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Abstract: In this paper we define and study the matrix-valued k × k numerical range of n × n matrices using the
Hermitian product and the product with n × k unitary matrices U (on the right with U , on the left with its adjoint
U† = U−1 ). For all i, j = 1, . . . , k we study the possible (i, j) -entries of these k × k matrices. Our results are for the
case in which the base field is finite, but the same definition works over C . Instead of the degree 2 extension R ↪→ C
we use the degree 2 extension Fq ↪→ Fq2 , q a prime power, with the Frobenius map t 7→ tq as the nonzero element of
its Galois group. The diagonal entries of the matrix numerical ranges are the scalar numerical ranges, while often the
nondiagonal entries are the entire Fq2 . We also define the matrix-valued numerical range map.
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1. Introduction
In this paper we define and study the matrix-valued numerical range of n × n -matrices with respect to a
Hermitian product. Our results are for the case in which the base field is finite, but the same definition works
over C . Instead of the degree 2 extension R ↪→ C we use the degree 2 Galois extension Fq ↪→ Fq2 , q a prime
power, with the Frobenius map t 7→ tq as the nonzero element of its Galois group. The main results of this
paper only study the single entries of these numerical range matrices.

Recall that for each prime power q there is a unique, up to isomorphisms, field Fq with q elements and
that Fq2 is a degree 2 Galois extension of Fq (see [10], [11, Theorem 2.5], and [12]). The nonzero element of
the Galois group of the extension map Fq ⊂ Fq2 is the Frobenius map t 7→ tq . The Frobenius map allows the
definition of the following Hermitian form on Fn

q2 (exactly as the complex conjugation allows the definition of
the Hermitian form Cn × Cn → C).

Let q be a prime power. For any n > 0 and any u = (u1, . . . , un) ∈ Fn

q , v = (v1, . . . , vn) Fn

q set
⟨u, v⟩ :=

∑n
i=1 u

q
i vi . For any integer n > 0 and any a ∈ Fq set Hn,a := {u ∈ Fn

q2 | ⟨u, u⟩ = a} . Set
Numa(M) := {⟨u,Mu⟩ | u ∈ Hn,a} . The set Numa(M) is called the a-numerical range of M [1–7]. The set
Num(M) := Num1(M) is called the numerical range of M .

For any M = (mij) ∈ Mn,n(Fq2) set M† = (mq
ji) . The square matrix M is said to be Hermitian if

M = M† .
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Fix E ∈ Mk,k(Fq2) such that E† = E . For each positive integer n set

Cn,k(E) := {A ∈ Mn,k(Fq2) | A†A = E}.

If E = aIk,k , where Ik,k is the identity matrix and a ∈ Fq , we write Cn,k(a) instead of Cn,k(E) . For any
matrix M ∈ Mn,n(Fq2) the (k,E) -numerical range Numk,E(M) (or just (k, a) -numerical range Numk,a(M)

if E = aIk,k ) of M is the set of all B ∈ Mk,k(Fq2) of the form A†MA for some A ∈ Cn,k(E) . Let U be a
k × k unitary matrix, i.e. take U ∈ Mk×k(Fq2) such that U†U = Ik×k . The map A 7→ U†A gives a bijection
between Cn,k(E) and Cn,k(U

†EU) and hence E and U†EU give essentially the same numerical range for
k× k matrices. Obviously Numk,E(In×n) = {E} . If M = M† , then all elements of Numk,a(M) are Hermitian
(Remark 2.9).

We always have 0Ik×k ∈ Numk,0(M) (just use the zero matrix 0 ∈ Mn,k(Fq2)). As in [3] we call
Num′

k,0(M) the set of all B ∈ Mk,k(Fq2) of the form A†MA for some A ∈ Cn,k(E) with A ̸= 0 . Call
Numk,0(M)′′ the subset of Numk,0(M) obtained using only A ∈ Cn,k(0) in which no column vector and no
row vector is zero.

For all positive integers i, j such that 1 ≤ i ≤ k and 1 ≤ j ≤ n let πij(Numk,E(M)) (or πij(Numk,a(M))

if E = aIk×k ) denote the set of all α ∈ Fq2 , which are the (i, j) -entries of some A ∈ Numk,E(M) . These subsets
of Fq2 are usually very easy to compute and often quite large (see Proposition 4.3 and Theorem 4.5). This may
seem to be a disappointment, but we saw in [5] plenty of ways to use Numa to distinguish matrices M,M ′ with
Numa(M) = Numa(M

′) . For another way to distinguish between M and M ′ see the numerical map described
at the end of the introduction.

