EXISTENCE OF NONTRIVIAL LOGARITHMIC CO-HIGGS STRUCTURE ON CURVES

EDOARDO BALLICO AND SUKMOON HUH

Abstract

Аbstract. We study various aspects on nontrivial logarithmic co-Higgs structure associated to unstable bundles on algebraic curves. We check several criteria for (non-)existence of nontrivial logarithmic co-Higgs structures and describe their parameter spaces. We also investigate the Segre invariants of these structures and see their non-simplicity. In the end we also study the higher dimensional case, specially when the tangent bundle is not semistable.

Contents

1. Introduction 1
2. Preliminary 3
3. Curve case 5
3.1. Projective line 7
3.2. Elliptic curves 7
3.3. Higher genus case 8
4. Segre invariant 13
4.1. Curve case 14
4.2. Simplicity 16
5. Higher dimensional case 17
5.1. Case of $\mathcal{I}_{\mathcal{D}}$ semistable 17
5.2. Case of $\mathcal{I}_{\mathcal{D}}$ not semistable 18
References 21

1. Introduction

A logarithmic co-Higgs sheaf on a complex manifold X is a pair (\mathcal{E}, Φ) with a torsion-free coherent sheaf \mathcal{E} on X and a morphism $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ satisfying the integrability condition $\Phi \wedge \Phi=0$, where $\mathcal{I}_{\mathcal{D}}$ is the logarithmic tangent bundle X associated to an arrangement \mathcal{D} of hypersurfaces with simple normal crossings.

[^0]When \mathcal{D} is empty, it is a co-Higgs sheaf in the usual sense, introduced and developed by Hitchin and Gualtieri; see [18, 15]. When \mathcal{E} is locally free, it is a generalized vector bundle on X considered as a generalized complex manifold, whose co-Higgs field vanishes in the normal direction to the support of \mathcal{D}.

It is observed in [4, Theorem 1.1] that the semistability of a co-Higgs bundle (\mathcal{E}, Φ) on X with nonnegative Kodaira dimension implies the semistability of \mathcal{E}. In case of negative Kodaira dimension, there are several works on description of moduli space of semistable co-Higgs bundles, including the case when the associated bundle is not stable; see [27] and [10].

Now the additional condition for a co-Higgs field to vanish in the normal direction to \mathcal{D} with higher degree, forces the associated bundle to be unstable. So we are mainly interested in the logarithmic co-Higgs sheaves associated to the arrangement with high degree and assume that the length of Harder-Narasimhan filtration is at least two. We fix numeric data for the Harder-Narasimhan filtration of the sheaf in consideration, i.e. fix the length s at least two of the filtration together with rank r_{i} and degree d_{i} of the successive quotients in the HarderNarasimhan filtration (2). Setting $\gamma:=\operatorname{deg} \mathcal{T}_{\mathcal{D}}$ and $\mu_{i}:=d_{i} / r_{i}$, we always assume that $\mu_{s}-\mu_{1} \leq \gamma<0$ as the least requirement for the existence of the non-trivial co-Higgs field; see Corollary 3.9. Then we investigate the numeric criterion for the sheaf to admit a non-trivial co-Higgs field; see Proposition 3.4 and Theorem 3.7

Theorem 1.1. Fix the numeric data for the Harder-Narasimhan filtration and denote by \mathbb{U} the set of the torsion-free sheaves on an algebraic curve X with these data. Then the following hold:
(i) there exists an unstable sheaf in \mathbb{U} with non-trivial co-Higgs field;
(ii) the inequality $\mu_{s}-\mu_{1} \geq \gamma+1-g$ implies the existence of an unstable sheaf in \mathbb{U} with no non-trivial co-Higgs field;
(iii) the inequality $\mu_{s}-\mu_{1}<\gamma+1-g$ implies that every sheaf in \mathbb{U} admits a nontrivial co-Higgs field.
The existence part is induced by explicit usage of positive elementary transformations and the positive answer to the Lange conjecture [28]. Furthermore we extend the notion of Segre invariant to the setting of logarithmic co-Higgs sheaves and show that it is well-defined over curves under the assumption that $\gamma<0$ and that this invariant is same as the usual Segre invariant under a certain condition; see Corollary 4.8 and Proposition 4.14
Theorem 1.2. For a logarithmic co-Higgs sheaf (\mathcal{E}, Φ) on an algebraic curve X with $\gamma<$ 0 , the $k^{\text {th }}$-Segre invariant $s_{k}(\mathcal{E}, \Phi)$ is well-defined. It is also equal to the Segre invariant $s_{k}(\mathcal{E})$ in the usual sense, if \mathcal{E} admits the complete Harder-Narasimhan filtration, i.e. $r_{i}=1$ for all i.

Then we check in Proposition 4.14 that co-Higgs sheaves associated to unstable bundle are usually not stable, not even simple.

Over algebraic curves the bundle $\mathcal{I}_{\mathcal{D}}$ is automatically semistable. So, as the counterpart to the case of algebraic curves, in $\$ 5$ we deal with the case when the dimension of X is at least 2 and $\mathcal{I}_{\mathcal{D}}$ is not semistable. Under the assumption that the biggest slope in the Harder-Narasimhan filtration of $\mathcal{I}_{\mathcal{D}}$ is negative, we give a recipe to construct all the pairs (\mathcal{E}, Φ) with \mathcal{E} reflexive of $\operatorname{rk}(\mathcal{E})=r \in\{2,3\}$ and non-trivial co-Higgs field $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$. When $r=2$ and in most cases with $r=3$,
the map Φ is always 2-nilpotent and so it is integrable. We also / point out exactly when we cannot guarantee the integrability.

2. Preliminary

Let X be a smooth projective variety of dimension n at least one with the tangent bundle T_{X} over the field of complex numbers \mathbb{C}. We fix an ample line bundle $\mathcal{O}_{X}(1)$ and denote by $\mathcal{E}(t)$ the twist of \mathcal{E} by $\mathcal{O}_{X}(t)$ for any coherent sheaf \mathcal{E} on X and $t \in \mathbb{Z}$. We also denote by \mathcal{E}^{\vee} the dual of \mathcal{E}. The dimension of cohomology group $H^{i}(X, \mathcal{E})$ is denoted by $h^{i}(X, \mathcal{E})$ and we will skip X in the notation, if there is no confusion. We define the slope $\mu(\mathcal{E})$ of a coherent sheaf \mathcal{E} on X with respect to $\mathcal{O}_{X}(1)$ to be $\operatorname{deg} \mathcal{E} / \operatorname{rk}(\mathcal{E})$.

Now consider an arrangement $\mathcal{D}=\left\{D_{1}, \ldots, D_{m}\right\}$ of pairwise distinct, smooth and irreducible divisors D_{i} on X, and if there is no confusion we also denote by \mathcal{D} the divisor $D_{1}+\ldots+D_{m}$. We assume that the divisor \mathcal{D} has simple normal crossings. Then the associated logarithmic tangent bundle $T_{X}(-\log \mathcal{D})$ is locally free and fits into the following exact sequence; see [13].

$$
\begin{equation*}
0 \rightarrow T_{X}(-\log \mathcal{D}) \rightarrow T_{X} \rightarrow \oplus_{i=1}^{m} \varepsilon_{i *} \mathcal{O}_{D_{i}}\left(D_{i}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\varepsilon_{i}: D_{i} \rightarrow X$ is the embedding. If there is no confusion, we will simply denote $T_{X}(-\log \mathcal{D})$ by $\mathcal{I}_{\mathcal{D}}$.

Definition 2.1. [4] A \mathcal{D}-logarithmic co-Higgs sheaf on X is a pair (\mathcal{E}, Φ) where \mathcal{E} is a torsion-free coherent sheaf on X and $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ with $\Phi \wedge \Phi=0$. Here Φ is called the logarithmic co-Higgs field of (\mathcal{E}, Φ) and the condition $\Phi \wedge \Phi=0$ is an integrability condition originating in the work of Simpson [29].

For a torsion-free coherent sheaf \mathcal{E} on X, we consider its associated HarderNarasimhan filtration:

$$
\begin{equation*}
\{0\}=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{s}=\mathcal{E} \tag{2}
\end{equation*}
$$

with the graduation $\operatorname{gr}(\mathcal{E}):=\oplus_{i=1}^{s} \mathcal{F}_{i} / \mathcal{F}_{i-1}$ such that each $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is semistable and $\mu\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)$ is strictly decreasing for all $i<s$. The integer s is called the length of the filtration, and if $s=r$, then the filtration is said to be complete. We denote by $\mu_{+}(\mathcal{E})$ and $\mu_{-}(\mathcal{E})$ the maximal and minimal slopes in the filtration, respectively:

$$
\mu_{+}(\mathcal{E}):=\mu\left(\mathcal{F}_{1}\right), \mu_{-}(\mathcal{E}):=\mu\left(\mathcal{F}_{s} / \mathcal{F}_{s-1}\right) .
$$

Remark 2.2. For two torsion-free sheaves \mathcal{A} and \mathcal{B} on X, let $\mathcal{A} \bar{\otimes} \mathcal{B}$ be the quotient of $\mathcal{A} \otimes \mathcal{B}$ by its torsion. If \mathcal{A} and \mathcal{B} are semistable, then $\mathcal{A} \bar{\otimes} \mathcal{B}$ is also semistable by [22, Theorem 2.5]. Applying this observation to the Harder-Narasimhan filtrations of \mathcal{A} and \mathcal{B}, we get that $\mu_{+}(\mathcal{A} \bar{\otimes} \mathcal{B})=\mu_{+}(\mathcal{A})+\mu_{+}(\mathcal{B})$.
Lemma 2.3. If $f: \mathcal{A} \rightarrow \mathcal{B}$ is a nonzero map between two torsion-free sheaves on X, then we have $\mu_{-}(\mathcal{A}) \leq \mu_{+}(\mathcal{B})$

Proof. Let $\{0\}=\mathcal{A}_{0} \subset \mathcal{A}_{1} \subset \cdots \subset \mathcal{A}_{a}=\mathcal{A}$ be the Harder-Narasimhan filtration of \mathcal{A} and let $k \in\{1, \ldots, a\}$ be the minimal integer such that $\mathcal{A}_{k} \nsubseteq \operatorname{ker}(f)$, i.e. the minimal integer such that $f_{\mid \mathcal{A}_{k}} \not \equiv 0$. Then we have $f_{\mid \mathcal{A}_{k-1}} \equiv 0$ and so $f_{\mid \mathcal{A}_{k}}$ induces a nonzero $\operatorname{map} \widetilde{f}: \mathcal{A}_{k} / \mathcal{A}_{k-1} \rightarrow \mathcal{B}$.

Let $\{0\}=\mathcal{B}_{0} \subset \mathcal{B}_{1} \subset \cdots \subset \mathcal{B}_{b}=\mathcal{B}$ be the Harder-Narasimhan filtration of \mathcal{B} and let l be the minimal positive integer $l \leq b$ such that $\widetilde{f}\left(\mathcal{A}_{k} / \mathcal{A}_{k-1}\right) \subseteq \mathcal{B}_{l}$. Then we have $\widetilde{f}\left(\mathcal{A}_{k} / \mathcal{A}_{k-1}\right) \nsubseteq \mathcal{B}_{l-1}$ and so \widetilde{f} induces a nonzero map $\hat{f}: \mathcal{A}_{k} / \mathcal{A}_{k-1} \rightarrow \mathcal{B}_{l} / \mathcal{B}_{l-1}$.

Since $\mathcal{A}_{k} / \mathcal{A}_{k-1}$ and $\mathcal{B}_{l} / \mathcal{B}_{l-1}$ are semistable, we have $\mu\left(\mathcal{A}_{k} / \mathcal{A}_{k-1}\right) \leq \mu\left(\mathcal{B}_{l} / \mathcal{B}_{l-1}\right)$. By the definition of μ_{+}and μ_{-}in terms of the Harder-Narasimhan filtration we have $\mu\left(\mathcal{A}_{k} / \mathcal{A}_{k-1}\right) \geq \mu_{-}(\mathcal{A})$ and $\mu\left(\mathcal{B}_{l} / \mathcal{B}_{l-1}\right) \leq \mu_{+}(\mathcal{B})$, concluding the assertion.

Remark 2.2 and Lemma 2.3 give the following whose assertion will be assumed throughout this article.

Corollary 2.4. Assuming the existence of a nonzero map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$, we have

$$
\begin{equation*}
\mu_{-}(\mathcal{E}) \leq \mu_{+}(\mathcal{E})+\mu_{+}\left(\mathcal{T}_{\mathcal{D}}\right)=\mu_{+}\left(\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right) \tag{3}
\end{equation*}
$$

Remark 2.5. Assume that \mathcal{E} is not semistable and so $s \geq 2$. If there exists a nonzero $\operatorname{map} f \in \operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{s-1}, \mathcal{F}_{s-1} \otimes \mathcal{T}_{\mathcal{D}}\right)$, then we may composite the quotient map $\mathcal{E} \rightarrow$ $\mathcal{E} / \mathcal{F}_{s-1}$ with it to get a nonzero 2-nilpotent logarithmic co-Higgs field Φ_{f}. Note that the associated co-Higgs field is uniquely determined by the choice of a map, i.e. if f and g are two different nonzero maps in $\operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{s-1}, \mathcal{F}_{s-1} \otimes \mathcal{I}_{\mathcal{D}}\right)$, then we get $\Phi_{f} \neq \Phi_{g}$.

If n is at least two, we fix a polarization $\mathcal{O}_{X}(1)$ with respect to which we consider (semi-)stability. For most cases in this article we will mainly assume that \mathcal{D} is of high degree so that $\mathcal{I}_{\mathcal{D}}$ is "sufficiently negative" and that $\mathcal{I}_{\mathcal{D}}$ is semistable with $\gamma=\operatorname{deg} \mathcal{T}_{\mathcal{D}}<0$, except in $\$ 5.2$.

Assumption 2.6. We always assume that $\gamma=\operatorname{deg} \mathcal{I}_{\mathcal{D}}$ is negative, if there is no specification.

Remark 2.7. There are manifolds with Ω_{X}^{1} ample as in [11, 12], in which cases we may even take $\mathcal{D}=\emptyset$: If instead of logarithmic co-Higgs field we use the field $T_{X}(-\mathcal{D}) \cong T_{X} \otimes \mathcal{O}_{X}(-\mathcal{D})$ vanishing on a divisor \mathcal{D}, then we may use the semistability of the tangent bundle of many Fano manifolds [26] and then take a very positive \mathcal{D} to get $T_{X}(-\mathcal{D})$ negative and semistable.

We fix a triple of integers $(r, d, s) \in \mathbb{Z}^{\oplus 3}$ together with pairs $\left(r_{i}, d_{i}\right) \in \mathbb{Z}^{\oplus 2}$ for $1 \leq i \leq s$ such that $r \geq 2, s \geq 1, r_{i} \geq 1$ and

$$
r=r_{1}+\cdots+r_{s}, d=d_{1}+\cdots+d_{s} .
$$

Assume further that $d_{i} / r_{i}>d_{i+1} / r_{i+1}$ for $i=1, \ldots, s-1$. Then we denote by

$$
\mathbb{U}=\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)
$$

the set of all torsion-free coherent sheaves \mathcal{E} of rank r such that the HarderNarasimhan filtration (2) of \mathcal{E} with respect to $\mathcal{O}_{X}(1)$ has $\left(r_{1}, d_{1} ; \cdots ; r_{s}, d_{s}\right)$ as its numerical data, i.e. each quotient sheaf $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is semistable of rank r_{i} and degree d_{i}. By [22] the filtration (2) tensored by $\mathcal{T}_{\mathcal{D}}$

$$
\begin{equation*}
\{0\}=\mathcal{F}_{0} \otimes \mathcal{I}_{\mathcal{D}} \subset \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}} \subset \cdots \subset \mathcal{F}_{s} \otimes \mathcal{I}_{\mathcal{D}} \tag{4}
\end{equation*}
$$

is the Harder-Narasimhan filtration of $\mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ if $\mathcal{I}_{\mathcal{D}}$ is semistable. We also assume the existence of a nonzero co-Higgs field $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$: if n is at least two, we do not assume for the moment the integrability condition $\Phi \wedge \Phi=0$, because in the most examples in this article it will follow from the other assumption, or from Lemma 2.8, where we assume that s is at least two.

