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Abstract: In this paper we define and study the matrix-valued k x k numerical range of n X n matrices using the

Hermitian product and the product with n x k unitary matrices U (on the right with U, on the left with its adjoint
vt =u-t ). Forall 4,j =1,...,k we study the possible (4,7)-entries of these k x k matrices. Our results are for the

case in which the base field is finite, but the same definition works over C. Instead of the degree 2 extension R — C
we use the degree 2 extension F, < F,2, ¢ a prime power, with the Frobenius map ¢ + t? as the nonzero element of
its Galois group. The diagonal entries of the matrix numerical ranges are the scalar numerical ranges, while often the

nondiagonal entries are the entire F 2. We also define the matrix-valued numerical range map.
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1. Introduction
In this paper we define and study the matrix-valued numerical range of n X n-matrices with respect to a
Hermitian product. Our results are for the case in which the base field is finite, but the same definition works
over C. Instead of the degree 2 extension R — C we use the degree 2 Galois extension F; < Fg2, ¢ a prime
power, with the Frobenius map ¢ — t9 as the nonzero element of its Galois group. The main results of this
paper only study the single entries of these numerical range matrices.

Recall that for each prime power ¢ there is a unique, up to isomorphisms, field F, with ¢ elements and
that F,2 is a degree 2 Galois extension of Fy (see [10], [11, Theorem 2.5], and [12]). The nonzero element of
the Galois group of the extension map F, C F,2 is the Frobenius map ¢+ t?. The Frobenius map allows the

definition of the following Hermitian form on Fie (exactly as the complex conjugation allows the definition of

the Hermitian form C" x C* — C).

—=n

v = (v1,...,v,) F_ set

Let ¢ be a prime power. For any n > 0 and any u = (uq,...,u,) € F’ q

4
(u,v) 1= 377 ufv;. For any integer n > 0 and any a € Fy set Hpqo = {u € Fly | (u,u) = a}. Set
Numg (M) := {(u, Mu) | w € Hpo}. The set Num, (M) is called the a-numerical range of M [1-7]. The set
Num(M) := Num; (M) is called the numerical range of M.

For any M = (m;j) € M, ,,(F2) set MT = (m%,). The square matrix M is said to be Hermitian if

ji
M= MT.
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Fix E € My, ;,(F,2) such that ET = E. For each positive integer n set
Cox(E):={A€ M, x(F,2) | ATA = E}.

If E = alyy, where I ; is the identity matrix and ¢ € F,, we write C, x(a) instead of C, y(E). For any
matrix M € M, ,,(F,2) the (k, E)-numerical range Numy g(M) (or just (k,a)-numerical range Numy, (M)
if B =alyy) of M is the set of all B € My, j(F,2) of the form ATMA for some A € C, x(E). Let U be a
k x k unitary matrix, i.e. take U € Myyx(F,2) such that UTU = Ij»j. The map A+ UTA gives a bijection
between C,, x(E) and C, x(UTEU) and hence E and UTEU give essentially the same numerical range for
k x k matrices. Obviously Numy, g (L,xn) = {E}. If M = M7, then all elements of Numy, (M) are Hermitian
(Remark 2.9).

We always have Olpyxp € Numyo(M) (just use the zero matrix 0 € M, ,(F,2)). As in [3] we call
Numy, o(M) the set of all B € My x(Fq2) of the form ATMA for some A € Cp(E) with A # 0. Call

Numy, o(M)"” the subset of Numy o(M) obtained using only A € C,, ;(0) in which no column vector and no
row vector is zero.

For all positive integers 4, j such that 1 <i <k and 1 < j <n let m; Numy g(M)) (or m;(Numy ,(M))
if E = ally ) denote the set of all a € 2, which are the (i, j)-entries of some A € Numy, g(M). These subsets
of Fy2 are usually very easy to compute and often quite large (see Proposition 4.3 and Theorem 4.5). This may
seem to be a disappointment, but we saw in [5] plenty of ways to use Num, to distinguish matrices M, M’ with
Num, (M) = Num, (M’). For another way to distinguish between M and M’ see the numerical map described
at the end of the introduction.