Set Numk(M) := Numk,1(M) and πij(Nk(M)) := πij(Numk,1(M)) . If we know the set Numk,1(M) ,
then we know all sets Numk,a(M) , a ∈ Fq \ {0} (Remark 2.5).

Question 1.1 Fix integers n ≥ 2 and k > 0 . What is the maximal cardinality γ(q, n, k) (resp. γ(q, n, k, 0)) of
some Numk(M) (resp. Numk,0(M)), M ∈ Mn,n(Fq2) , and the minimum δ(q, n, k) (resp. δ(q, n, k, 0)) among
all M that are not a multiple of the identity?

Fix positive integers n, k , a ∈ Fq , and M ∈ Mn,n(Fq2) . The (n × k, a)-numerical map νM,n×k,a :

Cn,k(a) → Mk,k(Fq2) of M is the map Cn,k(a) → Mk,k(Fq2) defined by the formula A 7→ A†MA . We have
Im(νM,n×k,a) = Numk,a(M) and hence to give upper (resp. lower) bounds on the integer ♯(Numk,a(M)) it is
sufficient to give “very good” lower (resp. upper) bounds on the cardinality of the fibers of the map νM,n×k,a .
By Remark 2.5, to know all νM,n×k,a , a ∈ Fq \ {0} , it is sufficient to know νM,n×k,1 . Thus, it is sufficient to
study νM,n×k,1 and νM,n×k,0 . See Remark 5.1 and Proposition 5.2 for some results concerning the numerical
map.

2. Foundational remarks
For any matrix M = (mij) ∈ Mn,n(Fq2) let M† = (aij) be the matrix with aij = mq

ji for all i, j . M is said

to be Hermitian if M† = M . Note that the diagonal elements of a Hermitian matrix are contained in Fq .
Let e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the standard basis of Fn

q2 . Let In×n denote the identity n × n

matrix. For any a ∈ Fq set Ca(a) := {z ∈ Fn
q2 | ⟨z, z⟩ = a} ([1, 2, 4, 5]).

2060



BALLICO/Turk J Math

Notation 2.1 Write M = (mij) , i, j = 1, . . . , n .

Remark 2.2 For each a ∈ Fq \ {0} there are exactly q+1 elements of Fq such that zq+1 = a and all of them
are in Fq2 (see [11, Theorem 2.8] and [1, Remark 3]). 0 is the only element of Fq such that zq+1 = 0 .

Remark 2.3 By Remark 2.2 the set C2(0) is the union of (0, 0) and the set of all (u, v) ∈ (Fq2 \{0})2 such that
v = tu for some t with tq+1 = −1 and hence ♯(C2(0)) = 1+(q2−1)(q+1) = q3+q2−q by Remark 2.2. Now take
a ̸= 0 . The integer ♯(C2(a)) is the number of Fq2 -solutions of the equation xq+1 + yq+1 = a . For any y such
that yq+1 = a (and there are q+1 such y s by Remark 2.2) there is a unique x satisfying the equation xq+1 = 0 .
For all y such that yq+1 ̸= a we get q+1 possible y s. Thus, ♯(C2(a)) = q+1+(q2−q−1)(q+1) = (q+1)(q2−q) .

Remark 2.4 If B ∈ Numk,E(M) , then B† ∈ Numk,E(M
†) , because if A ∈ Cn,k(E) , then A† ∈ Cn,k(E) and

(A†MA)† = A†M†A .

Remark 2.5 Take a ∈ Fq \ {0} . Fix c ∈ Fq2 such that cq+1 = a (Remark 2.2). Fix A ∈ Cn,k(1) . Since
(cA)†(cA) = cq+1A†A , we have cA ∈ Cn,k(a) . For any M ∈ Mn,n(Fq2) we have (cA)†M(cA) = cq+1A†MA =

aA†MA . Thus, Numk,a(M) = aNumk,1(M) and πij(Numk,a(M)) = aπij(Numk,1(M)) . Thus, it is sufficient
to study Numk,1(M) and Numk,0(M) .

The following two results show that the case a = 0 is simpler.

Lemma 2.6 If B ∈ Numk,0(M) , then zB ∈ Numk,0(M) for all z ∈ Fq \ {0} .