Denote by $\widetilde{\Phi}$ the following map:

$$
\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}^{\otimes 2}
$$

induced by Φ. Comsiting the natural $\operatorname{map} \mathcal{T}_{\mathcal{D}}^{\otimes 2} \rightarrow \wedge^{2} \mathcal{I}_{\mathcal{D}}$ with $\widetilde{\Phi} \circ \Phi$, we have $\Phi \wedge \Phi$ as an element in $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \wedge^{2} \mathcal{I}_{\mathcal{D}}\right)$.
Lemma 2.8. If s is at least two, then we have $\widetilde{\Phi} \circ \Phi=0$, i.e. Φ is 2-nilpotent. In particular, we have $\Phi \wedge \Phi=0$.

Proof. Since we assume that γ is negative, the sheaf $\mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}} \subset \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ is the HarderNarasimhan filtration of $\mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ and $\mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}^{\otimes 2} \subset \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}^{\otimes 2}$ is the Harder-Narasimhan filtration of $\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}^{\otimes 2}$. Thus we have $\Phi(\mathcal{E}) \subseteq \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$ and $\widetilde{\Phi}\left(\mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}\right)=0$, implying that $\widetilde{\Phi} \circ \Phi=0$.

3. Curve case

Assume that X is a smooth algebraic curve of genus g and take $\mathcal{D}=\left\{p_{1}, \ldots, p_{m}\right\}$ a set of m distinct points. Then we have $\mathcal{T}_{\mathcal{D}} \cong T_{X} \otimes \mathcal{O}_{X}(-\mathcal{D})$ with degree $\gamma:=2-2 g-m$. We assume that γ is negative so that we are not in the set-up of [24]. The sequence (1) turns into the following

$$
0 \rightarrow \mathcal{I}_{\mathcal{D}} \rightarrow T_{X} \rightarrow \oplus_{i=1}^{m} \mathbb{C}_{p_{i}} \rightarrow 0
$$

Another feature of the case $n=1$ is that all logarithmic co-Higgs fields automatically satisfy the integrability condition.

Consider a vector bundle \mathcal{E} of rank r with the Harder-Narasimhan filtration (2) and we assume

$$
\begin{equation*}
\mu_{-}(\mathcal{E})=\mu\left(\mathcal{F}_{s} / \mathcal{F}_{s-1}\right) \leq \gamma+\mu\left(\mathcal{F}_{1}\right)=\gamma+\mu_{+}(\mathcal{E}) \tag{5}
\end{equation*}
$$

which is a necessary condition for the existence of a nonzero map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$; see Corollary 3.9

Remark 3.1. For each $i \in\{1, \ldots, s\}$ with $\mu\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)+\gamma \geq \mu_{-}(\mathcal{E})$, define

$$
b(i):=\min _{i+1 \leq k \leq s}\left\{k \mid \mu\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)+\gamma \geq \mu\left(\mathcal{F}_{k} / \mathcal{F}_{k-1}\right)\right\}
$$

and then the map Φ induces a map $\Phi^{i}: \mathcal{F}_{b(i)} / \mathcal{F}_{b(i)-1} \rightarrow\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right) \otimes \mathcal{I}_{\mathcal{D}}$. Similarly, for each $j \in\{2, \ldots, s\}$ with $\mu\left(\mathcal{F}_{j} / \mathcal{F}_{j-1}\right) \leq \gamma+\mu_{+}(\mathcal{E})$, define

$$
c(j):=\max _{1 \leq k \leq j-1}\left\{k \mid \mu\left(\mathcal{F}_{j} / \mathcal{F}_{j-1}\right) \leq \gamma+\mu\left(\mathcal{F}_{k} / \mathcal{F}_{k-1}\right)\right\} .
$$

The map Φ induces a map $\Phi_{j}: \mathcal{F}_{j} / \mathcal{F}_{j-1} \rightarrow\left(\mathcal{F}_{c(j)} / \mathcal{F}_{c(j)-1}\right) \otimes \mathcal{T}_{\mathcal{D}}$. Note that these maps Φ^{i} and Φ_{j} are not necessarily nonzero.

Now fix the following numeric data

$$
\left(s ; r_{1}, \ldots, r_{s} ; d_{1}, \ldots, d_{s}\right) \in \mathbb{Z}^{\oplus(2 s+1)}
$$

with $s, r_{i}>0$ for each i such that $d_{i} / r_{i}>d_{i+1} / r_{i+1}$ for all i; if $g=0$, we also assume $a_{i} / r_{i} \in \mathbb{Z}$ for each i. Recall that we denote by $\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ the set of all vector bundles \mathcal{E} of rank $r:=\sum_{i=1}^{s} r_{i}$ on X with the Harder-Narasimhan filtration (2) such that $\operatorname{rk}\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)=r_{i}$ and $\operatorname{deg} \mathcal{F}_{i} / \mathcal{F}_{i-1}=d_{i}$ for each i. The conditions just given above for s, r_{i} and d_{i} are the necessary and sufficient conditions for the existence of a vector bundle \mathcal{E} on X with rank r and degree $d:=d_{1}+\cdots+d_{s}$.

Indeed, for the existence part, in case $g \geq 2$ we may even take a stable bundle $\mathcal{F}_{i} / \mathcal{F}_{i-1}$, while in case $g=1$ by Atiyah's classification of vector bundles on elliptic
curves, we may take as $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ a semistable bundle; we can choose either indecomposable one or polystable one, depending on our purpose.

To get parameters spaces we first get parameter spaces for the sheaves \mathcal{E}, then for a fixed sheaf \mathcal{E} we study all logarithmic co-Higgs fields $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ and then we put together the informations. We have several problems coming from the sheaves \mathcal{E} such as non-separatedness or often reducibility of moduli of sheaves, and then more problems bring the logarithmic co-Higgs field into the picture.

First of all, we fix enough numerical invariant to get a bounded family of pairs (\mathcal{E}, Φ). Fixing an ample line bundle $\mathcal{O}_{X}(1)$, we consider sheaves \mathcal{E} with a HarderNarasimhan filtration (2) and we fix the Hilbert function of each subquotient $\mathcal{F}_{i} / \mathcal{F}_{i-1}$. Since each $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is assumed to be semistable, the family of all $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ are bounded. We first see that the Ext ${ }^{1}$-groups involved in the extensions

$$
0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{F}_{2} \rightarrow \mathcal{F}_{2} / \mathcal{F}_{1} \rightarrow 0
$$

are upper bounded and that the set of all \mathcal{F}_{2} is bounded. Then we consider the set of all \mathcal{F}_{3} and so on, inductively. We may get relative Ext ${ }^{1}$-groups as parameter spaces, but these parameter spaces usually do not parametrizes one-to-one isomorphism classes of sheaves, even by taking into account that proportional extensions gives isomorphic sheaves.

For the relative Ext ${ }^{1}$ we need to have universal family parametrizing all $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ and we usually need to work with parameter spaces of sheaves which do not parametrizes one-to-one isomorphic classes. Note that there is a flat family with isomorphic sheaves \mathcal{E} whose flat limit is $\operatorname{gr}(\mathcal{E})=\oplus_{i=1}^{s} \mathcal{F}_{i} / \mathcal{F}_{i-1}$. Thus there is no hope of one-to-one parametrization of isomorphism classes of sheaves; when the numerology allows that some $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is strictly semistable, then this phenomenon occurs even for the graded subquotient $\mathcal{F}_{i} / \mathcal{F}_{i-1}$. Algebraic stacks of course do not parametrize isomorphism classes of sheaves, not even of vector bundles; see [14]. In the case $n=1$ with $X=\mathbb{P}^{1}$, we have a unique bundle, \mathcal{E} for any fixed parameter space $\mathbb{U}_{\mathbb{P}^{1}}\left(s ; r_{1}, d_{1} ; \cdots ; r_{s}, d_{s}\right)$ and so the parameter space for (\mathcal{E}, Φ) is the vector space $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}\right)$, which parametrizes one-to-one the isomorphism classes of pairs (\mathcal{E}, Φ). See Remark 3.12 for the case $n=1$ and X a curve of genus $g \geq 2$.

Remark 3.2. In the case $s=2$, the datum of (\mathcal{E}, Φ) with $[\mathcal{E}] \in \mathbb{U}_{X}\left(2 ; r_{1}, d_{1} ; r_{2}, d_{2}\right)$ and $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ induces a holomorphic triple $\psi: \mathcal{E} / \mathcal{F}_{1} \rightarrow \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$ in the sense of [9] and we may study the stability of the holomorphic triple. Conversely, for every holomorphic triple $f: \mathcal{G}_{2} \rightarrow \mathcal{G}_{1} \otimes \mathcal{T}_{\mathcal{D}}$ such that \mathcal{G}_{1} and \mathcal{G}_{2} are semistable with $\operatorname{rk}\left(\mathcal{G}_{i}\right)=r_{i}$ and $\operatorname{deg} \mathcal{G}_{i}=d_{i}, i=1,2$, and for any extension class

$$
\begin{equation*}
0 \rightarrow \mathcal{G}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{G}_{2} \rightarrow 0 \tag{6}
\end{equation*}
$$

we get $[\mathcal{E}] \in \mathbb{U}_{X}\left(2 ; r_{1}, d_{1} ; r_{2}, d_{2}\right)$ with $0 \subset \mathcal{G}_{1} \subset \mathcal{E}$ as its Harder-Narasimhan filtration and a 2-nilpotent map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ induced by f. Two sheaves, say \mathcal{E} and \mathcal{E}^{\prime}, fitting as middle bundles in 6 for the same \mathcal{G}_{1} and \mathcal{G}_{2} are isomorphic if and only if their associated extensions are proportional, because \mathcal{G}_{1} and \mathcal{G}_{2} are assumed to be semistable with $d_{1} / r_{1}>d_{2} / r_{2}$ and so $\sqrt{6}$ is the Harder-Narasimhan filtration of the bundle in the middle.

This argument fits very well in $\S 5.1$, where $\mathcal{I}_{\mathcal{D}}$ is assumed to be semistable, because $\mathcal{F}_{i} \otimes \mathcal{T}_{\mathcal{D}}$ would be in the Harder-Narasimhan filtration of $\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$; in this case we only require that \mathcal{E} is torsion-free and then define $\mathbb{U}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with Mumford's (slope-)semistability.
3.1. Projective line. We take $X=\mathbb{P}^{1}$ and then we have $\mathcal{I}_{\mathcal{D}} \cong \mathcal{O}_{\mathbb{P}^{1}}(\gamma)$ with $\gamma<0$. Any vector bundle $\mathcal{E} \cong \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$ on \mathbb{P}^{1} with $a_{1} \geq \cdots \geq a_{r}$ can be rewritten as

$$
\begin{equation*}
\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{1}}\left(b_{1}\right)^{\oplus r_{1}} \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(b_{s}\right)^{\oplus r_{s}} \tag{7}
\end{equation*}
$$

with $\sum_{i=1}^{s} r_{i}=r$ and $b_{1}>\cdots>b_{s}$, i.e. in the Harder-Narasimhan filtration (2) associated to \mathcal{E}, we have $\mathcal{F}_{i} / \mathcal{F}_{i-1} \cong \mathcal{O}_{\mathbb{P}^{1}}\left(b_{i}\right)^{\oplus r_{i}}$. Now consider $\mathbb{U}_{\mathbb{P}^{1}}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with $b_{i}:=d_{i} / r_{i}$ and then it is a single point set, consisting only of \mathcal{E}. Set

$$
\Delta:=\sum_{1 \leq i<j \leq s} \max \left\{0, \gamma+1+b_{i}-b_{j}\right\} .
$$

Then we have $h^{0}(\mathcal{H o m}(\mathcal{E}, \mathcal{E}(\gamma)))=\Delta$. So the parameter space is a well-defined vector space, or its associated projective space if we consider nonzero co-Higgs fields up to scalar multiplication. We have $\Delta>0$ if and only if $b_{1}+\gamma \geq b_{s}$.

For any $\Phi \in \operatorname{Hom}(\mathcal{E}, \mathcal{E}(\gamma))$ and any positive integer i, let $\Phi^{(i)}: \mathcal{E} \rightarrow \mathcal{E}(i \gamma)$ be the map obtained by iterating i times a shift of Φ. If $b_{1}+i \gamma<b_{s}$ for some i, then we have $\Phi^{(i)}=0$ and so Φ is a nilpotent logarithmic co-Higgs field. In particular, if $b_{1}+2 \gamma<b_{s} \leq b_{1}+\gamma$, then all logarithmic co-Higgs fields are 2-nilpotents and so we have the following.
Proposition 3.3. For the bundle \mathcal{E} in (7) with $2 \gamma \leq b_{s}-b_{1}<\gamma$, the set of its co-Higgs structures is identified with a Δ-dimensional vector space.

Now the assumption in (5) is simply $b_{1}+\gamma \geq b_{s}$ and let e be the last integer i such that $b_{i}>\gamma+b_{1}$. Then we may write

$$
\begin{equation*}
\mathcal{E} \cong \mathcal{E}_{+} \oplus \mathcal{E}_{-}, \quad \text { with } \mathcal{E}_{+} \cong \oplus_{i=1}^{e} \mathcal{O}_{\mathbb{P}^{1}}\left(b_{i}\right)^{\oplus r_{i}} \text { and } \mathcal{E}_{-} \cong \oplus_{i=e+1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(b_{i}\right)^{\oplus r_{i}} \tag{8}
\end{equation*}
$$

It is possible to have $e=0$ and so \mathcal{E}_{+}is trivial. Then we have $H^{0}(\mathcal{E} n d(\mathcal{E})(\gamma))=$ $H^{0}\left(\mathcal{H o m}\left(\mathcal{E}_{-}, \mathcal{E}\right)(\gamma)\right)$. Thus in case of \mathbb{P}^{1} we may rephrase our question in the set-up of holomorphic triples $\left(\mathcal{E}_{1}, \mathcal{E}_{2}, f\right)$ with $\mathcal{E}_{1}=\mathcal{E}_{-}, \mathcal{E}_{2}=\mathcal{E}(\gamma)$ and $f: \mathcal{E}_{1} \rightarrow \mathcal{E}_{2}$. Here, \mathcal{E}_{1} and \mathcal{E}_{2} are related in a sense that \mathcal{E}_{1} is a twist of a factor of \mathcal{E}_{2}. So our general problem concerning nonzero maps $\Phi: \mathcal{E} \rightarrow \mathcal{E}(\gamma)$ is equivalent to a problem about nonzero maps $\Phi: \mathcal{E}_{-} \rightarrow \mathcal{E}(\gamma)$.
3.2. Elliptic curves. Let X be an elliptic curve and use the classification of vector bundles on elliptic curves due to M . Atiyah in [1]. We have $\mathcal{T}_{\mathcal{D}} \cong \mathcal{O}_{X}(-\mathcal{D})$.

Proposition 3.4. Fix an integer $s \geq 2$ and consider $\mathbb{U}:=\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with $d_{s} / r_{s} \leq d_{1} / r_{1}+\gamma$.
(i) There exists $[\mathcal{E}] \in \mathbb{U}$ with $\operatorname{Hom}(\mathcal{E}, \mathcal{E}(-\mathcal{D})) \neq 0$.
(ii) If $d_{s} / r_{s}=d_{1} / r_{1}+\gamma$, there is $[\mathcal{E}] \in \mathbb{U}$ with $\operatorname{Hom}(\mathcal{E}, \mathcal{E}(-\mathcal{D}))=0$.
(iii) If $d_{s} / r_{s}<d_{1} / r_{1}+\gamma$, then we have $\operatorname{Hom}(\mathcal{E}, \mathcal{E}(-\mathcal{D})) \neq 0$ for all $[\mathcal{E}] \in \mathbb{U}$.
(iv) If e is the maximal integer such that $d_{s} / r_{s} \leq d_{1} / r_{1}+e \gamma$, then we have $\Phi^{(e+1)}=0$ for every $[\mathcal{E}] \in \mathbb{U}$ and $\Phi \in \operatorname{Hom}(\mathcal{E}, \mathcal{E}(-\mathcal{D}))=0$.

