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Relationships between the strength and diameter of roots are an important element in models used for estimating river
bank stability. However, collection of data sets to support estimation of such relationships is time-consuming and the
resulting data usually displays high variance. Collection and analysis of a large purpose-designed data set is needed
to establish whether such relationships need to be species and site specific or whether more generalised relationships
would be sufficient.
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ABSTRACT: The strength and architecture of roots and other below-ground organs of riparian and aquatic plants affect plant
resistance to uprooting and contribute to reinforcing river bank, bar and bed materials. Therefore, root properties are an important
element in models for estimating river bank stability and such models may focus on the role of plants by using root strength–
diameter relationships for the particular plant species that are present.
Here we explore the degree to which there appear to be significant differences in strength–diameter relationships between and

within species-specific data sets obtained for two riparian tree/shrub (Populus nigra, Salix alba) and two emergent aquatic macro-
phyte (Sparganium erectum, Phalaris arundinacea) species in different European river environments.
While the analysed data sets were not specifically collected to answer these research questions, the results are sufficiently

compelling to make the case for the collection of a more comprehensive data set and its rigorous analysis. This would allow recom-
mendations to be made on the degree to which (i) species-specific or more general relationships between root/rhizome strength and
diameter are appropriate, (ii) such relationships are applicable within and between rivers in different geographical regions and
subject to different local environmental conditions, and (iii) further (minimalist) field observations are needed to calibrate such rela-
tionships for investigations of new locales or species. © 2018 John Wiley & Sons, Ltd.

KEYWORDS: riparian vegetation; river bank stability; root strength–diameter relationships

The strength and architecture of roots and other below-ground
organs of riparian and aquatic plants affect resistance to
uprooting. Therefore, they have fluvial geomorphological sig-
nificance by supporting the plant’s crown so that it can form
a component of the roughness of the channel perimeter, and
also by reinforcing river bank, bar and bed materials. As a con-
sequence, root properties are an important element in models
for estimating river bank stability (Simon and Collison, 2002;
Van de Wiel and Darby, 2007; Pollen-Bankhead and Simon,
2010; Thomas and Pollen-Bankhead, 2010) and a crucial con-
tributor to analysis of the overall dynamics of river margins
(Polvi et al., 2014; Bankhead et al., 2017). To support such
modelling, measurements of the distribution of root density,
diameter and area with depth within the bank profile are re-
quired, as well as root strength–diameter relationships for the
plant species that are present. Examples of different types of
field measurements of physical properties of roots and other
below-ground organs of riparian and aquatic species can be
found in the above-mentioned research, but also in many other
studies including Abernethy and Rutherfurd (2001), Karrenberg
et al. (2003), Wynn et al. (2004), Docker and Hubble (2008),
Liffen et al. (2011, 2013a), Rood et al. (2011), Pasquale et al.

(2012), Vannoppen et al. (2016), Vennetier et al. (2015), and
Holloway et al. (2017a, 2017b).

A key element in much of the above research is estimation of
relationships between the strength and diameter of roots or other
below-ground organs. Many researchers have used a root-pulling
device similar to that devised byAbernethy andRutherfurd (2001)
to measure the axial tractive force required to cause roots of
different diameter to break. They have then developed relation-
ships between tensile strength (the force per unit cross-sectional
area of the root, MPa) and root diameter (mm) for different spe-
cies. Typically between 40 and 100 roots are sampled to define
these species-specific relationships, but, with the notable excep-
tion of Polvi et al. (2014), little attention has been given towhether
such relationships are statistically-significantly different from one
another and whether environmental or other conditions might
yield significantly different relationships for the same species.

Using data sets collected with the same root-pulling device
for four different species (two riparian tree-shrub species
(Populus nigra (abbreviated Pn), Salix alba (Sa)) and two
aquatic macrophyte species (Sparganium erectum (Se), Phalaris
arundinacea (Pa)) growing in different European river environ-
ments (Table T1I, Figure F11), we consider the evidence for different
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inter- and intra-species contrasts in root/rhizome strength–
diameter relationships. Because our data sets were not
collected specifically for this purpose, we cannot answer these
questions with confidence. However, we provide an initial in-
dication of whether it would be profitable to gather and analyse
a larger purpose-designed data set. Such a data set could sup-
port a more robust assessment that could establish the degree
to which different root/rhizome strength–diameter relationships
are actually needed for different species or for the same species
under different environmental conditions.
A Generalised Linear Modelling approach was used to inves-