Set Numy (M) := Numy (M) and 7;;(Ni(M)) := m;;(Numy, 1 (M)). If we know the set Numy ; (M),
then we know all sets Numy, (M), a € F,\ {0} (Remark 2.5).

Question 1.1 Fiz integers n > 2 and k > 0. What is the mazimal cardinality v(q,n, k) (resp. v(q,n,k,0)) of
some Numy (M) (resp. Numy, o(M)), M € M, »(Fy2), and the minimum 6(q,n,k) (resp. 6(q,n,k,0)) among
all M that are not a multiple of the identity?

Fix positive integers n,k, a € F,, and M € M, ,,(Fp2). The (n x k,a)-numerical map virpnxi,a :
Cri(a) = My (Fy2) of M is the map C, x(a) — My (F,2) defined by the formula A — ATMA. We have
Im(vasrnxk,a) = Numg (M) and hence to give upper (resp. lower) bounds on the integer #(Numy ,(M)) it is
sufficient to give “very good” lower (resp. upper) bounds on the cardinality of the fibers of the map vasnxka-
By Remark 2.5, to know all vpnxk,a, @ € Fy\ {0}, it is sufficient to know v ,xk,1. Thus, it is sufficient to

study varnxk,1 and varnxk,o0. See Remark 5.1 and Proposition 5.2 for some results concerning the numerical
map.

2. Foundational remarks

For any matrix M = (m;;) € M, ,(F,2) let MT = (a;;) be the matrix with a;; = mY; for all i,j. M is said
to be Hermitian if MT = M. Note that the diagonal elements of a Hermitian matrix are contained in F,,.
Let ey = (1,0,...,0),...,e, = (0,...,0,1) be the standard basis of F7.. Let Ixn denote the identity n x n

matrix. For any a € Fy set Cy(a) :={z € F> | (2, 2) = a} ([1, 2, 4, 5]).
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Notation 2.1 Write M = (my;), i,j=1,...,n.

Remark 2.2 For each a € F,\ {0} there are ezactly ¢+ 1 elements of F, such that 2771 = a and all of them
are in Fy2 (see [11, Theorem 2.8] and [1, Remark 3]). 0 is the only element of F, such that 297! = 0.

Remark 2.3 By Remark 2.2 the set C5(0) is the union of (0,0) and the set of all (u,v) € (F,2\{0})? such that
v = tu for some t with t771 = —1 and hence §(C2(0)) = 1+(¢*—1)(q¢+1) = ¢*+¢*>—q by Remark 2.2. Now take
a # 0. The integer §(C2(a)) is the number of F 2 -solutions of the equation z9t" + y?* = a. For any y such
that yi*t! = a (and there are q+1 such ys by Remark 2.2) there is a unique x satisfying the equation x4t = 0.
For all y such that yiTt # a we get q+1 possible ys. Thus, §(Ca(a)) = ¢+1+(¢>—q—1)(g+1) = (¢+1)(¢>*—q) .

Remark 2.4 If B € Numy, (M), then Bt € Numy p(M?'), because if A € C, 1(E), then AT € C,, 1(E) and
(ATM A = ATMTA.

Remark 2.5 Take a € F,\ {0}. Fiz ¢ € F2 such that ¢?™' = a (Remark 2.2). Fiz A € Cp(1). Since
(cA)T(cA) = 1T ATA, we have cA € Cy i(a). For any M € M, ,(F,2) we have (cA)TM(cA) = ¢t ATMA =
aATMA. Thus, Numy (M) = aNumy 1 (M) and 7;;(Numy o(M)) = am;;(Numg 1 (M)). Thus, it is sufficient
to study Numyg 1 (M) and Numyg o(M).

The following two results show that the case a = 0 is simpler.

Lemma 2.6 If B € Numyg (M), then zB € Numg o(M) for all z € Fy\ {0}.