Proof. Take $[\mathcal{E}] \in \mathbb{U}$ and set $\mathcal{E}_{s}:=\mathcal{F}_{s} / \mathcal{F}_{s-1}$. In the set-up of part (iii) we have $\mu\left(\mathcal{E}_{s}^{\vee} \otimes \mathcal{F}_{1}(-\mathcal{D})\right)>0$ and so Riemann-Roch gives $h^{0}\left(\mathcal{E}_{s}^{\vee} \otimes \mathcal{F}_{1}(-\mathcal{D})\right)>0$. Take as Φ the composition of the surjection $\mathcal{E} \rightarrow \mathcal{E}_{s}$ with a nonzero map $\mathcal{E}_{s} \rightarrow \mathcal{F}_{1}(-\mathcal{D})$ and then the inclusion $\mathcal{F}_{1}(-\mathcal{D}) \hookrightarrow \mathcal{E}(-\mathcal{D})$, proving (iii).

Now assume $d_{s} / r_{s}=d_{1} / r_{1}+\gamma$. Take as \mathcal{E}_{i} any semistable bundle with prescribed numeric data so that \mathcal{E}_{1} and \mathcal{E}_{s} are polystable and no factor of $\mathcal{E}_{1}(-\mathcal{D})$ is isomorphic to a factor of \mathcal{E}_{s}. Set $\mathcal{E}:=\oplus_{i=1}^{s} \mathcal{E}_{i}$. Due to the slope, we have $\operatorname{Hom}\left(\mathcal{E}_{i}, \mathcal{E}_{j}(-\mathcal{D})\right)=0$
if $(i, j) \neq(s, 1)$. Since every nonzero map between stable bundles with the same slope is an isomorphism, we have $\operatorname{Hom}\left(\mathcal{E}_{s}, \mathcal{E}_{1}(-\mathcal{D})\right)=0$ and so $\operatorname{Hom}(\mathcal{E}, \mathcal{E}(-\mathcal{D}))=0$, proving part (ii).

Under the same situation, set $t:=\operatorname{gcd}\left(\left|d_{s}\right|, r_{s}\right)$ and write $r_{s}=a t$ and $d_{s}=b t$. Then each indecomposable factor of \mathcal{E}_{s} has rank a and degree b, which is also stable. Pick one of these indecomposable factors, say \mathcal{A}. Now from $d_{s} / r_{s}=d_{1} / r_{1}+\gamma$, we see that a divides r_{1}. Then we have $r_{1} / a \in \mathbb{Z}$ and it also divides d_{1}, say $r_{1}=a p$ and $d_{1}=q p$. We also see that $\operatorname{gcd}(a, q)=\operatorname{gcd}(a, b)=1$ and so \mathcal{E}_{1} is a polystable bundle whose factors have rank a and degree $q=b-a \gamma$. Let \mathcal{G} be any polystable vector bundle of rank r_{1} and degree d_{1} with $\mathcal{A} \otimes \mathcal{O}_{X}(\mathcal{D})$ as one of its factors. Set $\mathcal{F}:=\mathcal{G} \oplus\left(\oplus_{i=2}^{s} \mathcal{E}_{i}\right)$ and then we have $[\mathcal{F}] \in \mathbb{U}$. Since $\operatorname{Hom}\left(\mathcal{E}_{s}, \mathcal{G}(-\mathcal{D})\right) \neq 0$, we have $\operatorname{Hom}(\mathcal{F}, \mathcal{F}(-\mathcal{D})) \neq 0$, proving part (i).

Part (iv) is obvious.

Remark 3.5. In parts (i) and (iii) of Proposition 3.4 the proof gives the existence of a nonzero 2-nilpotent co-Higgs field Φ.
3.3. Higher genus case. Assume that X has genus $g \geq 2$. Note that $\gamma \leq 2-2 g$. For the pairs of integers (r, d) with $r>0$, denote by $\mathbb{M}_{X}(r, d)$ the moduli space of the stable vector bundles of rank r on X with degree d. It is known to be a non-empty, smooth and irreducible quasi-projective variety of dimension $r^{2}(g-1)+1$.

Fix a point $p \in X$ and take any exact sequence on X :

$$
\begin{equation*}
0 \rightarrow \mathcal{A} \xrightarrow{u} \mathcal{B} \rightarrow \mathbb{C}_{p} \rightarrow 0 \tag{9}
\end{equation*}
$$

with \mathcal{A} and \mathcal{B} locally free. Note that $\operatorname{rk}(\mathcal{A})=\operatorname{rk}(\mathcal{B})$ and that $\operatorname{deg} \mathcal{B}=\operatorname{deg} \mathcal{A}+1$. Then we say that \mathcal{B} is obtained from \mathcal{A} by applying a positive elementary transformation at p and that \mathcal{A} is obtained from \mathcal{B} by applying a negative elementary transformation at p. For a fixed $\mathcal{A}($ resp. $\mathcal{B})$ the set of all extensions 9 is parametrized by a vector space of dimension $\operatorname{rk}(\mathcal{A})(\operatorname{resp} . \operatorname{rk}(\mathcal{B}))$; since it is an irreducible variety, we may speak about the general positive elementary transformation of \mathcal{A} (resp. a general negative elementary transformation of \mathcal{B}).

Lemma 3.6. For $(r, d, k) \in \mathbb{Z}^{\oplus 3}$ with $r, k>0$, fix a general bundle $[\mathcal{A}] \in \mathbb{M}_{X}(r, d)$. If \mathcal{B} is obtained from \mathcal{A} by applying k positive elementary transformations, then it is stable.

Proof. Since the statement is trivial for $r=1$, we may assume $r \geq 2$.
(a) First assume $k=1$ with the sequence $\sqrt{9}$ and that \mathcal{B} is not stable so that there exists a subbundle $\mathcal{G}_{t} \subset \mathcal{B}$ of $\operatorname{rank} t \in\{1, \ldots, r-1\}$ with $\operatorname{deg} \mathcal{G}_{t} / t \geq(d+1) / r$. Let $\mathcal{C} \subset \mathcal{A}$ be the saturation of $u^{-1}(\mathcal{G})$ and set $a:=\operatorname{deg} \mathcal{C}$. Then we have $a \geq \operatorname{deg} u^{-1}(\mathcal{G}) \geq$ $\operatorname{deg} \mathcal{G}-1$. Since \mathcal{A} is general, we get by [21, Theorem 3.10] or [7, Theorem 2] that $\mu(\mathcal{A} / \mathcal{C})-\mu(\mathcal{C}) \geq g-1$, from which we get

$$
\frac{d}{r}-\frac{a}{t} \geq \frac{(r-t)(g-1)}{r}
$$

Using this with $\operatorname{deg}\left(\mathcal{G}_{t}\right) \leq a+1$, we get

$$
\begin{aligned}
\mu(\mathcal{B})-\mu\left(\mathcal{G}_{t}\right) & \geq \frac{d+1}{r}-\frac{a+1}{t} \\
& \geq \frac{t-r+(r-t)(g-1)}{r t} \\
& =\frac{(r-t)(g-2)}{r t} \geq 0,
\end{aligned}
$$

The equality holds if and only if $g=2$ and $\operatorname{deg} \mathcal{G}_{t}=a+1$. Let \widetilde{a} be the maximal degree of a rank t subbundle of \mathcal{A}. For arbitrary t and g, Mukai and Sakai proved in [23] that $t d-\widetilde{a} r \leq t(r-t) g$, while the quoted results also said that $t d-\widetilde{a} r \geq$ $t(r-t)(g-1)$. The precise value of \widetilde{a} is known by an unpublished result of A . Hirschowitz in [17] and [21, Remark 3.14], which says that $t d-\widetilde{a} r=t(r-t)(g-1)+\varepsilon$, where ε is the only integer such that $0 \leq \varepsilon<r$ and $\varepsilon+t(r-t)(g-1) \equiv t d(\bmod r)$.

Now assume $g=2$. We conclude unless $\varepsilon=0, a=\widetilde{a}$ and $\operatorname{deg} \mathcal{G}_{t}=a+1$. In this case we use that we take a general positive elementary transformation of \mathcal{A}. Since $\varepsilon=0$ and \mathcal{A} is general, \mathcal{A} has only finitely many rank t subbundles of maximal degree $a=\widetilde{a}$, say \mathcal{N}_{i} for $1 \leq i \leq \delta$; see [25] and [30]. The fiber $\mathcal{N}_{i \mid\{p\}}$ of \mathcal{N}_{i} at p is a t dimensional linear subspace of the fiber $\mathcal{A}_{\{\{p\}}$ of \mathcal{A} at p, which is an r-dimensional vector space. The union of these t-dimensional linear subspaces \mathcal{N}_{i} for $1 \leq i \leq \delta$, is a proper subset of $\mathcal{A}_{\{\{p\}}$. Thus, for a general positive elementary transformation \mathcal{B} of \mathcal{A} at p, the saturation \mathcal{M}_{i} of \mathcal{N}_{i} is just \mathcal{N}_{i} for all i, i.e. $\operatorname{deg} u^{-1}\left(\mathcal{M}_{i}\right)=\operatorname{deg} \mathcal{M}_{i}$ for all i, contradicting the assumptions $a=\widetilde{a}$ and $\operatorname{deg} \mathcal{G}_{t}=a+1$.
(b) Now assume $k \geq 2$. The case $k=1$ proves that a general positive elementary transformation of a stable bundle is stable. Similarly a general negative transformation of a stable bundle is also stable, and so we may apply the step (a) k times to get the assertion.

Theorem 3.7. Fix an integer $s \geq 2$ and consider $\mathbb{U}:=\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with $d_{s} / r_{s} \leq d_{1} / r_{1}+\gamma$.
(i) There exists $[\mathcal{E}] \in \mathbb{U}$ with $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right) \neq 0$.
(ii) If $d_{s} / r_{s} \geq d_{1} / r_{1}+\gamma+1-g$, there is $[\mathcal{E}] \in \mathbb{U}$ with $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right)=0$.
(iii) If $d_{s} / r_{s}<d_{1} / r_{1}+\gamma+1-g$, then $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}\right) \neq 0$ for all $[\mathcal{E}] \in \mathbb{U}$.

Proof. Take $[\mathcal{E}] \in \mathbb{U}$ and set $\mathcal{E}_{s}:=\mathcal{F}_{s} / \mathcal{F}_{s-1}$. Since \mathcal{E}_{s} and \mathcal{F}_{1} are semistable, the bundle $\mathcal{E}_{s}^{\vee} \otimes \mathcal{F}_{1}(-D)$ is also semistable. In the set-up of part (iii) we have $\mu\left(\mathcal{E}_{s}^{\vee} \otimes\right.$ $\left.\mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}\right)>g-1$ and so Riemann-Roch gives $h^{0}\left(\mathcal{E}_{s}^{\vee} \otimes \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}\right)>0$. Take as Φ the composition of the surjection $\mathcal{E} \rightarrow \mathcal{E}_{s}$ with a nonzero map $\mathcal{E}_{s} \rightarrow \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ and then the inclusion $\mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}} \hookrightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$, proving (iii).

Now assume the set-up of (ii) and pick a general element $\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{s}\right)$ in

$$
\mathbb{M}_{X}\left(r_{1}, d_{1}\right) \times \cdots \times \mathbb{M}_{X}\left(r_{s}, d_{s}\right)
$$

In particular, each \mathcal{E}_{i} is a general stable bundle in $\mathbb{M}_{X}\left(r_{i}, d_{i}\right)$. Set $\mathcal{E}:=\oplus_{i=1}^{s} \mathcal{E}_{i}$ and then it is sufficient to prove the following claim for (ii).

Claim 1: We have $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}\right)=0$.
Proof of Claim 1: Since $\mathcal{E}:=\oplus_{i=1}^{s} \mathcal{E}_{i}$, it is enough to prove that $H^{0}\left(\mathcal{E}_{i}, \mathcal{E}_{j} \otimes \mathcal{T}_{\mathcal{D}}\right)=0$ for all i, j. We have $H^{0}\left(\mathcal{E}_{i}, \mathcal{E}_{i} \otimes \mathcal{T}_{\mathcal{D}}\right)=0$ for each i, because \mathcal{E}_{i} is stable and $\gamma<0$. Now assume $i \neq j$. Note that $\left(E_{i}^{\vee}, E_{j} \otimes \mathcal{I}_{\mathcal{D}}\right)$ is a general element of

$$
\mathbb{M}_{X}\left(r_{i},-d_{i}\right) \times \mathbb{M}_{X}\left(r_{j}, d_{j}+r_{j} \gamma\right)
$$

We have $\mu\left(\mathcal{E}_{i}^{\vee} \otimes \mathcal{E}_{j} \otimes \mathcal{I}_{\mathcal{D}}\right)=-\mu\left(\mathcal{E}_{i}\right)+\mu\left(\mathcal{E}_{j}\right)+\gamma \leq g-1$. By a theorem of A. Hirschowitz in [28, Theorem 1.2], we have $h^{0}\left(\mathcal{E}_{i}^{\vee} \otimes \mathcal{E}_{j} \otimes \mathcal{I}_{\mathcal{D}}\right)=0$, concluding the proof of Claim 1.

Now we prove part (i). Let \mathcal{B}_{i} be a semistable bundle of rank r_{i} on X with degree d_{i} for each i, and let $\mathcal{E}:=\oplus_{i=1}^{S} \mathcal{B}_{i}$. Our strategy is to find appropriate \mathcal{B}_{1} and \mathcal{B}_{s} with the additional condition $\operatorname{Hom}\left(\mathcal{B}_{s}, \mathcal{B}_{1} \otimes \mathcal{T}_{\mathcal{D}}\right) \neq 0$, which would imply part (i).
(a) Assume $r_{s}<r_{1}$. Setting $r^{\prime}:=r_{1}-r_{s}$ and $d^{\prime}:=d_{1}+\gamma r_{1}-d_{s}$, it is enough to show the existence of an exact sequence of vector bundles on X :

$$
\begin{equation*}
0 \rightarrow \mathcal{A}_{1} \rightarrow \mathcal{A}_{2} \rightarrow \mathcal{A}_{3} \rightarrow 0 \tag{10}
\end{equation*}
$$

with $\mathcal{A}_{1}, \mathcal{A}_{2}$ semistable and \mathcal{A}_{1} of rank r_{s} and degree d_{s}, \mathcal{A}_{2} of rank r_{1} and degree $d_{1}+\gamma r_{1}$. Then \mathcal{A}_{3} would be of rank r^{\prime} and degree d^{\prime}, and we may take $\mathcal{B}_{s}:=\mathcal{A}_{1}$ and $\mathcal{B}_{1}:=\mathcal{A}_{2} \otimes \mathcal{T}_{\mathcal{D}}^{\vee}$.

