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The Ventral Visual Pathway Represents Animal Appearance
over Animacy, Unlike Human Behavior and Deep Neural
Networks
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Recent studies showed agreement between how the human brain and neural networks represent objects, suggesting that we might start
to understand the underlying computations. However, we know that the human brain is prone to biases at many perceptual and cognitive
levels, often shaped by learning history and evolutionary constraints. Here, we explore one such perceptual phenomenon, perceiving
animacy, and use the performance of neural networks as a benchmark. We performed an fMRI study that dissociated object appearance
(what an object looks like) from object category (animate or inanimate) by constructing a stimulus set that includes animate objects (e.g.,
a cow), typical inanimate objects (e.g., a mug), and, crucially, inanimate objects that look like the animate objects (e.g., a cow mug).
Behavioral judgments and deep neural networks categorized images mainly by animacy, setting all objects (lookalike and inanimate)
apart from the animate ones. In contrast, activity patterns in ventral occipitotemporal cortex (VTC) were better explained by object
appearance: animals and lookalikes were similarly represented and separated from the inanimate objects. Furthermore, the appearance
of an object interfered with proper object identification, such as failing to signal that a cow mug is a mug. The preference in VTC to
represent a lookalike as animate was even present when participants performed a task requiring them to report the lookalikes as
inanimate. In conclusion, VTC representations, in contrast to neural networks, fail to represent objects when visual appearance is
dissociated from animacy, probably due to a preferred processing of visual features typical of animate objects.
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Introduction
A fundamental goal in visual neuroscience is to reach a deep

understanding of the neural code underlying object representa-

tions— how does the brain represent objects we perceive around
us? Over the years, research has characterized object representa-
tions in the primate brain in terms of their content for a wide
range of visual and semantic object properties such as shape, size,
or animacy (Konkle and Oliva, 2012; Nasr et al., 2014; Bracci and
Op de Beeck, 2016; Kalfas et al., 2017). More recently, our under-
standing of these multidimensional object representations has
been lifted to a higher level by the advent of so-called deep-
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Significance Statement

How does the brain represent objects that we perceive around us? Recent advances in artificial intelligence have suggested that
object categorization and its neural correlates have now been approximated by neural networks. Here, we show that neural
networks can predict animacy according to human behavior but do not explain visual cortex representations. In ventral occipi-
totemporal cortex, neural activity patterns were strongly biased toward object appearance, to the extent that objects with visual
features resembling animals were represented closely to real animals and separated from other objects from the same category.
This organization that privileges animals and their features over objects might be the result of learning history and evolutionary
constraints.
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convolutional neural networks (DNNs) that do not only reach
human behavioral performance in image categorization (Russa-
kovsky et al., 2014; He et al., 2015; Kheradpisheh et al., 2016a),
but also appear to develop representations that share many of the
properties of primate object representations (Cadieu et al., 2014;
Güçlü and van Gerven, 2014; Khaligh-Razavi and Kriegeskorte,
2014; Yamins et al., 2014; Güçlü and van Gerven, 2015; Kubilius
et al., 2016). This correspondence extends to the representation
of several object dimensions, such as shape properties (Kubilius
et al., 2016) and the distinction between animate and inanimate
objects (Khaligh-Razavi and Kriegeskorte, 2014). Therefore, the
availability of computational models that can mimic human recog-
nition behavior and neural information processing in its full com-
plexity offers exciting possibilities for understanding human object
vision (Kriegeskorte, 2015). Here, we provide an important test of
this similarity between artificial and biological brain representations
by focusing upon a particularly challenging organizing principle of
human ventral visual cortex: object animacy.

Perception of animacy has played an essential role through the
evolution and survival of our species. This dominant role of an-
imacy is evident in both bottom-up perceptually driven contexts
(Gao et al., 2009, 2010; Scholl and Gao, 2013), even after control-
ling for stimulus low-level visual properties (New et al., 2007), as
well as more high-level cognitive phenomena such as pareidolia,
in which animate objects (faces or animals) are most often per-
ceived in meaningless, random noise images (e.g., clouds). At the
neural level, our visual system includes specific neural mecha-
nisms with selectivity for animate entities, such as animals and
humans, relative to inanimate objects (Kanwisher et al., 1997;
Downing et al., 2001). What are the dimensions underlying ani-
macy percepts? One proposal suggests that animacy representa-
tions in visual cortex reflect the psychological dimension of
perceiving something as being a living entity (Caramazza and
Shelton, 1998; Tremoulet and Feldman, 2000; Gao et al., 2009).
Alternatively, animacy representations might be “not aware” of
object animacy per se but instead reflect stimulus visual aspects
such as appearance; that is, whether something looks like a living
entity or not. Here, we tested these two alternatives and investi-
gated whether the representation of animacy converges across
artificial and biological brains.

We explicitly dissociated object appearance (how an object
looks) from object category (what the object really is), two di-

mensions that are typically correlated in natural images, to test
whether (1) both biological and artificial brains represent ani-
macy in the same way and (2) animacy percepts reflect object
appearance or object category. We show that activity patterns in
visual cortex reflected animal appearance: a cow-shaped mug was
more similar to a cow as opposed to a mug. In contrast, DNNs
correctly categorized a cow mug as an inanimate object. As a
consequence, rather surprisingly, DNNs, which were never ex-
plicitly trained on animacy, outperform ventral occipitotemporal
cortex (VTC) representations in categorizing objects as being
animate or inanimate.

Materials and Methods
Participants
The study included 17 adult volunteers (9 males; mean age, 30 years).
Informed consent to take part in the fMRI experiment was signed by all
participants. The ethics committee of the KU Leuven approved the study.
For the fMRI experiment, due to excessive head motion, all data from
one participant were excluded. In addition, one run was excluded in two
participants and two runs were excluded in two other participants. The
head motion exclusion criterion was set to � 3 mm (equal to 1 voxel size)
and defined before data collection. For behavioral ratings, two partici-
pants were excluded due to technical problems during data collection.

Stimuli
The stimulus set included nine different triads (27 stimuli in total), each
containing the following: (1) one animal (e.g., a cow), (2) one object (e.g.,
a mug), and (3) one lookalike object that resembled the animal (e.g., a
cow-shaped mug; Fig. 1A). Critically, to dissociate object appearance
from object identity, each stimulus in the lookalike condition was
matched to the inanimate objects in terms of object identity and to the
animals in terms of animal appearance. That is, the lookalike and object
conditions shared the same object identity, size, and other object prop-
erties such as function and usage (e.g., the mug and the cow mug). At the
same time, the lookalike and animal conditions shared animal appear-
ance, but differed in animacy; the cow mug is an artifact whereas the cow
depicts a living animal. This stimulus set was used to acquire behavioral,
DNN, and neuroimaging data.