Proof Take t € F2 such that t9*! = z (Remark 2.2) and A € C,, ;(0) such that B = ATMA. We have
tA € Cp x(0), because (tA)T(tA) = t4TLATA = 0y« . We have (tB) M (tB) = t1tLATMA. o

Remark 2.7 Take a =0 and k> 2. Fixt € Fo, M € My, n(Fgp2), and i € {1,...,k}. Take A € Cy1(0).
Call u1,...,uy the column vectors of A. Call A.; the element of Cy 1(0), which has as its column vectors
the ones of A, except the ith one, which is tu;. Let zy, (resp. wyy, ) be the (z,y)-entry of the matriz ATM A
(resp. AIJMAW). We have wyy = 24y if © & {z,y}, wii = 97 2y, wiy = 2 if y # i, and wy; = tzg if
x # 4. Thus, if i # j either mi;(Numy o(M)) = Fp2 or myj(Numy o(M)) = {0} and if ¢ € m(Numy o(M)),
then t7 ¢ € m;;(Numy, o(M)) for all t € F2. Hence, by Remark 2.2 the set m;;(Numy, o(M)) is an F,-linear

subspace of Fgz .

Remark 2.8 Take a € Fy\ {0} and k > 2. Fiz t € F2 such that t9%' =1 (there are ¢+ 1 such entries by
Remark 2.2). Fix M € My, ,(Fp2) and i € {1,...,k}. Take A € Cy,x(a). Call uy,...,uy the column vectors

of A. Let A;; be the element of C, r(a) with as its column vectors the same as the ones of A, except the
ith one, which is tu;. Let 2y, (resp. wyy, ) be the (z,y)-entry of the matriz ATMA (resp. AIJ-MAM). We

have Wgy = 2zzy if © & {2y}, Wi = 25, Wiy =%y if y #1, and wy; = tzy if x # 4. Thus, if i #j and
a € mi;(Numy o (M)), then to € m;(Numy, o(M)).
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Remark 2.9 For all M € M, ,(Fz2) and all A € Cy1(a) we have (ATMA)T = ATMTA. Thus, if F €
Numy, (M), then FT € Numy, o(M'). Now assume M = M. Since (ATMA)T = ATMTA = ATMA for all
A€ Cyi(a), every element of Numy, (M) is Hermitian.

3. Cyi(a)

Take a € Fy and A € M, ;,(F;2). Let wuy,...,u, be the column vectors of A. We have A € C,, y(a) if and
only if (u;,u;) = ad;; for all ¢,5. Thus, A € Cy, (0) if and only if the linear span of its columns is contained in
the Hermitian variety C,(0) over F,2. The set C,(0) is the affine cone of the (n — 1)-dimensional Hermitian
variety (see [8, Ch. V] and [9, Ch. 23]). Thus, C), 1(0) # 0 for all £ > 0, and [(n —2)/2] 4+ 1 is the maximal
integer k such that there is A € (), 1(0) whose columns are linearly independent [9, Lemma 23.3.1], while
Crnk(0) # 0 if and only if 1 < k < n. Take B € M, ,(F,2) such that BB = L, n, i.e. take a unitary B.
Since ATBTBA = ATA for all A € My, 1, (F,2), left multiplication by B induces a bijection of C,, (E). Hence,
Numy, g(B'MB) = Numy, g(M) for every M € M,, ,(Fg2).

Remark 3.1 Fiz a € F; and positive integers n, k.
1. The zero-matriz is an element of Cp, x(0).
2. We have A € Cyx(a), a € Fy, if and only if AT € Cy (a).

3. Assume a # 0. Since ( , ) is nondegenerate, the column vectors ui,...,uy of any A € Cyp x(a) are

linearly independent and in particular Cy y(a) =0 for all a #0 and n > k.

4. Forall y>n, all x >k, and A € C,, x(0) we may extend A to an element of Cy1(0), an element of
Ch.y(0), and an element of Cy 4, (0), adding zeros as the new entries. These new matrices cannot be used

to test Num”', but they may be used to test Num and Num'.

