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Abstract. We provide an example for stabilization by noise. Due to the
presence of higher order differential operators our approach does not rely on

monotonicity arguments, i.e. the the preserved order of solutions. Moreover,

as the noise is highly degenerate mixing properties of the system might not be
available.

In our examples already a scalar additive noise destroys the complexity of a

high-dimensional deterministic attractor of a PDE on an unbounded domain.
The main result shows that by adding a certain amount of noise all trajectories

converge to a single stationary solution. Close to bifurcation there is a lower

bound on the amount of noise necessary for this stabilization, which depends
on the distance to bifurcation, and the presence of small (but not arbitrarily

small) noise already suffices.

We focus on stochastic PDEs posed on unbounded domains without any
decay condition at infinity. This setting allows for spatially constant or periodic

solutions of arbitrary period. But we need to work in weighted spaces and
establish the existence of random attractors in that setting first.

1. Introduction

Our main aim is to provide another example for the stabilization of a random
dynamical system due to noise, which does not seem to fit in the many classes con-
sidered before. We do not rely on monotonicity, understood as order preservation,
as the differential operators are higher order. Furthermore, the mixing properties
used in other approaches might fail, as the noise is highly degenerate. We focus in
the examples on equations of the following type

∂tu = Au+ νu+ f(u) + σ∂tβ,

posed on the whole domain Rd, d ≥ 1, where we do not assume any decay condition
at infinity. The operator A is a non-positive polynomial of the Laplacian with
non-empty kernel. Thus the scalar ν is an explicit measure for the distance from
bifurcation.

The nonlinearity is a function of u with the property that f(u) ∼ −|u|pu for
large u and some p > 0, with the standard example being a stable cubic −u3. For
the noise we assume that it is spatially constant and thus given by a single standard
real valued Brownian motion β. We comment on other types of additive noise later
on.

One standard example we have in mind is the stochastic Swift-Hohenberg with
scalar additive noise, where A = −(1 + ∆)2 and f(u) = −u3.

For our main result on stabilization, we exploit directly the structure of the
equation and consider noise sufficiently larger than the distance from bifurcation,
which in case of Swift-Hohenberg means ν < 3

2σ
2. Under that assumption, we
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show that any stationary solution is already globally stable and attracts all solu-
tions in the pull-back sense. Due to our special setting, the stationary solution is
spatially constant, and solves an SDE. Thus by the result of Crauel & Flandoli [12]
it is unique among the spatially constant ones, because of the monotonicity of the
one-dimensional system. In conclusion, we cannot show that arbitrarily small ad-
ditive noise destroys a deterministic pitchfork-bifurcation, but at least it shifts the
bifurcation.

In the general setting, as well as in the example of Swift-Hohenberg, we cannot
rely on monotonicity like in the Allen-Cahn equation considered for instance by
Caraballo, Crauel, Langa & Robinson in [9]. See also the general results of Chueshov
& Vuillermot, [11], or Arnold & Chueshov, [2], or Flandoli, Gess & Scheutzow, [15],
which is a more recent result based on monotonicity. Here due to the ordering
of solutions, one can construct two ergodic stationary solutions that stay ordered
which leads to a contradiction. Nevertheless, we use this result, when we construct
spatially constant stationary solutions, as they satisfy an SDE.

Let us also mention the work of Lamb, Rasmussen et. al., [8], which shows that
additive noise does not destroy a pitchfork-bifurcation, because a phenomenological
bifurcation is still present, which can be seen particularly well where the noise is
bounded (since in that case, if the random attractor is non trivial we can actually
see it), a case that we do not consider here.

A different approach to stabilization was considered by Tearne in [22], where he
showed that sufficiently small non-degenerate noise in a gradient system given by
an ODE, leads to a trivial random attractor and thus stabilization.

This was recently improved by Flandoli, Gess & Scheutzow [14] to general SDE
systems without any restriction on the noise. They rely mainly on mixing proper-
ties, local stability and “contraction in the large”, in order to show that the weak
random attractor is a single point. Unfortunately, in our examples we cannot easily
resort to a mixing property, as the noise in our examples is highly degenerate. We
can neither prove nor disprove a mixing property for solutions.

A more qualitative approach to stabilization using amplitude equations was pre-
sented by Klepel, Mohammed & Blömker in [20]. For the Swift-Hohenberg equation
with ν = O(ε2), σ = O(ε) and ν < 3

2σ
2 they showed that, for sufficiently small ε,

the dynamics is qualitatively described by a stable deterministic ODE. This is the
same condition we consider in our paper here, but we do not need any asymptotics
for ε→ 0, and we can consider large parameters σ and ν. Moreover, we present here
an almost sure result for t → ∞, while [20] stated stabilization only qualitatively
with high probability and on finite time-scales of order ε−2.

Let us also mention the upper semi-continuity of random attractors in the limit
noise to zero (i.e. σ → 0). This does not apply here, as in all the examples provided
we can only study the joint limit σ → 0 and ν → 0, in order to stay in the regime
where the stabilization holds.

The existence of pull-back random attractors has been extensive studied by many
authors for several kinds of SPDEs defined on bounded domain (see, e.g. [16, 18,
17]). For the unbounded domain case, the situation becomes much more compli-
cated, and we need to deal with more difficulties caused by the unboundedness
of the spacial domain. In an unbounded domain, typical Sobolev embeddings are
not compact and the spaces Lp(RN ) are not nested, adding to the technical diffi-
culties. Bates, Lu & Wang [3] introduced the tail estimates’ technique to obtain
compactness, and the existence of pull-back random attractor has been studied by
the same authors in several publication, e.g. [23, 21, 25, 24]. Moreover, the usual
Sobolev spaces do not include the constant functions and travelling waves, so to be
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able to include these special solutions (e.g. equilibria and relaxation waves) in the
attractor, they consider in [5] weighted spaces.

The results of this paper concern the existence of random attractors. For that
purpose in Section 4 we follow the ideas of the already cited [5], where the authors
show the existence of tempered random attractors at least for parabolic equations
of second order in weighted spaces. In a short Section 5 we discuss the size of the
deterministic attractor, which is high-dimensional. The key stabilization result is
presented in Section 6 in Theorem 6.2 where we also discuss the explicit examples
and more general noise terms (see Theorem 6.5).

In the first part of the paper, we begin providing the definition of spaces and
some key technical estimates in Section 2, and the basic setting of the problem, the
definition of random dynamical systems and attractors as well as the properties of
spatially constant stationary solutions in Section 3.

2. Spaces and Estimates

We consider for ρ > 0 and p ≥ 1 the weighted spaces Lpρ with norm

‖u‖p
Lpρ

=

∫
R
ρ(x)|u(x)|pdx ,

for a sufficiently strong polynomial weight of the type

ρ(x) = (1 + |cx|2)−ρ/2 and some small c > 0.

Note that by a slight abuse of notation, we identify the weight ρ : R → (0, 1] with
the scalar decay exponent ρ > 0. An important feature of these spaces is that Lpρ
contains not only constant functions, but also functions unbounded at infinity.

A simple calculation verifies the following properties of the weight:

|ρ′(x)| ≤ C1ρ(x) and |ρ(n)(x)| ≤ Cnρ(x) .

In these estimates we can make the constants Cn as small as we want, by choosing
c close to 0, as Cn ∼ cn. Moreover, it is easy to check that the weight is integrable
(i.e. ρ ∈ L1(R)) if and only if ρ > 1.

We will also use the Hk
ρ spaces of functions with square integrable derivatives

up to order k. The norm in these spaces is given by the sum of all L2
ρ norms of the

function and all derivatives up to order k. Note that by the structure of the weight
u ∈ Hk

ρ if and only if
√
ρ · u ∈ Hk(R).

For our examples we rely on the following estimate on the supremum of the
numerical range of the Swift-Hohenberg operator in L2

ρ. See also [19] or [6].