Experimental design
Behavioral data
Each participant rated all images (Fig. 1A) based on their general simi-
larity. Images were simultaneously rated on a screen within a circle arena
following the procedure of Kriegeskorte and Mur (2012). Participants

Figure 1. Experimental design. A, The stimulus set was specifically designed to dissociate object appearance from object identity. We included nine different object triads. Each triad included an
animal (e.g., butterfly), an inanimate object (e.g., earring), and a lookalike object closely matched to the inanimate object in terms of object identity and to the living animal in terms of object
appearance (e.g., a butterfly-shaped earring). B, During fMRI acquisition, participants performed two different tasks counterbalanced across runs. During the animacy task, participants judged
animacy: “does this image depict a living animal?” During the animal appearance task, participants judged animal resemblance: “does this image look like an animal?” Participants responded “yes”
or “no” with the index and middle finger. Responses were counterbalanced across runs. C, Model predictions represent the required response similarity in the two tasks. The animacy model predicts
high similarity among images that share semantic living/animate properties, thus predicting all inanimate objects (objects and lookalikes) to cluster together and separately from living animals.
Conversely, the animal appearance model predicts similarities based on visual appearance despite differences in object identity and animacy, thus predicting lookalikes and animals to cluster
together and separately from inanimate objects. The two models are independent (r � 0.07).
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were asked to “arrange the objects according to how similar they are,”
thus letting them be free to choose what they considered to be the most
relevant dimension/s to judge. The object dissimilarity space for behav-
ioral judgments was constructed by averaging results across participants.
Only the upper triangle of the dissimilarity matrix was used for subse-
quent analyses.

DNN data
To create the object dissimilarity space of our stimulus set, we used the
stimuli features that were extracted for the last processing stage (last fully
connected layer) of two DNNs, VGG-19 (Simonyan and Zisserman,
2014) and GoogLeNet (Szegedy et al., 2015), which is supposedly the best
candidate layer for VTC representations. As for behavioral data, only the
upper triangle of the dissimilarity matrix was used for subsequent anal-
yses. These DNNs are deep convolutional neural networks, which have
been very successful for object recognition tasks in the last few years.
They consist of various processing stages, which are often termed as
‘layers’ either individually or in groups, in a feedforward manner that
nonlinearly transform an input image volume (width, height, RGB
value) into a 1D vector containing the class scores.

These processing stages include: (1) convolutional layers, where a neu-
ron outputs the dot product between a kernel (its weights) and a small
region in the input it is connected to; (2) rectified linear unit activation
functions, such that the activations of a previous weight layer are thresh-
olded at zero [max(0, x)]; (3) max pooling layers performing a down-
sampling operation along the width and height of the input; and last (4)
fully connected layers (resembling a multilayer perceptron) that flatten
the previous stage’s volume and end up in a 1D vector with the same size
as the number of classes. A softmax function is then typically applied to
this last fully connected layer’s unit activations to retrieve class probabil-
ity scores for the classification task. In our experiments, we used the last
fully connected layer as the upper layer of the network and not the prob-
ability scores from applying the softmax function.

The two networks were trained on �1.2 million natural images be-
longing to 1000 classes for the ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012). The classes include �40% animals and
�60% objects, but the networks are not specifically trained to detect
animacy. We used the pretrained models from MatConvNet (http://
www.vlfeat.org/matconvnet/) (Vedaldi and Lenc, 2016) toolbox in
MATLAB. Before feature extraction, the mean of the ILSVRC2012 train-
ing images was subtracted from each image, as per the standards of
training for both of these DNNs. Furthermore, all stimuli were scaled to
224 � 224 pixels, in accordance with the requirements of the two
networks.

VGG-19. This DNN from Simonyan and Zisserman (2014) incorpo-
rates 16 convolutional layers in two blocks of two convolutional layers
and three blocks of four convolutional layers, followed by three fully
connected layers. A max pooling operation is applied after each of these
five convolutional layer blocks. All, except for the last (fc8), of these
weight layers are followed by a RELU function, where the activations are
thresholded at zero. A softmax function is then applied to the last fully
connected layer (fc8). The top-5 error rate performance of this pre-
trained MatConvNet model on the ILSVRC2012 validation data was
9.9%.

GoogLeNet. Google’s entry to ILSVRC2014 (Szegedy et al., 2015) made
use of the “inception” module, which is a technique used in early versions
of DNNs for pattern recognition in which a DNN uses several sizes of
kernels along with pooling concatenated within one layer, which is sim-
ilar to integrating all information about parts of the image (size, location,
texture, etc.). In addition, there is a softmax operation in multiple stages
of GoogLeNet, assisting the classification procedure during training
along the depth levels of the network. This MatConvNet pretrained
model was imported from the Princeton version, not by the Google team,
thus there is some difference in performance to other versions probably
due to parameter settings during training. The top-5 error rate perfor-
mance of this model on the ILSVRC2012 validation data was 12.9%.

fMRI data
Experimental design. We acquired neuroimaging data by means of an
event-related design in two separated sessions, each performed in sepa-

rated days with no more than 7 d between the first and second session.
Each session included six experimental runs as well as additional runs
with unrelated stimuli for another experiment (not reported here). The
stimuli presentation was controlled by a PC running the Psychophysics
Toolbox package (Brainard, 1997) in MATLAB (The MathWorks). Pic-
tures from the stimulus set were projected onto a screen and were viewed
through a mirror mounted on the head coil.

Each experimental run (12 in total) lasted 7 min and 14 ms (230
volumes per run). For each subject and for each run, a fully randomized
sequence of 27 image trials (repeated 4 times) and 9 fixation trials (re-
peated 4 times) was presented. Each trial was presented for 1500 ms,
followed by a fixation screen for 1500 ms. Each run started and ended
with 14 s of fixation. During the whole experiment, each stimulus was
repeated 48 times. While scanning, participants performed two different
tasks (Fig. 1B) counterbalanced across runs. During the animacy task,
participants judged animacy (“does this image depict a living animal?”).
During the appearance task, participants judged object appearance
(“does this image look like an animal?”). Participants responded “yes” or
“no” with the index and middle finger. Response-finger associations
were counterbalanced across runs.

Acquisition parameters. Imaging data was acquired on a 3T Philips
scanner with a 32-channel coil at the Department of Radiology of the
University Hospitals Leuven. MRI volumes were collected using echop-
lanar (EPI) T2*-weighted scans. Acquisition parameters were as follows:
repetition time (TR) of 2 s, echo time (TE) of 30 ms, flip angle (FA) of 90°,
field of view (FoV) of 216 mm, and matrix size of 72 � 72. Each volume
comprised 37 axial slices (covering the whole brain) with 3 mm thickness
and no gap. The T1-weighted anatomical images were acquired with an
MP-RAGE sequence, with 1 � 1 � 1 mm resolution.