Proof Take t ∈ Fq2 such that tq+1 = z (Remark 2.2) and A ∈ Cn,k(0) such that B = A†MA . We have
tA ∈ Cn,k(0) , because (tA)†(tA) = tq+1A†A = 0Ik×k . We have (tB)†M(tB) = tq+1A†MA . 2

Remark 2.7 Take a = 0 and k ≥ 2 . Fix t ∈ Fq2 , M ∈ Mn,n(Fq2) , and i ∈ {1, . . . , k} . Take A ∈ Cn,k(0) .
Call u1, . . . , uk the column vectors of A . Call At,i the element of Cn,k(0) , which has as its column vectors
the ones of A , except the i th one, which is tui . Let zxy (resp. wxy ) be the (x, y)-entry of the matrix A†MA

(resp. A†
t,iMAt,i ). We have wxy = zxy if i /∈ {x, y} , wii = tq+1zii , wiy = tqziy if y ̸= i , and wxi = tzxi if

x ̸= i . Thus, if i ̸= j either πij(Numk,0(M)) = Fq2 or πij(Numk,0(M)) = {0} and if c ∈ πii(Numk,0(M)) ,
then tq+1c ∈ πii(Numk,0(M)) for all t ∈ Fq2 . Hence, by Remark 2.2 the set πii(Numk,0(M)) is an Fq -linear
subspace of Fq2 .

Remark 2.8 Take a ∈ Fq \ {0} and k ≥ 2 . Fix t ∈ Fq2 such that tq+1 = 1 (there are q + 1 such entries by
Remark 2.2). Fix M ∈ Mn,n(Fq2) and i ∈ {1, . . . , k} . Take A ∈ Cn,k(a) . Call u1, . . . , uk the column vectors
of A . Let At,i be the element of Cn,k(a) with as its column vectors the same as the ones of A , except the

i th one, which is tui . Let zxy (resp. wxy ) be the (x, y)-entry of the matrix A†MA (resp. A†
t,iMAt,i ). We

have wxy = zxy if i /∈ {x, y} , wii = zii , wiy = tqziy if y ̸= i , and wxi = tzxi if x ̸= i . Thus, if i ̸= j and
α ∈ πij(Numk,a(M)) , then tα ∈ πij(Numk,a(M)) .
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Remark 2.9 For all M ∈ Mn,n(Fq2) and all A ∈ Cn,k(a) we have (A†MA)† = A†M†A . Thus, if F ∈

Numk,a(M) , then F † ∈ Numk,a(M
†) . Now assume M = M† . Since (A†MA)† = A†M†A = A†MA for all

A ∈ Cn,k(a) , every element of Numk,a(M) is Hermitian.

3. Cn,k(a)

Take a ∈ Fq and A ∈ Mn,k(Fq2) . Let u1, . . . , uk be the column vectors of A . We have A ∈ Cn,k(a) if and
only if ⟨ui, uj⟩ = aδij for all i, j . Thus, A ∈ Cn,k(0) if and only if the linear span of its columns is contained in
the Hermitian variety Cn(0) over Fq2 . The set Cn(0) is the affine cone of the (n− 1) -dimensional Hermitian
variety (see [8, Ch. V] and [9, Ch. 23]). Thus, Cn,k(0) ̸= ∅ for all k > 0 , and ⌊(n− 2)/2⌋+ 1 is the maximal
integer k such that there is A ∈ Cn,k(0) whose columns are linearly independent [9, Lemma 23.3.1], while
Cn,k(0) ̸= ∅ if and only if 1 ≤ k ≤ n . Take B ∈ Mn,n(Fq2) such that B†B = In,n , i.e. take a unitary B .
Since A†B†BA = A†A for all A ∈ Mk,k(Fq2) , left multiplication by B induces a bijection of Cn,k(E) . Hence,
Numk,E(B

†MB) = Numk,E(M) for every M ∈ Mn,n(Fq2) .

Remark 3.1 Fix a ∈ Fq and positive integers n, k .

1. The zero-matrix is an element of Cn,k(0) .

2. We have A ∈ Ck,k(a) , a ∈ Fq , if and only if A† ∈ Ck,k(a) .

3. Assume a ̸= 0 . Since ⟨ , ⟩ is nondegenerate, the column vectors u1, . . . , uk of any A ∈ Cn,k(a) are
linearly independent and in particular Cn,k(a) = ∅ for all a ̸= 0 and n > k .

4. For all y > n , all x > k , and A ∈ Cn,k(0) we may extend A to an element of Cx,k(0) , an element of
Cn,y(0) , and an element of Cx,y(0) , adding zeros as the new entries. These new matrices cannot be used
to test Num′′ , but they may be used to test Num and Num′ .

See [1, page 171], [8, Ch. V], and [9, Ch. 23] for the integer ♯(Cn−k(1)) appearing in Lemma 3.6 and the
main properties of Hermitian varieties.