Lemma 2.1. For any η0 > 0 there is a choice of c in the weight ρ such that

〈v,−(1 + ∂2
x)2v〉L2

ρ
≤ −η0‖v′′‖2L2

ρ
+ Cη0‖v‖2L2

ρ

for all v ∈ H2
ρ . We can choose η0 proportional to c2, and C > 0 is a universal

constant.

Proof. First we prove the estimate for a function v which is compactly supported
and smooth. Then we extend the result by continuity to H2

ρ , where we use the fact

that the bilinear form of −(1 + ∂2
x)2 can be rewritten (using integration by parts)

to depend only on second derivatives.
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Thanks to integration by parts and Hölder’s inequality, we obtain∫
R
ρv[−(1 + ∂2

x)2]v dx

= −‖v‖2L2
ρ
− 2

∫
R
ρvv′′ dx+

∫
R
ρ′vv′′′ dx+

∫
R
ρv′v′′′ dx

= −‖v‖2L2
ρ
− 2

∫
R
ρvv′′ dx−

∫
R
ρ′′vv′′ dx− 2

∫
R
ρ′v′v′′ dx− ‖v′′‖2L2

ρ

= −‖v‖2L2
ρ
− 2

∫
R
ρvv′′ dx−

∫
R
ρ′′vv′′ dx+

∫
R
ρ′′(v′)2 dx− ‖v′′‖2L2

ρ

≤ −‖v‖2L2
ρ
− ‖v′′‖2L2

ρ
+ (2 + C2)‖v‖L2

ρ
‖v′′‖L2

ρ
+ C2‖v′‖2L2

ρ
.

Now we use the following interpolation inequality

‖v′‖2L2
ρ

= −
∫
R
ρ′vv′ dx−

∫
R
ρvv′′ dx =

1

2

∫
R
ρ′′v2 dx−

∫
R
ρvv′′ dx

≤ C2

2
‖v‖2L2

ρ
+ ‖v‖L2

ρ
‖v′′‖L2

ρ
,

(1)

and we obtain∫
R
ρv[−(1 + ∂2

x)2]v dx ≤ −(1− C2
2

2
)‖v‖2L2

ρ
− ‖v′′‖2L2

ρ
+ 2(1 + C2)‖v‖L2

ρ
‖v′′‖L2

ρ

≤ −C2‖v′′‖2L2
ρ

+O(C2)‖v‖2L2
ρ
,

with the last step provided by Young’s inequality. Here O(C2) is just the abbre-
viation for a term bounded by C · C2, with a universal positive constant C. Note
that we can choose C2 as small as we want by fixing c > 0 in the definition of the
weight. �

For the nonlinearity, the following estimate is straightforward

Lemma 2.2. For all 1
4 > δ > 0 we have Cδ = 3− 9

4(1−δ) ∈ (0, 3) such that

〈−(v + z)3 + z3, v〉L2
ρ
≤ −Cδz2‖v‖2L2

ρ
− δ‖v‖4L4

ρ
.

Proof. By Young’s inequality we have

3zv3 ≤ 9

4(1− δ)
z2v2 + (1− δ)v4.

This implies

〈−(v + z)3 + z3, v〉L2
ρ

= −
∫
R
ρ(3z2v2 + 3zv3 + v4) dx

= −3z2

∫
R
ρv2 dx−

∫
R

3zρv3 dx−
∫
R
ρv4 dx

= −Cδz2

∫
R
ρv2 dx− δ

∫
R
ρv4 dx,

where Cδ = 3− 9
4(1−δ) > 0. �

3. Setting

We focus for simplicity of presentation on the one-dimensional stochastic Swift-
Hohenberg equation although the results stated here apply to a much more general
setting.

Let us consider the stochastic equation

du = [Au+ f(u)]dt+ σdβ (2)
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on R where

• A is a nice differential operator given by −(1 + ∂2
x)2 + ν for some ν ∈ R

measuring the distance from bifurcation. Note that A is not monotone.
Denote by λ = A1 the action of A on the constant. Here λ = −1 + ν.

• f(u) = −u3 is a polynomial nonlinearity
• β is a real-valued Brownian motion and σ ≥ 0 the noise strength.

Remark 3.1. Let us comment on some generalizations. See also Section 4.6 and
the discussion before Theorem 6.5.

• There is nothing special about the choice of A. We could use any parabolic
differential operator of even order close to bifurcation, later in the exam-
ples we also study A = −∂4

x. If it is of second order, we could rely on
monotonicity provided by the maximum principle.

• For f : R → R we can use any differentiable function such that for |u|
sufficiently large we have f(u) ∼ −|u|pu and f ′(u) ≤ C.

• Noise not acting on the constant or higher dimensional noise is not a trivial
modification, as the stationary solution z defined below is no longer a scalar
valued quantity. We need spectral information about the linear stability of
the random operator L + Df(z). Later in Section 6 we also formulate
a result (Theorem 6.5) for the general noise case at least in the Swift-
Hohenberg setting.

If the model is changed in such a way that λ = ν and thus the stationary solution
z has a non-trivial invariant measure, which would be the case, when A = −∂4

x+ ν.
This is significantly different to the Swift-Hohenberg equation, where λ = −1 + ν
and the invariant measure corresponding to z concentrates at z = 0. These will be
our two examples treated later in Section 4.6.

3.1. Existence of solutions. We assume that the following theorem holds true
and give only a brief idea of its proof.

Theorem 3.2. For any u0 ∈ L2
ρ and any choice of a Brownian motion β with

continuous paths there is (up to global null sets) a unique stochastic process u with
continuous paths in L2

ρ that is a solution of (2). Moreover, for t > 0 the process u
is spatially smooth.

Idea of Proof. After the standard transformation v = u−σβ to a random PDE (see
also subsection 3.5) the existence and uniqueness for solutions to the transformed
equation in the space L2

loc([0,∞), H2
ρ) ∩ L∞loc([0,∞), L2

ρ) can easily be proven for
any fixed continuous path of the Brownian motion by a Galerkin approximation
or the approximation using bounded domains. The regularity of solutions follows
from standard parabolic regularity theory for the transformed equation. �

The proof in a slightly different setting can be found for example in [7] where a
Galerkin approximation was used, or in [6] where the problem is approximated by
periodic solutions.

3.2. Basics on Random dynamical systems. First in order to fix notation, let
us state very briefly the well known setting of random dynamical systems. See
the monograph of Arnold, [1], or the seminal paper by Crauel & Flandoli, [12], for
details, as well as [10], for tempered random sets.

Let (X, ‖ · ‖X) be a separable real Banach space with Borel σ-algebra B(X) and
(Ω,F ,P) be a probability space.

Definition 3.3. The quadruple (Ω,F ,P, (θt)t∈R) is called a metric dynamical sys-
tem if the map θ : R × Ω → Ω is (B(R) × F ,F)-measurable, the map θ0 is the



6 L. A. BIANCHI, D. BLÖMKER, AND M. YANG

identity on Ω, the flow property θs+t = θt ◦ θs holds for all s, t ∈ R and P is an
invariant measure for θt for all t ∈ R.

Definition 3.4. A random dynamical system (RDS) (θ, φ) consists of a metric
dynamical system (Ω,F ,P, (θt)t∈R) and a co-cycle mapping φ : R+ × Ω×X → X,
which is (B(R+)×F×B(X),B(X))-measurable and satisfies the following properties:

(i) φ(0, ω, x) = x (initial condition)
(ii) φ(s, θtω, φ(t, ω, x)) = φ(s+ t, ω, x) (co-cycle property)

for all s, t ∈ R+, x ∈ X and ω ∈ Ω. We call a RDS continuous if φ(t, ω, ·) is
continuous with respect to x for each t > 0 and ω ∈ Ω.

Denote by 2X the collection of all subsets of X. We now define various notions
of random sets (bounded, compact and invariant).

Definition 3.5. A set-valued map B : Ω→ 2X is called a random set in X if the
mapping ω 7→ dist(x,B(ω)) is (F ,B(R)) measurable for all x ∈ X.