Preprocessing. Imaging data were preprocessed and analyzed with the
Statistical Parametrical Mapping software package (SPM 12, Welcome
Department of Cognitive Neurology) and MATLAB. Before statistical
analysis, functional images underwent a standard preprocessing proce-
dure to align, coregister and normalize to an MNI (Montreal Neurolog-
ical Institute) template. Functional images were spatially smoothed by
convolution of a Gaussian kernel of 4 mm full width at half-maximum
(Op de Beeck, 2010). For each participant, a general linear model (GLM)
for both tasks was created to model the 27 conditions of interest and the
six motion correction parameters (x, y, z for translation and for rotation).
Each predictor’s time course was modeled for 3 s (stimulus presentation
� fixation) by a boxcar function convolved with the canonical hemody-
namic response function in SPM. We also analyzed data for each task
separately, for which purpose a GLM was created for each task separately.

Regions of interest (ROIs) definition. ROIs were defined at the group
level with a combination of functional and anatomical criteria. First, we
selected all visually active voxels (all stimuli versus baseline) that ex-
ceeded the statistical uncorrected threshold p � 0.001. Subsequently, we
selected all spatially continuous voxels within anatomical ROIs defined
with the Neuromorphometrics atlas in SPM. The following ROIs were
defined: V1 and VTC divided into its posterior (post-VTC) and anterior
(ant-VTC) sectors. These ROIs were chosen based on the important role
played by VTC in object representation and categorization (Grill-Spector
and Weiner, 2014). Importantly, no difference in mean response for
animals and objects was observed in our ROIs (post-VTC: p � 0.12;
ant-VTC: p � 0.65), showing that the ROIs were not biased toward either
animate or inanimate representations. Instead, significantly higher re-
sponse was observed for lookalikes relative to both animals and objects
( p � 0.001 for both conditions and ROIs). This higher response for
lookalikes is likely explained by taking into account task difficulty: re-
sponse latency for lookalikes was significantly longer in both tasks ( p �
0.0001, for both conditions).

Statistical analyses
Multivariate analyses were used to investigate the extent to which the two
experimental dimensions (object animacy and object appearance) ex-
plain representational content in behavioral, DNNs, and brain data (this
latter under different task conditions). For statistical tests, we took the
following approach. For DNN models, given that only one similarity
matrix for each model was available, statistical significance in the differ-
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ent analyses (e.g., representational similarity analysis) was tested across
stimuli with permutation tests. To be consistent, this approach was also
applied to the behavioral data (i.e., these two datasets were directly com-
pared). For neural data, instead, given that individual subject data was
available, we tested significance across subjects with ANOVAs and pair-
wise t tests. Whereas corrections for multiple comparisons were applied
for all analyses; for transparency, throughout the text, uncorrected
p-values are reported. However, when p-values did not survive correc-
tion, we have noted it in the text.

ROI-based RSA. As described previously (Op de Beeck et al., 2010), for
each voxel within a given ROI, parameter estimates for each condition
(relative to baseline) were extracted for each participant and each run
and normalized by subtracting the mean response across all conditions.
Subsequently, the dataset was divided 100 times into two random subsets
of runs (set-1 and set-2) and the voxel response patterns for each object
pair were correlated across these independent datasets. Correlations were
averaged across the 100 iterations, resulting in an asymmetric 27 � 27
correlation matrix for each task, participant and ROI. For each correla-
tion matrix, cells above and below the diagonal were averaged and only
the upper triangle of the resulting symmetric matrix was used in the
subsequent analyses (Ritchie et al., 2017). Correlation matrices were con-
verted into dissimilarities matrices (1 � Pearson’s r) and used as neural
input for subsequent analyses. Resulting correlations were Fisher trans-
formed {0.5*log[(1 � r)/(1 � r)]} and tested with ANOVAs and pairwise
t tests.

For each ROI, we computed an estimate of the reliability of the dissim-
ilarity matrices (Op de Beeck et al., 2008), which indicates the highest
expected correlation in a region given its signal-to-noise ratio. For each
subject and each ROI, the 27 � 27 correlation matrix was correlated with
the averaged correlation matrix of the remaining participants. The re-
sulting correlation values (averaged across participants) capture noise
inherent to a single subject as well as noise caused by intersubject vari-
ability.

Whole-brain RSA. In addition to ROI-based RSA, we performed a
whole-brain RSA correlating the two models (appearance, animacy) with
neural patterns throughout the brain. The whole-brain RSA performed
using the volume-based searching approach (Kriegeskorte et al., 2006)
was implemented with CoSMo MVPA (Oosterhof et al., 2016). Parame-
ter estimates for each condition (relative to baseline) were extracted for
each participant and each run and normalized by subtracting the mean
response across all conditions. Resulting values were then averaged
across all runs. For each voxel in the brain, a searchlight was defined using
a spherical neighborhood with a variable radius, including the 100 voxels
nearest to the center voxel. For each searchlight, the neural dissimilarity
matrix was computed for the 27 stimuli. The neural dissimilarity matrix
(upper triangle) was then correlated with the dissimilarity matrices de-
rived from the two predictive models (Fig. 1C). The output correlation
values were Fisher transformed and assigned to the center voxel of the
sphere. Resulting whole-brain correlation maps for each of the models
were directly contrasted and differences were tested using random-
effects whole-brain group analysis and corrected with the threshold-free
cluster enhancement (TFCE) method (Smith and Nichols, 2009).
Voxelwise-corrected statistical maps for each model relative to baseline
(z � 1.64; p � 0.05, one-sided t test) and the direct contrast between the
two predictive models (z � 1.94; p � 0.05, two-sided t test) are displayed
on a brain template by means of BrainNet Viewer (Xia et al., 2013).

Classification analysis. As a complementary analysis to correlation-
based MVPA, category discriminability and stimulus identity discrim-
inability were tested with linear discriminant analysis (LDA) by means of
the CoSMoMVPA toolbox (Oosterhof et al., 2016). For each condition
and ROI, classifiers were trained and tested on the � estimates using the
leave-one-run-out cross-validation method. Category discriminability
was tested with a three-way classification and values in the confusion
matrix were analyzed to test confusability between categories. That is,
even though a condition might be classified above chance, higher error
rates with another condition is indicative of higher similarity of their
representational spaces. Generalization across triads was tested with
leave-one-triad-out. Stimulus identity discriminability was tested
within-condition (e.g., discriminating a butterfly in the animal condi-

tion) and between-condition (generalization analysis), which tested the
ability of a classifier to match each item of a triad across conditions (for
lookalikes only). This latter analysis tests identity generalization of each
lookalike to its corresponding animal or its corresponding object.