See [1, page 171], [8, Ch. V], and [9, Ch. 23] for the integer #(C),—x(1)) appearing in Lemma 3.6 and the

main properties of Hermitian varieties.

Remark 3.2 Toke k > 0, 1 <i<n, 1 <j<n, aclFy cecFp, and M € M,,(Fp). We have
Numy, o (M — clpxrn) = Numg (M) — ca and hence m;j(Numy (M — clpxy))) = mi (Numy, o(M)) — ca.

Remark 3.3 Fiz (t1,...,t;) € (F,2 \ {0})* and set t := (t1,...,t). For any A € M, x(Fp2) with uy,..., uy
as its column vectors let tA be the nx k matriz with tiui, ..., tyur as its column vector. Note that A € C,, ;(0)
if and only if tA € Cpi(0). If t™ = t9"' for all i, then for any a € F, A € C,x(a) if and only if
tA € Cpr(tia).

Remark 3.4 If M € M,, ,(Fz2) and A € M, (F,2) we have (ATMA)T = ATMTA. If ATA = FE with E = ET,
then AATE. Thus, Numy g(MT) is obtained from Numy, (M) taking ¥ and if M = M' every element of

Numy, g (M) is Hermitian.

The next lemma describes Cs 2(0).
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Lemma 3.5 Tuke

[ T11 Ta12
T21  X22

We have AYA = 0lays if and only if there are to,t1 € Fp2 such that t8+1 = t‘f“ = -1, 11 = toT12,
To21 = t1$22 and tol'({;l +t1$g;1 =0.

Proof The (1,1) (resp. (2,2)) entry of ATA shows that (x11,212) € Co(0) (vesp. (wo1,22) € Co(0))
and hence there is to € Fp2 (resp. t; € Fp2) such that tg“ = —1 and z1; = tox12 (resp. t'f“ = —1 and
X9y = t1292 ). The vanishing of the (1,2) entry of AT A is equivalent to toxgl —l—tlxgzﬂ = 0, which is equivalent
to tdxdi ' +1923" = 0, i.e. the vanishing of the (2,1)-entry of ATA, because t? =t for all t € F, and t9t! € F,
forall t € F. O

Lemma 3.6 Take A€ C,;(a), a#0, and n > k. Then there are §(C,—r(1)) matrices B € C,, p4+1(a) whose

first k column vectors are the ones of A.

Proof Call uy,...,u; € F}; the column vectors of A. Set V:={v €F; | (v,u;) =0 forall i=1,....k}. V
is a linear subspace of Fy; and the restriction of (, ) to V' is nondegenerate. The possible (k + 1)th column

vectors of B are the elements v € V such that (v,v) = a. By Remark 3.1 we get the same number for all
a € F,\ {0}. Hence, the number in the lemma is the integer #(C,—_x(a)). Recall that §(Cp_x(a)) = §(Cn_k(1))
for all @ # 0. Thus, (a — 1)#(Chr—k(1)) + #(Cn—x(0)) = #(Cr—r+1(0)). O

4. The single entries of the numerical matrix range

Take positive integers n,k, a € Fy, and M € M, ,(F,2). Write M = (myy), 1 <u<n, 1 <v<n,

Remark 4.1 Fiz integers i,j such that 1 < i < n and 1 < j < n. Fiz any A € My (Fp2) such that

ATA = alxr and call uq, ..., ux the column vectors of A. Note that uIMuj is the (i,j)-entry of ATMA. In
particular m;(Numg, o(M)) C Num, (M) for all i,j,a and equality holds if every u € Fhe with (u,u) =a is a

column vector of some A € M, ;(Fq2) such that AYA = allyyy, . This is always true if either a =0 or k < n.

By Remark 4.1 to look at all m;;(Numyg ,(M)) it is sufficient to handle the case i # j. Obviously
mij (Numg, o(M)) = {0} for any ¢, j and a if M =0.