A random set B in X is called a random closed set if B(ω) is non-empty and
closed for each ω ∈ Ω. A random closed set is called a random compact set if B(ω)
is additionally compact for all ω ∈ Ω.

A random set is called φ-invariant if for P-a.e. ω ∈ Ω we have φ(t, ω,A(ω)) =
A(θtω) for all t > 0 .

Tempered sets will be important in the following, as the pull-back attraction is
exponential in many cases so we can allow for slow growth.

Definition 3.6. A random set B: Ω→ 2X is called a bounded random set if there
is a non-negative random variable R, such that

d(B(ω)) := sup{‖x‖X : x ∈ B(ω)} 6 R(ω) for all ω ∈ Ω .

A bounded random set is said to be tempered with respect to (Ω,F ,P, (θt)t∈R) if
for P-a.e. ω ∈ Ω,

lim
t→∞

e−µtd(B(θ−tω)) = 0 for all µ > 0.

In the following definition of an absorbing random set, we always think of D as
a family of either deterministic sets or tempered random sets.

Definition 3.7. Let D be collection of random sets in X. Then a random set
B ∈ D is called a D-random absorbing set for an RDS (θ, φ) if for any random set
D ∈ D and P-a.e. ω ∈ Ω, there exists a TD(ω) > 0 such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω) for all t > TD(ω).

Crucial for the existence of random attractors is the notion of asymptotic com-
pactness.

Definition 3.8. Let D be collection of random sets in X. Then φ is said to be
D-pull-back asymptotically compact in X if for any given B ∈ D the sequence
{φ(tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in X for P-a.e. ω ∈ Ω, when-
ever tn →∞ and xn ∈ B(θ−tnω).

Definition 3.9. Let D be collection of random sets in X. Then a random set
A ∈ D in X is called a D-random attractor (or D-pull-back random attractor) for
an RDS (θ, φ) if

(i) A is a compact random set,
(ii) A is φ-invariant,
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(iii) A attracts every random set D ∈ D, that is, for every D ∈ D,

lim
t→∞

distX (φ(t, θ−tω,D(θ−tω)), A(ω)) = 0, P-almost surely,

with distX(Y,Z) = supy∈Y infz∈Z ‖y − z‖X for any Y ⊆ X and Z ⊆ X
being the Hausdorff semi-metric.

For the abstract result on existence and uniqueness of random attractors we also
need the universe of tempered sets.

Definition 3.10. A collection D of random sets in X is called inclusion-closed if
whenever E is an arbitrary random set, and F is in D with E(ω) ⊂ F (ω) for all
ω ∈ Ω, then E must belong to D. A collection D of random sets in X is said to be
a universe if it is inclusion-closed.

The following result on the existence of pull-back attractor is now well known.
See for example Bates, Lu & Wang [4, 5].

Theorem 3.11. Let D be a universe in X and (θ, φ) be a continuous RDS on X.
Suppose that there exists a closed random absorbing set B ∈ D and that φ is D-
pull-back asymptotically compact in X. Then, φ has a unique D-random attractor
A ∈ D, which is given by

A(ω) =
⋂
s≥0

⋃
t≥s

φ(t, θ−tω,B(θ−tω)), ω ∈ Ω.

3.3. Brownian driving system. Here we introduce the driving system that un-
derlies a Brownian motion; we refer to [1], for more details.

Consider the canonical probability space (Ω,F ,P) given by the Wiener space
with

Ω = {ω ∈ C(R,R) : ω(0) = 0} ,
F the Borel σ-algebra induced by the compact open topology of Ω, and P the
corresponding Wiener measure on (Ω,F). Thus we can identify the identity on Ω
with a Brownian motion, i.e.

β(t) = ω(t) for t ∈ R and ω ∈ Ω.

Finally, we define the time shift by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R.
In that setting it is well known that (Ω,F ,P, (θt)t∈R) is an ergodic metric dynamical
system.

3.4. Stationary solution. We discuss now the existence of a unique spatially
constant stationary solution of (2). Denote by z the stationary real-valued solution
of the SDE

dz = [λz + f(z)]dt+ σdβ . (3)

By the celebrated result of Crauel & Flandoli [12], extended in [13], there is only one
stationary solution (up to null-sets). The key argument is that, due to monotonicity
of the corresponding RDS, the random attractor is a single random point. Let us
state this as a theorem.

Theorem 3.12. There is a tempered random variable z such that a stationary
solution of (3) is given by z(t, ω) = z(θtω). Moreover, z is unique up to null-sets.

Proof. This claim is mainly from [12] as z necessarily lies inside the unique random
attractor for (3), which is a single point.

For temperedness we just remark that the existence of a tempered absorbing set
for (3) is straightforward. Due to nonlinear stability one could even show that every
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set is absorbed. As the absorbing set contains the random attractor, the random
variable z(ω) is tempered. It is given as a random ball around the stationary
OU-process. �

To complement the previous proof, let us give a simple direct argument for z to
be tempered. We define z2 = z − z1, where z1(θtω) is the stationary OU-process
solving

dz1 + z1dt = σdβ .

This is given by a tempered random variable z1 = σ
∫ 0

−∞ esdβ. Thus it is suffi-

cient to prove that z2 is tempered. The process z1(θtω) is also growing at most
polynomially for t→ −∞ and so is also

r1(θtω) := |z1(θtω)|2 + |z1(θtω)|4 .
On the other hand, z2(θtω) is the stationary solution of the random ODE

dz2 = (ν + 1)(z1 + z2)dt− (z1 + z2)3dt .

Differentiating |z2|2 yields, for every µ > 0,

1

2

d

dt
|z2|2 ≤ C∗ν (|z1|2 + |z2|2) + C|z1|4 −

1

2
|z2|4

≤ max{C∗ν , C}r1 + C∗ν |z2|2 −
1

2
|z2|4

≤ Cνr1 −
µ

2
|z2|2 + Cµ,ν ,

where we took advantage of the stable cubic, using Young’s inequality and denoted
Cν := max{C∗ν , C}. Grönwall’s lemma yields

|z2(θtω)|2 ≤ e−µt|z2(ω)|2 + 2Cν

∫ t

0

e−µ(t−s)r1(θsω)ds+ Cµ,ν ,

and thus

|z2(ω)|2 ≤ e−µt|z2(θ−tω)|2 + 2Cν

∫ 0

−t
eµsr1(θ−sω)ds+ Cµ,ν ,

where the following random variable is finite, as r1 is tempered:

r2(ω) = 2

∫ 0

−∞
eµs(|z1(θ−sω)|2 + |z1(θ−sω)|4)ds .

3.5. Transformation to a random PDE. In order to study the random attractor
for (2), we transform to a random PDE using the stationary solution z of the
previous section. This also shows that (2) generates a RDS on L2

ρ.
Define

v(t, ω;u0 − z(ω)) := u(t, ω;u0)− z(θtω) ,

where u is a solution of (2). Then v satisfies

∂tv = Av + f(v + z)− f(z), (4)

with initial data
v(0, x) = v0 = u0 − z(ω).

Let u(t, ω;u0) := v(t, ω;u0 − z(ω)) + z(θtω). Then the stochastic process u is a
solution of equation (2). We now define a mapping φ : R+ × Ω× L2

ρ → L2
ρ by

φ(t, ω, u0) = u(t, ω;u0) = v(t, ω;u0 − z(ω)) + z(θtω),

with u(0) = u0. Sometimes, we also write φ(t, ω, u0) as φ(t, ω)u0.
It follows immediately that φ satisfies the conditions of Definition 3.4 and hence

(θ, φ) is a continuous random dynamical system associated with our stochastic
parabolic equation.
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4. Random attractor for SPDE

In this section we prove that the random attractor exists for (2) in the weighted
space L2

ρ. This is a standard proof following the ideas of Bates, Lu, & Wang [5].