Data and software availability
All types of brain images and statistics data are available from the authors
upon request. The data used for final statistics are made available through
the Open Science Framework at https://osf.io/k6qne/.

Results
We constructed a stimulus set to intentionally separate object
appearance from object identity, including: nine animals (e.g., a
cow), nine objects (e.g., a mug), and nine lookalike objects, which
consisted of objects (e.g., a cow mug) that were matched to the
inanimate objects in terms of object identity and to the animals in
terms of appearance. This resulted in a stimulus set of nine closely
matched triads, 27 stimuli in total (Fig. 1A). The mug and the cow
mug represent the same inanimate object, identical in many re-
spects (e.g., function, size, material, and manipulability) but their
appearance. Conversely, relative to the cow mug, the cow is a
living animal and despite shared visual features typical of ani-
mals, such as eyes, mouth, and limbs, differs in all the above
semantic and functional properties. With this stimulus design,
we dissociate the conceptual animate–inanimate distinction
from visual appearance (Fig. 1C). The two models are orthogonal
(r � 0.07).

DNNs and human perception privilege object animacy
over appearance
To test whether DNNs predict human perception on object ani-
macy and appearance, we compared similarity judgments on the
stimulus set (Materials and Methods) to the stimulus represen-
tation for two recent DNNs (VGG-19: Simonyan and Zisserman,
2014; and GoogLeNet: Szegedy et al., 2015) that were chosen
based on their human-like performance in object categorization
(Russakovsky et al., 2014; He et al., 2015; Kheradpisheh et al.,
2016b). The object dissimilarity for each image pair (1 � Pear-
son’s r) was computed for human similarity ratings (Materials
and Methods) and for the output vectors of the DNNs’ last fully
connected layer, and resulting dissimilarity matrices were corre-
lated with the two independent models. Results revealed similar-
ities but also differences between human judgments and DNNs
representations (Fig. 2A). A significant positive correlation of
both models (appearance: r � 0.41; p � 0.0001; animacy: r �
0.66; p � 0.0001) with behavioral judgments showed that partic-
ipants perceived both dimensions, with a significant preference
for the animacy percept (p � 0.0006). This preference was par-
ticularly strong in DNNs’ representations, with a highly signifi-
cant correlation with the animacy model (VGG-19: r � 0.73; p �
0.0001; GoogLeNet: r � 0.55; p � 0.0001), but no correlation
with the appearance model (VGG-19: r � �0.04; GoogLeNet:
r � �0.01; p 	 0.5, for both DNNs). The preference for object
animacy over appearance was present throughout all DNNs’ lay-
ers (Fig. 2B). It is, however, interesting that although the appear-
ance model is mostly below baseline throughout most layers in
both networks, toward the end the networks’ architecture, it
reaches its peak (VGG-19: r � 0.20; GoogLeNet: r � 0.19) to
subsequently drop back to baseline at the final processing stages.
As a result, the magnitude of the preference for object animacy
peaks in the last layer.

When inspecting dissimilarity matrices and 2D arrangements
derived from multidimensional scaling (MDS) (Fig. 3A,B), ani-
mals appear to be separated from objects and lookalikes in both
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behavioral and DNN dissimilarity matrices (see also category in-
dex in Fig. 7). In addition, animals appear to cluster together in
behavioral data with some additional similarities to the lookalike
objects, which was absent in DNN visual arrangements. In fur-
ther analyses on the dissimilarity matrices, we will test the signif-
icance of these differences between the three major conditions
(animals, objects, lookalikes) in the different datasets.

Together, these data show that both humans and DNNs set apart
animate from inanimate objects in accordance with one of the most

reported divisions in ventral occipitotemporal cortex (VTC)
(Kriegeskorte et al., 2008b; Grill-Spector and Weiner, 2014).

Animal appearance explains pattern information in the
human visual cortex
The above results, from DNNs and human behavior, point to the
animacy model as the representational structure to sustain object
representations even with a stimulus set that sets object animacy
apart from object visual appearance. Based on previous studies,

Figure 2. DNNs predict human perception of object animacy but not appearance. A, RSA (Kriegeskorte et al., 2008a) results for the appearance model (dark gray) and the animacy model (light
gray) are shown for human judgments (left), and DNNs (right). Asterisks indicate significant values computed with permutation tests (10,000 randomizations of stimulus labels) and error bars
indicate SE computed by bootstrap resampling of the stimuli. ***p � 0.0001, **p � 0.001. B, RSA results for the two models are shown for DNNs’ individual layers.

Figure 3. DNNs and human perception predict a representation based on object animacy, over appearance. A, B, Dissimilarities matrices (top) and 2D arrangements derived from MDS (metric
stress; bottom) showing stimuli pairwise distances for behavioral judgments (A) and DNNs (B). Light blue, Animals; blue, lookalikes; dark blue, objects.

Bracci et al. • VTC Represents Object Appearance over Animacy J. Neurosci., August 14, 2019 • 39(33):6513– 6525 • 6517



we would expect this organizational principle to have its neural
correlate in VTC (Kriegeskorte et al., 2008b; Grill-Spector and
Weiner, 2014), possibly accompanied by a further effect of visual
appearance (Bracci and Op de Beeck, 2016). We collected human
functional neuroimaging (fMRI) data in an event-related design
(see Materials and Methods). All 27 images were presented in a
random order while participants performed two orthogonal tasks
(matching the models) counterbalanced across runs (Fig. 1B).
During the animacy task, participants judged whether the image
on the screen depicted a living animal (yes or no). During the
appearance task, participants judged whether the image on the
screen looked like an animal (yes or no). In this way, we forced
participants to group the lookalike condition in two different
ways depending on their properties (Fig. 1C): either similarly to
the object condition (as in the animacy model) or similarly to the
animal condition (as in the appearance model). Thus, in addition
to testing the two independent predictive models, we could assess
any task-related modulation.

We correlated the dissimilarity values predicted by the two
models with the dissimilarity matrices derived from neural activ-
ity patterns elicited in target rROIs (Fig. 4A) in visual cortex. Our
main ROI was VTC, divided into the ant-VTC and the post-VTC.
In addition, we included V1 as a control ROI. Analyses were
performed separately for each task, but when no task-related ef-
fects were observed, we mostly focus on results for the combined
dataset.

