−3
and the normalized error of the radiated �eld of theminimum-norm solution

[magnitude and phase of JMN
in Fig. 4.20(e) and Fig. 4.20(f ) respe
tively℄ with

respe
t to the referen
e �eld [Fig. 4.20(g) vs. 4.20(
)℄ is very low also in this


ase ξ = 4.47× 10−6
(see Tab. 4.4).
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Figure 4.20: Re
tangular Aperture (M × N = 81 × 69, ∆x = ∆y = 3.07 ×
10−1λ) - Plot of the referen
e 
urrent (a) magnitude

∣∣Jrefx (x, y)
∣∣
and (b)

phase ∠Jrefx (x, y) and radiated �eld (
) magnitude

∣∣∣F ref
CO (u, v)

∣∣∣ and (d) phase

∠F ref
CO (u, v) and the minimum-norm solution (e) magnitude

∣∣JMN
x (x, y)

∣∣
and (f )

phase ∠JMN
x (x, y)and radiated �eld (g) magnitude

∣∣FMN
CO (u, v)

∣∣
and (h) phase

∠FMN
CO (u, v).
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4.3.1 Large dimension and 
omplex topology of the forbid-

den region

In order to asses the method 
hanging the re�e
tarray antenna we propose an

analysis on the same forbidden region investigated for the previous 
ase (Se
t.

4.2.4). Towards this end, we enfor
e the �ELEDIA�-shaped and �Diamond�-

shaped forbidden regions shown in Fig. 4.21(a) and Fig. 4.21(b), respe
tively.
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Figure 4.21: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ with 
omplex shape and large dimension: (a)

�ELEDIA�-shaped K = 54 and (b) �Diamond�-shaped K = 115.

59



4.3. RECTANGULAR REFLECTARRAY: 81× 69 ELEMENTS

The plots the magnitude [Fig. 4.20(e)℄ and phase [Fig. 4.20(f )℄ of JMN
[ob-

tained assuming (4.2)℄ indi
ate that the minimum-norm solution of the problem

obviously does not 
omply with any Φ requirements [i.e., the 
urrent is not zero

in Φ - Fig. 4.22(a)℄, as expe
ted.
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Figure 4.22: Re
tangular Aperture (M×N = 81×69, ∆x = ∆y = 3.07×10−1λ) -
Plots of (a)(
) the magnitude and and (b)(d) the phase of Jx (r) when assuming

(a)(b) �ELEDIA�-shaped (K = 54) and (
)(d) �Diamond�-shaped (K = 115)
forbidden regions.

On the 
ontrary, the overall surfa
e 
urrents obtained by superimposing suit-

ably designed non-measurable 
urrents to JMN
through the 
losed-form expres-

sion (3.34) fully satisfy the �forbidden region� 
onstraints [Fig. 4.22(a) vs. Fig.

4.16(a); Fig. 4.22(
) vs. Fig. 4.16(b)℄, and they also guarantee an ex
ellent

pattern mat
hing [i.e., |∆FCO (θ, ϕ)| ≪
∣∣FREF

CO (θ, ϕ)
∣∣
- Fig. 4.23(a) and Fig.

4.23(b) vs. Fig. 4.20(a)℄, as it is also 
on�rmed by the 
orresponding error

�gures (ξ ∈ [1.31× 10−5, 7.68× 10−4] - Tab. 4.4).
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Figure 4.23: Re
tangular Aperture (M ×N = 81×69, ∆x = ∆y = 3.07×10−1λ)
- Plots of ∆FCO (u, v) when assuming (a) �ELEDIA�-shaped (K = 54) and (b)

�Diamond�-shaped (K = 115) forbidden regions.
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4.3.2 Varying shape of forbidden region

Also for this re�e
tarray it is proposed the analysis varying the shapes of the

forbidden region Φ. The same shapes de�ned for the test 
ase M ×N = 55× 55

are here proposed. In parti
ular: �E�-shaped K = 11 in Fig. 4.24(a), in Fig.

4.24(b) �Cross�-shaped K = 28, in Fig. 4.24(
) �Ring�-shaped K = 32,in Fig.