First one shows the existence of an absorbing set in L2
ρ and then additional regu-

larity of that set for example in H1
ρ . Finally, compactness is established by bounds

on the far field.
The main difficulty is the fact that we cannot rely on additional Lpρ-estimates or

the maximum principle, as in the case when A is only an operator of second order.
From the rest of the section, we always assume that D is the universe of tempered

random sets in L2
ρ with respect to the Brownian driving system (Ω,F ,P, (θt)t∈R).

4.1. Absorbing ball for tempered sets in L2
ρ. First we show that there is a

random ball with deterministic radius that pull-back attracts all tempered sets.

Lemma 4.1. Denote the solution of (2) by v(t, ω, v0) with random initial condition
v0 = u0− z(ω). There is a constant K = ‖ρ‖L1(2ν+Cη0 + 1)2/4δ such that for all
ω ∈ Ω and all t ≥ 0

‖v(t, ω, v0(ω))‖2L2
ρ
≤ e−t‖v0(ω)‖2L2

ρ
+K . (5)

Let B = {B(ω)}ω∈Ω ∈ D be a tempered set then for P -a.e. ω ∈ Ω, there is a
deterministic radius r1 =

√
1 +K and a random time T0 := T0(B,ω) > 0 such that

for all v0(ω) ∈ B(ω) and all t > T0, we have the following estimate:

‖v(t, θ−tω, v0(θ−tω))‖L2
ρ
≤ r1. (6)

Proof. Multiplying (2) by ρv we have

1

2
∂t‖v‖2L2

ρ
= −

∫
R
ρv(1 + ∂2

x)2vdx+ ν‖v‖2L2
ρ

+

∫
R
ρv(f(v + z)− f(z))dx

≤ −η0‖v′′‖2L2
ρ

+ Cη0‖v‖2L2
ρ

+ ν‖v‖2L2
ρ
− Cδz2‖v‖2L2

ρ
− δ‖v‖4L4

ρ
.

This implies

1

2
∂t‖v‖2L2

ρ
+

1

2
‖v‖2L2

ρ
+ η0‖v′′‖2L2

ρ
+ Cδz

2‖v‖2L2
ρ

+ δ‖v‖4L4
ρ

≤ (Cη0 + ν +
1

2
)‖v‖2L2

ρ
.

With Cν,η0,δ = (2ν + Cη0 + 1)2/8δ we obtain

∂t‖v‖2L2
ρ

+ ‖v‖2L2
ρ

+ 2η0‖v′′‖2L2
ρ

+ 2Cδz
2‖v‖2L2

ρ
+ δ‖v‖4L4

ρ
≤ 2Cν,η0,δ‖ρ‖L1 , (7)

and thus Grönwall’s lemma yields the following inequality for all s ≥ 0,

‖v(s, ω, v0(ω))‖2L2
ρ
≤ e−s‖v0(ω)‖2L2

ρ
+ 2Cν,η0,δ‖ρ‖L1

∫ s

0

e−(s−τ)dτ

≤ e−s‖v0(ω)‖2L2
ρ

+ 2Cν,η0,δ‖ρ‖L1 .

(8)

This implies (5). For (6), we replace ω by θ−tω with t ≥ 0 to obtain

‖v(t, θ−tω, v0(θ−tω))‖2L2
ρ
≤ e−t‖v0(θ−tω)‖2L2

ρ
+ 2Cν,η0,δ‖ρ‖L1 .

As B is a tempered set and v0 ∈ B, there exists T0(B,ω) > 0 such that for all
t ≥ T0,

‖v(t, θ−tω, v0(θ−tω))‖2L2
ρ
≤ e−t‖v0(θ−tω)‖2L2

ρ
+ 2Cν,η0,δ‖ρ‖L1

≤ 1 + 2Cν,η0,δ‖ρ‖L1 := r2
1 .

(9)

�
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4.2. Additional regularity. Here we establish additional regularity in addition
to the L2

ρ-boundedness in the pull-back sense, which is necessary in the proof of
existence of a compact absorbing set.

Lemma 4.2. Under the assumptions of Lemma 4.1 the solution v of (4) satisfies
for all ω ∈ Ω and all t ≥ 0∫ t+1

t

‖v′′(s, ω, v0(ω))‖2L2
ρ
ds ≤ 1

2η0
[e−t‖v0(ω)‖2L2

ρ
+K],

and ∫ t+1

t

‖v′(s, ω, v0(ω))‖2L2
ρ
ds ≤ (2C2η0 + 2η0 + 1)

4η0
· [e−t‖v0(ω)‖2L2

ρ
+K].

Moreover, for all tempered sets B of initial conditions we have the following esti-
mates for all t > T1 := T0 + 1 :∫ t+1

t

‖v′′(s, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ
ds ≤ 5r2

1

2η0
,

and ∫ t+1

t

‖v′(s, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ
ds ≤ 5(2C2η0 + 2η0 + 1)

4η0
· r2

1.

Proof. We start with (7). Integrating the inequality from t to t+ 1 and neglecting
some positive terms on the left hand side yields for t > T0 + 1∫ t+1

t

‖v(s, ω, v0(ω))‖2L2
ρ
ds+ 2η0

∫ t+1

t

‖v′′(s, ω, v0(ω))‖2L2
ρ
ds

≤ ‖v(t, ω, v0(ω))‖2L2
ρ

+ 2Cν,η0,δ‖ρ‖L1

≤ e−t‖v0(ω)‖2L2
ρ

+K ,

(10)

where we used inequality (5). This gives the first bound.
In order to bound the L2

ρ-norm, we consider once again (8). Replacing ω by
θ−t−1ω and s by t we derive the following inequality:

‖v(t, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ
≤ e−t‖v0(θ−t−1ω)‖2L2

ρ
+ 2Cν,η0,δ‖ρ‖L1

≤ e · e−t−1‖v0(θ−t−1ω)‖2L2
ρ

+ 2Cν,η0,δ‖ρ‖L1

≤ 4r2
1,

(11)

for t > T0 + 1, where we used (6) from Lemma 4.1 and the definition of r1.
Substituting in (10) ω with θ−t−1ω yields∫ t+1

t

‖v(s, θt−1ω, v0(θ−t−1ω))‖2L2
ρ
ds+ 2η0

∫ t+1

t

‖v′′(s, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ
ds

≤ ‖v(t, ω, v0(θ−t−1ω))‖2L2
ρ

+ 2Cν,η0,δ‖ρ‖L1

≤ 5r2
1 ,

where we used the bounds (11) and (9). This implies the first claim.
For the bound on the H1

ρ -norm we use that, by interpolation (1) and Young’s
inequality,

‖v′‖2L2
ρ
≤ C2 + 1

2
‖v‖2L2

ρ
+

1

2
‖v′′‖2L2

ρ
≤ max{C2 + 1

2
,

1

4η0
}(‖v‖2L2

ρ
+ 2η0‖v′′‖2L2

ρ
) .

Thus using (10) we can conclude∫ t+1

t

‖v′(s, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ
ds ≤ 5r2

1 max{C2 + 1

2
,

1

4η0
} . �
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4.3. Absorbing set bounded in H1
ρ . We prove now that there is an L2

ρ-absorbing

set, which is bounded in H1
ρ .

Lemma 4.3. There is a constant C such that for all ω ∈ Ω and all t ≥ 0

‖v(t+ 1, ω, v0(ω))‖2H1
ρ
≤ C[e−t‖v0(ω)‖2 + 1] .

Moreover, there exists a deterministic radius r2 such that for every tempered set
B = {B(ω) : ω ∈ Ω} ∈ D of initial conditions v0(ω) ∈ B(ω), we obtain that for all
t > T1, with T1 the random time from Lemma 4.2,

‖v(t, θ−tω, v0(θ−tω))‖H1
ρ
≤ r2 .

Proof. It is enough to consider the norm ‖v′‖2L2
ρ
. Differentiating this and using (4)

yields

1

2

d

dt
‖v′‖2L2

ρ
= 〈v′, ∂tv′〉L2

ρ

= −〈(1 + ∂2
x)2v′, ρv′〉L2 + ν‖v′‖L2

ρ
+ 〈(f(v + z)− f(z))′, ρv′〉L2 .