To investigate the role of animacy and animal appearance in
driving the VTC organization, correlation values were tested in a
3 � 2 ANOVA with ROI (V1, post-VTC, ant-VTC) and model
(appearance, animacy) as within-subject factors. Results revealed
a significant ROI � model interaction (F(2,30) � 9.40, p � 0.001;
Fig. 4B), thus highlighting differences in the relation between the
two models and representational content in the three ROIs. No
positive correlations were found in V1 (lookalike: t � 1; animacy:
t � 1), suggesting that our stimulus set was constructed appro-
priately to investigate neural representations without trivial con-
founds with low-level visual features. Unexpectedly, and
differently from DNNs and behavioral results, neural repre-
sentations in ant-VTC and post-VTC were significantly more
correlated with the appearance model than the animacy model
(post-VTC: t(15) � 3.85, p � 0.002; ant-VTC: t(15) � 4.00, p �
0.001). In addition, we also observed differences between the
ant-VTC and post-VTC. Whereas in ant-VTC, both models were
significantly correlated with the neural data (appearance: t(15) �
8.70, p � 0.00001; animacy: t(15) � 5.36, p � 0.00001), in post-
VTC, only correlations with the appearance model significantly
differed from baseline (lookalike: t(15) � 4.56, p � 0.0004; ani-
macy: t � 1.5). Replicating results within subjects, data analyzed

for the two tasks separately did not reveal any task effect in VTC
(Fig. 4B). In both tasks, the appearance model was significantly
more correlated with the neural data as opposed to the animacy
model in post-VTC (animacy task: t(15) � 3.83, p � 0.002; ap-
pearance task: t(15) � 3.05, p � 0.008) and ant-VTC (animacy
task: t(15) � 2.97, p � 0.009; appearance task: t(15) � 3.44, p �
0.004). Furthermore, none of the ROIs showed an effect of task in
a direct statistical comparison (ant-VTC: F � 1; post-VTC: F �
1). To visualize the representational structure in each ROI in
more detail, dissimilarities matrices (averaged across tasks) MDS
arrangements are shown in Figure 5, A and B.

To test whether DNNs representations or behavioral judg-
ments might provide better models for VTC space, we compared
all five models against each other with partial correlation (ap-
pearance, animacy, similarity judgments, VGG19, and GoogLe-
Net). Results confirmed the above findings showing that the
appearance model better predicts representational content in an-
terior VTC relative to all remaining models (task 1: p � 0.003;
task 2: p � 0.001; both tasks: p � 0.00004, for all models).

Findings from the ROI-based analysis were backed up by a
whole-brain searchlight analysis. Whereas both models revealed
significant effects in VTC (Fig. 6A), the direct comparison re-
vealed a significant preference for the appearance model over the
animacy model in (right) VTC (p � 0.05, two-tailed t test, TFCE
corrected; Fig. 6B). The opposite contrast (animacy 	 appear-
ance) did not reveal any effect across the whole brain.

Together, these results show that the animacy organization
reported in VTC is largely explained by animal appearance rather
than object animacy per se. Inanimate objects (e.g., cow mug)
that share with animals neither functional properties nor ani-
macy, are represented closer to living animals than to other inan-
imate objects with which they share object category (e.g., a mug),
and functional/semantic properties. The animal appearance
might relate to high-level visual features such as faces, eyes, limbs,
and bodies, which are not generally present in inanimate objects.
This result, replicated across tasks, is particularly striking in light
of the aforementioned results from human judgments and
DNNs, which privilege object animacy over appearance.

Do VTC representations distinguish between lookalikes and
real animals?
In anterior VTC the two (independent) models both differ from
baseline. Therefore, although the lookalikes were closer to ani-
mals than to objects, lookalikes and animals might be encoded
separately in VTC. Another possibility is that the positive corre-
lation with the animacy model is fully driven by the distinction
between animals and (non-lookalike) objects (which both pre-
dictive models share), without any representation of the

Figure 4. Animal appearance better explains representational content in human visual cortex. A, Group-averaged ROIs (V1, post-VTC, ant-VTC) are shown on an inflated human brain template
in BrainNet Viewer (Xia et al., 2013). B, RSA (Kriegeskorte et al., 2008a) results for the appearance model (dark gray) and the animacy model (light gray) are shown for the data combined across the
two tasks and for each task separately. Individual participant’s (n � 16) correlation values are shown in purple. Purple-shaded backgrounds represent reliability values of the correlational patterns
taking into account the noise in the data (Materials and Methods). These values give an estimate of the highest correlation that we can expect in each ROI. Error bars indicate SEM. Asterisks indicate
significant difference between the two models (***p � 0.001; **p � 0.01).
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lookalikes as being different from real animals (on which the two
predictive models make opposite predictions). In other words,
does VTC discriminate between animals and objects that look
like animals or is it largely blind to this category distinction? If
VTC does not distinguish between animals and objects that have
animal appearance then there should be no difference between

within- and between-condition correlations for these two cate-
gories. In what follows we investigated this hypothesis.

To this aim, we computed the category index, which reflects
the extent to which representations for two conditions can be
discriminated from each other. That is, for each subject and con-
dition, the average within-condition correlation (e.g., comparing

Figure 5. Neural similarity space in VTC reflects animal appearance. A, Neural dissimilarity matrices (1 � Person’s r) derived from the neural data (averaged across subjects and tasks) showing
pairwise dissimilarities among stimuli in the three ROIs. B, The MDS (metric stress), performed on the dissimilarity matrices averaged across subjects and tasks, shows pairwise distances in a 2D space
for the three ROIs. Light blue, Animals; blue, lookalikes; dark blue, objects.

Figure 6. Whole-brain RSA. Shown are the results of random-effects whole-brain RSA for (A) individual models (uncorrected) and (B) the direct contrast between the two predictive models
(appearance vs animacy) corrected with the TFCE (Smith and Nichols, 2009) method are displayed on a brain template by means of BrainNet Viewer (Xia et al., 2013).
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an animal with other animals) and between-condition correla-
tion (e.g., comparing animals with lookalikes or objects) were
calculated. For each condition pair (i.e., animal-lookalike,
animal-object, and lookalike-object), the category index was
computed as follows: first averaging the two within-condition
correlations (for animals and lookalikes) and then subtracting
the between-condition correlation for the same two categories
(animals-lookalikes). For between-condition correlations, diag-
onal values (e.g., duck and duck kettle) were excluded from this
computation to avoid intrinsic bias between conditions that
share either animal appearance (i.e., duck and duck kettle) or
object category (i.e., kettle and duck kettle). Category indexes
above baseline indicate that two category representations are sep-
arated. In both VTC regions, the category index could distinguish
between animals and objects (ant-VTC: t(15) � 6.00, p � 0.00002;
post-VTC: t(15) � 4.03, p � 0.001; Fig. 7, left), and objects and
lookalikes (ant-VTC: t(15) � 7.40, p � 0.00001; post-VTC: t(15) �
4.02, p � 0.001). The category index between animals and
lookalikes was significant in ant-VTC (t(15) � 5.38, p � 0.00007)
but did not differ from baseline (after correcting for multiple
comparisons: p 0.05/9 � p � 0.005) in post-VTC (t(15) � 2.34,
p � 0.03). Furthermore, in both ROIs, the category index for
animals and lookalikes was significantly smaller than the other
two category indexes (ant-VTC: t(15) 	 3.49, p � 0.004, for both
indexes; post-VTC: t(15) 	 3.45, p � 0.005, for both indexes). In
V1 none of the conditions could be distinguished (t � 1, for all
condition pairs). As for previous analyses, these results were rep-
licated when data were analyzed for each task separately (the
category index for animals vs lookalikes was significantly smaller
than the other two indexes: animacy task: p � 0.004; appearance
task: p � 0.01). Thus, VTC representations reflect animal appear-
ance much more than animacy, with a small remaining difference
between animals and lookalikes in the anterior part of VTC (but
not posterior VTC).