Remark 3.2 Take k > 0 , 1 ≤ i ≤ n , 1 ≤ j ≤ n , a ∈ Fq , c ∈ Fq2 , and M ∈ Mn,n(Fq2) . We have
Numk,a(M − cIn×n) = Numk,a(M)− ca and hence πij(Numk,a((M − cIn×n))) = πij(Numk,a(M))− ca .

Remark 3.3 Fix (t1, . . . , tk) ∈ (Fq2 \ {0})k and set t := (t1, . . . , tk) . For any A ∈ Mn,k(Fq2) with u1, . . . , uk

as its column vectors let tA be the n×k matrix with t1u1, . . . , tkuk as its column vector. Note that A ∈ Cn,k(0)

if and only if tA ∈ Cn,k(0) . If tq+1
i = tq+1

1 for all i , then for any a ∈ Fq A ∈ Cn,k(a) if and only if
tA ∈ Cn,k(t

q+1
1 a) .

Remark 3.4 If M ∈ Mn,n(Fq2) and A ∈ Mn,k(Fq2) we have (A†MA)† = A†M†A . If A†A = E with E = E† ,
then AA†E . Thus, Numk,E(M

†) is obtained from Numk,E(M) taking † and if M = M† every element of
Numk,E(M) is Hermitian.

The next lemma describes C2,2(0) .

2062



BALLICO/Turk J Math

Lemma 3.5 Take

A =

(
x11 x12

x21 x22

)
. We have A†A = 0I2×2 if and only if there are t0, t1 ∈ Fq2 such that tq+1

0 = tq+1
1 = −1 , x11 = t0x12 ,

x21 = t1x22 and t0x
q+1
12 + t1x

q+1
22 = 0 .

Proof The (1, 1) (resp. (2, 2)) entry of A†A shows that (x11, x12) ∈ C2(0) (resp. (x21, x22) ∈ C2(0))
and hence there is t0 ∈ Fq2 (resp. t1 ∈ Fq2 ) such that tq+1

0 = −1 and x11 = t0x12 (resp. tq+1
1 = −1 and

x21 = t1x22 ). The vanishing of the (1, 2) entry of A†A is equivalent to t0x
q+1
12 + t1x

q+1
22 = 0 , which is equivalent

to tq0x
q+1
12 +tq1x

q+1
22 = 0 , i.e. the vanishing of the (2, 1) -entry of A†A , because tq = t for all t ∈ Fq and tq+1 ∈ Fq

for all t ∈ Fq2 . 2

Lemma 3.6 Take A ∈ Cn,k(a) , a ̸= 0 , and n > k . Then there are ♯(Cn−k(1)) matrices B ∈ Cn,k+1(a) whose
first k column vectors are the ones of A .

Proof Call u1, . . . , uk ∈ Fn
q2 the column vectors of A . Set V := {v ∈ Fn

q2 | ⟨v, ui⟩ = 0 for all i = 1, . . . , k} . V

is a linear subspace of Fn
q2 and the restriction of ⟨ , ⟩ to V is nondegenerate. The possible (k + 1)th column

vectors of B are the elements v ∈ V such that ⟨v, v⟩ = a . By Remark 3.1 we get the same number for all
a ∈ Fq \ {0} . Hence, the number in the lemma is the integer ♯(Cn−k(a)) . Recall that ♯(Cn−k(a)) = ♯(Cn−k(1))

for all a ̸= 0 . Thus, (a− 1)♯(Cn−k(1)) + ♯(Cn−k(0)) = ♯(Cn−k+1(0)) . 2

4. The single entries of the numerical matrix range

Take positive integers n, k , a ∈ Fq , and M ∈ Mn,n(Fq2) . Write M = (muv) , 1 ≤ u ≤ n , 1 ≤ v ≤ n .

Remark 4.1 Fix integers i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n . Fix any A ∈ Mk,k(Fq2) such that

A†A = aIk×k and call u1, . . . , uk the column vectors of A . Note that u†
iMuj is the (i, j)-entry of A†MA . In

particular πii(Numk,a(M)) ⊆ Numa(M) for all i, j, a and equality holds if every u ∈ Fn
q2 with ⟨u, u⟩ = a is a

column vector of some A ∈ Mn,k(Fq2) such that A†A = aIk×k . This is always true if either a = 0 or k ≤ n .

By Remark 4.1 to look at all πij(Numk,a(M)) it is sufficient to handle the case i ̸= j . Obviously
πij(Numk,a(M)) = {0} for any i , j and a if M = 0 .