Remark 4.2 Take M € M, ;,(Fp2), A€ Cpyla), and (i,5) € {1,....n} x{1,...,n}. Let ui,...,ux € Frz be
the column vectors of A. Note that (u;, Mu;) is the (i,j)-entry of ATMA.

Proposition 4.3 Fix integers n > 2, k> 2, and 1 < i < n, 1 < j < min{n,k}, such that i # j. Fix
M € My, (Fgp).

(i) Assume n = k. We have m;;(Num,, o(M)) = {0} if and and only if m;; = mj;, myy = 0 for all
y# i and mg; =0 for all x # j. In all other cases we have m;(Numy o(M)") =Fge2.
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(it) If n > k, then mi;(Numyo(M)) = Fg2 if either (mi; — myj,mi;,mj;) # (0,0,0) or there is
ye{l,....k}\{j} such that m;, # 0.

(tit) If n < k, then m;(Numyo(M)) = Fpo if either (mi — mjj,mi;,mj;) # (0,0,0) or there is
ze{l,...,n}\ {4} such that my; #0.

Proof Taking A =0I,; we get 0 € m;;(Numy, o(M)) for all M.

(i) Assume n = k. Either mj;(Numy o(M)) = Fp or m;;(Numy o(M)) = {0} (Remark 2.7). Note
that the entries of m;;(Numy o(M)) are the numbers uZTMuj, for some ith and jth column vectors of some
A € C, 1(0). Thus, we see that m;;(Numy,o(M)) = {0} if m;; = mj;, msy =0 for all y # i and my; =0 for
all x £ j.

Now we prove the “only if” part. Since ATc]InmA = cATA = 0l for all A € C,x(0), we have
Numy, o(clyxn) = {0} forall ¢ € Fpz. Since Numy, o(clpxn) = {0}, we have m;;(Numy, o(M)") = m;;(Numy, o (M —
mj;lnxn))’). Thus, we may assume m;; = 0 and hence m;; = m;; if and only if m,;; = 0. Up to a permutation
of the indices (which is induced by Hermitian transformations) we may assume ¢ = 1 and j = 2. Note that
mog = 0.

(a) In this step we assume maz = 0 and (mq1,mi2,m21) # (0,0,0) and prove that m;;(Numy o(M)) #
{0}

(al) Take n = k = 2. It is sufficient to find A = (a;;) € Ca2(0) with a11 = z, a1 =y, a2 = u,
and ags = v such that Z := myjz%u + mayy%u + misxv # 0, because the right-hand side of the last equality
is the (1,2)-entry of ATMA. We have A € C55(0) if and only if 2% + y%v = 0 and there are t,c € F

such that y = tx, v = cu, t97t = —1, and ¢! = —1. We have Z = z%u(m1 + tmao; + cmiz). Thus, to
get Z # 0 we need zu # 0. When zu # 0 the condition xz%u + y%v = 0 is satisfied if and only if t%¢ = —1.
Hence, we get Z # 0 if and only if there is ¢ € Fg2 such that T = —1 and myy + emiy — mis # 0.

2ma1 + zmi1 — M2 has at most 2 roots. Since there are g+ 1

Since (mq1,m12, ma1) # (0,0,0), the equation z
elements ¢ € F2, with ¢ = —1 (Remark 2.2), we get some Z # 0.

(a2) Take (n,k) # (2,2). Take A = (a;5) € Cpx(0) with a;; = 0 if either ¢ > 2 or j > 2 and apply
step (al) to the upper-left corner 2 x 2 submatrix of A.

(b) From now on we assume (n, k) # (2,2) and mia = may = my; = ma; = 0.