Note that for a quadruple of integers $\left(x_{1}, x_{2}, a_{1}, a_{2}\right) \in \mathbb{Z}^{\oplus 4}$ with $x_{2}>x_{1}>0$ and $a_{1} / x_{1} \leq a_{2} / x_{2}$ (resp. $a_{1} / x_{1}<a_{2} / x_{2}$), we have

$$
\frac{a_{2}}{x_{2}} \leq \frac{a_{2}-a_{1}}{x_{2}-x_{1}}\left(\operatorname{resp} . \frac{a_{2}}{x_{2}}<\frac{a_{2}-a_{1}}{x_{2}-x_{1}}\right)
$$

Using the above to $\left(x_{1}, x_{2}, a_{1}, a_{2}\right)=\left(r_{s}, r_{1}, d_{s}, d_{1}+\gamma r_{1}\right)$, together with

$$
\mu_{-}(\mathcal{E})=d_{s} / r_{s} \leq d_{1} / r_{1}+\gamma=\mu_{-}\left(\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right)
$$

we have $d_{1} / r_{1}+\gamma \leq d^{\prime} / r^{\prime}$ with equality if and only if $d_{s} / r_{s}=d_{1} / r_{1}+\gamma$. When the equality holds, we may take as \mathcal{A}_{1} and \mathcal{A}_{3} arbitrary semistable bundles with the prescribed ranks and degrees and then take $\mathcal{A}_{2}:=\mathcal{A}_{1} \oplus \mathcal{A}_{3}$. Now assume $d_{s} / r_{s}<d_{1} / r_{1}+\gamma$ and so $d_{1} / r_{1}+\gamma<d^{\prime} / r^{\prime}$. In this case by the positive answer to the conjecture of Lange, there is an exact sequence 10 of vector bundles on X with the prescribed ranks and degrees and with stable $\mathcal{A}_{1}, \mathcal{A}_{2}$ and \mathcal{A}_{3}; see [28, Introduction].
(b) Assume $r_{s}>r_{1}$. Similarly as in (a) we set $r^{\prime \prime}:=r_{s}-r_{1}$ and $d^{\prime \prime}:=d_{1}-\gamma r_{1}-d_{s}$. By taking $\mathcal{B}_{s}:=\mathcal{A}_{2}$ and $\mathcal{B}_{1}:=\mathcal{A}_{3} \otimes \mathcal{T}_{\mathcal{D}}^{\vee}$, it is sufficient to find an exact sequence 10 with \mathcal{A}_{2} and \mathcal{A}_{3} semistables, \mathcal{A}_{1} of rank $r^{\prime \prime}$ and degree $d^{\prime \prime}, \mathcal{A}_{2}$ of rank r_{s} and degree d_{s} and \mathcal{A}_{3} or rank r_{1} and degree $d_{1}+\gamma r_{1}$.

First assume $d_{s} / r_{s}=d_{1} / r_{1}+\gamma$. In this case we have $d^{\prime \prime} / r^{\prime \prime}=d_{s} / r_{s}$ and we take as \mathcal{A}_{1} and \mathcal{A}_{3} arbitrary semistable bundles with prescribed ranks and degrees and set $\mathcal{A}_{2}:=\mathcal{A}_{1} \oplus \mathcal{A}_{3}$. Now assume $d_{s} / r_{s}<d_{1} / r_{1}+\gamma$ and so $d_{1} / r_{1}+\gamma>d^{\prime \prime} / r^{\prime \prime}$. Again by the conjecture of Lange proved in [28] we may take $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$ with the prescribed ranks and degree and stable.
(c) Assume $r_{s}=r_{1}$. First assume $d_{s} / r_{s}=d_{1} / r_{1}+\gamma$, i.e. $d_{1}=d_{s}-\gamma r_{1}$. In this case we take as \mathcal{B}_{s} any semistable bundle with rank r_{s} and degree d_{s} and set $\mathcal{B}_{1}:=$ $\mathcal{B}_{s} \otimes \mathcal{T}_{\mathcal{D}}$. Now assume $k:=d_{1}+r_{1} \gamma-d_{s}>0$. We take as \mathcal{B}_{s} a general stable bundle of rank r_{s} and degree d_{s}. Then $\mathcal{B}_{s} \otimes \mathcal{T}_{\mathcal{D}}$ is a general element of $\mathbb{M}_{X}\left(r_{1}, d_{1}-t\right)$. We take as \mathcal{B}_{1} a bundle obtained from $\mathcal{B}_{s} \otimes \mathcal{T}_{\mathcal{D}}$ by applying k general positive elementary transformations.

Remark 3.8. Consider a smooth algebraic curve X of an arbitrary genus $g \geq 0$ and assume $s \geq 3$ together with

$$
d_{2} / r_{2}+\gamma<d_{s} / r_{s} \leq d_{1} / r_{1}+\gamma
$$

By Theorem 3.7 in case $g \geq 2$ and Proposition 3.4 for $g=1$, there is (\mathcal{E}, Φ) with $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ and a nonzero $\operatorname{map} \Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$. Take any $[\mathcal{E}] \in$
$\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with the Harder-Narasimhan filtration 22. Note that we have $\operatorname{Hom}(\mathcal{A}, \mathcal{B})=0$ for any semistable bundles \mathcal{A} and \mathcal{B} with $\mu(\mathcal{A})>\mu(\mathcal{B})$. Claim 1 in the proof of Theorem 3.7 applied to $\mathcal{E} / \mathcal{F}_{1}$ shows that any map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ is uniquely determined by $f: \mathcal{E} / \mathcal{F}_{s-1} \rightarrow \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$; moreover we get $\operatorname{Im}(\Phi)=\operatorname{Im}(f)$ and $\operatorname{ker}(\Phi)$ is the inverse image of $\operatorname{ker}(f)$ under the surjection $\mathcal{E} \rightarrow \mathcal{E} / \mathcal{F}_{s-1}$.

Conversely, for $1 \leq i \leq s$, choose arbitrary semistable bundles \mathcal{E}_{i} with $\operatorname{rk}\left(\mathcal{E}_{i}\right)=$ r_{i} and $\operatorname{deg} \mathcal{E}_{i}=d_{i}$, and a map $f: \mathcal{E}_{s} \rightarrow \mathcal{E}_{1} \otimes \mathcal{I}_{\mathcal{D}}$. To get a vector bundle $[\mathcal{E}] \in$ $\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$, we only need to consider $(s-1)$ extension classes

$$
0 \rightarrow \mathcal{F}_{i} \rightarrow \mathcal{F}_{i+1} \rightarrow \mathcal{E}_{i+1} \rightarrow 0
$$

for $i=1, \ldots, s-1$, where $\mathcal{F}_{1}:=\mathcal{E}_{1}$. Once \mathcal{E} is chosen, the map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ is uniquely determined by f.

In case of curves, we sometimes may improve Remark 2.3 to a strict inequality in the following way.

Remark 3.9. Take $[\mathcal{E}] \in \mathbb{U}:=\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with the Harder-Narasimhan filtration (2). Assume that $s \geq 2$ with $r_{s} \neq r_{1}$,

$$
\operatorname{gcd}\left(r_{1}, d_{1}\right)=\operatorname{gcd}\left(r_{s}, d_{s}\right)=1 \text { and } d_{1} / r_{1}+\gamma \geq d_{s} / r_{s}
$$

Since $\operatorname{gcd}\left(r_{1}, d_{1}\right)=1$, the sheaf \mathcal{F}_{1} is stable and so $\mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ is stable. Since $\operatorname{gcd}\left(r_{s}, d_{s}\right)=$ 1 , the sheaf $\mathcal{F}_{s} / \mathcal{F}_{s-1}$ is also stable. From $r_{1} \neq r_{s}$ we get that $\mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$ and $\mathcal{F}_{s} / \mathcal{F}_{s-1}$ are not isomorphic and so we have $\operatorname{Hom}\left(\mathcal{F}_{s} / \mathcal{F}_{s-1}, \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}\right)=0$. If $s \geq 3$, we obviously have $\operatorname{Hom}\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}, \mathcal{F}_{j} \otimes \mathcal{I}_{\mathcal{D}}\right)=0$ for all $i, j \in\{1, \ldots, s\}$ with $(i, j) \neq(s, 1)$, even without the assumptions $r_{s} \neq r_{1}$ and $\operatorname{gcd}\left(r_{1}, d_{1}\right)=\operatorname{gcd}\left(r_{s}, d_{s}\right)=1$. Thus we have $\operatorname{Hom}(\mathcal{E}, \mathcal{E} \otimes$ $\left.\mathcal{T}_{\mathcal{D}}\right)=0$.
Remark 3.10. In the following exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{A} \rightarrow \mathcal{C} \rightarrow \mathcal{B} \rightarrow 0 \tag{11}
\end{equation*}
$$

of vector bundles on X with \mathcal{A} and \mathcal{B} semistable, if we have $\mu(\mathcal{A})+2-2 g>\mu(\mathcal{B})$, then we have $h^{1}\left(\mathcal{A} \otimes \mathcal{B}^{\vee}\right)=0$ and so 11 splits. Thus if we have

$$
\frac{d_{i}}{r_{i}}+2-2 g>\frac{d_{i+1}}{r_{i+1}}
$$

for all i, then we have $\mathcal{E} \cong g r(\mathcal{E})$ for all $[\mathcal{E}] \in \mathbb{U}:=\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$.
Now assume $d_{i} / r_{i}+2-2 g \geq d_{i+1} / r_{i+1}$ for all i. If the equality holds for some i, i.e. $d_{i} / r_{i}=d_{i+1} / r_{i+1}+2 g-2$, then we have $r_{i} \neq r_{i+1}$ and that r_{h} and d_{h} are coprime, where $h \in\{i, i+1\}$ is the index with higher $\operatorname{rank} r_{h}=\max \left\{r_{i}, r_{i+1}\right\}$. As in Remark 3.9 we get $\mathcal{E} \cong g r(\mathcal{E})$ for all $[\mathcal{E}] \in \mathbb{U}$.

For example, take $s=2$. We just proved that $\mathcal{E} \cong \mathcal{F}_{1} \oplus \mathcal{F}_{2} / \mathcal{F}_{1}$ for all $[\mathcal{E}] \in$ $\mathbb{U}\left(2 ; 1, d_{1} ; 1, d_{2}\right)$ with a nonzero $\operatorname{map} \Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ and either $\mathcal{D} \neq 0$ or $r_{1} \neq r_{2}$, and $d_{h}, r_{h} \in \mathbb{Z}$, where $r_{h}=\max \left\{r_{1}, r_{2}\right\}$.

Example 3.11. Assume $d_{1}>d_{2}-\gamma$. For a fixed $\mathcal{R} \in \operatorname{Pic}^{d_{2}}(X)$, consider the set

$$
\mathbb{E}:=\left\{\left(\mathcal{F}_{1}, \psi\right) \mid \mathcal{F}_{1} \in \operatorname{Pic}^{d_{1}}(X) \text { and } 0 \neq \psi: \mathcal{R} \rightarrow \mathcal{F}_{1} \times \mathcal{T}_{\mathcal{D}}\right\} / \sim
$$

where the equivalent relation \sim is given by $\left(\mathcal{F}_{1}, \psi\right) \sim\left(\mathcal{F}_{1}, c \psi\right)$ for all $c \in \mathbb{C}^{*}$. \mathbb{E} is the set of all effective divisors of X with degree $d_{1}+\gamma-d_{2}$ and so \mathbb{E} is isomorphic to a symmetric product of $d_{1}+\gamma-d_{2}$ copies of X and in particular it is irreducible. By Remark 3.10 we have $\mathcal{E} \cong \mathcal{F}_{1} \oplus \mathcal{F}_{2} / \mathcal{F}_{1}$ for all $[\mathcal{E}] \in \mathbb{U}_{X}\left(2 ; 1, d_{2}+\gamma ; 1, d_{2}\right)$.

Example 3.12. Assume $g \geq 2$ and take $\mathcal{D}=\emptyset$ so that $\gamma=2-2 g$. Fix any $d \in \mathbb{Z}$ and consider $\mathcal{E} \in \mathbb{U}_{X}(2 ; 1, d+2 g-2 ; 1, d)$ with a nonzero $\operatorname{map} \Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes T_{X}$. Set $\mathcal{R}:=\mathcal{F}_{2} / \mathcal{F}_{1} \in \operatorname{Pic}^{d}(X)$ and then Φ is induced by a nonzero map $\psi: \mathcal{R} \rightarrow \mathcal{F}_{1} \otimes T_{X}$. Since \mathcal{F}_{1} is in $\operatorname{Pic}^{d+2 g-2}(X)$, the map ψ is an isomorphism. Thus we get $\mathcal{F}_{1} \cong \mathcal{R} \otimes \omega_{X}$ and that for a fixed \mathcal{E} the set of all nonzero map Φ is parametrized by a nonzero scalar. From $h^{1}\left(\omega_{X}\right)=1$ we see that there are, up to isomorphism, exactly two vector bundles \mathcal{E} fitting into an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{R} \otimes \omega_{X} \rightarrow \mathcal{E} \rightarrow \mathcal{R} \rightarrow 0 \tag{12}
\end{equation*}
$$

that is, $\left(\mathcal{R} \otimes \omega_{X}\right) \oplus \mathcal{R}$ and an indecomposable bundle. Thus the set of all (\mathcal{E}, Φ), up to isomorphisms, with nonzero Φ, is parametrized one-to-one by the disjoint union of two copies of $\operatorname{Pic}^{d}(X) \times \mathbb{C}^{*}$. Thus no one-to-one parameter space is irreducible. We get another irreducible parameter space that is not one-to-one, by taking as parameter space, up to a nonzero constant, the relative Ext ${ }^{1}$ group of 12 over $\operatorname{Pic}^{d}(X)$; each indecomposable bundle \mathcal{E} appears ∞^{1}-times and it has $\operatorname{gr}(\mathcal{E}) \cong\left(\mathcal{R} \otimes \omega_{X}\right) \oplus \mathcal{R}$ as its limit inside the parameter space.

Now for s at least two let us define the set $\mathbb{U}^{\mathrm{co}}=\mathbb{U}_{X}^{\mathrm{co}}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ of certain co-Higgs bundles associated to $\mathbb{U}=\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ as follows.

$$
\mathbb{U}^{\mathrm{co}}:=\left\{(\mathcal{E}, \Phi) \mid[\mathcal{E}] \in \mathbb{U} \text { and } \Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}} \text { with } \operatorname{Im}(\Phi) \subseteq \mathcal{F}_{1} \text { and } \operatorname{ker}(\Phi) \subseteq \mathcal{F}_{s-1}\right.
$$

$$
\text { such that } \left.\operatorname{rk}(\operatorname{Im}(\Phi))=\min \left\{r_{1}, r_{s}\right\} \text { and } \mathcal{F}_{1}, \mathcal{F}_{s} / \mathcal{F}_{s-1} \text { stable }\right\}
$$

Denote by $\Gamma \subseteq \mathbb{M}_{X}\left(r_{1}, d_{1}\right) \times \mathbb{M}_{X}\left(r_{s}, d_{s}\right)$ the set of all pairs $\left(\mathcal{F}_{1}, \mathcal{F}_{s} / \mathcal{F}_{s-1}\right)$ obtained from $\mathbb{U}^{\text {co }}$ and call the projection from Γ to each factor by π_{1} and π_{2}, respectively.
Proposition 3.13. Assume that

- each d_{i} is positive such that $d_{i} / r_{i}>d_{i+1} / r_{i+1}$ for all i, and
- $d_{1} / r_{1}+\gamma \geq d_{s} / r_{s}$.

Then we have the following assertions.
(i) If $r_{1}=r_{s}$, then π_{1} and π_{2} are dominant.
(ii) If $r_{1}<r_{s}$ (resp. $r_{1}>r_{s}$) and $d_{1} / r_{1}+\gamma>d_{s} / r_{s}$, then $\pi_{1}\left(\right.$ resp. $\left.\pi_{2}\right)$ is dominant.
(iii) Assume $d_{1} / r_{1}+\gamma>g-1+d_{s} / r_{s}$. Then Γ contains a non-empty open subset of $\mathbb{M}_{X}\left(r_{1}, d_{1}\right) \times \mathbb{M}_{X}\left(r_{s}, d_{s}\right)$; if $r_{1} \geq r_{s}$, then we have $\operatorname{ker}(\Phi)=\mathcal{F}_{s-1}$.
Proof. Fix a point $\left(\left[\mathcal{A}_{1}\right],\left[\mathcal{A}_{s}\right]\right) \in \mathbb{M}_{X}\left(r_{1}, d_{1}\right) \times \mathbb{M}_{X}\left(r_{s}, d_{s}\right)$. For arbitrary $\left[\mathcal{A}_{i}\right] \in \mathbb{M}_{X}\left(r_{i}, d_{i}\right)$, $i=2, \cdots, s-1$, we consider $\mathcal{E}:=\oplus_{i=1}^{s} \mathcal{A}_{i}$ with the Harder-Narasimhan filtration (2) such that $\mathcal{F}_{1} \cong \mathcal{A}_{1}$ and $\mathcal{F}_{s} / \mathcal{F}_{s-1} \cong \mathcal{A}_{s}$. We take a $\operatorname{map} \Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ with $\Phi\left(\mathcal{F}_{s-1}\right)=0$, which is induced by a map $\psi: \mathcal{A}_{s} \rightarrow \mathcal{A}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ whose existence is guaranteed by the assumptions.