Remark 4.2 Take M ∈ Mn,n(Fq2) , A ∈ Cn,k(a) , and (i, j) ∈ {1, . . . , n}×{1, . . . , n} . Let u1, . . . , uk ∈ Fn
q2 be

the column vectors of A . Note that ⟨ui,Muj⟩ is the (i, j)-entry of A†MA .

Proposition 4.3 Fix integers n ≥ 2 , k ≥ 2 , and 1 ≤ i ≤ n , 1 ≤ j ≤ min{n, k} , such that i ̸= j . Fix
M ∈ Mn,n(Fq2) .

(i) Assume n = k . We have πij(Numn,0(M)) = {0} if and and only if mii = mjj , miy = 0 for all
y ̸= i and mxj = 0 for all x ̸= j . In all other cases we have πij(Numk,0(M)′) = Fq2 .
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(ii) If n > k , then πij(Numk,0(M)) = Fq2 if either (mii − mjj ,mij ,mji) ̸= (0, 0, 0) or there is
y ∈ {1, . . . , k} \ {j} such that miy ̸= 0 .

(iii) If n < k , then πij(Numk,0(M)) = Fq2 if either (mii − mjj ,mij ,mji) ̸= (0, 0, 0) or there is
x ∈ {1, . . . , n} \ {j} such that mxj ̸= 0 .

Proof Taking A = 0In,k we get 0 ∈ πij(Numk,0(M)) for all M .
(i) Assume n = k . Either πij(Numk,0(M)) = Fq2 or πij(Numk,0(M)) = {0} (Remark 2.7). Note

that the entries of πij(Numk,0(M)) are the numbers u†
iMuj , for some ith and j th column vectors of some

A ∈ Cn,k(0) . Thus, we see that πij(Numk,0(M)) = {0} if mii = mjj , miy = 0 for all y ̸= i and mxj = 0 for
all x ̸= j .

Now we prove the “only if” part. Since A†cIn,nA = cA†A = 0Ik×k for all A ∈ Cn,k(0) , we have
Numk,0(cIn×n) = {0} for all c ∈ Fq2 . Since Numk,0(cIn×n) = {0} , we have πij(Numk,0(M)′) = πij(Numk,0(M−
mjjIn×n))

′) . Thus, we may assume mjj = 0 and hence mii = mjj if and only if mii = 0 . Up to a permutation
of the indices (which is induced by Hermitian transformations) we may assume i = 1 and j = 2 . Note that
m22 = 0 .

(a) In this step we assume m22 = 0 and (m11,m12,m21) ̸= (0, 0, 0) and prove that πij(Numk,0(M)) ̸=
{0} .

(a1) Take n = k = 2 . It is sufficient to find A = (aij) ∈ C2,2(0) with a11 = x , a21 = y , a12 = u ,
and a22 = v such that Z := m11x

qu+m21y
qu+m12x

qv ̸= 0 , because the right-hand side of the last equality
is the (1, 2) -entry of A†MA . We have A ∈ C2,2(0) if and only if xqu + yqv = 0 and there are t, c ∈ Fq2

such that y = tx , v = cu , tq+1 = −1 , and cq+1 = −1 . We have Z = xqu(m11 + tqm21 + cm12) . Thus, to
get Z ̸= 0 we need xu ̸= 0 . When xu ̸= 0 the condition xqu + yqv = 0 is satisfied if and only if tqc = −1 .
Hence, we get Z ̸= 0 if and only if there is c ∈ Fq2 such that cq+1 = −1 and c2m12 + cm11 − m12 ̸= 0 .
Since (m11,m12,m21) ̸= (0, 0, 0) , the equation z2m21 + zm11 −m12 has at most 2 roots. Since there are q+1

elements c ∈ Fq2 , with cq+1 = −1 (Remark 2.2), we get some Z ̸= 0 .
(a2) Take (n, k) ̸= (2, 2) . Take A = (aij) ∈ Cn,k(0) with aij = 0 if either i > 2 or j > 2 and apply

step (a1) to the upper-left corner 2× 2 submatrix of A .
(b) From now on we assume (n, k) ̸= (2, 2) and m12 = m22 = m11 = m21 = 0 .
(b1) First assume m1x ̸= 0 for some x and n ≥ k . Up to a permutation of the indices we assume

x = 3 . Adding zero entries as in step (a2) we see that it is sufficient to prove the case n = k = 3 . Taking 1
m13

M

instead of M we reduce to the case m13 = 1 . Thus, M is the matrix in (4.1). Take A = (xij) ∈ C3,3(0) .
It is sufficient to find A such that (4.2) has a solution Z ̸= 0 . There are q + 1 elements t of Fq2 such that
tq+1 = −1 (Remark 2.2). Take u1 = (1, 0, t) , u2 = (t, 0,−1) , and u3 = (0, 0, 0) . Since (−1)q = −1 for every
prime-power q , even in characteristic 2 , the left-hand side of (4.2) is h(t) = −(m33 +m23)t

q − 1 . Since h(t) is
a nonzero polynomial of degree at most q , we may find t with h(t) ̸= 0 .