(b1) First assume my,; # 0 for some = and n > k. Up to a permutation of the indices we assume
x = 3. Adding zero entries as in step (a2) we see that it is sufficient to prove the case n = k = 3. Taking %mM
instead of M we reduce to the case mys = 1. Thus, M is the matrix in (4.1). Take A = (x;;) € C33(0).
It is sufficient to find A such that (4.2) has a solution Z # 0. There are ¢ + 1 elements ¢ of F2 such that
t4t! = —1 (Remark 2.2). Take u; = (1,0,¢), ug = (¢,0,—1), and u3 = (0,0,0). Since (—1)? = —1 for every
prime-power ¢, even in characteristic 2, the left-hand side of (4.2) is h(t) = —(mas + ma3)t? — 1. Since h(t) is
a nonzero polynomial of degree at most ¢, we may find ¢ with h(t) # 0.

(b2) Applying the argument of step (b1) we conclude if k¥ > n and there is y € {3,...,k} such that
My # 0.

(ii) Assume n > k. By assumption, j < k. Fix o € Fpz \ {0}. Call M; the submatrix of M formed
by its first k rows. By step (i) there is B € C,, ,,(0) such that « is the (i,j)-entry of BTM;B. Let A be the
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n X k matrix with B in its left upper k x k corner and 0 as all its other entries. The matrix ATM A has « as
its (¢, 7)-entry.

(ili) Assume n < k. By assumption, j <n. Fix a € F2 \ {0}. By step (i) there is B = (v1,...,v,) €
Cpn.n(0) such that BTM AT has « as its (i,j) entry (part (i)). Take A € C,, x(0) with v1,...,v, as its first n

column vectors and zero as its other entries. The matrix ATMA has « as its (4, j)-entry. O

As a corollary of Proposition 4.3, we get the following result.

Proposition 4.4 Take M € M, ,(Fg2), which is not a multiple of the identity, and assume k > 2. Then
#(Numy, o(M)) > ¢2.

Proof Since M is not a multiple of the identity, we have n > 2 and there are ¢,j € {1,...,n} such that
(mii —mjj,mij,my;) # (0,0,0). Up to a permutation of the indices we may assume 7 = 1 and j = 2. By
assumption we have k > 2. We only use uq,...,u; € Cp1(0) such that (u,,u,) =0 for all z,y, u, =0 for
all x > 3, and wp,uy have 0 as their n — 2 entries. With this trick we reduce to the case n = k = 2. By
Proposition 4.3 we have m2(Nums o(M)) = F,2. Thus, §(Numyo(M)) > ¢°. O

Theorem 4.5 Fiz a € Fy\ {0}, an integer n >3, i,j € {1,...,n} such that i # j and M € My ,(F,2) such
that (m; —mjj, mij, mj;) = (0,0,0). We have my;(Numy, o(M)) = Fp2 if either there is x € {3,...,n} such
that miz # 0 or there is y € {3,...,n} such that mys # 0.

Proof Taking M — myl,x, and using Remark 3.2 we reduce to the case my; = mj; = m;; = mj; = 0.

(a) Assume the existence of x € {3,...,n} such that m;, # 0. Up to a permutation of the indices we
may take as A € Cp, ,(a) a matrix with B in its left upper corner, 0 for all other entries either in columns 1,
2,0or 3 or rows 1, 2, 3, and with as its last n — 3 column vectors mutually orthogonal vectors v, of ]FZ{ 3
with (vz,v,) =a for all  =4,... k. Thus, we reduce to the case n = k = 3 with a matrix M with mj3 # 0.

Taking %BM instead of M , we reduce to the matrix

0 0 1
m3;p M3z M33

Take A € C33(a) and fix Z € F2. Write A = (x;;). We need to solve the equation
M312yT12 + M3gaxs  Tog + Masxd w30 + Mozl xa0 + 2] 230 = Z (4.2)

with the restriction that A € C53(a). We call uy, ug, and us the column vectors of A.
First assume Z # 0. Take ¢ € F2 such that t9t1 = ¢ (Remark 2.2). We take x12 = 291 = w31 = 0 and
z11 =t. Thus, uy1 € C3(a). We take x32 = Z/t7. With these choices of x;; (4.2) is satisfied. By Remark 2.2
we may find zao such that (0,uge, Z/t7) € Cs(a). We take ug with z13 = 0, uz € Cs(a), and (ugz,uz) = 0.
Now assume Z = 0. We take us = (0,¢,0), uy = (¢,0,0), uz = (0,0,¢) (again z12 = 291 = 231 = 0).
(b) Assume the existence of y € {3,...,n} such that mys # 0. It is sufficient to mimic the proof of
part (a). O
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5. The numerical range map