Different results were observed for behavioral judgments and
DNNs. In both cases, category indexes distinguished between
animals and objects (behavior: p � 0.0001; VGG-19: p � 0.00001;
GoogLeNet: p � 0.00001), between animals and lookalikes (be-
havior: p � 0.0006; VGG-19: p � 0.00001; GoogLeNet: p �
0.0005), but did not differ between lookalikes and objects (behav-
ior: p � 0.03 – multiple comparisons correction: p 0.05/3 � p �
0.01; VGG-19: p � 0.46; GoogLeNet: p � 0.15). This suggests that

differently from VTC representations, human judgments, and
convolutional neural network take object category into account;
two mugs belong to the same object category regardless of their
shape.

Together, these results show that representations in VTC are
not predicted either by convolutional neural networks or human
judgments. Whereas the former privileges the role of animal ap-
pearance, the latter favors the role of superordinate object cate-
gory such as objects versus animals.

Coding for animal appearance in VTC interferes with
invariant object identification.
Previous studies have shown that VTC contains information
about object identity, with a high degree of invariance for a vari-
ety of image transformations (Gross et al., 1972; Desimone et al.,
1984; Grill-Spector et al., 1998, 1999). Despite the reported find-
ing that a lookalike object is represented very differently from
other objects, VTC representations might still allow for object
identity identification (e.g., recognizing that a cow mug is a
mug). To allow this, the representation of a lookalike object
should be more similar to another object from the same basic
category (e.g., a cow mug and a regular mug) than to other
objects. We operationalize this as the prediction that the
within-triad correlation between each lookalike and its corre-
sponding non-lookalike object would be significantly higher
than the average of correlation of this same lookalike to ob-
jects from other triads. We call this the identity index. That is,
for each subject and for each lookalike object, we took the
on-diagonal correlation (e.g., between the cow mug and the
mug) and subtracted the average of off-diagonal correlations
(e.g., between the cow mug and the remaining objects). We
computed the identity index separately for animals (animal
identity index: is a cow mug closer to a cow relative to other
animals?) and objects (object identity index: is a cow mug
closer to a mug relative to other objects?). Figure 8 shows
results for the dataset combined across the two tasks.

For brain data, a test across all conditions (Fig. 8, left) revealed
differences in the amount of stimulus identity information car-
ried in the three ROIs. In V1, there was significant identity infor-
mation for objects (t(8) � 4.76, p � 0.001) but not for animals
(t � 1). This result can be explained considering differences in
image low-level visual properties across conditions; objects and

Figure 7. VTC representations differ in category discriminability from DNNs and human behavior. The category index reflects representational discriminability among the three stimulus
categories (animals, lookalikes, and objects) and is computed for each condition pair by subtracting the average of between-condition correlations (e.g., for animals and lookalikes), from the average
of within-condition correlations (e.g., for animals and lookalikes). Results are reported for neural data (left), behavior (middle), and DNNs (right). Light gray, Animals versus lookalikes; gray,
lookalikes versus objects; dark gray, animals versus objects. For neural data, individual participant’s (n � 16) data points are shown in purple. Asterisks indicate significant values relative to baseline
and error bars indicate SEM. For behavioral and DNNs data, asterisks indicate significant values relative to baseline computed with permutation tests (10,000 randomizations of stimulus labels) and
error bars indicate SE computed by bootstrap resampling of the stimuli. ****p � 0.00001, *** � p � 0.0001, ** � p � 0.001, * � p � 0.01.
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lookalikes were more similar to each other relative to animals and
lookalikes. Confirming this interpretation, the same trend was
observed for image pixelwise information (Fig. 8A, right), where
we observed significant identity information for objects (t(8) �
3.16, p � 0.01) but not for animals (t � 1). In post-VTC, neither
identity index survived correction for multiple comparisons (p
0.05/6 � p � 0.008; animals: t(8) � 2.82, p � 0.02; objects t(8) �
3.09, p � 0.01). In ant-VTC, object identity information de-
creased and animal identity information increased; here, only the
animal identity index was significantly above baseline (animals:
t(8) � 3.88, p � 0.005; objects: t(8) � 1.93, p � 0.09). Results were
replicated when data were analyzed separately for the two tasks
(ant-VTC: animals, p � 0.009; objects, p 	 0.4, for both tasks).
Together, these results suggest that representational content in
anterior VTC is differently biased to represent animal and ob-
ject’s identity, containing more information for the former.

Consistent with previous analyses, different results were ob-
served for behavioral judgments and DNNs. For human similar-
ity judgments, a test across conditions revealed significant
identity information for both animals (t(8) � 17.98, p � 0.00001)
and objects (t(8) � 24.44, p � 0.00001; Fig. 8A, middle). Similarly,
DNNs were able to discriminate individual stimulus identities for
animals (VGG-19: t(8) � 3.84, p � 0.005; GoogLeNet: t(8) � 5.42,
p � 0.0006) as well as objects (VGG-19: t(8) � 5.67, p � 0.0005;
GoogLeNet: t(8) � 5.04, p � 0.001; Figure 8A, right).

Strikingly, after years of searching for models that would
match the tolerance in the most advanced category represen-
tations in primate ventral visual cortex, we have now found an

object transformation for which neural networks sustain in-
variant object recognition to a higher degree than ant-VTC
representations.

Results replication with decoding approach
Recent reports suggested significant differential reliability of dif-
ferent dissimilarity measures (Walther et al., 2016). To test ro-
bustness of our approach, we replicated results with a different
analysis: LDA (see Materials and Methods). This test confirmed
full replication of our results with a different measure. An over-
view is reported in Figure 9.