Now Lemma 2.1 implies

−〈(1 + ∂2
x)2v′, ρv′〉L2 ≤ −η0‖v′′′‖2L2

ρ
+ Cη0‖v′‖2L2

ρ
.

For the nonlinear term,

〈(f(v + z)− f(z))′, ρv′〉L2 = −
∫
R
ρ(3z2v + 3zv2 + v3)′v′ dx

= −3z2

∫
R
ρv′2 dx−

∫
R

6zρvv′2 dx− 3

∫
R
ρv2v′2 dx

≤ 0 .

Then we have for every ω ∈ Ω,

1

2

d

dt
‖v′‖2L2

ρ
+ η0‖v′′′‖2L2

ρ
≤ (Cη0 + ν)‖v′‖2L2

ρ
.

Integrating the inequality first w.r.t. time over (s, t+ 1) yields

‖v′(t+ 1, ω, v0(ω))‖2L2
ρ
≤ ‖v′(s, ω, v0(ω))‖2L2

ρ

+ (Cη0 + ν)

∫ t+1

s

‖v′(τ, ω, v0(ω))‖2L2
ρ
dτ,

and integrating now w.r.t. s over [t, t+ 1] we obtain

‖v′(t+ 1, ω, v0(ω))‖2L2
ρ
≤ (Cη0 + ν + 1)

∫ t+1

t

‖v′(τ, ω, v0(ω))‖2L2
ρ
dr .

Now Lemma 4.2 yields the first claim.
For the second claim, replacing ω by θ−t−1ω, we have for t > T1, the random

time from Lemma 4.2:

‖v′(t+ 1, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ

≤ (Cη0 + ν + 1)

∫ t+1

t

‖v′(s, θ−t−1ω, v0(θ−t−1ω))‖2L2
ρ
dr

≤ 5(2Cη0 + 2ν + 1)(C2η0 + η0 + 1)

4η0
r2
1 := r2

2. �
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4.4. Uniform integrability. In order to prove the compactness of our absorbing
set, we prove first uniform integrability. Therefore, we use a cut-off function. Let
ϕ(·) ∈ C∞(R) be symmetric such that 0 ≤ ϕ(s) ≤ 1 for all s ∈ R and

ϕ(s) =

0 for |s| ≤ 1 ,

1 for |s| ≥ 2 .

Now let us define ϕr(x) = ϕ(x/r) for r ≥ 1.

Lemma 4.4. Let v be the solution of (4). Then for any ε > 0, there exist a
deterministic Rε ≥ 1, a deterministic time Tε ≥ 1 and some constant C > 0 such
that for t ≥ Tε and r ≥ Rε and all ω ∈ Ω

‖ϕrv(t, ω, v0(ω))‖2L2
ρ
≤ C(t+ 1)e−t‖v0(ω)‖2L2

ρ
+

1

2
ε .

Moreover, for any tempered set B = {B(ω) : ω ∈ Ω} ∈ D and solutions starting in
v0(ω) ∈ B(ω), there exists a random time T3 depending also on B and ε such that
for all t > T3 and r > Rε∫

|x|>r
ρ|v(t, θ−tω, v0(θ−tω))(x)|2 dx ≤ ε.

Proof. We consider the L2
ρϕ2

r
-norm of v, we differentiate it and by (4) we get

1

2

d

dt
‖ϕrv‖2L2

ρ
= 〈−(1 + ∂2

x)2v, ϕ2
rv〉L2

ρ
+ ν‖ϕrv‖2L2

ρ
+ 〈f(v+ z)− f(z), ϕ2

rv〉L2
ρ
. (12)

We now bound each term on the right hand side separately. First we obtain for the
quadratic form of the differential operator

〈−(1 + ∂2
x)2v, ϕ2

rv〉L2
ρ

= 〈−(1 + ∂2
x)2(ϕrv), ϕrv〉L2

ρ
+ I1 ,

where

I1 = 〈v(2∂2
x + ∂4

x)ϕr, ϕrv〉L2
ρ

+

∫
R
(2ρϕrvv

′∂xϕr + 6ρϕrvv
′′∂2
xϕr + 4ρϕrvv

′∂3
xϕr + 4ρϕrvv

′′′∂xϕr)dx .

From Lemma 2.1 we obtain

〈−(1 + ∂2
x)2(ϕrv), ϕrv〉L2

ρ
≤ −η0‖(ϕrv)′′‖2L2

ρ
+ Cη0‖ϕrv‖2L2

ρ
.

It now remains to bound all terms in I1, where all contributions will be small in r.
First,

|〈v(2∂2
x + ∂4

x)ϕr, ϕrv〉L2
ρ
| ≤ C

r
‖v‖2L2

ρ
,

where we used that all derivatives of ϕr are bounded uniformly in x by O(r−1),
as r ≥ 1. For the remaining terms in I1, we can argue similarly, using integration
by parts and the fact that derivatives of ρ are bounded by O(ρ). After some
calculations we obtain:∣∣∣∣∣

∫
R
(2ρϕr∂xϕr + 4ρϕr∂

3
xϕr) vv′︸︷︷︸

= 1
2 (v2)′

dx

∣∣∣∣∣ ≤ C

r
‖v‖2L2

ρ
.

Moreover, ∣∣∣∣∣
∫
R
ρϕr∂

2
xϕr · vv′′ dx

∣∣∣∣∣ ≤ C

r
[‖v′‖2L2

ρ
+ ‖v‖2L2

ρ
],
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and using that 2v′v′′ = ((v′)2)′ finally we have∣∣∣∣∣
∫
R
ρϕr∂xϕr · vv′′′ dx

∣∣∣∣∣ ≤ C

r
[‖v′‖2L2

ρ
+ ‖v‖2L2

ρ
] .

Thus the final result for the quadratic form is

〈−(1 + ∂2
x)2v, ϕ2

rv〉L2
ρ
≤ −η0‖(ϕrv)′′‖2L2

ρ
+ Cη0‖ϕrv‖2L2

ρ
+
C

r
‖v′‖2H1

ρ
.

For the nonlinear term we obtain from Lemma 2.2 with Cδ = 3− 9
4(1−δ) > 0

〈f(v + z)− f(z), ϕ2
rv〉L2

ρ
= 〈f(v + z)− f(z), v〉L2

ρϕ2
r

≤ −Cδz2

∫
R
ϕ2
rρv

2 dx− δ
∫
R
ϕ2
rρv

4 dx .

Combining the previous two inequalities with (12) yields

1

2

d

dt
‖ϕrv‖2L2

ρ
+

1

2
‖ϕrv‖2L2

ρ
+ η0‖(ϕrv)′′‖2L2

ρ
+ Cδz

2

∫
R
ϕ2
rρv

2 dx+ δ

∫
R
ϕ2
rρv

4

≤ (Cη0 +
1

2
)‖ϕrv‖2L2

ρ
+
C

r
‖v‖2H1

ρ
.

Using Young’s inequality, we get rid of the L2
ρ-norm on the right hand side:

1

2

d

dt
‖ϕrv‖2L2

ρ
+

1

2
‖ϕrv‖2L2

ρ
+ η0‖(ϕrv)′′‖2L2

ρ
+ Cδz

2

∫
R
ϕ2
rρv

2 dx+
δ

2

∫
R
ϕ2
rρv

4

≤ 2K0‖ϕ2
rρ‖L1 +

C

r
‖v‖2H1

ρ
,

where we defined K0 = (2Cη0 + 1)2/4δ. We finally conclude

d

dt
‖ϕrv‖2L2

ρ
+ ‖ϕrv‖2L2

ρ
≤ K0‖ϕ2

rρ‖L1 +
C

r
‖v‖2H1

ρ
.