Remark 5.1 Fiz M € M, ,(Fz2) and A,B € C,, ,(1). We have ATMA = B'MB if and only if M and AB?
commute. If all eigenvalues of M over qu are distinct, then this is the case if and only if ABY is a polynomial
of degree < n —1 in M with coefficients in Fp2 and hence (since ABT # 0l,,x,, ) there are at most ng> — 1
such M. If M = (m;;) is diagonal with m;; # mj; for all i # j the commutator of M is given by the diagonal
g+1

A = 0L, %y, , while all fibers of Vatnxn,a, & # 0, have cardinality n(q+ 1). Hence,

matrices. A diagonal matric A = (a;;) € Cp(a) if and only if ol = a for all i. Thus, for a = 0 we get

_ 16.(1))

#(Numy, 1 (M)) = (@ —1)

Proposition 5.2 Take n =k =2, beFp \ {0}, and

0 b
M= (O O) .
Then each fiber of varax2,1 has cardinality ¢+ 1.

Proof Taking %M instead of M we see that it is sufficient to consider the case b =1. If DM = M D, with
D = (d;;), we have do; = 0, because the multiples of (1,0) are the only eigenvectors of M. If D € C5 (1) we

also get dio =0 and d‘ffl = dg;l =1. Since DM = M D, we get dy; = doo. The assertion on the numerical
map follows from Remarks 2.2 and 5.1. O

6. The case ¢ =2

As in the case k =1 the cases ¢ = 2 and ¢ # 2 are quite different (see [1, Remark 8] and [6]). In this section

we always assume ¢ = 2. We write M = (m;;) and A = (a;;).

Remark 6.1 Take x € Fy. Since ¢ =2, we have ¢+ 1 =¢> —1. Thus, 29t =1 if x # 0 and 2971 =0 if
z=0.

Remark 6.2 We have A € C,, ,(0) if and only if each column vector of A has an even number of nonzero
entries and different columns are pairwise orthogonal. By part (2) of Remark 3.1 A € C,, 1(0) if and only if

each row vector of A has an even number of nonzero entries and different row vectors are pairwise orthogonal.

Remark 6.3 We have A € C, (1) if and only if each column vector of A has an odd number of nonzero
entries and different columns are pairwise orthogonal. By part (2) of Remark 3.1 A € Cyp (1) if and only if

each row vector of A has an odd number of nonzero entries and different row vectors are pairwise orthogonal.

Example 6.4 Toke n =k =2 and take A = (a;j) € M22(F4). By Remarks 6.1 and 6.2 we have A € Cs2(0)
if and only if either A = Olaxa or a2 as; + alqass = 0. Thus, for each (a11,a12,a22) € (Fy\ {0}) there is a
unique a1 € Fq\ {0} such that A € C35(0). Thus, §(C22(0)) = 28.
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Example 6.5 Toke n =k =2 and take A = (a;j) € M22(F4). By Remarks 6.1 and 6.3 we have A € Ca9(1)
if and only if either ajo = az1 =0 and ajjase # 0 or ayn = aze = 0 and ajpazy # 0. Thus, §(C22(0)) = 18.

First assume a12 = as1 =0 and aj1a99 # 0, say a;1 = a and azx =b. We get

amaoy bm22

MA— (amu bm12>

and hence

ATMA _ ( mi1 aqulg)

aqu21 moo

Varying a,b € Fy \ {0} we get all matrices

( M1y Cbm12> L ceFa\ {0},

cImor Mmoo

Take a11 = aze =0 and ajga21 # 0, say a2 = a and az; = b. Since

MA— (bmu am11> ’
bmas  amoy

we get all matrices

( man cbmw) L ceFy\ {0},

cImor My

Thus, §(Nums(M)) =1 if and only if M = mi1laxa, while v(2,2,2) =6 and §(Numy(M)) = 6 if and only if
mi1 # Mmoo and (mi2, ma1) # (0,0). There are 144 such matrices. We have §(2,2,2) = 2 and the minimum

1s achieved if and only if M is diagonal, but not a multiple of the identity. There are 12 such matrices.