To replicate results reported in Figure 7, category discrim-
inability for neural data was tested with a leave-one-run-out
three-way classification approach (Fig. 9A). Results in ant-VTC
and post-VTC, despite revealing significant discriminability for
each category (p � 0.001; multiple comparisons correction: p
0.05/9 � p � 0.005), confirmed significantly less discriminability
for the lookalikes relative to animals and objects (post-VTC: t(15)

� 2.34, p � 0.034; ant-VTC: t(15) � 3.82, p � 0.002, for both
conditions). In ant-VTC, further analyses on the confusion ma-
trix, confirmed higher similarities in the representational pat-
terns for animals and lookalikes (Fig. 9A, bottom), showing
higher confusability between these two conditions than between
objects and lookalikes (t(15) � 2.72, p � 0.016). Next, we per-
formed a cross-decoding analysis (Fig. 9B; leave-one-triad-out),
in which performance depends not only upon the similarity be-
tween the three conditions within a triad, but also upon the de-
gree of correspondence between triads. This analysis showed

Figure 8. VTC representations sustain animal identity, but not object identity, categorization. A, The identity index reflects information for individual object ad animal pairs (e.g., the cow mug
and the mug represent the same object; the cow mug and the cow represent the same animal) and is computed separately for each condition (animals and objects). For each lookalike object (n �
9), we took the on-diagonal correlation (e.g., between the cow mug and the mug) and subtracted the average off-diagonal correlations (e.g., between the cow mug and the remaining objects). The
identity index for animals and objects was computed for the brain data (V1, post-VTC, and ant-VTC), behavioral data (similarity judgments), DNNs (VGG-19, GoogLeNet), and the image pixelwise
data. Light gray, Animal identity index; dark gray, object identity index. Asterisks (****p � 0.00001, *** � p � 0.0001, ** � p � 0.001, *p � 0.01) indicate significant values relative to baseline
and error bars indicate SEM. B, For each dataset, dissimilarity matrices used to compute the identity index are shown separately for animals and objects.
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generalization across triads revealing discriminability for all three
categories in post-VTC and ant-VTC (t(15) � 4.01; p � 0.001, for
all conditions), significantly less discriminability for lookalikes
relative to animals and objects (post-VTC: t(15) � 3.13, p � 0.007;
ant-VTC: t(15) � 4.31, p � 0.001, for both conditions), and sig-
nificantly higher confusability between animals and lookalikes, as
opposed to objects and lookalikes, which however was significant
in post-VTC only (post-VTC: t(15) � 3.00, p � 0.009; ant-VTC:
p � 0.14). As expected, due to visual differences among items in
the different triads, generalization across triads did not reach
significance in V1 (p 	 0.05, for all conditions).

To replicate results reported in Figure 8, stimulus identity
discriminability for neural data (Fig. 9C) was tested separately for
each condition (e.g., recognizing a cow among other animals)
and across conditions (e.g., matching a cow mug to cow or to a
mug). Within-condition stimulus discriminability was signifi-
cant for all three conditions in all ROIs (t(15) � 3.88, p � 0.001).
Further, replicating correlational-based MVPA, in ant-VTC,
LDA revealed generalization of stimulus identity between
lookalikes and animals (t(15) � 3.12, p � 0.007), but not between
lookalikes and objects (p 	 0.17; Fig. 9C, bottom; note strong
similarities with results reported in Fig. 8A). Instead, due to
higher low-level similarities, stimulus identity generalization
across lookalikes and objects was significant in more posterior
areas (V1: t(15) � 4.85, p � 0.001; post-VTC: t(15) � 3.21, p �
0.006).

The decoding analysis fully replicate findings reported with
correlation distance despite the many differences between the
two types of analyses. An overview of decoding results is shown in
Figure 9D.

Discussion
With a stimulus set that specifically dissociates object appearance
from object category, we investigated the characteristics of the
previously reported organization of object representations in the

superordinate (category) distinction of animate versus inanimate
in the human brain, DNNs, and behavior. Human behavioral
judgments and neural networks privilege animacy over appear-
ance. Conversely, representations in ventral occipitotemporal
cortex mostly reflect object appearance. Thus, although DNNs
can largely predict human behavior, representations in ventral
occipitotemporal cortex deviate from behavior and neural net-
work representations.

Our results can be summarized as follows. First, representa-
tional content in VTC reflects animal appearance more than ob-
ject identity and animacy; even though the mug and the cow mug
share many high-level properties (e.g., object identity, size, func-
tion, manipulation), as well as low-level properties (e.g., shape
and texture), VTC represents a cow mug closer to a real cow than
to a mug. Second, VTC representations are not explained by
either human perception or DNNs, which were not deceived by
object appearance, and judged a cow mug being closer to a mug as
opposed to a real cow. Third, given its preference in favor of
animal appearance, VTC representations are remarkably poor in
providing information about object identity, that is, to reflect
that a cow mug is a mug. This is not a desirable property for a
“what” pathway that, according to uniformly held views in visual
neuroscience (DiCarlo et al., 2012), builds up representations
that sustain reliable and transformation-invariant object identi-
fication and categorization. Fourth, VTC representations are not
modulated by task demand and the similarity in responses to
animals and lookalike objects persists even when participants
performed a task requiring focusing on object animacy.

The animacy division is considered one of the main organiza-
tional principles in visual cortex (Grill-Spector and Weiner,
2014), but information content underlying this division is highly
debated (Baldassi et al., 2013; Grill-Spector and Weiner, 2014;
Nasr et al., 2014; Bracci and Op de Beeck, 2016; Bracci et al.,
2017b; Kalfas et al., 2017). Animacy and other category distinc-

Figure 9. Classification analysis. Shown are decoding results for category discriminability (A; leave-one-run-out) and its generalization across triads (B; leave-one-triad-out) for animals,
lookalikes, and objects in the three ROIs. The red line shows chance level. The confusion matrix (bottom) shows classification errors between conditions. The color scale from white (low) to blue (high)
indicates classification predictions. C, Stimulus identity classification within- (top) and between-conditions (bottom). D, Summary representational geometry in ant-VTC based on results from
classification analyses. Gray underlays indicate clusters derived from results shown in A. Shorter distance between the clusters (animals and lookalikes) indicates higher confusability derived from
analysis on the confusion matrix. Within-condition stimulus identity discriminability (C, top) is shown with red dotted lines. Stimulus identity generalization across conditions (C, bottom) is shown
with light blue (lookalikes and animals) and dark blue (lookalikes and objects) solid lines. Significant and nonsignificant generalization of stimulus identity across conditions is show with “�” and
“ns,” respectively. Individual participant’s (n � 16) data points are shown in purple. Error bars indicate SEM. Asterisks (***p � 0.001, ** � p � 0.01, * � p � 0.05) indicate significant values
relative to chance level.
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tions are often correlated with a range of low- and higher-level
visual features such as the spatial frequency spectrum (Nasr et al.,
2014; Rice et al., 2014) and shape (Cohen et al., 2014; Jozwik et al.,
2016), but the animacy structure remains even when dissociated
from such features (Proklova et al., 2016). Here, we question
what we imply with animacy. Previous reports suggest that the
extent to which an object is perceived as being alive and animate
is reflected in VTC representations, giving rise to a continuum
where those animals perceived more animate (e.g., primates) are
closely represented to humans, whereas those animals perceived
less animate (e.g., bugs) are represented away from humans and
closer to inanimate objects (Connolly et al., 2012; Sha et al.,
2015). Contrary to this prediction, our results suggest that infor-
mation content underlying the animacy organization does not
relate to the animacy concept: whether an object is perceived as
being alive and animate is close to irrelevant. Instead, what
mostly matters is animal appearance; that is, whether an inani-
mate object lookalikes and shares high-level visual features with
animals. Indeed, in VTC, inanimate objects such as a mug, a
water kettle, or a pair of slippers with animal features (e.g., eyes,
mouth, tail) are represented close to living animals (Figs. 4, 5).
Even though we did not specifically include the animacy contin-
uum in our experimental design, our design emphasizes categor-
ical divisions. These results are not in conflict with, but rather are
consistent with, the animacy continuum: bugs might be per-
ceived less animate than dogs and cats and represented far away
from humans in the animacy space because their typical facial
features (eyes, mouth, etc.) are less prominent. Future studies are
needed to address this possibility.