First assume $r_{s}=r_{1}$. We need to prove the existence of a map ψ of rank r_{1} when \mathcal{A}_{1} is general in $\mathbb{M}_{X}\left(r_{1}, d_{1}\right)$ and \mathcal{A}_{s} is general in $\mathbb{M}_{X}\left(r_{s}, d_{s}\right)$; we do not claim here that $\left(\left[\mathcal{A}_{1}\right],\left[\mathcal{A}_{2}\right]\right)$ is general in $\mathbb{M}_{X}\left(r_{1}, d_{1}\right) \times \mathbb{M}_{X}\left(r_{s}, d_{s}\right)$. The dominance of π_{2} is the content of Lemma 3.6. The dominance of π_{1} can be proved by applying the dual map, or with the same proof as in the proof of Lemma 3.6, concluding part (i).

Now assume $r_{s}<r_{1}$ and $d_{1} / r_{1}+\gamma>d_{s} / r_{s}$. We take as \mathcal{A}_{s} a general element of $\mathbb{M}_{X}\left(r_{s}, d_{s}\right)$. The existence of a stable $\mathcal{A}_{1} \in \mathbb{M}_{X}\left(r_{1}, d_{1}\right)$ with an embedding $\psi: \mathcal{A}_{s} \hookrightarrow$ $\mathcal{A}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ with $\mathcal{A}_{1} / \psi\left(\mathcal{A}_{s}\right)$ stable and general in $\mathbb{M}_{X}\left(r_{s}-r_{1}, d_{1}-\gamma r_{1}\right)$ is proved in part (i) of the proof of Theorem 3.7

By using part (ii) of the proof of Theorem 3.7 instead of part (i), we get the case $r_{s}>r_{1}$ and $d_{1} / r_{1}+\gamma>d_{s} / r_{s}$.

Now consider part (iii) and assume $d_{1} / r_{1}+\gamma>g-1+d_{s} / r_{s}$. Take a general $\left(\left[\mathcal{A}_{1}\right],\left[\mathcal{A}_{s}\right]\right) \in \mathbb{M}_{X}\left(r_{1}, d_{1}\right) \times \mathbb{M}_{X}\left(r_{s}, d_{s}\right)$ and set $\mathcal{B}_{1}:=\mathcal{A}_{1} \otimes \mathcal{I}_{\mathcal{D}}$. Then it is sufficient to find $\psi: \mathcal{A}_{s} \rightarrow \mathcal{B}_{1}$ with $\operatorname{Im}(\psi)=\min \left\{r_{1}, r_{s}\right\}$. By the assumptions, we have $\mu\left(\mathcal{A}_{s}^{\vee} \otimes\right.$ $\left.\mathcal{B}_{1}\right)>g-1$ and so Riemann-Roch gives $\operatorname{Hom}\left(\mathcal{A}_{s}, \mathcal{B}_{1}\right) \neq 0$. Take a general element $\psi \in \operatorname{Hom}\left(\mathcal{A}_{s}, \mathcal{B}_{1}\right)$ and then it is sufficient to prove that ψ has rank $\min \left\{r_{1}, r_{s}\right\}$. Note that we have $h^{1}\left(\mathcal{A}_{s}^{\vee} \otimes \mathcal{B}_{1}\right)=0$ and so \mathcal{B}_{1} is an element of the following set

$$
\mathbb{W}:=\left\{[\mathcal{F}] \in \mathbb{M}_{X}\left(r_{1}, d_{1}+\gamma r_{1}\right) \mid h^{1}\left(\mathcal{A}_{s}^{\vee} \otimes \mathcal{F}\right)=0\right\} .
$$

By Riemann-Roch, we have the following, for each $[\mathcal{F}] \in \mathbb{W}$,

$$
h^{0}\left(\mathcal{A}_{s}^{\vee} \otimes \mathcal{F}\right)=\operatorname{deg}\left(\mathcal{A}_{s}^{\vee} \otimes \mathcal{F}\right)+r_{1} r_{2}(1-g)=r_{1} r_{2}\left(\frac{d_{1}}{r_{1}}+\gamma-\frac{d_{s}}{r_{s}}+1-g\right)>0
$$

Now take the relative Hom with \mathbb{W} as its parameter space, i.e. for each $[\mathcal{F}] \in \mathbb{W}$, the fibre is $\operatorname{Hom}\left(\mathcal{A}_{s}, \mathcal{F}\right)$. The total space Λ of this relative Hom is irreducible, because $h^{0}\left(\mathcal{A}_{s}^{\vee} \otimes \mathcal{F}\right)$ is constant for all $[\mathcal{F}] \in \mathbb{W}$ by [6] and [20]. By [5, part (d) of Theorem 1.2], a general element $\left(\varphi: \mathcal{A}_{s} \rightarrow \mathcal{F}\right)$ of Λ has φ with rank $\min \left\{r_{1}, r_{s}\right\}$. When $r_{1} \geq r_{s}$, this implies that $\operatorname{ker}(\Phi)=\mathcal{F}_{s-1}$, because the $\operatorname{map} \psi: \mathcal{F}_{s} / \mathcal{F}_{s-1} \rightarrow \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ is injective if and only if it has rank r_{s}.

Remark 3.14. As in the end of proof of Proposition 3.13, to show that the set of the co-Higgs bundles (\mathcal{E}, Φ) with certain properties is parametrized by an irreducible variety, it sometimes works to prove that (a) the set of all bundles \mathcal{E} is parametrized by an irreducible variety Y, and (b) the integer $k:=\operatorname{dim} \operatorname{Hom}\left(\mathcal{E}_{y}, \mathcal{E}_{y} \otimes\right.$ $\left.\mathcal{T}_{\mathcal{D}}\right)$ is constant for all $y \in Y$. In this case, the set of all (\mathcal{E}, Φ) with no restriction on Φ is parametrized by a vector bundle of rank k on Y.

Example 3.15. Assume $r_{1}=r_{s}$ and $d_{1} / r_{1}+\gamma=d_{s} / r_{s}$. Consider a bundle $[\mathcal{E}] \in$ $\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with an arbitrary $\operatorname{map} \Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$. Since $d_{i} / r_{i}>d_{1} / r_{1}+\gamma$ for all $i<s$, there is no nonzero $\operatorname{map} \mathcal{F}_{i} / \mathcal{F}_{i-1} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ and so we have $\mathcal{F}_{s-1} \subseteq \operatorname{ker}(\Phi)$. On the other hand, since $d_{s} / r_{s}>d_{j} / r_{j}+\gamma$ for all $j>1$, we have $\Phi(\mathcal{E}) \subseteq \mathcal{F}_{1}$. We have $\operatorname{rk}(\Phi)=r_{1}$ if and only if $\mathcal{F}_{s} / \mathcal{F}_{s-1} \cong \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ and Φ is induced by an isomorphism $\mathcal{F}_{s} / \mathcal{F}_{s-1} \rightarrow \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$.

Example 3.16. Assume $r_{1}=r_{s}$ and that

$$
d_{2} / r_{2}+\gamma<d_{s} / r_{s} \text { and } d_{s-1} / r_{s-1}>d_{1} / r_{1}+\gamma
$$

If we choose (\mathcal{E}, Φ) with $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$, then as in Example 3.15 we see that $\Phi(\mathcal{E}) \subseteq \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$ and $\mathcal{F}_{s-1} \subseteq \operatorname{ker}(\Phi)$, because $d_{i} / r_{i}+\gamma<d_{s} / r_{s}$ for all $i>1$ and $d_{j} / r_{j}>d_{1} / r_{1}+\gamma$ for all $j<s$. Set $k:=d_{1}-d_{2}+\gamma r_{1}$. Then we have $\operatorname{rk}(\Phi)=r_{1}$ if and only if $\mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ is obtained from $\mathcal{F}_{s} / \mathcal{F}_{s-1}$ by applying k positive elementary transformations and Φ is induced by the associated inclusion $\mathcal{F}_{s} / \mathcal{F}_{s-1} \hookrightarrow \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$.

4. Segre invariant

In this section, we do not assume that $\mathcal{I}_{\mathcal{D}}$ has some kind of negativity, so that we may have stable (\mathcal{E}, Φ) with nonzero Φ. Let \mathcal{E} be a torsion-free sheaf of rank $r \geq 2$ and $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ a co-Higgs field. For a fixed integer $k \in\{1, \ldots, r-1\}$, let us denote by $\mathcal{S}(k, \mathcal{E}, \Phi)$ the set of all subsheaves $\mathcal{A} \subset \mathcal{E}$ of rank k such that $\Phi(\mathcal{A}) \subseteq \mathcal{A} \otimes \mathcal{I}_{\mathcal{D}}$. Define the $k^{\text {th }}$-Segre invariant to be

$$
s_{k}(\mathcal{E}, \Phi):=k \operatorname{deg} \mathcal{E}-\max _{\mathcal{A} \in \mathcal{S}(k, \mathcal{E}, \Phi)} r \operatorname{deg} \mathcal{A}
$$

In case $\Phi=0$, we simply denote it by $s_{k}(\mathcal{E})$. This is an extension of the Segre invariant, introduced in [19] with the notation $s_{k}(\mathcal{E})$, to the case $n \geq 2$. Over curves this notion was used in several literatures, including [5, 7, 8, 17, 21, 25, 28, 30]. If we take $\mathcal{I}_{\mathcal{D}}^{\vee}$ instead of $\mathcal{I}_{\mathcal{D}}$, we get a definition for logarithmic Higgs fields. Note that we always have $\mathcal{S}(k, \mathcal{E}, 0) \neq \emptyset$ and $s_{k}(\mathcal{E}) \leq s_{k}(\mathcal{E}, \Phi)$.
Lemma 4.1. Let (\mathcal{E}, Φ) be a 2-nilpotent co-Higgs bundle of rank r, and set $\mathcal{A}:=\operatorname{ker}(\Phi)$ and $\mathcal{B}:=\operatorname{Im}(\Phi)$ with $r^{\prime}:=\operatorname{rk}(\mathcal{A})$. Then we have the following:
(i) $\mathcal{A} \in \mathcal{S}\left(r^{\prime}, \mathcal{E}, \Phi\right)$;
(ii) $\mathcal{S}(k, \mathcal{A}, 0) \subseteq \mathcal{S}(k, \mathcal{E}, \Phi)$ for $1 \leq k<r^{\prime}$;
(iii) \mathcal{B} is torsion-free and $\Phi^{-1}(\mathcal{G}) \in \mathcal{S}(k, \mathcal{E}, \Phi)$ for all $\mathcal{G} \in \mathcal{S}\left(k-r^{\prime}, \mathcal{B}, 0\right)$ and $r^{\prime}<k<r$;
(iv) $\mathcal{S}(k, \mathcal{E}, \Phi) \neq \emptyset$ for all k.

Proof. Parts (i) and (ii) are obvious. Part (iii) is true, because $\mathcal{B} \subseteq \mathcal{A} \otimes \mathcal{I}_{\mathcal{D}}$ by the definition of 2-nilpotent. Part (iv) follows from the other ones.

Example 4.2. From [3, Theorem 1.1] we get a description of the set of nilpotent co-Higgs structures on a fixed stable bundle of rank two on \mathbb{P}^{n}. Indeed it is either trivial or an $(n+1)$-dimensional vector space, depending on the parity of the first Chern class and an invariant $x_{\mathcal{E}}$. We get a non-trivial set of nilpotent co-Higgs structures on \mathcal{E} if and only if $c_{1}(\mathcal{E})+2 x_{\mathcal{E}}=-3$, and in this case we get $s_{1}(\mathcal{E}, \Phi)=1$.
4.1. Curve case. From now on we assume $n=1$ with $g=g(X)$ and $\gamma<0$. Take (\mathcal{E}, Φ) with $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ and let 2 be the Harder-Narasimhan filtration of \mathcal{E}.

Remark 4.3. From the assumption $\gamma<0$, we have $\Phi\left(\mathcal{F}_{i}\right) \subseteq \mathcal{F}_{i-1} \otimes \mathcal{I}_{\mathcal{D}}$.
Remark 4.3 immediately proves the following two lemmas.
Lemma 4.4. For an integer $j \in\{1, \ldots, s-1\}$, set $k(j)=\sum_{i=1}^{j} r_{i}$. Then

$$
s_{k(j)}(\mathcal{E}, \Phi) \leq k(j) \operatorname{deg} \mathcal{E}-r \operatorname{deg} \mathcal{F}_{j}
$$

Remark 4.5. We expect that the inequality in Lemma 4.4 is in fact equality, although we give the positive answers only to some special cases; see Lemma 4.6 and Proposition 4.10
Lemma 4.6. Assume $g=0$ and take $\mathcal{E} \cong \oplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^{1}}\left(a_{i}\right)$ with $a_{i} \geq a_{j}$ for all $i \leq j$. Then we have

$$
s_{k}(\mathcal{E}, \Phi)=s_{k}(\mathcal{E})=k\left(a_{1}+\cdots+a_{r}\right)-r\left(a_{1}+\cdots+a_{k}\right)
$$

Proposition 4.7. Fix $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with $s \geq 2$ and $\Phi \in \operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}\right)$. Choose any $k \in\left\{r_{1}+1, \ldots, r-r_{s}+1\right\}$ such that there is $h \in\{1, \ldots, s-1\}$ with $r_{1}+\cdots+r_{h}<$ $k<r_{1}+\cdots+r_{h+1}$, and set

$$
\begin{aligned}
r^{\prime} & :=k-r_{1}-\cdots-r_{s}, \\
e & :=s_{k}\left(\mathcal{F}_{h+1} / \mathcal{F}_{h}\right), \\
d^{\prime} & :=r^{\prime} \operatorname{deg} \mathcal{F}_{h+1} / \mathcal{F}_{h}-e r_{h+1} .
\end{aligned}
$$

Let $\mathcal{B} \subset \mathcal{F}_{h+1} / \mathcal{F}_{h}$ be any subsheaf of rank r^{\prime} and degree d^{\prime}, and set $\mathcal{A}:=u^{-1}(\mathcal{B})$, where u is the surjection in the exact sequence

$$
0 \rightarrow \mathcal{F}_{h} \rightarrow \mathcal{F}_{h+1} \xrightarrow{u} \mathcal{F}_{h+1} / \mathcal{F}_{h} \rightarrow 0 .
$$

Then $\mathcal{B} \in \mathcal{S}(k, \mathcal{E}, \Phi)$ and $s_{k}(\mathcal{E}, \Phi) \leq k \operatorname{deg} \mathcal{E}-k\left(\operatorname{deg} \mathcal{F}_{h}+e\right)$.

Proof. Note that d^{\prime} is the degree of all rank r^{\prime} maximal degree subsheaves of $\mathcal{F}_{h+1} / \mathcal{F}_{h}$. Since $\operatorname{deg} \mathcal{A}=d^{\prime}$, we have $\operatorname{deg} \mathcal{B}=\operatorname{deg} \mathcal{F}_{h}+d^{\prime}$. Since $\Phi\left(\mathcal{F}_{h+1}\right) \subset \mathcal{F}_{h} \subset \mathcal{B}$, we have $\mathcal{B} \in \mathcal{S}(k, \mathcal{E}, \Phi)$. Since $\operatorname{deg} \mathcal{B}=\operatorname{deg} \mathcal{F}_{h}+\operatorname{deg} \mathcal{A}$, we get the assertion.

Now Lemma 4.6 and Proposition 4.7 prove the following result.
Corollary 4.8. The Segre invariant $s_{k}(\mathcal{E}, \Phi)$ is defined for all (\mathcal{E}, Φ), if $\gamma<0$.
Example 4.9 shows that in Proposition 4.7 we may have strict inequality; of course, to be in the set-up of Proposition 4.7 we need to have $r_{h+1} \geq 2$.