(b2) Applying the argument of step (b1) we conclude if k ≥ n and there is y ∈ {3, . . . , k} such that
my2 ̸= 0 .

(ii) Assume n > k . By assumption, j ≤ k . Fix α ∈ Fq2 \ {0} . Call M1 the submatrix of M formed
by its first k rows. By step (i) there is B ∈ Cn,n(0) such that α is the (i, j) -entry of B†M1B . Let A be the
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n× k matrix with B in its left upper k × k corner and 0 as all its other entries. The matrix A†MA has α as
its (i, j) -entry.

(iii) Assume n < k . By assumption, j ≤ n . Fix α ∈ Fq2 \ {0} . By step (i) there is B = (v1, . . . , vn) ∈

Cn,n(0) such that B†MA† has α as its (i, j) entry (part (i)). Take A ∈ Cn,k(0) with v1, . . . , vn as its first n

column vectors and zero as its other entries. The matrix A†MA has α as its (i, j) -entry. 2

As a corollary of Proposition 4.3, we get the following result.

Proposition 4.4 Take M ∈ Mn,n(Fq2) , which is not a multiple of the identity, and assume k ≥ 2 . Then
♯(Numk,0(M)) ≥ q2 .

Proof Since M is not a multiple of the identity, we have n ≥ 2 and there are i, j ∈ {1, . . . , n} such that
(mii − mjj ,mij ,mji) ̸= (0, 0, 0) . Up to a permutation of the indices we may assume i = 1 and j = 2 . By
assumption we have k ≥ 2 . We only use u1, . . . , uk ∈ Cn,1(0) such that ⟨ux, uy⟩ = 0 for all x, y , ux = 0 for
all x ≥ 3 , and u1, u2 have 0 as their n − 2 entries. With this trick we reduce to the case n = k = 2 . By
Proposition 4.3 we have π12(Num2,0(M)) = Fq2 . Thus, ♯(Numk,0(M)) ≥ q2 . 2

Theorem 4.5 Fix a ∈ Fq \ {0} , an integer n ≥ 3 , i, j ∈ {1, . . . , n} such that i ̸= j and M ∈ Mn,n(Fq2) such
that (mii −mjj ,mij ,mji) = (0, 0, 0) . We have πij(Numn,a(M)) = Fq2 if either there is x ∈ {3, . . . , n} such
that mix ̸= 0 or there is y ∈ {3, . . . , n} such that my2 ̸= 0 .

Proof Taking M −miiIn×n and using Remark 3.2 we reduce to the case mii = mjj = mij = mji = 0 .
(a) Assume the existence of x ∈ {3, . . . , n} such that mix ̸= 0 . Up to a permutation of the indices we

may take as A ∈ Cn,n(a) a matrix with B in its left upper corner, 0 for all other entries either in columns 1 ,
2 , or 3 or rows 1 , 2 , 3 , and with as its last n − 3 column vectors mutually orthogonal vectors vx of Fn−3

q2

with ⟨vx, vx⟩ = a for all x = 4, . . . , k . Thus, we reduce to the case n = k = 3 with a matrix M with m13 ̸= 0 .
Taking 1

m13
M instead of M , we reduce to the matrix

M =

 0 0 1
0 0 m23

m31 m32 m33

 . (4.1)

Take A ∈ C3,3(a) and fix Z ∈ Fq2 . Write A = (xij) . We need to solve the equation

m31x
q
11x12 +m32x

q
21x22 +m33x

q
31x32 +m23x

q
21x32 + xq

11x32 = Z (4.2)

with the restriction that A ∈ C3,3(a) . We call u1 , u2 , and u3 the column vectors of A .
First assume Z ̸= 0 . Take t ∈ Fq2 such that tq+1 = a (Remark 2.2). We take x12 = x21 = x31 = 0 and

x11 = t . Thus, u1 ∈ C3(a) . We take x32 = Z/tq . With these choices of xij (4.2) is satisfied. By Remark 2.2
we may find x22 such that (0, u22, Z/t

q) ∈ C3(a) . We take u3 with x13 = 0 , u3 ∈ C3(a) , and ⟨u2, u3⟩ = 0 .
Now assume Z = 0 . We take u2 = (0, t, 0) , u1 = (t, 0, 0) , u3 = (0, 0, t) (again x12 = x21 = x31 = 0).