Example 6.6 Take n =k =3 and take A = (a;;) € M33(F4). By Remarks 6.1 and 6.2 we have A € Cs3(0)
if and only if either A = Oll3x3 or the rows are pairwise orthogonal and each row has exactly one zero entry.
The same discussion works using columns instead of rows. Suppose that a1 # 0 and a1z # 0 and hence
a1z = 0. If the second column is orthogonal to the first one and it has exactly one zero entry, then ass = 0,
as1a9e # 0, and a%lagl + a%Qagg = 0. In the same way we get ass = 0, azjazz # 0, a({lagl + (ltllzagg =0,
and a3jaz1 + a3qa30 = 0. Since t? =t~ for all t € Fy\ {0}, the 3 degree 3 equations are equivalent to the
following quadratic equations: asiais + aj1ase =0, aziaia + aj1azs =0, aseasy + asiase = 0, which (since all
their entries are nonzero) are equivalent to asy/ass = a11/a12, as1/ase = ai11/ass, aszi/ass = asy/ass. Thus,
we may fix arbitrary ai1,a12,a21,a31 € Fa \ {0} and then get uniquely the other a;j s.

The same argument works if either a;; = 0 and ajsaiz # 0 or if a2 = 0 and aj1a13 # 0. We get

1(C3,3(0)) = 243.

7. Conclusions and further work

We have developed a matrix-valued numerical range. Now we describe (as remarks) three suggestions for the

interested reader.
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Remark 7.1 (Owver the complex numbers) Let (, ) be the usual Hermitian product on C™ (antilinear in the first
variable) and take E € My (C) such that E = ET. Since ( , ) is definite positive, we have C, (0) = {01}
and C,, ,(E) =0 if neither E = 0l j, nor E is definite positive. Now assume that E is definite positive. Using
a unitary transformation we see that to compute all numerical ranges it is sufficient to compute them when E
is a diagonal matriz, say with a,...,ax diagonal entries with a; > 0 for all i. For any A € M, 1(C) with
U1, ..., up let aA be the matriz with (\/ajuy,...,\/aruy) as its column vectors. The map A aA shows that
to compute all n X k numerical ranges it is sufficient to compute the ones for E = I« . Since {, ) is definite
positive, we see that C, (1) is formed by the n x k matrices with as columns vectors a (partial) unitary frame.
Thus, Cp k(1) £ 0 if and only if 1 <k <n. If 1 <k <mn the (n x k,1)-numerical range of any n x n matriz

18 connected, compact, and circular.

Remark 7.2 Asin [1, 3, /] one could also consider the case in which we only use vectors and matrices defined
over F, . As in the case of the usual numerical range we put a subscript 4 for this case, like Cp 1 (E), Cn.iq(a),
Numy, g(M)q, and Numy o(M),. Since t? =t for each t € Fy, the equations defining C, r q(a) are quadratic
equations. As in the case k = 1, we are dealing with a system of degree 2 equations in several variables (here
k% equations in nk wvariables), which are homogeneous if a = 0. Thus, for a = 0 we always have nonzero
solutions for n >k by the Chevalley—Warning theorem (see [10, 6.9, 6.11] and [12, 3.1, 3.5]), while for a # 0
the same theorem shows that for n > k if they have at least one solution then the set of all solutions is large.
The description of these solutions should be related to, but easier than, the study of the fibers of the matriz

numerical map.

Remark 7.3 Let K be a field equipped with a fized degree 2 Galois extension L. As in [4] one can do the

matriz-valued numerical range for matrices M € M,, (L) .
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