Example 4.9. Assume $g \geq 5$ and fix $h \in\{1, \ldots, s-2\}$ with $s \geq 3$. Set $r_{h+1}=r_{h+2}=2$ and fix $r_{i}>0$ for $i \notin\{h+1, h+2\}$ and $d_{i} \in \mathbb{Z}, i=1, \ldots, s$ such that

- $d_{i} / r_{i}>d_{i+1} / r_{i+1}$ for all $i=1, \ldots, s-1$ and
- $d_{h+1}=2 d_{h+2}+1$.

By a theorem of Nagata there is a stable bundle \mathcal{E}_{h+1} of rank 2 with degree d_{h+1} and $g-1 \leq s_{1}\left(\mathcal{E}_{h+1}\right) \leq g$. Here, $s_{1}\left(\mathcal{E}_{h+1}\right)$ is the only integer t with $g-1 \leq t \leq g$ and $d_{h+1}-t$ even. For $i \neq h+1$ we choose \mathcal{E}_{i} to be any semistable bundle of degree d_{i} and rank r_{i}. Set $\mathcal{E}:=\oplus_{i=1}^{s} \mathcal{E}_{i}$ and then we have $\mathcal{F}_{i}=\oplus_{j=1}^{i} \mathcal{E}_{j}$ in the Harder-Narasimhan filtration 2) of \mathcal{E}.

Take any $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ with $\operatorname{ker}(\Phi) \supseteq \oplus_{i=0}^{h+1} \mathcal{E}_{i}$, e.g. take $\Phi=0$ or, for certain \mathcal{E}_{1} and \mathcal{E}_{s} so that there is a nonzero $\operatorname{map} \mathcal{E}_{s} \rightarrow \mathcal{E}_{1} \otimes \mathcal{I}_{\mathcal{D}}$, take a 2-nilpotent map Φ with $\operatorname{ker}(\Phi) \supseteq \mathcal{F}_{s-1}$. Let $\mathcal{A} \subset \mathcal{F}_{h+1} / \mathcal{F}_{h}$ be a line subbundle of maximal degree and then we have $\mathcal{B}:=u^{-1}(\mathcal{A})=\left(\sum_{i=1}^{h} \mathcal{E}_{i}\right) \oplus \mathcal{A}$. If we set $\mathcal{B}_{1}:=\left(\sum_{i=1}^{h} \mathcal{E}_{i}\right) \oplus \mathcal{E}_{h+2}$, then we have $\operatorname{deg} \mathcal{B}_{1}>\operatorname{deg} \mathcal{B}$.

Proposition 4.10. Assume $r_{i}=1$ for all i. For an integer $k \in\{1, \ldots, r-1\}$ and any co-Higgs bundle (\mathcal{E}, Φ) with $[\mathcal{E}] \in \mathbb{U}_{X}\left(r ; 1, d_{1} ; \ldots ; 1, d_{r}\right)$, we have

$$
s_{k}(\mathcal{E})=s_{k}(\mathcal{E}, \Phi)=k \operatorname{deg} \mathcal{E}-r \operatorname{deg} \mathcal{F}_{k}
$$

and \mathcal{F}_{k} is the only bundle achieving the minimum degree in $\mathcal{S}(k, \mathcal{E}, \Phi)$.
Proof. By Remark 4.3 and Lemma 4.4, we have $\left[\mathcal{F}_{k}\right] \in \mathcal{S}(k, \mathcal{E}, \Phi)$. Thus it is sufficient to prove that \mathcal{F}_{k} is the only one achieving the minimum degree in $\mathcal{S}(k, \mathcal{E}, 0)$. Take any $[\mathcal{G}] \in \mathcal{S}(k, \mathcal{E}, 0)$ with maximal degree. The maximality condition on $\operatorname{deg} \mathcal{G}$ implies that $\mathcal{E} / \mathcal{G}$ has no torsion and so it is a vector bundle of rank $r-k$ on X. We use double induction on k and r. The case $k=1$ is obvious, because \mathcal{F}_{1} is the first step of the Harder-Narasimhan filtration of \mathcal{E}.

Assume that k is at least two and the proposition holds for trivial co-Higgs fields with any $k^{\prime} \in\{1, \ldots, k-1\}$ and any bundles \mathcal{E}^{\prime} whose Harder-Narasimhan filtration has rank one bundles as subquotients.

Assume for the moment $\mathcal{F}_{1} \subset \mathcal{G}$. Since \mathcal{F}_{1} is saturated in \mathcal{E}, i.e. $\mathcal{E} / \mathcal{F}_{1}$ has no torsion, \mathcal{F}_{1} is saturated in \mathcal{G} and $\mathcal{G} / \mathcal{F}_{1}$ is a rank $k-1$ subsheaf of the vector bundle $\left[\mathcal{E} / \mathcal{F}_{1}\right] \in \mathbb{U}_{X}\left(r-1 ; 1, d_{2} ; \ldots ; 1, d_{r}\right)$. The inductive assumption gives $\operatorname{deg} \mathcal{G} / \mathcal{F}_{1} \leq$ $\operatorname{deg} \mathcal{F}_{k} / \mathcal{F}_{1}$, with equality if and only if $\mathcal{G} / \mathcal{F}_{1} \cong \mathcal{F}_{k} / \mathcal{F}_{1}$, i.e. $\operatorname{deg} \mathcal{G} \leq \operatorname{deg} \mathcal{F}_{k}$ with equality if and only if $\mathcal{G} \cong \mathcal{F}_{k}$.

Now assume $\mathcal{F}_{1} \nsubseteq \mathcal{G}$. Since \mathcal{G} is saturated in \mathcal{E}, this means that $\mathcal{F}_{1}+\mathcal{G}$ has rank $k+1$. Let \mathcal{N} be the saturation of $\mathcal{F}_{1}+\mathcal{G}$ in \mathcal{E}, and then we have $\operatorname{deg} \mathcal{N} \geq \operatorname{deg} \mathcal{F}_{1}+$ $\operatorname{deg} \mathcal{G}$ and $\mathcal{N} / \mathcal{F}_{1}$ is a rank k subsheaf of $\mathcal{E} / \mathcal{F}_{1}$. If $r \geq k-2$, then by the inductive assumption on r we have $\operatorname{deg} \mathcal{N} / \mathcal{F}_{1} \leq \operatorname{deg} \mathcal{F}_{k+1} / \mathcal{F}_{1}<\operatorname{deg} \mathcal{F}_{k}-\operatorname{deg} \mathcal{F}_{1}$ and $\operatorname{so} \operatorname{deg} \mathcal{G}<$ $\operatorname{deg} \mathcal{F}_{k}$, a contradiction. Thus we may assume $k=r-1$ and so $\mathcal{N} \cong \mathcal{E}$. Since $\mathcal{F}_{1}+\mathcal{G}$
has rank $k+1$, the natural map $\mathcal{G} \rightarrow \mathcal{E} / \mathcal{F}_{1}$ is injective. Thus we have $\operatorname{deg} \mathcal{G} \leq$ $\operatorname{deg} \mathcal{E}-\operatorname{deg} \mathcal{F}_{1}<\operatorname{deg} \mathcal{F}_{r-1}$, a contradiction.

Now for $k \in\{1, \ldots, r-1\}$ set

$$
\delta_{k}(\mathcal{E}, \Phi):=\max _{\mathcal{A} \in \mathcal{S}(k, \mathcal{E}, \Phi)} \operatorname{deg}(\mathcal{A}),
$$

$\delta_{0}(\mathcal{E}, \Phi):=0$ and $\delta_{r}(\mathcal{E}, \Phi):=\operatorname{deg}(\mathcal{E})$. In case $\Phi=0$, we simply denote it by $\delta_{k}(\mathcal{E})$.
Proposition 4.11. Fix $h \in\{1, \ldots, s\}$ with $s \geq 2$ and set $\rho:=r_{1}+\cdots+r_{h}$. For $[\mathcal{E}] \in$ $\mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$, we have
(i) $s_{\rho}(\mathcal{E})=\rho \operatorname{deg} \mathcal{E}-k \operatorname{deg} \mathcal{F}_{h}$ and $\mathcal{F}_{h} \subset \mathcal{E}$ is the only subsheaf of rank ρ with degree $\operatorname{deg} \mathcal{F}_{h}$;
(ii) $\operatorname{deg} \mathcal{E} \leq \mathcal{F}_{h-1}+(k-\rho) d_{h} / r_{h}$ for k with $\rho-r_{h}<k<\rho$ and $[\mathcal{G}] \in \mathcal{S}(k, \mathcal{E}, 0)$;
(iii) $\delta_{k}(\mathcal{E})-\operatorname{deg}\left(\mathcal{F}_{h-1}\right)$ for k with $\rho-r_{h}<k<\rho$, equals

$$
\max \left\{\sum_{j=h}^{s} \delta_{t_{j}}\left(\mathcal{F}_{j} / \mathcal{F}_{j-1}\right) \mid t_{h}+\cdots+t_{s}=k+r_{h}-\rho \text { with } 0 \leq t_{j} \leq r_{j} \text { for all } j\right\} .
$$

Proof. Set $\mu_{i}:=\mu\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)=d_{i} / r_{i}$ for $i=1, \ldots, s$ and let $\mathcal{G} \subseteq \mathcal{E}$ be a rank ρ subsheaf of maximal degree. Then part (i) is trivial if $s=h$, because $\mathcal{G} \cong \mathcal{E}$ in this case. Thus we may assume that $h<s$. Set $a_{0}=0$ and

$$
a_{i}:=\operatorname{ker}\left(\mathcal{F}_{i} \cap \mathcal{G}\right) \text { with } k_{i}:=a_{i}-a_{i-1},
$$

for $i=1, \ldots, s$. If we denote by $\mathcal{R}_{i} \subseteq \mathcal{F}_{i} / \mathcal{F}_{i-1}$ the image of $\mathcal{F}_{i} \cap \mathcal{G}$ by the quotient map $\pi_{i}: \mathcal{F}_{i} \rightarrow \mathcal{F}_{i} / \mathcal{F}_{i-1}$, then \mathcal{R}_{i} is trivial, i.e. $\mathcal{F}_{i} \cap \mathcal{G} \subseteq \mathcal{F}_{i-1}$, if and only if $k_{i}=0$. Setting $S:=\left\{i \in\{1, \ldots, s\} \mid k_{i}>0\right\}$, we have $\sum_{i=1}^{s} k_{i}=\sum_{i \in S} k_{i}=\rho$ and that $\mathcal{G} \cong \mathcal{F}_{h}$ if and only if $k_{i}=r_{i}$ for all $i \leq h$, or equivalently $k_{i}=0$ for all $i>h$. Since \mathcal{F}_{0} is trivial, we have $\mathcal{R}_{1} \cong \mathcal{F}_{1} \cap \mathcal{G}$. Thus we have $\operatorname{deg} \mathcal{G}=\sum_{i \in S} \operatorname{deg} \mathcal{R}_{i}$. Since each $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is semistable, we have $\operatorname{deg} \mathcal{R}_{i} \leq k_{i} \mu_{i}$ for all $i \in S$ and so we may use that $\mu_{i}>\mu_{j}$ for all $i<j$ to get part (i).

For part (ii) let $\mathcal{G} \subset \mathcal{E}$ be a rank k subsheaf of maximal degree and define k_{i}, $S \subseteq\{1, \ldots, s\}$ and the sheaves $\mathcal{R}_{i} \subset \mathcal{F}_{i} / \mathcal{F}_{i-1}$ as above. Then we have $\sum_{i \in S} k_{i}=k$ and $\operatorname{deg} \mathcal{G} \leq \sum_{i \in S} k_{i} \mu_{i}$ and again we may use that $\mu_{i}>\mu_{j}$ for all $i<j$, to get the assertion. Part (iii) comes directly from the definition of $\delta_{k}(\mathcal{E})$.

As immediate corollaries of Theorem 4.11 we get the following.
Corollary 4.12. We have $s_{k}(\mathcal{E}, \Phi)=s_{k}(\mathcal{E})=s_{k}(g r(\mathcal{E}))$ for all k.
Corollary 4.13. For k with $r-r_{s}<k<r$, we have

$$
\delta_{k}(\mathcal{E}, \Phi)=\delta_{k}(\mathcal{E})=d_{1}+\cdots+d_{s-1}+\delta_{k+r_{s}-r}\left(\mathcal{E} / \mathcal{F}_{s-1}\right) .
$$

4.2. Simplicity. Again let X be a smooth curve of genus g. Fix $\mathcal{R} \in \operatorname{Pic}(X)$ and set $\gamma:=\operatorname{deg} \mathcal{R}$. For a map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{R}$, set

$$
\operatorname{End}(\mathcal{E}, \Phi):=\{f \in \operatorname{End}(\mathcal{E}) \mid \hat{f} \circ \Phi=\Phi \circ f\}
$$

where \hat{f} is the map $f \otimes \operatorname{id}_{\mathcal{R}}: \mathcal{E} \otimes \mathcal{R} \rightarrow \mathcal{E} \otimes \mathcal{R}$.
In case $\gamma>0$, it often happens that $\operatorname{End}(\mathcal{E}, \Phi)$ is properly contained in $\operatorname{End}(\mathcal{E})$ and (\mathcal{E}, Φ) is simple with \mathcal{E} not simple, e.g. stable Higgs fields when $g \geq 2$ or stable co-Higgs fields when $g=0$. In this short section, we consider the case $\gamma<0$ and show why this is seldom the case for $\gamma<0$.

We assume that $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \cdots ; r_{s}, d_{s}\right)$ with the Harder-Narasimhan filtration $\sqrt[2]{2}$ and that $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{R}$ is nonzero and so $s \geq 2$. Note that every endomorphism of \mathcal{E} preserves the Harder-Narasimhan filtration of \mathcal{E}. By Remark 4.3, every endomorphism of (\mathcal{E}, Φ) also preserves the Harder-Narasimhan filtration of \mathcal{E}. Now set $\mathcal{K}:=\operatorname{ker}(\Phi)$ and then we have $\mathcal{K} \supseteq \mathcal{F}_{1}$ by the case $i=1$ of Remark 4.3 or Lemma 5.3 below. For two maps $\varphi \in \operatorname{End}\left(\mathcal{E} / \mathcal{F}_{r-1}\right)$ and $\psi \in \operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{r-1}, \mathcal{K}\right)$, define a map $f: \mathcal{E} \rightarrow \mathcal{E}$ to be the following composition:

$$
\mathcal{E} \rightarrow \mathcal{E} / \mathcal{F}_{r-1} \rightarrow \mathcal{K} \hookrightarrow \mathcal{E},
$$

where the first map is the natural quotient and the second map is given by $\psi \circ \varphi$. By the definition of \mathcal{K}, we have $\Phi \circ f=0$. If Φ is 2-nilpotent, i.e. $\operatorname{Im}(\Phi) \subseteq \mathcal{K} \otimes \mathcal{R}$, e.g. if $s=2$ by Lemma 4.1, we have $\hat{f} \circ \Phi=0$. So, if Φ is 2 -nilpotent and $\operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{r-1}, \mathcal{K}\right) \neq$ 0 , then we have $\operatorname{End}(\mathcal{E}, \Phi) \not \equiv \mathbb{C}$. We also see from $\mathcal{F}_{1} \subseteq \mathcal{K}$ that if $\operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{r-1}, \mathcal{F}_{1}\right) \neq 0$, then we have $\operatorname{End}(\mathcal{E}, \Phi) \nsubseteq \mathbb{C}$. By Riemann-Roch, we get $\operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{r-1}, \mathcal{F}_{1}\right) \neq 0$, if $d_{s} / r_{s}<d_{1} / r_{1}+g-1$. Since $\Phi \neq 0$ and each $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is semistable, we have $d_{s} / r_{s} \leq$ $d_{1} / r_{1}+\gamma$. Now if $\mathcal{R} \cong \mathcal{I}_{\mathcal{D}}$, then we have $\gamma \leq 2-2 g$ and so $d_{s} / r_{s}<g-1+d_{1} / r_{1}$ for all $g \geq 2$. Thus we get the following.