Does this mean that it is all about animal appearance? Proba-
bly not; our results showed that VTC representational content
can be explained by both models, though uncorrelated (r � 0.07;
Fig. 4), and carries enough information to distinguish between
real animals and lookalikes (Fig. 7). What we suggest is that in-
formation about animals in VTC is overrepresented relative to
information about objects to the extent that even inanimate ob-
jects, if having animal appearance, are represented similarly to
animate entities. A VTC preference toward animal representa-
tions was further supported by results showing significant infor-
mation for animal’s identity, which was not observed for objects;
that is, VTC representations contain information to discriminate
that a duck-shaped water kettle represents a duck, but not to
discriminate that it is a kettle (Figs. 8, 9D). An everyday life ex-
ample of this preference is our strong predisposition to perceive
faces (and animals) in meaningless patterns such as toast or
clouds (pareidolia), which results in face-like activations in the
fusiform face area (Hadjikhani et al., 2009). To our knowledge,
similar effects reported for inanimate objects are rare. We could
speculate that having a system devoted to detecting animate en-
tities and biased to represent similarly animals and inanimate
objects that resemble animals might have been beneficial from an
evolutionary perspective. The chance for our ancestors to survive
in the wild necessitated fast and successful detection of predators.
Such a system would have been advantageous: it is better to mis-
take a bush for a lion than the other way around. Thus, instead of
inferring that VTC is fooled by the lookalike stimuli, one could
also phrase the same finding more positively: VTC has the special
ability to relate the lookalikes to the corresponding animal. This
ability to represent lookalikes similarly to real animals might be
the result of an evolution-long “training,” similarly to the way, in
artificial intelligence, neural networks, trained to recognize ani-
mals, start to detect animals in random-noise images (Szegedy et
al., 2015).

This speculation points to one possible explanation for a par-
ticularly surprising aspect of our findings, namely the discrep-
ancy in representations between VTC and artificial DNN. Indeed,
whereas DNNs were able to predict aspects of human perception
such as setting apart animals from inanimate objects (Fig. 6) and
discriminating both animal and object identity (Fig. 8), contrary
to recent findings (Cadieu et al., 2014; Güçlü and van Gerven,
2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014), our results show that DNNs representations (at the higher
processing layers) do not predict human visual cortex represen-
tations. It is noteworthy that the training history of the DNNs was
focused upon the categorization of a large number of categories
and was not specifically biased toward, for example, animate ob-
jects. This training history might explain why DNNs are very
good at identifying a cow mug as being a mug. As an example,
networks trained with images of animals, when asked to over-
interpret their features, similar to the perceptual phenomena of
pareidolia, will start seeing animals out of random shapes such as
clouds (https://ai.googleblog.com/2015/06/inceptionism-going-
deeper-into-neural.html). Given the critical role of DNN train-
ing, it is therefore noteworthy that in the absence of any specific
training, there was evidence for stimulus identity generalization
between animals and lookalikes (i.e., the ability to recognize a
cow mug as representing a cow; Figs. 8, 9C). Such a generalization
is remarkable given the dominant role of image low-level features
in DNN image processing (Geirhos et al., 2019).

Our results show that, across all analyses, human behavior was
better predicted by DNNs than human VTC, privileging what an
object is (two mugs), as opposed to its visual appearance. Infor-
mation from DNNs and behavioral judgments did not show a
category distinction between lookalikes and inanimate objects
(e.g., all objects; Fig. 7), yet allowed object identification across
changes in appearance (e.g., a cow mug is a mug; Fig. 8). These
results differ from previous studies reporting some degree of cor-
respondence between behavior and visual cortex information
content (Williams et al., 2007; Carlson et al., 2014; van Bergen et
al., 2015). This discrepancy might relate to the choice of task used
to obtain the behavioral results that were compared with neural
data; here, we used a cognitive task (similarity judgments),
whereas a categorization task based on reaction times (e.g., visual
search task) might have been a better predictor for visual cortex
representations (Proklova et al., 2016; Cohen et al., 2017).

Finally, visual cortex representations were not modulated by
tasks. Despite the different focus on object appearance in one case
(appearance task) and on object identity in the other case (ani-
macy task), the neural data were striking similar across task ses-
sions, revealing no difference in any of the performed analyses.
These results confirm and add to recent findings showing that
task demand appears not to have much influence on the repre-
sentational structure of ventral visual cortex (Harel et al., 2014;
Bracci et al., 2017a; Bugatus et al., 2017; Hebart et al., 2018).

The mere observation that a stimulus that looks like an ani-
mal, or part of it such as a face, can elicit animal- or face-like
responses in ventral visual cortex is not novel, with studies on face
pareidolia being the most relevant example (Hadjikhani et al.,
2009). What makes our study novel and our results striking is the
availability of behavioral and neural network data that makes a
very different prediction: the systematic comparison and dissoci-
ation of neural, behavioral, and DNN representations; the quan-
tification of the degree of bias toward representing appearance
rather than animacy; the persistence of this bias in VTC even
when performing a task requiring to report animacy; and the
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detrimental effect of this preference upon the informational con-
tent about object identity.

To summarize, these results highlight substantial differences
in the way that categorical representations in the human brain,
human judgments, and DNNs characterize objects. Whereas
DNN representations resemble human behavior and heavily
weight object identity, representations in ventral visual cortex are
very much constrained by object appearance. Based on these
findings, we might have to reconsider the traditional view of the
human visual cortex as a general object recognition machine like
the artificial neural networks are trained to be.
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