(b) Assume the existence of y ∈ {3, . . . , n} such that my2 ̸= 0 . It is sufficient to mimic the proof of
part (a). 2
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5. The numerical range map

Remark 5.1 Fix M ∈ Mn,n(Fq2) and A,B ∈ Cn,n(1) . We have A†MA = B†MB if and only if M and AB†

commute. If all eigenvalues of M over Fq2 are distinct, then this is the case if and only if AB† is a polynomial
of degree ≤ n − 1 in M with coefficients in Fq2 and hence (since AB† ̸= 0In×n ) there are at most nq2 − 1

such M . If M = (mij) is diagonal with mii ̸= mjj for all i ̸= j the commutator of M is given by the diagonal
matrices. A diagonal matrix A = (aij) ∈ Cn(a) if and only if aq+1

ii = a for all i . Thus, for a = 0 we get
A = 0In×n , while all fibers of νM,n×n,a , a ̸= 0 , have cardinality n(q + 1) . Hence,

♯(Numn,1(M)) =
♯Cn(1))

n(q2 − 1)
.

Proposition 5.2 Take n = k = 2 , b ∈ Fq2 \ {0} , and

M =

(
0 b
0 0

)
.

Then each fiber of νM,2×2,1 has cardinality q + 1 .

Proof Taking 1
bM instead of M we see that it is sufficient to consider the case b = 1 . If DM = MD , with

D = (dij) , we have d21 = 0 , because the multiples of (1, 0) are the only eigenvectors of M . If D ∈ C2,2(1) we
also get d12 = 0 and dq+1

11 = dq+1
22 = 1 . Since DM = MD , we get d11 = d22 . The assertion on the numerical

map follows from Remarks 2.2 and 5.1. 2

6. The case q = 2

As in the case k = 1 the cases q = 2 and q ̸= 2 are quite different (see [1, Remark 8] and [6]). In this section
we always assume q = 2 . We write M = (mij) and A = (aij) .

Remark 6.1 Take x ∈ F4 . Since q = 2 , we have q + 1 = q2 − 1 . Thus, xq+1 = 1 if x ̸= 0 and xq+1 = 0 if
x = 0 .

Remark 6.2 We have A ∈ Cn,k(0) if and only if each column vector of A has an even number of nonzero
entries and different columns are pairwise orthogonal. By part (2) of Remark 3.1 A ∈ Cn,k(0) if and only if
each row vector of A has an even number of nonzero entries and different row vectors are pairwise orthogonal.

Remark 6.3 We have A ∈ Cn,k(1) if and only if each column vector of A has an odd number of nonzero
entries and different columns are pairwise orthogonal. By part (2) of Remark 3.1 A ∈ Cn,k(1) if and only if
each row vector of A has an odd number of nonzero entries and different row vectors are pairwise orthogonal.

Example 6.4 Take n = k = 2 and take A = (aij) ∈ M2,2(F4) . By Remarks 6.1 and 6.2 we have A ∈ C2,2(0)

if and only if either A = 0I2×2 or a211a21 + a212a22 = 0 . Thus, for each (a11, a12, a22) ∈ (F4 \ {0})3 there is a
unique a21 ∈ F4 \ {0} such that A ∈ C2,2(0) . Thus, ♯(C2,2(0)) = 28 .
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Example 6.5 Take n = k = 2 and take A = (aij) ∈ M2,2(F4) . By Remarks 6.1 and 6.3 we have A ∈ C2,2(1)

if and only if either a12 = a21 = 0 and a11a22 ̸= 0 or a11 = a22 = 0 and a12a21 ̸= 0 . Thus, ♯(C2,2(0)) = 18 .
First assume a12 = a21 = 0 and a11a22 ̸= 0 , say a11 = a and a22 = b . We get

MA =

(
am11 bm12

am21 bm22

)

and hence

A†MA =

(
m11 aqbm12

abqm21 m22

)
.

Varying a, b ∈ F4 \ {0} we get all matrices

(
m11 cbm12

cqm21 m22

)
, c ∈ F4 \ {0}.