Proposition 4.14. For $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ with a nonzero co-Higgs field Φ on a smooth curve X of genus $g \geq 2$, the pair (\mathcal{E}, Φ) is not simple.

Remark 4.15. In our set-up, adding a nonzero map Φ to an unstable bundle \mathcal{E} does not help enough to get a semistable pair (\mathcal{E}, Φ); usually it is not simple, e.g. any endomorphism inducing $\mathcal{F}_{s} \rightarrow \mathcal{F}_{1}$ commutes with Φ.

5. Higher dimensional case

In this section we consider the case when the dimension of X is at least two. Note that a coherent sheaf \mathcal{E} on X is semistable if and only if $\mu_{+}(\mathcal{E})=\mu_{-}(\mathcal{E})$.
5.1. Case of $\mathcal{I}_{\mathcal{D}}$ semistable. We fix a polarization $\mathcal{O}_{X}(1)$ with respect to which we consider slope, stability and semistability. We assume that $\mathcal{I}_{\mathcal{D}}$ is semistable with $\mu\left(\mathcal{T}_{\mathcal{D}}\right)<0$; in case $\mu\left(\mathcal{T}_{\mathcal{D}}\right) \geq 0$, we would get that the framework would be the construction of stable or semistable co-Higgs or logarithmic co-Higgs bundles as in [4]. There are several manifolds X with T_{X} semistable, or equivalently with the semistable cotangent bundle; see [26].

Choose a pair (\mathcal{E}, Φ) with \mathcal{E} a torsion-free sheaf of $\operatorname{rank} r$ and $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ with the Harder-Narasimhan filtration (2) of \mathcal{E}. Then the sheaf $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ is a torsion-free semistable sheaf for all i and $\mu\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)>\mu\left(\mathcal{F}_{i-1} / \mathcal{F}_{i-2}\right)$ for every $i>1$. As in $\S 3$ on curve case, for fixed integers r_{i} and d_{i}, we consider the set $\mathbb{U}_{X}\left(s ; r_{1}, d_{1}, \ldots, r_{s}, d_{s}\right)$ of torsion-free sheaves of rank r on X with the Harder-Narasimhan filtration (2) with subquotient $\mathcal{F}_{i} / \mathcal{F}_{i-1}$ of ranks r_{i} and degrees d_{i} for $i=1, \ldots, s$.

Recall that in characteristic zero the tensor product of two semistable sheaves is still semistable by [22, Theorem 2.5], So if Φ is not trivial, then we get $s \geq 2$ and so \mathcal{E} is not semistable with the Harder-Narasimhan filtration (4) for $\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$. If \mathcal{A} is a semistable torsion-free sheaf, then we have

$$
\mu\left(\mathcal{A} \otimes \mathcal{T}_{\mathcal{D}}\right)=\mu(\mathcal{A})+\gamma
$$

Thus if $[\mathcal{E}] \in \mathbb{U}_{X}\left(s ; r_{1}, d_{1} ; \ldots ; r_{s}, d_{s}\right)$ and there is a nonzero map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$, then we get $d_{1} / r_{1}+\gamma \geq d_{s} / r_{s}$; see Corollary 3.9. Now let us use the same idea in Lemma
2.3 Define

$$
\ell_{2}=\ell_{2}(\mathcal{E}):=\max _{1 \leq i \leq s}\left\{i \mid \mu\left(\mathcal{F}_{i} / \mathcal{F}_{i-1}\right)+\gamma \geq \mu\left(\mathcal{F}_{s} / \mathcal{F}_{s-1}\right)\right\}
$$

and then we have $\Phi(\mathcal{E}) \subset \mathcal{F}_{\ell_{2}} \otimes \mathcal{I}_{\mathcal{D}}$. From $\gamma<0$, we get $\ell_{2} \leq s-1$. On the other hand, letting

$$
\ell_{1}=\ell_{1}(\mathcal{E}):=\min _{1 \leq j \leq s}\left\{j \mid \mu\left(\mathcal{F}_{\ell_{2}} / \mathcal{F}_{\ell_{2}-1}\right)+\gamma<\mu\left(\mathcal{F}_{j} / \mathcal{F}_{j-1}\right)\right\},
$$

the map Φ induces a nonzero $\operatorname{map} \bar{\Phi}: \mathcal{E} / \mathcal{F}_{\ell_{1}} \rightarrow \mathcal{F}_{\ell_{2}} \otimes \mathcal{I}_{\mathcal{D}}$. In particular, if $\ell_{1} \geq \ell_{2}$, e.g. $s=2$ or $d_{2} / r_{2}+\gamma<d_{s} / r_{s}$, which imply $\ell_{2}=1$, then any such map Φ is 2-nilpotent.

In [4, Section 2] we consider the following exact sequence for $r \geq 2$

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z} \otimes \mathcal{A} \rightarrow 0 \tag{13}
\end{equation*}
$$

where \mathcal{A} is a line bundle of $\operatorname{deg} \mathcal{A}<0$ with $h^{0}\left(\mathcal{T}_{\mathcal{D}} \otimes \mathcal{A}^{\vee}\right) \geq r-1$ and $Z \subset X$ is a locally complete intersection of codimension two. Under certain assumptions on Z, we may choose \mathcal{E} to be reflexive or locally free. Then any $(r-1)$-dimensional linear subspace of $H^{0}\left(\mathcal{T}_{\mathcal{D}} \otimes \mathcal{A}^{\vee}\right)$ produces a nonzero 2-nilpotent co-Higgs field defined by the following composition:

$$
\mathcal{E} \rightarrow \mathcal{I}_{Z} \otimes \mathcal{A} \rightarrow \mathcal{I}_{\mathcal{D}}^{\oplus(r-1)} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}
$$

Assume now the existence of an endomorphism $v: \mathcal{E} \rightarrow \mathcal{E}$ such that $v^{\prime} \circ \Phi=\Phi \circ v$, where $v^{\prime}: \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ is the induces by v and the identity map on $\mathcal{I}_{\mathcal{D}}$. Since we assume that $\operatorname{deg} \mathcal{A}<0,13$ is the Harder-Narasimhan filtration of \mathcal{E}. We also assume that (13) does not split and so every automorphism of \mathcal{E} is induced by an element of $H^{0}\left(\mathcal{A}^{\vee}\right)^{\oplus(r-1)}$ and an $(r-1) \times(r-1)$-matrix of constants acting on $\mathcal{O}_{X}^{\oplus(r-1)}$. Note that, if $r=2$, these assumptions imply $h^{0}(\mathcal{E} n d(\mathcal{E}))=1+h^{0}\left(\mathcal{A}^{\vee}\right)$. In this case, the co-Higgs field Φ is obtained by composing a map $\Phi_{1}: \mathcal{I}_{Z} \otimes \mathcal{A} \rightarrow \mathcal{I}_{\mathcal{D}}$ with a map $\Phi_{2}: \mathcal{T}_{\mathcal{D}} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ induced by the inclusion in 13 .
5.2. Case of $\mathcal{I}_{\mathcal{D}}$ not semistable. In this subsection we assume that $\mathcal{I}_{\mathcal{D}}$ is not semistable so that it admits the Harder-Narasimhan filtration

$$
\begin{equation*}
\{0\}=\mathcal{H}_{0} \subset \mathcal{H}_{1} \subset \cdots \subset \mathcal{H}_{h}=\mathcal{T}_{\mathcal{D}} \tag{14}
\end{equation*}
$$

with $h \geq 2$. Assume further that $\mu_{+}\left(\mathcal{I}_{\mathcal{D}}\right)=\mu\left(\mathcal{H}_{1}\right)<0$. Since $h \geq 2$, we have $\operatorname{dim} X \geq$ $h \geq 2$.

Fix a torsion-free sheaf \mathcal{E} of rank r and degree d with Harder-Narasimhan filtration (2). We assume the existence of a nonzero logarithmic co-Higgs field $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$.

Lemma 5.1. If \mathcal{E} is reflexive, then \mathcal{F}_{i} is also reflexive for each i.
Proof. In case $n=1$, the sheaf \mathcal{F}_{i} in 2 is locally free and in particular reflexive. Now assume $n \geq 2$ and then we need to prove that \mathcal{F}_{i} has depth at least two. This is true, because \mathcal{E} has depth at least two and $\mathcal{E} / \mathcal{F}_{i}$ has no torsion and so it has positive depth.

Remark 5.2. Lemma 5.1 works for arbitrary $\mathcal{I}_{\mathcal{D}}$, even in the case $n=1$.
Lemma 5.3. We have $\mathcal{F}_{1} \subseteq \operatorname{ker}(\Phi)$ and $s \geq 2$.

Proof. Assume $\Phi\left(\mathcal{F}_{1}\right) \neq 0$ and let i_{0} be the minimal integer $i \in\{1, \ldots, s\}$ such that $\Phi\left(\mathcal{F}_{1}\right) \subseteq \mathcal{F}_{i} \otimes \mathcal{T}_{\mathcal{D}}$. By the definition of i_{0}, the $\operatorname{map} \Phi$ induces a nonzero map φ : $\mathcal{F}_{1} \rightarrow\left(\mathcal{F}_{i_{0}} / \mathcal{F}_{i_{0}-1}\right) \otimes \mathcal{I}_{\mathcal{D}}$. Since the tensor product of two semistable sheaves, modulo its torsion, is again semistable by [22, Theorem 2.5] and $\mu\left(\mathcal{H}_{1}\right)<0$, the sheaf $\operatorname{gr}\left(\left(\mathcal{F}_{i_{0}} / \mathcal{F}_{i_{0}-1}\right) \otimes \mathcal{T}_{\mathcal{D}}\right)$ given by the Harder-Narasimhan filtration of $\mathcal{I}_{\mathcal{D}}$ has all its factors with slope less than $\mu\left(\mathcal{F}_{1}\right)$. Thus we get $\Phi=0$, a contradiction.

Now Φ is a nonzero map with $\operatorname{ker}(\Phi) \supseteq \mathcal{F}_{1}$ and so we have $s \geq 2$.
Remark 5.4. By Lemma 5.1, the pair $\left(\mathcal{F}_{1}, 0\right)$ is a logarithmic co-Higgs subsheaf of (\mathcal{E}, Φ) and so (\mathcal{E}, Φ) is not semistable. In particular, \mathcal{E} is also not semistable.
5.2.1. Rank 2 case. In this subsection we consider the co-Higgs sheaves (\mathcal{E}, Φ) with \mathcal{E} reflexive of rank two and Φ nonzero.

Lemma 5.5. If \mathcal{E} is reflexive of rank two, then Φ is 2 -nilpotent.
Proof. Since Φ is nonzero, the sheaf \mathcal{F}_{1} has rank one by Lemma 5.3 Since \mathcal{F}_{1} is reflexive on a smooth variety X by Lemma 5.1, it is a line bundle by [16, Proposition 1.9]. Now we get that $\mathcal{E} / \mathcal{F}_{1} \cong \mathcal{I}_{Z} \otimes \mathcal{A}$ for some line bundle \mathcal{A} and some closed subscheme $Z \subset X$ with $\operatorname{dim} Z \leq n-2$. By definition of Harder-Narasimhan filtration, we have $\operatorname{deg} \mathcal{A}<\operatorname{deg} \mathcal{F}_{1}$. Let $\psi: \mathcal{E} \rightarrow\left(\mathcal{E} / \mathcal{F}_{1}\right) \otimes \mathcal{I}_{\mathcal{D}}$ be the map induced by Φ. Since $\operatorname{ker}(\Phi) \supseteq \mathcal{F}_{1}$ by Lemma 5.3, it is sufficient to prove that $\Phi(\mathcal{E}) \subseteq \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$, i.e. $\psi=0$. Note that ψ induces a map $\widetilde{\psi}:\left(\mathcal{E} / \mathcal{F}_{1}\right) \rightarrow\left(\mathcal{E} / \mathcal{F}_{1}\right) \otimes \mathcal{I}_{\mathcal{D}}$ with $\operatorname{Im}(\psi)=\operatorname{Im}(\widetilde{\psi})$, due to $\mathcal{F}_{1} \subseteq \operatorname{ker}(\Phi)$. Since $\left(\mathcal{E} / \mathcal{F}_{1}\right)$ has rank one and it is torsion-free, it is semistable. Again as in the proof of Lemma 5.3. since $\mu\left(\mathcal{H}_{1}\right)<0$ and the tensor product of two semistable sheaves, modulo its torsion, is semistable by [22, Theorem 2.5], we have $\mu\left(\left(\mathcal{E} / \mathcal{F}_{1}\right) \otimes \mathcal{H}_{1}\right)<\mu\left(\mathcal{E} / \mathcal{F}_{1}\right)$ and so $\widetilde{\psi}=0$. Thus we have $\psi=0$.

Now we describe all pairs (\mathcal{E}, Φ) with \mathcal{E} reflexive of rank two and Φ nonzero. By Lemma 5.3 and assumption that Φ is nonzero, the sheaf \mathcal{E} is not semistable and $s=2$. By Lemmas 5.1, 5.3, 5.5 and [16, Proposition 1.9], the map Φ is 2-nilpotent and it fits into an exact sequence

$$
0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z} \otimes \operatorname{det}(\mathcal{E}) \otimes \mathcal{F}_{1}^{\vee} \rightarrow 0
$$

with Z a closed subscheme of X with either $Z=\emptyset$ or $\operatorname{dim} Z=n-2$. Moreover, Φ is uniquely determined by a map $u: \operatorname{det}(\mathcal{E}) \otimes \mathcal{F}_{1}^{\vee} \rightarrow \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$. Thus the set of all logarithmic co-Higgs structures on \mathcal{E} is parametrized by

$$
V(\mathcal{E}):=H^{0}\left(\operatorname{det}(\mathcal{E})^{\vee} \otimes \mathcal{F}_{1}^{\otimes 2} \otimes \mathcal{I}_{\mathcal{D}}\right)
$$

The trivial element $0 \in V(\mathcal{E})$ corresponds to the trivial co-Higgs field $\Phi=0$. Note that $\Phi=0$ also exists for stable sheaves.

Now we reverse the construction. Fix two line bundles \mathcal{L}_{1} and \mathcal{L}_{2} on X with $\operatorname{deg} \mathcal{L}_{1}>\operatorname{deg} \mathcal{L}_{2}$ and a closed subscheme $Z \subset X$ such that a general extension

$$
\begin{equation*}
0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z} \otimes \mathcal{L}_{2} \rightarrow 0 \tag{15}
\end{equation*}
$$

is reflexive. We just observed that any co-Higgs field $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$ is 2-nilpotent and that $\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right) \cong H^{0}\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2}^{\vee} \otimes \mathcal{I}_{\mathcal{D}}\right)$. We may see [16, Theorem 4.1] for a description about the conditions on $\mathcal{L}_{1}, \mathcal{L}_{2}, \omega_{X}$ and Z assuring the existence of a reflexive sheaf fitting in $\sqrt{15}$ when $n=3$. Since $\sqrt{15}$ is the Harder-Narasimhan filtration of any \mathcal{E} fitting into (15), so the family of the co-Higgs sheaves (\mathcal{E}, Φ) with $\operatorname{gr}(\mathcal{E})=\mathcal{L}_{1} \oplus\left(\mathcal{I}_{Z} \otimes \mathcal{L}_{2}\right)$ is parametrized by a fibration over $\mathbb{P x t}_{X}^{1}\left(\mathcal{I}_{Z} \otimes \mathcal{L}_{2}, \mathcal{L}_{1}\right)$ whose fibre over $[\mathcal{E}]$ is $H^{0}\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2}^{\vee} \otimes \mathcal{T}_{\mathcal{D}}\right)$.