4.24 (d) �Cir
ular Ring�-shaped K = 36 and in Fig. 4.24(e) �Cir
le�-shaped

K = 37.
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Figure 4.24: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
De�nition of forbidden regions Φ with di�erent shapes: (a) �E�-shaped K = 11,
(b) �Cross�-shaped K = 28, (
) �Ring�-shaped K = 32, (d) �Cir
ular Ring�-

shaped K = 36 and (e) �Cir
le�-shaped K = 37.
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The 
urrent obtained using the �nal 
losed form (3.34) and the superposition

(3.24) perfe
tly ful�ll the requirements S of the forbidden regions taken into

a

ount [�E�-shaped K = 11 in Fig. 4.10(a) vs. Fig. 4.24(a) - �Cross�-shaped

K = 28 in Fig. 4.10(b) vs. Fig. 4.24(b) - �Ring�-shaped K = 32 in Fig. 4.10(
)

vs. Fig. 4.24(
) - �Cir
ular Ring�-shapedK = 36 in Fig. 4.10(d) vs. Fig. 4.24(d)

- �Cir
le�-shaped K = 37 in Fig. 4.10(e) vs. Fig. 4.24(e)℄, as expe
ted sin
e the

solvability 
ondition is observed (3.31).
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Figure 4.25: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ) -
Plots of |Jx (r)| assuming an (a) �E�-shaped K = 11, (b) �Cross�-shaped K = 28,
(
) �Ring�-shaped K = 32, (d) �Cir
ular Ring�-shaped K = 36 and (e) �Cir
le�-

shaped K = 37 forbidden.
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Moreover, the di�eren
e of the pattern shown in Fig. 4.26 demonstrate the

goodness of the pattern mat
hing (|∆FCO (θ, ϕ)| ≪
∣∣FREF

CO (θ, ϕ)
∣∣
), that is 
on-

�rmed also by the normalized errors: ξE = 5.51 × 10−6
, ξCross = 5.81 × 10−6

,

ξRing = 1.03× 10−5
, ξCircular−Ring = 9.72 × 10−6

, ξCircle = 1.26 × 10−5
(listed in

Tab. 4.4).
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Figure 4.26: Square Aperture (M × N = 55 × 55, ∆x = ∆y = 3.73 × 10−1λ)
- Plots of ∆FCO (u, v) when assuming an (a) �E�-shaped K = 11, (b) �Cross�-
shaped K = 28, (
) �Ring�-shaped K = 32, (d) �Cir
ular Ring�-shaped K = 36
and (e) �Cir
le�-shaped K = 37 forbidden region.
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CHAPTER 4. METHOD ASSESSMENT

4.3.3 Resume normalized errors and 
omputational time

in 81x69 test 
ase

For the sake of 
ompleteness, the resume of the pattern mismat
h ξ and the syn-

thesis time ∆t2 for di�erent Φ de�nitions (always assuming Fref in Fig. 4.20(
)

and Fig. 4.20(d) and M = 81, N = 69) is provided in Fig. 4.27. The illustrated

results remark that:

(i) thanks to its 
losed-form nature (3.34), the synthesis pro
ess is extremely

e�
ient whatever Φ shape and size (i.e., ∆t ∈ [1.40× 10−1, 2.60× 10−1]

[s℄ - Fig. 4.27 - Tab. 4.4), as it happened also in the previous examples (i.e.,

∆t ∈ [1.04× 10−1, 2.32× 10−1] [s℄ - Fig. 4.15; ∆t ∈ [1.03× 10−1, 2.60× 10−1]

[s℄ - Tabs. 4.1-4.2-4.3);

(ii) despite the signi�
antly in
reased problem size with respe
t to the �square

aperture� test 
ases (i.e.,

MN⌋square
MN⌋rect.

≈ 0.54), the pattern is reliably repro-

du
ed in all examples (ξ < 8.0× 10−4
- Fig. 4.27).

These out
omes further validate the 
apability of the proposed method to ef-

�
iently exploit non-measurable 
urrents JNR
as a DoF to satisfy user-de�ned


onstraints on the re�e
tarray layout while yielding a non-measurable variation

in the radiated �eld (Fig. 4.27).