tigate the degree to which tensile strength (MPa, dependent
variable) showed a statistically significant response to organ di-
ameter (mm, independent variable) according to species and/or
environmental conditions. Power relationships are usually esti-
mated between these variables, and so the variables were log10
transformed prior to linear regression models being estimated
between the dependent variable (tensile strength) and the inde-
pendent variable (diameter). A simple regression model was es-
timated from the entire data set (Table I, n=476), and a series of
multiple regression models were estimated to explore the de-
gree to which significantly different models were appropriate
for characterising different subsets of the data. In these analy-
ses, species/river combinations (Pn, SeQ3 , Se, Pa), species groups
(trees, aquatic plants), moisture status (wet, dry), root condition
(dead, living) or month of measurement (Apr, May, Jne, Aug,
Sep, Oct_Nov) were identified using dummy variables which
took the value 1 when the tensile strength–diameter observa-
tions related to a particular case (e.g. a species–river combina-
tion, a species group, moisture status, root condition, month of
observation) and 0 when they did not. For each multiple

regression analysis, in addition to root diameter, relevant
dummy variables were incorporated as independent variables,
as were interactions between the dummy variables and root
diameter. In this way it was possible to test whether different
species or conditions (i.e. species/river combination, species
group, moisture status, root condition or month of measure-
ment) were best described by regression models with different
intercept and/or slope coefficients from other conditions and
thus whether a different tensile strength–diameter relationship
was appropriate for a particular condition. Each multiple
regression model was estimated using a stepwise procedure
to select the combination of independent variables that
achieved the highest coefficient of determination, adjusted for
the degrees of freedom of the model (R2(adj)) while including
only independent variables whose slope coefficient was
statistically significant (P<0.05) (Table T2II). All analyses were
performed using Minitab 18 software.

First, we analysed the data set for Populus nigra (n = 156) to
consider whether different relationships may be needed to
characterise a single species under different environmental con-
ditions. These data, which show considerable scatter (Figure 1),
were collected from nine different sites distributed across three
different reaches of the Tagliamento River, Italy. Each reach
was approximately 2 km in length and the reaches were spaced
approximately 4 km and 28 km apart. Previous research has
separated these nine sites into two distinct groups – wet and
dry sites – according to soil moisture conditions (Holloway
et al., 2017a) and has shown distinct differences in the vertical
profiles of root density and root area ratio according to whether
data were collected at the wet or dry sites. However, no signifi-
cant difference was found in the relationship between root

Table I. Data sets analysed

Species River Season of sampling
Number of

sampling locations
Total sample

size
Number of

roots
Number of
rhizomes

Populus nigra Tagliamento, NW Italy Summer

9 (5 dry, 3 wet, 1 no
moisture data) within
3 different river reaches 154 154 (69 dead) 0

Salix alba Adige tributary, N Italy Summer 1 52 52 0

Sparganium erectum Blackwater, southern UK
Spring, Summer,
Autumn 1 220 20 200

Phalaris arundinacea Adige tributary, N Italy Summer 1 50 18 32

Figure 1. Observations and significant power relationships estimated between tensile strength and diameter of roots and rhizomes for (A) two plant
groups and (B) two tree species (P. nigra, S alba) and two emergent aquatic macrophyte species (S. erectum, P. arundinacea) measured on four different
rivers. For data sources and estimated regression models see Tables I and II, respectively.
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tensile strength and diameter according to moisture conditions,
suggesting that root tensile strength is insensitive to this environ-
mental property, despite the fact that root profiles show distinct
differences. Since 65 intact but dead roots were included in the
156 roots analysed, it was also possible to investigate whether
root condition affected the root tensile strength–diameter rela-
tionship. This analysis revealed no significant difference in the
intercept but a steeper decline in the tensile strength of dead
roots as root diameter increased. However, R2(adj) only in-
creased slightly (from 0.168 to 0.179, Table II), indicating only
a modest increase in the explanatory power of the model.
While the data for Populus nigra, Salix alba and Phalaris

arundinacea were all collected in summer, measurements for
Sarganium erectum were collected in different months between
April and November at the same site, providing an opportunity
to investigate whether the rhizomes of this species (n = 200)
show significant changes in tensile strength through the grow-
ing season. Once again, there was considerable scatter in the
data (Figure 1) and the analysis revealed no significant differ-
ence among months apart from a reduction in the intercept
term for May, which was associated with only a modest in-
crease in R2(adj) from 0.329 to 0.340. These results indicate
that although other properties of rhizome profiles vary through
the year (Liffen et al., 2013b), there is little change in the rela-
tionship between rhizome tensile strength and diameter.
The entire data set (n = 476) for the four species were obtained

from different rivers and so, although it was possible to test for
differences in tensile strength–diameter relationships among spe-
cies, such differences may also reflect the impact of different envi-
ronmental conditions. This is particularly the case for Sparganium
erectum, where the data were collected from a lowland British
river, in contrast to the transitional alpine environments of the
Italian rivers from which the other data sets were collected.
Table II lists the estimated regression model for the entire data
set, the two plant groups (trees or aquatic plants) and the four
species/river combinations (Pn, Sa, Se, Pa). By separating the data
into two groups each containing two species/river combinations,
R2(adj) increased dramatically from 0.544 to 0.858, suggesting
that despite the differences in the species and rivers within each