Remark 5.6. Assume $s=2$ and $\mu_{+}\left(\mathcal{T}_{\mathcal{D}}\right)<0$. For a torsion-free coherent sheaf \mathcal{E} of rank at least 2, as in the proof of Lemma 5.5 we see that every logarithmic co-Higgs field $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$ is integrable and 2-nilpotent with

$$
\operatorname{Hom}\left(\mathcal{E}, \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right) \cong \operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{1}, \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}\right)
$$

where \mathcal{F}_{1} is semistable, and $\mathcal{E} / \mathcal{F}_{1}$ is torsion-free and semistable. Recall that if \mathcal{E} is reflexive, then so is \mathcal{F}_{1} by Lemma 5.1. Take any exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{G} \rightarrow \mathcal{E} / \mathcal{F}_{1} \rightarrow 0 \tag{16}
\end{equation*}
$$

Any such extension in 16 is torsion-free. For any fixed \mathcal{G} fitting into (16), not necessarily reflexive, the proof of Lemma 5.5 shows that every logarithmic coHiggs field $\Phi: \mathcal{G} \rightarrow \mathcal{G} \otimes \mathcal{I}_{\mathcal{D}}$ is integrable and 2-nilpotent with $\operatorname{Hom}\left(\mathcal{G}, \mathcal{G} \otimes \mathcal{I}_{\mathcal{D}}\right) \cong$ $\operatorname{Hom}\left(\mathcal{E} / \mathcal{F}_{1}, \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}\right)$.
5.2.2. Rank 3 case. We assume $r=3$ and that \mathcal{E} is reflexive. Since we assume $\mu_{+}\left(\mathcal{T}_{\mathcal{D}}\right)<0$, we get $s \geq 2$ by Lemma 5.3 and so $s \in\{2,3\}$.

Remark 5.7. The case $s=2$ is dealt in Remark 5.6. In this case, the sheaf \mathcal{F}_{1} is either a line bundle or a semistable reflexive sheaf of rank two with $\mathcal{E} / \mathcal{F}_{1} \cong \mathcal{I}_{Z} \otimes \mathcal{A}$ for some line bundle \mathcal{A} and a closed subscheme $Z \subset X$ with $\operatorname{dim} Z \leq n-2$. In both cases, we may apply Remark 2.8

From now on we assume $s=3$ and so the sheaf \mathcal{F}_{i} in 2 has rank i for each i. By Lemma 5.1, the sheaf \mathcal{F}_{1} is a line bundle and \mathcal{F}_{2} is reflexive so that $\mathcal{F}_{2} / \mathcal{F}_{1} \cong \mathcal{I}_{Z_{1}} \otimes \mathcal{A}_{1}$ and $\mathcal{E} / \mathcal{F}_{2} \cong \mathcal{I}_{Z_{2}} \otimes \mathcal{A}_{2}$ with $\mathcal{A}_{1}, \mathcal{A}_{2}$ line bundles and Z_{1}, Z_{2} closed subschemes of X with dimension at most $n-2$. Here we have $\operatorname{deg} \mathcal{F}_{1}>\operatorname{deg} \mathcal{A}_{1}>\operatorname{deg} \mathcal{A}_{2}$. Set

$$
\delta(\mathcal{E}):=\mu_{-}\left(\mathcal{F}_{2}\right)-\mu_{+}\left(\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right)
$$

where $\mu_{-}\left(\mathcal{F}_{2}\right)=\operatorname{deg} \mathcal{A}_{1}$ and $\mu_{+}\left(\mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}\right)=\operatorname{deg} \mathcal{F}_{1}+\mu_{+}\left(\mathcal{T}_{\mathcal{D}}\right)$
(a) Assume $\delta(\mathcal{E})>0$ and then we have $\Phi_{\mid \mathcal{F}_{2}}=0$, i.e. Φ is uniquely induced by a $\operatorname{map} u_{1}: \mathcal{I}_{Z_{2}} \otimes \mathcal{A}_{2} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$. Since $\mathcal{E} / \mathcal{F}_{2} \cong \mathcal{I}_{Z_{2}} \otimes \mathcal{A}_{2}$ is of rank one and $\mu_{+}\left(\mathcal{I}_{\mathcal{D}}\right)<0$, the composition of u_{1} with the quotient map $\mathcal{E} \otimes \mathcal{I}_{\mathcal{D}} \rightarrow\left(\mathcal{E} / \mathcal{F}_{2}\right) \otimes \mathcal{I}_{\mathcal{D}}$ is trivial, implying $\operatorname{Im}\left(u_{1}\right) \subseteq \mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$. Thus Φ is uniquely determined by a map $u: \mathcal{I}_{Z_{2}} \otimes \mathcal{A}_{2} \rightarrow \mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$. Conversely, any map $u: \mathcal{I}_{Z_{2}} \otimes \mathcal{A}_{2} \rightarrow \mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$ induces a 2-nilpotent logarithmic co-Higgs field on \mathcal{E} by taking the composition $u \circ \pi$, where $\pi: \mathcal{E} \rightarrow \mathcal{E} / \mathcal{F}_{2}$ is the quotient map.
(b) Assume now $\delta(\mathcal{E}) \leq 0$. Set $\mathcal{B}:=\operatorname{Im}\left(\Phi_{\mid \mathcal{F}_{2}}\right)$ and $\mathcal{G}:=\operatorname{Im}(\Phi)$. Since we have

$$
\mu_{+}\left(\left(\mathcal{E} / \mathcal{F}_{2}\right) \otimes \mathcal{I}_{\mathcal{D}}\right)=\mu\left(\mathcal{E} / \mathcal{F}_{2}\right)+\mu_{+}\left(\mathcal{I}_{\mathcal{D}}\right)<\mu\left(\mathcal{E} / \mathcal{F}_{2}\right)
$$

the composition of Φ with the quotient $\operatorname{map} \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}} \rightarrow\left(\mathcal{E} / \mathcal{F}_{2}\right) \otimes \mathcal{I}_{\mathcal{D}}$ is trivial and so we have $\mathcal{G} \subseteq \mathcal{F}_{2} \otimes \mathcal{T}_{\mathcal{D}}$. If \mathcal{B} is trivial, then we may apply part (a), i.e. Φ is 2 nilpotent and it is uniquely induced by $u: \mathcal{I}_{Z_{2}} \otimes \mathcal{A}_{2} \rightarrow \mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$. Now we assume that \mathcal{B} is not trivial. Since $\Phi\left(\mathcal{F}_{1}\right)=0$ and $\mathcal{F}_{2} / \mathcal{F}_{1}$ is a torsion-free sheaf of rank one, we have $\mathcal{B} \cong \mathcal{F}_{2} / \mathcal{F}_{1}$ and so $\operatorname{rk}(\mathcal{G}) \in\{1,2\}$. Note that we have $\mathcal{B} \subseteq \mathcal{F}_{1} \otimes \mathcal{T}_{\mathcal{D}}$ from $\mu_{+}\left(\mathcal{E} / \mathcal{F}_{2}\right)+\mu_{+}\left(\mathcal{T}_{\mathcal{D}}\right)<\mu_{+}\left(\mathcal{E} / \mathcal{F}_{2}\right)$.
(b-i) First assume $\operatorname{rk}(\mathcal{G})=1$ and then \mathcal{B} is a subsheaf of \mathcal{G} with the same rank. Since $\mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$ is a saturated subsheaf of $\mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$, we have $\mathcal{G} \subseteq \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$. Thus Φ is uniquely determined by a map $\mathcal{E} / \mathcal{F}_{1} \rightarrow \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$, i.e. by an element of $H^{0}\left(\mathcal{I}_{\mathcal{D}} \otimes\right.$ $\left.\mathcal{F}_{1} \otimes \mathcal{A}^{\vee}\right)$; the converse also holds, but we cannot guarantee the integrability of the associated logarithmic co-Higgs field.
(b-ii) Now assume $\operatorname{rk}(\mathcal{G})=2$. Since we have $\mathcal{G}=\psi\left(\mathcal{E} / \mathcal{F}_{1}\right)$ for the map ψ : $\mathcal{E} / \mathcal{F}_{1} \rightarrow \mathcal{E} \otimes \mathcal{T}_{\mathcal{D}}$, the map ψ is injective as a map of sheaves and $\mathcal{G} \cong \mathcal{E} / \mathcal{F}_{1}$. In this case we also have $\mathcal{F}_{1}=\operatorname{ker}(\Phi)$. We get that \mathcal{E} is a reflexive sheaf fitting into an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{E} \xrightarrow{f} \mathcal{G} \rightarrow 0 \tag{17}
\end{equation*}
$$

with \mathcal{F}_{1} a line bundle and \mathcal{G} a torsion-free unstable sheaf of rank two with $\operatorname{deg} \mathcal{F}_{1}>$ $\mu_{+}(\mathcal{G})$. The $\operatorname{map} \Phi$ is determined by a unique injective map $v: \mathcal{G} \rightarrow \mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$. Conversely, set $\mathcal{G}_{1} \subset \mathcal{G}$ to be the Harder-Narasimhan filtration of \mathcal{G} and $\mathcal{F}_{2}=f^{-1}\left(\mathcal{G}_{1}\right)$, where f is the surjection in (17). Then the composition of the quotient map $\mathcal{E} \rightarrow \mathcal{E} / \mathcal{F}_{1}$ with an injective map $\mathcal{G} \rightarrow \mathcal{F}_{2} \otimes \mathcal{I}_{\mathcal{D}}$ induces a logarithmic co-Higgs field Φ with the given data $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{G}\right)$, which does not necessarily satisfy the integrability condition. Note that if $\mathcal{G} \subset \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$, i.e. Φ comes from an injective map $\mathcal{G} \rightarrow \mathcal{F}_{1} \otimes \mathcal{I}_{\mathcal{D}}$, then Φ is 2-nilpotent and so it is integrable.

Example 5.8. Assume that $\mathcal{T}_{\mathcal{D}}$ is not semistable with Harder-Narasimhan filtration (14) and set $\mu_{2}\left(\mathcal{T}_{\mathcal{D}}\right):=\mu\left(\mathcal{H}_{2} / \mathcal{H}_{1}\right)$. Let \mathcal{E} be a torsion-free sheaf of rank r with (2) as its Harder-Narasimhan filtration and assume $\mu_{+}(\mathcal{E})-\mu_{-}(\mathcal{E})<\mu_{2}\left(\mathcal{T}_{\mathcal{D}}\right)$. In this case, for any map $\Phi: \mathcal{E} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$, the sheaf $\operatorname{Im}(\Phi)$ is contained in the subsheaf $\overline{\mathcal{E} \otimes \mathcal{H}_{1}}$ of $\mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$, which is the image of the natural map $\mathcal{E} \otimes \mathcal{H}_{1} \rightarrow \mathcal{E} \otimes \mathcal{I}_{\mathcal{D}}$. We have $\overline{\mathcal{E} \otimes \mathcal{H}_{1}} \cong \mathcal{E} \otimes \mathcal{H}_{1}$ if either \mathcal{E} or \mathcal{H}_{1} is locally free. Note that \mathcal{H}_{1} is locally free, if it has rank one, because \mathcal{H}_{1} is reflexive and X is smooth; see [16, Proposition 1.9]. In particular, if $n=2$, then \mathcal{H}_{1} is a line bundle and $\mu_{2}\left(\mathcal{I}_{\mathcal{D}}\right)=\mu_{-}\left(\mathcal{I}_{\mathcal{D}}\right)$. Thus under these assumptions we may repeat the observations given in the case $\mathcal{I}_{\mathcal{D}}$ semistable using \mathcal{H}_{1} instead of $\mathcal{T}_{\mathcal{D}}$. Without any assumption on $\mu_{2}\left(\mathcal{I}_{\mathcal{D}}\right)$ we may see at least a part of the logarithmic co-Higgs fields of \mathcal{E} in this way.

References

[1] M. F. Atiyah, Vector bundles on an elliptic curve, Proc. London Math. Soc. 7 (1959), 414-452.
[2] E. Ballico and S. Huh, A note on co-Higgs bundles, to appear in Taiwanese J. Math., preprint, arXiv:1606.01843 [math.AG].
[3] E. Ballico and S. Huh, 2-nilpotent co-Higgs structures, preprint, arXiv:1606.02584 [math.AG].
[4] E. Ballico and S. Huh, Logarithmic co-Higgs bundles, preprint, arXiv:1609.03733 [math.AG].
[5] E. Ballico and B. Russo, Maps between stable vector bundles on a smooth curve, Bull. Polish Acad. Sci. Math. 50 (2002), no. 4, 433-446.
[6] C. Bănică, Sur les Ext-globaux dans une déformation, Compositio Math. 44 (1981), no. 1-3, 17-27.
[7] U. N. Bhosle, Maximal subsheaves of torsion-free sheaves on nodal curves, J. London Math. Soc. (2) 74 (2006), 59-74.
[8] L. Brambila Paz and H. Lange, A stratification of the moduli space of vector bundles on curves Dedicated to Martin Kneser on the occasion of his 70th birthday, J. Reine Angew. Math. 494 (1998), 173-187.
[9] S. B. Bradlow, O. García-Prada and P. Gothen, Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann. 328 (2004), 299-351.
[10] A. V. Colmenares, Moduli spaces of semistable rank-2 co-Higgs bundles over $\mathbb{P}^{1} \times \mathbb{P}^{1}$, preprint, arXiv:1604.01372 [math.AG].
[11] O. Debarre, Varieties with ample cotangent bundle, Compos. Math. 141 (2005), no. 6, 1445-1459.
[12] O. Debarre, Corrigendum: Varieties with ample cotangent bundle (Compos. Math. 141 (2005), 1445-1459), Compos. Math. 149 (2013), no. 3, 505-506.
[13] I. Dolgachev, Logarithmic sheaves attached to arrangements of hyperplanes, J. Math. Kyoto Univ. 47 (2007), no. 1, 35-64.
[14] T. Gómez, Algebraic stacks, Proc. Indian Acad. Sci. Math. Sci. 111 (2001), no. 1, 1-31; arXiv: 9911199.
[15] M. Gualtieri, Generalized complex geometry, Ann. Math. 174 (2011), no. 1, 75-123.
[16] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176.
[17] A. Hirschowitz, Problèmes de Brill-Noether en rang supèrieur, unpublished preprint, Nice, 1986; available in pdf in his webpages.
[18] N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), no. 3, 281-308.
[19] H. Lange, Zur Klassifikation von Regelmannigfaltigkeiten, Math. Ann. 262 (1983), no. 4, 447-459.
[20] H. Lange, Universal families of extensions, J. Algebra 83 (1983), no. 1, 101-112.
[21] H. Lange, Some geometrrical aspects of vector bundles on curves, Topics in algebraic geometry (Guanajuato, 1989), 53-74, Aportaciones Mat. Notes Investigatión 5, Soc. Mat. Mexicana, México, 1992.
[22] M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), no. 3, 317-333.
[23] S. Mukai and F. Sakai, Maximal subbundles of vector bundles on a curve, Manuscripta Math. 2 (1985), 251-256.
[24] N. Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275-300.
[25] W. Oxbury, Varieties of maximal line subbundles, Math. Proc. Camb. Phil. Soc. 129 (2000), 9-18.
[26] T. Peternell and J. A. Wiśniewski, On stability of tangent bundles of Fano manifolds with $b_{2}=1$, J. Alg. Geom. 4 (1995), 363-384.
[27] S. Rayan, Constructing co-Higgs bundles on $\mathbb{C P}^{2}$, Q. J. Math. 65 (2014), no. 4, 1437-1460.
[28] B. Russo and M. Teixidor i Bigas, On a conjecture of Lange, J. Alg. Geom. 8 (1999), no. 3, 483-496.
[29] C. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867-918.
[30] M. Teixidor i Bigas, Subbundles of maximal degree, Math. Proc. Camb. Phil. Soc. 136 (2004), 541545.

Università di Trento, 38123 Povo (TN), Italy
E-mail address: edoardo.ballico@unitn.it
Sungkyunkwan University, Suwon 440-746, Korea
E-mail address: sukmoonh@skku.edu

[^0]: 2010 Mathematics Subject Classification. Primary: 14H60; Secondary: 14D20, 14J60, 53D18.
 Key words and phrases. co-Higgs sheaf, logarithmic tangent bundle, nilpotent.
 The first author is partially supported by MIUR and GNSAGA of INDAM (Italy). The second author is supported by Basic Science Research Program 2015-037157 through NRF funded by MEST and the National Research Foundation of Korea(KRF) 2016R1A5A1008055 grant funded by the Korea government(MSIP).