Take a11 = a22 = 0 and a12a21 ̸= 0 , say a12 = a and a21 = b . Since

MA =

(
bm12 am11

bm22 am21

)
,

we get all matrices (
m22 cbm12

cqm21 m11

)
, c ∈ F4 \ {0}.

Thus, ♯(Num2(M)) = 1 if and only if M = m11I2×2 , while γ(2, 2, 2) = 6 and ♯(Num2(M)) = 6 if and only if
m11 ̸= m22 and (m12,m21) ≠ (0, 0) . There are 144 such matrices. We have δ(2, 2, 2) = 2 and the minimum
is achieved if and only if M is diagonal, but not a multiple of the identity. There are 12 such matrices.

Example 6.6 Take n = k = 3 and take A = (aij) ∈ M3,3(F4) . By Remarks 6.1 and 6.2 we have A ∈ C3,3(0)

if and only if either A = 0I3×3 or the rows are pairwise orthogonal and each row has exactly one zero entry.
The same discussion works using columns instead of rows. Suppose that a11 ̸= 0 and a12 ̸= 0 and hence
a13 = 0 . If the second column is orthogonal to the first one and it has exactly one zero entry, then a23 = 0 ,
a21a22 ̸= 0 , and a211a21 + a212a22 = 0 . In the same way we get a33 = 0 , a31a32 ̸= 0 , aq11a31 + aq12a32 = 0 ,
and a221a31 + a222a32 = 0 . Since t2 = t−1 for all t ∈ F4 \ {0} , the 3 degree 3 equations are equivalent to the
following quadratic equations: a21a12 + a11a22 = 0 , a31a12 + a11a32 = 0 , a22a31 + a21a32 = 0 , which (since all
their entries are nonzero) are equivalent to a21/a22 = a11/a12 , a31/a32 = a11/a32 , a31/a32 = a21/a22 . Thus,
we may fix arbitrary a11, a12, a21, a31 ∈ F4 \ {0} and then get uniquely the other aij s.

The same argument works if either a11 = 0 and a12a13 ̸= 0 or if a12 = 0 and a11a13 ̸= 0 . We get
♯(C3,3(0)) = 243 .

7. Conclusions and further work
We have developed a matrix-valued numerical range. Now we describe (as remarks) three suggestions for the
interested reader.
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Remark 7.1 (Over the complex numbers) Let ⟨ , ⟩ be the usual Hermitian product on Cn (antilinear in the first
variable) and take E ∈ Mk,k(C) such that E = E† . Since ⟨ , ⟩ is definite positive, we have Cn,k(0) = {0Ik,k}
and Cn,k(E) = ∅ if neither E = 0Ik,k nor E is definite positive. Now assume that E is definite positive. Using
a unitary transformation we see that to compute all numerical ranges it is sufficient to compute them when E

is a diagonal matrix, say with a1, . . . , ak diagonal entries with ai > 0 for all i . For any A ∈ Mn,k(C) with
u1, . . . , uk let aA be the matrix with (

√
a1u1, . . . ,

√
akuk) as its column vectors. The map A 7→ aA shows that

to compute all n× k numerical ranges it is sufficient to compute the ones for E = Ik×k . Since ⟨ , ⟩ is definite
positive, we see that Cn,k(1) is formed by the n× k matrices with as columns vectors a (partial) unitary frame.
Thus, Cn,k(1) ̸= ∅ if and only if 1 ≤ k ≤ n . If 1 ≤ k ≤ n the (n× k, 1)-numerical range of any n× n matrix
is connected, compact, and circular.

Remark 7.2 As in [1, 3, 4] one could also consider the case in which we only use vectors and matrices defined
over Fq . As in the case of the usual numerical range we put a subscript q for this case, like Cn,k,q(E) , Cn,k,q(a) ,
Numk,E(M)q , and Numk,a(M)q . Since tq = t for each t ∈ Fq , the equations defining Cn,k,q(a) are quadratic
equations. As in the case k = 1 , we are dealing with a system of degree 2 equations in several variables (here
k2 equations in nk variables), which are homogeneous if a = 0 . Thus, for a = 0 we always have nonzero
solutions for n ≫ k by the Chevalley–Warning theorem (see [10, 6.9, 6.11] and [12, 3.1, 3.5]), while for a ̸= 0

the same theorem shows that for n ≫ k if they have at least one solution then the set of all solutions is large.
The description of these solutions should be related to, but easier than, the study of the fibers of the matrix
numerical map.

Remark 7.3 Let K be a field equipped with a fixed degree 2 Galois extension L . As in [4] one can do the
matrix-valued numerical range for matrices M ∈ Mn,k(L) .
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