group, the trees describe a distinctly different tensile strength–
diameter relationship from the aquatic plants. When the four
species/river combinations are separated and compared, there is
only a modest increase in the adjusted R2(adj) to 0.875 (from
0.858 for the two species groups) and there is little difference be-
tween the tree–river combinations, with Salix alba showing a sig-
nificantly lower intercept term but with no difference in the slope
of the relationships for the two species. Whether the difference in
the models can be attributed to species and/or river environment,
it is remarkably small and suggests that it might be possible to use
combined relationships for some tree-shrub species (such as the
Salicaceae family), particularlywhen they are growing in a similar
environmental setting. However, distinct differences in both inter-
cept and slope coefficients are found between the Sparganium
erectum and Phalaris arundinacea relationships, which may be
attributable to the different species considered but could also be
related to the very different river environments in which the
measurements were made. Further measurements for both spe-
cies on the same river could help to untangle these factors.

In summary, despite the different river environments as well
as species investigated, our analyses suggest that generalised
tensile strength–diameter relationships might be achievable.
In particular, we have shown that:

1. The same species (Populus nigra) growing in contrasting
sites where differences in soil moisture have been shown
to strongly affect root density profiles and rooting depth,
shows no difference in its tensile strength – diameter rela-
tionship, although root vigour may have some effect on this
relationship.

2. The same species (Sparganium erectum) growing at the
same site shows distinct differences in the number and
vertical profile of rhizomes through the annual growth cycle
but remarkably little change in its tensile strength –
diameter relationship.

3. Two tree species (Salix alba, Populus nigra) growing on
different rivers show no difference in the gradient of their
relationship between root tensile strength and diameter. Al-
though the intercept terms differed, it would be interesting

Table II. Statistically-significant (P<0.05 for all intercept and slope coefficients) regression models estimated between log10 tensile strength (log10 τ,
dependent variables) and log10 diameter (log10 D) using measurements obtained for four different species located on different rivers (for full
explanation of dummy variables see text)

Populus nigra R2(adj)

All Populus nigra root data:
log10 τ = 1.365 – 0.388 log10 D 0.168
log10 τ = 1.364 – (0.320 + 0.168 Dead) log10 D 0.179
For living roots:
log10 τ = 1.364 – 0.320 log10 D

For intact but dead roots:
log10 τ = 1.364 – 0.488 log10 D

Sparganium erectum
All Sparganium erectum rhizome data:
log10 τ = 0.985 – 1.210 log10 D 0.329
log10 τ = 0.984-0.088 May - 1.193 log10 D 0.340
For Apr, Jne, Aug, Spt, Oct_Nov.:
log10 τ = 0.984 – 1.193 log10 diameter

For May
log10 τ = 0.896 – 1.193 log10 D

All species/river combinations
All data:
log10 τ = 1.197-1.186*log10 D 0.544
log10 τ = 0.765+ 0.577 Tree – (0.948 – 0.445 Tree) log10 D 0.858
For emergent aquatic plants:
log10 τ = 0.765 – 1.186 log10 D

For trees:
log10 τ = 1.342 – 0.503 log10 D

log10 τ = 1.367 – 0.240 Sa – 0.739 Se – 0.502 Pa – (0.394 + 0.408 Se + 0.305 Pa) log10 D 0.875
For Populus nigra (Pn):
log10 τ = 1.367 – 0.394 log10 D
For Salix alba (Sa):
log10 τ = 1.127 – 0.394 log10 D

For Sparganium erectum (Se):
log10 τ = 0.6276 – 0.802 log10 diameter
For Phalaris arundinacea (Pa):
log10 τ = 0.865 – 0.699 log10 D
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to test the degree to which this reflected a difference in river
environment rather than species. A data set drawn from a
single river but covering several species would support test-
ing of genuine differences among tree species and whether
relationships could be generalised to the family rather than
species level.

4. Two aquatic species showed distinct differences in their ten-
sile strength–diameter relationships that may be attributable
to species and/or river. However, it is worth stressing that
Sparganium erectum is a true aquatic species that rarely
grows beyond continuously inundated sites whereas
Phalaris arundinacea is a wetland grass species that is found
mainly at and above the water’s edge. Furthermore, these
species come from different families (Sparganiaceae,
Poaceae). Therefore, it would be worth exploring whether
plants occupying similar habitats or from the same family
show greater similarities than the two species explored in
our analysis.

In conclusion, gathering species-specific root/rhizome
strength–diameter data is extremely time consuming and, as is
clear from Figure 1, high residual variance is typical around es-
timated tensile strength–diameter relationships even for a single
species at a single location. This raises the question of whether
single species relationships are necessary. The preliminary
analyses presented here suggest that considerable savings in
field effort might result from a more rigorous analysis of a more
comprehensive data set, to test the following hypotheses:

(i) Sufficiently reliable root/rhizome tensile strength–diameter
relationships can be estimated to family level, removing
the need for species-specific relationships.

(ii) Such family relationships are robust at least across rivers in
the same catchment (and possibly the same biogeograph-
ical region).

(iii) Such family relationships are robust through all seasons of
the year.
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