We now use Lemma 4.1 and Lemma 4.2 to proceed. Applying comparison principle
for ODEs we obtain for t ≥ 0 (the constant C might be different in different places)

‖ϕrv(t+ 1, ω, v0(ω))‖2L2
ρ
≤ e−t‖ϕrv(1, ω, v0(ω))‖2L2

ρ
+K0‖ϕ2

rρ‖L1

+
C

r

∫ t

0

e−(t−s)‖v(s+ 1, ω, v0(ω))‖2H1
ρ
ds

≤ e−t[e−1‖v0(ω)‖2L2
ρ

+K] +K0‖ϕ2
rρ‖L1 +

C

r
[te−t‖v0(ω)‖2 + 1].

Note furthermore that

‖ϕ2
rρ‖L1 ≤

∫
|x|>r

ρ(x)dx→ 0, as r →∞ ,

thus for any ε > 0, there exist a deterministic Rε ≥ 1 and a deterministic time
Tε ≥ 1 such that for t ≥ Tε and r ≥ Rε we have

‖ϕrv(t, ω, v0(ω))‖2L2
ρ
≤ C(t+ 1)e−t‖v0(ω)‖2L2

ρ
+

1

2
ε,

for some constant C > 0.
For the final claim, replacing ω by θ−tω and noting that v0 is in a tempered set,

we obtain the existence of a random time T3 (depending on ε) such that

‖ϕrv(t, θ−tω, v0(θ−tω))‖2L2
ρ
≤ ε for all t ≥ T3. �
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4.5. Random attractor. We could now prove the existence for a random attractor
for (4) both forward and backward in time, but we directly aim for the random
attractor for (2). Note that we have the following transformation, such that for
each t ≥ 0 and ω ∈ Ω

u(t, ω, u0) = v(t, ω, u0 − z(ω)) + z(θtω) . (13)

Suppose B = {B(ω) : ω ∈ Ω} is a tempered family of non-empty subsets of L2
ρ.

Given B we define the family B̃ by

B̃(ω) = {w ∈ L2
ρ : ‖w‖2L2

ρ
≤ 2 · diamL2

ρ
(B(ω))2 + 2|z(ω)|2} .

The following properties hold:

• if B is tempered, then also B̃ is tempered (because z(ω) is tempered);

• if u(θ−tω) ∈ B(θ−tω), then v(θ−tω) = u(θ−tω)− z(θ−tω) ∈ B̃(θ−tω).

Hence, we obtain estimates for u immediately from (13) and the corresponding
bounds for v.

Lemma 4.5. There exists a deterministic radius r > 0 such that for all tempered
B = {B(ω) : ω ∈ Ω} and u0 ∈ B(ω) there is a a random time T such that for all
t > T the solution of (2) satisfies

‖u(t, θ−tω, u0(θ−tω))‖H1
ρ
≤ r2 + |z(ω)| .

Lemma 4.6. For any ε > 0 there is a random R = R(ω, ε) ≥ 1 such that for any
tempered sets B = {B(ω) : ω ∈ Ω} and initial conditions u0 ∈ B(ω) there exists a
random time T = T (ω, ε,B) such that for all t > T and r > R, the solution of (2)
satisfies ∫

|x|>r
ρ|u(t, θ−tω, u0(θ−tω))(x)|2dx ≤ ε.

In contrast to Lemma 4.4, the radius R is now random, as we need that

|z(ω)|2
∫
|x|>r

ρdx ≤ ε.

We can now formulate the compactness result for the RDS given by (2).

Theorem 4.7. The RDS (θ, φ) generated by (2) is asymptotically compact in L2
ρ.

This means that for every ω ∈ Ω, every tempered set B = {B(ω) : ω ∈ Ω}, sequence
tn →∞, and initial conditions un(ω) ∈ B(ω), the sequence u(tn, θ−tnω, un(θ−tnω))
has a convergent subsequence in L2

ρ.

Proof. Fixed ω ∈ Ω we need to show that the sequence

Un(ω) = u(tn, θ−tnω, u0,n(θ−tnω))

is relatively compact (or totally bounded), i.e. for every ε > 0 it has a finite covering
of balls of radii less than ε.

By Lemma 4.6 there exists R and N such that for all n ≥ N ,

‖Un‖L2
ρ(R\QR) ≤ ε where QR = {x ∈ R : |x| ≤ R}.

On the other hand, by Lemma 4.5 there exists N? ≥ N such that for all n ≥ N?,
‖Un‖H1

ρ(QR) ≤ r + |z(ω)| .

Using the compact embedding of H1
ρ(QR) into L2

ρ(QR), the sequence Un is precom-

pact in L2
ρ(QR), and thus has a finite covering in L2

ρ(QR) of balls of radii less than
ε.

Combining both parts, Un has a finite covering of ball of radii less than 2ε in
L2
ρ(R). �
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From Theorem 4.7 and Lemma 4.5, we can use Theorem 3.11 to obtain the
existence of the pull-back attractor.

Theorem 4.8. The RDS (θ, φ) generated by (2) has a unique pull-back attractor
A in L2

ρ.

4.6. Generalizations. The result on existence of random attractor stated in The-
orem 4.8 in the setting of the Swift-Hohenberg equation holds in a much more
general setting. We state a few remarks about the modifications necessary in the
arguments for such generalizations.

Remark 4.9 (Linear Operator). For the linear operator A = p(−∆) we could
consider other functions p of the Laplacian ∆, and even odd derivatives of lower
order. The main estimate we need to establish is the key result of Lemma 2.1. But
we do not need non-negativity of the operator. We mainly need for some k > d/2,
where d is the dimension of the underlying domain, that there are constants c, C > 0
such that

〈Av, v〉L2
ρ
≤ −c‖v‖2Hkρ + C‖v‖2L2

ρ
.

This should hold in the case of the function p being bounded from above on [0,∞)
with sufficiently fast growth at infinity, like an even polynomial with negative leading
order coefficients.

Remark 4.10 (Nonlinearity). We mainly treat the stable cubic −u3 in all our
examples. It is essential that the nonlinearity induces a stronger non-linear stability
in Lp-spaces, but we are not restricted to the cubic. It should be a straightforward
generalization to use the whole machinery for general nonlinearities f : R → R,
where f(u) ∼ −u|u|p−2 for some p > 2 and large u → ±∞. So, for example, any
polynomial of odd degree with negative leading coefficient should be possible.

Remark 4.11 (Higher dimension). All the results presented so far treat the one-
dimensional case, but the results do generalize to higher dimensions. In the case
of x ∈ R2 for the Swift-Hohenberg setting of (2), we could also obtain the exis-
tence of random attractor in L2

ρ, as most estimates for the linear operator and the
nonlinearity do not rely on the dimension.

Let us remark that the existence result needs a Sobolev embedding of the Hk-
space, controlled by the linear operator, into C0-spaces at least locally on bounded
domains. So here we might need a restriction to lower dimensions.

Remark 4.12 (General Noise). It is non trivial to consider general additive noise,
as in some estimates we explicitly rely on the scalar nature of the stationary solution
z. Moreover, in our case we can rely on well-known SDE results for z, which are
not easily established in the case of general additive noise given for instance by
the derivative of a Q-Wiener process. It is not straightforward to establish results,
especially, when the noise is translation-invariant (i.e. spatially stationary); even
the existence of stationary solutions does not seem to be established yet, although it
should be possible by adapting standard results.

For the existence of RDS and random attractors in the general noise case, one
would consider z only as the stationary solution of the stationary stochastic con-
volution, i.e. the Ornstein-Uhlenbeck process solving the linearised SPDE. But this
would require changes to many of the estimates presented here.

5. Size of attractor for deterministic PDE

In this section, we consider σ = 0 and state some results and conjectures on the
size of the deterministic attractor for ν > 0. We provide straightforward bounds
on the diameter of the attractor in L2

ρ and discuss lower bounds on the dimension,
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which should be high dimensional for ν > 0 as an infinite band of eigenvalues
changes stability.

For the discussion we restrict ourselves to the case

∂tu = Au+ νu− u3, (14)

posed on R where A = −(1 + ∂2
x)2 or A = −∂4

x. Let us first remark that the
existence of a deterministic attractor in the space L2

ρ follows analogously to the
estimates presented in the previous sections with z = 0, as we never used that the
noise is non-zero.