2

All ∆t values refer to a non-optimized MATLAB implementation exe
uted on a single-
ore

laptop featuring a 2.20 GHz CPU 
lo
k.
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4.3. RECTANGULAR REFLECTARRAY: 81× 69 ELEMENTS
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Figure 4.27: Re
tangular Aperture (M ×N = 81×69, ∆x = ∆y = 3.07×10−1λ)
- Behaviour of ξ and ∆t for di�erent forbidden region shapes Φ.

Φ- Shape K ξ ∆t (s)

- - 4.47× 10−6
-

E 11 5.51× 10−6 1.04× 10−1

Cross 28 5.81× 10−6 1.06× 10−1

Ring 32 1.05× 10−5 1.07× 10−1

Cir
ular Ring 36 9.72× 10−6 1.15× 10−1

Cir
le 37 1.26× 10−5 1.29× 10−1

ELEDIA 54 1.31× 10−5 1.40× 10−1

Diamond 115 7.68× 10−4 2.60× 10−1

Table 4.4: Re
tangular Aperture (M ×N = 81 × 69, ∆x = ∆y = 3.07× 10−1λ)
- Performan
e Assessment - Resume on various test 
ases.
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Chapter 5

Con
lusions and Remarks

An innovative paradigm has been proposed for the design of re�e
tarray

surfa
e 
urrents that satisfy both radiation and user-de�ned antenna feasibil-

ity 
onstraints. To this end, the 
urrent synthesis problem has been formulated

as an inverse sour
e one, and its well-known non-uniqueness has been leveraged

as a design DoF. By suitably exploiting the arising non-measurable sour
es, a


losed-form solution for the design of re�e
tarray surfa
e 
urrents has been de-

rived whi
h does not require any iterative lo
al/global optimization pro
edure

and whi
h inherently satis�es both the radiation and the feasibility design 
on-

straints. A sele
ted set of numeri
al experiments has been illustrated to assess

the e�e
tiveness and potentialities of the design pro
edure when handling di�er-

ent aperture types/sizes and forbidden region de�nitions.

The numeri
al assessment has shown that

• the expression (3.34) enables to 
ompute 
ombinations of suitable 
urrent


omponents JNR
and JMN

that satisfy user-de�ned 
urrent 
onstraints

while yielding a non-measurable variation in the radiated �eld with respe
t

to Fref (Se
t. 4);

• the design method only features 1 
ontrol parameter (τ) whose 
hoi
e 
an

be reliably 
arried out by simple analysis of the Green matrix spe
trum

knee [(4.2) - Fig. 4.4℄;

• although the pattern mat
hing error ξ slightly in
reases with the forbidden

region size K, the proposed strategy turns out e�e
tive regardless of the


omplexity of Φ (e.g., ξ ≤ 4.34×10−3
- Tab. 4.3) if the solvability 
ondition
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(3.31) is satis�ed;

• owing to its 
losed-form nature (3.34), the synthesis pro
ess turns out nu-

meri
ally e�
ient (i.e., ∆t ≤ 2.60× 10−1
[s℄ - Tab. 4.4) whatever Φ shape

and size (e.g., Fig. 4.9).

Moreover, the methodologi
al advan
ements of the paper with respe
t to the

state-of-the-art in
lud:

(i) the formulation and development of a re�e
tarray 
urrent design paradigm

whi
h takes advantage of the existen
e of non-measurable surfa
e sour
es

to enhan
e the solution features a

ording to user-de�ned obje
tives,

(ii) the derivation of 
losed-form formulas for the synthesis of re�e
tarray 
ur-

rents that inherently satisfy radiation and geometri
al 
onstraints.

Future works, beyond the s
ope of this work, will be aimed at the generalization

of the introdu
ed paradigm to take into a

ount additional user 
onstraints (e.g.,

regarding the feasible 
urrent solutions) as well as more 
omplex/
onformal ge-

ometries. Moreover, the integration of the proposed strategy with an automati


re�e
tarray unit-
ell synthesis te
hnique is 
urrently under investigation.
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