Let us first state, as a conjecture without proof, why we think that the attractor
is infinite dimensional.

Remark 5.1 (High dimensional attractor). In the case of ν > 0 and no noise
(i.e., σ = 0), a bifurcation analysis of the PDE (14) posed on [0, L] with periodic
boundary conditions shows, that there is a continuous interval I = I(ν) ⊂ R of
periods such that for all L ∈ I there is a non-trivial L-periodic stationary solution
that has no smaller periodicity.

As all these stationary solutions are in L2
ρ for an integrable weight ρ, the de-

terministic attractor for the PDE posed in L2
ρ contains for ν > 0 immediately

uncountably many stationary solutions. Moreover, all translations of such periodic
solutions are again stationary solutions.

In the Swift-Hohenberg case the set I is an interval around 2π, while for A = −∂4
x

it is of the type I = [L0,∞).

But the attractor does not only contain periodic solutions. Here we restrict to
the second example, as for Swift-Hohenberg there are constant stationary solutions
only if ν > 1.

Remark 5.2 (Spatial heteroclinic). Consider the PDE (14) with A = −∂4
x, and

suppose for the weight ρ > 1, so that constants are in L2
ρ. It should be possible,

at least for small ν, to show that there is also at least one heteroclinic solution
of the scalar ODE ∂4

xu = νu − u3 connecting the fixed-points ±√µ ∈ R via the
unstable fixed-point 0. This defines a non-periodic stationary solution of our PDE,
again with the property that all translations are again stationary solutions. So the
attractor contains an infinitely long continuous curve of stationary solutions that
connects the spatially constant solutions u = ±√µ ∈ L2

ρ.

Let us finally state an observation on the diameter of the random attractor in L2
ρ.

For ν > 0 and no noise (i.e., σ = 0) in case of A = −∂4
x it is a simple observation

that the constant solutions ±
√
ν are in the attractor. Thus in L2

ρ the diameter of
the attractor is bounded from below by

2
√
ν‖ρ‖1/2L1 ∼ C

√
ν/c.

But we believe that for Swift-Hohenberg a similar bound is true by restricting to
2π-periodic solutions. For any ν > 0 we find a stationary 2π-periodic solution of
(14) with L2[0, 2π]-norm of the order

√
ν.

From (7) for Swift-Hohenberg we can get an upper bound of the type:

‖v‖4L2
ρ
≤ C 1

δ2
(η2

0 + ν2)‖ρ‖2L1 ∼ C
1

δ2c2
(c4 + ν2) .

But a similar result holds true in the case of A = −∂4
x. Thus we obtain the final

result, which we state as a conjecture, as we did not prove it in detail.

Remark 5.3 (Diameter of the attractor). For ν > 0 and no noise (i.e., σ = 0)
if we consider small constants c > 0 in the definition of the weight ρ, then we
conjecture that the diameter of the attractor scales like

√
ν/c.
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6. Stabilization

In this section we present the main results on stabilization. We will need the
following assumption

Assumption 6.1. There are constants η > 0 and Cδ > 0 such that for all v ∈ L2
ρ

and z ∈ R
〈v,Av〉L2

ρ
≤ η‖v‖2L2

ρ
,

and
〈f(v + z)− f(z), v〉L2

ρ
≤ −Cδz2‖v‖2L2

ρ
.

This assumption is for example satisfied (using Lemmas 2.1 and 2.2) for Swift-
Hohenberg with A = −(1 + ∂2

x)2 + ν and f(u) = −u3. We can also treat a second
example with A = −∂4

x + ν where, in contrast to Swift-Hohenberg, the bifurcating
mode is forced directly.

Theorem 6.2. Suppose (2) generates a RDS in L2
ρ and let z be the unique sta-

tionary solution from Subsection 3.4. Under assumption 6.1, if Ez2 > η/Cδ then
the random attractor in L2

ρ is a single point given by the stationary solution z.

Proof.

1

2
∂t‖v‖2 = 〈v,Av〉L2

ρ
+ 〈f(v + z)− f(z), f(v)〉L2

ρ

≤ η‖v‖2L2
ρ
− δz2‖v‖2L2

ρ

Thus by Grönwall’s inequality

‖v(t)‖2L2
ρ
≤ ‖v(0)‖2L2

ρ
exp{ηt− δ

∫ t

0

z2ds}

Now the claim follows by Birkhoff’s theorem, as

1

t

∫ t

0

z2ds→ Ez2 for t→∞ .

�

We can now use this result to determine the regime, where the stationary solution
of Swift-Hohenberg equation is globally stable and thus stabilization sets is. We
need to calculate the expected value Ez2. This will be done via Fokker-Planck in
Section 6.1.

Remark 6.3. Let us remark that on bounded domains is is possible to study also
local stability of the stationary solution in H1, which holds true under a weaker
condition. But on unbounded domains this fails, as we cannot bound the remaining
term z

∫
ρvv2

xdx by powers of the H1
ρ -norm.

Let us finally state a straightforward generalization to general additive noise.
Consider the following SPDE

du = [Au+ f(u)]dt+ dW, (15)

for some general Q-Wiener process W .

Assumption 6.4. Suppose that (15) generates a RDS in L2
ρ with sufficiently

smooth solutions. Furthermore, let Z be a stationary ergodic solution of

dZ = [AZ + f(Z)]dt+ dW,

and suppose that there is a constant Cδ > 0 such that for all v ∈ L4
ρ

〈f(v + Z)− f(Z), v〉L2
ρ
≤ −Cδ‖Zv‖2L2

ρ
.
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We remark without proof that this assumption is true in case of Swift-Hohenberg
with the stable cubic f(u) = −u3. To generate a RDS one needs some regularity
of the Wiener process W .

Define for the random variable Z the maximum of the numerical range by

Λ(Z) = sup
‖v‖2

L2
ρ

=1

{〈v, (A− CδZ2)v〉L2
ρ
} .

Theorem 6.5. Under Assumption 6.4, if EΛ(Z) < 0, then the random attractor
in L2

ρ is a single point given by the stationary solution Z.

The proof is similar to Theorem 6.2 using Grönwall’s lemma and Birkhoff’s
theorem.

6.1. Fokker-Planck. In the setting of Theorem 6.2 we can explicitly calculate the
expected value Ez2. The density p of the stationary process z corresponding to the
SDE (3) solves the Fokker-Planck equation

1

2
σ2p′′ + [(ζ3 − λζ)p]′ = 0 .

This has the explicit solution

p(ζ) =
1

CN
exp{−(ζ4 − 2λζ2)/2σ2},

with normalization constant

CN =

∫
R

exp{−(ζ4 − 2λζ2)/2σ2}dζ .

Thus we obtain

Ez2 =

∫
R ζ

2 exp{−(ζ4 − 2λζ2)/2σ2}dζ∫
R exp{−(ζ4 − 2λζ2)/2σ2}dζ

. (16)

In the following, in our examples, we evaluate (16) either asymptotically for small
σ or numerically for medium range σ. We expect that in the example of Swift-
Hohenberg with λ < 0, the point 0 is deterministically stable in (3) with exponential
rate λ. Thus we expect Ez2 ∼ σ2/|λ| for σ small, which is the typical scaling of
an OU-process. We will treat this in our first example and quantify the amount
of noise necessary to stabilize the equation, i.e. to destroy the random attractor so
that it collapses to a single point.

In contrast to that, for λ > 0 we expect that the limit limσ→0 Ez2 exists and
it is a λ-dependent positive constant. This is due to the fact that solutions of (3)

for small σ concentrate around the two deterministic points ±
√
λ. But we will see

later in our second example with A = −∂4
x + ν that this is still not sufficient for

proving stabilization for arbitrarily small noise. Again, we need the noise to be
strong enough.

6.2. Result for Swift-Hohenberg. In our examples we have to check the require-
ments for Theorem 6.2 and Assumption 6.1. For Swift-Hohenberg, Lemma 2.1 tells
us that

η = ν +O(c2) and λ = −1 + ν

if the constant c in the weight ρ is small enough (recall that ρ→ 1 for c→ 0).
Lemma 2.2 yields with δ ∈

(
0, 1

4

)
Cδ = 3− 9

4(1− δ)
=

3

4
+O(δ) .

Our first result is the following:
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Proposition 6.6. Consider the setting of Swift-Hohenberg, as in (2), with ν ∈
(0, 1) and suppose that

ν <
3

2
σ2 and σ � 1− ν .

Then we can choose 0 < c � 1 in the weight and the constant in the nonlinear
estimate 0 < δ � 1 both sufficiently small such that stabilization holds in L2

ρ.

Proof. We first notice that for c and δ sufficiently small by Theorem 6.2 stabilization
holds in case ν < 3

4Ez
2. Using then the change of variables y = 1√

1−ν z, the

condition for stabilization becomes Ey2 > 4
3

ν
1−ν . Let us define, for ease of notation,

σν = σ
1−ν . From (16) we obtain

Ey2 =

∫
R
y2e
− 1

8σ2ν
(y2+1)2

dy

/∫
R
e
− 1

8σ2ν
(y2+1)2

dy

= e
− 1

8σ2ν

∫
R
y2e
− 1

8σ2ν
y2(y2+2)

dy

/
e
− 1

8σ2ν

∫
R
e
− 1

8σ2ν
y2(y2+2)

dy

= σ2
ν

∫
R
w2e−

1
8w

2(σ2
νw

2+2)dw

/∫
R
e−

1
8w

2(σ2
νw

2+2)dw.

Now we can observe that σ2
νz

2 + 2 ≈ 2 for σ2
νz

2 � 2 that is z2 � 2σ−2
ν . So let us

fix α ∈ (0, 1) to cut out the exponentially small tails in the integral:∫
R
w2e−

1
8w

2(σ2
νw

2+2)dw =

∫ σ−αν

−σ−αν
w2e−

1
4w

2(1+O(σ2−2α
ν ))dw +O(e−cσ

−2α
ν )

=

∫
R
w2e−

1
4w

2(1+O(σ2−2α
ν ))dw +O(e−cσ

−2α
ν )

= 4
√
π(1 +O(σ2−2α

ν ))−
3
2 +O(e−cσ

−2α
ν ) ,

where we calculated explicitly the Gaussian integral. Similarly for the denominator∫
R
e−

1
8w

2(σ2
νw

2+2)dw = 2
√
π(1 +O(σ2−2α

ν ))−
1
2 +O(e−cσ

−2α
ν ) .

Thus we obtain

Ey2 = 2σ2
ν

(1 +O(σ2−2α
ν ))−

3
2 +O(e−cσ

−2α
ν )

(1 +O(σ2−2α
ν ))−

1
2 +O(e−cσ

−2α
ν )

= 2σ2
ν(1 +O(σ2−2α

ν )).

Now we can re-substitute and rewrite the condition for stability as

ν(1− ν) <
3

2
σ2(1 +O(σ2−2α

ν )).

Note that the previous conditions are only satisfied if also ν is small, thus we can
simplify to ν < 3

2σ
2. �

If we compare this result with the one in [20], we have that for ν close to 0, the
two are quite similar, requiring a noise strength such that ν < 3

2σ
2. But this is

just the asymptotic evaluation of our result. In Figure 1 we see various curves of
the function σ 7→ 3

4Ez
2/ν corresponding to the stability condition for different ν.

We see that once σ is sufficiently large, stabilization sets in. In Figure 2 we see the
various values of the noise-strength σ after which stabilization sets in as a function
of ν.
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Figure 1. The function σ 7→ 3
4Ez

2/ν for various values of ν. The
crosses indicate the point where the stability condition is an equal-
ity, while the circles indicate the prediction by the asymptotic for-
mula given by ν = 3

2σ
2.

6.3. A second example. In this second example we consider the setting of (2),
but now with A = −∂4

x + ν. Similar to Lemma 2.1, we obtain in this case

η = ν +O+(c2) and now λ = ν.

So we need in Theorem 6.2 that 3
4Ez

2 > ν. Substituting y(t) = ν−1/2z(tν−1) we
have

dy = (y − y3)dt+
σ

ν
dB,

and the stability condition changes to Ey2 > 4
3 .

Let us define σν = σ
ν , as well as

E(y) =
1

4
y4 − 1

2
y2 +

1

4
=

1

4
(y − 1)2(y + 1)2.

Then we have, for the second moment:

Ey2 =

∫
R y

2e−E(y)/2σ2
νdy∫

R e
−E(y)/2σ2

νdy
=

2
∫ +∞

0
y2e
− 1

8σ2ν
(y2−1)2

dy

2
∫ +∞

0
e
− 1

8σ2ν
(y2−1)2

dy

=

∫ +∞
−σ−1

ν
(σνy + 1)2e−

1
8y

2(σνy+2)2dy∫ +∞
−σ−1

ν
e−

1
8y

2(σνy+2)2dy
.
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Figure 2. A plot of the noise-strength σ after which stabilization
sets in as a function of ν.

Now yσν + 2 ≈ 2 for yσν � 1 (i.e., y � σ−1
ν ). We fix α ∈ (0, 1) to control the small

exponential tails:

Ey2 =

∫ σ−αν
−σ−αν

(σνy + 1)2e−
1
2y

2(1+O(σ1−α
ν ))2dy +O(e−cσ

−α
ν )∫ σ−αν

−σ−αν
e−

1
2y

2(1+O(σ1−α
ν ))2dy +O(e−cσ

−α
ν )

=

∫
R(σ2

νy
2 + 1)e−

1
2y

2(1+O(σ1−α
ν ))2dy +O(e−cσ

−α
ν )∫

R e
− 1

2y
2(1+O(σ1−α

ν ))2dy +O(e−cσ
−α
ν )

=

√
2π(1 +O(σ1−α

ν ))−1 + σ2
ν

√
2π(1 +O(σ1−α

ν ))−3 +O(e−cσ
−α
ν )

√
2π(1 +O(σ1−α

ν ))−1 +O(e−cσ
−α
ν )

=
1 + σ2

ν +O(σ1−α
ν ) +O(e−cσ

−α
ν )

1 +O(σ1−α
ν ) +O(e−cσ

−α
ν )

,

where we took advantage of 2σν being an odd function. Now it is easy to show
that stabilization sets in for sufficiently large noise strength, but our estimate is
not optimal here, because we cannot provide a sharp control of the error term.

Nevertheless, we conjecture that Ey2 = 1 + σ2
ν and thus for the condition on

stabilization we obtain σ2 > ν2/3.
In Figure 3 we see various curves of the function σ 7→ 3

4Ez
2/ν corresponding to

the stability condition for different ν. We see again that once σ is sufficiently large,
stabilization sets in. In Figure 2 we see the various values of the noise-strength σ
after which stabilization sets in as a function of ν.
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Figure 3. The function σ 7→ 3
4Ez

2/ν for various values of ν. The
crosses indicate the point where the stability condition is an equal-
ity, while the circles indicate the prediction by the asymptotic for-
mula conjectured to be ν =

√
3σ.

6.4. Comments on further examples. Many examples we tried have a similar
result than the two results presented here. For sufficiently large noise strength one
obtains stabilization. This is the case, when we replace the cubic with a stable
polynomial of higher odd degree like f(u) = −u|u|2p, p ∈ N.

If we consider ∂tu = −(∂2
x + µ)2u + νu − u3 + σ∂tβ we again obtain a result

similar to the one for Swift-Hohenberg, that is stabilization occurs for small ν. The
drawback in this setting is that the noise intensity σ has to satisfy the following
two conditions:

(ν − µ2)(
1

3
ν + µ2) < σ2 � ν − µ2.

Finally, another example one could think about is the following: ∂tu = ∂4
xu +

αu2 − u3, but in this case our approach never worked well, because our estimate is
always a little bit off.
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